WorldWideScience

Sample records for glycosylated hemoglobin values

  1. Quantifying risk of penile prosthesis infection with elevated glycosylated hemoglobin.

    Science.gov (United States)

    Wilson, S K; Carson, C C; Cleves, M A; Delk, J R

    1998-05-01

    Elevation of glycosylated hemoglobin above levels of 11.5 mg.% has been considered a contraindication to penile prosthesis implantation in diabetic patients. We determine the predictive value of glycosylated hemoglobin A1C in penile prosthesis infections in diabetic and nondiabetic patients to confirm or deny this prevalent opinion. We conducted a 2-year prospective study of 389 patients, including 114 diabetics, who underwent 3-piece penile prosthesis implantation. All patients had similar preoperative preparation without regard to diabetic status, control or glycosylated hemoglobin A1C level. Risk of infection was statistically analyzed for diabetics versus nondiabetics, glycosylated hemoglobin A1C values above and below 11.5 mg.%, insulin dependent versus oral medication diabetics, and fasting blood sugars above and below 180 mg.%. Prosthesis infections developed in 10 diabetics (8.7%) and 11 nondiabetics (4.0%). No increased infection rate was observed in diabetics with high fasting sugars or diabetics on insulin. There was no statistically significant increased infection risk with increased levels of glycosylated hemoglobin A1C among all patients or among only the diabetics. In fact, there was no meaningful difference in the median or mean level of glycosylated hemoglobin A1C in the infected and noninfected patients regardless of diabetes. Use of glycosylated hemoglobin A1C values to identify and exclude surgical candidates with increased risk of infections is not proved by this study. Elevation of fasting sugar or insulin dependence also does not increase risk of infection in diabetics undergoing prosthesis implantation.

  2. COMPARISON OF FRUCTOSAMINE AND GLYCOSYLATED HEMOGLOBIN IN A NON-INSULIN DEPENDENT DIABETIC POPULATION

    Directory of Open Access Journals (Sweden)

    M. Amini

    1999-08-01

    Full Text Available In an attempt to determine the clinical value of frnctosamine assay for monitoring type II diabetic patients, correlation of frnctosamine with glycosylated hemoglobin was studied. 100 patients with type II diabetes mcllitus were compared with 100 normal subjects. Fasting blood glucose, glycosylated hemoglobin, albumin and frnctosamine were measured in alt subjects. In the diabetic patients, a significant correlation was observed between fasting blood glucose and glycosylated hemoglobin (r = 0.64, p < 0.01 and scrum frnctosamine (r = 0.7, P < 0.01. Tlicrc was also a significant correlation between glycosylated hemoglobin and scrum frtictosmine (r = .94, I'<0.01. Frnctosamine, assay can be used as an index of diabetes control.

  3. Patterns of glycemic control using glycosylated hemoglobin in diabetics.

    Science.gov (United States)

    Kahlon, Arunpreet Singh; Pathak, Rambha

    2011-07-01

    Till now estimation of blood glucose is the highly effective method for diagnosing diabetes mellitus but it provides a short-term picture of control. More evidence is required to prove that plasma glucose and glycosylated hemoglobin levels together gives a better estimate of glycemic control and compliance with treatment. Indian diabetes risk score (IDRS) is a simplified screening tool for identifying undiagnosed diabetic subjects, requires minimum time, and effort and can help to considerably reduce the costs of screening. To study patterns of glycemic control using glycosylated hemoglobin in diabetic patients. To find out correlation between levels of plasma glucose and glycosylated hemoglobin in diabetics and to calculate IDRS of the study population. A cross sectional study was conducted among 300 known diabetic patients attending outpatient department of a rural medical college in Haryana, India. Following standard procedures and protocols FPG and glycosylated hemoglobin were measured to find out a pattern of glycemic control in them after taking their written and informed consent. A correlation between the levels of glycosylated hemoglobin and fasting blood glucose was also calculated. These patients were made to fill a performa and their demographic and clinical risk factors were noted and based on this, their IDRS was calculated. This was done to validate the IDRS in Indian rural population. Fifty-two percent of the population had fasting plasma glucose level between 125-150 mg/dl, 21% had this level between 151-175 mg/dl. Thirteen percent of the study subjects had HbA1C between 6.5-7.5, more than half (57.3%) had this value between 7.5-8.5, 12% and 18% had values between 8.5-9.5 and 9.5-10.5, respectively. Twelve percent of the participants had HbA1C level higher than 10.5. Correlation of fasting plasma glucose level and HbA1C was also studied and found that correlation coefficient came out to be .311. This correlation was found to be statistically

  4. Patterns of glycemic control using glycosylated hemoglobin in diabetics

    Directory of Open Access Journals (Sweden)

    Arunpreet Singh Kahlon

    2011-01-01

    Full Text Available Aim : Till now estimation of blood glucose is the highly effective method for diagnosing diabetes mellitus but it provides a short-term picture of control. More evidence is required to prove that plasma glucose and glycosylated hemoglobin levels together gives a better estimate of glycemic control and compliance with treatment. Indian diabetes risk score (IDRS is a simplified screening tool for identifying undiagnosed diabetic subjects, requires minimum time, and effort and can help to considerably reduce the costs of screening. Objective : To study patterns of glycemic control using glycosylated hemoglobin in diabetic patients. To find out correlation between levels of plasma glucose and glycosylated hemoglobin in diabetics and to calculate IDRS of the study population. Materials and Methods : A cross sectional study was conducted among 300 known diabetic patients attending outpatient department of a rural medical college in Haryana, India. Following standard procedures and protocols FPG and glycosylated hemoglobin were measured to find out a pattern of glycemic control in them after taking their written and informed consent. A correlation between the levels of glycosylated hemoglobin and fasting blood glucose was also calculated. These patients were made to fill a performa and their demographic and clinical risk factors were noted and based on this, their IDRS was calculated. This was done to validate the IDRS in Indian rural population. Results : Fifty-two percent of the population had fasting plasma glucose level between 125-150 mg/dl, 21% had this level between 151-175 mg/dl. Thirteen percent of the study subjects had HbA1C between 6.5-7.5, more than half (57.3% had this value between 7.5-8.5, 12% and 18% had values between 8.5-9.5 and 9.5-10.5, respectively. Twelve percent of the participants had HbA1C level higher than 10.5. Correlation of fasting plasma glucose level and HbA1C was also studied and found that correlation coefficient came

  5. Fasting serum glucose and glycosylated hemoglobin level in obesity.

    Science.gov (United States)

    Das, R K; Nessa, A; Hossain, M A; Siddiqui, N I; Hussain, M A

    2014-04-01

    Obesity is a condition in which the body fat stores are increased to an extent which impairs health and leads to serious health consequences. The amount of body fat is difficult to measure directly, and is usually determined from an indirect measure - the body mass index (BMI). Increased BMI in obese persons is directly associated with an increase in metabolic disease, such as type 2 diabetes mellitus. This Analytical cross sectional study was undertaken to assess the relation between obesity and glycemic control of body by measuring fasting serum glucose and glycosylated hemoglobin. This study was carried out in the Department of Physiology, Mymensingh Medical College, Mymensingh from 1st July 2011 to 30th June 2012 on 120 equally divided male and female persons within the age range of 25 to 55 years. Age more than 55 years and less than 25 years and diagnosed case of Hypothyroidism, Cushing's syndrome, polycystic ovary, Antipsychotic drug user and regular steroid users were excluded. Non probability purposive type of sampling technique was used for selecting the study subjects. Measurement of body mass index was done as per procedure. Fasting serum glucose was estimated by glucose oxidase method and Glycosylated hemoglobin by Boronate Affinity method. Statistical analysis was done by SPSS (version 17.0). Data were expressed as Mean±SE and statistical significance of difference among the groups were calculated by unpaired student's 't' test and Pearson's correlation coefficient tests were done as applicable. The Mean±SE of fasting serum glucose was significant at 1% level (P value obese group of BMI. There was no significant difference of glycosylated hemoglobin level between control and study groups. But there was positive correlation within each group. Fasting serum glucose also showed a bit stronger positive correlation with BMI. Both obese male and female persons showed higher levels of fasting serum glucose and glycosylated hemoglobin. The observed positive

  6. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glycosylated hemoglobin assay. 864.7470 Section 864.7470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7470...

  7. Inhibitory potential of pure isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation

    Directory of Open Access Journals (Sweden)

    Mohsen Hosseini

    2015-03-01

    Full Text Available BACKGROUND: Non-enzymatic glycosylation of hemoglobin is complications of diabetes. Antioxidant system imbalance can result in the emergence of free radicals’ destructive effects in the long-term. Red clover (Trifolium pratense L. and alfalfa (Medicago sativa L. contain isoflavonoids and have antioxidant activity. This experimental study evaluated the inhibitory activity of pure isoflavonoids (daidzein and genistein, red clover and alfalfa extracts on hemoglobin glycosylation. METHODS: This study was performed in Iran. Stock solution of hydroalcoholic extracts of red clover and alfalfa in concentrations of 1 and 10 g/100 ml and stock solution of daidzein and genistein in concentrations of 250 ng, 500 ng, 25 µg and 250 µg/100 ml were prepared as case groups. Control group was without hydroalcoholic extracts of plants and pure isoflavonoids. All experiments were performed in triplicate. Hemoglobin was prepared and antioxidant activities were investigated to estimate degree of nonenzymatic hemoglobin glycosylation. RESULTS: There was no significantly difference between used extracts (extract of red clover and alfalfa and control of the hemoglobin glycosylation but using daidzein (P = 0.046, 0.029 and 0.021, respectively and genistein (P = 0.034, 0.036 and 0.028 significantly inhibited (P < 0.050 this reaction in 25 µg/100 ml, 250 and 500 ng/100 ml concentrations when compared to control. in 25 µg/100 ml, 250 ng and 500 ng/100 ml concentrations percentage of inhibition were 32, 80 and 74.5% respectively with used of daidzein and were 21, 83 and 76% respectively with consumption of genistein. CONCLUSION: According to decrease of glycation of hemoglobin with isoflavonoids, two used plant in this study containing isoflavonoid may be useful on diabetes.   

  8. Blood pressure reduction due to hemoglobin glycosylation in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Pedro Cabrales

    2008-08-01

    Full Text Available Pedro Cabrales1, Miguel A Salazar Vázquez2,3, Beatriz Y Salazar Vázquez3,4, Martha Rodríguez-Morán5, Marcos Intaglietta4, Fernando Guerrero-Romero51La Jolla Bioengineering Institute, La Jolla, California, USA; 2Hospital Regional No. 1, of the Mexican Social Security Institute, Victoria de Durango, Dgo. Mexico; 3Faculty of Medicine and Dept. of Physical Chemistry, Universidad Juárez del Estado de Durango, Victoria de Durango, Dgo. Mexico; 4Department of Bioengineering, University of California, San Diego, La Jolla, California, USA; 5Biomedical Research Unit, of the Mexican Social Security Institute, Victoria de Durango, Dgo. MexicoObjective: To test the hypothesis that glycosylation of hemoglobin constitutes a risk factor for hypertension.Methods: A total of 129 relative uniform diabetic subjects (86 women and 42 men were enrolled in a cross-sectional study. Exclusion criteria included alcohol consumption, smoking, ischemic heart disease, stroke, neoplasia, renal, hepatic, and chronic inflammatory disease. Systolic and diastolic pressures were recorded in subsequent days and mean arterial blood pressure (MAP was determined. Hemoglobin glycosylation was measured by determining the percentage glycosylated hemoglobin (HbA1c by means of the automated microparticle enzyme immunoassay test.Results: MAP was found to be independent of the concentration of HbA1c; however, correcting MAP for the variability in hematocrit, to evidence the level of vasoconstriction (or vasodilatation showed that MAP is negatively correlated with the concentration of HbA1c (p for trend <0.05, when patients treated for hypertension are excluded from the analysis. Patients treated for hypertension showed the opposite trend with increasing MAP as HbA1c increased (p for the difference in trends <0.05.Conclusions: Glycosylation per se appears to lead to blood pressure reduction in type 2 diabetic patients untreated for hypertension. Treatment for hypertension may be

  9. Nonenzymatic glycosylation of human hemoglobin at multiple sites

    International Nuclear Information System (INIS)

    Shapiro, R.; McManus, M.; Garrick, L.; McDonald, M.J.; Bunn, H.F.

    1979-01-01

    The most abundant minor hemoglobin component of human hemolysate is Hb A1c, which has glucose bound to the N-terminus of the beta chain by a ketoamine linkage. Hb A1c is formed slowly and continuously throughout the 120 day lifespan of the red cell. It can be synthesized in vitro by incubating purified hemoglobin with 14C-glucose. Other minor components, Hb A1a1 and Hb A1a2 are adducts of sugar phosphates at the N-terminus of the beta chain. Hb A1b contains an unidentified nonphosphorylated sugar at the beta N-terminus. In addition, a significant portion of the major hemoglobin component (Hb Ao) is also glycosylated by a glucose ketoamine linkage at other sites on the molecule, including the N-terminus of the alpha chain and the epsilon-amino group of several lysine residues on both the alpha and the beta chains. The results indicate that the interaction of glucose and hemoglobin is rather nonspecific and suggests that other proteins are modified in a similar fashion

  10. Glycosylated hemoglobin as a forecast factor of progressing of diabetic nephropathy in patients with diabetes type 1

    Directory of Open Access Journals (Sweden)

    Pertseva N.O.

    2017-12-01

    Full Text Available The aim of the study was to propose a mathematical model for prediction of development of diabetic nephropathy in patients with diabetes mellitus by determining the level of glycosylated hemoglobin - as a factor in the development and progression of diabetic nephropathy. A survey of 136 patients with type 1 diabetes was performed in the endocrinology department of the OSH «Clinic of the Medical Academy», Dnipro in 2016-2017. Clinical laboratory examination included: determination of the level of glycosylated hemoglobin (HbA1c, level of blood creatinine, level of albuminuria. The GFR was calculated by the formula CKD-EPI. The obtained results of the study, using methods of correlation and regression analysis, show a clear correlation between the GFR score in patients with diabetes mellitus and the level of glycosylated hemoglobin. Statistical methods of analysis have shown that the level of glycosylated hemoglobin can be considered as an early predictor of development of diabetic nephropathy. The mathematical equation of prognosis for the onset of diabetic nephropathy can be used to determine the prognosis for the development of diabetic nephropathy in diabetes mellitus patients in clinical practice for the timely inclusion of patients with a high prognostic risk in a group requiring more stringent glycemic control.

  11. Effects of laser acupoint irradiation on blood glucose and glycosylated hemoglobin in type 2 diabetes mellitus

    Science.gov (United States)

    Hui-Hui, Liu; Guo-Xin, Xiong; Li-Ping, Zhang

    2016-06-01

    To investigate the effects of semiconductor laser acupoint irradiation on blood glucose, glycosylated hemoglobin and physical fitness in type 2 diabetes mellitus, 44 cases of type 2 diabetic patients were randomly divided into a control group and a treatment group. All patients in both groups were given a drug treatment. The Hegu, Quchi and Zusanli acupoints of patients in the treatment group were then irradiated daily for 15 d with a 10 MW semiconductor laser. Before and after treatment, patients in both groups underwent a variety of tests and measurements: a two-hour postprandial blood glucose test; a glycosylated hemoglobin test and body mass index (BMI), waist-to-hip ratio (WHR) and body fat percentage (BFP) measurements. The data detected after treatment greatly decreased in the treatment group and was significantly different from that in the control group. It is shown that the acupoint irradiation with a semiconductor laser can improve two-hour postprandial blood glucose, glycosylated hemoglobin and some physical fitness measurements in type 2 diabetes mellitus patients.

  12. [Effect of high-intensity interval training on the reduction of glycosylated hemoglobin in type-2 diabetic adult patients].

    Science.gov (United States)

    Aguilera Eguía, Raúl Alberto; Russell Guzmán, Javier Antonio; Soto Muñoz, Marcelo Enrique; Villegas González, Bastián Eduardo; Poblete Aro, Carlos Emilio; Ibacache Palma, Alejandro

    2015-03-05

    Type 2 diabetes mellitus is one of the major non-communicable chronic diseases in the world. Its prevalence in Chile is significant, and complications associated with this disease involve great costs, which is why prevention and treatment of this condition are essential. Physical exercise is an effective means for prevention and treatment of type 2 diabetes mellitus. The emergence of new forms of physical training, such as "high intensity interval training", presents novel therapeutic alternatives for patients and health care professionals. To assess the validity and applicability of the results regarding the effectiveness of high intensity interval training in reducing glycosylated hemoglobin in adult patients with type 2 diabetes mellitus and answer the following question: In subjects with type 2 diabetes, can the method of high intensity interval training compared to moderate intensity exercise decrease glycosylated hemoglobin? We performed a critical analysis of the article "Feasibility and preliminary effectiveness of high intensity interval training in type 2 diabetes". We found no significant differences in the amount of glycosylated hemoglobin between groups of high intensity interval training and moderate-intensity exercise upon completion of the study (p>0.05). In adult patients with type 2 diabetes mellitus, high intensity interval training does not significantly improve glycosylated hemoglobin levels. Despite this, the high intensity interval training method shows as much improvement in body composition and physical condition as the moderate intensity exercise program.

  13. The relationship between vegetables and fruits intake and glycosylated hemoglobin values, lipids profiles and nitrogen status in type II inactive diabetic patients

    Directory of Open Access Journals (Sweden)

    Marjan Tabesh

    2013-01-01

    Conclusions : Intake of vegetables and fruits may reduce the glycosylated hemoglobin, therefore choosing the appropriate diet with high fruits and vegetables may help to develop antioxidant defense and reduce the HbA1C in diabetic patients but it did not have any impact on lipids profiles, BUN/creatinine and urine protein 24 h.

  14. Study on the relationship between blood levels of growth hormone, glycosylated hemoglobin and micro-vascular nephropathy in patients with diabetes

    International Nuclear Information System (INIS)

    Cai Facheng; Yao Yingfei; Zhang Jinchi

    2005-01-01

    Objective: To evaluate the relationship between blood levels of growth hormone, glycosylated hemoglobin and micro-vascular nephropathy in patients with diabetes. Methods: Blood growth hormone and β 2 -m levels were determined with RIA and GH2 bA 1C , blood glucose were determined with biochemical method in 41 diabetic patients and 32 controls. Results: The blood levels of growth hormone, glycosylated hemoglobin, β 2 -microglobulin and fasting blood glucose in the patients with diabetes well controlled (n=22) were significantly higher than those in controls and levels in patients with diabetes poorly controlled (n=19) were again significantly higher than those in patients with diabetes well controlled (P 2 -microglobulin and fasting blood glucose is very important for early detection of diabetic nephropathy. (authors)

  15. The effects of 2,3-diphosphoglycerate, adenosine triphosphate, and glycosylated hemoglobin on the hemoglobin-oxygen affinity of diabetic patients

    Directory of Open Access Journals (Sweden)

    Castilho E.M.

    2003-01-01

    Full Text Available The position of the oxygen dissociation curve (ODC is modulated by 2,3-diphosphoglycerate (2,3-DPG. Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. Three groups were compared in the present study: 1 nondiabetic control individuals (N = 19; 2 insulin-dependent diabetes mellitus (IDDM patients (on insulin treatment (N = 19; 3 non-insulin-dependent diabetes mellitus (NIDDM patients using oral hypoglycemic agents and no insulin treatment (N = 22. The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%. In IDDM patients, the effect of the glycosylated hemoglobin fraction on the position of the ODC appeared to be counterbalanced by small though statistically significant increases in 2,3-DPG concentration from 2.05 (control to 2.45 µmol/ml blood (IDDM. Though not statistically significant, an increase of 2,3-DPG also occurred in NIDDM patients, while red cell ATP levels were the same for all groups. The positions of the ODC were the same for control subjects, IDDM and NIDDM patients. Thus, the PO2 at 50% hemoglobin-oxygen saturation was 26.8, 28.2 and 28.5 mmHg for control, IDDM and NIDDM, respectively. In conclusion, our data question the idea of adverse side effects of insulin treatment on oxygen transport. In other words, the shift to the left reported by others to be caused by insulin treatment was not detected.

  16. The effects of 2,3-diphosphoglycerate, adenosine triphosphate, and glycosylated hemoglobin on the hemoglobin-oxygen affinity of diabetic patients.

    Science.gov (United States)

    Castilho, E M; Glass, M L; Manço, J C

    2003-06-01

    The position of the oxygen dissociation curve (ODC) is modulated by 2,3-diphosphoglycerate (2,3-DPG). Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. Three groups were compared in the present study: 1) nondiabetic control individuals (N = 19); 2) insulin-dependent diabetes mellitus (IDDM) patients (on insulin treatment) (N = 19); 3) non-insulin-dependent diabetes mellitus (NIDDM) patients using oral hypoglycemic agents and no insulin treatment (N = 22). The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%). In IDDM patients, the effect of the glycosylated hemoglobin fraction on the position of the ODC appeared to be counterbalanced by small though statistically significant increases in 2,3-DPG concentration from 2.05 (control) to 2.45 mol/ml blood (IDDM). Though not statistically significant, an increase of 2,3-DPG also occurred in NIDDM patients, while red cell ATP levels were the same for all groups. The positions of the ODC were the same for control subjects, IDDM and NIDDM patients. Thus, the PO2 at 50% hemoglobin-oxygen saturation was 26.8, 28.2 and 28.5 mmHg for control, IDDM and NIDDM, respectively. In conclusion, our data question the idea of adverse side effects of insulin treatment on oxygen transport. In other words, the shift to the left reported by others to be caused by insulin treatment was not detected.

  17. Association between elevated pre-operative glycosylated hemoglobin and post-operative infections after non-emergent surgery

    OpenAIRE

    Blankush, Joseph M.; Leitman, I. Michael; Soleiman, Aron; Tran, Trung

    2016-01-01

    Background: A chronic state of impaired glucose metabolism affects multiple components of the immune system, possibly leading to an increased incidence of post-operative infections. Such infections increase morbidity, length of stay, and overall cost. This study evaluates the correlation between elevated pre-operative glycosylated hemoglobin (HbA1c) and post-operative infections. Study design: Adult patients undergoing non-emergent procedures across all surgical subspecialties from January...

  18. Comparison of glycosylated hemoglobin (HbA1C levels in patients with chronic periodontitis and healthy controls

    Directory of Open Access Journals (Sweden)

    Padma Rajan

    2013-01-01

    Conclusion: Chronic periodontitis is associated with a slight elevation in glycosylated hemoglobin (lab and chair side kit and that the clinical significance of this difference remains to be determined. This preliminary finding is consistent with earlier reports that chronic periodontitis is associated with elevated blood glucose in adults without diabetes and may increase one′s risk for type-2 diabetes.

  19. Relationship between Sucralose Consumption and Serum Concentration of Glycosylated Hemoglobin in People with Type 2 Diabetes Mellitus without Complications

    Directory of Open Access Journals (Sweden)

    María del Carmen Cortés-López

    2017-11-01

    Full Text Available People who live with diabetes consume sucralose to control their blood glucose, but there is a controversy about this topic. To evaluate the relationship between sucralose consumption and serum concentration of glycosylated hemoglobin in people with Type 2 Diabetes Mellitus without complications. Cross-sectional study. Universe of 27 214 people with Type 2 Diabetes Mellitus without complications, users of a primary care unit from the Instituto Mexicano del Seguro Social in the state of Jalisco, Mexico. Simple probabilistic sample, n = 194 (p = 0,05. Propositive sampling. Selection criteria: adults of any gender and education level who agreed to participate. Variables: sociodemographic, anthropometric, clinical and dietary. Data collection instruments: Sociodemographic questionnaire, Tanita Fitscan© 585 scale, Tanita Fitscan© HR-200 stadiometer, Body Flex© tape-measure, Slim Guide© plicometer, Afinion© AS100 analyzer, and Frequency of Food Consumption Questionnaire. Information sources: clinical files and Mexican System of Equivalent Foods. Analysis: descriptive and inferential statistics (p ≤ 0,05. 194 people. Mean age 60,23 ± 11,16, interval 28-93 years. 56,2% females and 43,8% males. Difference between glycosilated hemoglobin means: sucralose consumers 7,5% ± 1,7%, no sucralose consumers 8,1% ± 2,1% (p < 0,01. Association force “sucralose consumption/high glycosilated hemoglobin concentration” OR = 1,42 (CI95% 0,63, 3,21. Lineal correlation “quarterly sucralose consumption/serum concentration of glycosylated hemoglobin” ρ = -0,754 (R2 = 0,0057, p = 0,333. This results were partially consistent to the pre-existing literature. Studies with representative stratified samples and control of dietary variables are required for better results.

  20. Post-transfusion hemoglobin values and patient blood management

    DEFF Research Database (Denmark)

    Moerman, Jan; Vermeulen, Edith; Van Mullem, Mia

    2018-01-01

    Objectives: The objective of this retrospective study was to evaluate the added value of communicating post-transfusion hemoglobin values to clinicians as a strategy to improve RBC utilization in a 500-bed hospital. Methods: The total number of RBC transfusions, the mean number of RBC units...... transfused per patient, the mean pre- and post-transfusion hemoglobin values, the ratio of patients transfused and the ratio of patients with a post-transfusion hemoglobin > 10.5 g/dL were calculated per service and per department for six months. The data were reported to each service and compared...... with the data of the department as peer group. The impact of this communication strategy was evaluated in the following six months. Results: In the six months pre-intervention, the mean post-transfusion hemoglobin value was 9.2 g/dL. Post-transfusion hemoglobin was > 10.5 g/dL in 13.4% of patients (112...

  1. The Association of Serum Cystatin C with Glycosylated Hemoglobin in Korean Adults

    Directory of Open Access Journals (Sweden)

    Eun Hee Sim

    2016-01-01

    Full Text Available BackgroundCystatin C has been known to be associated not only with early renal impairment but also with the incidence of diabetic conditions (prediabetes plus diabetes. However, it is not clear whether cystatin C levels are associated with the prevalence of diabetic conditions in Asian populations. We evaluated this association using glycosylated hemoglobin (HbA1c levels as the definition of diabetes in Korean adults.MethodsWe analyzed data from 1,559 Korean adults (937 men and 622 women with available serum cystatin C and HbA1c values.ResultsThe serum cystatin C levels in subjects with prediabetes and diabetes were significantly increased (0.91±0.14 mg/L in prediabetes and 0.91±0.17 mg/L in diabetes vs. 0.88±0.13 mg/L in patients with normal glucose levels, P=0.001. At increasing cystatin C levels, the prevalence of subjects with prediabetes (30.2% vs. 14.6%, P<0.001 and those with diabetes (10.6% vs. 8.0%, P<0.001 significantly increased in the group with the highest cystatin C levels. The group with the highest cystatin C levels had a significantly increased odds ratio (OR for the presence of diabetic conditions compared to the group with the lowest values in total subjects (OR, 2.35; 95% confidence interval [CI], 1.54 to 3.58; P<0.001 and in women (OR, 4.13; 95% CI, 1.97 to 8.65; P<0.001, though there was no significant increase after adjusting for multiple variables.ConclusionsHigher levels of serum cystatin C are associated with an increased prevalence of diabetic conditions in Korean adults. Our findings may extend the positive association of cystatin C with diabetes incidence to an Asian population.

  2. Algunos aspectos de actualidad sobre la hemoglobina glucosilada y sus aplicaciones Some updated features on glycosylated hemoglobin and its applications

    Directory of Open Access Journals (Sweden)

    Eduardo Álvarez Seijas

    2009-12-01

    Full Text Available La hemoglobina glucosilada es un examen que mide la cantidad de hemoglobina que se glucosila en la sangre, y brinda un buen estimado del control glucémico durante los últimos 3 meses en personas prediabéticas y diabéticas, por lo que habitualmente se utiliza en el monitoreo de esta enfermedad. Un comité de expertos en diabetes, formado en el año 2008, analizó la relación entre la exposición glucémica a largo plazo y las complicaciones crónicas de la diabetes mellitus, y recomienda esta prueba como una nueva herramienta diagnóstica para esta enfermedad. Por la importancia de este tema para la práctica médica, se realiza una descripción actualizada de los antecedentes, metodología, interpretaciones y usos de este examen.Glycosylated hemoglobin is an examination measuring the amount of hemoglobin glycosylated in blood and gave a good estimated of the glycemia control during the last three months in prediabetic and diabetic persons, thus, usually it is used in monitoring of this disease. An expert committee on diabetes created in 2008, analyzed the relationship between the long-term glycemia exposition and the chronic complications of diabetes mellitus, and recommended this type of test as a new diagnostic tool for this disease. Due to the significance of this topic for medical practice, an updated description of backgrounds, methodology, interpretation and uses of this examination is performed.

  3. Validation and modification of dried blood spot-based glycosylated hemoglobin assay for the longitudinal aging study in India.

    Science.gov (United States)

    Hu, Peifeng; Edenfield, Michael; Potter, Alan; Kale, Varsha; Risbud, Arun; Williams, Sharon; Lee, Jinkook; Bloom, David E; Crimmins, Eileen; Seeman, Teresa

    2015-01-01

    This study aims to validate a modified dried blood spot (DBS)-based glycosylated hemoglobin (HbA1c) assay protocol, after a pretest in India showed poor correlation between the original DBS-based protocol and venous results. The original protocol was tested on different chemistry analyzers and then simplified at the University of Washington (UW). A second pretest was conducted in India to validate the modified assay protocol, using 44 quality control specimens. Data from UW indicated that, using the original protocol, the correlation coefficients between DBS and venous results were above 0.98 on both Bio-Rad and Olympus chemistry analyzers. The protocol worked equally well on filter paper, with or without pre-treatment, and when the recommended amount of blood spot material, or less, was used. A second pretest of the modified protocol confirmed that DBS-based levels from both Olympus and Roche chemistry analyzers were well correlated with DBS results from UW (correlation coefficients were above 0.96), as well as with venous values (correlation coefficients were above 0.94). The DBS-based HbA1c values are highly correlated with venous results. The pre-treatment of filter paper does not appear to be necessary. The poor results from the first pretest are probably due to factors unrelated to the protocol, such as problems with the chemistry analyzer or assay reagents. © 2015 Wiley Periodicals, Inc.

  4. Relationship between changes in hemoglobin glycosilated and improvement of body composition in patients with morbid obesity after tubular laparoscopic gastrectomy.

    Science.gov (United States)

    Gallart-Aragón, Tania; Fernández-Lao, Carolina; Cózar-Ibañez, Antonio; Cantarero-Villanueva, Irene; Cambil-Martín, Jacobo; Jiménez Ríos, José Antonio; Arroyo-Morales, Manuel

    2017-12-29

    The objective of our study is to analyze the possible relationship between changes in glycemic profile and body composition parameters in morbid obesity patients after tubular laparoscopic gastrectomy. A prospective observational cohort study with 69 patients was performed. The variables analyzed were body weight, blood glucose, hemoglobin, glycosylated, high density lipoprotein, low density lipoprotein, triglycerides, and waist and hip circumference. An analysis of variance of repeated measurements (ANOVA) and a correlation analysis through the Pearson test were carried out. A significant reduction in weight (p<.001 after surgery) and in glycosylated hemoglobin (p<.036) and waist hip (p<.001) were found at 6 months after surgery. There was no significant difference in the rest of the variables studied. In correlation analysis, a significant positive correlation was found between the change in concentration of hemoglobin glycosylated and hip circumference (p=.047; r=0.237), the smaller the hip circumference, the lower the concentration of glycosylated hemoglobin. Tubular laparoscopic gastrectomy is an effective technique for the treatment of morbidly obese patients with type 2 diabetes mellitus. The reduction in the perimeter of hip is related to glycosylated hemoglobin reduction 6 months after intervention. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  5. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  6. Oral health and glycosylated hemoglobin among type 1 diabetes children in South India

    Directory of Open Access Journals (Sweden)

    K Vidya

    2018-01-01

    Full Text Available Background: The study was an attempt to evaluate the relationship between oral health status and the level of glycemic control in type 1 diabetes patients. Methods: The study was carried out in 87 children with type 1 diabetes, aged 8–16 years, attending a diabetes specialty hospital. The oral health of these patients was measured using the WHO 1997 Oral Health Survey criteria for diagnosis of dental caries, gingival index, and plaque index. Samples were then divided into two groups as controlled (≤6.99% glycosylated hemoglobin [HbA1c] and uncontrolled (≥7% HbA1c diabetes as per the guidelines for glycemic control in diabetics given by the American Diabetes Association. The oral health between the groups was compared. Results: Data were statistically analyzed using student t-test. Results showed a significant difference in decayed, missing, and filled surface component (P = 0.043 and gingival index scores (P< 0.001 in the permanent dentition between controlled and uncontrolled groups but not in case of the primary dentition. Conclusions: The data findings suggest that metabolic control had an impact on caries prevalence and gingival health of these patients, in case of permanent dentition. As the glycemic control became poorer, the caries prevalence and gingival inflammation increased. When primary dentition was taken into consideration, the correlation was not significant.

  7. Does Physical Activity Mediate the Associations Between Local-Area Descriptive Norms, Built Environment Walkability, and Glycosylated Hemoglobin?

    Science.gov (United States)

    Carroll, Suzanne J; Niyonsenga, Theo; Coffee, Neil T; Taylor, Anne W; Daniel, Mark

    2017-08-23

    Associations between local-area residential features and glycosylated hemoglobin (HbA 1c ) may be mediated by individual-level health behaviors. Such indirect effects have rarely been tested. This study assessed whether individual-level self-reported physical activity mediated the influence of local-area descriptive norms and objectively expressed walkability on 10-year change in HbA 1c . HbA 1c was assessed three times for adults in a 10-year population-based biomedical cohort ( n = 4056). Local-area norms specific to each participant were calculated, aggregating responses from a separate statewide surveillance survey for 1600 m road-network buffers centered on participant addresses (local prevalence of overweight/obesity (body mass index ≥25 kg/m²) and physical inactivity (Walkability was directly and indirectly protective of worsening HbA 1c . Local-area descriptive norms and walkability influence cardiometabolic risk trajectory through individual-level physical activity. Efforts to reduce population cardiometabolic risk should consider the extent of local-area unhealthful behavioral norms and walkability in tailoring strategies to improve physical activity.

  8. Prognostic value of blood glucose in emergency room and glycosylated hemoglobin in patients who have suffered an acute cerebro-vascular event.

    Science.gov (United States)

    Ernaga Lorea, Ander; Hernández Morhain, María Cecilia; Ollero García-Agulló, María Dolores; Martínez de Esteban, Juan Pablo; Iriarte Beroiz, Ana; Gállego Culleré, Jaime

    2017-07-07

    Stress hyperglycemia has been associated with a worse prognosis in patients hospitalized in critical care units. The aim of this study is to evaluate the impact of blood glucose and glycosylated hemoglobin (HbA1c) levels on the mortality of patients suffering a acute cerebro-vascular event, and to determine if this relationship depends on the presence of diabetes. A retrospective analysis of 255 patients admitted to the ER for stroke was performed. Venous plasma glucose levels in the emergency room and HbA1c levels within the first 48hours were analyzed. The presence of diabetes was defined in terms of the patients' medical history, as well as their levels of fasting plasma glucose and HbA1c. Mortality was assessed within the first 30 months after the onset of the acute event. 28.2% of patients had diabetes. Higher mortality was observed in patients who had been admitted with plasma glucose levels≥140mg/dl (hazard ratio [HR]=2.22, 95% CI: 1.18-4.16, P=.013) after adjusting for various factors. This relationship was not confirmed in diabetic patients (HR=2.20, 95% CI: 0.66-7.40, P=.201) and was in non-diabetics (HR=2.55, 95% CI: 1.11-5.85, P=.027). In diabetics, HbA1c≥7% was not associated with poor prognosis (HR=0.68, 95% CI: 0.23-1.98, P=.475), whereas non-diabetics with admission levels of HbA1c falling within the pre-diabetes range (5.7% -6.4%) had a higher mortality (HR=2.62, 95% CI: 1.01-6.79, P=.048). Admission hyperglycemia is associated with a worse prognosis in patients without diabetes admitted for stroke, but this relationship was not seen in diabetics. In non-diabetic patients, HbA1c levels in the pre-diabetes range is associated with higher mortality. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  9. Association between elevated pre-operative glycosylated hemoglobin and post-operative infections after non-emergent surgery.

    Science.gov (United States)

    Blankush, Joseph M; Leitman, I Michael; Soleiman, Aron; Tran, Trung

    2016-09-01

    A chronic state of impaired glucose metabolism affects multiple components of the immune system, possibly leading to an increased incidence of post-operative infections. Such infections increase morbidity, length of stay, and overall cost. This study evaluates the correlation between elevated pre-operative glycosylated hemoglobin (HbA1c) and post-operative infections. Adult patients undergoing non-emergent procedures across all surgical subspecialties from January 2010 to July 2014 had a preoperative HbA1c measured as part of their routine pre-surgical assessment. 2200 patient charts (1100 operative infection (superficial surgical site infection, deep wound/surgical space abscess, pneumonia, and/or urinary tract infection as defined by Centers for Disease Control criteria) within 30 days of surgery. Patients with HbA1c infection rate (3.8% in the HbA1c infection. Elevated HbA1c was, however, predictive of significantly increased risk of post-operative infection when associated with increased age (≥81 years of age) or dirty wounds. The risk factors of post-operative infection are multiple and likely synergistic. While pre-operative HbA1c level is not independently associated with risk of post-operative infection, there are scenarios and patient subgroups where pre-operative HbA1c is useful in predicting an increased risk of infectious complications in the post-operative period.

  10. Effect of some high consumption spices on hemoglobin glycation.

    Science.gov (United States)

    Naderi, G H; Dinani, Narges J; Asgary, S; Taher, M; Nikkhoo, N; Boshtam, M

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes.

  11. Relationships between hemoglobin A1c and spot glucose ...

    African Journals Online (AJOL)

    Background: Glycosylated hemoglobin, HbA1c is the most acceptable measure of chronic glycemia. It is not widely available and/or affordable in Nigeria. The mean of the monthly fasting plasma glucose (MFPG) of the preceding 3 months is often used as surrogate for assessing chronic glycemia. Objective: To determine the ...

  12. [Diagnostic agreement between two glycosylated a1b hemoglobin methods in Primary Care].

    Science.gov (United States)

    Villar-del-Campo, M C; Rodríguez-Caravaca, G; Gil-Yonte, P; Cidoncha-Calderón, E; García-Cruces Méndez, J; Donnay-Pérez, S

    2014-01-01

    Several methods are available for measuring glycosylated A1c hemoglobin (HbA1c), all rapid methods for point of care use in a clinical or laboratory setting. This study attempts to compare the diagnostic agreement between two methods for detection of HbA1c. A descriptive cross-sectional study of diagnostic agreement was carried out in the Los Carmenes Health Centre. Two groups of patients -with and without type 2 diabetes- were consecutively included. A method for point-of-care use in a Primary Care Clinic setting (DCA(TM) Systems Siemens(®)) was compared with a laboratory test (chromatographic analysis). An analysis was made of the mean concentration of HbA1c, the agreement between methods, using the intra-class correlation coefficient (CCLA1) and the Bland-Altman method. A total of 102 patients were included, 62 diabetic (60.8%) and 40 non-diabetic (39.2%). The overall mean HbA1c was 6.46% (SD=0.88) in the analysis using capillary blood in the clinic with the DCA™ system, and 6.44% (SD=0.86) using the laboratory test (P>.05). The degree of agreement between the two tests was 0.975 (95% CI: 0.963-0.983). The mean of the differences between the results of the two assessed tests was 0.024 (SD=0.27). The percentage of points outside the limits of optimal agreement, as defined in the Bland-Altman graph, was 2.5%. Diagnostic agreement between a method for point-of-care use in a Primary Health Care Clinic and a laboratory test was very high. Detection at the point-of-care allows a quick and simple assessment of HbA1c. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  13. Hemoglobin cut-off values in healthy Turkish infants

    Institute of Scientific and Technical Information of China (English)

    Ahmet Arvas; Emel Gür; DurmuşDoğan

    2014-01-01

    Background: Anemia is a widespread public health problem associated with an increased risk of morbidity and mortality. This study was undertaken to determine the cut-off value of hemoglobin for infant anemia. Methods: A cross-sectional retrospective study was carried out at well-baby clinics of a tertiary care hospital. A total of 1484 healthy infants aged between 4 to 24 months were included in the study. The relationship of hemoglobin (Hb) levels with mother age, birth weight, weight gain rate, feeding, and gender was evaluated. Results: The Hb levels were assessed in four age groups (4 months, 6 months, 9-12 months, and 15-24 months) and the cut-off values of Hb were determined. Hb cut-off values (5th percentile for age) were detected as 97 g/L and 93 g/L at 4 months and 6 months, respectively. In older infants, the 5th percentile was 90.5 g/L and 93.4 g/L at 9-12 months and 15-24 months, respectively. The two values were lower than the World Health Organization criteria for anemia, which could partly due to the lack of information on iron status in our population. However, this difference highlights the need for further studies on normal Hb levels in healthy infants in developing countries. Hb levels of females were higher in all age groups; however, a statistically significant difference was found in gender in only 6 month-old infants. No statistically significant difference was found among Hb levels, mother's age, birth weight, weight gain rate, and nutritional status. Conclusion: Hb cut-off values in infants should be re-evaluated and be compatible with growth and development of children in that community.

  14. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism

    Science.gov (United States)

    McClain, Donald A.; Abuelgasim, Khadega A.; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A.; Sergueeva, Adelina; Okhotin, Daniel J.; Cherqaoui, Rabia; Okhotin, David; Cox, James E.; Swierczek, Sabina; Song, Jihyun; Simon, M.Celeste; Huang, Jingyu; Simcox, Judith A.; Yoon, Donghoon; Prchal, Josef T.; Gordeuk, Victor R.

    2012-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzymes genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHLR200W homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wildtype VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHLR200W homozygotes. We expanded these observations in VHLR200W homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc but not Pdk2 was decreased and skeletal muscle expression of Glut1, Pdk1 and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  15. Hemoglobin Values During Pregnancy | Leffler | Nigerian Medical ...

    African Journals Online (AJOL)

    It is known that the iron turnover in expectant mothers is up to three times that of an average adult. This is reflected in lower hemoglobin levels. The study showed that hemoglobin levels can be maintained by taking Bio-Strath®, provided that the patients' diet contains adequate fresh fruits and vegetables, whole grains, lean ...

  16. Hemoglobin (image)

    Science.gov (United States)

    Hemoglobin is the most important component of red blood cells. It is composed of a protein called ... exchanged for carbon dioxide. Abnormalities of an individual's hemoglobin value can indicate defects in the normal balance ...

  17. Mortality in Individuals Aged 80 and Older with Type 2 Diabetes Mellitus in Relation to Glycosylated Hemoglobin, Blood Pressure, and Total Cholesterol.

    Science.gov (United States)

    Hamada, Shota; Gulliford, Martin C

    2016-07-01

    To evaluate whether low glycosylated hemoglobin (HbA1c), blood pressure (BP), and total cholesterol (TC) are associated with lower risk of all-cause mortality in very old individuals with type 2 diabetes mellitus. Population-based cohort study. Primary care database in the United Kingdom. Individuals aged 80 and older with type 2 diabetes mellitus (N = 25,966). Associations between baseline HbA1c, BP, and TC and all-cause mortality were evaluated in Cox proportional hazards models. Analyses were adjusted for sex, age, duration of diabetes mellitus, lifestyle variables, HbA1c, BP, TC, comorbidities, prescribing of antidiabetic and cardiovascular drugs, and participants' general practice. There were 4,490 deaths during follow-up (median 2.0 years; mortality 104.7 per 1,000 person-years). Mortality in participants with low (type 2 diabetes mellitus. Further research is required to understand these associations and to identify optimal treatment targets in this population. © 2016 The Authors. The Journal of the American Geriatrics Society published by Wiley Periodicals, Inc. on behalf of The American Geriatrics Society.

  18. HEMOGLOBINA GLICOSILADA O HEMOGLOBINA GLICADA, ¿CUÁL DE LAS DOS? | GLYCOSILATED HEMOGLOBIN OR GLYCATED HEMOGLOBIN, WHICH OF THE TWO?

    Directory of Open Access Journals (Sweden)

    Mariela Bracho-Nava

    2015-11-01

    , according to the International Federation of Clinical Chemistry (IFCC, as a generic term referring to a group of substances that are formed from biochemical reactions between hemoglobin A (HbA and some reducing sugars present in the bloodstream, glucose being the most abundant of them. This reaction is known as the Maillard reaction, which is based on a non-enzimatic glycosylation, or more correctly called, in a glycation. Custom, ignorance or confusion among both chemical processes has led to use the term glycosylated hemoglobin instead of glycated hemoglobin. This article provides a review of the process of formation of hemoglobin A1c, defining the reaction of glycosylation and the protein glycation, the chemical species that favor the glycation, the characteristics of the process of glycation of hemoglobin, stages in which it occurs and the effects related to the glycation of proteins in human beings, to finally conclude with a passage of designations which has received the HbA1c to the present; all with the aim of clarifying and giving property to the use of the term glycated hemoglobin.

  19. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  20. Prognostic value of hemoglobin concentration in radiotherapy for cancer of supraglottic larynx

    International Nuclear Information System (INIS)

    Tarnawski, Rafal; Skladowski, Krzysztof; Maciejewski, Boguslaw

    1997-01-01

    Purpose: The aim of this work is the estimation of correlations between hemoglobin concentration either before or after radiotherapy and local tumor control probability for laryngeal cancer. Methods and Materials: Retrospective analysis of 847 cases of laryngeal supraglottic squamous cell carcinoma treated with radiation alone was performed using maximum likelihood estimations, and step-wise logistic regression. All patients were in good initial performance status (Karnofsky index >70). The minimum follow-up time was 3 years. Results: Logistic regression showed that the hemoglobin concentration after radiotherapy is an important prognostic factor. There was a very strong correlation between hemoglobin concentration and tumor local control probability. Hemoglobin concentration at the beginning of radiotherapy does not correlate with treatment outcome, but any decrease of hemoglobin during therapy is a strong prognostic factor for treatment failure. Conclusions: Although regression models with many variables may be instable, the present results suggest that hemoglobin concentration after treatment is at least as important as overall treatment time. It was not possible to find out whether the low concentration of hemoglobin is an independent cause of low TCP or whether it reflects other mechanisms that may influence both hemoglobin level and the TCP

  1. Association between effort-reward imbalance and glycosylated hemoglobin (HbA1c) among Chinese workers: results from SHISO study.

    Science.gov (United States)

    Xu, Weixian; Hang, Juan; Gao, Wei; Zhao, Yiming; Li, Weihong; Wang, Xinyu; Li, Zhaoping; Guo, Lijun

    2012-02-01

    The studies focusing on effort-reward imbalance and diabetes mellitus (DM)/glycosylated hemoglobin (HbA1c) are rare. We sought to examine the association between job stress evaluated by effort-reward imbalance (ERI) model and HbA1c in a Chinese population. We analyzed 680 subjects (465 men and 215 women) without DM or impaired glucose tolerance from the stress and health in Shenzhen workers (SHISO) study. Job stress was evaluated by effort-reward imbalance (ERI) model. HbA1c was measured by an automatic analyzer by means of high-performance liquid chromatography. The association between job stress and HbA1c was explored by variance analysis, partial correlations and multiple linear regression analysis. For women, effort, and ERI were positively associated with HbA1c (r = 0.22, p = 0,003; r = 0.21, p = 0.006, respectively), in contrast, reward was negatively associated with HbA1c (r = -0.17, p = 0.021), after controlling age, BMI and physical exercise in the partial correlation analysis; the similar results were confirmed in the multiple linear regression. No significant correlations between job stress and HbA1c were found for men. Effort and ERI are positively associated with HbA1c, and reward is inversely related to HbA1c among Chinese women. The association is not accounted for by age, BMI, and physical exercise. More efforts should be made to improve the job stress status of Chinese working women for the purpose of DM prevention.

  2. [Levels of glycosylated hemoglobin and the difference in the cost of health care for diabetic patients: an econometric study].

    Science.gov (United States)

    Lenz, Rony; Zarate, Aldo; Rodríguez, Jorge; Ramírez, Jorge

    2014-07-01

    Complications increase treatment costs of diabetes mellitus (DM). An adequate metabolic control of the disease could reduce these costs. To evaluate the costs of medical care for a cohort of patients with DM, according to their degree of metabolic compensation. All diabetic patients attended in a regional hospital from 2005 to 2010 were analyzed. A correlational study between costs of individual healthcare and levels of glycosylated hemoglobin (HbA1c), was performed in a series of annual cross-sectional measurements. The study comprised 1,644 diabetic patients. During the study period the average cost of healthcare per patient increased from $878,000 to more than $1,000,000 Chilean pesos (CLP) during the study period. The percentage of patients with HbA1c levels below 7.0% varied between 43.0% and 54.9%. Costs for patients with HbA1c levels between 7 and 8.9% were 1.3 to 1.5 times greater. For the group of patients with HbA1c levels between 9 and 10.9% the costs increased 1.4 to 1.6 times. For patients with HbA1c levels greater than 11.0%, healthcare costs doubled. Healthcare expenditure varied according to metabolic control, which is consistent with international findings. This study was limited by its selected population, incomplete information on health expenditures, and the inclusion of only direct costs to the health system. If all patients would achieve metabolic compensation, the yearly savings would be CLP $308,000,000 (or USD $657,000).

  3. [Sensitivity, specificity, and predictive values of the level of hemoglobin, hematocrit and platelet count as an activity index in ulcerative colitis].

    Science.gov (United States)

    Ibarra-Rodríguez, J Jesús; Santiago-Luna, Ernesto; Velázquez-Ramírez, Gabriela Abigail; López-Ramírez, María Karina Lizbeth; Fuentes-Orozco, Clotilde; Cortés-Flores, Ana Olivia; González-Ojeda, Alejandro

    2005-01-01

    Ulcerative colitis (UC) is a disease characterized by relapsing and remitting non-infectious inflammation of the colorectal mucosa. Its heterogeneity makes assessment of the disease's activity a prerequisite for a rational choice of therapy. We aimed to determine sensitivity, specificity, positive and negative predictive values of hemoglobin, hematocrit, and platelets to develop a simplified activity index of UC. Sixty patients with UC were included and submitted to measurements of hemoglobin, hematocrit, and platelets, as well as sigmoidoscopy and biopsy. Sensitivity and specificity, positive and negative predictive values were correlated with the reported degree of activity in the biopsy. Kruskal-Wallis test was used to determine differences between groups, and Pearson and Spearman rank tests were used to correlate each parameter with the degree of activity. A p value hemoglobin level was 51% and 100% for hematocrit, respectively, 51% and 100% for hematocrit, and 84% and 100% for platelet counts. Spearman's correlation for hemoglobin was r = -0.866 (p hematocrit r = -0.864 (p Hemoglobin and hematocrit are useful to catalog the degree of activity of UC when it is severe. Platelet count may be a marker of severity at any time, due to its high sensitivity and specificity as a diagnostic test.

  4. Radioprotective properties of some heterocyclic nitrogenous compounds against changes in hemoglobin concentration and hematocrit value in x-irradiated mice

    International Nuclear Information System (INIS)

    Rousdhy, H.; Pierotti, T.; Polverelli, M.

    1969-01-01

    Radioprotective properties of imidazole and benzimidazole have been proved in previous works. In this study, authors try to demonstrate radioprotective action of these compounds in comparison with cysteamine upon the hematopoietic system after lethal X-irradiation. Results show: no drastic variations of hematologic constants (hemoglobin concentration and hematocrit value) after intraperitoneal injection of radioprotective compounds apart certain apparent reactions with the heterocyclic compounds; the better radioprotective action of benzimidazole. Twenty five days after irradiation, hemoglobin concentration and hematocrit of radio protected mice return to normal values. (author) [fr

  5. [Analysis of Cut-off Value in Screening of Thalassemia by Capillary Hemoglobin Electrophoresis for Pregnant Women from Shenzhen Region of China].

    Science.gov (United States)

    Huo, Mei; Wu, Wen-Yuan; Liu, Mei; Gan, Zhi-Biao; Mao, Wei-Yu; Lin, Rong-Yao; Liu, Ai-Qin; He, Gui-Rong

    2016-04-01

    To investigate the cut-off value in screening of thalassemia in pregnant women from Shenzhen region by capillary hemoglobin electrophoresis. The data of capillary hemoglobin electrophoresis and genetic diagnosis of thalassemia from 2122 examined prenatal women were retrospectively analyzed. Capillary hemoglobin electrophoresis and α-, β- genetic diagnosis of thalassemia were carried out for every woman. Hemoglobin electrophoresis was performed using Capillarys 2 full-automated electrophoresis instrument. Gap polymerase chain reaction and reverse dot blot were used for genetic diagnosis of thalassemia genotyping test. The cut-off value in screening of thalassemia was determined by receiver operating characteristic curve and next to analyze the value of HbA2 and HbF in screening of thalassemia using the decided cut-off value. The areas under the curve (AUC(Roc)) of HbA2 for diagnosis of α-, β- thalassemia were 0.75 and 0.981 respectively, and the AUC(Roc) of HbF for diagnosis of β-thalassemia was 0.787. When HbA2 ≤ 2.55 was taken as the cut-off value of HbA2 for diagnosis of α-thalassemia, the sensitivity, specificity, positive likelihood ratio (LR(+)) and negative likelihood ratio (LR(-)) were 89.5%, 54.8%, 1.98, 0.19 respectively. When HbA2 ≥3.9 was taken as the cut off value of HbA2 for diagnosis of β-thalassemia, the sensitivity, specificity, LR(+) and LR(-) were 96.1%, 99.8% 480.5, 0.04 respectively. When HbF ≥0.75 was taken as the cut off value of HbF for diagnosis of β-thalassemia, the sensitivity, specificity, LR(+) and LR(-) were 83.6%, 61.8% respectively. The cut-off value in screening of thalassemia by capillarys 2 full automated electrophoresis instrument is different from that of the traditional method of hemoglobin electrophoresis, such as cellulose acetate membrane electrophoresis and agarose gel electrophoresis. Each laboratory should establish their own respective cut off value.

  6. The Association of Increased Total Glycosylated Hemoglobin Levels with Delayed Age at Menarche in Young Women with Type 1 Diabetes

    Science.gov (United States)

    Danielson, Kirstie K.; Palta, Mari; Allen, Catherine; D’Alessio, Donn J.

    2005-01-01

    Context: Delayed menarche is associated with subsequent reproductive and skeletal complications. Previous research has found delayed growth and pubertal maturation with type 1 diabetes and with poor glycemic control. The effect of diabetes management on menarche is important to clarify because tighter control might prevent these complications. Objective: To investigate age at menarche in young women with type 1 diabetes, and examine the effect of diabetes management (e.g. total glycosylated hemoglobin (GHb) level, number of blood glucose checks, insulin therapy intensity, insulin dose) on age at menarche in those diagnosed before menarche. Design: The Wisconsin Diabetes Registry Project is a follow-up study of a type 1 diabetes population-based incident cohort initially enrolled 1987 – 1992. Setting: Twenty-eight counties in south-central Wisconsin. Patients or Other Participants: Recruited through referrals, self-report, and hospital/clinic ascertainment. Individuals with newly diagnosed type 1 diabetes, <30 years old, were invited to participate. Of 288 young women enrolled, 188 reported menarche by 2002; 105 were diagnosed before menarche. Interventions: Not applicable. Main Outcome Measure: Age at menarche. Results: Mean age at menarche was 12.78 years, compared to 12.54 years in the United States (p = 0.01). Ages at menarche and diagnosis were not associated. For those diagnosed before menarche, age at menarche was delayed 1.3 months with each one percent increase in mean total GHb level in the three years prior to menarche. Conclusions: Age at menarche was moderately delayed in young women with type 1 diabetes. Delayed menarche could potentially be minimized with improved GHb levels. PMID:16204372

  7. Optimization of a colorimetric assay for glycosylated human serum albumin

    International Nuclear Information System (INIS)

    Bohney, J.P.; Feldhoff, R.C.

    1986-01-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100 0 C. A NaBH 4 reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with [ 3 H]glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation

  8. Clinical value of hemoglobin and its association with hepatocyte steatosis in chronic hepatitis B patients

    Directory of Open Access Journals (Sweden)

    WANG Peng

    2017-07-01

    Full Text Available :ObjectiveTo investigate the clinical value of hemoglobin and its association with hepatocyte steatosis in chronic hepatitis B (CHB patients. MethodsA retrospective analysis was performed for the clinical and pathological data of 1580 CHB patients who were hospitalized in The First People′s Hospital of Shunde from January 2006 to December 2014 and underwent liver biopsy, among whom 216 (13.67% had hepatocyte steatosis (hepatocyte steatosis group and 1364 had no hepatocyte steatosis (non-hepatocyte steatosis group. The patients were divided into groups 1, 2, and 3 according to hemoglobin level, and the clinical and pathological features were analyzed and compared between the three groups. The t-test was used for comparison of continuous data between group; a one-way analysis of variance was used for comparision between multiple groups. The Mann-Whitney U test was used for ranked data between groups. The Kruskal-wallis H test was used for ranked data between multiple groups; the chi-square test was used for comparison of categorical data between groups. Spearman correlation analysis was also performed to determine the correlation between two variables. Univariate logistic regression analysis and multivariate stepwise regression analysis were used to identify the influencing factors for hepatocyte steatosis. ResultsBody mass index (BMI, systolic pressure, diastolic pressure, uric acid, total cholesterol, low-density lipoprotein, and HBV DNA load increased with the increase in hemoglobin level (F=12718,3024,4026,4624,38276,28108,7358, all P<0.05. The incidence rates of hepatocyte steatosis in groups 1, 2, and 3 were 7.59%, 1176%,and 21.67%, respectively (χ2=44.23, P<0.05. Hemoglobin was positively correlated with hepatic steatosis (rs=0.211, P<0001. The multivariate logistic regression analysis showed that hemoglobin (odds ratio [OR]=1.066, P<0.05, BMI (OR=1576, P<005, age (OR=1.041, P<0.05, sex

  9. The relationship between periapical lesions and the serum levels of glycosylated hemoglobin and C-reactive protein in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Mohammad S. Al-Zahrani

    2017-01-01

    Full Text Available Objectives: To investigate the relationship between the presence of periapical lesions (PL and levels of glycosylated hemoglobin (HbA1c, and C-reactive protein (CRP in patients with type 2 diabetes. Methods: This cross-sectional study was conducted at Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia, between September 2013 and February 2015. Medical and dental history and Sociodemographic data were obtained from participants. Dental and periodontal examinations were conducted and blood samples were obtained to determine levels of HbA1c and CRP. The presence of PL was recorded from panoramic and periapical radiographs. Descriptive statistics and multivariable linear and logistic regression models were used for data analyses. Results: One hundred patients were included; mean age was 48.9 ± 8.5 years. Of these patients, 14% had no PL, whereas 25% had one or 2 lesions, 32% had 3 or 4 lesions, and 29% had ≥5 PL. The mean HbA1c was 9.8% (± 2.5 mg/L and CRP was 6.9 mg/L (± 6.3. The presence of PL was significantly associated with a higher level of HbA1c independent of age, gender, probing depth, and plaque index (p=0.023. Individuals with PL were also more likely to have a high CRP level (>3 mg/L independent of the previous covariates (odds ratio: 1.19; 95% confidence interval: 1.01-1.41. Conclusion: Periapical lesions are associated with a poorer glycemic control and a higher CRP level in type 2 diabetic patients.

  10. Optimization of a colorimetric assay for glycosylated human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Bohney, J.P.; Feldhoff, R.C.

    1986-05-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100/sup 0/C. A NaBH/sub 4/ reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with (/sup 3/H)glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation.

  11. MR Imaging-derived Oxygen-Hemoglobin Dissociation Curves and Fetal-Placental Oxygen-Hemoglobin Affinities.

    Science.gov (United States)

    Avni, Reut; Golani, Ofra; Akselrod-Ballin, Ayelet; Cohen, Yonni; Biton, Inbal; Garbow, Joel R; Neeman, Michal

    2016-07-01

    Purpose To generate magnetic resonance (MR) imaging-derived, oxygen-hemoglobin dissociation curves and to map fetal-placental oxygen-hemoglobin affinity in pregnant mice noninvasively by combining blood oxygen level-dependent (BOLD) T2* and oxygen-weighted T1 contrast mechanisms under different respiration challenges. Materials and Methods All procedures were approved by the Weizmann Institutional Animal Care and Use Committee. Pregnant mice were analyzed with MR imaging at 9.4 T on embryonic days 14.5 (eight dams and 58 fetuses; imprinting control region ICR strain) and 17.5 (21 dams and 158 fetuses) under respiration challenges ranging from hyperoxia to hypoxia (10 levels of oxygenation, 100%-10%; total imaging time, 100 minutes). A shorter protocol with normoxia to hyperoxia was also performed (five levels of oxygenation, 20%-100%; total imaging time, 60 minutes). Fast spin-echo anatomic images were obtained, followed by sequential acquisition of three-dimensional gradient-echo T2*- and T1-weighted images. Automated registration was applied to align regions of interest of the entire placenta, fetal liver, and maternal liver. Results were compared by using a two-tailed unpaired Student t test. R1 and R2* values were derived for each tissue. MR imaging-based oxygen-hemoglobin dissociation curves were constructed by nonlinear least square fitting of 1 minus the change in R2*divided by R2*at baseline as a function of R1 to a sigmoid-shaped curve. The apparent P50 (oxygen tension at which hemoglobin is 50% saturated) value was derived from the curves, calculated as the R1 scaled value (x) at which the change in R2* divided by R2*at baseline scaled (y) equals 0.5. Results The apparent P50 values were significantly lower in fetal liver than in maternal liver for both gestation stages (day 14.5: 21% ± 5 [P = .04] and day 17.5: 41% ± 7 [P hemoglobin dissociation curves with a shorter protocol that excluded the hypoxic periods was demonstrated. Conclusion MR imaging

  12. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    Science.gov (United States)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  13. Associations between long-term exposure to air pollution, glycosylated hemoglobin and diabetes.

    Science.gov (United States)

    Honda, Trenton; Pun, Vivian C; Manjourides, Justin; Suh, Helen

    2017-10-01

    Air pollution exposures have been shown to adversely impact health through a number of biological pathways associated with glucose metabolism. However, few studies have evaluated the associations between air pollution and glycosylated hemoglobin (HbA1c) levels. Further, no studies have evaluated these associations in US populations or investigated whether associations differ in diabetic as compared to non-diabetic populations. To address this knowledge gap, we investigated the associations between airborne fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) and HbA1c levels in both diabetic and non-diabetic older Americans. We also examined the impact of PM 2.5 and NO 2 on prevalent diabetes mellitus (DM) in this cohort. We used multilevel logistic and linear regression models to evaluate the association between long-term average air pollutant levels and prevalence of DM and HbA1c levels, respectively, among 4121 older (57+ years) Americans enrolled in the National Social Life, Health, and Aging Project between 2005 and 2011. All models adjusted for age, sex, body mass index, smoking status, race, household income, education level, neighborhood socioeconomic status, geographic region, urbanicity and diabetic medication use. We estimated participant-specific exposures to PM 2.5 on a six-kilometer grid covering the conterminous U.S. using spatio-temporal models, and to NO 2 using nearest measurements from the Environmental Protection Agency's Air Quality System. HbA1c levels were measured for participants in each of two data collection waves from dried blood spots and log-transformed prior to analysis. Participants were considered diabetic if they had HbA1c values≥6.5% or reported taking diabetic medication. The prevalence of diabetes at study entry was 22.2% (n=916) and the mean HbA1c was 6.0±1.1%. Mean one-year moving average PM 2.5 and NO 2 exposures were 10.4±3.0μg/m 3 and 13.1±7.0 ppb, respectively. An inter-quartile range (IQR, 3.9μg/m 3

  14. Regional variations in frequency of glycosylated hemoglobin (HbA1c) monitoring in Korea: A multilevel analysis of nationwide data.

    Science.gov (United States)

    Yoo, Kyoung-Hun; Shin, Dong-Wook; Cho, Mi-Hee; Kim, Sang-Hyuck; Bahk, Hyun-Jung; Kim, Shin-Hye; Jeong, Su-Min; Yun, Jae-Moon; Park, Jin-Ho; Kim, Heesun; Cho, BeLong

    2017-09-01

    Suboptimal frequency of glycosylated hemoglobin (HbA1c) monitoring is associated with poor diabetes control. We aimed to analyze compliance to HbA1c testing guidelines and explore associated individual and area-level determinants, focusing on regional variation. This cross-sectional study between the period of 2012-2013 was conducted by using the Korean National Health Insurance Research Database, and included 45,634 patients diagnosed with diabetes mellitus, who were prescribed any anti-diabetic medications, including insulin. We calculated the proportion of each HbA1c testing frequency (≥1, ≥2, or ≥4 times per year) stratified by 17 administrative regions. Multilevel and multivariate logistic analyses were performed with regional (proportion of farmer population) and individual characteristics (age, sex, income level, duration of diabetes, and most visited medical institution). Overall, 67.3% of the patients received≥1 HbA1c test per year; 37.8% and 6.1% received ≥2 and ≥4 tests per year, respectively. Those managed in secondary-level hospitals or clinics and those living in rural areas were less likely to receive HbA1c testing. Even after adjusting for individual and regional level characteristics, significant area level variation was observed (variance participant coefficients were 7.91%, 9.58%, and 14.43% for testing frequencies of ≥1, ≥2, and ≥4 times a year, respectively). The frequency of HbA1c monitoring is suboptimal in Korea, especially in rural areas. Moreover, significant regional variation was observed, implying a contextual effect. This suggests the need for developing policy actions to improve HbA1c monitoring. In particular, access to HbA1c testing in rural primary care clinics must be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The relationship between periapical lesions and the serum levels of glycosylated hemoglobin and C-reactive protein in type 2 diabetic patients.

    Science.gov (United States)

    Al-Zahrani, Mohammad S; Abozor, Basel M; Zawawi, Khalid H

    2017-01-01

    To investigate the relationship between the presence of periapical lesions (PL) and levels of glycosylated hemoglobin (HbA1c), and C-reactive protein (CRP) in patients with type 2 diabetes.  Methods: This cross-sectional study was conducted at Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia, between September 2013 and February 2015. Medical and dental history and Sociodemographic data were obtained from participants. Dental and periodontal examinations were conducted and blood samples were obtained to determine levels of HbA1c and CRP. The presence of PL was recorded from panoramic and periapical radiographs. Descriptive statistics and multivariable linear and logistic regression models were used for data analyses.  Results: One hundred patients were included; mean age was 48.9 ± 8.5 years. Of these patients, 14% had no PL, whereas 25% had one or 2 lesions, 32% had 3 or 4 lesions, and 29% had ≥5 PL. The mean HbA1c was 9.8% (± 2.5) mg/L and CRP was 6.9 mg/L (± 6.3). The presence of PL was significantly associated with a higher level of HbA1c independent of age, gender, probing depth, and plaque index (p=0.023). Individuals with PL were also more likely to have a high CRP level (greater than 3 mg/L) independent of the previous covariates (odds ratio: 1.19; 95% confidence interval: 1.01-1.41).  Conclusion: Periapical lesions are associated with a poorer glycemic control and a higher CRP level in type 2 diabetic patients.

  16. Functional importance of PAI-1 glycosylation

    DEFF Research Database (Denmark)

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    2001-01-01

    Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-glycosylated PAI-1 could be conferred upon PAI-1 expressed in HEK293 cells by mutational inactivation of one or the other glycosylation site. These findings reveal a novel functional role for glycosylation of a serpin. The glycosylation sites are localised between a-helix H and b-strand 2C and b-strand 3C and a...

  17. Postoperative hemoglobin level in patients with femoral neck fracture.

    Science.gov (United States)

    Nagra, Navraj S; Van Popta, Dmitri; Whiteside, Sigrid; Holt, Edward M

    2016-01-01

    The aim of this study was to analyze the changes of hemoglobin levels in patients undergoing fixation for femoral neck fracture. Peroperative hemoglobin levels of patients who underwent either dynamic hip screw (DHS) fixation (n=74; mean age: 80 years) or hip hemiarthroplasty (n=104; mean age: 84 years) for femoral neck fracture was monitored. There was a statistically and clinically significant mean drop of 31.1 g/L between the preoperative (D0) and postoperative Day 5 Hb levels (pmeasurement, DHS patients had lower hemoglobin values over hemiarthroplasty patients (p=0.046). The decrease in hemoglobin in the first 24-hour postoperative period (D0 to Day 1) is an underestimation of the ultimate lowest value in hemoglobin found at Day 2. Relying on the Day 1 hemoglobin level could be detrimental to patient care. We propose a method of predicting patients likely to be transfused and recommend a protocol for patients undergoing femoral neck fracture surgery to standardize postoperative hemoglobin monitoring.

  18. Study on the relationship between blood levels of glycated hemoglobin (HbA1c) and micro-vascular nephropathy in patients with type 2 diabetes

    International Nuclear Information System (INIS)

    Luo Rong; Li Zhuocheng; Yan Dewen

    2004-01-01

    Objective: To evaluate the relationship between blood levels of glycated hemoglobin and microvascular nephropathy in patients with type diabetes. Methods: Blood Glycosylated hemoglobin levels were determined with affinity chromatography and 24 hour urinary microalbumin (m-Alb), β 2 microglobin (β 2 -m) quantified with RIA in 76 patients and 30 controls. Results: With glycated hemoglobin within normal range, there were no differences between the amounts of patients' urinary protein contents and those in controls (P>0.05). With higher blood glycated hemoglobin levels, significant differences could be observed (P 2 microglobin. Differences among the 24 hour urinary quantities of mAlb and β 2 -m in the three groups of patients (divided according to the HbA1c levels, namely 9.0%) were also significant (P 2 microglobin is very important for early detection of diabetic nephropathy

  19. Efficient synthesis of glycosylated phenazine natural products and analogs with DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors

    DEFF Research Database (Denmark)

    Laursen, Jane B.; Petersen, Lars; Jensen, K.J.

    2003-01-01

    Inspired by the occurrence and function of phenazines in natural products, new glycosylated analogs were designed and synthesized. DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors were used in an efficient and easily-handled glycosylation protocol compatible with combinatorial chemistry....... Benzoylated D-glucose, D-galactose and L-quinovose DISAL glycosyl donors were synthesized in high yields and used under mild conditions to glycosylate methyl saphenate and 2-hydroxyphenazine. The glycosides were screened for biological activity and one compound showed inhibitory activity towards topoisomerase...

  20. Decreasing the critical value of hemoglobin required for physician notification reduces the rate of blood transfusions

    Directory of Open Access Journals (Sweden)

    Larson EA

    2016-06-01

    Full Text Available Eric A Larson,1 Paul A Thompson,1,2 Zachary K Anderson,3 Keith A Anderson,4 Roxana A Lupu,1 Vicki Tigner,5 Wendell W Hoffman6,7 1Department of Internal Medicine, 2Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 3Department of Internal Medicine, Fairview Health Services, Edina, MN, 4Department of Laboratory Medicine, Sanford School of Medicine, University of South Dakota, 5Medical Staff Services, 6Department of Infectious Disease, Sanford Health, Sanford USD Medical Center, 7Department of Infectious Disease, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USAAbstract: Red blood cell transfusions have been cited as one of the most overused therapeutic interventions in the USA. Excessively aggressive transfusion practices may be driven by mandatory physician notification of critical hemoglobin values that do not generally require transfusion. We examined the effect of decreasing the critical value of hemoglobin from 8 to 7 g/dL at our institution. Along with this change, mandatory provider notification for readings between 7 and 8 g/dL was rescinded. Transfusion rates were compared retrospectively during paired 5-month periods for patients presenting in three key hemoglobin ranges (6.00–6.99, 7.00–7.99, and 8.00–8.99 g/dL. A change in transfusion practices was hypothesized in the 7–8 g/dL range, which was no longer labeled critical and for which mandated physician calls were rescinded. Transfusion rates showed a statistically significant 8% decrease (P≤0.0001 during the 5-month period post change in our transfusion practices. This decrease in the 7.00–7.99 g/dL range was significantly greater than the 2% decrease observed in either the 6–6.99 g/dL (P=0.0017 or 8–8.99 g/dL (P≤0.0001 range. Cost savings of up to $700,000/year were extrapolated from our results showing 491 fewer units of red blood cells transfused during the 5-month post change. These cost

  1. Clinical, hematological and genetic data of a cohort of children with hemoglobin SD

    Directory of Open Access Journals (Sweden)

    Paulo do Val Rezende

    Full Text Available ABSTRACT INTRODUCTION: The hemoglobin FSD is very uncommon in newborn screening programs for sickle cell disease. In the program of Minas Gerais, Brazil, the clinical course of children with hemoglobin SD was observed to be heterogeneous. The objective of this study was to estimate the incidence (1999-2012 and to describe the natural history of a cohort of newborns with hemoglobin SD. METHODS: Isoelectric focusing was the primary method used in newborn screening. Polymerase chain reaction-restriction fragment length polymorphism and gene sequencing were used to identify mutant alleles and for haplotyping. Gap-polymerase chain reaction was used to detect alpha-thalassemia. RESULTS: Eleven cases of hemoglobin S/D-Punjab and eight of Hb S-Korle Bu were detected. Other variants with hemoglobin D mobility were not identified. All hemoglobin D-Punjab and hemoglobin Korle Bu alleles were associated with haplotype I. Among the children with hemoglobin S/D-Punjab, there were four with the ßS CAR haplotype, six with the Benin haplotype, and one atypical. Results of laboratory tests for hemoglobin S/D-Punjab and hemoglobin S-Korle Bu were: hemoglobin 8.0 and 12.3 g/dL (p-value <0.001, leukocyte count 13.9 × 109/L and 10.5 × 109/L (p-value = 0.003, reticulocytes 7.5% and 1.0% (p-value <0.001, hemoglobin F concentration 16.1% and 6.9% (p-value = 0.001 and oxygen saturation 91.9% and 97% (p-value = 0.002, respectively. Only hemoglobin S/D-Punjab children had acute pain crises and needed blood transfusions or hydroxyurea. Those with the Benin ßS haplotype had higher total hemoglobin and hemoglobin F concentrations compared to the CAR haplotype. Transcranial Doppler was normal in all children. CONCLUSION: The clinical course and blood cell counts of children with hemoglobin S/D-Punjab were very similar to those of hemoglobin SS children. In contrast, children with hemoglobin S-Korle Bu had clinical course and blood cell counts like children with the sickle

  2. Control of mucin-type O-glycosylation

    DEFF Research Database (Denmark)

    Bennett, Eric P; Mandel, Ulla; Clausen, Henrik

    2012-01-01

    residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue...... in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The Gal...

  3. N- and O-glycosylation Analysis of Human C1-inhibitor Reveals Extensive Mucin-type O-Glycosylation.

    Science.gov (United States)

    Stavenhagen, Kathrin; Kayili, H Mehmet; Holst, Stephanie; Koeleman, Carolien A M; Engel, Ruchira; Wouters, Diana; Zeerleder, Sacha; Salih, Bekir; Wuhrer, Manfred

    2018-06-01

    Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N - and O -glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O -glycosylated N-terminal region. Five novel and five known O -glycosylation sites were identified, carrying mainly core1-type O -glycans. In addition, we detected a heavily O -glycosylated portion spanning from Thr 82 -Ser 121 with up to 16 O -glycans attached. Likewise, all known six N -glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N -glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin

    Science.gov (United States)

    Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying

    2016-01-01

    Abstract This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels. A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index. After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10–1.62), 1.46 (1.08–1.98), and 1.47 (1.12–1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24–3.51; HR = 4.00, 95% CI = 2.03–7.90; and HR = 2.05, 95% CI = 1.29–3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48–3.02; and HR = 1.35, 95% CI = 1.10–1.65, respectively). Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with brief daytime napping HOMA-IR index. PMID:26844520

  5. Prediction of glycosylation sites using random forests

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2008-11-01

    Full Text Available Abstract Background Post translational modifications (PTMs occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transport and function. Results We use the random forest algorithm and pairwise patterns to predict glycosylation sites. We identify pairwise patterns surrounding glycosylation sites and use an odds ratio to weight their propensity of association with modified residues. Our prediction program, GPP (glycosylation prediction program, predicts glycosylation sites with an accuracy of 90.8% for Ser sites, 92.0% for Thr sites and 92.8% for Asn sites. This is significantly better than current glycosylation predictors. We use the trepan algorithm to extract a set of comprehensible rules from GPP, which provide biological insight into all three major glycosylation types. Conclusion We have created an accurate predictor of glycosylation sites and used this to extract comprehensible rules about the glycosylation process. GPP is available online at http://comp.chem.nottingham.ac.uk/glyco/.

  6. Hallmarks of glycosylation in cancer.

    Science.gov (United States)

    Munkley, Jennifer; Elliott, David J

    2016-06-07

    Aberrant glycosylation plays a fundamental role in key pathological steps of tumour development and progression. Glycans have roles in cancer cell signalling, tumour cell dissociation and invasion, cell-matrix interactions, angiogenesis, metastasis and immune modulation. Aberrant glycosylation is often cited as a 'hallmark of cancer' but is notably absent from both the original hallmarks of cancer and from the next generation of emerging hallmarks. This review discusses how glycosylation is clearly an enabling characteristic that is causally associated with the acquisition of all the hallmark capabilities. Rather than aberrant glycosylation being itself a hallmark of cancer, another perspective is that glycans play a role in every recognised cancer hallmark.

  7. Glycosylated hemoglobin testing in the National Social Life, Health, and Aging Project.

    Science.gov (United States)

    Gregg, Forest T; O'Doherty, Katie; Schumm, L Philip; McClintock, Martha K; Huang, Elbert S

    2014-11-01

    Longitudinal biomeasures of health are still new in nationally representative social science survey research. Data measuring blood sugar control provide opportunities for understanding the development of diabetes and its complications in older adults, but researchers must be aware that some of the differences across time can be due to variations in measurement procedures. This is a well-recognized issue whenever all samples cannot be assayed at the same time and we sought to present the analytic methods to quantify and adjust for the variation. We collected and analyzed HbA1C, glycated hemoglobin, a biomeasure of average blood sugar concentrations within the past few months. Improvements were made in the collection protocol for Wave 2, and assays were performed by a different lab. The HbA1C data obtained during Wave 1 and Wave 2 are consistent with the expected population distributions for differences by gender, age, race/ethnicity, and diabetes status. Age-adjusted mean HbA1C declined slightly from Wave 1 to Wave 2 by -0.19 (95% confidence interval [CI]: -0.27, -0.10), and the average longitudinal change was -0.12 (95% CI: -0.18, -0.06). Collection of HbA1C in Wave 2 permits researchers to examine the relationship between HbA1C and new health and social measures added in Wave 2, and to identify factors related to the change in HbA1C. Changes in collection protocol and labs between waves may have yielded small systematic differences that require analysts to carefully interpret absolute HbA1C values. We recommend analytic methods for cross wave differences in HbA1C and steps to ensure cross wave comparability in future studies. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A novel hemoglobin variant found on the α1 chain: Hb KSVGH (HBA1: p.Lys57_Gly58insSerHisGlySerAlaGlnValLys).

    Science.gov (United States)

    Wang, Mei-Chun; Tsai, Kuo-Wang; Chu, Chih-Hsun; Yu, Ming-Sun; Lam, Hing-Chung

    2015-01-01

    Glycosylated hemoglobin (Hb A1C) is a crucial indicator for the long-term control and the diagnosis of diabetes. However, the presence of hemoglobin (Hb) variants may affect the measured value of Hb A1C and result in an abnormal graph trend and inconsistency between the clinical blood sugar test and Hb A1C values. In this study, laboratory data of 41,267 patients with diabetes were collected. The Hb A1C levels and the graph results were examined. We identified 74 cases containing abnormal Hb A1C graph trends. The conducted blood cell counts and capillary Hb electrophoresis were used to analyze Hb variants. We also determined gene variation for the Hb variants by a sequence approach. Fifteen different types of Hb variants were identified in this study. Among these, we found a novel variant in which the α1 subunit of Hb showed an insertion of 24 nucleotides (nts) between the 56th and 57th residues. We named this novel variant Hb Kaohsiung Veterans General Hospital (Hb KSVGH) (HBA1: p.Lys57_Gly58insSerHisGlySerAlaGlnValLys).

  9. Modification of hemoglobin level and hematocrit value in the peripheral blood of mice after 45Ca internal irradiation by MPG (2-mercaptopropionylglycine)

    International Nuclear Information System (INIS)

    Bhagat, R.M.; Kumar, A.

    1986-01-01

    Radioprotective effect of MPG has been studied on the hemoglobin level and hematocrit value of peripheral blood of Swiss albino mice against radiation-induced changes after injecting radiocalcium ( 45 Ca) at the dose level of 37 kBq/g body weight. MPG was injected 15-30 minutes before 45 Ca injection at dose of 20 mg/kg body weight intraperitoneally and also MPG was injected at various repeated doses. It has been observed that MPG in repeated doses is effective in reducing the radiation-induced changes in the hemoglobin and hematocrit value of peripheral blood of Swiss albino mice following 45 Ca internal irradiation. (author)

  10. Hemoglobin levels in normal Filipino pregnant women.

    Science.gov (United States)

    Kuizon, M D; Natera, M G; Ancheta, L P; Platon, T P; Reyes, G D; Macapinlac, M P

    1981-09-01

    The hemoglobin concentrations during pregnancy in Filipinos belonging to the upper income group, who were prescribed 105 mg elemental iron daily, and who had acceptable levels of transferrin saturation, were examined in an attempt to define normal levels. The hemoglobin concentrations for each trimester followed a Gaussian distribution. The hemoglobin values equal to the mean minus one standard deviation were 11.4 gm/dl for the first trimester and 10.4 gm/dl for the second and third trimesters. Using these values as the lower limits of normal, in one group of pregnant women the prevalence of anemia during the last two trimesters was found lower than that obtained when WHO levels for normal were used. Groups of women with hemoglobin of 10.4 to 10.9 gm/dl (classified anemic by WHO criteria but normal in the present study) and those with 11.0 gm/dl and above could not be distinguished on the basis of their serum ferritin levels nor on the degree of decrease in their hemoglobin concentration during pregnancy. Many subjects in both groups, however, had serum ferritin levels less than 12 ng/ml which indicate poor iron stores. It might be desirable in future studies to determine the hemoglobin cut-off point that will delineate subjects who are both non-anemic and adequate in iron stores using serum ferritin levels as criterion for the latter.

  11. fasting blood glucose and glycosylated haemoglobin levels

    African Journals Online (AJOL)

    Prince Acheampong

    (HbA1c) levels of diabetes mellitus patients as an index of glycaemic control. It was a prospective case- finding study using laboratory and general practice records. ... range of glycosylated haemoglobins, and the cut-off values for some clinical .... quality of glycaemic control by glycated haemoglobin in out-patient diabetic ...

  12. 70-year old female patient with mismatch between hematocrit and hemoglobin values: the effects of cold agglutinin on complete blood count.

    Science.gov (United States)

    Ercan, Serif; Calışkan, Mustafa; Koptur, Erhan

    2014-01-01

    There are a number of pre-analytical and analytical factors, which cause false results in the complete blood count. The present case identifies cold agglutinins as the cause for the mismatch between hematocrit and hemoglobin values. 70-year old female patient had a history of cerebrovascular diseases and rheumatoid arthritis. During routine laboratory examination, the patient had normal leukocyte and platelet counts; however, the hemoglobin (Hb: 105 g/L) and hematocrit (HCT: 0.214 L/L) results were discordant. Hemolysis, lipemia and cold agglutinin were evaluated as possible reasons for the mismatch between hematocrit and hemoglobin values. First blood sample was slightly hemolysed. Redrawn sample without hemolysis or lipemia was analyzed but the mismatch became even more distinct (Hb: 104 g/L and HCT: 0.08 L/L). In this sample, the titration of the cold agglutinin was determined and found to be positive at 1:64 dilution ratios. After an incubation of the sample at 37°C for 2 hours, reversibility of agglutination was observed. We conclude that cold agglutinins may interfere with the analysis of erythrocyte and erythrocyte-related parameters (HCT, MCV, MCH and MCHC); however, Hb, leukocyte and platelet counts are not affected.

  13. Purification, characterization and sequence analyses of the extracellular giant hemoglobin from Oligobrachia mashikoi

    OpenAIRE

    Nakagawa, Taro; Onoda, Seiko; Kanemori, Masaaki; Sasayama, Yuichi; Fukumori, Yoshihiro

    2005-01-01

    We purified an extracellular hemoglobin with the molecular mass of ca. 440 kDa from the whole homogenates of Oligobrachia mashikoi (phylum Pogonophora) by a one-step gel-filtration. The preparation was pure to be crystallized. The P50 values of the hemoglobin and the fresh blood prepared from O. mashikoi were about 0.82 Torr and 0.9 Torr, respectively, which were much lower than the P50 value of human hemoglobin. However, the n values of the hemoglobin and the blood were about 1.2 and 1.1, re...

  14. Capillary versus Venous Hemoglobin Determination in the Assessment of Healthy Blood Donors

    Science.gov (United States)

    Patel, Abhilasha J.; Wesley, Robert; Leitman, Susan F.; Bryant, Barbara J.

    2013-01-01

    Background and Objectives To determine the accuracy of fingerstick hemoglobin assessment in blood donors, the performance of a portable hemoglobinometer (HemoCue Hb 201+) was prospectively compared with that of an automated hematology analyzer (Cell-Dyn 4000). Hemoglobin values obtained by the latter were used as the “true” result. Material and Methods Capillary fingerstick samples were assayed by HemoCue in 150 donors. Fingerstick samples from two sites, one on each hand, were obtained from a subset of 50 subjects. Concurrent venous samples were tested using both HemoCue and Cell-Dyn devices. Results Capillary hemoglobin values (HemoCue) were significantly greater than venous hemoglobin values (HemoCue), which in turn were significantly greater than venous hemoglobin values by Cell-Dyn (mean ± SD: 14.05 ± 1.51, 13.89 ± 1.31, 13.62 ± 1.23, respectively; phemoglobin screening criteria (≥12.5 g/dL) by capillary HemoCue, but were deferred by Cell-Dyn values (false-pass). Five donors (3%) were deferred by capillary sampling, but passed by Cell-Dyn (false-fail). Substantial variability in repeated fingerstick HemoCue results was seen (mean hemoglobin 13.72 vs. 13.70 g/dL, absolute mean difference between paired samples 0.76 g/dL). Hand dominance was not a factor. Conclusions Capillary samples assessed via a portable device yielded higher hemoglobin values than venous samples assessed on an automated analyzer. False-pass and false-fail rates were low and acceptable in the donor screening setting, with “true” values not differing by a clinically significant degree from threshold values used to assess acceptability for blood donation. PMID:23294266

  15. Nonenzymatic glycosylation of bovine myelin basic protein

    International Nuclear Information System (INIS)

    Hitz, J.B.

    1987-01-01

    In the CNS myelin sheath the nonenzymatic glycosylation reaction (at the early stage of the Amadori product) occurs only with the myelin basic protein and not with the other myelin proteins. This was observed in isolated bovine myelin by in vitro incubation with [ 14 C]-galactose and [ 14 C]-glucose. The respective in-vitro incorporation rates for purified bovine myelin basic protein with D-galactose, D-glucose and D-mannose were 7.2, 2.4 and 2.4 mmoles/mole myelin basic protein per day at 37 0 C. A more rapid, HPLC method was devised and characterized to specifically analyze for the Amadori product. The HPLC method was correlated to the [ 14 C]-sugar incorporation method for myelin basic protein under a set of standard reaction conditions using [ 14 C]-glucose and [ 14 C]-mannose with HPLC values at 1/6 and 1/5 of the [ 14 C]-sugar incorporation method. A novel myelin basic protein purification step has been developed that yields a relativity proteolytic free preparation that is easy to work with, being totally soluble at a neutral pH. Nine new spots appear for a trypsinized glycosylated MBP in the paper peptide map of which eight correspond to positions of the [ 3 H]-labeled Amadori product in affinity isolated peptides. These studies provide a general characterization of and a structural basis for investigations on nonenzymatically glycosylated MBP as well as identifying MBP as the only nonenzymatically glycosylated protein in the CNS myelin sheath which may accumulate during aging, diabetes, and demyelinating diseases in general

  16. Demographic details, clinical features, and nutritional characteristics of young adults with Type 1 diabetes mellitus - A South Indian tertiary center experience.

    Science.gov (United States)

    Joseph, Mini; Shyamasunder, Asha H; Gupta, Riddhi D; Anand, Vijayalakshmi; Thomas, Nihal

    2016-01-01

    Type 1 diabetes mellitus (T1DM) accounts for 5-10% of all diagnosed diabetes and the highest incidence is found in India. The main objectives were to study the demographic, clinical, and nutritional characteristics of young adults with T1DM and its effect glycosylated hemoglobin levels. This cross-sectional study was conducted among young adults with T1DM (18-45 years of age) in a tertiary hospital in South India. Data were obtained from updated medical records. The dietary data were assessed from food diaries and 24 h recall method. Anthropometry was determined. The analysis revealed that socio-economic variables did not affect the glycosylated hemoglobin levels. The mean glycosylated hemoglobin value was 8.81 ± 2.38%. Nearly, half the patients were malnourished. The overall dietary intake was inadequate. The multivariate regression model, adjusted for confounding factors such as gender, age, and body mass index, revealed that only duration of diabetes and protein intake were significant predictors of glycosylated hemoglobin status ( P diabetes management. However, there is an urgent need to educate our patients on nutrition therapy. T1DM patients need specialized advice to ensure appropriately balanced nutrition that has a significant impact on their long-term glycemic control.

  17. Functional importance of PAI-1 glycosylation

    DEFF Research Database (Denmark)

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    susceptible PAI-1 variant was not necessarily the one used when raising the antibody. This and other observations indicated that the carbohydrate moieties or the glycosylation sites are unlikely to be part of the epitopes for these antibodies. The antibody susceptibility characteristic for non......Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-linked glycosylation. Biochemical analysis of PAI-1 variants with substitutions of the Asn residues in each of these sites and expression in human embryonic kidney 293 (HEK293) cells showed that only Asn211 and Asn 267, but not Asn331 are glycosylated, and revealed a differential composition of the carbohydrate...

  18. Relationship of Baseline Hemoglobin Level with Serum Ferritin, Postphlebotomy Hemoglobin Changes, and Phlebotomy Requirements among HFE C282Y Homozygotes

    Directory of Open Access Journals (Sweden)

    Seyed Ali Mousavi

    2015-01-01

    Full Text Available Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (<150 g/L baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L baseline hemoglobin were compared with those with lower (<138 g/L baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations.

  19. Relationship of Baseline Hemoglobin Level with Serum Ferritin, Postphlebotomy Hemoglobin Changes, and Phlebotomy Requirements among HFE C282Y Homozygotes

    Science.gov (United States)

    Mousavi, Seyed Ali; Mahmood, Faiza; Aandahl, Astrid; Knutsen, Teresa Risopatron; Llohn, Abid Hussain

    2015-01-01

    Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF) elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females) who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L) baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L) baseline hemoglobin were compared with those with lower (baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations. PMID:26380265

  20. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China

    Science.gov (United States)

    Zhao, Yaohui; Ma, Zongwei; Bi, Jun; Liu, Yang; Meng, Xia; Wang, Yafeng; Cai, Jing; Chen, Renjie; Kan, Haidong

    2016-01-01

    Background The evidence for an association between particulate air pollution and type 2 diabetes mellitus (T2DM) in developing countries was very scarce. Objective To investigate the associations of long-term exposure to fine particulate matter (PM2.5) with T2DM prevalence and with fasting glucose and glycosylated hemoglobin (HbA1c) levels in China. Methods This is a cross-sectional study based on a nation-wide baseline survey of 11,847 adults who participated in the China Health and Retirement Longitudinal Study from June 2011 to March 2012. The average residential exposure to PM2.5 for each participant in the same period was estimated using a satellite-based spatial statistical model. We determined the association between PM2.5 and T2DM prevalence by multivariable logistic regression models. We also evaluated the association between PM2.5 and fasting glucose and HbA1c levels using multivariable linear regression models. Stratification analyses were conducted to explore potential effect modification. Results We identified 1,760 cases of T2DM, corresponding to 14.9% of the study population. The average PM2.5 exposure for all participants was 72.6 μg/m3 during the study period. An interquartile range increase in PM2.5 (41.1μg/m3) was significantly associated with increased T2DM prevalence (prevalence ratio, PR=1.14), and elevated levels of fasting glucose (0.26 mmol/L) and HbA1c (0.08%). The associations of PM2.5 with T2DM prevalence and with fasting glucose and HbA1c were stronger in several subgroups. Conclusions This nationwide cross-sectional study suggested that long-term exposure to PM2.5 might increase the risk of T2DM in China. PMID:27148900

  1. Pediatric metabolic outcome comparisons based on a spectrum of obesity and asthmatic symptoms.

    Science.gov (United States)

    Perdue, Ashley D; Cottrell, Lesley A; Lilly, Christa L; Gower, William A; Ely, Brian A; Foringer, Brad; Wright, Melvin L; Neal, William A

    2018-04-20

    Asthma and obesity are two of the most prevalent public health issues for children in the U.S. Trajectories of both have roughly paralleled one another over the past several decades causing many to explore their connection to one another and to other associated health issues such as diabetes and dyslipidemia. Earlier models have commonly designated obesity as the central hub of these associations; however, more recent models have argued connections between pediatric asthma and other obesity-related metabolic conditions regardless of children's obesity risk. To examine the relationships between asthma, obesity, and abnormal metabolic indices. We conducted a cross-sectional study of 179 children ages 7 to 12 years recruited from a rural, Appalachian region. Our model controlled for children's smoke exposure, body mass index percentile, and gender to examine the association between children's asthma (based on pulmonary function tests, medical history, medications, and parent report of severity), lipids (fasting lipid profile), and measures of altered glucose metabolism (glycosylated hemoglobin and homeostatic model assessment 2-insulin resistance). Our findings revealed a statistically significant model for low density lipids, high density lipids, log triglyceride, and homeostatic model assessment 2-insulin resistance; however, a statistically significant main effect for asthma was found for triglycerides. We also found an asthma-obesity interaction effect on children's glycosylated hemoglobin with asthmatic obese children revealing significantly higher glycosylated hemoglobin values than non-asthmatic obese children. Our findings support a connection between asthma and children's glycosylated hemoglobin values; however, this association remains entwined with obesity factors.

  2. Hemoglobin C disease

    Science.gov (United States)

    Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is ... Americans. You are more likely to have hemoglobin C disease if someone in your family has had ...

  3. A review of variant hemoglobins interfering with hemoglobin A1c measurement.

    Science.gov (United States)

    Little, Randie R; Roberts, William L

    2009-05-01

    Hemoglobin A1c (HbA1c) is used routinely to monitor long-term glycemic control in people with diabetes mellitus, as HbA1c is related directly to risks for diabetic complications. The accuracy of HbA1c methods can be affected adversely by the presence of hemoglobin (Hb) variants or elevated levels of fetal hemoglobin (HbF). The effect of each variant or elevated HbF must be examined with each specific method. The most common Hb variants worldwide are HbS, HbE, HbC, and HbD. All of these Hb variants have single amino acid substitutions in the Hb beta chain. HbF is the major hemoglobin during intrauterine life; by the end of the first year, HbF falls to values close to adult levels of approximately 1%. However, elevated HbF levels can occur in certain pathologic conditions or with hereditary persistence of fetal hemoglobin. In a series of publications over the past several years, the effects of these four most common Hb variants and elevated HbF have been described. There are clinically significant interferences with some methods for each of these variants. A summary is given showing which methods are affected by the presence of the heterozygous variants S, E, C, and D and elevated HbF. Methods are divided by type (immunoassay, ion-exchange high-performance liquid chromatography, boronate affinity, other) with an indication of whether the result is artificially increased or decreased by the presence of a Hb variant. Laboratorians should be aware of the limitations of their method with respect to these interferences. 2009 Diabetes Technology Society.

  4. Engineering Mammalian Mucin-type O-Glycosylation in Plants

    DEFF Research Database (Denmark)

    Yang, Zhang; Drew, Damian P; Jørgensen, Bodil

    2012-01-01

    -glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity...... was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon a2b. In plants, prolines in certain...... classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host...

  5. Prognostic value of hemoglobin concentrations in patients with advanced head and neck cancer treated with combined radio-chemotherapy and surgery

    International Nuclear Information System (INIS)

    Wagner, W.; Hermann, R.; Koch, O.; Hartlapp, J.; Krech, R.

    2000-01-01

    Purpose: Hemoglobin levels are currently the focus of interest as prognostic factors in patients with head and neck cancer. Most published clinical trials have confirmed hemoglobin to process a significant influence on survival in patients treated with radiotherapy. In our study we have investigated the prognostic value of hemoglobin in a combined modality schedule. Patients and Methods: Forty-three patients with advanced head and neck tumors were treated with combined radiochemotherapy. The therapy comprised 2 courses of induction chemotherapy with ifosfamide (1,500 mg/m 2 , day 1 to 5) and cisplatin (60 mg/m 2 , day 5) followed by hyperfractionated accelerated radiotherapy with a total dose of only 30 Gy. Surgery involved tumor resection and neck dissection. Results: The 1-year overall survival rate and the 2-year survival rate were 79% and 56%, respectively. The 1- and 2-year recurrence-free survival rates were 68% and 49%, respectively. Prognostic factors with an impact on survival were seen in tumor size (T3 vs T4, p=0.0088), response to radio-chemotherapy at the primary site (no vital tumor rest vs vital tumor rest, p=0.045), response to lymph node radio-chemotherapy (no vital tumor cells vs vital tumor cells, p=0.013) and level of hemoglobin after radio-chemotherapy (Hb≥11.5 g/dl vs [de

  6. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    important to address. Whenever glycosylation has been found to be an important PTM for function or bioactivity, human therapeutics have generally been produced in mammalian Chinese hamster ovary (CHO) cell line. Oglycosylation is one of the most complex regulated PTMs of proteins but also one of the least...... understood. Currently, mammalian cells are required for human O-glycosylation. Increasing efforts have been devoted to engineering non-mammalian cells for production of recombinant proteins with “human-like” glycosylation. Substantial success has been achieved with designed N-glycosylation in both lower......Recombinant expression of therapeutic proteins is one of the major tasks in modern biomedicine. One of the most important factors with respect to therapeutic use in human is posttranslational modifications (PTMs) of the recombinant proteins, of which protein glycosylation is by far the most...

  7. Improvement of Glycosylated Hemoglobin in Patients with Type 2 Diabetes Mellitus under Insulin Treatment by Reimbursement for Self-Monitoring of Blood Glucose

    Directory of Open Access Journals (Sweden)

    Young Shin Song

    2017-09-01

    Full Text Available BackgroundIn Korea, the costs associated with self-monitoring of blood glucose (SMBG for patients with type 2 diabetes mellitus (T2DM under insulin treatment have been reimbursed since November 2015. We investigated whether this new reimbursement program for SMBG has improved the glycemic control in the beneficiaries of this policy.MethodsAmong all adult T2DM patients with ≥3 months of reimbursement (n=854, subjects without any changes in anti-hyperglycemic agents during the study period were selected. The improvement of glycosylated hemoglobin (HbA1c was defined as an absolute reduction in HbA1c ≥0.6% or an HbA1c level at follow-up <7%.ResultsHbA1c levels significantly decreased from 8.5%±1.3% to 8.2%±1.2% during the follow-up (P<0.001 in all the study subjects (n=409. Among them, 35.5% (n=145 showed a significant improvement in HbA1c. Subjects covered under the Medical Aid system showed a higher prevalence of improvement in HbA1c than those with medical insurance (52.2% vs. 33.3%, respectively, P=0.012. In the improvement group, the baseline HbA1c (P<0.001, fasting C-peptide (P=0.016, and daily dose of insulin/body weight (P=0.024 showed significant negative correlations with the degree of HbA1c change. Multivariate analysis showed that subjects in the Medical Aid system were about 2.5-fold more likely to improve in HbA1c compared to those with medical insurance (odds ratio, 2.459; 95% confidence interval, 1.138 to 5.314; P=0.022.ConclusionThe reimbursement for SMBG resulted in a significant improvement in HbA1c in T2DM subjects using insulin, which was more prominent in subjects with poor glucose control at baseline or covered under the Medical Aid system.

  8. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments.

    Science.gov (United States)

    Yamakoshi, Yasuo; Nagano, Takatoshi; Hu, Jan Cc; Yamakoshi, Fumiko; Simmer, James P

    2011-02-03

    Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr

  9. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments

    Directory of Open Access Journals (Sweden)

    Yamakoshi Fumiko

    2011-02-01

    Full Text Available Abstract Background Dentin sialophosphoprotein (Dspp is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp, the N-terminal domain of dentin sialophosphoprotein (Dspp, is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were

  10. Radioprotective properties of some heterocyclic nitrogenous compounds against changes in hemoglobin concentration and hematocrit value in x-irradiated mice; Proprietes radioprotectrices de certains composes heterocycliques azotes sur les variations du taux d'hemoglobine et de la valeur hematocrite chez la souris irradiee

    Energy Technology Data Exchange (ETDEWEB)

    Rousdhy, H; Pierotti, T; Polverelli, M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Radioprotective properties of imidazole and benzimidazole have been proved in previous works. In this study, authors try to demonstrate radioprotective action of these compounds in comparison with cysteamine upon the hematopoietic system after lethal X-irradiation. Results show: no drastic variations of hematologic constants (hemoglobin concentration and hematocrit value) after intraperitoneal injection of radioprotective compounds apart certain apparent reactions with the heterocyclic compounds; the better radioprotective action of benzimidazole. Twenty five days after irradiation, hemoglobin concentration and hematocrit of radio protected mice return to normal values. (author) [French] Les proprietes radioprotectrices de l'imidazole et du benzimidazole ayant ete demontrees dans de precedents travaux, les auteurs se sont attaches a etudier l'action de ces produits sur le systeme hematopofetique en comparaison avec celle de la cysteamine, apres une irradiation a dose letale. A l'aide des criteres choisis, les resultats demontrent: qu'en dehors de certaines reactions apparentes, succedant a l'injection intraperitoneale des heterocycles azotes, les constantes hematologiques (taux d'hemoglobine et valeur hematocrite) ne sont que legerement modifiees; la superiorite du benzimidazole sur les autres produits utilises. Enfin, le vingt-cinquieme jour apres irradiation, les souris protegees par les heterocycles azotes ont un taux d'hemoglobine et une valeur hematocrite tout a fait normaux. (auteur)

  11. Hemoglobin and hematocrit values of Saudi newborns in the high altitude of Abha, Saudi Arabia

    International Nuclear Information System (INIS)

    Bassuni, W.; Asindi, A.A.; Mustafa, F.S.; Hassan, B.; Din, Z.S.; Kumar, R.K.

    1996-01-01

    A study was designed to determine the red cell values (hemoglobin and hematocrit) of neonates born in the high altitude of Abha and to compare these values with known values of other lowland areas of Saudi Arabia. From the cord blood of 587 normal, appropriate for gestational age and term infants born in 1993 in Abha Maternity Hospital, the ranges of Hb and Hct were 130 to 240 g/L and 0.24 to 0.79 L/L respectively. The mean Hb was 187 g/L. There was no significant difference between the male and female values. Also, 17% of the infants in this study were polycythemic, while no polycythemia was recorded in these lowland areas and only 2% to 4% in the general global newborn population. It was therefore revealed that Abha newborns had higher red cell values at the birth when compared to other newborns in the low altitude areas of Riyadh and Jeddah (P<0.001). We postulate that high altitude (2700 meters above sea level) of Abha, and therefore its relative hypoxia, has induced high red cell values in infants born in the city. The phenomenon therefore warrants the adoption of higher red cell reference values and not necessarily those already documented in other Saudi new born populations. (author)

  12. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla......The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous...... with the glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended...

  13. Glycosylation: a hallmark of cancer?

    Science.gov (United States)

    Vajaria, Bhairavi N; Patel, Prabhudas S

    2017-04-01

    The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.

  14. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  15. The narrow therapeutic window of glycated hemoglobin and assay variability.

    Science.gov (United States)

    Hosseini, S S; Bibler, I; Charles, M A

    1999-12-01

    Glycated hemoglobin is measured by a variety of assays, each of which has a unique normal level. Our purpose is to show that among the different assays available in the United States, using the same patient's blood sample, assay results may vary widely and may more or less easily achieve a glycated hemoglobin value within the normal range. The following assays were compared using the same patient's blood sample for each pair of assays: glycohemoglobin affinity assay (GHB Reader; Isolab, Akron, OH) versus gel electrophoresis assay (n = 76); Isolab versus ion capture assay (IMX; Abbott Laboratories, Irving, TX) (n = 57); monoclonal antibody assay (DCA2000; Bayer Diagnostics, Pittsburgh, PA) versus IMX (n = 100); and high-performance liquid chromatography (HPLC) assay (Bio-Rad Variant A1c; Bio-Rad Laboratories, Richmond, CA) versus IMX assay (n = 55). Our analyses indicate that a relative ranking can be established for the ease of achieving a normal glycated hemoglobin level. The ranking indicates that the most stringent or difficult assays for achieving a normal level are the Isolab and DCA2000 assays. The intermediate assays are the IMX and Bio-Rad Variant, and the easiest method for achieving a normal value is the gel electrophoresis assay. Our results indicate that various glycated hemoglobin assays vary widely and are associated with more or less difficulty for an individual patient to achieve a glycated hemoglobin level within the normal range. These results are especially significant with respect to (1) the clinically narrow therapeutic window of glycated hemoglobin values in type 1 diabetes to avoid rapidly advancing severe hypoglycemia rates and chronic microvascular complication rates, and (2) the glycated hemoglobin threshold for rapidly advancing macrovascular disease in both type 1 and type 2 patients.

  16. Competition between folding and glycosylation in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Bruun, A W; Kielland-Brandt, Morten

    1996-01-01

    Using carboxypeptidase Y in Saccharomyces cerevisiae as a model system, the in vivo relationship between protein folding and N-glycosylation was studied. Seven new sites for N-glycosylation were introduced at positions buried in the folded protein structure. The level of glycosylation of such new...... acceptor sites. In some cases, all the newly synthesized mutant protein was modified at the novel site while in others no modification took place. In the most interesting category of mutants, the level of glycosylation was dependent on the conditions for folding. This shows that folding and glycosylation...

  17. Kadar Hemoglobin dan Kecerdasan Intelektual Anak

    Directory of Open Access Journals (Sweden)

    Yuni Kusmiyati

    2013-10-01

    2013. Sample was taken by simple random sampling, obtained 37 students. Measuring of instruments IQ with CFQT, hemoglobin was measured using a Portable Digital Analyzer Easy Touch is a digital gauge Hb, external variable body mass index was meas- ured directly using the parameters height and weight of children. Analysis using Linear Regression. This research showed BMI was not associated with IQ (p value = 0.052. Relationship with the child’s intelligence anemia showed enough relationship (r = 0.491 and a positive pattern, where the higher levels Haemoglobin as the higher IQ score of the child’s. The coefficient of 0.241 explained 24.1 % variation anemia that is good enough to explain the variable IQ. There is a relationship between hemoglobin levels with IQ (p value = 0.002.

  18. Defectively N-glycosylated and non-O-glycosylated aminopeptidase N (CD13) is normally expressed at the cell surface and has full enzymatic activity

    DEFF Research Database (Denmark)

    Norén, K; Hansen, Gert Helge; Clausen, H

    1997-01-01

    In order to study the effects of the absence of O-glycosylation and modifications of N-glycosylation on a class II membrane protein, pig and human aminopeptidase N (CD13) were stably expressed in the ldl(D) cell line. This cell line carries a UDP-Gal/UDP-GalNAc-epimerase deficiency which blocks...... the conversion of glucose into galactose derivatives. Thus it is possible in the ldl(D) cell line to selectively block O-glycosylation by the omission of N-acetylgalactoseamine from the culture medium and to alter N-glycosylation by the omission of galactose. In this way selectively altered glycosylated forms...

  19. Heterozygote Hemoglobin G-Coushatta as the Cause of a Falsely Decreased Hemoglobin A1C in an Ion-Exchange HPLC Method

    Directory of Open Access Journals (Sweden)

    Kurtoğlu Ayşegül Uğur

    2017-09-01

    Full Text Available Glycated hemoglobin (HbA1c is used for the assessment of glycemic control in patients with diabetes. The presence of genetic variants of hemoglobin can profoundly affect the accuracy of HbA1c measurement. Here, we report two cases of Hemoglobin G-Coushatta (HBB:c.68A>C variant that interferes in the measurement of HbA1c by a cation-exchange HPLC (CE-HPLC method. HbA1c was measured by a CE-HPLC method in a Tosoh HLC-723 G7 instrument. The HbA1c levels were 2.9% and 4%. These results alerted us to a possible presence of hemoglobinopathy. In the hemoglobin variant analysis, HbA2 levels were detected as 78.3% and 40.7% by HPLC using the short program for the Biorad Variant II. HbA1c levels were measured by an immunoturbidimetric assay in a Siemens Dimension instrument. HbA1c levels were reported as 5.5% and 5.3%. DNA mutation analysis was performed to detect the abnormal hemoglobin variant. Presence of Hemoglobin G-Coushatta variant was detected in the patients. The Hb G-Coushatta variants have an impact on the determination of glycated hemoglobin levels using CEHPLC resulting in a false low value. Therefore, it is necessary to use another measurement method.

  20. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  1. N-glycosylation in sugarcane

    Directory of Open Access Journals (Sweden)

    Maia Ivan G.

    2001-01-01

    Full Text Available The N-linked glycosylation of secretory and membrane proteins is the most complex posttranslational modification known to occur in eukaryotic cells. It has been shown to play critical roles in modulating protein function. Although this important biological process has been extensively studied in mammals, much less is known about this biosynthetic pathway in plants. The enzymes involved in plant N-glycan biosynthesis and processing are still not well defined and the mechanism of their genetic regulation is almost completely unknown. In this paper we describe our first attempt to understand the N-linked glycosylation mechanism in a plant species by using the data generated by the Sugarcane Expressed Sequence Tag (SUCEST project. The SUCEST database was mined for sugarcane gene products potentially involved in the N-glycosylation pathway. This approach has led to the identification and functional assignment of 90 expressed sequence tag (EST clusters sharing significant sequence similarity with the enzymes involved in N-glycan biosynthesis and processing. The ESTs identified were also analyzed to establish their relative abundance.

  2. Studies on radiation induced changes in bovine hemoglobin type A

    International Nuclear Information System (INIS)

    Wdzieczak, J.; Duda, W.; Leyko, W.

    1978-01-01

    In this paper the structural and functional changes of gamma irradiated bovine hemoglobin are presented. Aqueous solutions/1%/of HbO 2 were irradiated in air with doses ranging from 1 to 4 Mrad. Isoelectric focusing indicated change of the charge of irradiated hemoglobin. The isoelectric point of hemoglobin was displaced towards more acid values with increasing doses, up from 1 Mrad. Fingerprint analysis and peptide column chromatography of irradiated hemoglobin demonstrated disturbances increasing with the dose. These changes were confirmed by amino acid analysis which showed that Cys, Met, Trp, His, Pro and Tyr residues were destroyed or modified following irradiation. At doses exceeding 1 Mrad the irradiated solutions of hemoglobin showed a decrease of heme-heme interaction and an increase of affinity for oxygen. Differences observed in oxygen-dissociation curves seem to be correlated with the radiation induced destruction of amino acid residues which are responsible for the functional properties of hemoglobin. (auth.)

  3. Comparison of the gold standard of hemoglobin measurement with the clinical standard (BGA) and noninvasive hemoglobin measurement (SpHb) in small children: a prospective diagnostic observational study.

    Science.gov (United States)

    Wittenmeier, Eva; Bellosevich, Sophia; Mauff, Susanne; Schmidtmann, Irene; Eli, Michael; Pestel, Gunther; Noppens, Ruediger R

    2015-10-01

    Collecting a blood sample is usually necessary to measure hemoglobin levels in children. Especially in small children, noninvasively measuring the hemoglobin level could be extraordinarily helpful, but its precision and accuracy in the clinical environment remain unclear. In this study, noninvasive hemoglobin measurement and blood gas analysis were compared to hemoglobin measurement in a clinical laboratory. In 60 healthy preoperative children (0.2-7.6 years old), hemoglobin was measured using a noninvasive method (SpHb; Radical-7 Pulse Co-Oximeter), a blood gas analyzer (clinical standard, BGAHb; ABL 800 Flex), and a laboratory hematology analyzer (reference method, labHb; Siemens Advia). Agreement between the results was assessed by Bland-Altman analysis and by determining the percentage of outliers. Sixty SpHb measurements, 60 labHb measurements, and 59 BGAHb measurements were evaluated. In 38% of the children, the location of the SpHb sensor had to be changed more than twice for the signal quality to be sufficient. The bias/limits of agreement between SpHb and labHb were -0.65/-3.4 to 2.1 g·dl(-1) . Forty-four percent of the SpHb values differed from the reference value by more than 1 g·dl(-1) . Age, difficulty of measurement, and the perfusion index (PI) had no influence on the accuracy of SpHb. The bias/limits of agreement between BGAHb and labHb were 1.14/-1.6 to 3.9 g·dl(-1) . Furthermore, 66% of the BGAHb values differed from the reference values by more than 1 g·dl(-1) . The absolute mean difference between SpHb and labHb (1.1 g·dl(-1) ) was smaller than the absolute mean difference between BGAHb and labHb (1.5 g·dl(-1) /P = 0.024). Noninvasive measurement of hemoglobin agrees more with the reference method than the measurement of hemoglobin using a blood gas analyzer. However, both methods can show clinically relevant differences from the reference method (ClinicalTrials.gov: NCT01693016). © 2015 John Wiley & Sons Ltd.

  4. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qun [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019 (China); Tang, Shan [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); Fang, Chen [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); Second Affiliated Hospital, Soochow University, Suzhou, 215004 (China); Tu, Yi-Feng, E-mail: tuyf@suda.edu.cn [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China)

    2016-09-14

    A glycated hemoglobin (HbA1c) biosensor with high performance has been constructed in this work. Here the fructosyl amino acid oxidase was immobilized onto a pre-functionalized indium tin oxide glass with titania nanotubes decorated with gold nanoparticles. The property of nanocomposite was characterized by transmission electromicroscopy, scanning electron microscopy, electrochemistry and spectroscopy. Under the optimum conditions, fructosyl valine was detected by this biosensor. It exhibited a linear detection range from 4.0 × 10{sup −9} M to 7.2 × 10{sup −7} M, and a limit of detection for 3.8 × 10{sup −9} M at the signal-to-noise ratio of 3. Thus the HbA1c level in whole blood samples of healthy individuals or diabetic patients were evaluated with designed biosensor after pre-treatment of hydrolysis. The results of our detection were closely consistent with that of the standard method. At the same time, our biosensor has some advantages including high sensitivity, disposable usage and low cost, which implies its great promising application in point-of-care testing of HbA1c. - Highlights: • The enhanced electrochemiluminescence of luminol by AuNPs/TiNTs. • An ECL biosensor for HbA1c assay with ultra-high sensitivity. • A promising disposable device for diabetic diagnosis and treatment even for POCT. • The excellent regression of detected results with gold-standard method.

  5. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin

    International Nuclear Information System (INIS)

    Zhao, Qun; Tang, Shan; Fang, Chen; Tu, Yi-Feng

    2016-01-01

    A glycated hemoglobin (HbA1c) biosensor with high performance has been constructed in this work. Here the fructosyl amino acid oxidase was immobilized onto a pre-functionalized indium tin oxide glass with titania nanotubes decorated with gold nanoparticles. The property of nanocomposite was characterized by transmission electromicroscopy, scanning electron microscopy, electrochemistry and spectroscopy. Under the optimum conditions, fructosyl valine was detected by this biosensor. It exhibited a linear detection range from 4.0 × 10"−"9 M to 7.2 × 10"−"7 M, and a limit of detection for 3.8 × 10"−"9 M at the signal-to-noise ratio of 3. Thus the HbA1c level in whole blood samples of healthy individuals or diabetic patients were evaluated with designed biosensor after pre-treatment of hydrolysis. The results of our detection were closely consistent with that of the standard method. At the same time, our biosensor has some advantages including high sensitivity, disposable usage and low cost, which implies its great promising application in point-of-care testing of HbA1c. - Highlights: • The enhanced electrochemiluminescence of luminol by AuNPs/TiNTs. • An ECL biosensor for HbA1c assay with ultra-high sensitivity. • A promising disposable device for diabetic diagnosis and treatment even for POCT. • The excellent regression of detected results with gold-standard method.

  6. An analysis of postoperative hemoglobin levels in patients with a fractured neck of femur.

    Science.gov (United States)

    Nagra, Navraj S; van Popta, Dmitri; Whiteside, Sigrid; Holt, Edward M

    2016-10-01

    The aim of this study was to analyze the changes in hemoglobin level and to determine a suitable timeline for post-operative hemoglobin monitoring in patients undergoing fixation of femoral neck fracture. Patients who underwent either dynamic hip screw (DHS) fixation (n = 74, mean age: 80 years) or hip hemiarthroplasty (n = 104, mean age: 84 years) for femoral neck fracture were included into the study. The hemoglobin level of the patients was monitored perioperatively. Analysis found a statistically and clinically significant mean drop in hemoglobin of 31.1 g/L over time from pre-operatively (D0) to day-5 post-operatively (p hemoglobin values over hemiarthroplasty patients (p = 0.046). The decrease in hemoglobin in the first 24-h post-operative period (D0 to day-1) is an underestimation of the ultimate lowest value in hemoglobin found at day-2. Relying on the day-1 hemoglobin could be detrimental to patient care. We propose a method of predicting patients likely to be transfused, and recommend a protocol for patients undergoing femoral neck fracture surgery to standardize postoperative hemoglobin monitoring. Level IV Prognostic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  7. Nutritional Therapies in Congenital Disorders of Glycosylation (CDG

    Directory of Open Access Journals (Sweden)

    Peter Witters

    2017-11-01

    Full Text Available Congenital disorders of glycosylation (CDG are a group of more than 130 inborn errors of metabolism affecting N-linked, O-linked protein and lipid-linked glycosylation. The phenotype in CDG patients includes frequent liver involvement, especially the disorders belonging to the N-linked protein glycosylation group. There are only a few treatable CDG. Mannose-Phosphate Isomerase (MPI-CDG was the first treatable CDG by high dose mannose supplements. Recently, with the successful use of d-galactose in Phosphoglucomutase 1 (PGM1-CDG, other CDG types have been trialed on galactose and with an increasing number of potential nutritional therapies. Current mini review focuses on therapies in glycosylation disorders affecting liver function and dietary intervention in general in N-linked glycosylation disorders. We also emphasize now the importance of early screening for CDG in patients with mild hepatopathy but also in cholestasis.

  8. Site-specific semisynthetic variant of human hemoglobin

    International Nuclear Information System (INIS)

    Hefta, S.A.; Lyle, S.B.; Busch, M.R.; Harris, D.E.; Matthew, J.B.; Gurd, F.R.N.

    1988-01-01

    A single round of Edman degradation was employed to remove the NH 2 -terminal valine from isolated α chains of human hemoglobin. Reconstitution of normal β chains with truncated or substituted α chains was used to form truncated (des-Val 1 -α1) and substituted ([[1- 13 C]Gly 1 ]α1) tetrameric hemoglobin analogs. Structural homology of the analogs with untreated native hemoglobin was established by using several spectroscopic and physical methods. Functional studies indicate that the reconstituted tetrameric protein containing des-Val 1 -α chains has a higher affinity for oxygen, is less influenced by chloride ions or 2,3-biphosphoglycerate, and shows lower cooperativity than native hemoglobin. These results confirm the key functional role of the α-chain NH 2 terminus in mediating cooperative oxygen binding across the dimer interface. The NH 2 -terminal pK/sub 1/2/ value was determined for the [ 13 C]glycine-substituted analog to be 7.46 +/- 0.09 at 15 0 C in the carbon monoxide-liganded form. This value, measured directly by 13 C NMR, agrees with the determination made by the less-direct 13 CO 2 method and confirms the role of this residue as a contributor to the alkaline Bohr effect; however, it is consistent with the presence of an NH 2 -terminal salt bridge to the carboxylate of Arg-141 of the α chain in the liganded form

  9. Hemoglobin

    Science.gov (United States)

    1993-03-08

    affinity, which is less at low levels of hemoglobin saturation, increases markedly as fractional saturation increases. Thus, high affinity for 02 at... diphosphoglycerate (2,3-DPG), and carbon dioxide (Co 2). Since they are linked to 02 binding, they are called oxygen-linked effectors. The oxygen...hemoglobin molecule because of the negative charge of the ions. 2,3- Diphosphoglycerate is a molecule formed during the breakdown of sugar in normal human

  10. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin: A Prospective Cohort Study.

    Science.gov (United States)

    Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying

    2016-02-01

    This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels.A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index.After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10-1.62), 1.46 (1.08-1.98), and 1.47 (1.12-1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24-3.51; HR = 4.00, 95% CI = 2.03-7.90; and HR = 2.05, 95% CI = 1.29-3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48-3.02; and HR = 1.35, 95% CI = 1.10-1.65, respectively).Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with brief daytime napping HOMA-IR index.

  11. Halide-mediated regioselective 6-O-glycosylation of unprotected hexopyranosides with perbenzylated glycosyl bromide donors

    DEFF Research Database (Denmark)

    Niedbal, Dominika Alina; Madsen, Robert

    2016-01-01

    The regio- and stereoselective glycosylation at the 6-position in 2,3,4,6-unprotected hexopyranosides has been investigated with dibutyltin oxide as the directing agent. Perbenzylated hexopyranosyl bromides were employed as the donors and the glycosylations were promoted by tetrabutylammonium...... bromide. The couplings were completely selective for both glucose and galactose donors and acceptors as long as the stannylene acetal of the acceptor was soluble in dichloromethane. This gave rise to a number of 1,2-cis-linked disaccharides in reasonable yields. Mannose donors and acceptors, on the other...

  12. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...... (logP(50) vs 1/T) of D. mawsoni hemoglobin indicates that the enthalpy of oxygenation (slope of the plot) is temperature dependent and that at high temperatures oxygen-binding becomes less exothermic. Nearly linear relationships were found in the hemoglobins of the other two species. The data were...... oxygen binding. The degree of the temperature dependence of the heat of oxygenation observed in these hemoglobins seems to reflect the differences in their allosteric effects rather than a specific molecular adaptation to low temperatures. Moreover, this study indicates that the disagreement between...

  13. Clinical Significance of Reticulocyte Hemoglobin Content in the Diagnosis of Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Mustafa Karagülle

    2013-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the clinical significance of reticulocyte hemoglobin content (CHr in the diagnosis of iron deficiency anemia (IDA and to compare it with other conventional iron parameters. METHODS: A total of 32 female patients with IDA (serum hemoglobin 120 g/L and serum ferritin <20 ng/mL were enrolled. RESULTS: CHr was 24.95±3.92 pg in female patients with IDA and 29.93±2.96 pg in female patients with iron deficiency. CHr showed a significant positive correlation with hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, serum iron, and transferrin saturation and a significant negative correlation with transferrin and total iron-binding capacity. The cut-off value of CHr for detecting IDA was 29 pg. CONCLUSION: Our data demonstrate that CHr is a useful parameter that can be confidently used in the diagnosis of IDA, and a CHr cut-off value of 29 pg predicts IDA.

  14. Hemoglobin as an independent prognostic factor in the radiotherapy of head and neck tumors

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Mueller, S.B.; Schueller, P.; Willich, N.

    2003-01-01

    Purpose: The purpose of this study was to analyze the prognostic value of baseline hemoglobin levels before radiotherapy in patients with head and neck tumors. Patients and Methods: In a retrospective study with a median follow-up of 43 months, we analyzed the results of 214 patients irradiated for head and neck cancer between January 1, 1990 and January 1, 1998 (180 men and 34 women; median age 58 years). The treatment concept consisted in adjuvant radiotherapy in 58 patients, 77 patients received definitive radiochemotherapy, 42 patients definitive radiotherapy, and 37 patients reirradiation for in-field recurrence. Baseline hemoglobin values were divided in four groups of the same patient number (quartiles). Several known prognostic factors like sex, tumor stage, histologic grading, performance status, and treatment scheme were analyzed for their influence on overall and event-free survival and correlated with pretreatment hemoglobin values (Kaplan-Meier method). In addition, univariate und multivariate logistic regression analyses were carried out to evaluate the effect of baseline hemoglobin on response rates. Results: The median survival (event-free survival) of all patients amounted to 15 months (10 months). 25%, 50%, and 75% of patients had hemoglobin values < 11.2 g/dl, < 12.7 g/dl, and < 13.9 g/dl, respectively. In the univariate analysis, the following variables were significant prognostic factors for overall/event-free survival (log-rank test): treatment concept (p < 0.001/ p < 0.001), tumor stage (p < 0.001/p < 0.001), general condition (p < 0.001/p < 0.001), and pretreatment hemoglobin (p = 0.014/p = 0.05). Multivariate analysis (Cox) proved these parameters to be independent of each other. In addition, response rate after radiation showed a strong association between hemoglobin and local control probability (p = 0.02). Conclusion: In this retrospective analysis, baseline hemoglobin level was shown to be an independent significant prognostic factor in

  15. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein

    DEFF Research Database (Denmark)

    Sherlock, O.; Dobrindt, U.; Jensen, J.B.

    2006-01-01

    a novel member to this exclusive group, namely, antigen 43 (Ag43), a self-recognizing autotransporter protein. By mass spectrometry Ag43 was demonstrated to be glycosylated by addition of heptose residues at several positions in the passenger domain. Glycosylation of Ag43 by the action of the Aah and Tib......C glycosyltransferases was observed in laboratory strains. Importantly, Ag43 was also found to be glycosylated in a wild-type strain, suggesting that Ag43-glycosylation may be a widespread phenomenon. Glycosylation of Ag43 does not seem to interfere with its self-associating properties. However, the glycosylated form...

  16. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Science.gov (United States)

    de Jongh, Harmen H. J.; Robles, Carlos López; Nordlee, Julie A.; Lee, Poi-Wah; Baumert, Joseph L.; Hamilton, Robert G.; Taylor, Steve L.; Koppelman, Stef J.

    2013-01-01

    Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa), the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein's digestibility is not affected by such processing. PMID:23878817

  17. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Directory of Open Access Journals (Sweden)

    Harmen H. J. de Jongh

    2013-01-01

    Full Text Available Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa, the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein’s digestibility is not affected by such processing.

  18. Functional Analysis of Glycosylation of Zika Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Camila R. Fontes-Garfias

    2017-10-01

    Full Text Available Summary: Zika virus (ZIKV infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. : Zika virus (ZIKV causes devastating congenital abnormities and Guillain-Barré syndrome. Fontes-Garfias et al. showed that the glycosylation of ZIKV envelope protein plays an important role in infecting mosquito vectors and pathogenesis in mouse. Keywords: Zika virus, glycosylation, flavivirus entry, mosquito transmission, vaccine

  19. Toward stable genetic engineering of human o-glycosylation in plants

    DEFF Research Database (Denmark)

    Yang, Zhang; Bennett, Eric Paul; Jørgensen, Bodil

    2012-01-01

    Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types...... an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating Gal......NAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O...

  20. Mining the Virgin Land of Neurotoxicology: A Novel Paradigm of Neurotoxic Peptides Action on Glycosylated Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Zhirui Liu

    2012-01-01

    Full Text Available Voltage-gated sodium channels (VGSCs are important membrane protein carrying on the molecular basis for action potentials (AP in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.

  1. Correlation between Glycated Hemoglobin and Triglyceride Level in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Naqvi, Syeda; Naveed, Shabnam; Ali, Zeeshan; Ahmad, Syed Masroor; Asadullah Khan, Raad; Raj, Honey; Shariff, Shoaib; Rupareliya, Chintan; Zahra, Fatima; Khan, Saba

    2017-06-13

    Dyslipidemia is quite prevalent in non-insulin dependent diabetes mellitus. Maintaining tight glycemic along with lipid control plays an essential role in preventing micro- and macro-vascular complications associated with diabetes. The main purpose of the study was to highlight the relationship between glycosylated hemoglobin (HbA1c) and triglyceride levels. This may in turn help in predicting the triglyceride status of type 2 diabetics and therefore identifying patients at increased risk from cardiovascular events. Hypertriglyceridemia is one of the common risk factors for coronary artery disease in type 2 diabetes mellitus (DM). Careful monitoring of the blood glucose level can be used to predict lipid status and can prevent most of the complications associated with the disease. This is a cross-sectional study using data collected from the outpatient diabetic clinic of Jinnah Postgraduate Medical Centre (JPMC) Karachi, Pakistan. Patients of age 18 years and above were recruited from the clinic. A total of consenting 509 patients of type 2 diabetes mellitus were enrolled over a period of 11 months.  For statistical analysis, SPSS Statistics for Windows, Version 17.0 ( IBM Corp, Armonk, New York) was used and Chi-square and Pearson's correlation coefficient was used to find the association between triglyceride and HbA1c. The HbA1c was dichotomized into four groups on the basis of cut-off. Chi-square was used for association between HbA1c with various cut-off values and high triglyceride levels. Odds-ratio and its 95% confidence interval were calculated to estimate the level of risk between high triglyceride levels and HbA1c groups. The p-value triglyceride was evaluated in four different groups of HbA1c, with a cut-off seven, eight, nine and 10 respectively. With HbA1c cut-off value of 7%, 74% patients had high triglycerides and showed a significant association with high triglyceride levels at p index, lifestyle) and health status factors (blood pressure

  2. Glycated Hemoglobin Measurement and Prediction of Cardiovascular Disease

    DEFF Research Database (Denmark)

    Di Angelantonio, Emanuele; Gao, Pei; Khan, Hassan

    2014-01-01

    IMPORTANCE: The value of measuring levels of glycated hemoglobin (HbA1c) for the prediction of first cardiovascular events is uncertain. OBJECTIVE: To determine whether adding information on HbA1c values to conventional cardiovascular risk factors is associated with improvement in prediction of c...

  3. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    eukaryotes and even prokaryotes. Insect and yeast cells produce O-glycosylation incompatible with use in humans, however recently the yeast Pichia was engineered to perform the first step of human-like O-glycosylation. This review provides an overview of past and current engineering efforts of N...

  4. Radioimmunochemical characterization of hemoglobins Lepore and Kenya: unique antigenic determinants located on hybrid hemoglobins

    International Nuclear Information System (INIS)

    Garver, F.A.; Altay, G.; Baker, M.M.; Gravely, M.; Huisman, T.H.J.

    1978-01-01

    Antisera were produced in rabbits to the three known types of Lepore hemoglobins, which contain hybrid delta-β non-α-chains, and to hemoglobin Kenya, which has a hybrid γ-β non-α-chain. By using a sensitive radioimmunoassay technique, the absorbed antisera were shown to contain an antibody population that was specific for the hybrid hemoglobin and did not cross-react with normal hemoglobins. However, with the absorbed Lepore-specific antisera, the three known types of Lepore hemoglobins were antigenically indistinguishable from each other, suggesting that antibodies are not produced to the primary structural differences which define the three non-α-chains of the Lepore hemoglobins. These studies demonstrate that the non-α-subunits of hemoglobins Lepore and Kenya possess unique antigenic determinant sites, evidently resulting from an altered polypeptide conformation

  5. Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Anne Dell

    2010-01-01

    Full Text Available Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i oligosaccharyltransferase (OST-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.

  6. Is Routine Ordering of Both Hemoglobin and Hematocrit Justifiable?

    Science.gov (United States)

    Addison, David J.

    1966-01-01

    In order to assess the value of routine simultaneous hemoglobin and hematocrit determinations, paired determinations in the following groups were studied: (1) 360 consecutive pairs from the hematology laboratory, (2) 95 pairs on general medical patients, (3) 43 pairs on 10 patients with upper gastrointestinal hemorrhage, and (4) 62 pairs on 10 patients with burns. These values were plotted on scatter diagrams. In the 560 pairs only three disparate determinations were found. It is concluded that, in most clinical situations, determination of the hemoglobin or the hematocrit as a screening procedure provides as much useful information as the simultaneous determination of both. PMID:5296947

  7. Glycosylation of the N-terminal potential N-glycosylation sites in the human α1,3-fucosyltransferase V and -VI (hFucTV and -VI)

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Bross, Peter Gerd; Ørntoft, Torben Falck

    2000-01-01

    Human alpha1,3-fucosyltransferase V and -VI (hFucTV and -VI) each contain four potential N-glycosylation sites (hFucTV: Asn60, Asn105, Asn167 and Asn198 and hFucTVI: Asn46, Asn91, Asn153 and Asn184). Glycosylation of the two N-terminal potential N-glycosylation sites (hFucTV: Asn60, Asn105 and h......FucTVI: Asn46 and Asn91) have never been studied in detail. In the present study, we have analysed the glycosylation of these potential N-glycosylation sites. Initially, we compared the molecular mass of hFucTV and -VI expressed in COS-7 cells treated with tunicamycin with the mass of the proteins...... in untreated cells. The difference in molecular mass between the proteins in treated and untreated cells corresponded to the presence of at least three N-linked glycans. We then made a series of mutants, in which the asparagine residues in the N-terminal potential N-glycosylation sites were replaced...

  8. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Anemia and hemoglobin levels among Indigenous Xavante children, Central Brazil.

    Science.gov (United States)

    Ferreira, Aline Alves; Santos, Ricardo Ventura; Souza, July Anne Mendonça de; Welch, James R; Coimbra, Carlos E A

    2017-01-01

    To evaluate the prevalence of anemia, mean hemoglobin levels, and the main nutritional, demographic, and socioeconomic factors among Xavante children in Mato Grosso State, Brazil. A survey was conducted with children under 10 years of age in two indigenous Xavante communities within the Pimentel Barbosa Indigenous Reserve. Hemoglobin concentration levels, anthropometric measurements, and socioeconomic/demographic data were collected by means of clinical measurements and structured interviews. The cut-off points recommended by the World Health Organization were used for anemia classification. Linear regression analyses with hemoglobin as the outcome and Poisson regression with robust variance and with the presence or absence of anemia as outcomes were performed (95%CI). Lower mean hemoglobin values were observed in children under 2 years of age, without a significant difference between sexes. Anemia was observed among 50.8% of children overall, with the highest prevalence among children under 2 years of age (77.8%). Age of the child was inversely associated with the occurrence of anemia (adjusted PR = 0.60; 95%CI 0.38-0.95) and mean hemoglobin values increased significantly with age. Greater height-for-age z-score values reduced the probability of having anemia by 1.8 times (adjusted PR = 0.59; 95%CI 0.34-1.00). Presence of another child with anemia within the household increased the probability of the occurrence of anemia by 52.9% (adjusted PR = 1.89; 95%CI 1.16-3.09). Elevated levels of anemia among Xavante children reveal a disparity between this Indigenous population and the national Brazilian population. Results suggest that anemia is determined by complex and variable relationships between socioeconomic, sociodemographic, and biological factors.

  10. Modification of postnatal hemoglobin level and hematocrit value in the peripheral blood of mice after gamma radiation in utero by MPG (2-mercaptopropionylglycine)

    International Nuclear Information System (INIS)

    Goyal, P.K.; Kumar, S.; Dev, P.K.

    1980-01-01

    Pregnant Swiss albino mice were irradiated with oamma radiation at post-conception days 14.5, 16.25 and 18.25. Hemoglobin level and hematocrit value in the peripheral blood of the male offsprings were found to be below normal during the early postnatal development. The value became normal from 4 week onwards. However these values were found to be significantly elevated in the early postnatal development of the male offsprings of the mice which were administered MPG before irradiation. The possible radioprotective mechanism of MPG is discussed. (M.G.B.)

  11. Fish hemoglobins

    Directory of Open Access Journals (Sweden)

    P.C. de Souza

    2007-06-01

    Full Text Available Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. On the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.

  12. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen

    2013-08-01

    Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as \\'self\\' to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis. © 2013 Future Medicine Ltd.

  13. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  14. Conformational changes in hemoglobin triggered by changing the iron charge

    International Nuclear Information System (INIS)

    Croci, S.; Achterhold, K.; Ortalli, I.; Parak, F. G.

    2008-01-01

    In this work the hemoglobin conformational changes induced by changing the iron charge have been studied and compared with Myoglobin. Moessbauer spectroscopy was used to follow the change of the iron conformation. In order to compare the conformational relaxation of hemoglobin and myoglobin, and to study a possible influence of the quaternary structure, an intermediate metastable state of hemoglobin has been created by low temperature X-ray irradiation of methemoglobin. The irradiation reduces the Fe(III) of the heme groups to Fe(II) Low Spin, where the water is still bound on the sixth coordination. Heating cycles performed at temperatures from 140 K to 200 K allow the molecules to overcome an activation energy barrier and to relax into a stable conformation such as deoxy-hemoglobin or carboxy-hemoglobin, if CO is present. Slightly different structures (conformational substates) reveal themselves as a distribution of energy barriers (ΔG). The distribution of the activation energy, for the decay of the Fe(II) Low Spin intermediate, has been fitted with a Gaussian. For comparison, published myoglobin data were re-analysed in the same way. The average energy value at characteristic temperature is very similar in case of myoglobin and hemoglobin. The larger Gaussian energy distribution for myoglobin with respect to hemoglobin shows that more conformational substates are available. This may be caused by a larger area exposed to water. In hemoglobin, part of the surface of the chains is not water accessible due to the quaternary structure.

  15. Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

    Science.gov (United States)

    Fontes-Garfias, Camila R; Shan, Chao; Luo, Huanle; Muruato, Antonio E; Medeiros, Daniele B A; Mays, Elizabeth; Xie, Xuping; Zou, Jing; Roundy, Christopher M; Wakamiya, Maki; Rossi, Shannan L; Wang, Tian; Weaver, Scott C; Shi, Pei-Yong

    2017-10-31

    Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program.

    Science.gov (United States)

    Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato

    2013-01-01

    To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  17. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    Science.gov (United States)

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413

  18. Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests

    Science.gov (United States)

    Carter, Tamar E.; von Fricken, Michael; Romain, Jean R.; Memnon, Gladys; St. Victor, Yves; Schick, Laura; Okech, Bernard A.; Mulligan, Connie J.

    2014-01-01

    Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti. PMID:24957539

  19. The glycosylated IgII extracellular domain of EMMPRIN is implicated in the induction of MMP-2.

    Science.gov (United States)

    Papadimitropoulou, Adriana; Mamalaki, Avgi

    2013-07-01

    EMMPRIN is a widely expressed transmembrane glycoprotein that plays important roles in many physiological and pathological processes, such as tumor invasion and metastasis. It stimulates the production of matrix metalloproteinase (MMPs) by tumor-associated fibroblasts. In the present study, our aim was to (a) to investigate if the IgII loop domain of the extracellular domain (ECD) of EMMPRIN contributes to the MMP production by fibroblasts and (b) to evaluate the significance of glycosylation in this process. For this purpose, we expressed the ECD, IgI, or IgII domains of EMMPRIN, in their glycosylated and non-glycosylated forms, in the heterologous expression systems of P. pastoris and E. coli, respectively. Dermal fibroblasts were treated with purified recombinant domains and proteins from cell extracts and supernatants were analyzed by Western blot and zymography assays. Fibroblasts treated with ECD-, IgI-, and IgII-glycosylated domains of EMMPRIN significantly stimulated the gelatinolytic activity of MMP-2, compared to untreated fibroblasts, whereas no significant effect was observed after treatment with the non-glycosylated ECD, IgI, and IgII domains. Western blot analysis from cell extracts and supernatants revealed that only the glycosylated forms were able to stimulate MMP-2 production and secretion, respectively. Quantitative PCR revealed that this effect was not attributed to transcriptional alterations. This study showed that N-glycosylation was a prerequisite for efficient MMP-2 production, with the IgII loop domain contributing significantly to this process. Perturbation of the function of IgII-EMMPRIN loop could have potential therapeutic value in the inhibition of MMP-2-dependent cancer cell invasion and metastasis.

  20. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Science.gov (United States)

    Bai, Yang; Huang, Wan; Ma, Li-Tian; Jiang, Jian-Li; Chen, Zhi-Nan

    2014-01-01

    Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation. PMID:24739808

  1. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2014-04-01

    Full Text Available Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation.

  2. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program

    Directory of Open Access Journals (Sweden)

    Marcilene Rezende Silva

    2013-01-01

    Full Text Available OBJECTIVE: To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. METHODS: βS allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. RESULTS: The following alpha chain variants were found: seven children with hemoglobin Hasharon [alpha2 47(CE5 Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13 Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2 Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5 Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. CONCLUSION: Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  3. Links between CD147 Function, Glycosylation, and Caveolin-1

    OpenAIRE

    Tang, Wei; Chang, Sharon B.; Hemler, Martin E.

    2004-01-01

    Cell surface CD147 shows remarkable variations in size (31-65 kDa) because of heterogeneous N-glycosylation, with the most highly glycosylated forms functioning to induce matrix metalloproteinase (MMP) production. Here we show that all three CD147 N-glycosylation sites make similar contributions to both high and low glycoforms (HG- and LG-CD147). l-Phytohemagglutinin lectin binding and swainsonine inhibition experiments indicated that HG-CD147 contains N-acetylglucosaminyltransferase V-cataly...

  4. Hematocrit and Serum Hemoglobin Do Not Influence Values in Computed Tomography Perfusion of Patients With Acute Ischemic Stroke.

    Science.gov (United States)

    Karwacki, Grzegorz Marek; Benz, Matthias Richard; Tyndall, Anthony Joseph; Ulmer, Stephan

    There is a correlation between both serum hemoglobin (HGB) and hematocrit (HCT) and attenuation values of vessels in noncontrast-enhanced computed tomography (NECT), which could influence calculated perfusion maps in CT perfusion. We retrospectively included 45 patients, who presented with acute new neurological symptoms and underwent NECT and CT perfusion (128-row multi detector scanner, coverage: 6.9 cm craniocaudally; 80 kV; 200 mAs; temporal resolution: 2 seconds using 40 mL Ultravist 370 at a flow rate of 5 mL/s) on admission and a follow-up MRI within 1 week of admission. Hematocrit, HGB, and attenuation values did not differ between patients with stroke and controls. A statistically significant correlation was found between HCT and HGB and attenuation values in the internal carotid artery or middle cerebral artery on NECT (P Hematocrit and HGB do not influence calculated perfusion maps. There is no need for HCT/HGB-adjusted cerebral blood volume thresholds in stroke patients.

  5. Hemoglobin Wayne Trait with Incidental Polycythemia.

    Science.gov (United States)

    Ambelil, Manju; Nguyen, Nghia; Dasgupta, Amitava; Risin, Semyon; Wahed, Amer

    2017-01-01

    Hemoglobinopathies, caused by mutations in the globin genes, are one of the most common inherited disorders. Many of the hemoglobin variants can be identified by hemoglobin analysis using conventional electrophoresis and high performance liquid chromatography; however hemoglobin DNA analysis may be necessary in other cases for confirmation. Here, we report a case of a rare alpha chain hemoglobin variant, hemoglobin Wayne, in a 47-year-old man who presented with secondary polycythemia. Capillary zone electrophoresis and high performance liquid chromatography revealed a significant amount of a hemoglobin variant, which was further confirmed by hemoglobin DNA sequencing as hemoglobin Wayne. Since the patient was not homozygous for hemoglobin Wayne, which is associated with secondary polycythemia, the laboratory diagnosis in this case was critical in ruling out hemoglobinopathy as the etiology of his polycythemia. © 2017 by the Association of Clinical Scientists, Inc.

  6. N-linked glycosylation of the immunoglobulin variable region

    NARCIS (Netherlands)

    van de Bovenkamp, Fleur S.; Derksen, Ninotska I. L.; Ooijevaar-de Heer, Pleuni; van Schie, Karin A.; Kruithof, Simone; Berkowska, Magdalena A.; van der Schoot, C. Ellen; Ijspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E. M.; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S. Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-01-01

    N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we

  7. The Hemoglobin E Thalassemias

    Science.gov (United States)

    Fucharoen, Suthat; Weatherall, David J.

    2012-01-01

    Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199

  8. [The role of protein glycosylation in immune system].

    Science.gov (United States)

    Ząbczyńska, Marta; Pocheć, Ewa

    2015-01-01

    Glycosylation is one of the most frequent post-translational modifications of proteins. The majority of cell surface and secreted proteins involved in immune response is glycosylated. The structural diversity of glycans depends on monosaccharide composition, type of glycosidic linkage and branching. These structural modifications determine a great variability of glycoproteins. The oligosaccharide components of proteins are regulated mostly by expression of glycosyltransferases and glycosidases and many environmental factors. Glycosylation influences the function of all immune cells. Glycans play a crucial role in intercellular contacts and leukocytes migration. These interactions are important in activation and proliferation of leukocytes and during immune response. The key immune proteins, such as TCR, MHC, TLR and antibodies are glycosylated. Sugars on the surface of pathogens and self-surface glycoproteins are recognized by special carbohydrate binding proteins called lectins. Changes of glycan structure are common in many pathological processes occurring in immune system, therefore they are used as molecular markers of different diseases.

  9. Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts.

    Science.gov (United States)

    Eklund, Erik A; Merbouh, Nabyl; Ichikawa, Mie; Nishikawa, Atsushi; Clima, Jessica M; Dorman, James A; Norberg, Thomas; Freeze, Hudson H

    2005-11-01

    Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have reduced Man-1-P and GDP-Man. To replenish intracellular Man-1-P pools in CDG-Ia cells, we synthesized two hydrophobic, membrane permeable acylated versions of Man-1-P and determined their ability to normalize LLO size and N-glycosylation in CDG-Ia fibroblasts. Both compounds, compound I (diacetoxymethyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate) (C-I) and compound II (diacetoxymethyl 2,3,4,6-tetra-O-ethyloxycarbonyl-alpha-D-mannopyranosyl phosphate) (C-II), contain two acetoxymethyl (CH2OAc) groups O-linked to phosphorous. C-I contains acetyl esters and C-II contains ethylcarbonate (CO2Et) esters on the Man residue. Both C-I and C-II normalized truncated LLO, but C-II was about 2-fold more efficient than C-I. C-II replenished the GDP-Man pool in CDG-Ia cells and was more efficiently incorporated into glycoproteins than exogenous Man at low concentrations (25-75 mM). In a glycosylation assay of DNaseI in CDG-Ia cells, C-II restored glycosylation to control cell levels. C-II also corrected impaired LLO biosynthesis in cells from a Dolichol (Dol)-P-Man deficient patient (CDG-Ie) and partially corrected LLO in cells from an ALG12 mannosyltransferase-deficient patient (CDG-Ig), whereas cells from an ALG3-deficient patient (CDG-Id) and from an MPDU1-deficient patient (CDG-If) were not corrected. These results validate the general concept of using pro-Man-1-P substrates as potential therapeutics for CDG-I patients.

  10. Phylogeny of Echinoderm Hemoglobins.

    Directory of Open Access Journals (Sweden)

    Ana B Christensen

    Full Text Available Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.

  11. Prion propagation in cells expressing PrP glycosylation mutants.

    Science.gov (United States)

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  12. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids.

    Science.gov (United States)

    Dutta, Devawati; Mandal, Chhabinath; Mandal, Chitra

    2017-12-01

    Glycosylation of proteins is the most common, multifaceted co- and post-translational modification responsible for many biological processes and cellular functions. Significant alterations and aberrations of these processes are related to various pathological conditions, and often turn out to be disease biomarkers. Conventional N-glycosylation occurs through the recognition of the consensus sequon, asparagine (Asn)-X-serine (Ser)/threonine (Thr), where X is any amino acid except for proline, with N-acetylglucosamine (GlcNAc) as the first glycosidic linkage. Usually, O-glycosylation adds a glycan to the hydroxyl group of Ser or Thr beginning with N-acetylgalactosamine (GalNAc). Protein glycosylation is further governed by additional diversifications in sequon and structure, which are yet to be fully explored. This review mainly focuses on the occurrence of N-glycosylation in non-consensus motifs, where Ser/Thr at the +2 position is substituted by other amino acids. Additionally, N-glycosylation is also observed in other amide/amine group-containing amino acids. Similarly, O-glycosylation occurs at hydroxyl group-containing amino acids other than serine/threonine. The neighbouring amino acids and local structural features around the potential glycosylation site also play a significant role in determining the extent of glycosylation. All of these phenomena that yield glycosylation at the atypical sites are reported in a variety of biological systems, including different pathological conditions. Therefore, the discovery of more novel sequence patterns for N- and O-glycosylation may help in understanding the functions of complex biological processes and cellular functions. Taken together, all these information provided in this review would be helpful for the biological readers. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Influence of hemoglobin on non-invasive optical bilirubin sensing

    Science.gov (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  14. The role of glycosylation in breast cancer metastasis and cancer control

    Directory of Open Access Journals (Sweden)

    Alexandra eKölbl

    2015-10-01

    Full Text Available AbstractGlycosylation and its correlation to the formation of remote metastasis in breast cancer had been an important scientific topic in the last 25 years. With the development of new analytical techniques new insights were gained on the mechanisms underlying metastasis formation and the role of aberrant glycosylation within. Mucin-1 and Galectin were recognized as key players in glycosylation. Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood-brain barrier. Changes in the gene expression of glycosyltransferases are the leading cause for a modification of carbohydrate chains, so that also altered gene expression plays a role for glycosylation. In consequence, glycosylation and changes within can be useful for cancer diagnosis, determination of tumour stage and prognosis, but can as well be targets for therapeutic strategies. Thus, further research on this topic would worth wile for cancer combating.

  15. Fish hemoglobins

    OpenAIRE

    Souza,P.C. de; Bonilla-Rodriguez,G.O.

    2007-01-01

    Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta) and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemica...

  16. A retrospective cohort study of blood hemoglobin levels in blood donors and competitive rowers

    DEFF Research Database (Denmark)

    Johansson, P.I.; Ullum, H.; Jensen, K.

    2009-01-01

    To investigate the distribution of blood hemoglobin levels in healthy blood donors and elite athletes, a retrospective cohort study from 2001 to 2005 of candidate blood donors and elite rowers in Denmark was performed. Eighty-five thousand eight hundred and forty-six blood donors were identified.......3% of the females demonstrated values above the recommended limit for athletic competition. Thus, the prevalence of a high hemoglobin value was greater in the rowers, of both gender, than in the candidate blood donors (Pblood are seen regularly in normal...... (36 962 males), and 3.9% of the males had a blood hemoglobin above 10.5 mM, equalling a hematocrit of 51% and, 1.6% of the females had hemoglobin above 9.7 mM, corresponding to a hematocrit above 47%. One thousand four hundred and six rowers (1116 males) were investigated and 10.4% of the males and 8...

  17. Evaluation of the Efficiency of the Reticulocyte Hemoglobin Content on Diagnosis for Iron Deficiency Anemia in Chinese Adults

    Directory of Open Access Journals (Sweden)

    Jie Cai

    2017-05-01

    Full Text Available Our aim was to evaluate the cut-off value and efficiency of using reticulocyte hemoglobin content as a marker to diagnose iron deficiency anemia in Chinese adults. 140 adults who needed bone marrow aspiration for diagnosis at the hematology department of the Peking Union Medical College Hospital were enrolled according to the inclusive and exclusive criteria. Venous blood samples were collected to detect complete blood count, including hemoglobin, reticulocyte hemoglobin content, hematocrit, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, free erythrocyte protoporphyrin; iron indexes of serum ferritin, serum transferrin receptor, and unsaturated iron-binding capacity; and inflammation markers of C-reactive protein and α-acid glycoprotein. Bone marrow samples were obtained for the bone marrow iron staining, which was used as the standard for the evaluation of iron status in this study. Subjects were divided into three groups according to hemoglobin levels and bone marrow iron staining results: the IDA (iron deficiency anemia group, the NIDA (non-iron deficiency anemia group, and the control group. The differences of the above-mentioned indexes were compared among the three groups and the effect of inflammation was also considered. The cut-off value of reticulocyte hemoglobin content was determined by receiver operation curves. The IDA group (n = 56 had significantly lower reticulocyte hemoglobin content, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, and serum ferritin; and higher free erythrocyte protoporphyrin, unsaturated iron-binding capacity, and serum transferrin receptor (p < 0.05 compared with the NIDA group (n = 38 and control group (n = 46. Hematocrit, serum ferritin, and unsaturated iron-binding capacity were significantly affected by inflammation while reticulocyte hemoglobin content and other parameters were not. The cut-off value of reticulocyte hemoglobin content for

  18. Evaluation of the Efficiency of the Reticulocyte Hemoglobin Content on Diagnosis for Iron Deficiency Anemia in Chinese Adults.

    Science.gov (United States)

    Cai, Jie; Wu, Meng; Ren, Jie; Du, Yali; Long, Zhangbiao; Li, Guoxun; Han, Bing; Yang, Lichen

    2017-05-02

    Our aim was to evaluate the cut-off value and efficiency of using reticulocyte hemoglobin content as a marker to diagnose iron deficiency anemia in Chinese adults. 140 adults who needed bone marrow aspiration for diagnosis at the hematology department of the Peking Union Medical College Hospital were enrolled according to the inclusive and exclusive criteria. Venous blood samples were collected to detect complete blood count, including hemoglobin, reticulocyte hemoglobin content, hematocrit, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, free erythrocyte protoporphyrin; iron indexes of serum ferritin, serum transferrin receptor, and unsaturated iron-binding capacity; and inflammation markers of C-reactive protein and α-acid glycoprotein. Bone marrow samples were obtained for the bone marrow iron staining, which was used as the standard for the evaluation of iron status in this study. Subjects were divided into three groups according to hemoglobin levels and bone marrow iron staining results: the IDA (iron deficiency anemia) group, the NIDA (non-iron deficiency anemia) group, and the control group. The differences of the above-mentioned indexes were compared among the three groups and the effect of inflammation was also considered. The cut-off value of reticulocyte hemoglobin content was determined by receiver operation curves. The IDA group ( n = 56) had significantly lower reticulocyte hemoglobin content, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, and serum ferritin; and higher free erythrocyte protoporphyrin, unsaturated iron-binding capacity, and serum transferrin receptor ( p iron-binding capacity were significantly affected by inflammation while reticulocyte hemoglobin content and other parameters were not. The cut-off value of reticulocyte hemoglobin content for diagnosing iron deficiency anemia was 27.2 pg, with a sensitivity of 87.5% and a specificity of 92.9%. The cut-off values for

  19. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  20. Hemoglobin C, S-C, and E Diseases

    Science.gov (United States)

    ... quickly than others, resulting in chronic anemia. Hemoglobin C disease Hemoglobin C disease occurs mostly in blacks. ... a common complication of hemoglobin C disease. Hemoglobin S-C disease Hemoglobin S-C disease occurs in people who ...

  1. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  2. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.

    Science.gov (United States)

    Karst, Daniel J; Scibona, Ernesto; Serra, Elisa; Bielser, Jean-Marc; Souquet, Jonathan; Stettler, Matthieu; Broly, Hervé; Soos, Miroslav; Morbidelli, Massimo; Villiger, Thomas K

    2017-09-01

    Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can

  3. Maternal hemoglobin concentration and hematocrit values may affect fetus development by influencing placental angiogenesis.

    Science.gov (United States)

    Stangret, Aleksandra; Wnuk, Anna; Szewczyk, Grzegorz; Pyzlak, Michał; Szukiewicz, Dariusz

    2017-01-01

    Vasculogenesis and angiogenesis are crucial for maintaining proper placental perfusion and optimal fetal development. Among other physical and chemical factors, hypoxia is known to stimulate angiogenic processes. Preplacental type of hypoxia is often associated with maternal anemia and is thought to enhance vascularization within the fetoplacental unit. The goal of this study was to establish the correlation between the local expression of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) receptors (flt-1, flk-1) with maternal hemoglobin (Hb) concentration, hematocrit (Ht) values and the infant birthweight. In total, 43 specimens of term placentas obtained from normal course pregnancies delivered at term were included in the study. The expression of flt-1 and flk-1 receptors was analyzed by immunohistochemical staining. Vascular/extravascular tissular index (V/EVTI) was measured by assessing a total vascular area. Nonparametric Mann-Whitney U-test and Spearman's rank correlation were used to compare the various parameters and their differences between the groups. Among the patients with low Hb concentration, nearly 2-fold greater expression of the flt-1 receptor was positively correlated with infants birthweight (p = 0.028). Increased placental vascular density (increased flt-1 expression), during a physiological course of gestation, may be an adaptive response to lowered maternal Hb concentration and Ht values encountered during pregnancy.

  4. Hemoglobin and hematocrit at the end of hemodialysis: a better way to adjust erythropoietin dose?

    Science.gov (United States)

    Rangel, Erika B; Andreoli, Maria Claudia; Matos, Ana Cristina C; Guimarães-Souza, Nadia K; Mallet, Ana Cláudia; Carneiro, Fabiana D; Santos, Bento C

    2010-04-01

    A severe disadvantage of administration of recombinant human erythropoietin to hemodialysis patients has been reported. A significant correlation has been shown with hemoglobin values determined online by use of the blood volume monitor (BVM) and by laboratory measurement. Online hemoglobin and hematocrit were measured by use of the BVM during hemodialysis session. Data were analyzed by t test and statistical significance was defined as a P of hemoglobin and hematocrit from 11.6 +/- 1.9 to 13.9 +/- 2.4 g/dL (17.4 +/- 7.1%, P = 0.02) and from 34.4 +/- 6.8 to 42 +/- 8.3% (20.6 +/- 8.8%, P = 0.022), respectively, were observed from the beginning to the end of dialysis. We hypothesize that a new strategy for adjusting erythropoietin dose may be based on hemoglobin and hematocrit values evaluated at the end of hemodialysis, when patients are no longer hypervolemic. Inadvertent high levels of hemoglobin could be one explanation why patients present higher rates of cardiovascular and access-related events, especially when monitored online by use of the BVM to achieve the dry weight.

  5. Method Development in the Regioselective Glycosylation of Unprotected Carbohydrates

    DEFF Research Database (Denmark)

    Niedbal, Dominika Alina

    and the glycosylations were promoted by tetrabutylammonium bromide. The couplings were completely selective and gave rise to a number of 1,6-linked disaccharides with 1,2- cis-linked orientation. Project 2: Boron-mediated glycosylation of unprotected carbohydrates Boron-mediated regioselective Koenigs...

  6. Outcome analysis of hemoglobin A1c, weight, and blood pressure in a VA diabetes education program.

    Science.gov (United States)

    North, Susan L; Palmer, Glen A

    2015-01-01

    To determine the effect of a specific diabetes education class (Basics) on hemoglobin A1c values, weight, and systolic blood pressure. In this retrospective study, the researchers compared 2 groups of male veterans with a recent diagnosis of type 2 diabetes. One group received diabetes group education (n = 175) over a 4-month period, and the other received standard diabetes management follow-up (n = 184). Outpatient clinic setting in the Midwest. Basics class compared with standard level of care. Pre- and post-laboratory values for hemoglobin A1c, weight, and systolic blood pressure. Multivariate analysis of covariance and follow-up univariate statistics for significant differences. Findings revealed significant differences in hemoglobin A1c (P education curriculum and reduction of hemoglobin A1c values. Some participants also had added benefit of significant weight loss. Published by Elsevier Inc.

  7. Distribution of N-glycosylation sequons in proteins: how apart are they?

    DEFF Research Database (Denmark)

    Rao, Shyama Prasad; Buus, Ole Thomsen; Wollenweber, Bernd

    2011-01-01

    of experimentally confirmed eukaryotic N-glycoproteins we analyzed the relative position and distribution of sequons. N-Glycosylation probability was found to be lower in the termini of protein sequences compared to the mid region. N-glycosylated sequons were found much farther from C terminus compared to the N......N-glycosylation is a common protein modification process, which affects a number of properties of proteins. Little is known about the distribution of N-glycosylation sequons, for example, the distance between glycosylated sites and their position in the protein primary sequence. Using a large set......-terminus of the protein sequence and this effect was more pronounced for NXS sequons. The distribution of sequons, modeled based on balls-in-boxes classical occupancy, showed a near-maximum probability. Considerable proportion of sequons was found within a distance of ten amino acids, indicating that the steric hindrance...

  8. Interaction of thyroid hormone and hemoglobin: nature of the interaction and effect of hemoglobin on thyroid hormone radioimmunoassay

    International Nuclear Information System (INIS)

    Davis, P.J.; Yoshida, K.; Schoenl, M.

    1980-01-01

    Gel filtration of human erythrocyte (RBC) lysate incubated with labeled thyroxine (Tu) or triiodothyronine (Tt) revealed co-elution of a major iodothyronine-binding fraction (R-2) and hemoglobin. Solutions of purified human hemoglobin and Tt also showed co-elution of hormone and hemoglobin. Because hematin and protoporphyrin were shown to bind labeled Tt, the oxygen-binding site on hemoglobin was excluded as the site of iodothyronine-hemoglobin interaction. Analysis of hormone binding by heme and globin moieties showed Tt binding to be limited to the heme fraction. Addition of excess unlabeled Tt to hemoglobin or heme incubated with labeled Tt indicated 75% to 90% of hormone binding was poorly dissociable. These observations suggested that the presence of hemoglobin in RBC lysate or in serum could influence the measurement of Tu and Tt by specific radioimmunoassay (RIA). Subsequent studies of the addition to serum of human hemoglobin revealed a significant reduction in Tt and Tu detectable by RIA in the presence of this protein. The effect was influenced by the concentration of hemoglobin and by duration and temperature of incubations of hemoglobin and serum prior to RIA

  9. Glycemic changes after vitamin D supplementation in patients with type 1 diabetes mellitus and vitamin D deficiency

    International Nuclear Information System (INIS)

    Khalid S Aljabri; Somoa A Bokhari; Murtadha J. Khan

    2010-01-01

    A prospective, nonblinded and nonrandomized controlled trial was conducted to test the hypothesis that vitamin D supplementation would improve glycemic control in patients with type 1 diabetes mellitus who have vitamin D deficiency. Patients and 0 Eighty patients with type 1 diabetes mellitus who had 25-hydroxyvitamin D levels less than 50 nmol/L were assigned to receive 4000 IU of vitamin D3. Calcium supplements were provided to ensure a total calcium intake of 1200 mg/d. Glycosylated hemoglobin and 25-hydroxyvitamin D levels were measured at baseline and at 12 weeks.There was a significant difference in mean (SD) glycosylated hemoglobin level (%) between the groups that achieved 25-hydroxyvitamin D levels of 51 nmol/L at 12 weeks (P=.02). There was a significant difference in glycosylated hemoglobin change from baseline between the groups that achieved 25-hydroxyvitamin D levels of 51 nmol/L at 12 weeks (P=.04). There was a significant difference in 25-hydroxyvitamin D level between the groups that achieved glycosylated hemoglobin levels of 9.9 at 12 weeks (P=.001). Patients were more likely to achieve lower glycosylated hemoglobin levels at 12 weeks if they had higher 25-hydroxyvitamin D levels at 12 weeks (r=-0.4, P=.001).There was an observed effect of vitamin D supplementation on glycemic control in vitamin D-replete, type 1 diabetes mellitus patients. Further studies are needed to determine if these findings are applicable (Author).

  10. Prion Propagation in Cells Expressing PrP Glycosylation Mutants ▿

    Science.gov (United States)

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  11. The refractive index of human hemoglobin in the visible range

    International Nuclear Information System (INIS)

    Zhernovaya, O; Tuchin, V; Sydoruk, O; Douplik, A

    2011-01-01

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l -1 . This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l -1 . The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  12. Effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1

    International Nuclear Information System (INIS)

    Watanabe, Ayahisa; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara; Kuge, Yuji; Tanaka, Yoshikazu; Itoh, Takeshi; Takemoto, Hiroshi

    2012-01-01

    Glycosylation is generally applicable as a strategy for increasing the activity of bioactive proteins. In this study, we examined the effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1 (GLP-1) as a bioactive peptide for type 2 diabetes. Noninvasive imaging studies were performed using a gamma camera after the intravenous administration of 123 I-GLP-1 or 123 I-α2, 6-sialyl N-acetyllactosamine (glycosylated) GLP-1 in rats. In ex vivo biodistribution studies using 125 I-GLP-1 or 125 I-glycosylated GLP-1, organ samples were measured for radioactivity. Plasma samples were added to 15% trichloroacetic acid (TCA) to obtain TCA-insoluble and TCA-soluble fractions. The radioactivity in the TCA-insoluble and TCA-soluble fractions was measured. In the noninvasive imaging studies, a relatively high accumulation level of 123 I-GLP-1 was found in the liver, which is the major organ to eliminate exogenous GLP-1. The area under the time-activity curve (AUC) of 123 I-glycosylated GLP-1 in the liver was significantly lower (89%) than that of 123 I-GLP-1. These results were consistent with those of ex vivo biodistribution studies using 125 I-labeled peptides. The AUC of 125 I-glycosylated GLP-1 in the TCA-insoluble fraction was significantly higher (1.7-fold) than that of GLP-1. This study demonstrated that glycosylation significantly decreased the distribution of radiolabeled GLP-1 into the liver and increased the concentration of radiolabeled GLP-1 in plasma. These results suggested that glycosylation is a useful strategy for decreasing the distribution into the liver of bioactive peptides as desirable pharmaceuticals. (author)

  13. Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.

    Science.gov (United States)

    Athwal, Navjot Singh; Alagurajan, Jagannathan; Sturms, Ryan; Fulton, D Bruce; Andreotti, Amy H; Hargrove, Mark S

    2015-09-01

    Hemoglobins (phytoglobins) from rice plants (nsHb1) and from the cyanobacterium Synechocystis (PCC 6803) (SynHb) can reduce hydroxylamine with two electrons to form ammonium. The reaction requires intermolecular electron transfer between protein molecules, and rapid electron self-exchange might play a role in distinguishing these hemoglobins from others with slower reaction rates, such as myoglobin. A relatively rapid electron self-exchange rate constant has been measured for SynHb by NMR, but the rate constant for myoglobin is equivocal and a value for nsHb1 has not yet been measured. Here we report electron self-exchange rate constants for nsHb1 and Mb as a test of their role in hydroxylamine reduction. These proteins are not suitable for analysis by NMR ZZ exchange, so a method was developed that uses cross-reactions between each hemoglobin and its deutero-hemin substituted counterpart. The resulting electron transfer is between identical proteins with low driving forces and thus closely approximates true electron self-exchange. The reactions can be monitored spectrally due to the distinct spectra of the prosthetic groups, and from this electron self-exchange rate constants of 880 (SynHb), 2900 (nsHb1), and 0.05M(-1) s(-1) (Mb) have been measured for each hemoglobin. Calculations of cross-reactions using these values accurately predict hydroxylamine reduction rates for each protein, suggesting that electron self-exchange plays an important role in the reaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hemoglobin Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/hemoglobintest.html Hemoglobin Test To use the sharing features on this page, please enable JavaScript. What is a Hemoglobin Test? A hemoglobin test measures the levels of hemoglobin ...

  15. Simultaneous estimation of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy

    Science.gov (United States)

    Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki

    2018-02-01

    We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.

  16. γ irradiation of aqueous solutions of human hemoglobin in atmospheres of air and argon

    International Nuclear Information System (INIS)

    Puchala, M.; Szweda-Lewandowska, Z.; Leyko, W.

    1979-01-01

    In this study, the degrees of destruction of hemoglobin irradiated in atmospheres of air and argon were compared. Hemoglobin preparations were irradiated in the forms: oxyhemoglobin (HbO 2 ) deoxyhemoglobin (Hb 2+ ) and methemoglobin (MetHb) applying doses of 0.5 to 5 Mrad. The degree of hemoglobin destruction was estimate on the basis of changes in the values of the absorption coefficient at the Soret band, the absorption ratio A 505 /A 563 determined after conversion of irradiated preparations into MetHb, absorption coefficinets for pyridine hemochromogen obtained from irradiated preparations, and changes in parameters characterizing the hemoglobin oxygenation reaction (log p/sub 1/2/O 2 and the Hill n coefficient). The calculated oxygen enhancement ratios S were generally higher than 1 for the parameters estimated. This indicates that the presence of oxygen during irradiation enhances hemoglobin destruction

  17. Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis.

    Science.gov (United States)

    Vermassen, Tijl; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Decaestecker, Karel; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2015-01-01

    Although prostatitis is a common male urinary tract infection, clinical diagnosis of prostatitis is difficult. The developmental mechanism of prostatitis is not yet unraveled which led to the elaboration of various biomarkers. As changes in asparagine-linked-(N-)-glycosylation were observed between healthy volunteers (HV), patients with benign prostate hyperplasia and prostate cancer patients, a difference could exist in biochemical parameters and urinary N-glycosylation between HV and prostatitis patients. We therefore investigated if prostatic protein glycosylation could improve the diagnosis of prostatitis. Differences in serum and urine biochemical markers and in total urine N-glycosylation profile of prostatic proteins were determined between HV (N=66) and prostatitis patients (N=36). Additionally, diagnostic accuracy of significant biochemical markers and changes in N-glycosylation was assessed. Urinary white blood cell (WBC) count enabled discrimination of HV from prostatitis patients (Pprostatitis patients from HV (Pprostatitis patients compared to HV (Pprostatitis. Further research is required to unravel the developmental course of prostatic inflammation.

  18. A new hemoglobin gene from soybean: a role for hemoglobin in all plants

    DEFF Research Database (Denmark)

    Anderson, C R; Jensen, E O; LLewellyn, D J

    1996-01-01

    We have isolated a new hemoglobin gene from soybean. It is expressed in cotyledons, stems of seedlings, roots, young leaves, and in some cells in the nodules that are associated with the nitrogen-fixing Bradyrhizobium symbiont. This contrasts with the expression of the leghemoglobins, which...... are active only in the infected cells of the nodules. The deduced protein sequence of the new gene shows only 58% similarity to one of the soybean leghemoglobins, but 85-87% similarity to hemoglobins from the nonlegumes Parasponia, Casuarina, and barley. The pattern of expression and the gene sequence...... indicate that this new gene is a nonsymbiotic legume hemoglobin. The finding of this gene in legumes and similar genes in other species strengthens our previous suggestion that genomes of all plants contain hemoglobin genes. The specialized leghemoglobin gene family may have arisen from a preexisting...

  19. A new method for detecting hemoglobin directly in whole blood using photon attenuation techniques

    International Nuclear Information System (INIS)

    Medhat, M.E.

    2014-01-01

    The objective of the proposed work is focused on measuring iron concentration directly in whole blood as tool for estimating hemoglobin and anemic conditions in patients across the world. The investigated method depends on theory of photon attenuation through transmission of low energy in whole blood sample. The mathematical expressions for calculating hemoglobin and iron deficit on blood using photon attenuation are derived. Calculations are carried out for estimating concentration of iron in blood samples taken from children, adults and old patients and therefore measuring their hemoglobin and iron deficit from normal values. Theoretical mass attenuation coefficient values were obtained using the XCOM program. A high-resolution gamma-ray spectrometry based on high purity germanium detector was employed to measure attenuation of strongly collimated monoenergetic gamma beam through blood samples. (author)

  20. The Emerging Importance of IgG Fab Glycosylation in Immunity.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Hafkenscheid, Lise; Rispens, Theo; Rombouts, Yoann

    2016-02-15

    Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  2. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Determination of Human Hemoglobin Derivatives.

    Science.gov (United States)

    Attia, Atef M M; Ibrahim, Fatma A A; Abd El-Latif, Noha A; Aziz, Samir W; Abdelmottaleb Moussa, Sherif A; Elalfy, Mohsen S

    2015-01-01

    The levels of the inactive hemoglobin (Hb) pigments [such as methemoglobin (metHb), carboxyhemoglobin (HbCO) and sulfohemoglobin (SHb)] and the active Hb [in the oxyhemoglobin (oxyHb) form] as well as the blood Hb concentration in healthy non pregnant female volunteers were determined using a newly developed multi-component spectrophotometric method. The results of this method revealed values of SHb% in the range (0.0727-0.370%), metHb% (0.43-1.0%), HbCO% (0.4-1.52%) and oxyHb% (97.06-98.62%). Furthermore, the results of this method revealed values of blood Hb concentration in the range (12.608-15.777 g/dL). The method is highly sensitive, accurate and reproducible.

  4. Deciphering a pathway of Halobacterium salinarum N-glycosylation

    Science.gov (United States)

    Kandiba, Lina; Eichler, Jerry

    2015-01-01

    Genomic analysis points to N-glycosylation as being a common posttranslational modification in Archaea. To date, however, pathways of archaeal N-glycosylation have only been described for few species. With this in mind, the similarities of N-linked glycans decorating glycoproteins in the haloarchaea Haloferax volcanii and Halobacterium salinarum directed a series of bioinformatics, genetic, and biochemical experiments designed to describe that Hbt. salinarum pathway responsible for biogenesis of one of the two N-linked oligosaccharides described in this species. As in Hfx. volcanii, where agl (archaeal glycosylation) genes that encode proteins responsible for the assembly and attachment of a pentasaccharide to target protein Asn residues are clustered in the genome, Hbt. salinarum also contains a group of clustered homologous genes (VNG1048G-VNG1068G). Introduction of these Hbt. salinarum genes into Hfx. volcanii mutant strains deleted of the homologous sequence restored the lost activity. Moreover, transcription of the Hbt. salinarum genes in the native host, as well as in vitro biochemical confirmation of the predicted functions of several of the products of these genes provided further support for assignments made following bioinformatics and genetic experiments. Based on the results obtained in this study, the first description of an N-glycosylation pathway in Hbt. salinarum is offered. PMID:25461760

  5. Blood Test: Hemoglobin A1C

    Science.gov (United States)

    ... Why Are Hemoglobin A1c Tests Done? When a child has diabetes, hemoglobin A1c levels are followed to see how well medicines are working. If a child with diabetes has a high hemoglobin A1c level, it may ...

  6. Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin

    Science.gov (United States)

    Wang, Xiaoguang; Hargrove, Mark S.

    2013-01-01

    Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554

  7. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting

    Directory of Open Access Journals (Sweden)

    Idriss Ali

    2011-04-01

    Full Text Available Abstract Background In resource poor settings where automated hematology analyzers are not available, the Cyanmethemoglobin method is often used. This method though cheaper, takes more time. In blood donations, the semi-quantitative gravimetric copper sulfate method which is very easy and inexpensive may be used but does not provide an acceptable degree of accuracy. The HemoCue® hemoglobin photometer has been used for these purposes. This study was conducted to generate data to support or refute its use as a point-of-care device for hemoglobin estimation in mobile blood donations and critical care areas in health facilities. Method EDTA blood was collected from study participants drawn from five groups: pre-school children, school children, pregnant women, non-pregnant women and men. Blood collected was immediately processed to estimate the hemoglobin concentration using three different methods (HemoCue®, Sysmex KX21N and Cyanmethemoglobin. Agreement between the test methods was assessed by the method of Bland and Altman. The Intraclass correlation coefficient (ICC was used to determine the within subject variability of measured hemoglobin. Results Of 398 subjects, 42% were males with the overall mean age being 19.4 years. The overall mean hemoglobin as estimated by each method was 10.4 g/dl for HemoCue, 10.3 g/dl for Sysmex KX21N and 10.3 g/dl for Cyanmethemoglobin. Pairwise analysis revealed that the hemoglobin determined by the HemoCue method was higher than that measured by the KX21N and Cyanmethemoglobin. Comparing the hemoglobin determined by the HemoCue to Cyanmethemoglobin, the concordance correlation coefficient was 0.995 (95% CI: 0.994-0.996, p Conclusion Hemoglobin determined by the HemoCue method is comparable to that determined by the other methods. The HemoCue photometer is therefore recommended for use as on-the-spot device for determining hemoglobin in resource poor setting.

  8. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    International Nuclear Information System (INIS)

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh; O’Leary, Claire; Joshi, Lokesh; McMahon, Siobhán S.

    2012-01-01

    Highlights: ► Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. ► Neuronal glycosylation in injury and after ChABC treatment is unknown. ► In silico mining verified that glyco-related genes were differentially regulated after SCI. ► In vitro model system revealed abnormal sialylation in an injured environment. ► The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining

  9. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Michelle; Sharma, Shashank [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McDevitt, Niamh; O' Leary, Claire [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland); Joshi, Lokesh [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McMahon, Siobhan S., E-mail: siobhan.mcmahon@nuigalway.ie [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment

  10. DISAL glycosyl donors for the synthesis of a linear hexasaccharide under mild conditions

    DEFF Research Database (Denmark)

    Petersen, Lars; Laursen, Jane B.; Larsen, K.

    2003-01-01

    The new class of glycosyl donors with a methyl 3,5-dinitrosalicylate (DISAL) anomeric leaving group has proved efficient for glycosylation under strictly neutral, mildly basic, or mildly acidic conditions. Here, we report the synthesis of novel DISAL disaccharide glycosyl donors prepared by easy...... nucleophilic aromatic substitution. These DISAL donors proved efficient in the synthesis of a starch-related hexasaccharide under very mild conditions. Glycosylations proceeded with alpha-selectivity and were compatible with Trt protecting groups....

  11. Flagellar glycosylation in Clostridium botulinum.

    Science.gov (United States)

    Twine, Susan M; Paul, Catherine J; Vinogradov, Evgeny; McNally, David J; Brisson, Jean-Robert; Mullen, James A; McMullin, David R; Jarrell, Harold C; Austin, John W; Kelly, John F; Logan, Susan M

    2008-09-01

    Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.

  12. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules.

    Science.gov (United States)

    Kersten, Roland D; Ziemert, Nadine; Gonzalez, David J; Duggan, Brendan M; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S

    2013-11-19

    Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated natural products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the anticancer agent cinerubin B from Streptomyces sp. SPB74 and an antibiotic, arenimycin B, from Salinispora arenicola CNB-527.

  13. Determination Of Ph Including Hemoglobin Correction

    Science.gov (United States)

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  14. Fructosamine and Hemoglobin A1c Correlations in HIV-Infected Adults in Routine Clinical Care: Impact of Anemia and Albumin Levels

    Directory of Open Access Journals (Sweden)

    Luisa Duran

    2015-01-01

    Full Text Available Fructosamine is an alternative method to hemoglobin A1c (HbA1c for determining average glycemia. However, its use has not been extensively evaluated in persons living with HIV (PLWH. We examined the relationship between HbA1c and fructosamine values, specifically focusing on anemia (which can affect HbA1c and albumin as a marker of liver disease. We included 345 PLWH from two sites. We examined Spearman rank correlations between fructosamine and HbA1c and performed linear test for trends to compare fructosamine and HbA1c correlations by hemoglobin and albumin quartiles. We examined discrepant individuals with values elevated only on one test. We found a correlation of 0.70 between fructosamine and HbA1c levels. Trend tests for correlations between fructosamine and HbA1c were significant for both albumin (p=0.05 and hemoglobin (p=0.01 with the lowest correlations in the lowest hemoglobin quartile. We identified participants with unremarkable HbA1c values but elevated fructosamine values. These discrepant individuals had lower mean hemoglobin levels than those elevated by both tests. We demonstrated a large correlation between HbA1c and fructosamine across a range of hemoglobin and albumin levels. There were discrepant cases particularly among those with lower hemoglobin levels. Future studies are needed to clarify the use of fructosamine for diabetes management in PWLH.

  15. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting.

    Science.gov (United States)

    Nkrumah, Bernard; Nguah, Samuel Blay; Sarpong, Nimako; Dekker, Denise; Idriss, Ali; May, Juergen; Adu-Sarkodie, Yaw

    2011-04-21

    In resource poor settings where automated hematology analyzers are not available, the Cyanmethemoglobin method is often used. This method though cheaper, takes more time. In blood donations, the semi-quantitative gravimetric copper sulfate method which is very easy and inexpensive may be used but does not provide an acceptable degree of accuracy. The HemoCue® hemoglobin photometer has been used for these purposes. This study was conducted to generate data to support or refute its use as a point-of-care device for hemoglobin estimation in mobile blood donations and critical care areas in health facilities. EDTA blood was collected from study participants drawn from five groups: pre-school children, school children, pregnant women, non-pregnant women and men. Blood collected was immediately processed to estimate the hemoglobin concentration using three different methods (HemoCue®, Sysmex KX21N and Cyanmethemoglobin). Agreement between the test methods was assessed by the method of Bland and Altman. The Intraclass correlation coefficient (ICC) was used to determine the within subject variability of measured hemoglobin. Of 398 subjects, 42% were males with the overall mean age being 19.4 years. The overall mean hemoglobin as estimated by each method was 10.4 g/dl for HemoCue, 10.3 g/dl for Sysmex KX21N and 10.3 g/dl for Cyanmethemoglobin. Pairwise analysis revealed that the hemoglobin determined by the HemoCue method was higher than that measured by the KX21N and Cyanmethemoglobin. Comparing the hemoglobin determined by the HemoCue to Cyanmethemoglobin, the concordance correlation coefficient was 0.995 (95% CI: 0.994-0.996, p < 0.001). The Bland and Altman's limit of agreement was -0.389 - 0.644 g/dl with the mean difference being 0.127 (95% CI: 0.102-0.153) and a non-significant difference in variability between the two measurements (p = 0.843). After adjusting to assess the effect of other possible confounders such as sex, age and category of person, there was no

  16. Nonlinear photoacoustic spectroscopy of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  17. Nonlinear photoacoustic spectroscopy of hemoglobin.

    Science.gov (United States)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  18. Nonlinear photoacoustic spectroscopy of hemoglobin

    International Nuclear Information System (INIS)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-01-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography

  19. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    Science.gov (United States)

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  20. Antithrombin activity, platelet count, hemoglobin concentration and hematocrit value determined immediately before vaginal delivery among healthy women.

    Science.gov (United States)

    Morikawa, Mamoru; Yamada, Takashi; Yamada, Takahiro; Koyama, Takahiro; Akaishi, Rina; Ishikawa, Satoshi; Takeda, Masamitsu; Nishida, Ryutaro; Araki, Naoto; Minakami, Hisanori

    2012-08-01

    To determine the normal reference values for antithrombin (AT) activity, platelet count (Plt), hemoglobin concentration (Hb), and hematocrit value (Ht) immediately before vaginal delivery among healthy pregnant women with singleton pregnancies and to determine association of these blood parameters with fetal growth. A complete blood count was performed and the AT activity was examined in 300 consecutive women admitted to hospital at > or = gestational week 36 for labor pains and/or the rupture of fetal membranes. All the women were normotensive and had singleton pregnancies, and none of the women had proteinuria, a weekly weight gain > or = 0.5 kg, or other specific complications upon admission. All the women attempted a vaginal delivery. The medians (5th-95th percentile) were 90% (71-110%) for AT activity, 234x10(9)/L (150-337x10(9)/L) for Plt, 11.0 g/dL (9.5-12.8 g/dL) for Hb, and 34.0% (30.4-38.6%) for Ht. Women with an Hb value of > or = the median (11.0 g/dL) gave birth to significantly smaller infants than their counterparts. A considerable number of healthy women exhibit a reduced AT activity and/or platelet count immediately before delivery. Hemoconcentration evidenced by a raised Hb value adversely effects on infant growth. Our data may be helpful when considering the normal ranges of these blood parameters for healthy parturient women.

  1. Effect of ethanol of the radiation sensitivity of human hemoglobin

    International Nuclear Information System (INIS)

    Szweda-Lewandowska, Z.; Puchala, M.

    1981-01-01

    Radiation sensitivity of oxy-, deoxy-, and methemoglobin (HbOs, Hbbj, and MetHb) in water solutions containing 0.2 M ethanol and in ethanol-free solutions was compared. Radiation sensitivity was estimated on the basis of changes in absorbance at the Soret band (a = 430 nm for deoxyhemoglobin), changes in the absorbance ration Avqv/Avwt determined after conversion of irradiated preparations to methemoglobin, and changes in the value of parameters describing the reaction of hemoglobin oxygenation. The protection coefficient p of hemoglobin by ethanol (ratio of a change in the absence of ethanol to that in its presence) calculated from changes in absorbance at the Soret band equaled about 1.5 at a 4-Mrad dose in all bases except MetHb irradiated in air for which p was much higher (about 3.2). The protection coefficient p' calculated from Dtx values for changes in Avchemically bondv/Avwt equaled 2.2 for HbOs, and 2.8 for MetHb for preparations irradiated in air; p' = 1.7 for Hbbj and 1.8 for MetHb for preparations irradiated under argon. On the basis of these results, the role of /sup ./OH radicals and oxygen in the radiation damage of hemoglobin is discussed

  2. Oxygen Association-Dissociation and Stability Analysis on Mouse Hemoglobins with Mutant α- and β-Globins

    Science.gov (United States)

    D'Surney, S. J.; Popp, R. A.

    1992-01-01

    Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an α-globin (α89, His to Leu) and a β-globin (β59, Lys to Ile). The variant α-globin, designated chain 5(m) in the Hba(g2) haplotype, had a high oxygen affinity and was stable. The variant β-globin, (β(s2)) of the Hbb(s2) haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) X Hba(a)/Hba(a);Hbb(s2)/Hbb(s2)) F(2) genotypes can be grouped into five classes of P(50) values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hba(a)/Hba(a);Hbb(s)/Hbb(s)) had a P(50) = 40 mm Hg and the hemoglobin of Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) F(2) mice had a P(50) = 25 mm Hg (human P(50) = 26 mm Hg). Peripheral blood from Hba(g2)/Hba(g2);Hbb(s)/Hbb(s), Hba(a)/Hba(a);Hbb(s2)/Hbb(s2) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice exhibited normal hematological values except for a slightly higher hematocrit for Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice. PMID:1427042

  3. N-Glycosylation of Carnosinase Influences Protein Secretion and Enzyme Activity Implications for Hyperglycemia

    NARCIS (Netherlands)

    Riedl, Eva; Koeppel, Hannes; Pfister, Frederick; Peters, Verena; Sauerhoefer, Sibylle; Sternik, Paula; Brinkkoetter, Paul; Zentgraf, Hanswalter; Navis, Gerjan; Henning, Robert H.; Van Den Born, Jacob; Bakker, Stephan J. L.; Janssen, Bart; van der Woude, Fokko J.; Yard, Benito A.

    OBJECTIVE-The (CTG)(n) polymorphism in the serum carnosinase (CN-1) gene affects CN-1 secretion Since CN-1 is heavily glycosylated and glycosylation might influence protein secretion as well, we tested the role of N-glycosylation for CN-1 secretion and enzyme activity. We also tested whether CN-1

  4. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine

    2012-01-01

    Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing......, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/- glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo...

  5. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Science.gov (United States)

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  6. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent

    Science.gov (United States)

    Wadzinski, Tyler J.; Steinauer, Angela; Hie, Liana; Pelletier, Guillaume; Schepartz, Alanna; Miller, Scott J.

    2018-06-01

    Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.

  7. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Conformation analysis of the N-glycosylation site Asn-X-Thr/Ser in glycoproteins].

    Science.gov (United States)

    Avanov, A Ia; Lipkind, G M

    1990-03-01

    Theoretical conformational analysis of oligopeptides CH3CO-Asn-X-Thr-NHCH3 (X = Gly, Ala, Pro), modelling N-glycosylation site, and their glycosylated derivatives CH3CO-(GlcNAc beta 1-4GlcNAc beta 1) Asn-X-Thr-NHCH3 has been carried out. Active conformations of the site are found, corresponding to structural prerequisities of N-glycosylation: Asn residue's position in beta-turn and hydrogen bond formation between side chains of Asn and Thr/Ser residues. In this case the L conformation of the central residue X is most probable. Since Pro residue does not possess this conformation, sequences with X = Pro are not glycosylated. It is shown that glycosylation of the above-mentioned sites is accompanied by reorientation of the Asn residue's side chains.

  9. A computational framework for the automated construction of glycosylation reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  10. A computational framework for the automated construction of glycosylation reaction networks.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS data. The features described above are illustrated using three case studies that examine: i O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii automated N-linked glycosylation pathway construction; and iii the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme

  11. Characteristic emission in glutaraldehyde polymerized hemoglobin

    International Nuclear Information System (INIS)

    Ma Li; Wang Xiaojun

    2011-01-01

    Hemoglobin with different modifications has been investigated using spectroscopic techniques. A new emission at around 371 nm has been observed under excitation of 305 nm from glutaraldehyde polymerized human hemoglobin. Intensity and peak position of the emission are dependent on both oxidation state and ligand environment and the emission has been identified from the hemoglobin oligomer.

  12. Cell Surface Glycosylation Is Required for Efficient Mating of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Yarden Shalev

    2017-07-01

    Full Text Available Halophilic archaea use a fusion-based mating system for lateral gene transfer across cells, yet the molecular mechanisms involved remain unknown. Previous work implied that cell fusion involves cell–cell recognition since fusion occurs more efficiently between cells from the same species. Long believed to be restricted only to Eukarya, it is now known that cells of all three domains of life perform N-glycosylation, the covalent attachment of glycans to select target asparagine residues in proteins, and that this post-translational modification is common for archaeal cell surface proteins. Here, we show that differences in glycosylation of the Haloferax volcanii surface-layer glycoprotein, brought about either by changing medium salinity or by knocking out key glycosylation genes, reduced mating success. Thus, different glycosylation patterns are likely to underlie mating preference in halophilic archaea, contributing to speciation processes.

  13. Radio-ligand immunoassay for human hemoglobin variants

    International Nuclear Information System (INIS)

    Javid, J.; Pettis, P.K.; Miller, J.E.

    1981-01-01

    A quantitative method is described for the individual assay of human hemoglobin variants occurring singly or in mixture. The hemoglobin to be assayed is bound to specific antibody; the immune complex is attached to protein A-containing S. aureus and removed from the mixture. The hemoglobin thus isolated is quantified by its ability to bind radiolabeled haptoglobin. The technique is accurate and distinguishes among the 4 hemoglobins tested, namely Hb A, S, C and F. It has the advantage over conventional radioimmunoassay that a single probe, radiolabeled haptoglobin, is needed for the specific assay of any hemoglobin. (Auth.)

  14. Haematological values for captive harpy eagle (Harpia harpyja

    Directory of Open Access Journals (Sweden)

    Marcos J. Oliveira

    2014-08-01

    Full Text Available Decreasing of harpy eagle (Harpia harpyja populations in natural environments, mainly in non-preserved areas, makes captive population management an important contribution to genetic diversity conservation. The aim of this study is to evaluate hematological parameters for captive harpy eagles maintained at the wild animals breeding center of Itaipu Binacional, Paraná State, Brazil. Fourteen blood samples from nine harpy eagles were collected from animals of both sexes, of different ages and with no clinical signs of disease. Significant variations were found in haematological values of hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH, mean corpuscular hemoglobin concentration (MCHC, leukocyte, a relative number of heterophils, absolute and relative number of lymphocytes, monocytes, eosinophils, basophils and plasma protein between groups of young (less than six months old and adult birds. Comparing males and females there was variation in the values of erythrocytes, hemoglobin, mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH on heterophils, absolute and relative number of lymphocytes, eosinophils and basophils. There was also variation in the values of red blood cells, hematocrit, hemoglobin, mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, mean corpuscular hemoglobin concentration (MCHC, leukocyte count, absolute number of lymphocytes, eosinophils and basophils among birds that study compared to another reference birds. Due to the limited information available on harpy eagle hematology, this study will be useful to the clinical assessment of birds maintained in captivity.

  15. Comparative and quantitative determination of total hemoglobin concentration in normal and psoriatic patients

    International Nuclear Information System (INIS)

    Mahesar, S.M.; Dahot, M.U.; Khuhawar, M.Y.; Mahesar, H.U.

    2004-01-01

    The cyanmethaemoglobin technique is now recommended as the standard method by International Committee for Standardization in Hematology and British Standards Institution 1966. The hemoglobin is treated with reagent containing potassium ferricyanide, Potassium cyanide and potassium dihydrogen phosphate. The ferricyanide forms methamoglobin which is converted to cyanmethaemoglobin by the cyanide. The average values of hemoglobin, percent determined from the blood samples of normal and psoriatic (n=44) males and (n=35) females were 15.0, 12.7, 13.6 and 11.2 g/100ml. The decrease in hemoglobin concentration could be due to anemia resulting during the cell proliferation epidermis in inflammatory state and Keratolytic disorder which take place in psoriasis. (author)

  16. A Novel Strategy for Characterization of Glycosylated Proteins Separated by Gel Electrophoresis

    DEFF Research Database (Denmark)

    Larsen, Martin; Skottrup, Peter; Enghild, Jan Johannes

    Protein glycosylation can be vital for changing the function or physiochemical properties of a protein. Abnormal glycosylation can lead to protein malfunction, resulting in severe diseases. Therefore, it is important to develop techniques for characterization of such modifications in proteins...... graphite powder micro-columns in combination with mass spectrometry. The method is faster and more sensitive than previous approaches and would be ideal for proteomics studies and verification of correct glycosylation of recombinant glycoproteins....

  17. HEK293T cell lines defective for O-linked glycosylation.

    Directory of Open Access Journals (Sweden)

    James M Termini

    Full Text Available Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE, galactokinase 1 (GALK1, and galactokinase 2 (GALK2 genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2, O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.

  18. Delivery of iron-fortified yoghurt, through a dairy value chain program, increases hemoglobin concentration among children 24 to 59 months old in Northern Senegal: A cluster-randomized control trial.

    Science.gov (United States)

    Le Port, Agnes; Bernard, Tanguy; Hidrobo, Melissa; Birba, Ousmane; Rawat, Rahul; Ruel, Marie T

    2017-01-01

    Innovative strategies are needed to enhance the nutritional impact of agriculture. Value chain approaches, which use supply chains to add value (usually economic) to products as they move from producers to consumers, can be used to increase access to nutritious foods and improve nutritional status. This study tested whether a dairy value chain could be used to distribute a micronutrient-fortified yoghurt (MNFY) (conditional upon the producer supplying a minimum amount of cow milk/day) to improve hemoglobin and reduce anemia among preschool children in a remote area in Northern Senegal. A cluster randomized control trial was used to compare 204 children (24 to 59 months of age at baseline) from households who received the MNFY coupled to a behavior change communication (BCC) campaign focusing on anemia prevention to 245 children from a control group (receiving BCC only) after one year. Randomization was done at the level of the family concession (households from the same family) (n = 321). Eligible households had a child of the target age and were willing to deliver milk to the dairy factory. Changes in anemia and hemoglobin between groups were assessed using mixed regression models. Anemia prevalence was very high at baseline (80%) and dropped to close to 60% at endline, with no differences between intervention groups. Hemoglobin increased by 0.55 g/dL, 95%CI (0.27; 0.84) more in the intervention compared to the control group after one year, in models that controlled for potentially confounding factors. The impact was greater (0.72 g/dL, 95%CI (0.34; 1.12)) for boys, compared to girls (0.38 g/dL, 95%CI (-0.03; 0.80)). The dairy value chain was a successful strategy to distribute MNFY among pastoralists in Northern Senegal, and increase Hb concentrations among their children. This study is one of the first proofs of concept showing that a nutrition-sensitive agriculture value chain approach can contribute to improved child nutrition in a remote pastoralist

  19. Glycosylation patterns of kidney proteins differ in rat diabetic nephropathy.

    Science.gov (United States)

    Ravidà, Alessandra; Musante, Luca; Kreivi, Marjut; Miinalainen, Ilkka; Byrne, Barry; Saraswat, Mayank; Henry, Michael; Meleady, Paula; Clynes, Martin; Holthofer, Harry

    2015-05-01

    Diabetic nephropathy often progresses to end-stage kidney disease and, ultimately, to renal replacement therapy. Hyperglycemia per se is expected to have a direct impact on the biosynthesis of N- and O-linked glycoproteins. This study aims to establish the link between protein glycosylation and progression of experimental diabetic kidney disease using orthogonal methods. Kidneys of streptozotocin-diabetic and control rats were harvested at three different time points post streptozotocin injection. A panel of 12 plant lectins was used in the screening of lectin blots. The lectins UEAI, PHA-E, GSI, PNA, and RCA identified remarkable disease-associated differences in glycoprotein expression. Lectin affinity chromatography followed by mass spectrometric analyses led to the identification of several glycoproteins involved in salt-handling, angiogenesis, and extracellular matrix degradation. Our data confirm a substantial link between glycosylation signature and diabetes progression. Furthermore, as suggested by our findings on dipeptidyl peptidase-IV, altered protein glycosylation may reflect changes in biochemical properties such as enzymatic activity. Thus, our study demonstrates the unexplored potential of protein glycosylation analysis in the discovery of molecules linked to diabetic kidney disease.

  20. Model-based analysis of N-glycosylation in Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Krambeck, Frederick J.; Bennun, Sandra V; Andersen, Mikael Rørdam

    2017-01-01

    The Chinese hamster ovary (CHO) cell is the gold standard for manufacturing of glycosylated recombinant proteins for production of biotherapeutics. The similarity of its glycosylation patterns to the human versions enable the products of this cell line favorable pharmacokinetic properties and lower...

  1. Oxytocin analogues with O-glycosylated serine and threonine in position 4

    Czech Academy of Sciences Publication Activity Database

    Marcinkowska, A.; Borovičková, Lenka; Slaninová, Jiřina; Grzonka, Z.

    2007-01-01

    Roč. 81, č. 7 (2007), s. 1335-1344 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z90210515 Keywords : oxytocin * glycosylated serin * glycosylated threonin * position 4 Subject RIV: CE - Biochemistry Impact factor: 0.483, year: 2007

  2. [Noninvasive total hemoglobin monitoring based on multiwave spectrophotometry in obstetrics and gynecology].

    Science.gov (United States)

    Pyregov, A V; Ovechkin, A Iu; Petrov, S V

    2012-01-01

    Results of prospective randomized comparative research of 2 total hemoglobin estimation methods are presented. There were laboratory tests and continuous noninvasive technique with multiwave spectrophotometry on the Masimo Rainbow SET. Research was carried out in two stages. At the 1st stage (gynecology)--67 patients were included and in second stage (obstetrics)--44 patients during and after Cesarean section. The standard deviation of noninvasive total hemoglobin estimation from absolute values (invasive) was 7.2 and 4.1%, an standard deviation in a sample--5.2 and 2.7 % in gynecologic operations and surgical delivery respectively, that confirms lack of reliable indicators differences. The method of continuous noninvasive total hemoglobin estimation with multiwave spectrophotometry on the Masimo Rainbow SET technology can be recommended for use in obstetrics and gynecology.

  3. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy.

    OpenAIRE

    Williams, S K; Devenny, J J; Bitensky, M W

    1981-01-01

    Microvessels isolated from rat epididymal fat exhibit differential vesicular ingestion rates for unmodified and non-enzymatically glycosylated rat albumin. While unmodified rat albumin is excluded from ingestion by endothelial micropinocytic vesicles, glycosylated albumin is avidly taken up by endocytosis. Interaction of albumin and glycosylated albumin with endothelium was studied with a double-label fluorescence assay of micropinocytosis. When glycosylated albumin was present at a concentra...

  4. N-glycosylated catalytic unit meets O-glycosylated propeptide: complex protein architecture in a fungal hexosaminidase

    Czech Academy of Sciences Publication Activity Database

    Plíhal, Ondřej; Sklenář, Jan; Kmoníčková, J.; Man, Petr; Pompach, Petr; Havlíček, Vladimír; Křen, Vladimír; Bezouška, Karel

    2004-01-01

    Roč. 32, č. 5 (2004), s. 764-765 ISSN 0300-5127 R&D Projects: GA ČR GA203/04/1045 Institutional research plan: CEZ:AV0Z5020903 Keywords : asperillus oryzoe * glycosyl hydrolase * preproprotein Subject RIV: EE - Microbiology, Virology Impact factor: 2.267, year: 2004

  5. A Microplate Assay for the Determination of Hemoglobin Concentration

    National Research Council Canada - National Science Library

    Frenchik, Michael D; McFaul, Steve J; Tsonev, Latchezar I

    2004-01-01

    ... (NaOH), and converts all hemoglobin species, including COHb, to AHD within 5 min. Both protocols are carried out in cuvettes, and are, therefore, time intensive and difficult to manage when many samples are quantified. This impedes acquisition of triplicate values for each sample necessary to improve accuracy and determine statistical significance.

  6. Characterization of hemoglobin-benzo[a]pyrene adducts

    International Nuclear Information System (INIS)

    Haugen, D.A.; Myers, S.R.

    1987-01-01

    Cultures of Syrian hamster embryo (SHE) cells were supplemented with human Hb (0.2 mM heme) and [ 3 H]BP (1 μM). After a 24-h incubation, the medium was removed and subjected to cation-exchange liquid chromatography (CM-Sepharose) to resolve hemoglobins from serum proteins in the medium. The BP-treated Hb was subjected to analysis in each of three column chromatographic systems established for isolation and characterization of human hemoglobin and its genetic and post-translationally modified variants. Results demonstrate that hemoglobin-carcinogen adducts can be resolved from native hemoglobin by established conventional and high-performance liquid chromatographic procedures, suggesting the basis for development of general approaches for isolating and characterizing hemoglobin-carcinogen adducts. The results also suggest the basis for a model system in which adducts between carcinogens and human hemoglobin are formed in cultures of mammalian cells or tissues

  7. [Effect of meal frequency and carbohydrate intake on the metabolic control of patients with type 2 diabetes mellitus].

    Science.gov (United States)

    Leiva, Tamara; Basfi-Fer, Karen; Rojas, Pamela; Carrasco, Fernando; Ruz O, Manuel

    2016-10-01

    Increasing meal frequency is commonly used in the clinical practice as part of the nutritional treatment of patients with type 2 Diabetes Mellitus (DM2), although its effect on metabolic control parameters is controversial. To evaluate the association of energy intake, meal frequency, and amount of carbohydrates with fasting plasma glucose and glycosylated hemoglobin in a group of patients with DM2 without insulin therapy. Dietary intake was evaluated in 60 subjects with DM2 through three-day food records. The meal frequency was estimated establishing the main meal times considering snacks. Meal frequency was 4.7 ± 1.1 times per day. There was a positive association between glycosylated and fasting blood glucose levels (p Meal frequency was associated with energy intake (p meal frequency, available carbohydrates and energy intake, body mass index and fasting plasma glucose were analyzed in a multiple linear regression model, fasting blood glucose was the variable that best predicted changes in glycosylated hemoglobin (45.5%). Meal frequency had no association with glycosylated hemoglobin. Meal frequency showed no association with metabolic control parameters in DM2 patients.

  8. Hemoglobin levels and blood transfusion in patients with sepsis in Internal Medicine Departments.

    Science.gov (United States)

    Muady, Gassan Fuad; Bitterman, Haim; Laor, Arie; Vardi, Moshe; Urin, Vitally; Ghanem-Zoubi, Nesrin

    2016-10-13

    Acute reduction in hemoglobin levels is frequently seen during sepsis. Previous studies have focused on the management of anemia in patients with septic shock admitted to intensive care units (ICU's), including aggressive blood transfusion aiming to enhance tissue oxygenation. To study the changes in hemoglobin concentrations during the first week of sepsis in the setting of Internal Medicine (IM) units, and their correlation to survival. Observational prospective study. We recorded hemoglobin values upon admission and throughout the first week of hospital stay in a consecutive cohort of septic patients admitted to IM units at a community hospital, the patients were enrolled into a prospective registry. Data on blood transfusions was also collected, we examined the correlation between hemoglobin concentrations during the first week of sepsis and survival, the effect of blood transfusion was also assessed. Eight hundred and fifteen patients (815) with sepsis were enrolled between February 2008 to January 2009. More than 20 % of them had hemoglobin levels less than 10g/dL on admission, a rate that was doubled during the first week of sepsis. Overall, 68 (8.3 %) received blood transfusions, 14 of them (20.6 %) due to bleeding. Typically, blood transfusion was given to older patients with a higher rate of malignancy and lower hemoglobin levels. While hemoglobin concentration on admission had strong correlation with in-hospital mortality (O.R-0.83 [95 % C.I. 0.74-0.92], blood transfusion was not found to be an independent predicting factor for mortality. Anemia is very common in sepsis. While hemoglobin level on admission exhibit independent correlation with survival, blood transfusion do not.

  9. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins.

    Science.gov (United States)

    Fang, Pan; Wang, Xin-Jian; Xue, Yu; Liu, Ming-Qi; Zeng, Wen-Feng; Zhang, Yang; Zhang, Lei; Gao, Xing; Yan, Guo-Quan; Yao, Jun; Shen, Hua-Li; Yang, Peng-Yuan

    2016-06-21

    N-glycosylation is one of the most prominent and abundant posttranslational modifications of proteins. It is estimated that over 50% of mammalian proteins undergo glycosylation. However, the analysis of N-glycoproteins has been limited by the available analytical technology. In this study, we comprehensively mapped the N-glycosylation sites in the mouse brain proteome by combining complementary methods, which included seven protease treatments, four enrichment techniques and two fractionation strategies. Altogether, 13492 N-glycopeptides containing 8386 N-glycosylation sites on 3982 proteins were identified. After evaluating the performance of the above methods, we proposed a simple and efficient workflow for large-scale N-glycosylation site mapping. The optimized workflow yielded 80% of the initially identified N-glycosylation sites with considerably less effort. Analysis of the identified N-glycoproteins revealed that many of the mouse brain proteins are N-glycosylated, including those proteins in critical pathways for nervous system development and neurological disease. Additionally, several important biomarkers of various diseases were found to be N-glycosylated. These data confirm that N-glycosylation is important in both physiological and pathological processes in the brain, and provide useful details about numerous N-glycosylation sites in brain proteins.

  10. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy.

    Science.gov (United States)

    Bondt, Albert; Wuhrer, Manfred; Kuijper, T Martijn; Hazes, Johanna M W; Dolhain, Radboud J E M

    2016-11-25

    Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. IgGs were captured from RA and control sera obtained before (RA only), during and after pregnancy, followed by Fc and Fab separation, glycan release, and mass spectrometric detection. In parallel, glycans from intact IgG were analysed. The data was used to calculate glycosylation traits, and to estimate the level of Fab glycosylation. The overall level of Fab glycosylation was increased in RA patients compared to controls, while no differences in Fab glycosylation patterns were found. For the Fc and intact IgG (Total) previously observed differences in galactosylation and bisection were confirmed. Furthermore, increased galactosylation of Fc and Total were associated with lower disease activity and autoantibody positivity. In addition, the change in Fc galactosylation associated with the change in disease activity during pregnancy and after delivery, while this was not the case for Fab. In contrast to changes in Fc glycosylation, changes in Fab glycosylation are not associated with improvement of RA during pregnancy and arthritis flare after delivery.

  11. Analysis of expression and glycosylation of avian metapneumovirus attachment glycoprotein from recombinant baculoviruses.

    Science.gov (United States)

    Luo, Lizhong; Nishi, Krista; MacLeod, Erin; Sabara, Marta I; Li, Yan

    2010-11-01

    Recently, we reported the expression and glycosylation of avian metapneumovirus attachment glycoprotein (AMPV/C G protein) in eukaryotic cell lines by a transient-expression method. In the present study, we investigated the biosynthesis and O-linked glycosylation of the AMPV/C G protein in a baculovirus expression system. The results showed that the insect cell-produced G protein migrated more rapidly in SDS-PAGE as compared to LLC-MK2 cell-derived G proteins owing to glycosylation differences. The fully processed, mature form of G protein migrated between 78 and 86 kDa, which is smaller than the 110 kDa mature form of G expressed in LLC-MK2 cells. In addition, several immature G gene products migrating at 40-48 and 60-70 kDa were also detected by SDS-PAGE and represented glycosylated intermediates. The addition of the antibiotic tunicamycin, which blocks early steps of glycosylation, to insect cell culture resulted in the disappearance of two glycosylated forms of the G protein and identified a 38 kDa unglycosylated precursor. The maturation of the G protein was completely blocked by monensin, suggesting that the O-linked glycosylation of G initiated in the trans-Golgi compartment. The presence of O-linked sugars on the mature protein was further confirmed by lectin Arachis hypogaea binding assay. Furthermore, antigenic features of the G protein expressed in insect cells were evaluated by ELISA. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  12. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    , analysis, control and optimization of N-glycosylation were thoroughly reviewed. In particular, how to control and optimize N-glycosylation in CHO cells was exclusively studied. The main focus of this PhD project is to find effective approaches of modulating N-glycosylation of CHO-derived recombinant...... galactose as feed additives, changing process parameters such as seeding density and cultivation duration are all demonstrated to be effective. The causal explanation of their impact on glycosylation can be various, including product, metabolism, proteome and physiology-associated mechanism. In the middle...... part of the thesis, both literature reviews and experimental applications were provided to demonstrate how to use omics data and implement systems biology to understand biological activities, especially N-glycosylation in CHO cells. In the last part of the thesis, the second strategy that apply genetic...

  13. Reference Values of Reticulocyte Hemoglobin Content and Their Relation With Other Indicators of Iron Status in Healthy Children.

    Science.gov (United States)

    López-Ruzafa, Encarnación; Vázquez-López, Maria A; Lendinez-Molinos, Francisco; Poveda-González, Juan; Galera-Martínez, Rafael; Bonillo-Perales, Antonio; Martín-González, Manuel

    2016-10-01

    Reticulocyte hemoglobin content (CHr) is considered an indicator of functional iron deficiency, but is understudied in children. The goals of this study are to determine the reference intervals for CHr in healthy children, and their relation with iron parameters, erythropoiesis, and individual conditions. A total of 902 children without iron deficiency, aged 1 to 11 years were analyzed in a cross-sectional study. Besides a physical examination of the subjects and a questionnaire completed by their parents, the complete blood count, serum transferrin receptor, ferritin, transferrin saturation, erythrocyte protoporphyrin, serum erythropoietin, C-reactive protein, and CHr levels were measured. Changes in CHr, iron status, and erythropoiesis at different age intervals were analyzed and linear multiple regression was used to identify the factors that determine CHr variability. Mean value obtained for CHr was 30.9±1.8 pg (P2.5-P97.5: 26.9 to 34.3 pg), but the influence of age on CHr (the values increased with age) and on the iron parameters justified the establishment of different reference ranges. In addition to age, nutritional status, hematologic measurements, reticulocytes, transferrin saturation, and erythrocyte protoporphyrin accounted for 39% of CHr variability.

  14. Enzymatic glycosylation of multivalent scaffolds

    Czech Academy of Sciences Publication Activity Database

    Bojarová, Pavla; Rosencrantz, R. R.; Elling, L.; Křen, Vladimír

    2013-01-01

    Roč. 42, č. 11 (2013), s. 4774-4797 ISSN 0306-0012 R&D Projects: GA MŠk(CZ) LD13042; GA ČR GAP207/10/0321 Institutional support: RVO:61388971 Keywords : N-ACETYLGLUCOSAMINYLTRANSFERASE-III * MUCIN TANDEM REPEAT * NEIGHBORING RESIDUE GLYCOSYLATION Subject RIV: CC - Organic Chemistry Impact factor: 30.425, year: 2013

  15. Hemoglobin Kinetics and Long-term Prognosis in Heart Failure.

    Science.gov (United States)

    Díez-López, Carles; Lupón, Josep; de Antonio, Marta; Zamora, Elisabet; Domingo, Mar; Santesmases, Javier; Troya, Maria-Isabel; Boldó, Maria; Bayes-Genis, Antoni

    2016-09-01

    The influence of hemoglobin kinetics on outcomes in heart failure has been incompletely established. Hemoglobin was determined at the first visit and at 6 months. Anemia was defined according to World Health Organization criteria (hemoglobin < 13g/dL for men and hemoglobin < 12g/dL for women). Patients were classified relative to their hemoglobin values as nonanemic (both measurements normal), transiently anemic (anemic at the first visit but not at 6 months), newly anemic (nonanemic initially but anemic at 6 months), or permanently anemic (anemic in both measurements). A total of 1173 consecutive patients (71.9% men, mean age 66.8±12.2 years) were included in the study. In all, 476 patients (40.6%) were considered nonanemic, 170 (14.5%) had transient anemia, 147 (12.5%) developed new-onset anemia, and 380 (32.4%) were persistently anemic. During a follow-up of 3.7±2.8 years after the 6-month visit, 494 patients died. On comprehensive multivariable analyses, anemia (P < .001) and the type of anemia (P < .001) remained as independent predictors of all-cause mortality. Compared with patients without anemia, patients with persistent anemia (hazard ratio [HR] = 1.62; 95% confidence interval [95%CI], 1.30-2.03; P < .001) and new-onset anemia (HR = 1.39; 95%CI, 1.04-1.87, P = .03) had higher mortality, and even transient anemia showed a similar trend, although without reaching statistical significance (HR = 1.31; 95%CI, 0.97-1.77, P = .075). Anemia, especially persistent and of new-onset, and to a lesser degree, transient anemia, is deleterious in heart failure. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    Energy Technology Data Exchange (ETDEWEB)

    Popp, R A; Stratton, L P; Hawley, D K; Effron, K [Oak Ridge National Lab., TN (USA)

    1979-01-15

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F/sub 1/ offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of ..cap alpha..-chains normally found in all SEC mice. The deficient ..cap alpha..-chain synthesis caused these mice to exhibit an ..cap alpha..-thalassemia similar to human ..cap alpha..-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with ..cap alpha..-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining ..beta..-chain structure) produced twice as much SEC as 101 ..beta..-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC ..beta..-chain gene.

  17. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    International Nuclear Information System (INIS)

    Popp, R.A.; Stratton, L.P.; Hawley, D.K.; Effron, K.

    1979-01-01

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F 1 offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of α-chains normally found in all SEC mice. The deficient α-chain synthesis caused these mice to exhibit an α-thalassemia similar to human α-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with α-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining β-chain structure) produced twice as much SEC as 101 β-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC β-chain gene. (author)

  18. Effect of Multiple Mutations in the Hemoglobin- and Hemoglobin-Haptoglobin-Binding Proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae Type b

    OpenAIRE

    Morton, Daniel J.; Whitby, Paul W.; Jin, Hongfan; Ren, Zhen; Stull, Terrence L.

    1999-01-01

    Haemophilus influenzae requires heme for growth and can utilize hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified two hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA and HgpB, in H. influenzae HI689. Insertional mutation of hgpA and hgpB, either singly or together, did not abrogate the ability to utilize or bind either hemoglobin or the hemoglobin-haptoglobin complex. A hemoglobin affinity purification method was used to isolate a protein of approxi...

  19. Led Astray by Hemoglobin A1c

    Directory of Open Access Journals (Sweden)

    Jean Chen MD

    2016-01-01

    Full Text Available Hemoglobin A1c (A1c is used frequently to diagnose and treat diabetes mellitus. Therefore, it is important be aware of factors that may interfere with the accuracy of A1c measurements. This is a case of a rare hemoglobin variant that falsely elevated a nondiabetic patient’s A1c level and led to a misdiagnosis of diabetes. A 67-year-old male presented to endocrine clinic for further management after he was diagnosed with diabetes based on an elevated A1c of 10.7%, which is approximately equivalent to an average blood glucose of 260 mg/dL. Multiple repeat A1c levels remained >10%, but his home fasting and random glucose monitoring ranged from 92 to 130 mg/dL. Hemoglobin electrophoresis and subsequent genetic analysis diagnosed the patient with hemoglobin Wayne, a rare hemoglobin variant. This variant falsely elevates A1c levels when A1c is measured using cation-exchange high-performance liquid chromatography. When the boronate affinity method was applied instead, the patient’s A1c level was actually 4.7%. Though hemoglobin Wayne is clinically silent, this patient was erroneously diagnosed with diabetes and started on an antiglycemic medication. Due to this misdiagnosis, the patient was at risk of escalation in his “diabetes management” and hypoglycemia. Therefore, it is important that providers are aware of factors that may result in hemoglobin A1c inaccuracy including hemoglobin variants.

  20. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  1. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.

    Science.gov (United States)

    Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2018-05-09

    Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Moessbauer study of hemoglobin of diabetes

    International Nuclear Information System (INIS)

    Li Aiguo; Ni Xinbo; Cai Yingwen; Zhang Guilin; Zhang Hongde; Ge Yongxin

    2000-01-01

    The hemoglobins from normal adults (Gly-Hb 5%), people infected with diabetes (Gly-Hb 10%) and serious diabetics (Gly-Hb 15%) were investigated by Moessbauer spectroscopy at liquid nitrogen temperature. All the experimental spectra of hemoglobin are composed of three doublets corresponding to oxy-hemoglobin (Oxy-Hb), deoxy-hemoglobin (Deoxy-Hb) and low-spin hemo-chrome (Ls-Hemo) respectively. It is found that Oxy-Hb is decreasing but Deoxy-hb increasing for diabetes. Experimental results also indicate that the line-width of Moessbauer spectra of Oxy-Hb for diabetics is narrower than that for normal adults, showing that while Fe on Oxy-Hb exists in pile-up of some similar states for normal adults, but it becomes in single state for serious diabetes

  3. Two-photon excited fluorescence emission from hemoglobin

    Science.gov (United States)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  4. Effects of gamma irradiation on the structure and function of human hemoglobin

    International Nuclear Information System (INIS)

    Szweda-Lewandowska, Z.; Puchala, M.; Leyko, W.

    1976-01-01

    In this paper physicochemical and functional properties of irradiated aqueous hemoglobin solutions are presented. HbO 2 solutions (5 percent) were irradiated in air with doses ranging from 0.5 to 5 Mrad at the efficiency of 1 Mrad/hr. At doses exceeding 1 Mrad, coagulation of small amounts of protein was observed. Hemoglobin which remained in the solution consisted of a mixture of HbO 2 and MetHb. At doses of 4 and 5 Mrad the presence of hemochromogen was established. The appropriate hydrodynamic parameters--molecular weight, sedimentation constant, and limiting viscosity value--do not differ from the control values up to a dose of 1 Mrad. At greater doses sedimentation constants and the limiting viscosity number increase. The decrease in the values of the second virial coefficient and the electrophoretic behavior in polyacrylamide gel suggest some changes in the electric charge of the molecules. Simultaneously, a considerable part of the molecules exhibits an increased affinity for oxygen and a decreased heme--heme interaction

  5. Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.

    Science.gov (United States)

    Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten

    2016-02-01

    During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.

  6. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  7. PERBEDAAN KADAR HEMOGLOBIN METODE SIANMETHEMOGLOBIN DENGAN DAN TANPA SENTRIFUGASI PADA SAMPEL LEUKOSITOSIS

    Directory of Open Access Journals (Sweden)

    wahdah norsiah

    2015-12-01

    Full Text Available Abstract: Examination of hemoglobin levels influenced leukocytosis sianmethemoglobin method that causes increased absorbance measurements of hemoglobin levels increased significantly and the false blood sample that has been diluted with a solution Drabkins in centrifugation at 3000 rpm for 10 minutes and then the absorbance of the supernatant was measured with a photometer at λ 546 nm. This study aimed to analyze the differences in hemoglobin level examination siamethemoglobin method with and without centrifugation at sample leukocytosis. This type of research is observational research laboratory. The study design was cross-sectional study. Samples were taken from the remaining blood samples of patients who have been examined leukositnya number more than 20,000 / uL with Hematology Analyzer (CEL-DYN Ruby February-April 2014, and were divided into 4 groups based on criteria that group 1. leukocyte count of 20,000 / uL-29 999 / mL, group II. 30,000 / uL-39 999 / uL, the group III. 40,000 / uL-49,999 / uL, the group IV. More than 50,000 / uL. The number of samples taken were 20 samples of each group, a total sample of 80 samples. The analysis showed no significant difference in hemoglobin levels siamethemoglobin method with and without centrifugation at sample leukocytosis with a value of p = 0.000 less than 0.05 α. Leukocytosis Turbidity affects the difference in hemoglobin levels with and without centrifugation, the higher the number the greater the difference in leukocyte levels of hemoglobin, hemoglobin level examination results of the study based on the criteria of the number of leukocytes obtained by the difference in hemoglobin levels with and without centrifugation in group I. 0.22 ± 0.07 g / dL, group II 0.40 ± 0.22 g / dL, a group III. 0.44 ± 0.14 g / dL, Group IV. 0.85 ± 0.41 g / dL. The level of hemoglobin in the sample sianmethemoglobin method leukocytosis with more than 20,000 / uL need a centrifuge so that appropriate

  8. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system.

    Science.gov (United States)

    Jopling, Jeffery; Henry, Erick; Wiedmeier, Susan E; Christensen, Robert D

    2009-02-01

    "Reference ranges" are developed when it is impossible or inappropriate to establish "normal ranges" by drawing blood on healthy normal volunteers. Reference ranges for the hematocrit and the blood hemoglobin concentration of newborn infants have previously been reported from relatively small sample sizes by using measurement methods that now are considered outmoded. We sought to develop reference ranges for hematocrit and hemoglobin during the neonatal period (28 days) by using very large sample sizes and modern hematology analyzers, accounting for gestational and postnatal age and gender. Data were assembled from a multihospital health care system after exclusion of patients with a high likelihood of an abnormal value and those who were receiving blood transfusions. During the interval from 22 to 40 weeks' gestation, the hematocrit and blood hemoglobin concentration increased approximately linearly. For every week advance in gestational age, the hematocrit increased by 0.64% and the hemoglobin concentration increased by 0.21 g/dL. No difference was seen on the basis of gender. During the 4-hour interval after birth, hematocrit/hemoglobin values of late preterm and term neonates (35-42 weeks' gestation) increased by 3.6% +/- 0.5% (mean +/- SD), those of neonates of 29 to 34 weeks' gestation remained unchanged, and those of hematocrit/hemoglobin occurred. The figures presented herein describe reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period, accounting for gestational and postnatal age.

  9. O-GLYCOBASE version 4.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Gupta, Ramneek; Birch, Hanne; Rapacki, Krzysztof

    1999-01-01

    O-GLYCBASE is a database of glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally verified O-glycosylation site have been complied from protein sequence databases and literature. Each entry contains information about the glycan involved, the species, sequence, ...

  10. SEM visualization of glycosylated surface molecules using lectin-coated microspheres

    Science.gov (United States)

    Duke, J.; Janer, L.; Campbell, M.

    1985-01-01

    There are several techniques currently used to localize glycosylated surface molecules by scanning electron microscopy (Grinnell, 1980; Molday, 1976; Linthicum and Sell, 1975; Nicolson, 1974; Lo Buglio, et al, 1972). A simple and rapid method, using a modification of Grinnell's technique is reported here. Essentially, microspheres coated with Concavalin A are used to bind to glycosylated regions of the palatal shelf epithelium and are visualized in the scanning electron microscope (SEM).

  11. Glycosylation of KSHV Encoded vGPCR Functions in Its Signaling and Tumorigenicity

    Directory of Open Access Journals (Sweden)

    Hui Wu

    2015-03-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV is a tumor virus and the etiologic agent of Kaposi’s Sarcoma (KS. KSHV G protein-coupled receptor (vGPCR is an oncogene that is implicated in malignancies associated with KHSV infection. In this study, we show that vGPCR undergoes extensive N-linked glycosylation within the extracellular domains, specifically asparagines 18, 22, 31 and 202. An immunofluorescence assay demonstrates that N-linked glycosylation are necessary for vGPCR trafficking to the cellular membrane. Employing vGPCR mutants whose glycosylation sites were ablated, we show that these vGPCR mutants failed to activate downstream signaling in cultured cells and were severely impaired to induce tumor formation in the xenograph nude mouse model. These findings support the conclusion that glycosylation is critical for vGPCR tumorigenesis and imply that chemokine regulation at the plasma membrane is crucial for vGPCR mediated signaling.

  12. O-GLYCBASE: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nielsen, Jens O.

    1996-01-01

    O-GLYCBASE is a comprehensive database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the SWISS-PROT and PIR databases as well as directly from recently published reports. Nineteen percent of the entries extracted from the databases n...... of mucin type O-glycosylation sites in mammalian glycoproteins exclusively from the primary sequence is made available by E-mail or WWW. The O-GLYCBASE database is also available electronically through our WWW server or by anonymous FTP....

  13. Structural and Functional Consequences of Increased Tubulin Glycosylation in Diabetes Mellitus

    Science.gov (United States)

    Williams, Stuart K.; Howarth, Nancy L.; Devenny, James J.; Bitensky, Mark W.

    1982-11-01

    The extent of in vitro nonenzymatic glycosylation of purified rat brain tubulin was dependent on time and glucose concentration. Tubulin glycosylation profoundly inhibited GTP-dependent tubulin polymerization. Electron microscopy and NaDodSO4/polyacrylamide gel electrophoresis showed that glycosylated tubulin forms high molecular weight amorphous aggregates that are not disrupted by detergents or reducing agents. The amount of covalently bound NaB3H4-reducible sugars in tubulin recovered from brain of streptozotocin-induced diabetic rats was dramatically increased as compared with tubulin recovered from normal rat brain. Moreover, tubulin recovered from diabetic rat brain exhibited less GTP-induced polymerization than tubulin from nondiabetic controls. The possible implications of these data for diabetic neuropathy are discussed.

  14. O-GLYCBASE version 3.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nilsson, Jette

    1998-01-01

    O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include informations about species, sequence, glycosylation sites and glycan type and is fully cr...

  15. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency

    DEFF Research Database (Denmark)

    Van Scherpenzeel, Monique; Timal, Sharita; Rymen, Daisy

    2014-01-01

    Congenital disorders of glycosylation comprise a group of genetic defects with a high frequency of intellectual disability, caused by deficient glycosylation of proteins and lipids. The molecular basis of the majority of the congenital disorders of glycosylation type I subtypes, localized...... in the cytosol and endoplasmic reticulum, has been solved. However, elucidation of causative genes for defective Golgi glycosylation (congenital disorders of glycosylation type II) remains challenging because of a lack of sufficiently specific diagnostic serum methods. In a single patient with intellectual...... disability, whole-exome sequencing revealed MAN1B1 as congenital disorder of glycosylation type II candidate gene. A novel mass spectrometry method was applied for high-resolution glycoprofiling of intact plasma transferrin. A highly characteristic glycosylation signature was observed with hybrid type N...

  16. Carbohydrates on Proteins: Site-Specific Glycosylation Analysis by Mass Spectrometry

    Science.gov (United States)

    Zhu, Zhikai; Desaire, Heather

    2015-07-01

    Glycosylation on proteins adds complexity and versatility to these biologically vital macromolecules. To unveil the structure-function relationship of glycoproteins, glycopeptide-centric analysis using mass spectrometry (MS) has become a method of choice because the glycan is preserved on the glycosylation site and site-specific glycosylation profiles of proteins can be readily determined. However, glycopeptide analysis is still challenging given that glycopeptides are usually low in abundance and relatively difficult to detect and the resulting data require expertise to analyze. Viewing the urgent need to address these challenges, emerging methods and techniques are being developed with the goal of analyzing glycopeptides in a sensitive, comprehensive, and high-throughput manner. In this review, we discuss recent advances in glycoprotein and glycopeptide analysis, with topics covering sample preparation, analytical separation, MS and tandem MS techniques, as well as data interpretation and automation.

  17. [Differences between observed and estimated by hematocrit hemoglobin and its relevance in the diagnosis of anemia among coastal population in Venezuela: analysis of the second national study of human growth and development (SENACREDH)].

    Science.gov (United States)

    Flores-Torres, Jessica; Echeverría-Ortega, María; Arria-Bohorquez, Melissa; Hidalgo, Glida; Albano-Ramos, Carlos; Sanz, Rafael; Rodríguez-Morales, Alfonso J

    2011-03-01

    To evaluate the differences between the observed hemoglobin levels and those estimated based on hematocrit in the context of the 2nd National Study of Human Growth and Development of the Venezuelan Population (SENACREDH). 6,004 individuals were chosen by a probabilistic multistage cluster sampling representing 7,286,781 inhabitants from North Central Coastal area (Vargas, Carabobo, Capital District, Aragua and Miranda). Means of observed and estimated hemoglobin (hematocrit/3) were compared, using t test for related samples and linear regression. Mean difference between the values of observed and estimated hemoglobin was -0.3446 ±0.0002 (phemoglobin values. Regression models of hemoglobin on hematocrit showed an r2=0,87. In order to correct the estimation, we propose a new formula for calculating hemoglobin based on haematocrit values: estimated hemoglobin=(Haematocrit/3.135)+ 0.257. There is an overestimation of hemoglobin levels from hematocrit levels and therefore an underestimation of the prevalence of anemia; however, a high positive correlation between them was found, allowing modeling for achieving a better estimation of the hemoglobin from the hematocrit value.

  18. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, D. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Valli, M.; Viglio, S. [Department of Biochemistry, University of Pavia (Italy); Ferrari, N. [Istituto Nazionale per la ricerca sul Cancro, Genova (Italy); Ledda, B.; Volta, C. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Manduca, P., E-mail: man-via@unige.it [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy)

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  19. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    International Nuclear Information System (INIS)

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-01-01

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  20. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  1. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  2. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural prey Veng, Cambodia.

    Science.gov (United States)

    Karakochuk, Crystal D; Whitfield, Kyly C; Barr, Susan I; Lamers, Yvonne; Devlin, Angela M; Vercauteren, Suzanne M; Kroeun, Hou; Talukder, Aminuzzaman; McLean, Judy; Green, Timothy J

    2015-01-01

    Anemia is common in Cambodian women. Potential causes include micronutrient deficiencies, genetic hemoglobin disorders, inflammation, and disease. We aimed to investigate factors associated with anemia (low hemoglobin concentration) in rural Cambodian women (18-45 y) and to investigate the relations between hemoglobin disorders and other iron biomarkers. Blood samples were obtained from 450 women. A complete blood count was conducted, and serum and plasma were analyzed for ferritin, soluble transferrin receptor (sTfR), folate, vitamin B-12, retinol binding protein (RBP), C-reactive protein (CRP), and α1 acid glycoprotein (AGP). Hemoglobin electrophoresis and multiplex polymerase chain reaction were used to determine the prevalence and type of genetic hemoglobin disorders. Overall, 54% of women had a genetic hemoglobin disorder, which included 25 different genotypes (most commonly, hemoglobin E variants and α(3.7)-thalassemia). Of the 420 nonpregnant women, 29.5% had anemia (hemoglobin 8.3 mg/L), hemoglobin disorders, respectively. There was no biochemical evidence of vitamin A deficiency (RBP 5 mg/L) and 26% (AGP >1 g/L) of nonpregnant women, respectively. By using an adjusted linear regression model, the strongest predictors of hemoglobin concentration were hemoglobin E homozygous disorder and pregnancy status. Other predictors were 2 other heterozygous traits (hemoglobin E and Constant Spring), parity, RBP, log ferritin, and vitamin B-12. Multiple biomarkers for anemia and iron deficiency were significantly influenced by the presence of hemoglobin disorders, hence reducing their diagnostic sensitivity. Further investigation of the unexpectedly low prevalence of IDA in Cambodian women is warranted. © 2015 American Society for Nutrition.

  3. Involvement of Aberrant Glycosylation in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Eiji Miyoshi

    2010-01-01

    Full Text Available Glycosylation is one of the most common posttranslational modification reactions and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharides structures are associated with many physiological and pathological events, including cell growth, migration and differentiation, and tumor invasion. Therefore, functional glycomics, which is a comprehensive study of the structures and functions of glycans, is attracting the increasing attention of scientists in various fields of life science. In cases of thyroid cancer, the biological characters and prognosis are completely different in each type of histopathology, and their oligosaccharide structures as well as the expression of glycosyltransferases are also different. In this review, we summarized our previous papers on oligosaccharides and thyroid cancers and discussed a possible function of oligosaccharides in the carcinogenesis in thyroid cancer.

  4. EFFECT OF ROSELLE (HIBISCUS SABDARIFFA ON CHANGES IN HEMOGLOBIN LEVELS IN PREGNANT WOMEN WITH ANEMIA TAKING IRON SUPPLEMENT

    Directory of Open Access Journals (Sweden)

    Rif’atun Nisa

    2017-12-01

    Full Text Available Background: Anemia during pregnancy is one of the most common disorders in pregnant women in Indonesia. The Government has made efforts to overcome this problem, however, the rate of anemic mothers remains high. Rosella (Hibiscus Sabdariffa is considered able to increase the hemoglobin levels in pregnant mothers. Objective: To analyze the effect of Rosella flower extract (Hibiscus Sabdariffa on the increase of Hemoglobin level in pregnant women with anemia receiving Fe tablet. Methods: This study was a quasy experiment with pretest-posttest control group design conducted in November - December 2016 in the working area of Tlogosari Wetan Community Health Center. Forty-two participants were selected using accidental sampling, which 21 assigned in the experiment and control group. All samples were pregnant women in the second trimester suffering from anemia and receiving iron tablets. Hemoglobin levels were measured using hematology analyzer in laboratory. Independent t-test and paired t-test were used for data analysis. Results: Paired t-test obtained p-value 0.00 (<0.05, indicated that there was an increase of hemoglobin levels in both experiment and control group. The mean increase of hemoglobin levels in the control group was 0.61 gr and in the experiment group was 1.08. The hemoglobin levels in the experiment group were higher than the levels in the control group. Independent t-test obtained p-value 0.000 (<0.05 indicating that there was a significant difference of mean of hemoglobin levels between the control group and the treatment group. Conclusion: The consumption of rosella extract combined with Fe tablet showed a significant increase of hemoglobin levels compared with the consumption of Fe tablet alone. Therefore, it is suggested for midwife to use the result of this research as a evidence practice through counseling for pregnant mother about utilization of rosella extract that can increase hemoglobin level in pregnant woman with anemia.

  5. Lyophilized bovine hemoglobin as a possible reference material for the determination of hemoglobin derivatives in human blood

    NARCIS (Netherlands)

    Maas, BHA; Buursma, A; Ernst, RAJ; Maas, AHJ; Zijlstra, WG

    We investigated the suitability of a lyophilized bovine hemoglobin (LBH) preparation containing various fractions of oxyhemoglobin (O(2)Hb), carboxyhemoglobin (COHb), and methemoglobin (MetHb) for quality assessment in multicomponent analysis (MCA) of hemoglobin derivatives. It was demonstrated that

  6. Lyophilized bovine hemoglobin as a possible reference material for the determination of hemoglobin derivatives in human blood

    NARCIS (Netherlands)

    Maas, BHA; Buursma, A; Ernst, RAJ; Maas, AHJ; Zijlstra, WG

    1998-01-01

    We investigated the suitability of a lyophilized bovine hemoglobin (LBH) preparation containing various fractions of oxyhemoglobin (O(2)Hb), carboxyhemoglobin (COHb), and methemoglobin (MetHb) for quality assessment in multicomponent analysis (MCA) of hemoglobin derivatives. It was demonstrated that

  7. Multidimensional fractionation is a requirement for quantitation of Golgi-resident glycosylation enzymes from cultured human cells.

    Science.gov (United States)

    Lin, Chi-Hung; Chik, Jenny H L; Packer, Nicolle H; Molloy, Mark P

    2015-02-06

    Glycosylation results from the concerted action of glycosylation enzymes in the secretory pathway. In general, gene expression serves as the primary control mechanism, but post-translational fine-tuning of glycosylation enzyme functions is often necessary for efficient synthesis of specific glycan epitopes. While the field of glycomics has rapidly advanced, there lacks routine proteomic methods to measure expression of specific glycosylation enzymes needed to fill the gap between mRNA expression and the glycomic profile in a "reverse genomics" workflow. Toward developing this workflow we enriched Golgi membranes from two human colon cancer cell lines by sucrose density centrifugation and further mass-based fractionation by SDS-PAGE. We then applied mass spectrometry to demonstrate a doubling in the number of Golgi resident proteins identified, compared to the unenriched, low speed centrifuged supernatant of lysed cells. A total of 35 Golgi-resident glycosylation enzymes, of which 23 were glycosyltransferases, were identified making this the largest protein database so far of Golgi resident glycosylation enzymes experimentally identified in cultured human cells. We developed targeted mass spectrometry assays for specific quantitation of many of these glycosylation enzymes. Our results show that alterations in abundance of glycosylation enzymes at the protein level were generally consistent with the resultant glycomic profiles, but not necessarily with the corresponding glycosyltransferase mRNA expression as exemplified by the case of O-glycan core 1 T synthase.

  8. Disturbance in hemoglobin metabolism and in vivo antimalarial activity of azole antimycotics

    Directory of Open Access Journals (Sweden)

    Juan Ricardo Rodrigues

    2011-02-01

    Full Text Available Plasmodium parasites degrade host hemoglobin to obtain free amino acids, essential for protein synthesis. During this event, free toxic heme moieties crystallize spontaneously to produce a non-toxic pigment called hemozoin or ß-hematin. In this context, a group of azole antimycotics, clotrimazole (CTZ, ketoconazole (KTZ and fluconazole (FCZ, were investigated for their abilities to inhibit ß-hematin synthesis (IßHS and hemoglobin proteolysis (IHbP in vitro. The ß-hematin synthesis was recorded by spectrophotometry at 405 nm and the hemoglobin proteolysis was determined by SDS-PAGE 12.5%, followed by densitometric analysis. Compounds were also assayed in vivo in a malaria murine model. CTZ and KTZ exhibited the maximal effects inhibiting both biochemical events, showing inhibition of β-hematin synthesis (IC50 values of 12.4 ± 0.9 µM and 14.4 ± 1.4 µM respectively and inhibition of hemoglobin proteolysis (80.1 ± 2.0% and 55.3 ± 3.6%, respectively. There is a broad correlation to the in vivo results, especially CTZ, which reduced the parasitemia (%P of infected-mice at 4th day post-infection significantly compared to non-treated controls (12.4 ± 3.0% compared to 26.6 ± 3.7%, p = 0.014 and prolonged the survival days post-infection. The results indicated that the inhibition of the hemoglobin metabolism by the azole antimycotics could be responsible for their antimalarial effect.

  9. N-Glycosylation of Lipocalin 2 Is Not Required for Secretion or Exosome Targeting

    Directory of Open Access Journals (Sweden)

    Erawan Borkham-Kamphorst

    2018-04-01

    Full Text Available Lipocalin 2 (LCN2 is a highly conserved secreted adipokine acting as a serum transport protein for small hydrophobic molecules such as fatty acids and steroids. In addition, LCN2 limits bacterial growth by sequestering iron-containing siderophores and further protects against intestinal inflammation and tumorigenesis associated with alterations in the microbiota. Human LCN2 contains one N-glycosylation site conserved in other species. It was postulated that this post-translational modification could facilitate protein folding, protects from proteolysis, is required for proper trafficking from the Golgi apparatus to the cell surface, and might be relevant for effective secretion. We here show that the homologous nucleoside antibiotic tunicamycin blocks N-linked glycosylation but not secretion of LCN2 in primary murine hepatocytes, derivatives thereof, human lung carcinoma cell line A549, and human prostate cancer cell line PC-3. Moreover, both the glycosylated and the non-glycosylated LCN2 variants are equally targeted to exosomes, demonstrating that this post-translational modification is not necessary for proper trafficking of LCN2 into these membranous extracellular vesicles. Furthermore, a hydrophobic cluster analysis revealed that the N-glycosylation site is embedded in a highly hydrophobic evolutionarily conserved surrounding. In sum, our data indicate that the N-glycosylation of LCN2 is not required for proper secretion and exosome cargo recruitment in different cell types, but might be relevant to increase overall solubility.

  10. Glucosamine derived DISAL donors for stereoselective glycosylations under neutral conditions

    DEFF Research Database (Denmark)

    Grathe, S.; Thygesen, M.B.; Larsen, K.

    2005-01-01

    DISAL (methyl 3,5-dinitrosa/icylate) D-glcosyl, D-galactosyl, D-mannosyl, and L-quinovosyl donors have previously provided the efficient glycosylation of a range of substrates under either strictly neutral, mildly basic, or very mildly Lewis acidic (LiClO4) conditions. Herein we report the synthe......DISAL (methyl 3,5-dinitrosa/icylate) D-glcosyl, D-galactosyl, D-mannosyl, and L-quinovosyl donors have previously provided the efficient glycosylation of a range of substrates under either strictly neutral, mildly basic, or very mildly Lewis acidic (LiClO4) conditions. Herein we report...... the synthesis of new glucosamine DISAL donors, carrying N-TCP, -Troc, or -TFAc protecting groups, and their use in beta-(1,2-trans) selective glycosylations, primarily in NMP in the absence of any added Lewis acids, or in CH3NO2 with LiClO4. Finally, precise microwave heating proved effective in promoting...

  11. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch*

    Science.gov (United States)

    Harvey, Beth M.; Rana, Nadia A.; Moss, Hillary; Leonardi, Jessica; Jafar-Nejad, Hamed; Haltiwanger, Robert S.

    2016-01-01

    Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity. PMID:27268051

  12. Diversity in protein glycosylation among insect species.

    Directory of Open Access Journals (Sweden)

    Gianni Vandenborre

    Full Text Available BACKGROUND: A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum, the silkworm (Bombyx mori, the honeybee (Apis mellifera, the fruit fly (D. melanogaster and the pea aphid (Acyrthosiphon pisum. To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE: The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.

  13. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein

    International Nuclear Information System (INIS)

    Yamaguchi, Suguru; Ishihara, Hisamitsu; Tamura, Akira; Yamada, Takahiro; Takahashi, Rui; Takei, Daisuke; Katagiri, Hideki; Oka, Yoshitomo

    2004-01-01

    Mutations of the WFS1 gene are responsible for two hereditary diseases, Wolfram syndrome and low frequency sensorineural hearing loss. The WFS1 protein is a glycoprotein located in the endoplasmic reticulum (ER) membrane but its function is poorly understood. Herein we show WFS1 mRNA and protein levels in pancreatic islets to be increased with ER-stress inducers, thapsigargin and dithiothreitol. Another ER-stress inducer, the N-glycosylation inhibitor tunicamycin, also raised WFS1 mRNA but not protein levels. Site-directed mutagenesis showed both Asn-663 and Asn-748 to be N-glycosylated in mouse WFS1 protein. The glycosylation-defective WFS1 protein, in which Asn-663 and Asn-748 had been substituted with aspartate, exhibited an increased protein turnover rate. Consistent with this, the WFS1 protein was more rapidly degraded in the presence of tunicamycin. These data indicate that ER-stress and N-glycosylation play important roles in WFS1 expression and stability, and also suggest regulatory roles for this protein in ER-stress induced cell death

  14. IN VITRO STUDY ON INHIBITION OF GLYCOSYLATION OF ...

    African Journals Online (AJOL)

    Administrator

    complications of diabetes mellitus (Makita et al., 1991). Apart from protein ... enzymes; inhibition of regulatory molecule binding; crosslinking of glycosylated .... further investigation specific bio active compound responsible for such activities.

  15. Relation of microalbuminuria to glycosylated hemoglobin and ...

    African Journals Online (AJOL)

    Background: Nephropathy is one of the complications of type 2 diabetes ... Materials and Methods: Study was conducted at Medical College, Kolkata. ... Results: Urinary microalbumin, HbA1c levels were significantly higher in the cases.

  16. Relation of microalbuminuria to glycosylated hemoglobin and ...

    African Journals Online (AJOL)

    2012-04-22

    Apr 22, 2012 ... between HbA1c and microalbuminuria with the duration of diabetes is not clear. ... the detection of increased urinary microalbumin levels at the initial stage can avert, ..... haemoglobin and Lipid Profile in Diabetic Retinopathy.

  17. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    International Nuclear Information System (INIS)

    Jones, Meredith B.; Tomiya, Noboru; Betenbaugh, Michael J.; Krag, Sharon S.

    2010-01-01

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man 5 GlcNAc 2 -P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man 9 GlcNAc 2 -P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc 3 Man 9 GlcNAc 2 -P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man 5 GlcNAc 2 -PP-Dol through Glc 1 Man 9 GlcNAc 2 -PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc 3 Man 9 GlcNAc 2 -P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  18. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Meredith B., E-mail: mbauman7@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Tomiya, Noboru, E-mail: ntomiya1@jhu.edu [Department of Biology, Johns Hopkins University, 3400 North Charles Street, Mudd Hall 104A, Baltimore, MD 21218 (United States); Betenbaugh, Michael J., E-mail: beten@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Krag, Sharon S., E-mail: skrag@jhsph.edu [Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205 (United States)

    2010-04-23

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man{sub 5}GlcNAc{sub 2}-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man{sub 9}GlcNAc{sub 2}-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man{sub 5}GlcNAc{sub 2}-PP-Dol through Glc{sub 1}Man{sub 9}GlcNAc{sub 2}-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  19. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    Science.gov (United States)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. © 2015 Wiley Periodicals, Inc.

  20. Congenital disorders of glycosylation: The Saudi experience.

    Science.gov (United States)

    Alsubhi, Sarah; Alhashem, Amal; Faqeih, Eissa; Alfadhel, Majid; Alfaifi, Abdullah; Altuwaijri, Waleed; Alsahli, Saud; Aldhalaan, Hesham; Alkuraya, Fowzan S; Hundallah, Khalid; Mahmoud, Adel; Alasmari, Ali; Mutairi, Fuad Al; Abduraouf, Hanem; AlRasheed, Layan; Alshahwan, Saad; Tabarki, Brahim

    2017-10-01

    We retrospectively reviewed Saudi patients who had a congenital disorder of glycosylation (CDG). Twenty-seven Saudi patients (14 males, 13 females) from 13 unrelated families were identified. Based on molecular studies, the 27 CDG patients were classified into different subtypes: ALG9-CDG (8 patients, 29.5%), ALG3-CDG (7 patients, 26%), COG6-CDG (7 patients, 26%), MGAT2-CDG (3 patients, 11%), SLC35A2-CDG (1 patient), and PMM2-CDG (1 patient). All the patients had homozygous gene mutations. The combined carrier frequency of CDG for the encountered founder mutations in the Saudi population is 11.5 per 10,000, which translates to a minimum disease burden of 14 patients per 1,000,000. Our study provides comprehensive epidemiologic information and prevalence figures for each of these CDG in a large cohort of congenital disorder of glycosylation patients. © 2017 Wiley Periodicals, Inc.

  1. Optimal Synthetic Glycosylation of a Therapeutic Antibody.

    Science.gov (United States)

    Parsons, Thomas B; Struwe, Weston B; Gault, Joseph; Yamamoto, Keisuke; Taylor, Thomas A; Raj, Ritu; Wals, Kim; Mohammed, Shabaz; Robinson, Carol V; Benesch, Justin L P; Davis, Benjamin G

    2016-02-12

    Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase-catalyzed glycosylation of the best-selling biotherapeutic Herceptin, an anti-HER2 antibody. Precise MS analysis of the intact four-chain Ab heteromultimer reveals nonspecific, non-enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non-natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or "glycorandomization") were readily generated.

  2. Dengue Virus Glycosylation: What Do We Know?

    Directory of Open Access Journals (Sweden)

    Sally S. L. Yap

    2017-07-01

    Full Text Available In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E and non-structural protein 1 (NS1 are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.

  3. Maternal and perinatal outcomes in second hemoglobin measurement in nonanemic women at first booking: effect of altitude of residence in peru.

    Science.gov (United States)

    Gonzales, Gustavo F; Tapia, Vilma; Fort, Alfredo L

    2012-01-01

    Objective. To determine changes in hemoglobin concentration at second measurements after a normal hemoglobin concentration was detected at first booking during pregnancy at low and at high altitudes. Methods. This is a secondary analysis of a large database obtained from the Perinatal Information System in Peru which includes 379,816 pregnant women and their babies from 43 maternity units in Peru. Results. Most women remained with normal hemoglobin values at second measurement (75.1%). However, 21.4% of women became anemic at the second measurement. In all, 2.8% resulted with moderate/severe anemia and 3.5% with erythrocytosis (Hb>14.5 g/dL). In all cases Hb was higher as altitude increased. Risk for moderate/severe anemia increased associated with higher gestational age at second measurement of hemoglobin, BMI anemia was observed with normal high Hb level at first booking living at moderate and high altitude, and high BMI. Conclusion. Prevalence of anemia increases as pregnancy progress, and that a normal value at first booking may not be considered sufficient as Hb values should be observed throughout pregnancy. BMI was a risk for anemia in a second measurement.

  4. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    Science.gov (United States)

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  5. The effect of gamma-rays on the hemoglobin of whole-body irradiated mice

    International Nuclear Information System (INIS)

    Ashry, H.A.; Selim, N.S.; El-Behay, A.Z.

    1994-01-01

    Changes in the UV-visible absorption spectrum of mouse hemoglobin as a result of whole body irradiation were studied. White albino adult mice were exposed to a Cs-137 γ-source at a dose rate of 47.5 Gy/h to different absorbed dose values ranging from 1 to 8 Gy. Blood specimens were taken 24 h after irradiation. The UV-visible absorption spectra of hemoglobin of irradiated and control mice were measured in the wavelength range from 200 to 700 nm. The obtained results showed significant changes in the bands measured at 340 nm, in the Soret band measured at 410 nm, also, the α- and β-bands measured at 537 and 572 nm showed significant decrease in intensity with the absorbed dose increase. The absorbance measured at 630 nm showed no significant changes. The radiation effect on the animal hemoglobin was discussed on the basis of the obtained results. (Author)

  6. Conformationally superarmed S-ethyl glycosyl donors as effective building blocks for chemoselective oligosaccharide synthesis in one pot

    DEFF Research Database (Denmark)

    Bandara, Mithila D.; Yasomanee, Jagodige P.; Rath, Nigam P.

    2017-01-01

    A new series of superarmed glycosyl donors has been investigated. It was demonstrated that the S-ethyl leaving group allows for high reactivity, which is much higher than that of equally equipped S-phenyl glycosyl donors that were previously investigated by our groups. The superarmed S......-ethyl glycosyl donors equipped with a 2-O-benzoyl group gave complete β-stereoselectivity. Utility of the new glycosyl donors has been demonstrated in a one-pot one-addition oligosaccharide synthesis with all of the reaction components present from the beginning...

  7. Individualized anemia management reduces hemoglobin variability in hemodialysis patients.

    Science.gov (United States)

    Gaweda, Adam E; Aronoff, George R; Jacobs, Alfred A; Rai, Shesh N; Brier, Michael E

    2014-01-01

    One-size-fits-all protocol-based approaches to anemia management with erythropoiesis-stimulating agents (ESAs) may result in undesired patterns of hemoglobin variability. In this single-center, double-blind, randomized controlled trial, we tested the hypothesis that individualized dosing of ESA improves hemoglobin variability over a standard population-based approach. We enrolled 62 hemodialysis patients and followed them over a 12-month period. Patients were randomly assigned to receive ESA doses guided by the Smart Anemia Manager algorithm (treatment) or by a standard protocol (control). Dose recommendations, performed on a monthly basis, were validated by an expert physician anemia manager. The primary outcome was the percentage of hemoglobin concentrations between 10 and 12 g/dl over the follow-up period. A total of 258 of 356 (72.5%) hemoglobin concentrations were between 10 and 12 g/dl in the treatment group, compared with 208 of 336 (61.9%) in the control group; 42 (11.8%) hemoglobin concentrations were hemoglobin concentrations were >12 g/dl in the treatment group compared with 46 (13.4%) in the control group. The median ESA dosage per patient was 2000 IU/wk in both groups. Five participants received 6 transfusions (21 U) in the treatment group, compared with 8 participants and 13 transfusions (31 U) in the control group. These results suggest that individualized ESA dosing decreases total hemoglobin variability compared with a population protocol-based approach. As hemoglobin levels are declining in hemodialysis patients, decreasing hemoglobin variability may help reduce the risk of transfusions in this population.

  8. Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Wang, Shengjun; Narimatsu, Yoshiki

    2014-01-01

    , which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide Gal...

  9. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites

    DEFF Research Database (Denmark)

    Julenius, Karin; Mølgaard, Anne; Gupta, Ramneek

    2005-01-01

    could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc....

  10. SPECTROPHOTOMETRY OF HEMOGLOBIN - ABSORPTION-SPECTRA OF RAT OXYHEMOGLOBIN, DEOXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; BUURSMA, A; FALKE, HE; CATSBURG, JF

    The absorptivity at 540 nm of methemoglobincyanide from rat blood was determined on the basis of iron and found to be equal to the established value for human methemoglobincyanide (11,01/mmol/cm). On this basis the absorption spectra of the common derivatives were determined for rat hemoglobin.

  11. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  12. The interaction of 2,3-diphosphoglycerate with various human hemoglobins

    Science.gov (United States)

    Bunn, H. Franklin; Briehl, Robin W.

    1970-01-01

    Oxygen equilibria were measured on a number of human hemoglobins, which had been “stripped” of organic phosphates and isolated by column chromatography. In the presence of 2 × 10-4 M 2,3-diphosphoglycerate (2,3-DPG), the P50 of hemoglobins A, A2, S, and C increased about twofold, signifying a substantial and equal decrease in oxygen affinity. Furthermore, hemoglobins Chesapeake and MMilwaukee-1 which have intrinsically high and low oxygen affinities, respectively, also showed a twofold increase in P50 in the presence of 2 × 10-4 M 2,3-DPG. In comparison to these, hemoglobins AIC and F were less reactive with 2,3-DPG while hemoglobin FI showed virtually no reactivity. The N-terminal amino of each β-chain of hemoglobin AIC is linked to a hexose. In hemoglobin FI the N-terminal amino of each γ-chain is acetylated. These results suggest that the N-terminal amino groups of the non-α-chains are involved in the binding of 2,3-DPG to hemoglobin. PMID:5422014

  13. Correlation between Body Mass Index and Insulin Levels in Premenopausal Women

    Directory of Open Access Journals (Sweden)

    Anastasia Sachinidou

    2017-12-01

    Full Text Available Obesity is one of the most important problems of modern societies, and is considered a modern plague which tends to evolve to a global pandemic. Premenopausal women, most of the times, manifest hormonal dysfunctions and dysfunctions in their metabolism. The consequences are weight gain, heart diseases, hypertension and diabetes mellitus type 2. Purpose: The purpose of this study was to examine if vitamin D levels and Glycosylated hemoglobin are affected by exercise and if there is a connection between Body Mass Index (BMI and insulin. Method: The research involved 48 healthy premenopausal women who answered questionnaires which included questions about their height, weight, waist circumference, lifestyle and history of menstruation. This questionnaire, after due electronic approval, was based on a model of the German Sports and Research Centre (Karlsruhe Institut Fuer Sport und Sportwissenschaft. Women, after having completed a consent form, were also subjected to laboratory testing to determine their insulin, vitamin D levels and Glycosylated hemoglobin levels. To specify the vitamin D and insulin levels a method of direct chemiluminescence was used, and Glycosylated hemoglobin identification was specified using an automated light metering method. Statistical analysis performed using ΙΒΜ SPSS 22. Results: At the premenopausal women (41+/-7ετών (BMI24+/-4 kg/m2 a significant impact during the time of the exercises in the glycosylated hemoglobin (p = 0.038 0.05 regarding the levels of Glycosylated hemoglobin and the combination of exercise with other physical activities. Finally, a significant correlation between BMI and insulin (p=0.001<0.05 was detected. Furthermore, there was no statistically significant difference found in vitamin D levels relative to physical activity. Conclusion: During the research it was found that BMI influences the secretion of insulin, and insulin resistance that is a metabolism disorder, is a result of

  14. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism.

    NARCIS (Netherlands)

    Morava, E.; Wevers, R.A.; Cantagrel, V.; Hoefsloot, L.H.; Al-Gazali, L.; Schoots, J.; Rooij, A. van; Huijben, K.; Ravenswaaij-Arts, C.M.A. van; Jongmans, M.C.J.; Sykut-Cegielska, J.; Hoffmann, G.F.; Bluemel, P.; Adamowicz, M.; Reeuwijk, J. van; Ng, B.G.; Bergman, J.E.; Bokhoven, J.H.L.M. van; Korner, C.; Babovic-Vuksanovic, D.; Willemsen, M.A.A.P.; Gleeson, J.G.; Lehle, L.; Brouwer, A.P.M. de; Lefeber, D.J.

    2010-01-01

    Cerebellar hypoplasia and slowly progressive ophthalmological symptoms are common features in patients with congenital disorders of glycosylation type I. In a group of patients with congenital disorders of glycosylation type I with unknown aetiology, we have previously described a distinct phenotype

  15. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  16. Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer.

    Science.gov (United States)

    Barrabés, Sílvia; Llop, Esther; Ferrer-Batallé, Montserrat; Ramírez, Manel; Aleixandre, Rosa N; Perry, Antoinette S; de Llorens, Rafael; Peracaula, Rosa

    2017-07-01

    The levels of core fucosylation and α2,3-linked sialic acid in serum Prostate Specific Antigen (PSA), using the lectins Pholiota squarrosa lectin (PhoSL) and Sambucus nigra agglutinin (SNA), can discriminate between Benign Prostatic Hyperplasia (BPH) and indolent prostate cancer (PCa) from aggressive PCa. In the present work we evaluated whether these glycosylation determinants could also be altered in urinary PSA obtained after digital rectal examination (DRE) and could also be useful for diagnosis determinations. For this purpose, α2,6-sialic acid and α1,6-fucose levels of urinary PSA from 53 patients, 18 biopsy-negative and 35 PCa patients of different aggressiveness degree, were analyzed by sandwich ELLA (Enzyme Linked Lectin Assay) using PhoSL and SNA. Changes in the levels of specific glycosylation determinants, that in serum PSA samples were indicative of PCa aggressiveness, were not found in PSA from DRE urine samples. Although urine is a simpler matrix for analyzing PSA glycosylation compared to serum, an immunopurification step was necessary to specifically detect the glycans on the PSA molecule. Those specific glycosylation determinants on urinary PSA were however not useful to improve PCa diagnosis. This could be probably due to the low proportion of PSA from the tumor in urine samples, which precludes the identification of aberrantly glycosylated PSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility

    DEFF Research Database (Denmark)

    Hansen, Jan Erik; Lund, Ole; Tolstrup, Niels

    1998-01-01

    -glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predicition of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O...... structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. charged residues were disfavoured at postition -1 and +3......-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based...

  18. Role of structure and glycosylation of adsorbed protein films in biolubrication.

    Directory of Open Access Journals (Sweden)

    Deepak H Veeregowda

    Full Text Available Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy, we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation

  19. Porphyromonas endodontalis binds, reduces and grows on human hemoglobin.

    Science.gov (United States)

    Zerr, M; Drake, D; Johnson, W; Cox, C D

    2001-08-01

    Porphyromonas endodontalis is a black-pigmented, obligate anaerobic rod-shaped bacterium implicated as playing a major role in endodontic infections. We have previously shown that P. endodontalis requires the porphyrin nucleus, preferably supplied as hemoglobin, as a growth supplement. The bacteria also actively transport free iron, although this activity does not support growth in the absence of a porphyrin source. The purpose of this study was to further investigate the binding and subsequent utilization of human hemoglobin by P. endodontalis. P. endodontalis binds hemoglobin and reduces the Fe(III) porphyrin, resulting in a steady accumulation of ferrous hemoglobin. Reduction of methemoglobin was similar to the extracellular reduction of nitrobluetetrazolium in the presence of oxidizable substrate. Turbidimetric and viable cell determinations showed that P. endodontalis grew when supplied only hemoglobin. Therefore, we conclude that hemoglobin appears to serve as a sole carbon and nitrogen source, and that these bacteria reduce extracellular compounds at the expense of oxidized substrates.

  20. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    International Nuclear Information System (INIS)

    Kalra, Rajkumar S.; Wadhwa, Renu

    2015-01-01

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein

  1. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rajkumar S., E-mail: renu-wadhwa@aist.go.jp; Wadhwa, Renu, E-mail: renu-wadhwa@aist.go.jp [Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST Central 4), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2015-02-27

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein.

  2. Reduced apolipoprotein glycosylation in patients with the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Olga V Savinova

    Full Text Available The purpose of this study was to compare the apolipoprotein composition of the three major lipoprotein classes in patients with metabolic syndrome to healthy controls.Very low density (VLDL, intermediate/low density (IDL/LDL, hereafter LDL, and high density lipoproteins (HDL fractions were isolated from plasma of 56 metabolic syndrome subjects and from 14 age-sex matched healthy volunteers. The apolipoprotein content of fractions was analyzed by one-dimensional (1D gel electrophoresis with confirmation by a combination of mass spectrometry and biochemical assays.Metabolic syndrome patients differed from healthy controls in the following ways: (1 total plasma--apoA1 was lower, whereas apoB, apoC2, apoC3, and apoE were higher; (2 VLDL--apoB, apoC3, and apoE were increased; (3 LDL--apoC3 was increased, (4 HDL--associated constitutive serum amyloid A protein (SAA4 was reduced (p<0.05 vs. controls for all. In patients with metabolic syndrome, the most extensively glycosylated (di-sialylated isoform of apoC3 was reduced in VLDL, LDL, and HDL fractions by 17%, 30%, and 25%, respectively (p<0.01 vs. controls for all. Similarly, the glycosylated isoform of apoE was reduced in VLDL, LDL, and HDL fractions by 15%, 26%, and 37% (p<0.01 vs. controls for all. Finally, glycosylated isoform of SAA4 in HDL fraction was 42% lower in patients with metabolic syndrome compared with controls (p<0.001.Patients with metabolic syndrome displayed several changes in plasma apolipoprotein composition consistent with hypertriglyceridemia and low HDL cholesterol levels. Reduced glycosylation of apoC3, apoE and SAA4 are novel findings, the pathophysiological consequences of which remain to be determined.

  3. Glycosylation analysis of recombinant neutral protease I from Aspergillus oryzae expressed in Pichia pastoris.

    Science.gov (United States)

    Lei, Da; Xu, Yang; He, Qinghua; Pang, Yifeng; Chen, Bo; Xiong, Liang; Li, Yanping

    2013-12-01

    Neutral protease I from Aspergillus oryzae 3.042 was expressed in Pichia pastoris and its N-glycosylation properties were analyzed. After purification by nickel-affinity chromatography column, the recombinant neutral protease (rNPI) was confirmed to be N-glycosylated by periodicacid/Schiff's base staining and Endo H digestion. Moreover, the deglycosylated protein's molecular weight decreased to 43.3 kDa from 54.5 kDa analyzed by SDS-PAGE and MALDI-TOF-MS, and the hyperglycosylation extent was 21 %. The N-glycosylation site of rNPI was analyzed by nano LC-MS/MS after digesting by trypsin and Glu-C, and the unique potential site Asn41 of mature peptide was found to be glycosylated. Homology modeling of the 3D structure of rNPI indicated that the attached N-glycans hardly affected neutral protease's activity due to the great distance away from the active site of the enzyme.

  4. The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells.

    Science.gov (United States)

    Fujita, Naonobu; Tamura, Ayako; Higashidani, Aya; Tonozuka, Takashi; Freeze, Hudson H; Nishikawa, Atsushi

    2008-02-01

    Mannose for mammalian glycan biosynthesis can be imported directly from the medium, derived from glucose or salvaged from endogenous or external glycans. All pathways must generate mannose 6-phosphate, the activated form of mannose. Imported or salvaged mannose is directly phosphorylated by hexokinase, whereas fructose 6-phosphate from glucose is converted to mannose 6-phosphate by phosphomannose isomerase (PMI). Normally, PMI provides the majority of mannose for glycan synthesis. To assess the contribution of PMI-independent pathways, we used PMI-null fibroblasts to study N-glycosylation of DNase I, a highly sensitive indicator protein. In PMI-null cells, imported mannose and salvaged mannose make a significant contribution to N-glycosylation. When these cells were grown in mannose-free medium along with the mannosidase inhibitor, swainsonine, to block the salvage pathways, N-glycosylation of DNase I was almost completely eliminated. Adding approximately 13 microm mannose to the medium completely restored normal glycosylation. Treatment with bafilomycin A(1), an inhibitor of lysosomal acidification, also markedly reduced N-glycosylation of DNase I, but in this case only 8 microm mannose was required to restore full glycosylation, indicating that a nonlysosomal source of mannose made a significant contribution. Glycosylation levels were greatly also reduced in glycoconjugate-free medium, when endosomal membrane trafficking was blocked by expression of a mutant SKD1. From these data, we conclude that PMI-null cells can salvage mannose from both endogenous and external glycoconjugates via lysosomal and nonlysosomal degradation pathways.

  5. Reference values of glycosylated haemoglobin and fructosamin in dogs

    Directory of Open Access Journals (Sweden)

    Olair Carlos Beltrame

    2014-09-01

    Full Text Available Glycated haemoglobin and fructosamin levels are not commonly used to diagnosis Diabetes mellitus in dogs due to a lack of reference values. To estabilish the reference values and determination methods of glycated haemoglobin and frutosamine, both male and females, healthy dogs, 2-8 years old (n=100 were used. The methodologies used were the ionic resin and the kinetic method by the reduction of blue nitrotetrazolium, respectively. Medium values of glycated haemoglobin of 5.3-7.01% and 277.52-387. 30 for fructosamin established by Brazilian Diabetes Society methods can be adopted for dogs, both males and females.

  6. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  7. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  8. Hemoglobin, red blood cell count, hematocrit and derived parameters for diagnosing anemia in elderly males

    International Nuclear Information System (INIS)

    Khan, Z.; Nawaz, M.

    2013-01-01

    Anemia is one of the most common micronutrient deficiency in our community. Nutritional anaemias are caused when there is an inadequate body store of a specific nutrient needed for hemoglobin synthesis. The most common nutrient deficiency is of iron. Therefore, a cross-sectional survey was conducted on the healthy elderly male, aged >= 40 and 77 years (n=60) volunteers in order to assess their blood parameters, such as hemoglobin concentration (Hb), hematocrit (HCT), red blood cell count (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) for the diagnosis of anemia. The demographic results showed mean values (50.10+-8.79) years for age, 66-68 +- 1.95 inches for height , 71.43 +- 6.43 kg body weight, 98.34+-0.48 degree F body temperature, 124 +- 8.67 systolic blood pressure, 82.17 +- 4.15 diastolic pressure while, The pulse rate was found to be 74.63 +- 7.02/minute. Similarly, mean values for lean body weight (LBW) found to be 49.9+-2.89, ideal body weight (IBW) 60.9 +- 4.49, body surface area (BSA) was 1.8 +- 0.1 m2 whereas, body mass index (BMI) showed mean value 24.9 +- 2.6 kg/m2. More so, overall mean Hb found to be 13.60 g/dl, RBC 4.6 mill/mm3, HCT/PCV 43%, MCV 92.95fl, MCH 29.42 pg and MCHC was found to be 31.73 g/dl. The normal range of Hb for men was 13-17 g/dl and 31.67% of the subjects participated in the study was considered to be anemic showing less Hb than normal range. The volunteers were suggested to improve the dietary habits and to take iron supplements in order to overcome the iron deficiency anemia. (author)

  9. Is glycosylated haemoglobin a marker of fertility?

    DEFF Research Database (Denmark)

    Hjollund, N H; Jensen, Tina Kold; Bonde, Jens Peter

    1999-01-01

    We performed a follow-up study of time to pregnancy in a population of first-time pregnancy planners without previous reproductive experience. The objective of this paper is to report and discuss a finding of a strong relationship between glycosylated haemoglobin (HbA1C) and fertility. A total...

  10. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    Science.gov (United States)

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  11. Roles of the β 146 histidyl residue in the molecular basis of the Bohr Effect of hemoglobin: A proton nuclear magnetic resonance study

    International Nuclear Information System (INIS)

    Busch, M.R.; Mace, J.E.; Ho, N.T.; Ho, Chien

    1991-01-01

    Assessment of the roles of the carboxyl-terminal β146 histidyl residues in the alkaline Bohr effect in human and normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146β)-hemoglobin, and the mutant hemoglobins Cowtown (β146His → Leu) and York (β146His → Pro), the authors have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The results indicate that the contribution of the β146 histidyl residues is 0.52 H + /hemoglobin tetramer at pH 7.6, markedly less than 0.8 H + /hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (β146His → Leu) by Shih and Perutz. They have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and they suggest that these pK differences may in part account for this discrepancy. The results show that the pK values of β146 histidyl residues in the carbonmonoxy form of hemoglobin are substantially affected by the presence of chloride and other anions in the solvent, and thus, the contribution of this amino acid residue to the alkaline Bohr effect can be shown to vary widely in magnitude, depending on the solvent composition. These results demonstrate that the detailed molecular mechanisms of the alkaline Bohr effect are not unique but are affected both by the hemoglobin structure and by the interactions with the solvent components in which the hemoglobin molecule resides

  12. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Rapacki, Kristoffer

    1997-01-01

    O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is...... patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP....

  13. Characterization of kallikrein-related peptidase 4 glycosylations.

    Science.gov (United States)

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C; Simmer, James P

    2011-12-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1-6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. © 2011 Eur J Oral Sci.

  14. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study.

    Science.gov (United States)

    Lee, Hui Sun; Qi, Yifei; Im, Wonpil

    2015-03-09

    N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.

  15. Biphasic oxidation of oxy-hemoglobin in bloodstains

    NARCIS (Netherlands)

    Bremmer, Rolf H.; de Bruin, Daniel M.; de Joode, Maarten; Buma, Wybren Jan; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2)) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of

  16. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    NARCIS (Netherlands)

    Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G.

    2011-01-01

    Background In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions

  17. Receptor targeting of hemoglobin mediated by the haptoglobins

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Moestrup, Søren Kragh

    2009-01-01

    Haptoglobin, the haptoglobin-hemoglobin receptor CD163, and the heme oxygenase-1 are proteins with a well-established function in the clearance and metabolism of "free" hemoglobin released during intravascular hemolysis. This scavenging system counteracts the potentially harmful oxidative and NO......-scavenging effects associated with "free" hemoglobin, and, furthermore, elicits an anti-inflammatory response. In the late primate evolution, haptoglobin variants with distinct functions have arisen, including haptoglobin polymers and the haptoglobin-related protein. The latter associates with a subspecies of high......-density lipoprotein (HDL) particles playing a crucial role in the innate immunity against certain trypanosome parasites. Recent studies have elucidated this fairly sophisticated immune defense mechanism that takes advantage of a trypanosomal haptoglobin-hemoglobin receptor evolved to supply the parasite with heme...

  18. Cell volume regulation in hemoglobin CC and AA erythrocytes

    International Nuclear Information System (INIS)

    Berkowitz, L.R.; Orringer, E.P.

    1987-01-01

    Swelling hemoglobin CC erythrocytes stimulates a ouabain-insensitive K flux that restores original cell volume. Studies were performed with the K analog, 86 Rb. This volume regulatory pathway was characterized for its anion dependence, sensitivity to loop diuretics, and requirement for Na. The swelling-induced K flux was eliminated if intracellular chloride was replaced by nitrate and both swelling-activated K influx and efflux were partially inhibited by 1 mM furosemide or bumetanide. K influx in swollen hemoglobin CC cells was not diminished when Na in the incubation medium was replaced with choline, indicating Na independence of the swelling-induced flux. Identical experiments with hemoglobin AA cells also demonstrated a swelling-induced increase in K flux, but the magnitude and duration of this increase were considerably less than that seen with hemoglobin CC cells. The increased K flux in hemoglobin AA cells was likewise sensitive to anion replacement and to loop diuretics and did not require the presence of Na. These data indicate that a volume-activated K pathway with similar transport characteristics exists in both hemoglobin CC and AA red cells

  19. Glycated Hemoglobin Levels in Patients with Decompensated Cirrhosis

    Directory of Open Access Journals (Sweden)

    Jeffrey Nadelson

    2016-01-01

    Full Text Available Introduction. Aim of this study is to determine if HbA1c levels are a reliable predictor of glycemic control in patients with decompensated cirrhosis. Methods. 200 unique patients referred for liver transplantation at University of Tennessee/Methodist University Transplant Institute with a HbA1c result were included. Three glucose levels prior to the “measured” A1c (MA1c were input into an HbA1c calculator from the American Diabetes Association website to determine the “calculated” A1c (CA1c. The differences between MA1c and CA1c levels were computed. Patients were divided into three groups: group A, difference of 1.5. Results. 97 (49% patients had hemoglobin A1c of less than 5%. Discordance between calculated and measured HbA1c of >0.5% was seen in 47% (n=94. Higher level of discordance of greater than >1.5 was in 12% of patients (n=24. Hemoglobin was an independent predictor for higher discordance (odds ratio 0.77 95%, CI 0.60–0.99, and p value 0.04. HbA1c was an independent predictor of occurrence of HCC (OR 2.69 955, CI 1.38–5.43, and p value 0.008. Conclusion. HbA1c is not a reliable predictor of glycemic control in patients with decompensated cirrhosis, especially in those with severe anemia.

  20. Clinical coaching in primary care: Capable of improving control in patients with type 2 diabetes mellitus?

    Science.gov (United States)

    González-Guajardo, Eduardo Enrique; Salinas-Martínez, Ana María; Botello-García, Antonio; Mathiew-Quiros, Álvaro

    2016-06-01

    Few clinical coaching studies are both endorsed by real cases and focused on reducing suboptimal diabetes control. We evaluated the effectiveness of coaching on improving type 2 diabetes goals after 3 years of implementation in primary care. A cross-sectional study with follow up was conducted during 2008-2011. Coaching consisted of guiding family doctors to improve their clinical abilities, and it was conducted by a medical doctor trained in skill building, experiential learning, and goal setting. Effectiveness was assessed by means of fasting plasma glucose and glycosylated hemoglobin outcomes. The main analysis consisted of 1×3 and 2×3 repeated measures ANOVAs. A significant coaching×time interaction was observed, indicating that the difference in glucose between primary care units with and without coaching increased over time (Wilks' lambda multivariate test, PCoaching increased 1.4 times (95%CI 1.3, 1.5) the possibility of reaching the fasting glucose goal after controlling for baseline values. There was also a significant improvement in glycosylated hemoglobin (Bonferroni-corrected p-value for pairwise comparisons, Pcoaching was found to be worth the effort to improve type 2 diabetes control in primary care. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  1. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  2. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  3. Thermotolerance and protein glycosylation: Inhibition studies with sodium fluoride, azauridine and tunicamycin

    International Nuclear Information System (INIS)

    Bursey, D.L.; Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    The glycosylation hypothesis predicts increased incorporation of monosaccharides into 0-linked glycoproteins during thermotolerance development and inhibition of thermotolerance when this process is blocked. Specific inhibitors of 0-linked glycosylation are not available. The authors examined the effect of non-specific inhibition of glycosylation on thermotolerance development by: 1. restriction of both exogenous sugars and endogeneous sugar synthesis with NaF to block glycolysis while providing L-glutamine as a substrate for ATP synthesis in the TCA cycle; or 2. inhibition of UDP-sugar synthesis using azauridine and tunicamycin. Inhibitors were added to cell cultures after heat conditioning (10 min, 45 0 ) and removed after 6 hr prior to 45 0 -test heating. Sugar deprivation was achieved with 10mM NaF in glucose-free EBSS, supplemented with 2mM L-glutamine. Synthesis of UDP-sugars was inhibited with 1mM azauridine + 1μg/ml tunicamycin. Thermotolerance development was inhibited 87% by NaF/glutamine and 47% by azauridine/tunicamycin. For example, the D/sub o/ of the thermotolerant cells was 42.5 min (control D/sub o/ = 3 min), but only 5.5 min with inhibition by the NaF solution. These results support the absolute requirement of sugar precursors for thermotolerance development as predicted by the glycosylation hypothesis

  4. Status gizi, kadar hemoglobin, ureum, dan kreatinin pasien konseling gizi hemodialisa

    Directory of Open Access Journals (Sweden)

    Kristiawan P. A. Nugroho

    2018-01-01

    Full Text Available ABSTRACTBackground : Patients who are undergoing hemodialysis therapy must know which foods that may be consumed including foods containing animal protein, low potassium, and low salt. The role of nutritionists is needed to provide nutritional counseling related to dietary adjustment. Studies that have been conducted by previous researchers are about diet from hemodialysis patients and the various factors that affect dietary compliance of patients, but no one has been studying the relation related to nutritional status, hemoglobin, ureum, and creatinine levels before and after doing a counseling that also has a relationship with diet and dietary compliance for hemodialysis patients.Objectives : To analyze the relationship of nutritional status, hemoglobin, ureum, and creatinine levels of hemodialysis patients before and after doing nutritional counseling in RSUD Ungaran. Methods : The study used a descriptive quantitaive method with one group pretest posttest design with cross sectional approach. The research was conducted in Hemodialysis Unit of RSUD Ungaran with a total sampling of 30 hemodialysis patient. Primary data were obtained from respondent’s data entry and FFQ, observation, and interviews. Secondary data were obtained from respondent’s medical records include the level of hemoglobin, urea, and cretinine. Data were analyzed using SPSS programme with Paired t Test. Results : The results of SPSS analysis showed that probability value from urea men 0,016 < 0,05 and urea women – hemoglobin men and women – creatinin men and women overall 0,000 < 0,05, which means that the average levels of those components before and after doing a nutritional counseling is different.Conclusions : A nutritional counseling indicate any change in the nutritional status of the entire hemodialysis patients, based on hemoglobin levels increased, while urea and creatinine levels decreased; but all those components are not in the normal category. Levels of

  5. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin...

  6. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  7. A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vester-Christensen, Malene B.; Goth, Christoffer K.

    2011-01-01

    Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition...... and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc......-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model...

  8. THE EFFECTIVENESS OF MIXED JUICE MUNG BEAN AND GUAVA FOR INCREASING HEMOGLOBIN LEVEL IN CANCER PATIENT WITH CHEMOTHERAPY

    Directory of Open Access Journals (Sweden)

    Nurul Huda

    2016-09-01

    Full Text Available Cancer is a chronic disease with high morbidity and mortality rate in a year. One of therapy in curing cancer is chemotherapy. But unfortunately chemotherapy has some negative effects such as decreasing the level of hemoglobin (Hb. Mung bean that contain a lot of iron and Guava which is rich of vitamin C for iron absorption are useful in cancer patient with chemotherapy. Therefore, a mixture of both is believed in increasing hemoglobin level significantly. The purpose of this study was to determine the effectiveness of mixed juice mung bean and guava for increasing hemoglobin level in experiment and control group of cancer patient with chemotherapy.This research used Quasi Experiment design with pretest-posttest design control group approach. The total number of respondent was 30 chosen by purposive sampling method. Results of this study showed hemoglobin level in experiment group 14.07 and 10.42 in control group with p value (0,000 < α (0,05. It can be concluded that a mixture juice mung beans and guava effective for increasing hemoglobin level in cancer patient with chemotherapy. This research suggests that this mixture can be an option for nursing intervention in increasing hemoglobin level for cancer patient after receiving chemotherapy.

  9. Do blood tests cause anemia in hospitalized patients? The effect of diagnostic phlebotomy on hemoglobin and hematocrit levels.

    Science.gov (United States)

    Thavendiranathan, Paaladinesh; Bagai, Akshay; Ebidia, Albert; Detsky, Allan S; Choudhry, Niteesh K

    2005-06-01

    To determine whether phlebotomy contributes to changes in hemoglobin and hematocrit levels in hospitalized general internal medicine patients. Retrospective cohort study. General internal medicine inpatient service at a tertiary care hospital. All adult patients discharged from the Toronto General Hospital's internal medicine service between January 1 and June 30, 2001. A total of 989 hospitalizations were reviewed and 404 hospitalizations were included in our analysis. Mean (SD) hemoglobin and hematocrit changes during hospitalization were 7.9 (12.6) g/L (Phemoglobin and hematocrit were predicted by the volume of phlebotomy, length of hospital stay, admission hemoglobin/hematocrit value, age, Charlson comorbidity index, and admission intravascular volume status. The volume of phlebotomy remained a strong predictor of drop in hemoglobin and hematocrit after adjusting for other predictors using multivariate analysis (Phemoglobin and hematocrit of 7.0 g/L and 1.9%, respectively. Phlebotomy is highly associated with changes in hemoglobin and hematocrit levels for patients admitted to an internal medicine service and can contribute to anemia. This anemia, in turn, may have significant consequences, especially for patients with cardiorespiratory diseases. Knowing the expected changes in hemoglobin and hematocrit due to diagnostic phlebotomy will help guide when to investigate anemia in hospitalized patients.

  10. Biochemistry Applied to Everyday Life: Chemical Equilibrium and the Transporting Function of the Hemoglobin

    Directory of Open Access Journals (Sweden)

    Carlos Mario Echeverría Palacio

    2006-12-01

    Full Text Available The hemoglobin is a blood protein which cantransport oxygen, a gas insoluble in water, todifferent organs where it is required for the properfunction; this protein also transports themetabolic products, CO2 and H+ for theirexcretion. This process depends on pH, the BPGconcentration, pO2 and pCO2. The cooperativebinding between hemoglobin and those compoundsand the conformational changes necessaryfor oxygen and CO2 uptake and release inthe specific place where they are required. Abruptchanges of atmospheric pressure associatedwith height and the exposure to other gases suchas CO present in vehicles and closed roomscould compromise the normal functioning of theorganism because their presence affects thetransport function of the hemoglobin. In thispaper, we will explain everyday phenomenarelated to the transport of gases through hemoglobinas a demonstration that a knowledge ofbiochemistry begins to be useful from now on to understand everyday situations and give usan expectation of their value to comprehendmany health problems that would be faced inthe future

  11. [Effect of citric acid stimulation on salivary alpha-amylase, total protein, salivary flow rate and pH value in Pi deficiency children].

    Science.gov (United States)

    Yang, Ze-min; Chen, Long-hui; Lin, Jing; Zhang, Min; Yang, Xiao-rong; Chen, Wei-wen

    2015-02-01

    To compare the effect of citric acid stimulation on salivary alpha-amylase (sAA), total protein (TP), salivary flow rate, and pH value between Pi deficiency (PD) children and healthy children, thereby providing evidence for Pi controlling saliva theory. Twenty PD children were recruited, and 29 healthy children were also recruited at the same time. Saliva samples from all subjects were collected before and after citric acid stimulation. The sAA activity and amount, TP contents, salivary flow rate, and pH value were determined and compared. (1) Citric acid stimulation was able to significantly increase salivary flow rate, pH value, sAA activities, sAA specific activity and sAA amount (including glycosylated and non-glycosylated sAA amount) in healthy children (Psalivary flow rate, pH value, and glycosylated sAA levels in PD children (Psalivary indices between the two groups (P>0.05), salivary indices except salivary flow rate and glycosylated sAA levels decreased more in PD children. There was statistical difference in sAA activity ratio, sAA specific activity ratio, and the ratio of glycosylated sAA levels between PD children and healthy children (P<0.05). PD children had decreased response to citric acid stimulation.

  12. Proteomics and pathway analysis of N-glycosylated mammary gland proteins in response to Escherichia coli mastitis in cattle.

    Science.gov (United States)

    Yang, Yongxin; Shen, Weijun; Zhao, Xiaowei; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong

    2014-06-01

    The aim of this study was to investigate the N-linked glycosylated protein profile of mammary tissue from healthy cows and cows with mastitis due to Escherichia coli, in order to understand the molecular mechanisms of the host response to mastitis. N-glycopeptides were enriched with a lectin mixture and identified through high-accuracy mass spectrometry. A total of 551 N-glycosylation sites, corresponding to 294 proteins, were identified in the mammary tissues of healthy cows; these glycoproteins were categorised into three functional groups and clustered into 11 specific pathways. A total of 511 N-glycosylation sites, corresponding to 283 glycosylated proteins, were detected in the mammary tissues of cows with E. coli mastitis. There were differences in N-glycosylation sites in 98 proteins in the mammary tissues of healthy cows and cows with mastitis due to E. coli. Most proteins with altered glycosylation were those involved in responses to stress, cell adhesion and the immune response, and were assigned to five specific pathways based on their gene ontology annotation. The results from this study show that the glycosylated protein profile in the mammary tissues of healthy and mastitic cows are different, and altered glycoproteins are associated with several pathways, including the lysosome and O-glycan biosynthesis pathways. Copyright © 2014. Published by Elsevier Ltd.

  13. Efficacy and safety of once-weekly intravenous epoetin alfa in maintaining hemoglobin levels in hemodialysis patients.

    Science.gov (United States)

    Locatelli, Francesco; Villa, Giuseppe; Messa, Piergiorgio; Filippini, Armando; Cannella, Giuseppe; De Ferrari, Giacomo; Naso, Agostino; Rossi, Egidio; Formica, Marco; Lombardi, Luigi; Rotolo, Ugo; Conte, Feruccio

    2008-01-01

    Although an erythropoiesis-stimulating agent (ESA) is most frequently administered intravenously for treatment of anemia in patients with chronic kidney disease who are on dialysis, few studies have compared the efficacy of different intravenous (i.v.) dosing schedules. This multicenter, phase IIIb, open-label, controlled study randomized 289 stable hemodialysis patients to continue with conventional dosing of i.v. epoetin alfa or darbepoetin, or to switch to once-weekly i.v. epoetin alfa at the same cumulative weekly starting dose, to maintain hemoglobin levels at 11.0-13.0 g/dL, and within 1.0 g/dL of the baseline value. Hemoglobin levels and ESA doses were recorded every 4 weeks for 28 weeks. Hemoglobin levels fell significantly and ESA doses increased significantly between baseline and week 28 (mean of week 16-28 values) in the once-weekly epoetin alfa group, compared with the conventional treatment group (phemoglobin levels between the groups was 0.73 g/dL (greater than the threshold for therapeutic equivalence of 0.5 g/dL). The changes between groups from baseline was significant at all time points for hemoglobin levels (0.36, 0.46, 0.81, 0.87, 0.78, 0.62 and 0.49 g/dL) and from week 12 for ESA dose (718.5, 1,326.5, 1,732.0, 1,839.7 and 1,959.1 IU/week; p=0.005). Hemoglobin was maintained at the target level in 78% and 84% of patients on conventional dosing, and 67% and 64% of those on once-weekly epoetin alfa in the intention-to-treat (p=0.1) and per protocol (p=0.016) populations, respectively. This study did not show therapeutic equivalence of once-weekly i.v. epoetin alfa with conventional dosing regimens.

  14. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype

    NARCIS (Netherlands)

    Iqbal, Z.; Shahzad, M.; Vissers, L.E.L.M.; Scherpenzeel, M. van; Gilissen, C.; Razzaq, A.; Zahoor, M.Y.; Khan, S.N.; Kleefstra, T.; Veltman, J.A.; Brouwer, A.P.M. de; Lefeber, D.J.; Bokhoven, H. van; Riazuddin, S.

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a large group of recessive multisystem disorders caused by impaired protein or lipid glycosylation. The CDG-I subgroup is characterized by protein N-glycosylation defects originating in the endoplasmic reticulum. The genetic defect is known for 17

  15. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  16. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Science.gov (United States)

    2010-01-01

    Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves

  17. Modeling the mechanism of glycosylation reactions between ethanol, 1,2-ethanediol and methoxymethanol.

    Science.gov (United States)

    Azofra, Luis Miguel; Alkorta, Ibon; Toro-Labbé, Alejandro; Elguero, José

    2013-09-07

    The mechanism of the S(N)2 model glycosylation reaction between ethanol, 1,2-ethanediol and methoxymethanol has been studied theoretically at the B3LYP/6-311+G(d,p) computational level. Three different types of reactions have been explored: (i) the exchange of hydroxyl groups between these model systems; (ii) the basic catalysis reactions by combination of the substrates as glycosyl donors (neutral species) and acceptors (enolate species); and (iii) the effect on the reaction profile of an explicit H2O molecule in the reactions considered in (ii). The reaction force, the electronic chemical potential and the reaction electronic flux have been characterized for the reaction path in each case. Energy calculations show that methoxymethanol is the worst glycosyl donor model among the ones studied here, while 1,2-ethanediol is the best, having the lowest activation barrier of 74.7 kJ mol(-1) for the reaction between this one and the ethanolate as the glycosyl acceptor model. In general, the presence of direct interactions between the atoms involved in the penta-coordinated TS increases the activation energies of the processes.

  18. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity.

    Science.gov (United States)

    Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko

    2014-01-01

    A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Comparative Glycoproteome Analysis: Dynamics of Protein Glycosylation during Metamorphic Transition from Pelagic to Benthic Life Stages in Three Invertebrates

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2012-02-03

    The life cycle of most benthic marine invertebrates has two distinct stages: the pelagic larval stage and the sessile juvenile stage. The transition between the larval stage and the juvenile stage is often abrupt and may be triggered by post-translational modification of proteins. Glycosylation, a very important post-translational modification, influences the biological activity of proteins. We used two-dimensional gel electrophoresis (2-DE) followed by glycoprotein-specific fluorescence staining and mass spectrometry with the goal of identifying glycosylation pattern changes during larval settlement and metamorphosis in barnacles, bryozoans, and polychaetes. Our results revealed substantial changes in the protein glycosylation patterns from larval to juvenile stages. Before metamorphosis, the degree of protein glycosylation was high in the barnacle Balanus (=Amphibalanus) amphitrite and the spionid polychaete Pseudopolydora vexillosa, whereas it increased after metamorphosis in the bryozoan Bugula neritina. We identified 19 abundant and differentially glycosylated proteins in these three species. Among the proteins, cellular stress- and metabolism-related proteins exhibited distinct glycosylation in B. amphitrite and B. neritina, whereas fatty acid metabolism-related proteins were abundantly glycosylated in P. vexillosa. Furthermore, the protein and gene expression analysis of some selected glycoproteins revealed that the degree of protein glycosylation did not always complement with transcriptional and translational changes associated with the larval-juvenile transition. The current study provides preliminary information on protein glycosylation in marine invertebrates that will serve as a solid basis for future comprehensive analysis of glycobiology during larval settlement and metamorphosis. © 2011 American Chemical Society.

  20. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca

    DEFF Research Database (Denmark)

    Jacobsen-Lyon, K; Jensen, Erik Østergaard; Jørgensen, Jan-Elo

    1995-01-01

    Casuarina glauca has a gene encoding hemoglobin (cashb-nonsym). This gene is expressed in a number of plant tissues. Casuarina also has a second family of hemoglobin genes (cashb-sym) expressed at a high level in the nodules that Casuarina forms in a nitrogen-fixing symbiosis with the actinomycete...... of the Casuarina gene. The finding that the nonsymbiotic Casuarina gene is also correctly expressed in L. corniculatus suggests to us that a comparable non-symbiotic hemoglobin gene will be found in legume species. Udgivelsesdato: 1995-Feb...

  1. Identification of a haptoglobin-hemoglobin complex in the Alaskan Least Cisco (Coregonus sardinella).

    Science.gov (United States)

    Wahl, S M; Boger, J K; Michael, V; Duffy, L K

    1992-01-01

    The hemoglobin and a hemoglobin binding protein have been characterized in the Arctic fish (Coregonus sardinella). The evolutionary significance of the hemoglobin and plasma protein differences between fish and mammals is still unresolved. Blood samples from the Alaskan Least Cisco were separated into plasma and hemoglobin fractions and the proteins in these fractions were analyzed both by alkaline agarose gel electrophoresis, by isolelectric focusing, and by capillary electrophoresis. Staining the plasma proteins gels with o-dianisidine revealed hemoglobin containing protein complexes. A hemoglobin-containing band was observed in hemolyzed plasma which did not migrate with free hemoglobin, and is believed to be hemoglobin-haptoglobin complex. Size exclusion chromatography further characterized the hemoglobin as disassociating freely into dimers, and hemoglobin-haptoglobin complex having a molecular weight greater then 200,000 daltons.

  2. Keeping Track of Your Blood Sugar

    Science.gov (United States)

    ... glycosylated hemoglobin test (also known as the hemoglobin A1c or HbA1c test) will tell you how you've been ... that has glucose attached to it is called HbA1c. In general, the lower your HbA1c, the better ...

  3. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy

    NARCIS (Netherlands)

    A. Bondt (Albert); M. Wuhrer (Manfred); T.M. Kuijper (Martijn); J.M.W. Hazes (Mieke); R.J.E.M. Dolhain (Radboud)

    2016-01-01

    textabstractBackground: Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. Methods:

  4. Radiation - induced changes in the optical properties of hemoglobin molecule

    International Nuclear Information System (INIS)

    Selim, N.S; El-Marakby, S.M.

    2009-01-01

    Adult male albino rats were exposed to different doses of gamma radiation from Cs-137 source. Hemoglobin samples were analyzed 24 hrs after irradiation. The UV-visible spectrum of hemoglobin molecule was measured in the range 200 to 700 nm. The overall spectrum of the hemoglobin molecule showed hypochromicity that increased with dose increase. To investigate the effect of radiation on the hemoglobin molecule, different parameters of the spectrum were calculated: molar absorption coefficient, absorption cross section, transition dipole moment , dipole length, the optical energy gap and activation energy for each characteristic peak. The obtained results revealed that the radiation effect can induce rearrangement of the transition dipole moments and change molecular energy levels of the hemoglobin molecule

  5. SIKLODEKSTRIN GLIKOSIL TRANSFERASE DAN PEMANFAATANNYA DALAM INDUSTRI [Cyclodextrin Glycosyl Transferase and its application in industries

    Directory of Open Access Journals (Sweden)

    Budiasih Wahyuntari

    2005-12-01

    Full Text Available Cyclodextrin glycosyl transferase (CGT-ase is mainly produced by Bacilli. Systematical name of the enzyme is E.C. 2.4.1.19 a-1,4 glucan-4-glycosyl transferase. The enzyme catalyzes hydrolysis of starch intramolecular, and intermolecular transglycosylation of a-1,4, glucan chains. Cyclodextrins are a-1,4 linked cyclic oligosaccharides resulting from enzymatic degradation of starch by cyclodextrin glycosyl transferase through untramolecular transglycosylation. The major cyclodextrins are made up of 6, 7 and 8 glucopyranose units which are known as a-, b-, and y-cyclodextrin. All CGT-ase catalyze three kinds of cyclodextrins, the proportion of the cyclodextrins depends on the enzyme source and reaction conditions. The intermolecular transglycosylation ability of the enzyme has been applied in transfering glycosyl residues into suitable acceptor. Transglycosylation by the enzymes have been tested to improve solubility of some flavonoids and to favor precipitation ci some glycosides.

  6. Hemoglobin levels in persons with depressive and/or anxiety disorders

    NARCIS (Netherlands)

    Lever-van Milligen, Bianca A.; Vogelzangs, Nicole; Smit, Johannes H.; Penninx, Brenda W. J. H.

    Objective: Both low and high hemoglobin levels lead to more physical diseases, and both are linked to mortality. Low hemoglobin, often classified as anemia, has also been linked to more depressive symptoms, but whether both hemoglobin extremes are associated with depressive disorder and potentially

  7. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling.

    Directory of Open Access Journals (Sweden)

    Suresh Marada

    2015-08-01

    Full Text Available The G protein-coupled receptor (GPCR Smoothened (Smo is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.

  8. Ability of the Masimo pulse CO-Oximeter to detect changes in hemoglobin.

    Science.gov (United States)

    Colquhoun, Douglas A; Forkin, Katherine T; Durieux, Marcel E; Thiele, Robert H

    2012-04-01

    The decision to administer blood products is complex and multifactorial. Accurate assessment of the concentration of hemoglobin [Hgb] is a key component of this evaluation. Recently a noninvasive method of continuously measuring hemoglobin (SpHb) has become available with multi-wavelength Pulse CO-Oximetry. The accuracy of this device is well documented, but the trending ability of this monitor has not been previously described. Twenty patients undergoing major thoracic and lumbar spine surgery were recruited. All patients received radial arterial lines. On the contralateral index finger, a R1 25 sensor (Rev E) was applied and connected to a Radical-7 Pulse CO-Oximeter (both Masimo Corp, Irvine, CA). Blood samples were drawn intermittently at the anesthesia provider's discretion and were analyzed by the operating room satellite laboratory CO-Oximeter. The value of Hgb and SpHb at that time point was compared. Trend analysis was performed by the four quadrant plot technique, testing directionality of change, and Critchley's polar plot method testing both directionality and magnitude of the change in values. Eighty-eight samples recorded at times of sufficient signal quality were available for analysis. Four quadrant plot analysis revealed 94% of data within the quadrants associated with the correct direction change, and 90% of data points lay within the analysis bounds proposed by Critchley. Pulse CO-Oximetry offers an acceptable trend monitor in patients undergoing major spine surgery. Future work should explore the ability of this device to detect large changes in hemoglobin, as well as its applicability in additional surgical and non-surgical patient populations.

  9. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35.

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    Full Text Available The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS, which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs in their C-termini. Hemin-binding protein 35 (HBP35, which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.

  10. Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis

    DEFF Research Database (Denmark)

    Wang, Yaping; Elhiti, Mohamed; Hebelstrup, Kim

    2011-01-01

    Over the past few years non-symbiotic plant hemoglobins have been described in a variety of plant species where they fulfill several functions ranging from detoxification processes to basic aspects of plant growth and post-embryonic development. To date no information is available on the role...... of hemoglobins during invitro morphogenesis. Shoot organogenesis was induced in Arabidopsis lines constitutively expressing class 1, 2 and 3 hemoglobins (GLB1, 2 and 3) and lines in which the respective genes were either downregulated by RNAi (GLB1) or knocked out (GLB2 and GLB3). The process was executed......, 15, and 16), feed-back repressors of the cytokinin pathway, was repressed in both hemoglobin over-expressors whereas that of several Type-B ARRs (ARR2, 12, and 13), transcription activators of cytokinin-responsive genes, was induced. Such changes enhanced the sensitivity of the root explants...

  11. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Derksen, Ninotska I L; Ooijevaar-de Heer, Pleuni; van Schie, Karin A; Kruithof, Simone; Berkowska, Magdalena A; van der Schoot, C Ellen; IJspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E M; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-02-20

    A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N -linked glycans, a process conditional on the introduction of consensus amino acid motifs ( N -glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N -glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.

  12. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry

    NARCIS (Netherlands)

    Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2017-01-01

    The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis

  13. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer

    Directory of Open Access Journals (Sweden)

    Justine H. Dewald

    2016-11-01

    Full Text Available Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.

  14. General N-and O-Linked Glycosylation of Lipoproteins in Mycoplasmas and Role of Exogenous Oligosaccharide.

    Science.gov (United States)

    Daubenspeck, James M; Jordan, David S; Simmons, Warren; Renfrow, Matthew B; Dybvig, Kevin

    2015-01-01

    The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.

  15. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of......-glycans found in different organisms and their principle biosynthetic pathways...

  16. Diabetes-induced increases in 131I-albumin permeation are unaffected by essential fatty acid depletion

    International Nuclear Information System (INIS)

    Williamson, J.R.; Lefkowith, J.B.; Chang, K.; Tilton, R.G.

    1990-01-01

    The authors assessed effects of essential fatty acid deficiency (EFAD) on regional 131 I-albumin permeation in diabetic and age-matched control rats. Male, Sprague-Dawley rats (50-75 g) were randomized into EFAD diet or normal diet groups. Three months later, diabetes was induced in one half of the rats in each group by injecting i.v. 35-45 mg/kg b.w. streptozotocin. One month later, 131 I-albumin clearance (μ g plasma/g tissue/minute) was assessed as described previously (Circ Res 64;890, 1989). Within controls, EFAD decreased body weight gain 28% but did not affect control values for plasma glucose (118±8 (SD) mg/dl) or glycosylated hemoglobin (1.33±0.22 % of total hemoglobin). In normal diet and EFAD diabetics, plasma glucose (535±64 and 419±161, respectively) and glycosylated hemoglobin (4.38±0.97 and 2.97±1.69) were increased significantly versus controls. Diabetes increased 131 I-albumin clearance in retinal (5.1x controls), choroid (3.4x), anterior uvea (2.7x), aorta (3.5x), and sciatic nerve (2.2x). No differences were evident in tissue 131 I-albumin clearances between both control groups or both diabetic groups. These results suggest that essential fatty acids do not modulate diabetes-induced changes in endothelial cell barrier function

  17. Role of protein glycosylation on the expression of muscarinic receptors of N4TG1 neuroblastoma cells

    International Nuclear Information System (INIS)

    Ahmad, A.; Chiang, P.K.

    1986-01-01

    Muscarinic acetylcholine receptors (mAChR) are glycoproteins. Experiments were conducted to determine whether active glycosylation of proteins in N4TG1 neuroblastoma cells could affect the expression of muscarinic receptors on the cell surface. The binding of radioactive N-methylscopolamine, a membrane impermeable ligand, to intact cells was used as a measure of mAChR. In the presence of the inhibitors of glycosylation, such as tunicamycin, monensin and amphomycin, N-linked glycosylation of proteins in the N4TG1 cells was inhibited, as measured by the incorporation of radioactive glucosamine or mannose in proteins. At the concentrations of tunicamycin and monensin used, the glycosylation of proteins after 3 hours were drastically reduced, but the number of mAChR in the cells was not altered. The apparent lack of effect within a short incubation period could be attributed to the presence of preformed oligosaccharide dolichol readily available for N-glycosylation. However, after 24 hours, tunicamycin (0.05 μg/ml) caused a decrease in the number of mAChR by 17% without having any effect on protein synthesis. Therefore, de novo glycosylation of proteins may be required for the expression of mAChR receptors in the N4TG1 neuroblastoma cell surface

  18. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins

    DEFF Research Database (Denmark)

    Hägglund, Per; Matthiesen, R.; Elortza, F.

    2007-01-01

    and N-acetyl-β-glucosaminidase) are also included. The two strategies were here applied to identify 103 N-glycosylation sites in the Cohn IV fraction of human plasma. In addition, Endo D/H digestion uniquely enabled identification of 23 fucosylated N-glycosylation sites. Several O-glycosylated peptides......, thereby reducing the complexity and facilitating glycosylation site determinations. Here, we have used two different enzymatic deglycosylation strategies for N-glycosylation site analysis. (1) Removal of entire N-glycan chains by peptide- N-glycosidase (PNGase) digestion, with concomitant deamidation...... of the released asparagine residue. The reaction is carried out in H218O to facilitate identification of the formerly glycosylated peptide by incorporatation of 18O into the formed aspartic acid residue. (2) Digestion with two endo-β- N-acetylglucosaminidases (Endo D and Endo H) that cleave the glycosidic bond...

  19. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1)*

    Science.gov (United States)

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.

    2016-01-01

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271

  20. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  1. Stannylene‐Mediated Regioselective 6‐O‐Glycosylation of Unprotected Phenyl 1‐Thioglycopyranosides

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    2013-01-01

    acetal, and then subjected to selective glycosylation at the 6‐position with the Koenigs–Knorr protocol. Peracylated glycosyl bromides of D‐glucose, D‐galactose, D‐mannose and D‐glucosamine were employed as the donors to give the corresponding (1→6)‐linked disaccharides in moderate to good yields......‐thio‐β‐D‐glucopyranoside gave rise to the corresponding (1→6)‐linked trisaccharides in moderate yields....

  2. The Prognostic Value of Hemoglobin Concentration in Postoperative Radiotherapy of 835 Patients With Laryngeal Cancer

    International Nuclear Information System (INIS)

    Rutkowski, Tomasz; Suwinski, Rafal; Idasiak, Adam

    2007-01-01

    Purpose: To investigate the prognostic value of hemoglobin (Hb) concentration in patients with laryngeal cancer treated with postoperative radiotherapy (pRT). Methods and Materials: The records of 835 patients who underwent pRT between 1980 and 2003 were reviewed. Most patients (526 of 835 patients; 63%) were in advanced clinical stages (T3-T4) and 371 of 835 patients (44%) were node positive. Total laryngectomy had been performed in 676 of 835 patients (81%). Median Hb concentration before (Hb0) and after pRT (Hb1) was the same (13.3 g/dl). However, individual differences between Hb1 and Hb0 (dHb) varied within a broad range (-8.8; 5.0 g/dl). Univariate and multivariate analyses were performed to identify variables significantly associated with locoregional control (LRC), metastases-free survival, and overall survival. Results: Patients with dHb greater than 0 had significantly improved 5-year LRC compared with those with dHb of 0 or less (80% vs. 72%, p = 0.01). Conversely, when categorized, neither Hb0 nor Hb1 had a significant influence on LRC. In multivariate analysis, dHb remained a prognostic factor for LRC (p = 0.01) among the other variables, which included overall radiation treatment time and nodal status. None of the Hb-related variables significantly influenced metastases-free or overall survival. Conclusion: Individual change in Hb concentration during the course of pRT (dHb) rather than Hb level before or after pRT appeared as an independent prognostic factor for LRC in this set of patients

  3. Oxidative stress in preeclampsia and the role of free fetal hemoglobin

    Directory of Open Access Journals (Sweden)

    Stefan Rocco Hansson

    2015-01-01

    Full Text Available Preeclampsia is a leading cause of pregnancy complications and affects 3–7 % of pregnant women. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on hemoglobin-induced oxidative stress. Furthermore, we also suggest hemoglobin as a potential target for therapy. Gene and protein profiling studies have shown increased expression and accumulation of free fetal hemoglobin in the preeclamptic placenta. Predominantly due to oxidative damage to the placental barrier, fetal hemoglobin leaks over to the maternal circulation. Free hemoglobin and its metabolites are toxic in several ways; a ferrous hemoglobin (Fe2+ binds strongly to the vasodilator nitric oxide and reduces the availability of free nitric oxide, which results in vasoconstriction, b hemoglobin (Fe2+ with bound oxygen spontaneously generates free oxygen radicals and c the heme groups create an inflammatory response by inducing activation of neutrophils and cytokine production. The endogenous protein α1-microglobulin, with radical and heme binding properties, has shown both ex vivo and in vivo to have the ability to counteract free hemoglobin-induced placental and kidney damage. Oxidative stress in general, and more specifically fetal hemoglobin-induced oxidative stress, could play a key role in the pathology of preeclampsia seen both in the placenta and ultimately in the maternal endothelium.

  4. In vitro determination of hemoglobin A1c for diabetes diagnosis and management: technology update

    Directory of Open Access Journals (Sweden)

    English E

    2014-07-01

    Full Text Available Emma English,1 Elise T Milosevich,1 W Garry John2 1School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom; 2Department of Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich, United Kingdom Abstract: It is fascinating to consider the analytical improvements that have occurred since glycated hemoglobin was first used in routine clinical laboratories for diabetes monitoring around 1977; at that time methods displayed poor precision, there were no calibrators or material with assayed values for quality control purposes. This review outlines the major improvements in hemoglobin A1c (HbA1c measurement that have occurred since its introduction, and reflects on the increased importance of this hemoglobin fraction in the monitoring of glycemic control. The use of HbA1c as a diagnostic tool is discussed in addition to its use in monitoring the patient with diabetes; the biochemistry of HbA1c formation is described, and how these changes to the hemoglobin molecule have been used to develop methods to measure this fraction. Standardization of HbA1c is described in detail; the development of the IFCC Reference Measurement Procedure for HbA1c has enabled global standardization to be achieved which has allowed global targets to be set for glycemic control and diagnosis. The importance of factors that may interfere in the measurement of HbA1c are highlighted. Keywords: glycated hemoglobin, HbA1c, IFCC

  5. GtfA and GtfB Are Both Required for Protein O-Glycosylation in Lactobacillus plantarum

    Science.gov (United States)

    Lee, I-Chiao; van Swam, Iris I.; Tomita, Satoru; Morsomme, Pierre; Rolain, Thomas; Hols, Pascal; Bron, Peter A.

    2014-01-01

    Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively. PMID:24532775

  6. A thermodynamical measure of cooperativity: application to hemoglobin

    International Nuclear Information System (INIS)

    Jacchieri, S.G.; Ferreira, R.C.

    1984-01-01

    A comparative analysis of the heat requirements for dioxygen exchange is made for hemoglobin and myoglobin, the latter taken as the prototype of the vertebrate hemoglobin's ancestor. it is shown that cooperativity manifests itself also in terms of energy utilization. (Author) [pt

  7. Discrimination between glycosylation patterns of therapeutic antibodies using a microfluidic platform, MALDI-MS and multivariate statistics.

    Science.gov (United States)

    Thuy, Tran Thi; Tengstrand, Erik; Aberg, Magnus; Thorsén, Gunnar

    2012-11-01

    Optimal glycosylation with respect to the efficacy, serum half-life time, and immunogenic properties is essential in the generation of therapeutic antibodies. The glycosylation pattern can be affected by several different parameters during the manufacture of antibodies and may change significantly over cultivation time. Fast and robust methods for determination of the glycosylation patterns of therapeutic antibodies are therefore needed. We have recently presented an efficient method for the determination of glycans on therapeutic antibodies using a microfluidic CD platform for sample preparation prior to matrix-assisted laser-desorption mass spectrometry analysis. In the present work, this method is applied to analyse the glycosylation patterns of three commercially available therapeutic antibodies and one intended for therapeutic use. Two of the antibodies produced in mouse myeloma cell line (SP2/0) and one produced in Chinese hamster ovary (CHO) cells exhibited similar glycosylation patterns but could still be readily differentiated from each other using multivariate statistical methods. The two antibodies with most similar glycosylation patterns were also studied in an assessment of the method's applicability for quality control of therapeutic antibodies. The method presented in this paper is highly automated and rapid. It can therefore efficiently generate data that helps to keep a production process within the desired design space or assess that an identical product is being produced after changes to the process. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Directory of Open Access Journals (Sweden)

    Paul Kim

    2018-04-01

    Full Text Available Glycosylation of the hemagglutinin (HA and neuraminidase (NA of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness.

  9. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Science.gov (United States)

    Kim, Paul; Jang, Yo Han; Kwon, Soon Bin; Lee, Chung Min; Han, Gyoonhee; Seong, Baik Lin

    2018-01-01

    Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness. PMID:29642453

  10. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    -PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid......, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported...

  11. Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein.

    Science.gov (United States)

    Kim, Unyong; Oh, Myung Jin; Seo, Youngsuk; Jeon, Yinae; Eom, Joon-Ho; An, Hyun Joo

    2017-09-01

    Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.

  12. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    Science.gov (United States)

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  13. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    NARCIS (Netherlands)

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.

    1980-01-01

    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  14. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VII. Hemoglobin does not inhibit clearance of Escherichia coli from the peritoneal cavity

    International Nuclear Information System (INIS)

    Dunn, D.L.; Barke, R.A.; Lee, J.T. Jr.; Condie, R.M.; Humphrey, E.W.; Simmons, R.L.

    1983-01-01

    Hemoglobin has been shown to be a potent adjuvant in experimental Escherichia coli peritonitis, although a satisfactory mechanistic rationale is still obscure. Hemoglobin has been thought to impair intraperitoneal neutrophil function, delay clearance of bacteria from the peritoneal cavity by the normal absorptive mechanisms, or directly enhance bacterial growth. Using highly purified stroma-free hemoglobin (SFHgb), we have largely discounted any direct effect of hemoglobin on peritoneal white blood cell function. In the present study, we confirmed that uncontrolled proliferation of bacteria takes place in the presence of hemoglobin in the peritoneal cavity. Nonviable 5-iododeoxyuridine 125 I-labelled bacteria were then used to directly study peritoneal clearance kinetics, eliminating the problem of bacterial growth. SFHgb had no influence on the removal of intraperitoneal bacteria. The rate of bloodstream appearance of radiolabel was similar with or without intraperitoneal SFHgb. Thus, SFHgb does not prevent clearance of bacteria from the peritoneal cavity by interfering with normal host clearance mechanisms. SFHgb may act as a bacterial growth adjuvant, either by serving as a bacterial nutrient or by suitably modifying the environment so that extensive bacterial proliferation can occur. The latter hypothesis appears to be an area in which investigation concerning the adjuvant effect of hemoglobin may prove most fruitful

  15. Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Mur, Luis A J

    2011-01-01

    Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have...... at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses....

  16. A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin

    International Nuclear Information System (INIS)

    Bordbar, A.K.; Moosavi-Movahedi, A.A.; Amini, M.K.

    2003-01-01

    The thermodynamic parameters for the binding of dodecyl trimethylammonium bromide (DTAB) with wigeon hemoglobin (Hb) in aqueous solution at various pH and 27 deg. C have been measured by equilibrium dialysis and titration microcalorimetry techniques. The Scatchard plots represent unusual features at neutral and alkaline pH and specific binding at acidic pH. This leads us to analyze the binding data by fitting the data to the Hill equation for multiclasses of binding sites. The best fit was obtained with the equation for one class at acidic pH and two classes at neutral and alkaline pH. The thermodynamic analysis of the binding process shows that the strength of binding at neutral pH is more than these at other pH values. This can be related to the more accessible hydrophobic surface area of wigeon hemoglobin at this pH. The endothermic enthalpy data which was measured by microcalorimetry confirms the binding data analysis and represents the more regular and stable structure of wigeon hemoglobin at neutral pH

  17. Perbandingan Zat Besi dengan dan Tanpa Vitamin C terhadap Kadar Hemoglobin Wanita Usia Subur

    Directory of Open Access Journals (Sweden)

    Tuti Anggriani Utama

    2013-03-01

    only iron. Intervention is the provision of iron with and without vitamin C, one capsule a week.Mean of hemoglobin level in control group before intervention was 9.15 gram/dL increased to 10.19 gram/dL in after intervention. Treatment group also show increasing hemoglobin level mean before and after intervention from 9.5 gram/dL to 11.44 gram/dL. Paired T test revealed significant differences between control and treatment group (p value = 0.000. It is hoped this research can be used as one input and evaluation of nutrition programs planning to do in order to improve healthy lifestyles of women workers at PT Sarana Mandiri Mukti Kapahiang.

  18. Cotransplantation of Mesenchymal Stem Cells and Immature Dendritic Cells Potentiates the Blood Glucose Control of Islet Allografts

    Directory of Open Access Journals (Sweden)

    Guanghui Long

    2017-01-01

    Full Text Available Background. Transplantation of islets is a promising alternative to treat type 1 diabetes (T1D, but graft rejection is the major obstacle to its application in clinical practice. We evaluated the effects of mesenchymal stem cells (MSCs and immature dendritic cells (imDCs on islet transplantation in diabetic model. Methods. The streptozotocin T1D model was established in BABL/c mice. Rat islets were isolated and identified with dithizone (DTZ staining. MSCs and imDCs were isolated from bone marrow of syngenic mice. Islets, alone or along with MSCs and/or imDCs, were transplanted to the left kidney capsule of diabetic mice. The blood glucose levels and glycosylated hemoglobin levels after transplantation were monitored. Results. Cotransplantation significantly decreased blood glucose and glycosylated hemoglobin levels in the diabetes mice. Transplantation of 200 islets + 2 × 105 MSCs + 2 × 105 imDCs could not only restore normal blood glucose levels, but also significantly prolong graft survival for 12.6±3.48 days. Conclusions. Cotransplantation of allogenic islets with imDCs and/or MSCs can significantly promote graft survival, reverse hyperglycemia, and effectively control the glycosylated hemoglobin levels.

  19. Molecular Mechanism of AHSP-Mediated Stabilization of Alpha-Hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Feng,L.; Gell, D.; Zhou, S.; Gu, L.; Kong, Y.; Li, J.; Hu, M.; Yan, N.; Lee, C.; et al.

    2005-01-01

    Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.

  20. Biophysical Monitoring and dose response characteristics of irradiated hemoglobin

    International Nuclear Information System (INIS)

    Elshemey, W.M; Selim, N.S.; Desouky, O.

    2003-01-01

    The present work aims to move a step forward towards a deeper understanding of the scattering of x-ray, from lyophilized biological samples. Comparative study has been performed using LAXS and UV-visible spectrophotometry for monitoring the dose response characteristics of the hemoglobin molecule of irradiated blood. Blood samples were irradiated at doses ranging from 5 up to 100 Gy. Diluted hemoglobin solution was scanned in the UV- visible range (200-700 nm), and lyophilized hemoglobin was prepared for LAXS measurement. The radiation-induced changes in the hemoglobin structure have been evaluated. The LAXS profile of hemoglobin molecule is characterized by the presence of two peaks in the forward direction of scattering. These peaks were found to be sensitive to the variations in the molecular structure of a given sample. The obtained results suggest that the 1 s t peak, recorded at 4.65 o , is sensitive to the tertiary and quaternary structure of the globin part, while the major peak, recorded at 10.5 o , appeared to be related to its primary and secondary structure

  1. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation.

    Science.gov (United States)

    Park, Julien H; Hogrebe, Max; Grüneberg, Marianne; DuChesne, Ingrid; von der Heiden, Ava L; Reunert, Janine; Schlingmann, Karl P; Boycott, Kym M; Beaulieu, Chandree L; Mhanni, Aziz A; Innes, A Micheil; Hörtnagel, Konstanze; Biskup, Saskia; Gleixner, Eva M; Kurlemann, Gerhard; Fiedler, Barbara; Omran, Heymut; Rutsch, Frank; Wada, Yoshinao; Tsiakas, Konstantinos; Santer, René; Nebert, Daniel W; Rust, Stephan; Marquardt, Thorsten

    2015-12-03

    SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Iron stores in 70-year-old Danish men and women. Evaluation in 469 individuals by serum ferritin and hemoglobin

    DEFF Research Database (Denmark)

    Milman, N; Schultz-Larsen, K

    1994-01-01

    Iron status, including serum (S-) ferritin and hemoglobin (Hb) was assessed in a population survey of 469 old subjects (70 years of age; 254 men, 215 women); 7.9% of the participants had abnormal laboratory tests indicating diseases which might be connected with inappropriately high S-ferritin le......Iron status, including serum (S-) ferritin and hemoglobin (Hb) was assessed in a population survey of 469 old subjects (70 years of age; 254 men, 215 women); 7.9% of the participants had abnormal laboratory tests indicating diseases which might be connected with inappropriately high S......-ferritin levels. Men had a median S-ferritin of 114 micrograms/L, 5-95 percentile 28-373 micrograms/L; 2.4% had values depleted iron stores), 3.5% values from 15-30 micrograms/L (i.e., small iron stores), and 94.1% values > 30 micrograms/L (e.g., replete iron stores); 74.4% had values...

  3. Measurement of Glycosylated Alpha-Fetoprotein Improves Diagnostic Power over the Native Form in Hepatocellular Carcinoma

    Science.gov (United States)

    Jin, Jonghwa; Park, Jiyoung; Yu, Su Jong; Yoon, Jung-Hwan; Kim, Youngsoo

    2014-01-01

    Serum alpha-fetoprotein (AFP) has long been used as a diagnostic marker for hepatocellular carcinoma (HCC), albeit controversially. Although it remains widely used in clinics, the value of AFP in HCC diagnosis has recently been challenged due to its significant rates of false positive and false negative findings. To improve the efficacy of AFP as HCC diagnostic marker, we developed a method of measuring total and glycosylated AFP by multiple reaction monitoring (MRM)-MS. In this study, we verified the total amount of AFP (nonglycopeptide levels) and the degree of glycosylated AFP (deglycopeptide levels) in 60 normal (41 men and 19 women; mean age 53 years; range 32–74 years), 35 LC (23 men and 12 women; mean age 56 years; range 43–78 years; HBV-related), and 60 HCC subjects (42 men and 18 women; mean age 58 years; range 38–76 years; HBV-related; 30 stage I, 15 stage II, and 10 stage III). By MRM-MS analysis, the nonglycopeptide had 56.7% sensitivity, 68.3% specificity, and an AUC of 0.687 [cutoff value: ≥0.02 (light/heavy ratio)], comparing the normal and HCC group, whereas the deglycopeptide had 93.3% sensitivity, 68.3% specificity, and an AUC of 0.859 [cutoff value: ≥0.02 (light/heavy ratio)]. In comparing the stage I HCC subgroup with the LC group, the nonglycopeptide had a sensitivity of 66.7%, specificity of 80.0%, and an AUC of 0.712 [cutoff value: ≥0.02 (light/heavy ratio)], whereas the deglycopeptide had a sensitivity of 96.7%, specificity of 80.0%, and an AUC of 0.918 [cutoff value: ≥0.02 (light/heavy ratio)]. These data demonstrate that the discriminatory power of the deglycopeptide is greater than that of the nonglycopeptide. We conclude that deglycopeptide can distinguish cancer status between normal subjects and HCC patients better than nonglycopeptide. PMID:25310463

  4. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    Science.gov (United States)

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  5. Glycosyl-Nucleolipids as new bioinspired amphiphiles.

    Science.gov (United States)

    Latxague, Laurent; Patwa, Amit; Amigues, Eric; Barthélémy, Philippe

    2013-09-30

    Four new Glycosyl-NucleoLipid (GNL) analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry) indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim) compared to the first generation of GNFs.

  6. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13...

  7. Expression of fully functional tetrameric human hemoglobin in Escherichia coli

    International Nuclear Information System (INIS)

    Hoffman, S.J.; Looker, D.L.; Roehrich, J.M.; Cozart, P.E.; Durfee, S.L.; Tedesco, J.L.; Stetler, G.L.

    1990-01-01

    Synthesis genes encoding the human α- and β-globin polypeptides have been expressed from a single operon in Escherichia coli. The α- and β-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to >5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of α- and β-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C 4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A 0 and comigrates with hemoglobin A 0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A 0 . The authors have also expressed the α- and β-globin genes separately and found that the expression of the α-globin gene alone results in a marked decrease in the accumulation of α-globin in the cell. Separate expression of the β-globin gene results in high levels of insoluble β-globin. These observations suggest that the presence of α- and β-globin in the same cell stabilizes α-globin and aids the correct folding of β-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein

  8. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Wan-Ling Ho

    2016-09-01

    Full Text Available Abstract Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs. The success of anti-disialoganglioside (GD2, a glycolipid antigen antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.

  9. Propanil-induced methemoglobinemia and hemoglobin binding in the rat

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, D.C.; McRae, T.A.; Hinson, J.A. (National Center for Toxicological Research, Jefferson, AR (USA))

    1990-09-15

    Administration of (ring-U-14C)propanil (3,4-dichloropropionanilide) to male Sprague-Dawley rats (30, 100, and 300 mg/kg, ip) increased the formation of methemoglobin at the two highest doses. Following a propanil dose of 100 mg/kg, methemoglobin formation attained a maximum level of 5% by 1.5 hr and declined to normal levels (approximately 2.5%) by 12 hr. Hemoglobin binding attained a maximum level of 50 pmol/mg protein by 12 hr, and remained constant for 24 hr. Following a propanil dose of 300 mg/kg, methemoglobin formation attained a maximum level of 24% by 4.5 hr, and declined to a level of 5% by 24 hr. Hemoglobin binding attained a maximum level of 425 pmol/mg protein by 12 hr, and remained constant for 24 hr. Hemoglobin binding was also detected at the lowest propanil dose (10 pmol/mg protein) even though methemoglobin formation was not observed. HPLC analysis of alkaline-treated hemoglobin from propanil-treated rats indicated the presence of one radiolabeled compound with the same HPLC retention time as 3,4-dichloraniline. These data are consistent with the concept that propanil is converted to N-hydroxy-3,4-dichloroaniline in the liver. Subsequently, this metabolite enters the erythrocyte and is oxidized by hemoglobin to 3,4-dichloronitrosobenzene with concomitant conversion of oxyhemoglobin to methemoglobin. The 3,4-dichloronitrosobenzene binds to cysteine residues on hemoglobin as the corresponding sulfinic acid amide adduct. These data suggest that human exposure to propanil may be monitored in the absence of observable toxicity by the analysis of propanil metabolites bound to hemoglobin.

  10. Rice (Oryza) hemoglobins

    Science.gov (United States)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  11. CORRELATION OF INPATIENT AND OUTPATIENT MEASURES OF STROKE CARE QUALITY WITHIN VETERANS HEALTH ADMINISTRATION HOSPITALS

    Science.gov (United States)

    Ross, Joseph S.; Arling, Greg; Ofner, Susan; Roumie, Christianne L.; Keyhani, Salomeh; Williams, Linda S.; Ordin, Diana L.; Bravata, Dawn M.

    2011-01-01

    Background Quality of care delivered in the inpatient and ambulatory settings may be correlated within an integrated health system such as the Veterans Health Administration (VHA). We examined the correlation between stroke care quality at hospital discharge and within 6 months post-discharge. Methods Cross-sectional hospital-level correlation analyses of chart-abstracted data for 3467 veterans discharged alive after an acute ischemic stroke from 108 VHA medical centers and 2380 veterans with post-discharge follow-up within 6 months, in fiscal year 2007. Four risk-standardized processes of care represented discharge care quality: prescription of anti-thrombotic and anti-lipidemic therapy, anti-coagulation for atrial fibrillation, and tobacco cessation counseling, along with a composite measure of defect-free care. Five risk-standardized intermediate outcomes represented post-discharge care quality: achievement of blood pressure, low-density lipoprotein (LDL), international normalized ratio (INR), and glycosylated hemoglobin target levels, and delivery of appropriate treatment for post-stroke depression, along with a composite measure of achieved outcomes. Results Median risk-standardized composite rate of defect-free care at discharge was 79%. Median risk-standardized post-discharge rates of achieving goal were 56% for blood pressure, 36% for LDL, 41% for INR, 40% for glycosylated hemoglobin, and 39% for depression management and the median risk-standardized composite six-month outcome rate was 44%. The hospital composite rate of defect-free care at discharge was correlated with meeting the LDL goal (r=0.31; p=0.007) and depression management (r=0.27; p=0.03) goal, but was not correlated with blood pressure, INR, or glycosylated hemoglobin goals, nor with the composite measure of achieved post-discharge outcomes (p-values >0.15). Conclusions Hospital discharge care quality was not consistently correlated with ambulatory care quality. PMID:21719771

  12. Cationic composition and acid-base state of the extracellular fluid, and specific buffer value of hemoglobin from the branchiopod crustacean Triops cancriformis.

    Science.gov (United States)

    Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K

    2009-04-01

    Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.

  13. Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study

    Directory of Open Access Journals (Sweden)

    Oshrat Levy-Ontman

    2014-02-01

    Full Text Available N-glycosylation is one of the most important post-translational modifications that influence protein polymorphism, including protein structures and their functions. Although this important biological process has been extensively studied in mammals, only limited knowledge exists regarding glycosylation in algae. The current research is focused on the red microalga Porphyridium sp., which is a potentially valuable source for various applications, such as skin therapy, food, and pharmaceuticals. The enzymes involved in the biosynthesis and processing of N-glycans remain undefined in this species, and the mechanism(s of their genetic regulation is completely unknown. In this study, we describe our pioneering attempt to understand the endoplasmic reticulum N-Glycosylation pathway in Porphyridium sp., using a bioinformatic approach. Homology searches, based on sequence similarities with genes encoding proteins involved in the ER N-glycosylation pathway (including their conserved parts were conducted using the TBLASTN function on the algae DNA scaffold contigs database. This approach led to the identification of 24 encoded-genes implicated with the ER N-glycosylation pathway in Porphyridium sp. Homologs were found for almost all known N-glycosylation protein sequences in the ER pathway of Porphyridium sp.; thus, suggesting that the ER-pathway is conserved; as it is in other organisms (animals, plants, yeasts, etc..

  14. Evans Syndrome Complicated by Intratubular Hemoglobin Cast Nephropathy

    Directory of Open Access Journals (Sweden)

    Iván González

    2017-01-01

    Full Text Available Evans syndrome (ES is a rare autoimmune disorder whose exact pathophysiology is unknown. It is characterized by the simultaneous or subsequent development of autoimmune hemolytic anemia (AIHA and immune thrombocytopenia (ITP. Intravascular hemolysis, with hemoglobinemia, is known to produce acute kidney injury; however, the development of intratubular hemoglobin casts (hemoglobin cast nephropathy in the setting of acute hemolysis is uncommon. Likewise, the association of ES and acute renal failure is equally uncommon. We present a case of a 7-year-old girl with ES who developed acute kidney injury in the setting of intravascular hemolysis and had widespread intratubular hemoglobin casts.

  15. N-Glycosylation of cholera toxin B subunit: serendipity for novel plant-made vaccines?

    Directory of Open Access Journals (Sweden)

    Nobuyuki eMatoba

    2015-12-01

    Full Text Available The non-toxic B subunit of cholera toxin (CTB has attracted considerable interests from vaccinologists due to strong mucosal immunomodulatory effects and potential utility as a vaccine scaffold for heterologous antigens. Along with other conventional protein expression systems, various plant species have been used as recombinant production hosts for CTB and its fusion proteins. However, it has recently become clear that the protein is N-glycosylated within the endoplasmic reticulum of plant cells – a eukaryotic post-translational modification that is not present in native CTB. While functionally active aglycosylated variants have been successfully engineered to circumvent potential safety and regulatory issues related to glycosylation, this modification may actually provide advantageous characteristics to the protein as a vaccine platform. Based on data from our recent studies, I discuss the unique features of N-glycosylated CTB produced in plants for the development of novel vaccines.

  16. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs

    Directory of Open Access Journals (Sweden)

    Sheng Zhi-Ya

    2008-02-01

    Full Text Available Abstract Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM. When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%. When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor. Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP

  17. 21 CFR 864.7400 - Hemoglobin A2 assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin A2...

  18. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Elodie eMathieu-Rivet

    2014-07-01

    Full Text Available Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodelling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.

  19. Action of carbon monoxide on the affinity of hemoglobin for oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Vanuxem, D.; Weiller, P.J.; Guillot, C.; Grimaud, C.

    1982-01-01

    The authors have studied the action of carbon monoxide on the affinity of hemoglobin for oxygen by measuring P50 in whole blood and in stripped hemoglobin before and after exposition of blood samples from heavy smokers and polycythemic patients with high levels of HbCO to hyperbaric oxygen (2.2 ata). The concentration of 2,3-diphosphoglycerate was normal although P50 was significantly lowered, not only in whole blood but also in stripped hemoglobin. Hyperbaric oxygen normalized P50 by removing CO radicals from stripped hemoglobin. This may indicate that CO radicals exert a direct action on the hemoglobin molecule, at least at the HbCO levels studied in this work.

  20. Nitrosyl hemoglobins: EPR above 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs.

  1. Nitrosyl hemoglobins: EPR above 80 K

    International Nuclear Information System (INIS)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs

  2. IS HEMOGLOBIN E GENE WIDELY SPREAD IN THE STATE OF MADHYA PRADESH IN CENTRAL INDIA? EVIDENCE FROM FIVE TYPICAL FAMILIES

    Directory of Open Access Journals (Sweden)

    R S Balgir

    2014-09-01

    Full Text Available Background: Red cell inherited hemoglobin anomalies are commonly encountered in the central region of India. These cause a public health concern due to high degree of morbidity, mortality, and fetal loss in the backward, underprivileged, and vulnerable people. Purpose: To report five typical families of hemoglobin E disorders identified for the first time in the state of Madhya Pradesh from central India. Methods: Out of a total of 445 couples/families (excluding the present study with 1526 persons (848 males and 678 females referred from a tertiary hospital in central India for investigations of anemia/hemoglobinopathies during the period from March 2010 to February 2014, we came across five typical rare couples/families of hemoglobin E disorders worthy of detailed investigations. Laboratory investigations were carried out following the standard procedures after cross checking for quality control from time to time. Results: For the first time, we have encountered nine cases of heterozygous hemoglobin E trait, two members with hemoglobin E-β-thalassemia (double heterozygosity, two cases of sickle cell-hemoglobin E disease (double heterozygosity, and none with homozygous hemoglobin E. Cases  of hemoglobin E trait, hemoglobin E-β-thalassemia, sickle cell-β-thalassemia and sickle cell-E disease showed moderate to severe anemia, and target cells, and reduced values of red cell indices like RBC, Hb level, HCT, MCV, MCH and MCHC, representing abnormal hematological profile and clinical manifestations before blood transfusion. Conclusions: Double heterozygosity for hemoglobinopathies such as occurrence of β-thalassemia mutation with structurally abnormal hemoglobins (Hb S and Hb E is a rare entity, but occurs with severe clinical manifestations only in those areas or communities where these are highly prevalent, testifying the migrations and genetic admixture. Distribution of hemoglobin E and β-thalassemia in different districts of Madhya Pradesh

  3. Systems analysis of singly and multiply O-glycosylated peptides in the human serum glycoproteome via EThcD and HCD mass spectrometry.

    Science.gov (United States)

    Zhang, Yong; Xie, Xinfang; Zhao, Xinyuan; Tian, Fang; Lv, Jicheng; Ying, Wantao; Qian, Xiaohong

    2018-01-06

    Human serum has been intensively studied to identify biomarkers via global proteomic analysis. The altered O-glycoproteome is associated with human pathological state including cancer, inflammatory and degenerative diseases and is an attractive source of disease biomarkers. Because of the microheterogeneity and macroheterogeneity of O-glycosylation, site-specific O-glycosylation analysis in human serum is still challenging. Here, we developed a systematic strategy that combined multiple enzyme digestion, multidimensional separation for sample preparation and high-resolution tandem MS with Byonic software for intact O-glycopeptide characterization. We demonstrated that multiple enzyme digestion or multidimensional separation can make sample preparation more efficient and that EThcD is not only suitable for the identification of singly O-glycosylated peptides (50.3%) but also doubly (21.2%) and triply (28.5%) O-glycosylated peptides. Totally, with the strict scoring criteria, 499 non-redundant intact O-glycopeptides, 173 O-glycosylation sites and 6 types of O-glycans originating from 49 O-glycoprotein groups were identified in human serum, including 121 novel O-glycosylation sites. Currently, this is the largest data set of site-specific native O-glycoproteome from human serum samples. We expect that the strategies developed by this study will facilitate in-depth analyses of native O-glycoproteomes in human serum and provide opportunities to understand the functional roles of protein O-glycosylation in human health and diseases. The altered O-glycoproteome is associated with human pathological state and is an attractive source of disease biomarkers. However, site-specific O-glycosylation analysis is challenging because of the microheterogeneity (different glycoforms attached to one glycosylation site) and macroheterogeneity (site occupancy) of O-glycosylation. In this work, we developed a systematic strategy for intact O-glycopeptide characterization. This study took

  4. Glycosylation profiles of therapeutic antibody pharmaceuticals.

    Science.gov (United States)

    Wacker, Christoph; Berger, Christoph N; Girard, Philippe; Meier, Roger

    2011-11-01

    Recombinant antibodies specific for human targets are often used as therapeutics and represent a major class of drug products. Their therapeutic efficacy depends on the formation of antibody complexes resulting in the elimination of a target molecule or the modulation of specific signalling pathways. The physiological effects of antibody therapeutics are known to depend on the structural characteristics of the antibody molecule, specifically on the glycosylation which is the result of posttranslational modifications. Hence, production of therapeutic antibodies with a defined and consistent glycoform profile is needed which still remains a considerable challenge to the biopharmaceutical industry. To provide an insight into the industries capability to control their manufacturing process and to provide antibodies of highest quality, we conducted a market surveillance study and compared major oligosaccharide profiles of a number of monoclonal antibody pharmaceuticals sampled on the Swiss market. Product lot-to-lot variability was found to be generally low, suggesting that a majority of manufacturers have implemented high quality standards in their production processes. However, proportions of G0, G1 and G2 core-fucosylated chains derived from different products varied considerably and showed a bias towards the immature agalactosidated G0 form. Interestingly, differences in glycosylation caused by the production cell type seem to be of less importance compared with process related parameters such as cell growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Hemoglobin, hematocrit, and changes in cerebral blood flow: the Second Manifestations of ARTerial disease-Magnetic Resonance study.

    Science.gov (United States)

    van der Veen, Pieternella H; Muller, Majon; Vincken, Koen L; Westerink, Jan; Mali, Willem P T M; van der Graaf, Yolanda; Geerlings, Mirjam I

    2015-03-01

    Hemoglobin and hematocrit are important determinants of blood viscosity and arterial oxygen content and may therefore influence cerebral blood flow (CBF). We examined cross-sectional and prospective associations of hemoglobin and hematocrit with CBF in 569 patients with manifest arterial disease (mean age 57 ± 10 years) with available data on magnetic resonance angiography to measure parenchymal CBF. Mean (SD) parenchymal CBF at baseline was 52.3 (9.8) mL/min/100 mL and decreased with 1.5 (11.0) mL/min/100 mL after on average 3.9 years of follow-up. Linear regression analyses showed that greater hemoglobin and hematocrit values were associated with lower baseline parenchymal CBF and more decline in parenchymal CBF over time, independent of cardiovascular risk factors, use of antiplatelet drugs, anticoagulants, or diuretics, and brain measures: adjusted mean differences (95% confidence interval [CI]) in decline in parenchymal CBF between patients in the lower and upper quartiles of hemoglobin and hematocrit were -2.48 (95% CI -3.70 to -1.25) and -3.69 (95% CI -5.45 to -1.94) mL/min/100 mL. Higher hemoglobin and hematocrit were associated with lower baseline parenchymal CBF and a greater decline in parenchymal CBF over time, possibly as a result of physiological compensating mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Investigations of immunoglobulins, circulating immune complexes and plasma free hemoglobin in cancer patients on 60Co gamma-ray therapy

    International Nuclear Information System (INIS)

    Horvath, M.; Rode, I.L.; Fekete, B.; Kiss, B.; Ringwald, G.

    1981-01-01

    32 patients with different tumours were irradiated by 60 Co gamma-rays. During therapy lasting for several weeks, changes in the content of immunoglobulin and of some other serum proteins, circulating immune complexes and plasma free hemoglobin were determined. Immunosuppression according to immunoglobulin content in serum was not produced by this type of radiation. Decrease in immune complex levels was a good prognostic sign. Low values of plasma hemoglobin content during treatment indicated that no erythrocyte membrane damage had been effected. (orig.) [de

  7. High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes

    Directory of Open Access Journals (Sweden)

    González Mario

    2012-09-01

    Full Text Available Abstract Background O-glycosylation of secretory proteins has been found to be an important factor in fungal biology and virulence. It consists in the addition of short glycosidic chains to Ser or Thr residues in the protein backbone via O-glycosidic bonds. Secretory proteins in fungi frequently display Ser/Thr rich regions that could be sites of extensive O-glycosylation. We have analyzed in silico the complete sets of putatively secretory proteins coded by eight fungal genomes (Botrytis cinerea, Magnaporthe grisea, Sclerotinia sclerotiorum, Ustilago maydis, Aspergillus nidulans, Neurospora crassa, Trichoderma reesei, and Saccharomyces cerevisiae in search of Ser/Thr-rich regions as well as regions predicted to be highly O-glycosylated by NetOGlyc (http://www.cbs.dtu.dk. Results By comparison with experimental data, NetOGlyc was found to overestimate the number of O-glycosylation sites in fungi by a factor of 1.5, but to be quite reliable in the prediction of highly O-glycosylated regions. About half of secretory proteins have at least one Ser/Thr-rich region, with a Ser/Thr content of at least 40% over an average length of 40 amino acids. Most secretory proteins in filamentous fungi were predicted to be O-glycosylated, sometimes in dozens or even hundreds of sites. Residues predicted to be O-glycosylated have a tendency to be grouped together forming hyper-O-glycosylated regions of varying length. Conclusions About one fourth of secretory fungal proteins were predicted to have at least one hyper-O-glycosylated region, which consists of 45 amino acids on average and displays at least one O-glycosylated Ser or Thr every four residues. These putative highly O-glycosylated regions can be found anywhere along the proteins but have a slight tendency to be at either one of the two ends.

  8. Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts

    Czech Academy of Sciences Publication Activity Database

    Desmet, T.; Soetaert, W.; Bojarová, Pavla; Křen, Vladimír; Dijkhuizen, L.; Eastwick-Field, V.; Schiller, A.

    2012-01-01

    Roč. 18, č. 35 (2012), s. 10786-10801 ISSN 0947-6539 Institutional support: RVO:61388971 Keywords : acceptor specificity * enzyme engineering * glycosylation Subject RIV: CE - Biochemistry Impact factor: 5.831, year: 2012

  9. Diabetes mellitus defined by hemoglobin A1c value: Risk characterization for incidence among Japanese subjects in the JPHC Diabetes Study.

    Science.gov (United States)

    Kato, Masayuki; Takahashi, Yoshihiko; Matsushita, Yumi; Mizoue, Tetsuya; Inoue, Manami; Kadowaki, Takashi; Tsugane, Shoichiro; Noda, Mitsuhiko

    2011-10-07

    Aims/Introduction:  Although several risk factors for type 2 diabetes have been identified, most of them have been identified in studies on Western populations, and they should be evaluated in a Japanese population. In 2010, new diagnostic criteria for diabetes mellitus using hemoglobin A1c (HbA1c) were released and its use in epidemiological studies has many advantages. The aim of the present study was to evaluate risk factors for type 2 diabetes defined based on HbA1c values in a Japanese population.   A total of 9223 subjects (3076 men and 6147 women) were followed up for 5 years. Diabetes was defined based on self-report or HbA1c value. Risk factors for diabetes were evaluated as odds ratios adjusted for potential confounding factors by logistic regression.   During the 5-year follow-up period, we documented 518 incident cases of diabetes (232 men and 286 women). Of the 518 incident cases, 310 cases were diagnosed by HbA1c alone. Among the men, age, smoking (both past smoking and current smoking) and family history of diabetes significantly increased the risk of diabetes. Among the women, body mass index, family history of diabetes and hypertension significantly increased the risk of diabetes. These results did not change markedly after adjustment for the baseline HbA1c values, and the baseline HbA1c value itself was a significant risk factor for diabetes mellitus.   Known risk factors for diabetes established in Western populations also increased the risk of diabetes in a Japanese population defined on the basis of HbA1c values. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00119.x, 2011).

  10. The S-Layer Glycoprotein of the Crenarchaeote Sulfolobus acidocaldarius Is Glycosylated at Multiple Sites with Chitobiose-Linked N-Glycans

    Directory of Open Access Journals (Sweden)

    Elham Peyfoon

    2010-01-01

    Full Text Available Glycosylation of the S-layer of the crenarchaea Sulfolobus acidocaldarius has been investigated using glycoproteomic methodologies. The mature protein is predicted to contain 31 N-glycosylation consensus sites with approximately one third being found in the C-terminal domain spanning residues L1004-Q1395. Since this domain is rich in Lys and Arg and therefore relatively tractable to glycoproteomic analysis, this study has focused on mapping its N-glycosylation. Our analysis identified nine of the 11 consensus sequence sites, and all were found to be glycosylated. This constitutes a remarkably high glycosylation density in the C-terminal domain averaging one site for each stretch of 30–40 residues. Each of the glycosylation sites observed was shown to be modified with a heterogeneous family of glycans, with the largest having a composition Glc1Man2GlcNAc2 plus 6-sulfoquinovose (QuiS, consistent with the tribranched hexasaccharide previously reported in the cytochrome b558/566 of S. acidocaldarius. S. acidocaldarius is the only archaeal species whose N-glycans are known to be linked via the chitobiose core disaccharide that characterises the N-linked glycans of Eukarya.

  11. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  12. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    International Nuclear Information System (INIS)

    Garabagiu, Sorina

    2011-01-01

    Highlights: ► The interaction was studied using UV–vis and fluorescence spectroscopy. ► Gold nanoparticles quench the fluorescence emission of hemoglobin solution. ► The binding and thermodynamic constants were calculated. ► Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV–vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longer wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern–Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.

  13. Human macrophage hemoglobin-iron metabolism in vitro

    International Nuclear Information System (INIS)

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of 59 Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of 59 Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in 59 Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models

  14. Glycosyl-Nucleolipids as New Bioinspired Amphiphiles

    Directory of Open Access Journals (Sweden)

    Philippe Barthélémy

    2013-09-01

    Full Text Available Four new Glycosyl-NucleoLipid (GNL analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim compared to the first generation of GNFs.

  15. The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties.

    Directory of Open Access Journals (Sweden)

    Roberta Russo

    Full Text Available A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years, the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R and the tense (T states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.

  16. Using the MWC model to describe heterotropic interactions in hemoglobin

    Science.gov (United States)

    Rapp, Olga

    2017-01-01

    Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the ‘all-or-none’ Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model. PMID:28793329

  17. The impact of hemoglobin on the efficacy of phototherapy in hyperbilirubinemic infants

    DEFF Research Database (Denmark)

    Donneborg, Mette L; Vandborg, Pernille K; Hansen, Bo M

    2017-01-01

    BackgroundPhototherapy is the routine treatment for neonatal hyperbilirubinemia. Absorption of light in the skin transforms the native Z,Z-bilirubin to photobilirubins. This study investigates whether the hemoglobin concentration has an impact on efficacy of phototherapy, expressed by the decline...... decrease in TsB after 24 h was 121 (57-199) μmol/l; the median hemoglobin was 12.0 (7.0-14.7) mmol/l. There was a significant effect of hemoglobin concentration on the decrease in TsB of -3.61 μmol/mmol hemoglobin (P=0.022), after adjusting for initial TsB and postnatal age. That is, assuming the same...... initial TsB and postnatal age, for each mmol/l increase in hemoglobin, the decrease in TsB was 3.61 μmol/l smaller. In our hemoglobin range, the decrease in TsB is reduced by 28 μmol/l (23%).ConclusionIncreasing hemoglobin levels led to a decrease in the efficacy of phototherapy. Our data provide...

  18. Comparative study of bedside and laboratory measurements of hemoglobin.

    Science.gov (United States)

    Krenzischek, D A; Tanseco, F V

    1996-11-01

    The purpose of this study was to examine the effects of variations in technique on measurements of hemoglobin level done at the bedside and to compare these results with laboratory measurements of hemoglobin. In accordance with hospital policy, procedure, and protocol, various techniques were used to obtain samples of capillary and venous blood and of blood from arterial and central venous catheters. Levels of hemoglobin were measured at the bedside and in the laboratory, and the results were compared. The Johns Hopkins Hospital adult postanesthesia care unit. A total of 187 blood samples were obtained from 62 adults who had undergone general surgery. Group I comprised 20 subjects with capillary and venous blood samples. Group II comprised 21 subjects with arterial blood samples. Group III comprised 21 subjects with central venous blood samples. The results showed that the amount of blood to be discarded before obtaining samples of arterial and central venous blood need not be any larger than double the dead space of the catheter, and that shaking the blood sample for 10 seconds was sufficient to mix the sample before measurement of hemoglobin levels. Results of bedside and laboratory measurements of hemoglobin level were comparable. Bedside measurement of hemoglobin increases efficiency in patient care, decreases risk of blood-transmitted infection for staff, and decreases cost to the patient. However, the persons who perform the assay must be responsible in adhering to the standard of practice to minimize errors in the measurements.

  19. Lower Hemoglobin Concentration Is Associated with Retinal Ischemia and the Severity of Diabetic Retinopathy in Type 2 Diabetes.

    Science.gov (United States)

    Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac

    2016-01-01

    Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = -0.52, P value = 0.003] and retinal ischemia [beta-coefficient = -0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = -0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR.

  20. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen; Saksena, Nitin K.

    2013-01-01

    architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may

  1. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    Science.gov (United States)

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. UGT74AN1, a Permissive Glycosyltransferase from Asclepias curassavica for the Regiospecific Steroid 3-O-Glycosylation.

    Science.gov (United States)

    Wen, Chao; Huang, Wei; Zhu, Xue-Lin; Li, Xiao-San; Zhang, Fan; Jiang, Ren-Wang

    2018-02-02

    A permissive steroid glycosyltransferase (UGT74AN1) from Asclepias curassavica exhibited robust capabilities for the regiospecific C3 glycosylation of cardiotonic steroids and C 21 steroid precursors, and unprecedented promiscuity toward 53 structurally diverse natural and unnatural compounds to form O-, N-, and S-glycosides, along with the catalytic reversibility for a one-pot transglycosylation reaction. These findings highlight UGT74AN1 as the first regiospecific catalyst for cardiotonic steroid C3 glycosylation and exhibit significant potential for glycosylation of diverse bioactive molecules in drug discovery.

  3. Hemoglobin Concentration and Risk of Incident Stroke in Community-Living Adults.

    Science.gov (United States)

    Panwar, Bhupesh; Judd, Suzanne E; Warnock, David G; McClellan, William M; Booth, John N; Muntner, Paul; Gutiérrez, Orlando M

    2016-08-01

    In previous observational studies, hemoglobin concentrations have been associated with an increased risk of stroke. However, these studies were limited by a relatively low number of stroke events, making it difficult to determine whether the association of hemoglobin and stroke differed by demographic or clinical factors. Using Cox proportional hazards analysis and Kaplan-Meier plots, we examined the association of baseline hemoglobin concentrations with incident stroke in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, a cohort of black and white adults aged ≥45 years. A total of 518 participants developed stroke over a mean 7±2 years of follow-up. There was a statistically significant interaction between hemoglobin and sex (P=0.05) on the risk of incident stroke. In Cox regression models adjusted for demographic and clinical variables, there was no association of baseline hemoglobin concentration with incident stroke in men, whereas in women, the lowest (14.0 g/dL) quartiles of hemoglobin were associated with higher risk of stroke when compared with the second quartile (12.4-13.2 g/dL; quartile 1: hazard ratio, 1.59; 95% confidence interval, 1.09-2.31; quartile 2: referent; quartile 3: hazard ratio, 0.91; 95% confidence interval, 0.59-1.38; quartile 4: hazard ratio, 1.59; 95% confidence interval, 1.08-2.35). Similar results were observed in models stratified by hemoglobin and sex and when hemoglobin was modeled as a continuous variable using restricted quadratic spline regression. Lower and higher hemoglobin concentrations were associated with a higher risk of incident stroke in women. No such associations were found in men. © 2016 American Heart Association, Inc.

  4. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences

    DEFF Research Database (Denmark)

    Rivas, Matilde De Las; Lira-Navarrete, Erandi; Daniel, Earnest James Paul

    2017-01-01

    The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- A nd/or C-terminal prior glycosylation ...

  5. Biophysical basis of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    International Nuclear Information System (INIS)

    Wong, J.T.; Hill, R.P.

    1986-01-01

    Perfusion with deoxygenated dextran-hemoglobin provides an effective method for inducing hypoxic radioprotection of normal tissues during radiation treatment of tumors. In this study, the dependence of P50, the half-saturation pressure of oxygen binding to dextran-hemoglobin, was analyzed as a function of solution temperature and pH. The variation of attainable radioprotection with P50, and with the amount of collateral blood entering into the perfused region, was calculated. Upon perfusion of canine gracilis muscle with deoxygenated dextran-hemoglobin, a rapid onset of extensive venous hypoxia was observed

  6. Histopathologic Study Following Administration of Liposome-Encapsulated Hemoglobin in the Normovolemic Rat

    National Research Council Canada - National Science Library

    Rudolph, Alan

    1995-01-01

    ... bovine hemoglobin in the normovolemic rat. We have also examined the administration of the liposome vehicle, tetrameric bovine hemoglobin, and liposome encapsulated bovine hemoglobin that had been lyophilized with 300 mM trehalose...

  7. Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution.

    Directory of Open Access Journals (Sweden)

    Ryan Williams

    Full Text Available Protein N-glycosylation is found in all domains of life and has a conserved role in glycoprotein folding and stability. In animals, glycoproteins transit through the Golgi where the N-glycans are trimmed and rebuilt with sequences that bind lectins, an innovation that greatly increases structural diversity and redundancy of glycoprotein-lectin interaction at the cell surface. Here we ask whether the natural tension between increasing diversity (glycan-protein interactions and site multiplicity (backup and status quo might be revealed by a phylogenic examination of glycoproteins and NXS/T(X ≠ P N-glycosylation sites. Site loss is more likely by mutation at Asn encoded by two adenosine (A-rich codons, while site gain is more probable by generating Ser or Thr downstream of an existing Asn. Thus mutations produce sites at novel positions more frequently than the reversal of recently lost sites, and therefore more paths though sequence space are made available to natural selection. An intra-species comparison of secretory and cytosolic proteins revealed a departure from equilibrium in sequences one-mutation-away from NXS/T and in (A content, indicating strong selective pressures and exploration of N-glycosylation positions during vertebrate evolution. Furthermore, secretory proteins have evolved at rates proportional to N-glycosylation site number, indicating adaptive interactions between the N-glycans and underlying protein. Given the topology of the genetic code, mutation of (A is more often nonsynonomous, and Lys, another target of many PTMs, is also encoded by two (A-rich codons. An examination of acetyl-Lys sites in proteins indicated similar evolutionary dynamics, consistent with asymmetry of the target and recognition portions of modified sites. Our results suggest that encoding asymmetry is an ancient mechanism of evolvability that increases diversity and experimentation with PTM site positions. Strong selective pressures on PTMs may have

  8. Preparation, crystallization and preliminary X-ray diffraction studies of the glycosylated form of human interleukin-23

    International Nuclear Information System (INIS)

    Shirouzono, Takumi; Chirifu, Mami; Nakamura, Chiharu; Yamagata, Yuriko; Ikemizu, Shinji

    2012-01-01

    Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine composed of p19 and p40 subunits. Human p19 and p40 subunits were cloned and coexpressed in N-acetylglucosaminyltransferase I-negative 293S cells. The glycosylated human IL-23 was purified and crystallized by the hanging-drop vapour-diffusion method. Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine composed of p19 and p40 subunits. IL-23 plays crucial roles in the activation, proliferation and survival of IL-17-producing helper T cells which induce various autoimmune diseases. Human p19 and p40 subunits were cloned and coexpressed in N-acetylglucosaminyltransferase I-negative 293S cells, which produce high-mannose-type glycosylated proteins in order to diminish the heterogeneity of modified N-linked glycans. The glycosylated human IL-23 was purified and crystallized by the hanging-drop vapour-diffusion method. X-ray diffraction data were then collected to 2.6 Å resolution. The crystal belonged to space group P6 1 or P6 5 , with unit-cell parameters a = b = 108.94, c = 83.79 Å, γ = 120°. Assuming that the crystal contains one molecule per asymmetric unit, the calculated Matthews coefficient was 2.69 Å 3 Da −1 , with a solvent content of 54.2%. The structure was determined by the molecular-replacement method, with an initial R factor of 52.6%. After subsequent rigid-body and positional refinement, the R work and R free values decreased to 31.4% and 38.7%, respectively

  9. Structure and stability of human hemoglobin microparticles prepared with a double emulsion technique.

    Science.gov (United States)

    Cedrati, N; Bonneaux, F; Labrude, P; Maincent, P

    1997-09-01

    Hemoglobin solutions can be used as blood substitutes but they present some disadvantages often due to their rapid removal from the bloodstream after injection. A possible way of overcoming this problem is to trap hemoglobin inside particles. This study deals with the preparation, structure and stability of poly(lactic acid) and ethylcellulose microparticles containing human hemoglobin obtained with a double emulsion technique. We investigated the manufacturing process of these particles in order to increase the encapsulation ratio of hemoglobin. For this purpose, some parameters involved in the procedure were optimized, such as hemoglobin concentration and duration of stirring: hemoglobin loading increases with its concentration in the preparation and well-defined stirring time avoids a leakage of hemoglobin. Hemoglobin concentration, surfactant concentration i.e. poly(vinylic alcohol), amounts of polymer and solvent (methylene chloride), duration and speed of stirring. The microparticles were prepared with satisfactory yields (60 to 73%). They were spherical and their mean size was lower than 200 microns. The functional properties of entrapped hemoglobin were studied. The encapsulation did not alter hemoglobin and the oxygen affinity of the hemoglobin remained unmodified (P50 about 13.9 mm Hg in a Bis-Tris buffer pH 7.4 at 37 degrees C). Moreover, only low levels of methemoglobin could be detected (less than 3%). Besides, about 90% of encapsulated hemoglobin could be released from microparticles, with a speed related to the internal structure of the particles. The prepared microparticles were stored during one month at +4 degrees C. No degradation of the particle structure occurred and the functional properties of hemoglobin were preserved. These particles could provide a potential source of oxygen in the field of biotechnologies but any application for a transfusional purpose would first require a drastic reduction in particle size.

  10. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa.

    Science.gov (United States)

    Daroch, Maurycy; Houghton, Catharine A; Moore, Jonathan K; Wilkinson, Mark C; Carnell, Andrew J; Bates, Andrew D; Iwanejko, Lesley A

    2014-05-10

    Here we describe the identification, purification and characterisation of glycosylated yellow laccase proteins from the basidiomycete fungus Stropharia aeruginosa. Biochemical characterisation of two yellow laccases, Yel1p and Yel3p, show that they are both secreted, monomeric, N-glycosylated proteins of molecular weight around 55kDa with substrate specificities typical of laccases, but lacking the absorption band at 612nm typical of the blue laccase proteins. Low coverage, high throughput 454 transcriptome sequencing in combination with inverse-PCR was used to identify cDNA sequences. One of the cDNA sequences has been assigned to the Yel1p protein on the basis of identity between the translated protein sequence and the peptide data from the purified protein, and the full length gene sequence has been obtained. Biochemical properties, substrate specificities and protein sequence data have been used to discuss the unusual spectroscopic properties of S. aeruginosa proteins in the context of recent theories about the differences between yellow and blue laccases. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  12. Cerebral time domain-NIRS: reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects.

    Science.gov (United States)

    Giacalone, Giacomo; Zanoletti, Marta; Contini, Davide; Re, Rebecca; Spinelli, Lorenzo; Roveri, Luisa; Torricelli, Alessandro

    2017-11-01

    The reproducibility of cerebral time-domain near-infrared spectroscopy (TD-NIRS) has not been investigated so far. Besides, reference intervals of cerebral optical properties, of absolute concentrations of deoxygenated-hemoglobin (HbR), oxygenated-hemoglobin (HbO), total hemoglobin (HbT) and tissue oxygen saturation (StO 2 ) and their variability have not been reported. We have addressed these issues on a sample of 88 adult healthy subjects. TD-NIRS measurements at 690, 785, 830 nm were fitted with the diffusion model for semi-infinite homogenous media. Reproducibility, performed on 3 measurements at 5 minutes intervals, ranges from 1.8 to 6.9% for each of the hemoglobin species. The mean ± SD global values of HbR, HbO, HbT, StO 2 are respectively 24 ± 7 μM, 33.3 ± 9.5 μM, 57.4 ± 15.8 μM, 58 ± 4.2%. StO 2 displays the narrowest range of variability across brain regions.

  13. Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila.

    Science.gov (United States)

    Frenkel-Pinter, Moran; Stempler, Shiri; Tal-Mazaki, Sharon; Losev, Yelena; Singh-Anand, Avnika; Escobar-Álvarez, Daniela; Lezmy, Jonathan; Gazit, Ehud; Ruppin, Eytan; Segal, Daniel

    2017-08-01

    The pathological hallmarks of Alzheimer's disease (AD) are pathogenic oligomers and fibrils of misfolded amyloidogenic proteins (e.g., β-amyloid and hyper-phosphorylated tau in AD), which cause progressive loss of neurons in the brain and nervous system. Although deviations from normal protein glycosylation have been documented in AD, their role in disease pathology has been barely explored. Here our analysis of available expression data sets indicates that many glycosylation-related genes are differentially expressed in brains of AD patients compared with healthy controls. The robust differences found enabled us to predict the occurrence of AD with remarkable accuracy in a test cohort and identify a set of key genes whose expression determines this classification. We then studied in vivo the effect of reducing expression of homologs of 6 of these genes in transgenic Drosophila overexpressing human tau, a well-established invertebrate AD model. These experiments have led to the identification of glycosylation genes that may augment or ameliorate tauopathy phenotypes. Our results indicate that OstDelta, l(2)not and beta4GalT7 are tauopathy suppressors, whereas pgnat5 and CG33303 are enhancers, of tauopathy. These results suggest that specific alterations in protein glycosylation may play a causal role in AD etiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Elortza, Felix

    2004-01-01

    remains linked to the asparagine residue. The removal of the major part of the glycan simplifies the MS/MS fragment ion spectra of glycopeptides, while the remaining GlcNAc residue enables unambiguous assignment of the glycosylation site together with the amino acid sequence. We first tested our approach...

  15. Perbedaan Kadar Hemoglobin dan Hematokrit Bayi Baru Lahir Akibat Perbedaan Waktu Penjepitan Tali Pusat

    Directory of Open Access Journals (Sweden)

    Nuriah Arma

    2016-01-01

    delayed 3 minute its can increase the volume red blood cells about 58%. The objective of this study was to prove the difference of hemoglobin and hematocrit level between 3 minutes and 1 minute cord clamping.  Experimental research was conducted with post-test only control group design of 36 newborns. Data were analyzed by t-test. The result of this study showed that the mean of hemoglobin and hematocrit level in 3 minutes of clamp are higher  than 1 minute of clamp.There was a significant difference of hemoglobin level between 3 minutes cord clamping group and 1 minute cord clamping group with p value is 0.004. There was also a significant difference of hematocrit level between 3 minutes cord clamping group and 1 minute cord clamping group with p value is 0.001. The conclusion is the hemoglobin and hematocrit level are better in cord clamping delayed in 3 minutes after birth than clamping in 1 minute after birth. Keywords: hemoglobin, hematocrit, cord clamping

  16. [Hemoglobins, XXXII. Analysis of the primary structure of the monomeric hemoglobin CTT VIIA (erythrocruorin) or Chironomus thummi thummi, Diptera (author's transl)].

    Science.gov (United States)

    Kleinschmidt, T; Braunitzer, G

    1980-01-01

    The dimeric hemoglobin CTT VIIA (erythrocruorin) was isolated from the hemolymph of the larva from Chironomus thummi thummi and purified by preparative polyacrylamide gel electrophoresis. Peptides obtained by limited tryptical digestion were sequenced by automatic Edman degradation. For the elucidation of the sequence in the C-terminal region of the chain, additional cleavages with proteinase of Staphylococcus aureus and chymotrypsin were necessary. CTT VIIA is compared with human beta-chains and other hemoglobins of Chironomus. The amino acid residues in the pocket are especially discussed. Most of them are invariant in all Chironomus hemoglobins, independent of the size of the heme pocket, which is normal in some components and enlarged in others.

  17. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    Science.gov (United States)

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  18. Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood Samples

    DEFF Research Database (Denmark)

    Boersema, P.J.; Geiger, T.; Wiśniewski, J.R.

    2013-01-01

    Cells secrete a large number of proteins to communicate with their surroundings. Furthermore, plasma membrane proteins and intracellular proteins can be released into the extracellular space by regulated or non-regulated processes. Here, we profiled the supernatant of 11 cell lines....... In total, 1398 unique N-glycosylation sites were identified and quantified. Enriching for N-glycosylated peptides focused the analysis on classically secreted and membrane proteins. N-glycosylated secretome profiles correctly clustered the different cell lines to their respective cancer stage, suggesting...

  19. [Proteins modified in the nonenzymatically glycosylation reaction (AGE-proteins)--new markers for diabetes?].

    Science.gov (United States)

    Zdrojewicz, Z; Januszewski, A; Kwiatkowska, D

    1994-01-01

    Paper present a recent review on the formation and clinical significance of advanced glycosylation end products, produced in nonenzymatically glycosylation, called Maillard reaction. The special attention was paid to AGEs role in diabetic and aging processes. Instant of occurring of AGEs in circulation or increase of AGE receptor concentration are many years faster than clinical pathology of vessels, nervous or kidneys connect with diabetes or aging. May be in the future it will be possible to decrease the consequence of Maillard reaction by using pharmacology drugs.

  20. Glycosylation intermediates studied using low temperature 1H- and 19F-DOSY NMR

    DEFF Research Database (Denmark)

    Qiao, Yan; Ge, Wenzhi; Jia, Lingyu

    2016-01-01

    Low temperature 1H- and 19F-DOSY have been used for analyzing reactive intermediates in glycosylation reactions, where a glycosyl trichloroacetimidate donor has been activated using different catalysts. The DOSY protocols have been optimized for low temperature experiments and provided new insight...

  1. Glycosyl azide-a novel substrate for enzymatic transgycosylations

    Czech Academy of Sciences Publication Activity Database

    Fialová, Pavla; Carmona, A. T.; Robina, I.; Ettrich, R.; Sedmera, Petr; Přikrylová, Věra; Hušáková, Lucie; Křen, Vladimír

    2005-01-01

    Roč. 46, - (2005), s. 8715-8718 ISSN 0040-4039 R&D Projects: GA ČR GA203/05/0172; GA MŠk OC D25.002 Grant - others:GA KONTAKT 1862/04 Institutional research plan: CEZ:AV0Z50200510 Keywords : enzyme catalysis * glycosyl azide * molecular modelling Subject RIV: EE - Microbiology, Virology Impact factor: 2.477, year: 2005

  2. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  3. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards.The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites.The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the

  4. Haptoglobin Duplicon, Hemoglobin, and Vitamin C: Analyses in the British Women’s Heart and Health Study and Caerphilly Prospective Study

    Directory of Open Access Journals (Sweden)

    Philip A. I. Guthrie

    2014-01-01

    Full Text Available Background. Haptoglobin acts as an antioxidant by limiting peroxidative tissue damage by free hemoglobin. The haptoglobin gene allele Hp2 comprises a 1.7 kb partial duplication. Relative to allele Hp1, Hp2 carriers form protein multimers, suboptimal for hemoglobin scavenging. Objective. To examine the association of haptoglobin genotype with a range of phenotypes, with emphasis on vitamin C and hemoglobin levels. Methods. We applied a quantitative PCR assay for the duplication junction to two population cohorts including 2747 British women and 1198 British men. We examined the association of haptoglobin duplicon copy number with hemoglobin and vitamin C and used the copy number to complete a phenome scan. Results. Hemoglobin concentrations were greater in those with Hp2,2 genotype, in women only (Hp1,1 13.45 g/dL, Hp1,2 13.49 g/dL, Hp2,2 13.61 g/dL; P=0.002, though statistically there was no evidence of a difference between the sexes (z value = 1.2, P=0.24. Haptoglobin genotype was not associated with vitamin C or any other phenotype in either cohort. Conclusions. Our results do not support association of haptoglobin genotype with vitamin C or with other phenotypes measured in two population cohorts. The apparent association between haptoglobin genotype and hemoglobin in the women’s cohort merits further investigation.

  5. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter Durand

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla...

  6. Crystallization and preliminary crystallographic analysis of human glycosylated haemoglobin

    International Nuclear Information System (INIS)

    Syakhovich, Vitaly E.; Saraswathi, N. T.; Ruff, Marc; Bokut, Sergey B.; Moras, Dino

    2006-01-01

    Non enzymatic modification of haemoglobin by glucose plays an important role in diabetes pathogenesis. Here the purification, characterization and crystallization of human glycosylated haemoglobin are reported. Human glycosylated haemoglobin A 1C is a stable minor variant formed in vivo by post-translational modification of the main form of haemoglobin by glucose. Crystals of oxyHbA 1C were obtained using the hanging-drop vapour-diffusion method and PEG as precipitant. The diffraction pattern of the crystal extends to a resolution of 2.3 Å at 120 K. The crystals belong to space group C2, with unit-cell parameters a = 237.98, b = 59.27, c = 137.02 Å, α = 90.00, β = 125.40, γ = 90.00°. The presence of two and a half molecules per asymmetric unit gives a crystal volume per protein weight (V M ) of 9.70 Å 3 Da −1 and a solvent content of 49%

  7. Crystallization and preliminary crystallographic analysis of human glycosylated haemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Syakhovich, Vitaly E. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Saraswathi, N. T.; Ruff, Marc, E-mail: ruff@igbmc.u-strasbg.fr [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Bokut, Sergey B. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Moras, Dino [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus)

    2006-02-01

    Non enzymatic modification of haemoglobin by glucose plays an important role in diabetes pathogenesis. Here the purification, characterization and crystallization of human glycosylated haemoglobin are reported. Human glycosylated haemoglobin A{sub 1C} is a stable minor variant formed in vivo by post-translational modification of the main form of haemoglobin by glucose. Crystals of oxyHbA{sub 1C} were obtained using the hanging-drop vapour-diffusion method and PEG as precipitant. The diffraction pattern of the crystal extends to a resolution of 2.3 Å at 120 K. The crystals belong to space group C2, with unit-cell parameters a = 237.98, b = 59.27, c = 137.02 Å, α = 90.00, β = 125.40, γ = 90.00°. The presence of two and a half molecules per asymmetric unit gives a crystal volume per protein weight (V{sub M}) of 9.70 Å{sup 3} Da{sup −1} and a solvent content of 49%.

  8. Hemoglobin binding of aromatic amines: molecular dosimetry and quantitative structure-activity relationships for N-oxidation.

    Science.gov (United States)

    Sabbioni, G

    1993-01-01

    Aromatic amines are important intermediates in industrial manufacturing. N-Oxidation to N-hydroxyarylamines is a key step in determining the genotoxic properties of aromatic amines. N-Hydroxyarylamines can form adducts with DNA, with tissue proteins, and with the blood proteins albumin and hemoglobin in a dose-dependent manner. The determination of hemoglobin adducts is a useful tool for biomonitoring exposed populations. We have established the hemoglobin binding index (HBI) [(mmole compound/mole hemoglobin)/(mmole compound/kg body weight)] of several aromatic amines in female Wistar rats. Including the values from other researchers obtained in the same rat strain, the logarithm of hemoglobin binding (logHBI) was plotted against the following parameters: the sum of the Hammett constants(sigma sigma = sigma p + sigma m), pKa, logP (octanol/water), the half-wave oxidation potential (E1/2), and the electronic descriptors of the amines and their corresponding nitrenium ions obtained by semi-empirical calculations (MNDO, AMI, and PM3), such as atomic charge densities, energies of the highest occupied molecular orbit and lowest occupied molecular orbit and their coefficients, the bond order of C-N, the dipole moments, and the reaction enthalpy [MNDOHF, AM1HF or PM3HF = Hf(nitrenium) - Hf(amine)]. The correlation coefficients were determined from the plots of all parameters against log HBI for all amines by means of linear regression analysis. The amines were classified in three groups: group 1, all parasubstituted amines (maximum, n = 9); group 2, all amines with halogens (maximun, n = 11); and group 3, all amines with alkyl groups (maximum, n = 13).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319626

  9. [Hemoglobin variants in Colombian patients referred to discard hemoglobinopathies].

    Science.gov (United States)

    Romero-Sánchez, Consuelo; Gómez Gutiérrez, Alberto; Duarte, Yurani; Amazo, Constanza; Manosalva, Clara; Chila M, Lorena; Casas-Gómez, María Consuelo; Briceño Balcázar, Ignacio

    2015-10-01

    Oxygen transport is altered in hemoglobinopathies. To study the distribution of hemoglobinopathies in Andean subjects without African ancestry. We analyzed blood samples of 1,407 subjects aged 18 to 59 years (58% females), living in the central Andean region of Colombia, referred to discard hemoglobinopathies. The frequency and type of hemoglobinopathy was established by capillary and agarose gel electrophoresis. The frequency of hemoglobinopathies was 34.5% and higher among females. The structural variants found were: AS-heterozygous hemoglobin (8.1%), homozygous SS (3.7%), heterozygous SC (2.2%), AC heterozygotes (0.5%) and heterozygous AE (0.3%). Quantitative variants found were Hb A-Beta thalassemia (13.91%) and Hb H (0.06%), Beta-thalassemia heterozygotes C (0.88%), S-Beta thalassemia heterozygotes (6.07%) and compound heterozygous SC/Beta thalassemia (0.25%), with a persistence of fetal hemoglobin 0. Composite thalassemia was also found in 31%. All techniques showed good correlation and capillary electrophoresis demonstrated a greater detection of hemoglobin variants. The frequency of hemoglobin variants in the analyzed population was high, which is an important public health indicator. The most common hemoglobin variant was HbA/Increased structural Hb A2 and the mos frequent structural hemoglobinopathy was sickle cell trait. Capillary electrophoresis can discern any Hb variants present in the population.

  10. Study of LAXS Profile of Hemoglobin from Irradiated Blood

    International Nuclear Information System (INIS)

    Selim, N.S.; Desouky, O.S.; Elshemey, W.M.

    2006-01-01

    The present work aims to move a step forward towards a deeper understanding of the scattering of x-ray, from lyophilized biological samples. Comparative study has been performed using low angle x-ray scattering (LAXS) and UV-visible spectrophotometry for monitoring the dose response characteristics of the hemoglobin molecule of irradiated blood. Blood samples were exposed to gamma rays, at doses ranging from 5 up to 100 Gy. Diluted hemoglobin solution was scanned in the UV-visible range (200-700 nm), and lyophilized hemoglobin was prepared for LAXS measurement. The radiation-induced changes in the hemoglobin structure have been evaluated. The LAXS profile of hemoglobin molecule is characterized by the presence of 2 peaks in the forward direction of scattering. These peaks were found to be sensitive to the variations in the molecular structure of a given sample. The obtained results suggest that the 1st peak, recorded at 4.65O (equivalent to momentum transfer, x= 0.526 nm-1), is sensitive to the tertiary and quaternary structure of the globin part, while the major peak, recorded at 10.5O (equivalent to momentum transfer, x= 1.189 nm-1), appeared to be related to its primary and secondary structure

  11. Hemoglobin A1c Levels Predicts Acute Kidney Injury after Coronary Artery Bypass Surgery in Non-Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Cevdet Ugur Kocogulları

    Full Text Available Abstract INTRODUCTION: Elevated hemoglobin A1c levels in patients with diabetes mellitus have been known as a risk factor for acute kidney injury after coronary artery bypass grafting. However, the relationship between hemoglobin A1c levels in non-diabetics and acute kidney injury is under debate. We aimed to investigate the association of preoperative hemoglobin A1c levels with acute kidney injury in non-diabetic patients undergoing isolated coronary artery bypass grafting. METHODS: 202 non-diabetic patients with normal renal function (serum creatinine <1.4 mg/dl who underwent isolated coronary bypass were analyzed. Hemoglobin A1c level was measured at the baseline examination. Patients were separated into two groups according to preoperative Hemoglobin A1c level. Group 1 consisted of patients with preoperative HbA1c levels of < 5.6% and Group 2 consisted of patients with preoperative HbA1c levels of ≥ 5.6%. Acute kidney injury diagnosis was made by comparing baseline and postoperative serum creatinine to determine the presence of predefined significant change based on the Kidney Disease Improving Global Outcomes (KDIGO definition. RESULTS: Acute kidney injury occurred in 19 (10.5% patients after surgery. The incidence of acute kidney injury was 3.6% in Group 1 and 16.7% in Group 2. Elevated baseline hemoglobin A1c level was found to be associated with acute kidney injury (P=0.0001. None of the patients became hemodialysis dependent. The cut off value for acute kidney injury in our group of patients was 5.75%. CONCLUSION: Our findings suggest that, in non-diabetics, elevated preoperative hemoglobin A1c level may be associated with acute kidney injury in patients undergoing coronary artery bypass grafting. Prospective randomized studies in larger groups are needed to confirm these results.

  12. Is a blood sample for hemoglobins in the transfusional range reliable?

    Science.gov (United States)

    López, A; Gómez, L; Petinal, G; Adán, N; Alvarado, S; Carballo, N

    2018-02-27

    To evaluate the correlation and agreement in our unit and population of hemoglobin in gasometry versus hematology analyzer, to evaluate errors in transfusion or lack thereof. strong association between Point-of-care (POC) and hematimetry, with P<.001, with a coefficient of determination r 2 of 0.56, an intraclass correlation coefficient of 0.63 and a Lin's concordance correlation coefficient of 0.65. For hemoglobins less than 7g/dL, a success rate of 29.41% was obtained. Low-moderate agreement of POC hemoglobin with standard haemothymetry. High probability of errors in the indication of transfusion based on gasometer hemoglobins, especially in low hemoglobins. Copyright © 2018 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Hemoglobin Levels Across the Pediatric Critical Care Spectrum: A Point Prevalence Study.

    Science.gov (United States)

    Hassan, Nabil E; Reischman, Diann E; Fitzgerald, Robert K; Faustino, Edward Vincent S

    2018-05-01

    To determine the prevailing hemoglobin levels in PICU patients, and any potential correlates. Post hoc analysis of prospective multicenter observational data. Fifty-nine PICUs in seven countries. PICU patients on four specific days in 2012. None. Patients' hemoglobin and other clinical and institutional data. Two thousand three hundred eighty-nine patients with median age of 1.9 years (interquartile range, 0.3-9.8 yr), weight 11.5 kg (interquartile range, 5.4-29.6 kg), and preceding PICU stay of 4.0 days (interquartile range, 1.0-13.0 d). Their median hemoglobin was 11.0 g/dL (interquartile range, 9.6-12.5 g/dL). The prevalence of transfusion in the 24 hours preceding data collection was 14.2%. Neonates had the highest hemoglobin at 13.1 g/dL (interquartile range, 11.2-15.0 g/dL) compared with other age groups (p < 0.001). The percentage of 31.3 of the patients had hemoglobin of greater than or equal to 12 g/dL, and 1.1% had hemoglobin of less than 7 g/dL. Blacks had lower median hemoglobin (10.5; interquartile range, 9.3-12.1 g/dL) compared with whites (median, 11.1; interquartile range, 9.0-12.6; p < 0.001). Patients in Spain and Portugal had the highest median hemoglobin (11.4; interquartile range, 10.0-12.6) compared with other regions outside of the United States (p < 0.001), and the highest proportion (31.3%) of transfused patients compared with all regions (p < 0.001). Patients in cardiac PICUs had higher median hemoglobin than those in mixed PICUs or noncardiac PICUs (12.3, 11.0, and 10.6 g/dL, respectively; p < 0.001). Cyanotic heart disease patients had the highest median hemoglobin (12.6 g/dL; interquartile range, 11.1-14.5). Multivariable regression analysis within diagnosis groups revealed that hemoglobin levels were significantly associated with the geographic location and history of complex cardiac disease in most of the models. In children with cancer, none of the variables tested correlated with patients' hemoglobin levels

  14. Detection of site specific glycosylation in proteins using flow cytometry†

    Science.gov (United States)

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  15. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers

    NARCIS (Netherlands)

    Lauc, G.; Huffman, J.E.; Pucic, M.; Zgaga, L.; Adamczyk, B.; Muzinic, A.; Novokmet, M.; Polasek, O.; Gornik, O.; Kristic, J.; Keser, T.; Vitart, V.; Scheijen, B.; Uh, H.W.; Molokhia, M.; Patrick, A.L.; McKeigue, P.; Kolcic, I.; Lukic, I.K.; Swann, O.; Leeuwen, F.N. van; Ruhaak, L.R.; Houwing-Duistermaat, J.J.; Slagboom, P.E.; Beekman, M.; Craen, A.J. de; Deelder, A.M.; Zeng, Q.; Wang, W.; Hastie, N.D.; Gyllensten, U.; Wilson, J.F.; Wuhrer, M.; Wright, A.F.; Rudd, P.M.; Hayward, C.; Aulchenko, Y.; Campbell, H.; Rudan, I.

    2013-01-01

    Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative

  16. Point-of-care hemoglobin testing for postmortem diagnosis of anemia.

    Science.gov (United States)

    Na, Joo-Young; Park, Ji Hye; Choi, Byung Ha; Kim, Hyung-Seok; Park, Jong-Tae

    2018-03-01

    An autopsy involves examination of a body using invasive methods such as dissection, and includes various tests using samples procured during dissection. During medicolegal autopsies, the blood carboxyhemoglobin concentration is commonly measured using the AVOXimeter® 4000 as a point-of-care test. When evaluating the body following hypovolemic shock, characteristics such as reduced livor mortis or an anemic appearance of the viscera can be identified, but these observations arequite subjective. Thus, a more objective test is required for the postmortem diagnosis of anemia. In the present study, the AVOXimeter® 4000 was used to investigate the utility of point-of-care hemoglobin testing. Hemoglobin tests were performed in 93 autopsy cases. The AVOXimeter® 4000 and the BC-2800 Auto Hematology Analyzer were used to test identical samples in 29 of these cases. The results of hemoglobin tests performed with these two devices were statistically similar (r = 0.969). The results of hemoglobin tests using postmortem blood were compared with antemortem test results from medical records from 31 cases, and these results were similar. In 13 of 17 cases of death from internal hemorrhage, hemoglobin levels were lower in the cardiac blood than in blood from the affected body cavity, likely due to compensatory changes induced by antemortem hemorrhage. It is concluded that blood hemoglobin testing may be useful as a point-of-care test for diagnosing postmortem anemia.

  17. The relationship between extent of hemoglobin purification and the performance characteristics of a blood-based flocculant

    Science.gov (United States)

    Whole blood is a highly complex substance. Hemoglobin, the most abundant blood protein, can function as a flocculant of colloidal clay; most of the other blood components exhibit poor flocculant activity. For the purpose of processing raw whole blood into a flocculant product, the practical value of...

  18. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    Science.gov (United States)

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Glycosylation status of vitamin D binding protein in cancer patients.

    Science.gov (United States)

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.

  20. Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2011-04-01

    Full Text Available Salinity stress is an important environmental constraint limiting the productivity of many crops worldwide. In this report, experiments were conducted to investigate the effects of seed presoaking by bovine hemoglobin, an inducer of heme oxygenase-1 (HO-1, on salinity tolerance in rice (Oryza sativa plants. The results showed that different concentrations of the hemoglobin (0.01, 0.05, 0.2, 1.0, and 5.0 g/L differentially alleviated the inhibition of rice seed germination and thereafter seedling shoot growth caused by 100 mM NaCl stress, and the responses of 1.0 g/L hemoglobin was the most obvious. Further analyses showed that application of hemoglobin not only increased the HO-1 gene expression, but also differentially induced catalase (CAT, ascorbate peroxidase (APX, and superoxide dismutase (SOD activities or transcripts, thus decreasing the lipid peroxidation in germinating rice seeds subjected to salt stress. Compared with non-hemoglobin treatment, hemoglobin presoaking also increased the potassium (K to sodium (Na ratio both in the root and shoot parts after salinity stress. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX blocked the positive actions of hemoglobin on seed germination and seedling shoot growth. Overall, these results suggested that hemoglobin performs an advantageous role in enhancement of salinity tolerance during rice seed germination.

  1. Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy.

    Science.gov (United States)

    Egawa, Tsuyoshi; Yeh, Syun-Ru

    2005-01-01

    Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.

  2. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    Science.gov (United States)

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-09-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.

  3. A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering

    DEFF Research Database (Denmark)

    Spahn, Philipp N.; Hansen, Anders Holmgaard; Hansen, Henning Gram

    2016-01-01

    Glycosylation is a critical quality attribute of most recombinant biotherapeutics. Consequently, drug development requires careful control of glycoforms to meet bioactivity and biosafety requirements. However, glycoengineering can be extraordinarily difficult given the complex reaction networks...... present a novel low-parameter approach to describe glycosylation using flux-balance and Markov chain modeling. The model recapitulates the biological complexity of glycosylation, but does not require user-provided kinetic information. We use this method to predict and experimentally validate glycoprofiles...

  4. Hemoglobin system of Sparus aurata: Changes in fishes farmed under extreme conditions

    International Nuclear Information System (INIS)

    Campo, Salvatore; Nastasi, Giancarlo; D'Ascola, Angela; Campo, Giuseppe M.; Avenoso, Angela; Traina, Paola; Calatroni, Alberto; Burrascano, Emanuele; Ferlazzo, Alida; Lupidi, Giulio; Gabbianelli, Rosita; Falcioni, Giancarlo

    2008-01-01

    In order to gain more knowledge on the stress responses of gilhead seabream (Sparus aurata) under extreme conditions, this study investigated the functional properties of the hemoglobin system and globin gene expression under hypoxia and low salinity. The oxygen affinity for the two hemoglobin components present inside the S. aurata erythrocyte was practically identical as was the influence of protons and organic phosphates (Root effect). The quantification of S. aurata hemoglobin fractions performed by HPLC and the data on gene expression of globin chains assayed by PCR indicate that under hypoxia and low salinity there is a change in the ratio between the two different hemoglobin components. The result indicating that the distinct hemoglobins present in S. aurata erythrocyte have almost identical functional properties, does not explain the adaptive response (expression change) following exposure of the animal to hypoxia or low salinity on the basis of their function as oxygen transporter. We hypothesize that other parallel biological functions that the hemoglobin molecule is known to display within the erythrocyte are involved in adaptive molecular mechanisms. The autoxidation-reduction cycle of hemoglobin could be involved in the response to particular living conditions

  5. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8.

    Directory of Open Access Journals (Sweden)

    Sarah Friebe

    Full Text Available ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.

  6. Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo.

    Science.gov (United States)

    Kolatkar, P R; Meador, W E; Stanfield, R L; Hackert, M L

    1988-03-05

    Tetrameric hemoglobin from the "fat innkeeper" worm Urechis caupo possesses a novel subunit arrangement having an "inside out" quaternary structure in that the G/H helices are located on the outer surface of the tetramer. A 5-A resolution crystal structure reveals that although the individual subunits are beta-like, having a distinct D helix and the general myoglobin fold, the subunit contacts are very different from those previously observed for hemoglobins. Furthermore, the hemoglobin from U. caupo is also quite different from the unusual hemoglobin tetramer from clam which also has its G/H helices on the outer surface but with the hemes in close proximity through E-F helical contacts (Royer, W. E., Jr., Love, W. E., and Fenderson, F. F. (1985) Nature 316, 277-280).

  7. Hemoglobin as a factor in the control of tumor oxygenation

    International Nuclear Information System (INIS)

    Hirst, D.G.

    1987-01-01

    The concentration of hemoglobin in the blood has been shown to have a market effect on the radiosensitivity of human and animal tumors. Experimental studies in mice indicate that radiosensitivity is influenced by a change in the hemoglobin level rather than by the absolute concentration. This dependence may be exploited to therapeutic advantage. Recent studies of hemoglobin/oxygen affinity have shown that the concentration of 2,3 diphosphoglycerate (2,3 DPG) affects tumor sensitivity to X-rays. Increased 2,3 DPG levels increase radiosensitivity in several mouse tumors. The time dependence of this effect remains to be established. The effective application of these effects in man may depend on the development of drugs which produce changes in hemoglobin affinity without the need for blood transfusions. Several drugs are currently being investigated

  8. Lower Hemoglobin Concentration Is Associated with Retinal Ischemia and the Severity of Diabetic Retinopathy in Type 2 Diabetes

    Science.gov (United States)

    Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac

    2016-01-01

    Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = −0.52, P value = 0.003] and retinal ischemia [beta-coefficient = −0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = −0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR. PMID:27200379

  9. Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk.

    Science.gov (United States)

    Sheng, Long; He, Zhenjiao; Liu, Yaping; Ma, Meihu; Cai, Zhaoxia

    2018-03-01

    Immunoglobulin Y (IgY) is a new therapeutic antibody that exists in hen egg yolk. It is a glycoprotein, not much is known about its N-glycan structures, site occupancy and site-specific N-glycosylation. In this study, purified protein from hen egg yolk was identified as IgY based on SDS-PAGE and MALDI-TOF/TOF MS. N-glycan was released from IgY using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase treatment, and the molecular weight of IgY was calculated using the difference between the molecular weight of IgY and deglycosylated IgY. Two potential N-Glycosylation sites (ASN 308 and ASN 409 ) were detected on IgY by nanoLC-ESI MS. Sugar chains were separated using normal phase liquid chromatography after fluorescence labeling, and 17 N-glycan structures were confirmed using ESI-MS. The sugar chain pattern contained high-mannose oligosaccharide, hybrid oligosaccharide and complex oligosaccharide. These results could lead to other important information regarding IgY glycosylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hemoglobin oxygen affinity in patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Dieter Böning

    Full Text Available In patients with cystic fibrosis lung damages cause arterial hypoxia. As a typical compensatory reaction one might expect changes in oxygen affinity of hemoglobin. Therefore position (standard half saturation pressure P50st and slope (Hill's n of the O2 dissociation curve as well as the Bohr coefficients (BC for CO2 and lactic acid were determined in blood of 14 adult patients (8 males, 6 females and 14 healthy controls (6 males, 8 females. While Hill's n amounted to approximately 2.6 in all subjects, P50st was slightly increased by 1 mmHg in both patient groups (controls male 26.7 ± 0.2, controls female 27.0 ± 0.1, patients male 27.7 ± 0.5, patients female 28.0 ± 0.3 mmHg; mean and standard error, overall p<0.01. Main cause was a rise of 1-2 µmol/g hemoglobin in erythrocytic 2,3-biphosphoglycerate concentration. One patient only, clearly identified as an outlier and with the mutation G551D, showed a reduction of both P50st (24.5 mmHg and [2,3-biphosphoglycerate] (9.8 µmol/g hemoglobin. There were no differences in BCCO2, but small sex differences in the BC for lactic acid in the controls which were not detectable in the patients. Causes for the right shift of the O2 dissociation curve might be hypoxic stimulation of erythrocytic glycolysis and an increased red cell turnover both causing increased [2,3-biphosphoglycerate]. However, for situations with additional hypercapnia as observed in exercising patients a left shift seems to be a more favourable adaptation in cystic fibrosis. Additionally when in vivo PO2 values were corrected to the standard conditions they mostly lay left of the in vitro O2 dissociation curve in both patients and controls. This hints to unknown fugitive factors influencing oxygen affinity.

  11. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Science.gov (United States)

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  12. A comparative study of fasting, postprandial blood glucose and glycated hemoglobin for diagnosing diabetes mellitus in staff members of MMIMSR, Mullana, Ambala

    Directory of Open Access Journals (Sweden)

    Qazi Najeeb

    2015-01-01

    Full Text Available Introduction: For decades, the diagnosis of diabetes mellitus was based on blood glucose criteria, either the fasting blood glucose (FBG or a 2-h value in the 75-g oral glucose tolerance test. In 2009, an International Expert Committee that included representatives of the American Diabetes Association (ADA, International Diabetes Federation and European Association for the Study of Diabetes recommended the use of the HbA1c test to diagnose diabetes with a threshold of ≥6.5% and this criterion was finally adopted by ADA in 2010. Hence, the study was undertaken to evaluate the predictive efficacy of glycated hemoglobin as a diagnostic tool for diabetes mellitus and to identify individuals at risk of developing diabetes mellitus using Indian Diabetes Risk Score (IDRS. Materials and Methods: This cross-sectional study was conducted on the staff members of the Maharishi Markandeshwar Institute of Medical Science and Research, Mullana, Ambala, Haryana, India. Out of the total 800 staff members, 200 staff members were included in the study (88 faculty members, 37 staff nurses, 12 laboratory technicians, 25 clerical staff, 38 class IV selected by systemic random sampling. Every fifth member on the list was included in the sample. After obtaining the data, it was coded and analyzed using multivariate logistic regression analysis. Receiver operating characteristics curve analysis was used to predict the sensitivity, specificity, positivity, negativity and overall accuracy of a diagnostic test. A two-tailed test P < 0.05 was considered as statistically significant. Data was analyzed using SPSS 20 (IBM, Chicago, USA. Results: Out of 200 subjects, 19.5% were labeled diabetic using FBG, 23% by postprandial blood glucose (PPBG and 38.5% by using glycated hemoglobin according to ADA guidelines. A total of 62% had high-risk score out of which majority belonged to group-I (faculty followed by group-II (nursing staff and group-IV (clerical staff. With the

  13. Improvements in or relating to antibodies active against human hemoglobin Asub(1C)

    International Nuclear Information System (INIS)

    Javid, J.; Cerami, A.; Koenig, R.J.; Pettis, P.K.

    1980-01-01

    A method is described for preparing an antibody against human hemoglobin Asub(1c) which is substantially free of cross-reactivity against the human hemoglobins A 0 , Asub(1a) and Asub(1b). The antibodies are collected from cats, goats or sheep following injections of purified hemoglobin Asub(1c) antigen since these animals do not naturally produce hemoglobin Asub(1c). A radioimmunoassay method is also described whereby these antibodies are used to determine the quantity of hemoglobin Asub(1c) in blood samples. This is a useful technique in the diagnosis of diabetes mellitus. (U.K.)

  14. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.

    Science.gov (United States)

    Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong

    2017-09-15

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  16. Analysis of bias in measurements of potassium, sodium and hemoglobin by an emergency department-based blood gas analyzer relative to hospital laboratory autoanalyzer results.

    Directory of Open Access Journals (Sweden)

    Jian Bo Zhang

    Full Text Available The emergency departments (EDs of Chinese hospitals are gradually being equipped with blood gas machines. These machines, along with the measurement of biochemical markers by the hospital laboratory, facilitate the care of patients with severe conditions who present to the ED. However, discrepancies have been noted between the Arterial Blood Gas (ABG analyzers in the ED and the hospital laboratory autoanalyzer in relation to electrolyte and hemoglobin measurements. The present study was performed to determine whether the ABG and laboratory measurements of potassium, sodium, and hemoglobin levels are equivalent, and whether ABG analyzer results can be used to guide clinical care before the laboratory results become available.Study power analyses revealed that 200 consecutive patients who presented to our ED would allow this prospective single-center cohort study to detect significant differences between ABG- and laboratory-measured potassium, sodium, and hemoglobin levels. Paired arterial and venous blood samples were collected within 30 minutes. Arterial blood samples were measured in the ED by an ABL 90 FLEX blood gas analyzer. The biochemistry and blood cell counts of the venous samples were measured in the hospital laboratory. The potassium, sodium, and hemoglobin concentrations obtained by both methods were compared by using paired Student's t-test, Spearman's correlation, Bland-Altman plots, and Deming regression.The mean ABG and laboratory potassium values were 3.77±0.44 and 4.2±0.55, respectively (P<0.0001. The mean ABG and laboratory sodium values were 137.89±5.44 and 140.93±5.50, respectively (P<0.0001. The mean ABG and laboratory Hemoglobin values were 12.28±2.62 and 12.35±2.60, respectively (P = 0.24.Although there are the statistical difference and acceptable biases between ABG- and laboratory-measured potassium and sodium, the biases do not exceed USCLIA-determined limits. In parallel, there are no statistical differences and

  17. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    Science.gov (United States)

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  18. The C-terminal N-glycosylation sites of the human alpha1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V, adn -VI) are necessary for the expression of full enzyme activity.

    Science.gov (United States)

    Christensen, L L; Jensen, U B; Bross, P; Orntoft, T F

    2000-09-01

    The alpha1,3/4-fucosyltransferases are involved in the synthesis of fucosylated cell surface glycoconjugates. Human alpha1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V, and -VI) contain two conserved C-terminal N-glycosylation sites (hFucTIII: Asn154 and Asn185; hFucTV: Asn167 and Asn198; and hFucTVI: Asn153 and Asn184). In the present study, we have analyzed the functional role of these potential N-glycosylation sites, laying the main emphasis on the sites in hFucTIII. Tunicamycin treatment completely abolished hFucTIII enzyme activity while castanospermine treatment diminished hFucTIII enzyme activity to approximately 40% of the activity of the native enzyme. To further analyze the role of the conserved N-glycosylation sites in hFucTIII, -V, and -VI, we made a series of mutant genomic DNAs in which the asparagine residues in the potential C-terminal N-glycosylation sites were replaced by glutamine. Subsequently, the hFucTIII, -V, and -VI wild type and the mutants were expressed in COS-7 cells. All the mutants exhibited lower enzyme activity than the wild type and elimination of individual sites had different effects on the activity. The mutations did not affect the protein level of the mutants in the cells, but reduced the molecular mass as predicted. Kinetic analysis of hFucTIII revealed that lack of glycosylation at Asn185 did not change the Km values for the oligosaccharide acceptor and the nucleotide sugar donor. The present study demonstrates that hFucTIII, -V, and -VI require N-glycosylation at the two conserved C-terminal N-glycosylation sites for expression of full enzyme activity.

  19. A retrospective study on fourteen year hemoglobin genotype variants recorded at five government hospitals in Akure, Ondo State, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Akeem Akinboro

    2016-10-01

    Results and conclusion: Six hemoglobin genotypes were identified as HbAA, HbAS, HbAC, HbSS, HbSC and HbCC. The overall average values of their prevalence in decreasing order were HbAA (88.11% > HbAS (10.23% > HbAC (0.78% > HbSS (0.72%, HbSC (0.15% and HbCC (0.01%. There was a steady increase in the number of people who visited the hospitals for hemoglobin genotype determination throughout the years covered in this investigation, as the proportion of abnormal hemoglobin genotypes to the normal HbAA tremendously increased in the last four years (2010–2013. This suggests the possibility of many other residents in the capital city of Ondo state carrying the abnormal forms of hemoglobin genotype, and calling for more efforts in the area of genetic counseling. The gene frequencies of A, S, and C were 0.91, 0.08 and 0.01, respectively. The prevalence of HbAA in this study has been the highest reported in the Southwest and Nigeria as a whole.

  20. Lower versus Higher Hemoglobin Threshold for Transfusion in Septic Shock

    DEFF Research Database (Denmark)

    Holst, Lars B; Haase, Nicolai; Wetterslev, Jørn

    2014-01-01

    BACKGROUND: Blood transfusions are frequently given to patients with septic shock. However, the benefits and harms of different hemoglobin thresholds for transfusion have not been established. METHODS: In this multicenter, parallel-group trial, we randomly assigned patients in the intensive care...... unit (ICU) who had septic shock and a hemoglobin concentration of 9 g per deciliter or less to receive 1 unit of leukoreduced red cells when the hemoglobin level was 7 g per deciliter or less (lower threshold) or when the level was 9 g per deciliter or less (higher threshold) during the ICU stay...... were similar in the two intervention groups. CONCLUSIONS: Among patients with septic shock, mortality at 90 days and rates of ischemic events and use of life support were similar among those assigned to blood transfusion at a higher hemoglobin threshold and those assigned to blood transfusion...

  1. Prepubertal growth in congenital disorder of glycosylation type Ia (CDG-Ia)

    OpenAIRE

    Kjaergaard, S; Muller, J; Skovby, F

    2002-01-01

    Aims: To delineate the pattern of growth in prepubertal children with congenital disorder of glycosylation type Ia (CDG-Ia) in order to identify critical period(s) and possible cause(s) of growth failure.

  2. Predictive glycoengineering of biosimilars using a Markov chain glycosylation model

    DEFF Research Database (Denmark)

    Spahn, Philipp N.; Hansen, Anders Holmgaard; Kol, Stefan

    2017-01-01

    Biosimilar drugs must closely resemble the pharmacological attributes of innovator products to ensure safetyand efficacy to obtain regulatory approval. Glycosylation is one critical quality attribute that must be matched, but it is inherently difficult to control due to the complexity of its...

  3. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Gaede, Peter; Vedel, Pernille; Larsen, Nicolai

    2003-01-01

    treatment in accordance with national guidelines and 80 to receive intensive treatment, with a stepwise implementation of behavior modification and pharmacologic therapy that targeted hyperglycemia, hypertension, dyslipidemia, and microalbuminuria, along with secondary prevention of cardiovascular disease...... with aspirin. RESULTS: The mean age of the patients was 55.1 years, and the mean follow-up was 7.8 years. The decline in glycosylated hemoglobin values, systolic and diastolic blood pressure, serum cholesterol and triglyceride levels measured after an overnight fast, and urinary albumin excretion rate were all...

  4. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    OpenAIRE

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-01-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere ap...

  5. An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer

    International Nuclear Information System (INIS)

    Nanjo, Yoko; Hayashi, Ryuzo; Yao, Toshio

    2007-01-01

    A flow-injection analytical (FIA) system, comprised of an electrochemical detector with a fructosyl-peptide oxidase (FPOX-CET) reactor and a flow-type spectrophotometer, was proposed for the simultaneous measurement of glycohemoglobin and total hemoglobin in blood cell. The blood cell samples were hemolyzed with a surfactant and then treated with protease. In the first stage of operation, total hemoglobin in digested sample was determined spectrophotometrically. In the second stage, fructosyl valyl histidine (FVH) released from glycohemoglobin by the selective proteolysis was determined specifically using the electrochemical detector with the FPOX-CET reactor. The FIA system could be automatically processed at an analytical speed of 40 samples per hour. The proposed assay method could determine selectively only the glycated N-terminal residue of β-chain in glycohemoglobin and total hemoglobin in blood cell. The enzymatic hemoglobin A 1c (HbA 1c ) value calculated by the concentration ratio of the FVH to total hemoglobin, was closely correlated with the HbA 1c values certified by the Japan Diabetic Society (JDS) and the International Federation of Clinical Chemistry (IFCC)

  6. Hemoglobin levels and new-onset heart failure in the community

    NARCIS (Netherlands)

    Klip, IJsbrand T.; Postmus, Douwe; Voors, Adriaan A.; Brouwers, Frank P. J.; Gansevoort, Ron T.; Bakker, Stephan J. L.; Hillege, Hans L.; de Boer, Rudolf A.; van der Harst, Pim; van Gilst, Wiek H.; van Veldhuisen, Dirk J.; van der Meer, Peter

    Background In established cardiovascular disease and heart failure (HF), low hemoglobin levels are associated with unfavorable outcome. Whether hemoglobin levels are associated with the development of new-onset HF in the population is unclear. This study sought to investigate the relationship

  7. Diffuse and localized reflectance measurements of hemoglobin and hematocrit in human skin

    Science.gov (United States)

    Khalil, Omar S.; Wu, Xiaomao; Yeh, Shu-Jen; Jeng, Tzyy-Wen

    2001-05-01

    We conducted visible/near infrared optical measurements on the forearm of human subjects using a commercial diffuse reflectance spectrophotometer, and a breadboard temperature- controlled localized reflectance tissue photometer. Calibration relationships were established between skin reflectance signal and reference blood hemoglobin (Hb) concentration, or hematocrit values (Hct). These were then used to predict Hb and Hct values from optical measurement in a cross validation analysis. Different linear least- squares models for the prediction of Hb and Hct are presented and shows the ability to predict both. It was possible to screen prospective blood donors with low Hb concentration. It was possible to predict anemic subjects in the limited prospective blood donor population.

  8. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.

    Science.gov (United States)

    Heh, Ding Yu; Tan, Eng Leong

    2011-04-12

    This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.

  9. Optical wavelength selection for portable hemoglobin determination by near-infrared spectroscopy method

    Science.gov (United States)

    Tian, Han; Li, Ming; Wang, Yue; Sheng, Dinggao; Liu, Jun; Zhang, Linna

    2017-11-01

    Hemoglobin concentration is commonly used in clinical medicine to diagnose anemia, identify bleeding, and manage red blood cell transfusions. The golden standard method for determining hemoglobin concentration in blood requires reagent. Spectral methods were advantageous at fast and non-reagent measurement. However, model calibration with full spectrum is time-consuming. Moreover, it is necessary to use a few variables considering size and cost of instrumentation, especially for a portable biomedical instrument. This study presents different wavelength selection methods for optical wavelengths for total hemoglobin concentration determination in whole blood. The results showed that modelling using only two wavelengths combination (1143 nm, 1298 nm) can keep on the fine predictability with full spectrum. It appears that the proper selection of optical wavelengths can be more effective than using the whole spectra for determination hemoglobin in whole blood. We also discussed the influence of water absorptivity on the wavelength selection. This research provides valuable references for designing portable NIR instruments determining hemoglobin concentration, and may provide some experience for noninvasive hemoglobin measurement by NIR methods.

  10. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions.

    Science.gov (United States)

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki; Ye, Zilu; Tian, Weihua; Goth, Christoffer K; Lira-Navarrete, Erandi; Pedersen, Nis B; Benito-Vicente, Asier; Martin, Cesar; Uribe, Kepa B; Hurtado-Guerrero, Ramon; Christoffersen, Christina; Seidah, Nabil G; Nielsen, Rikke; Christensen, Erik I; Hansen, Lars; Bennett, Eric P; Vakhrushev, Sergey Y; Schjoldager, Katrine T; Clausen, Henrik

    2018-05-11

    The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O -glycan sites. Moreover, we found that O -glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O -glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O -glycosylation of LDLR-related proteins and identified conserved O -glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O -glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O -glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Perinatal and early infantile symptoms in congenital disorders of glycosylation

    NARCIS (Netherlands)

    Funke, S.; Gardeitchik, T.; Kouwenberg, D.; Mohamed, M.; Wortmann, S.B.; Korsch, E.; Adamowicz, M.; Al-Gazali, L.; Wevers, R.A.; Horvath, A.; Lefeber, D.J.; Morava, E.

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a rapidly growing family of inborn errors. Screening for CDG in suspected cases is usually performed in the first year of life by serum transferrin isoelectric focusing or mass spectrometry. Based on the transferrin analysis patients can be

  12. High Levels of Hemoglobin Promote Carotid Adventitial Vasa Vasorum Neoangiogenesis in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Arcidiacono

    2017-01-01

    Full Text Available Chronic kidney disease (CKD patients, characterized by traditional and nontraditional risk factors, are prone to develop atheromatosis and thus cardiovascular events and mortality. The angiogenesis of the adventitial vasa vasorum (aVV surrounding the carotid has been described as the atheromatosis initiator. Therefore, the aim of the study was to (1 evaluate if the carotid aVV in CKD patients increases in comparison to its physiological value of healthy patients; (2 explore which traditional or nontraditional risk factor including inflammation, bone and mineral metabolism, and anemia could be related to the aVV angiogenesis. CKD patients without previous cardiovascular events (44, stages 3-4; 37, stage 5D and 65 healthy subjects were compared. The carotid aVV and the intima-media thickness (cIMT were evaluated by ultrasound. CKD patients at stages 3-4 showed higher aVV of the right carotid artery even after adjusting for age. Importantly, a multiple linear regression model showed hemoglobin levels > 12.5 g/dL as the factor for an estimated higher aVV of the right carotid artery. In conclusion, the association of hemoglobin with higher aVV could suggest the role of high hemoglobin in the higher incidence of adverse cardiovascular outcomes in CKD patients.

  13. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglio, Virginia [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Rennie, Emilie A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Cahoon, Rebecca [Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Baidoo, Edward [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Mortimer, Jennifer C. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Cahoon, Edgar B. [Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Scheller, Henrik V. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    2016-09-19

    Sphingolipids are a major component of plant plasma membranes and endomembranes, and mediate a diverse range of biological processes. Study of the highly glycosylated glycosyl inositol phosphorylceramide (GIPC) sphingolipids has been slow as a result of challenges associated with the extractability of GIPCs, and their functions in the plant remain poorly characterized. We recently discovered an Arabidopsis GIPC glucuronosyltransferase, INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE 1 (IPUT1), which is the first enzyme in the GIPC glycosylation pathway. Plants homozygous for the iput1 loss-of-function mutation were unobtainable, and so the developmental effects of reduced GIPC glucuronosylation could not be analyzed in planta. Using a pollen-specific rescue construct, we have here isolated homozygous iput1 mutants. The iput1 mutants show severe dwarfism, compromised pollen tube guidance, and constitutive activation of salicyclic acid-mediated defense pathways. The mutants also possess reduced GIPCs, increased ceramides, and an increased incorporation of short-chain fatty acids and dihydroxylated bases into inositol phosphorylceramides and GIPCs. The assignment of a direct role for GIPC glycan head groups in the impaired processes in iput1 mutants is complicated by the vast compensatory changes in the sphingolipidome; however, our results reveal that the glycosylation steps of GIPC biosynthesis are important regulated components of sphingolipid metabolism. In conclusion, this study corroborates previously suggested roles for GIPC glycans in plant growth and defense, suggests important role s for them in reproduction and demonstrates that the entire sphingolipidome is sensitive to their status.

  14. Controlling the Glycosylation Profile in mAbs Using Time-Dependent Media Supplementation

    Directory of Open Access Journals (Sweden)

    Devesh Radhakrishnan

    2017-12-01

    Full Text Available In order to meet desired drug product quality targets, the glycosylation profile of biotherapeutics such as monoclonal antibodies (mAbs must be maintained consistently during manufacturing. Achieving consistent glycan distribution profiles requires identifying factors that influence glycosylation, and manipulating them appropriately via well-designed control strategies. Now, the cell culture media supplement, MnCl2, is known to alter the glycosylation profile in mAbs generally, but its effect, particularly when introduced at different stages during cell growth, has yet to be investigated and quantified. In this study, we evaluate the effect of time-dependent addition of MnCl2 on the glycan profile quantitatively, using factorial design experiments. Our results show that MnCl2 addition during the lag and exponential phases affects the glycan profile significantly more than stationary phase supplementation does. Also, using a novel computational technique, we identify various combinations of glycan species that are affected by this dynamic media supplementation scheme, and quantify the effects mathematically. Our experiments demonstrate the importance of taking into consideration the time of addition of these trace supplements, not just their concentrations, and our computational analysis provides insight into what supplements to add, when, and how much, in order to induce desired changes.

  15. 25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation

    Directory of Open Access Journals (Sweden)

    Punya Shrivastava-Ranjan

    2016-12-01

    Full Text Available Lassa virus (LASV infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC. 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N-glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy.

  16. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION

    Science.gov (United States)

    Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.

    1947-01-01

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  17. Evaluation of non cyanide methods for hemoglobin estimation

    Directory of Open Access Journals (Sweden)

    Vinaya B Shah

    2011-01-01

    Full Text Available Background: The hemoglobincyanide method (HiCN method for measuring hemoglobin is used extensively worldwide; its advantages are the ready availability of a stable and internationally accepted reference standard calibrator. However, its use may create a problem, as the waste disposal of large volumes of reagent containing cyanide constitutes a potential toxic hazard. Aims and Objective: As an alternative to drabkin`s method of Hb estimation, we attempted to estimate hemoglobin by other non-cyanide methods: alkaline hematin detergent (AHD-575 using Triton X-100 as lyser and alkaline- borax method using quarternary ammonium detergents as lyser. Materials and Methods: The hemoglobin (Hb results on 200 samples of varying Hb concentrations obtained by these two cyanide free methods were compared with a cyanmethemoglobin method on a colorimeter which is light emitting diode (LED based. Hemoglobin was also estimated in one hundred blood donors and 25 blood samples of infants and compared by these methods. Statistical analysis used was Pearson`s correlation coefficient. Results: The response of the non cyanide method is linear for serially diluted blood samples over the Hb concentration range from 3gm/dl -20 gm/dl. The non cyanide methods has a precision of + 0.25g/dl (coefficient of variation= (2.34% and is suitable for use with fixed wavelength or with colorimeters at wavelength- 530 nm and 580 nm. Correlation of these two methods was excellent (r=0.98. The evaluation has shown it to be as reliable and reproducible as HiCN for measuring hemoglobin at all concentrations. The reagents used in non cyanide methods are non-biohazardous and did not affect the reliability of data determination and also the cost was less than HiCN method. Conclusions: Thus, non cyanide methods of Hb estimation offer possibility of safe and quality Hb estimation and should prove useful for routine laboratory use. Non cyanide methods is easily incorporated in hemobloginometers

  18. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin

    DEFF Research Database (Denmark)

    Gburek, Jakub; Verroust, Pierre J; Willnow, Thomas E

    2002-01-01

    -Sepharose affinity chromatography of solubilized renal brush-border membranes. Apparent dissociation constants of 1.7 microM for megalin and 4.1 microM for cubilin were determined by surface plasmon resonance analysis. The binding was calcium dependent in both cases. Uptake of fluorescence-labeled hemoglobin by BN......The kidney is the main site of hemoglobin clearance and degradation in conditions of severe hemolysis. Herein it is reported that megalin and cubilin, two epithelial endocytic receptors, mediate the uptake of hemoglobin in renal proximal tubules. Both receptors were purified by use of hemoglobin...... not affect the uptake. By use of immunohistochemistry, it was demonstrated that uptake of hemoglobin in proximal tubules of rat, mouse, and dog kidneys occurs under physiologic conditions. Studies on normal and megalin knockout mouse kidney sections showed that megalin is responsible for physiologic...

  19. N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability

    Directory of Open Access Journals (Sweden)

    Chiung-Fang Chang

    2016-06-01

    Full Text Available R-spondin 1 (Rspo1 plays an essential role in stem cell biology by potentiating Wnt signaling activity. Despite the fact that Rspo1 holds therapeutic potential for a number of diseases, its biogenesis is not fully elucidated. All Rspo proteins feature two amino-terminal furin-like repeats, which are responsible for Wnt signal potentiation, and a thrombospondin type 1 (TSR1 domain that can provide affinity towards heparan sulfate proteoglycans. Using chemical inhibitors, deglycosylase and site-directed mutagenesis, we found that human Rspo1 and Rspo3 are both N-glycosylated at N137, a site near the C-terminus of the furin repeat 2 domain, and Rspo2 is N-glycosylated at N160, a position near the N-terminus of TSR1 domain. Elimination of N-glycosylation at these sites affects their accumulation in media but have no effect on the ability towards heparin. Introduction of the N-glycosylation site to Rspo2 mutant at the position homologous to N137 in Rspo1 restored full glycosylation and rescued the accumulation defect of nonglycosylated Rspo2 mutant in media. Similar effect can be observed in the N137 Rspo1 or Rspo3 mutant engineered with Rspo2 N-glycosylation site. The results highlight the importance of N-glycosylation at these two positions in efficient folding and secretion of Rspo family. Finally, we further showed that human Rspo1 is subjected to endoplasmic reticulum (ER quality control in N-glycan-dependent manner. While N-glycan of Rspo1 plays a role in its intracellular stability, it had little effect on secreted Rspo1. Our findings provide evidence for the critical role of N-glycosylation in the biogenesis of Rspo1.

  20. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhixin; Zhou, Jianying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G.; Smith, Richard D.; Baker, Scott E.; Qian, Weijun

    2012-01-01

    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 unique N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.