WorldWideScience

Sample records for glycosidic bond cleavage

  1. Glycoside bond cleavage in the radiolysis of aqueous solutions of methylglycosides and disaccharides

    International Nuclear Information System (INIS)

    Shadyro, O.I.; Kisel', R.M.

    2007-01-01

    The kinetics of formation of methylglycoside and disaccharide radiolysis products resulting from the O-glycoside bond cleavage under the action of 137 Cs γ-radiation (0-2.5 kGy radiation doses, 0.28 Gy/s dose rate) was studied, and the yields of these products were determined. It was found that oxygen inhibits these processes. The findings suggest that the fragmentation reaction of C' 2 radicals plays an important role in the formation of carbohydrate degradation products in the radiolysis of aqueous carbohydrate solutions [ru

  2. Glycosidic Bond Cleavage is Not Required for Phytosteryl Glycoside-Induced Reduction of Cholesterol Absorption in Mice

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Moreau, Robert A.

    2012-01-01

    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with tracers cholesterol-d7 and sitostanol-d4. In a three-day fecal recovery study, ASG reduced cholesterol absorption efficiency by 45 ± 6% compared with 40 ± 6% observed with PSE. Four hours after gavage, plasma and liver cholesterol-d7 levels were reduced 86% or more when ASG was present. Liver total phytosterols were unchanged after ASG administration but were significantly increased after PSE. After ASG treatment both ASG and deacylated steryl glycosides (SG) were found in the gut mucosa and lumen. ASG was quantitatively recovered from stool samples as SG. These results demonstrate that ASG reduces cholesterol absorption in mice as efficiently as PSE while having little systemic absorption itself. Cleavage of the glycosidic linkage is not required for biological activity of ASG. Phytosteryl glycosides should be included in measurements of bioactive phytosterols. PMID:21538209

  3. Radiation-induced O-glycoside bond scission in carbohydrates

    International Nuclear Information System (INIS)

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  4. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    Science.gov (United States)

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  5. Supplementary data for the mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical

    Directory of Open Access Journals (Sweden)

    Yujie Dai

    2017-12-01

    Full Text Available The data presented in this article are related to the research article entitled “The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical” (Dai et al., 2017 [1]. This article includes the structures of three kinds of disaccharides such as maltose, fructose and cellobiose, the diagrammatic sketch of the hydrogen abstraction reaction of the disaccharides by hydroxyl radical, the structure of the transition states for pyran ring opening of moiety A and cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C6–H in moiety A of sucrose, the transition state structure for cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C1′-H in moiety B of sucrose, the transition state structure, sketch for the reaction process and relative energy change of the reaction pathway for direct cleavage of α(1→4 glycosidic bond starting from hydrogen abstraction of C6′–H of moiety B of maltose.

  6. Microsolvated Model for the Kinetics and Thermodynamics of Glycosidic Bond Dissociative Cleavage of Nucleoside D4G.

    Science.gov (United States)

    Jiang, Yang; Xue, Ying; Zeng, Yi

    2018-02-15

    Using the microsolvated model that involves explicit water molecules and implicit solvent in the optimization, two proposed dissociative hydrolysis mechanisms of 2',3'-didehydro-2',3'-dideoxyguanosine (d4G) have been first investigated by means of M06-2X(CPCM, water)/6-31++G(d,p) method. The glycosidic bond dissociation for the generation of the oxacarbenium ion intermediate is the rate-determining step (RDS). The subsequent nucleophilic water attack from different side of the oxacarbenium ion intermediate gives either the α-product [(2S,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] or β-product [(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] and is thus referred to as α-path (inversion) and β-path (retention). Two to five explicit water molecules (n = 2-5) are considered in the microsolvated model, and n = 3 or 4 is the smallest model capable of minimizing the activation energy for α-path and β-path, respectively. Our theoretical results suggest that α-path (n = 3) is more kinetically favorable with lower free energy barrier (RDS) of 27.7 kcal mol -1 , in contrast to that of 30.7 kcal mol -1 for the β-path (n = 4). The kinetic preference of the α-path is rationalized by NBO analysis. Whereas thte β-path is more thermodynamically favorable over the α-path, where the formation of β-product and α-product are exergonic and endergonic, respectively, providing theoretical support for the experimental observation that the β-cleavage product was the major one after sufficient reaction time. Comparisons of d4G with analogous cyclo-d4G and dG from kinetic free energy barriers and thermodynamic heterolytic dissociation energies were also carried out. Our kinetic and thermodynamic results manifest that the order of glycosidic bond stability should be d4G < cyclo-d4G < dG, which agrees well with the reported experimental stability order of d4G compounds and analogues and gives further understanding on the influence of 6-cyclopropylamino and unsaturated ribose to

  7. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    DEFF Research Database (Denmark)

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin

    2009-01-01

    products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... intermediates and the bond dissociation energies of the alkyl and aryl bonds. Competitions between the rates of cleavage and oxidation of the intermediate sulfuranyl radicals and between concerted and stepwise mechanisms are discussed to explain the variations in bond cleavage products as a function...

  8. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry

    Science.gov (United States)

    March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.

    2006-01-01

    A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.

  9. Bottom-up elucidation of glycosidic bond stereochemistry

    DEFF Research Database (Denmark)

    Gray, Christopher J.; Schindler, Baptiste; Migas, Lukasz G.

    2017-01-01

    a particular challenge. Here, we show that "memory" of anomeric configuration is retained following gas-phase glycosidic bond fragmentation during tandem mass spectrometry (MS(2)). These findings allow for integration of MS(2) with ion mobility spectrometry (IM-MS(2)) and lead to a strategy to distinguish α...

  10. Investigations of Reactive Carbohydrates in Glycosidic Bond Formation and Degradation

    DEFF Research Database (Denmark)

    Heuckendorff, Mads

    The overall objective of the research described in this thesis was to explore the field of glycosidic bond formation and degradation. In more detail, the objective was to do further research in the field of highly reactive glycosyl donors. New ways of making highly reactive donors were explored...

  11. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  12. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    Science.gov (United States)

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  13. Cleavage of thymine N3-H bonds by low-energy electrons attached to base π* orbitals

    International Nuclear Information System (INIS)

    Theodore, Magali; Sobczyk, Monika; Simons, Jack

    2006-01-01

    In this work, we extend our earlier studies on single strand break (SSB) formation in DNA to consider the possibility of cleaving a thymine N 3 -H bond to generate a nitrogen-centered anion and a hydrogen radical which might proceed to induce further bond cleavages. In earlier studies, we considered SSBs induced by low-energy electrons that attach to DNA bases' π* orbitals or to phosphate P=O π* orbitals to cleave sugar-phosphate C-O bonds or base-sugar N 1 -C bonds. We also studied the effects of base π-stacking on the rates of such bond cleavages. To date, our results suggest that sugar-phosphate C-O bonds have the lowest barriers to cleavage, that attachment of electrons with energies below 2 eV most likely occurs at the base π* orbitals, that electrons with energy above 2 eV can also attach to phosphate P=O π* orbitals, and that base π stacking has a modest but slowing effect on the rates of SSB formation. However, we had not yet examined the possibility that base N 3 -H bonds could rupture subsequent to base π* orbital capture. In the present work, the latter possibility is considered and it is found that the barrier to cleavage of the N 3 -H bond in thymine is considerably higher than for cleaving sugar-phosphate C-O bonds, so our prediction that SSB formation is dominated by C-O bond cleavage remains intact

  14. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  15. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  16. ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen

    Directory of Open Access Journals (Sweden)

    Oliver Tiedt

    2016-08-01

    Full Text Available Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA to benzoyl-coenzyme A (BzCoA and HF, catalyzed by class I BzCoA reductase (BCR. Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA.

  17. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  18. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry.

    Science.gov (United States)

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A

    2015-11-15

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.

  19. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    Science.gov (United States)

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  20. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  1. Mo-Mo Quintuple Bond is Highly Reactive in H-H, C-H, and O-H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State.

    Science.gov (United States)

    Chen, Yue; Sakaki, Shigeyoshi

    2017-04-03

    The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (N ∧ N) 2 (1) {N ∧ N = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.

  2. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  3. Effect of oxygen and nitroaromatic cell radiosensitizers on radiation-induced cleavage of internucleotide bonds: ApA, dApA, and poly(A)

    International Nuclear Information System (INIS)

    Raleigh, J.A.; Kremers, W.; Whitehouse, R.

    1975-01-01

    Irradiation of the dinucleoside monophosphates ApA and dApA in deoxygenated solution leads to a preferential cleavage of the 3' end of the internucleotide bond. Cleavage at the 3' bond is favored to the extent of 2 to 1 over 5' cleavage. Oxygen and nitroaromatic compounds inhibit 3' bond breaking in ApA and dApA in agreement with earlier findings from studies of 3'- and 5'-mononucleotides. In contrast to the mononucleotide results, no enhancement of 5' cleavage is observed for ApA and dApA irradiated in the presence of oxygen or the nitroaromatic additives. The over-all effect of the additives is to decrease the combined (3' and 5') yield of internucleotide bond breaking in ApA and dApA. This phenomenon is also observed for polyadenylic acid in the presence of the nitroaromatics. Oxygen marginally enhances internucleotide bond breaking in polyadenylic acid (factor 1.1) over that seen in deoxygenated solution. Postirradiation alkaline hydrolysis of dApA leads to further ester cleavage revealing the presence of radiation-induced alkali-labile bonds. The number of these bonds decreases in the order oxygen greater than nitrofurans greater than nitrobenzenes approximately irradiation in the absence of additives

  4. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enzymes that cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides

    Science.gov (United States)

    Kravit, Nancy G.; Schmidt, Katherine A.

    2017-10-24

    The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.

  6. Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage.

    Science.gov (United States)

    Wu, Xinxin; Zhu, Chen

    2018-06-01

    Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C-C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C-F, C-Cl, C-Br, C-N, C-S, C-Se, C-C, etc.) has been achieved by using the ring-opening strategy. Mechanistically, the C-C cleavage of cyclobutanols can be involved in two pathways: (a) transition-metal catalyzed β-carbon elimination; (b) radical-mediated 'radical clock'-type ring opening. The recent advances of our group for the ring-opening functionalization of tertiary cycloalkanols are described in this account. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Selective C(sp2)-C(sp) bond cleavage: the nitrogenation of alkynes to amides.

    Science.gov (United States)

    Qin, Chong; Feng, Peng; Ou, Yang; Shen, Tao; Wang, Teng; Jiao, Ning

    2013-07-22

    Breakthrough: A novel catalyzed direct highly selective C(sp2)-C(sp) bond functionalization of alkynes to amides has been developed. Nitrogenation is achieved by the highly selective C(sp2)-C(sp) bond cleavage of aryl-substituted alkynes. The oxidant-free and mild conditions and wide substrate scope make this method very practical. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Probing Electron-Induced Bond Cleavage at the Single-Molecule Level Using DNA Origami Templates

    DEFF Research Database (Denmark)

    Keller, Adrian Clemens; Bald, Ilko; Rotaru, Alexandru

    2012-01-01

    Low-energy electrons (LEEs) play an important role in nanolithography, atmospheric chemistry, and DNA radiation damage. Previously, the cleavage of specific chemical bonds triggered by LEEs has been demonstrated in a variety of small organic molecules such as halogenated benzenes and DNA nucleoba...

  9. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Directory of Open Access Journals (Sweden)

    Tsuyuka Sugiishi

    2015-12-01

    Full Text Available This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  10. Covalent bond force profile and cleavage in a single polymer chain

    Science.gov (United States)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  11. Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships.

    Science.gov (United States)

    Fushinobu, Shinya; Alves, Victor D; Coutinho, Pedro M

    2013-10-01

    Recent progress in three-dimensional structure analyses of glycoside hydrolases (GHs) and polysaccharide lyases (PLs), the historically relevant enzyme classes involved in the cleavage of glycosidic bonds of carbohydrates and glycoconjugates, is reviewed. To date, about 80% and 95% of the GH and PL families, respectively, have a representative crystal structure. New structures have been determined for enzymes acting on plant cell wall polysaccharides, sphingolipids, blood group antigens, milk oligosaccharides, N-glycans, oral biofilms and dietary seaweeds. Some GH enzymes have very unique catalytic residues such as the Asp-His dyad. New methods such as high-speed atomic force microscopy and computational simulation have opened up a path to investigate both the dynamics and the detailed molecular interactions displayed by these enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage.

    Science.gov (United States)

    Wang, Teng; Jiao, Ning

    2014-04-15

    Because of the importance of nitrogen-containing compounds in chemistry and biology, organic chemists have long focused on the development of novel methodologies for their synthesis. For example, nitrogen-containing compounds show up within functional materials, as top-selling drugs, and as bioactive molecules. To synthesize these compounds in a green and sustainable way, researchers have focused on the direct functionalization of hydrocarbons via C-H or C-C bond cleavage. Although researchers have made significant progress in the direct functionalization of simple hydrocarbons, direct C-N bond formation via C-H or C-C bond cleavage remains challenging, in part because of the unstable character of some N-nucleophiles under oxidative conditions. The nitriles are versatile building blocks and precursors in organic synthesis. Recently, chemists have achieved the direct C-H cyanation with toxic cyanide salts in the presence of stoichiometric metal oxidants. In this Account, we describe recent progress made by our group in nitrile synthesis. C-H or C-C bond cleavage is a key process in our strategy, and azides or DMF serve as the nitrogen source. In these reactions, we successfully realized direct nitrile synthesis using a variety of hydrocarbon groups as nitrile precursors, including methyl, alkenyl, and alkynyl groups. We could carry out C(sp(3))-H functionalization on benzylic, allylic, and propargylic C-H bonds to produce diverse valuable synthetic nitriles. Mild oxidation of C═C double-bonds and C≡C triple-bonds also produced nitriles. The incorporation of nitrogen within the carbon skeleton typically involved the participation of azide reagents. Although some mechanistic details remain unclear, studies of these nitrogenation reactions implicate the involvement of a cation or radical intermediate, and an oxidative rearrangement of azide intermediate produced the nitrile. We also explored environmentally friendly oxidants, such as molecular oxygen, to make our

  13. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.

    Science.gov (United States)

    Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok

    2011-02-01

    RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  15. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liu, Xiangqian; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  16. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    Science.gov (United States)

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  17. Development of glycoside-bound radiopharmaceuticals; Novel radioiodination method for digoxin

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Yasutaka; Dote, Nobuhito; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira (Kyoto Univ. (Japan). Faculty of Pharmaceutical Science); Fujibayashi, Yasuhisa; Konishi, Junji

    1994-01-01

    We combined 2-hydroxy-3-methylbenzoylhydrazide (HMBH) with glycosides as a novel method for the radioiodination of physiologically active glycosides. This method was tested using digoxin, which is one of the cardiac glycosides. A digoxin-HMBH conjugate was synthesized by periodate cleavage of the third sugar ring, and was readily radiolabelled with Na[[sup 125]I] by the chloramine-T method. [sup 125]I labelled digoxin-HMBH conjugate retained Na[sup +], K[sup +]-ATPase binding in vivo and in vitro, and also retained immunoreactivity to an anti-digoxin antibody. Thus, this [sup 125]I labelled digoxin-HMBH conjugate represents a potential radiopharmaceutical for Na[sup +], K[sup +]-ATPase imaging, as well as for the radioimmunoassay of digoxin. (author).

  18. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    Science.gov (United States)

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-07

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  19. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  20. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    Science.gov (United States)

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-04

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  1. Multiple C-H Bond Activations and Ring-Opening C-S Bond Cleavage of Thiophene by Dirhenium Carbonyl Complexes.

    Science.gov (United States)

    Adams, Richard D; Dhull, Poonam; Tedder, Jonathan D

    2018-06-14

    The reaction of Re 2 (CO) 8 (μ-C 6 H 5 )(μ-H) (1) with thiophene in CH 2 Cl 2 at 40 °C yielded the new compound Re 2 (CO) 8 (μ-η 2 -SC 4 H 3 )(μ-H) (2), which contains a bridging σ-π-coordinated thienyl ligand formed by the activation of the C-H bond at the 2 position of the thiophene. Compound 2 exhibits dynamical activity on the NMR time scale involving rearrangements of the bridging thienyl ligand. The reaction of compound 2 with a second 1 equiv of 1 at 45 °C yielded the doubly metalated product [Re 2 (CO) 8 (μ-H)] 2 (μ-η 2 -2,3-μ-η 2 -4,5-C 4 H 2 S) (3), formed by the activation of the C-H bond at the 5 position of the thienyl ligand in 2. Heating 3 in a hexane solvent to reflux transformed it into the ring-opened compound Re(CO) 4 [μ-η 5 -η 2 -SCC(H)C(H)C(H)][Re(CO) 3 ][Re 2 (CO) 8 (μ-H)] (4) by the loss of one CO ligand. Compound 4 contains a doubly metalated 1-thiapentadienyl ligand formed by the cleavage of one of the C-S bonds. When heated to reflux (125 °C) in an octane solvent in the presence of H 2 O, the new compound Re(CO) 4 [η 5 -μ-η 2 -SC(H)C(H)C(H)C(H)]Re(CO) 3 (5) was obtained by cleavage of the Re 2 (CO) 8 (μ-H) group from 4 with formation of the known coproduct [Re(CO) 3 (μ 3 -OH)] 4 . All new products were characterized by single-crystal X-ray diffraction analyses.

  2. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    Science.gov (United States)

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  3. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis.

    Science.gov (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko

    2016-01-01

    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Rhenium-Promoted C-C Bond-Cleavage Reactions of Internal Propargyl Alcohols.

    Science.gov (United States)

    Lee, Kui Fun; Bai, Wei; Sung, Herman H Y; Williams, Ian D; Lin, Zhenyang; Jia, Guochen

    2018-06-07

    The first examples of C-C bond cleavage reactions of internal propargyl alcohols to give vinylidene complexes are described. Treatment of [Re(dppm) 3 ]I with RC≡CC(OH)R'R'' (R=aryl, alkyl; C(OH)R'R''=C(OH)Ph 2, C(OH)Me 2 , C(OH)HPh, C(OH)H 2 ) produced the vinylidene complexes ReI(=C=CHR)(dppm) 2 with the elimination of C(O)R'R''. Computational studies support that the reactions proceed through a β-alkynyl elimination of alkoxide intermediates Re{OC(R')(R'')C≡CR}(dppm) 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.

    Science.gov (United States)

    Zhang, Chun; Feng, Peng; Jiao, Ning

    2013-10-09

    The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.

  6. Unusually short chalcogen bonds involving organoselenium: insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues.

    Science.gov (United States)

    Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N

    2015-04-27

    Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo; Tan, Davin; Lee, Richmond; Li, Lixin; Pan, Yuanhang; Huang, Kuo-Wei; Tan, Choonhong; Jiang, Zhiyong

    2012-01-01

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E

  8. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  9. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    Science.gov (United States)

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tasuku; Saikawa, Kyo [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Kim, Seonah [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Fujita, Kiyotaka [Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima (Japan); Ishiwata, Akihiro [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); Kaeothip, Sophon [ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Arakawa, Takatoshi; Wakagi, Takayoshi [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Beckham, Gregg T., E-mail: Gregg.Beckham@nrel.gov [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Ito, Yukishige [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Fushinobu, Shinya, E-mail: asfushi@mail.ecc.u-tokyo.ac.jp [Department of Biotechnology, The University of Tokyo, Tokyo (Japan)

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.

  11. Oxidative C-C bond cleavage of 1,2-diols by silver(II)

    International Nuclear Information System (INIS)

    Kumar, A.

    1981-01-01

    Oxidation of ethylene glycol and related compounds by Ag(II) has been investigated. Complexation of these substrates by Ag(II) precedes their oxidation. Oxidation occurs through electron transfer from an OH group to the Ag(II) within the complex resulting in the formation of alkoxyl-type radicals. The radicals thus formed undergo β-scission to give cleavage products. For ethylene glycol a complexation rate 1.3 x 10 6 M -1 s -1 and oxidation rate approx. 3 x 10 3 s -1 were observed. A general trend for the type of the substrates which would undergo C-C bond scission by Ag(II) is discussed

  12. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris

    2017-05-18

    Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.

  13. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon-phosphorus bond

    DEFF Research Database (Denmark)

    McSorley, Fern R.; Wyatt, Peter W.; Martinez, Ascuncion

    2012-01-01

    The sequential activities of PhnY, an α-ketoglutarate/Fe(II)-dependent dioxygenase, and PhnZ, a Fe(II)-dependent enzyme of the histidine-aspartate motif hydrolase family, cleave the carbon-phosphorus bond of the organophosphonate natural product 2-aminoethylphosphonic acid. PhnY adds a hydroxyl...... group to the α-carbon, yielding 2-amino-1-hydroxyethylphosphonic acid, which is oxidatively converted by PhnZ to inorganic phosphate and glycine. The PhnZ reaction represents a new enzyme mechanism for metabolic cleavage of a carbon-phosphorus bond....

  14. An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4.

    Science.gov (United States)

    Nicolaou, K C; Adsool, Vikrant A; Hale, Christopher R H

    2010-04-02

    PhI(OAc)(2) in the presence of OsO(4) (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with alpha-hydroxy ketones as byproduct. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO(4) (cat.), 2,6-lutidine, and PhI(OAc)(2).

  15. Activity-based protein profiling of glucosidases, fucosidases and glucuronidases

    NARCIS (Netherlands)

    Jiang, J.

    2016-01-01

    Glycoside hydrolases (GHs), enzymes that catalyze the hydrolytic cleavage of glycosidic bonds, receive continuing interest both in fundamental and applied biology and biomedicine. Lysosomal storage disorders (LSDs) are caused by inborn metabolic errors due to deficiency in specific lysosomal

  16. A cascade of acid-promoted C-O bond cleavage and redox reactions: from oxa-bridged benzazepines to benzazepinones.

    Science.gov (United States)

    Zhang, Yuewei; Yang, Fengzhi; Zheng, Lianyou; Dang, Qun; Bai, Xu

    2014-12-05

    A sequence of C-O bond cleavage and redox reactions in oxa-bridged azepines was realized under acid promoted conditions. This protocol provides an atom-economical and straightforward approach to access benzo[b]azepin-5(2H)-ones in high yields. The formal synthesis of tolvaptan was achieved by exploiting this new transformation.

  17. Photochemically promoted bond-cleavage and -capture in a diazomethane derivative of a triamidoamine uranium(IV) complex

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Benedict M.; Patel, Dipti; Lewis, William; Blake, Alexander J.; Liddle, Stephen T. [School of Chemistry, University of Nottingham (United Kingdom)

    2011-10-24

    Photolysis of [U(tren{sup TMS})(μ-N(SiMe{sub 3})NC)]{sub 2} results in multiple bond cleavage and capture to give a well-defined product [U{N(CH_2CH_2NSiMe_3)_2(μ-CH_2CH_2N-C≡N)}{N(SiMe_3)_2}]{sub 2}. This transformation has no precedent in diazoalkane chemistry and is not thermally accessible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Bond cleavage reactions of the bridge structure in coal in the presence of hydrogen donating compounds; Suiso kyoyosei kagobutsu sonzaika deno sekitanchu no kakyo kozo no kairetsu hanno

    Energy Technology Data Exchange (ETDEWEB)

    Bando, N.; Kidena, K.; Murata, S.; Nomura, M. [Osaka University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    In this paper, bond cleavage reactions are discussed in relation to the softening and solubilization of coal. Were used 9,10-dihydroanthracene (DHA) and 9,10-dihydrophenanthrene (DHP) as models of hydrogen donating compounds in coal, and bibenzyl, 1,2-diethane, benzylphenylether, and 1,5-dibenzylnaphthalene were used as models of bridge structure compounds. They were compared mutually, as to reactivity of coal against DHA and DHP. For the homolytic cleavage of bridges, DHA with excellent radical supplement performance provided excellent hydrogen donating performance. While, for the ipso-position cleavage of bridges, it was found that DHP can act as an effective hydrogen donor. For the reaction between coal and hydrogenated aromatic compounds, cleavage of relatively weak bonds, such as ether linkage and dimethylene linkage, occurred at about 380{degree}C, and hydrogen from DHA or DHP was consumed. On the other hand, the results suggested that the cleavage reaction at ipso-position affected by hydrogen donating solvent is also important at temperature range around 420{degree}C. 2 refs., 3 figs., 1 tab.

  19. Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.

    Science.gov (United States)

    Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias

    2017-06-19

    The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Laser-induced hydrogen radical removal in UV MALDI-MS allows for the differentiation of flavonoid monoglycoside isomers.

    Science.gov (United States)

    Yamagaki, Tohru; Watanabe, Takehiro; Tanaka, Masaki; Sugahara, Kohtaro

    2014-01-01

    Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M - H](-)) and the sugar-unit lost fragment ions ([M - Sugar - H](-)). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral hydrogen radical (H*), and/or with the homolytic cleavage of the glycosidic bond, such as [M - H* - H](-), [M - Sugar - H* - H](-), and [M - Sugar - 2H* - H](-). It was revealed that the hydrogen radical removes from the phenolic hydroxy groups on the flavonoids, not from the sugar moiety, because the flavonoid backbones themselves absorb the laser. The glycosyl positions depend on the extent of the hydrogen radical removals and that of the homolytic cleavage of the glycosidic bonds. Flavonoid mono-glycoside isomers were distinguished according to their TOF MS and tandem mass spectra.

  1. Hydrogenation of the Exocyclic Olefinic Bond at C-16/C-17 Position of ent-Kaurane Diterpene Glycosides of Stevia rebaudiana Using Various Catalysts

    Science.gov (United States)

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2013-01-01

    Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data. PMID:23896597

  2. Hydrogenation of the Exocyclic Olefinic Bond at C-16/C-17 Position of ent-Kaurane Diterpene Glycosides of Stevia rebaudiana Using Various Catalysts

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2013-07-01

    Full Text Available Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2 under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data.

  3. Secondary isotope effects on alpha-cleavage reactions

    International Nuclear Information System (INIS)

    Ingemann, S.; Hammerum, S.

    1980-01-01

    Kinetic deuterium isotope effects on mass spectral reactions have in several instances been utilized to provide structural information and to answer mechanistic questions. Typically, the influence of the deuterium label on the rate of one of a number of competing reactions has been studied. Secondary isotope effects have usually been assumed to be relatively insignificant in comparison with the observed kinetic effects, even though various workers have shown that secondary isotope effects may indeed exert a considerable influence on the rates of competing simple cleavages. Recent studies have provided quantitative data to show that the mere presence of deuterium atoms up to six bonds away may influence the rate of a simple cleavage reaction. In relation to an investigation of rearrangements accompanying simple cleavage reactions, a semi-quantitative measure was needed of the variation of the secondary isotope effect with the number of bonds between the deuterium label and the point of rupture. The influence has therefore been examined of the presence of remote deuterium atoms on a typical simple cleavage reaction, the α-cleavage of aliphatic amines. As a model compound, N-methyldipentylamine was chosen, systematically labelled with deuterium. (author)

  4. Mechanism of C-C and C-H bond cleavage in ethanol oxidation reaction on Cu2O(111): a DFT-D and DFT+U study.

    Science.gov (United States)

    Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-10-04

    The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.

  5. Synthetic Study on the Relationship Between Structure and Sweet Taste Properties of Steviol Glycosides

    Directory of Open Access Journals (Sweden)

    Grant Dubois

    2012-04-01

    Full Text Available The structure activity relationship between the C16-C17 methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C16-C17 methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.

  6. Staggering in the cleavage pattern of E. coli ABC-excinuclease

    International Nuclear Information System (INIS)

    Myles, G.M.; Van Houten, B.; Sancar, A.

    1986-01-01

    E. coli ABC excinuclease is a complex of three proteins encoded by the uvrA, uvrB, and uvrC genes. The enzyme repairs DNA mono and diadducts by the single strand cleavage of DNA eight phosphodiester bond 5' and four or five phosphodiester bonds 3' to a DNA lesion and facilitates the removal of the resulting twelve or thirteen nucleotide fragment. In this study, the authors have investigated the excision pattern for ultraviolet (UV) induced diadducts, i.e. cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts. Terminally (5' or 3') labeled DNA was irradiated with 254nm UV and treated with ABC excinuclease before and after photoreactivation of cyclobutane dimers by E. coli DNA photolyase. In this way, the authors were able to differentiate between the cleavage pattern of pyrimidine dimers and of (6-4) photoproducts. Their results show that certain TT cyclobutane dimers and rare TT (6-4) photoproducts are excised by cleavage seven and, less frequently, six phosphodiester bonds to the 5' side of the DNA lesion in addition to the primary cutting site at the eight 5' phosphodiester bond. The 3' cleavage sites are maintained at the fourth and fifth phosphodiester bonds for the these UV induced lesions. These data indicate that the cleavage pattern of the ABC excinuclease may be dependent upon both the type of DNA lesion as well as it surrounding nucleotide sequence. In addition, the authors analysis shows that (6-4) photoproducts are much better substrates for ABC excinuclease than are pyrimidine dimers

  7. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    Science.gov (United States)

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  8. A GH57 4-alpha-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production

    NARCIS (Netherlands)

    Paul, Catherine J.; Leemhuis, Hans; Dobruchowska, Justyna M.; Grey, Carl; Onnby, Linda; van Leeuwen, Sander S.; Dijkhuizen, Lubbert; Karlsson, Eva Nordberg

    4-alpha-Glucanotransferase (GTase) enzymes (EC 2.4.1.25) modulate the size of alpha-glucans by cleaving and reforming alpha-1,4 glycosidic bonds in alpha-glucans, an essential process in starch and glycogen metabolism in plants and microorganisms. The glycoside hydrolase family 57 enzyme (GTase57)

  9. Structural and Biochemical Characterization of Organotin and Organolead Compounds Binding to the Organomercurial Lyase MerB Provide New Insights into Its Mechanism of Carbon–Metal Bond Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Haytham M. [Département; Faculty; Stevenson, Michael J. [Department; Mansour, Ahmed [Département; Sygusch, Jurgen [Département; Wilcox, Dean E. [Department; Omichinski, James G. [Département

    2017-01-03

    The organomercurial lyase MerB has the unique ability to cleave carbon–Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon–Hg bond cleavage. However, the role of each residue in carbon–metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding is to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.

  10. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D; Ramirez, Catherine; Devkota, Krishna P; Snyder, Tara M

    2017-01-31

    Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX-a novel steviol glycoside-from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation-based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data-of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog.

  11. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    International Nuclear Information System (INIS)

    Tang Aiwei; Wang Yu; Ye Haihang; Zhou Chao; Yang Chunhe; Li Xu; Peng Hongshang; Zhang Fujun; Hou Yanbing; Teng Feng

    2013-01-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag 2 S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S–C bonds or Ag–S bonds. Pure Ag 2 S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag 2 S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S–C and Ag–S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag–S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals. (paper)

  12. Streptococcus pneumoniae Endohexosaminidase D, Structural and Mechanistic Insight into Substrate-Assisted Catalysis in Family 85 Glycoside Hydrolases

    International Nuclear Information System (INIS)

    Abbott, D.; Macauley, M.; Vocadlo, D.; Boraston, A.

    2009-01-01

    Endo-?-d-glucosaminidases from family 85 of glycoside hydrolases (GH85 endohexosaminidases) act to cleave the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. Endohexosaminidase D (Endo-D), produced by Streptococcus pneumoniae, is believed to contribute to the virulence of this organism by playing a role in the deglycosylation of IgG antibodies. Endohexosaminidases have received significant attention for this reason and, moreover, because they are powerful tools for chemoenzymatic synthesis of proteins having defined glycoforms. Here we describe mechanistic and structural studies of the catalytic domain (SpGH85) of Endo-D that provide compelling support for GH85 enzymes using a catalytic mechanism involving substrate-assisted catalysis. Furthermore, the structure of SpGH85 in complex with the mechanism-based competitive inhibitor NAG-thiazoline (Kd = 28 ?m) provides a coherent rationale for previous mutagenesis studies of Endo-D and other related GH85 enzymes. We also find GH85, GH56, and GH18 enzymes have a similar configuration of catalytic residues. Notably, GH85 enzymes have an asparagine in place of the aspartate residue found in these other families of glycosidases. We propose that this residue, as the imidic acid tautomer, acts analogously to the key catalytic aspartate of GH56 and GH18 enzymes. This topographically conserved arrangement of the asparagine residue and a conserved glutamic acid, coupled with previous kinetic studies, suggests these enzymes may use an unusual proton shuttle to coordinate effective general acid and base catalysis to aid cleavage of the glycosidic bond. These results collectively provide a blueprint that may be used to facilitate protein engineering of these enzymes to improve their function as biocatalysts for synthesizing glycoproteins having defined glycoforms and also may serve as a guide for generating inhibitors of GH85 enzymes.

  13. Condensed tannins: A novel rearrangement of procyanidins and prodelphinidins in thiolytic cleavage

    Science.gov (United States)

    G. Wayne McGraw; Jan P. Steynberg; Richard W. Hemingway

    1993-01-01

    Conditions commonly used for the thiolytic cleavage of interflavanoid bonds of condensed tannins also result in cleavage of the C4 to C10 bond of flavan units. Subsequenet lectrophilic attack of the C4 carbocation on the C2' or C6' of the B-ring, and loss of phloroglucinol (the A-ring), result in the formation of a mixture of 1,3-dithiobenzyl-2,4,s,6-...

  14. New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials.

    Science.gov (United States)

    Baloch, Marya; Ben Youcef, Hicham; Li, Chunmei; Garcia-Calvo, Oihane; Rodriguez, Lide M; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2016-11-23

    Two new cathode materials based on redox organosulfur polymers were synthesized and investigated for rechargeable lithium batteries as a proof-of-concept study. These cathodes offered good cycling performance owing to the absence of polysulfide solubility, which plagues Li/S systems. Herein, an aliphatic polyamine or a conjugated polyazomethine was used as the base to tether the redox-active species. The activity comes from the cleavage and formation of S-S or N-S bonds, which is made possible by the rigid conjugated backbone. The synthesized polymers were characterized through FTIR spectroscopy and thermogravimetric analysis (TGA). Galvanostatic measurements were performed to evaluate the discharge/charge cycles and characterize the performance of the lithium-based cells, which displayed initial discharge capacities of approximately 300 mA h g -1 at C/5 over 100 cycles with approximately 98 % Coulombic efficiency. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface.

    Science.gov (United States)

    Minitti, Michael P; Zhang, Yao; Rosenberg, Martin; Brogaard, Rasmus Y; Deb, Sanghamitra; Sølling, Theis I; Weber, Peter M

    2012-01-19

    We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.

  16. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2017-01-01

    Full Text Available Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX—a novel steviol glycoside—from a commercially‐supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C‐13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation—based on extensive Nuclear Magnetic Resonance (NMR analysis (1H, 13C, Correlation Spectroscopy (COSY, Heteronuclear Single Quantum Coherence‐Distortionless Enhancement Polarization Transfer (HSQC‐DEPT, Heteronuclear Multiple Bond Correlation (HMBC, 1D Total Correlation Spectroscopy (TOCSY, Nuclear Overhauser Effect Spectroscopy (NOESY and mass spectral data—of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α‐linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog.

  17. DNA degradation by bleomycin: evidence for 2'R-proton abstraction and for C-O bond cleavage accompanying base propenal formation

    International Nuclear Information System (INIS)

    Ajmera, S.; Wu, J.C.; Worth, L. Jr.; Rabow, L.E.; Stubbe, J.; Kozarich, J.W.

    1986-01-01

    Reaction of poly(dA-[2'S- 3 H]dU) with activated bleomycin yields [ 3 H] uracil propenal that completely retains the tritium label. In contrast, the authors have previously shown that reaction of poly(dA-[2'R- 3 H]dU) with activated bleomycin affords unlabeled uracil propenal. They have also prepared both cis- and trans-thymine propenals by chemical synthesis and have observed that the trans isomer is the exclusive product of the bleomycin reaction. Moreover, the cis isomer was found to be stable to the conditions of bleomycin-induced DNA degradation. Taken together, these results establish that the formation of trans-uracil propenal occurs via an anti-elimination mechanism with the stereospecific abstraction of the 2R proton. The question of phosphodiester bond cleavage during base propenal formation has also been addressed by the analysis of the fate of oxygen-18 in poly(dA-[3'- 18 O]dT) upon reaction with activated bleomycin. The 5'-monophosphate oligonucleotide ends produced from thymine propenal formation have been converted to inorganic phosphate by the action of alkaline phosphatase, and the phosphate has been analyzed for 18 O content by 31 P NMR spectroscopy. The oxygen-18 is retained in the inorganic phosphate, establishing that the formation of thymine propenal by activated bleomycin proceeds with C-O bond cleavage at the 3-position

  18. BF3·Et2O-promoted cleavage of the Csp-Csp2 bond of 2-propynolphenols/anilines: route to C2-alkenylated benzoxazoles and benzimidazoles.

    Science.gov (United States)

    Song, Xian-Rong; Qiu, Yi-Feng; Song, Bo; Hao, Xin-Hua; Han, Ya-Ping; Gao, Pin; Liu, Xue-Yuan; Liang, Yong-Min

    2015-02-20

    A novel BF3·Et2O-promoted tandem reaction of easily prepared 2-propynolphenols/anilines and trimethylsilyl azide is developed to give C2-alkenylated benzoxazoles and benzimidazoles in moderate to good yields. Most reactions could be accomplished in 30 min at room temperature. This tandem process involves a Csp-Csp2 bond cleavage and a C-N bond formation. Moreover, both tertiary and secondary propargylic alcohols with diverse functional groups were tolerated under the mild conditions.

  19. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  20. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Wu Jiajie

    2010-10-01

    Full Text Available Abstract Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice, the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar. To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model and Sorghum bicolor (sorghum. We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51, we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets

  1. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides

    Directory of Open Access Journals (Sweden)

    Jihen Ati

    2017-09-01

    Full Text Available Carbohydrate related enzymes, like glycosyltransferases and glycoside hydrolases, are nowadays more easily accessible and are thought to represent powerful and greener alternatives to conventional chemical glycosylation procedures. The knowledge of their corresponding mechanisms has already allowed the development of efficient biocatalysed syntheses of complex O-glycosides. These enzymes can also now be applied to the formation of rare or unnatural glycosidic linkages.

  2. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology

    NARCIS (Netherlands)

    Walvoort, Maria Theresia Cornelia

    2012-01-01

    The processes of glycosidic bond formation and destruction are a central theme in glycochemistry and glycobiology, and form the basis of the research described in this Thesis. In the first part, studies towards the stereoselective construction of two complex bacterial oligosaccharide fragments are

  3. 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H

    NARCIS (Netherlands)

    Gangoiti Muñecas, Joana; van Leeuwen, Sander S; Gerwig, Gerrit J; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert

    2017-01-01

    Lactic acid bacteria possess a diversity of glucansucrase (GS) enzymes that belong to glycoside hydrolase family 70 (GH70) and convert sucrose into α-glucan polysaccharides with (α1 → 2)-, (α1 → 3)-, (α1 → 4)- and/or (α1 → 6)-glycosidic bonds. In recent years 3 novel subfamilies of GH70 enzymes,

  4. Anodic carbon-boron bond cleavage through the intermediacy of electrogenerated bromonium ion

    International Nuclear Information System (INIS)

    Shi Deqing; Gitkis, Anna; Becker, James Y.

    2007-01-01

    The electrochemical properties of a series of cyclic arylboronic esters, XC 6 H 4 B(OR) 2 [RR = CH 2 CH 2 ; X = H (1a); p-Me (1b); p-OMe (1c); p-Cl (1d); p-Ph (1e); m-Cl (1f); m-OMe (1g); CF 3 (1h); OMe (1i); 2,6-dimethyl (1j); 1b with RR = (CH 2 ) 3 , (1k); 1b with RR = CMe 2 CMe 2 , (1m)] has been studied in acetonitrile by cyclic voltammetry (CV) and controlled-potential electrolysis (CPE). The CV of representative examples of aryl borates with different substituents show one irreversible oxidation wave on a Pt cathode, at 1.8-1.9 V (vs. Ag/AgCl), with a negligible substituent effect. The cathodic CPE process led to small amounts of biaryls only, whereas the direct anodic CPE could not be carried out practically due to low currents. However, in the presence of electrogenerated bromonium (or iodonium) ions a C-B bond cleavage does take place to yield the corresponding bromoaryls, brominated phenols, and arylboronic acids as the major products

  5. Anodic carbon-boron bond cleavage through the intermediacy of electrogenerated bromonium ion

    Energy Technology Data Exchange (ETDEWEB)

    Shi Deqing; Gitkis, Anna [Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel); Becker, James Y. [Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: becker@bgu.ac.il

    2007-12-31

    The electrochemical properties of a series of cyclic arylboronic esters, XC{sub 6}H{sub 4}B(OR){sub 2} [RR = CH{sub 2}CH{sub 2}; X = H (1a); p-Me (1b); p-OMe (1c); p-Cl (1d); p-Ph (1e); m-Cl (1f); m-OMe (1g); CF{sub 3} (1h); OMe (1i); 2,6-dimethyl (1j); 1b with RR = (CH{sub 2}){sub 3}, (1k); 1b with RR = CMe{sub 2}CMe{sub 2}, (1m)] has been studied in acetonitrile by cyclic voltammetry (CV) and controlled-potential electrolysis (CPE). The CV of representative examples of aryl borates with different substituents show one irreversible oxidation wave on a Pt cathode, at 1.8-1.9 V (vs. Ag/AgCl), with a negligible substituent effect. The cathodic CPE process led to small amounts of biaryls only, whereas the direct anodic CPE could not be carried out practically due to low currents. However, in the presence of electrogenerated bromonium (or iodonium) ions a C-B bond cleavage does take place to yield the corresponding bromoaryls, brominated phenols, and arylboronic acids as the major products.

  6. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry

    DEFF Research Database (Denmark)

    Westereng, Bjørge; Arntzen, Magnus Ø.; Wittrup Agger, Jane

    2017-01-01

    Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the num...

  7. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  8. Specific Cα-C Bond Cleavage of β-Carbon-Centered Radical Peptides Produced by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Nagoshi, Keishiro; Yamakoshi, Mariko; Sakamoto, Kenya; Takayama, Mitsuo

    2018-04-01

    Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M - H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M - Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M - Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M - Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M - Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M - Hα + H]·+ and the amide nitrogen-centered radical ions [M - HN + H]·+, while ab initio calculations indicate that the formation of [M - Hα + H]·+ is energetically most favorable. [Figure not available: see fulltext.

  9. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  10. Formation of a Six-Coordinate fac-[Re(Co)3]+ Complex by the N-C bond cleavage of a potentially tetradentate ligand

    International Nuclear Information System (INIS)

    Booysen, I.; Gerber, T. I. A.; Hosten, E.; Mayer, P.

    2008-01-01

    The rhenium(I) compound fac-[Re(CO) 3 (daa)]. Hpab.H 2 O (Hpab N,N'-(l,2-phenylene)bis(2'-aminobenzamide); Hdaa 2-amino-N-(2-aminophenyl)benzamide) was synthesized from the reaction of [Re(CO) 5 ,Br] with two equivalent of Hpab in toluene. The monoanionic tridentate ligand daa was formed by the rhenium-mediated cleavage of an amido N-C bond of the potentially tetradentate ligand Hpab. The compound was characterized by IR spectroscopy and X-ray crystallography, and daa is coordinated as a diamino amide via three nitrogen-donor atoms

  11. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  12. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  13. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop.

    Science.gov (United States)

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós

    2013-08-16

    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  14. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions.

    Science.gov (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2018-03-14

    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  15. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    Science.gov (United States)

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography

    Science.gov (United States)

    Wan, Qun; Parks, Jerry M.; Hanson, B. Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E.; Graham, David E.; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey

    2015-01-01

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen. PMID:26392527

  17. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  18. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea

    2014-06-25

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  19. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    Directory of Open Access Journals (Sweden)

    Andrea Ilg

    2014-01-01

    Full Text Available The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum carotenoid cleavage dioxygenase (SlCCD1B, which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents.

  20. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  1. Formation of a dinuclear copper(II) complex through the cleavage of CBond' name='Single-Bond' value='Single-Bond'/>N bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    Energy Technology Data Exchange (ETDEWEB)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia); Kassim, Mohammad B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor, Malaysia and Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}Bond' name='Single-Bond' value='Single-Bond'/>N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.

  2. Key role of chemical hardness to compare 2,2-diphenyl-1-picrylhydrazyl radical scavenging power of flavone and flavonol O-glycoside and C-glycoside derivatives.

    Science.gov (United States)

    Waki, Tsukasa; Nakanishi, Ikuo; Matsumoto, Ken-ichiro; Kitajima, Junichi; Chikuma, Toshiyuki; Kobayashi, Shigeki

    2012-01-01

    The antioxidant activities of flavonoids and their glycosides were measured with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH radical, DPPH(·)) scavenging method. The results show that free hydroxyl flavonoids are not necessarily more active than O-glycoside. Quercetin and kaempferol showed higher activity than apigenin. The C- and O-glycosides of flavonoids generally showed higher radical scavenging activity than aglycones; however, kaempferol C3-O-glycoside (astragalin) showed higher activity than kaempferol. In the radical scavenging activity of flavonoids, it was expected that OH substitutions at C3 and C5 and catechol substitution at C2 of B ring and intramolecular hydrogen bonding between OH at C5 and ketone at C3 would increase the activity; however, the reasons have yet to be clarified. We here show that the radical scavenging activities of flavonoids are controlled by their absolute hardness (η) and absolute electronegativity (χ) as a electronic state. Kaempferol and quercetin provide high radical scavenging activity since (i) OH substitutions at C3 and C5 strikingly decrease η of flavones, (ii) OH substitutions at C3 and C7 decrease χ and η of flavones, and (iii) phenol or o-catechol substitution at C2 of B ring decrease χ of flavones. The coordinate r(χ, η) as the electron state must be small to increase the radical scavenging activity of flavonoids. The results show that chemically soft kaempferol and quercetin have higher DPPH radical scavenging activity than chemically hard genistein and daidzein.

  3. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; DeVeaux, Linda C.

    2018-04-16

    Background Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Results Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolases were down-regulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Conclusions Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases was not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader

  4. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  5. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Science.gov (United States)

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  6. Phenolic Glycosides from Capsella bursa-pastoris (L. Medik and Their Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Joon Min Cha

    2017-06-01

    Full Text Available A new sesquilignan glycoside 1, together with seven known phenolic glycosides 2–8 were isolated from the aerial parts of Capsella bursa-pastoris. The chemical structure of the new compound 1 was elucidated by extensive nuclear magnetic resonance (NMR data (1H- and 13C-NMR, 1H-1H correlation spectroscopy (1H-1H COSY, heteronuclear single-quantum correlation (HSQC, heteronuclear multiple bond correlation (HMBC, and nuclear overhauser effect spectroscopy (NOESY and HR-FABMS analysis. The anti-inflammatory effects of 1–8 were evaluated in lipopolysaccharide (LPS-stimulated murine microglia BV-2 cells. Compounds 4 and 7 exhibited moderate inhibitory effects on nitric oxide production in LPS-activated BV-2 cells, with IC50 values of 17.80 and 27.91 µM, respectively.

  7. Acylated flavone glycosides from Veronica

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Jensen, Søren Rosendal

    2003-01-01

    A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two rare allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from...

  8. Pregnane glycosides from Sansevieria trifasciata.

    Science.gov (United States)

    Mimaki, Y; Inoue, T; Kuroda, M; Sashida, Y

    1997-01-01

    Phytochemical analysis of the whole plant of Sansevieria trifasciata, one of the most common Agavaceae plants, has resulted in the isolation of four new pregnane glycosides. Their structures have been determined by spectroscopic analysis and acid- and alkaline-catalysed hydrolysis to be 1 beta,3 beta-dihydroxypregna-5,16-dien-20-one glycosides. This is believed to be the first report of the isolation of the pregnane glycosides from a plant of the family Agavaceae.

  9. [Cleavage time for a hydrogen bond under a load].

    Science.gov (United States)

    Bespalov, S V; Tolpygo, K B

    1993-01-01

    Statistics of the hydrogen bond formation and break in a bundle of actin and myosin filaments realizing the attractive force in the sarcomere of a muscle is studied. Purely mechanical problem of the attractive-force formation and motion of myosin heads and action globules under their action is supplemented by accounting for the irreversible processes: 1. Thermal de-excitation of the latter in the chain of hydrogen bond during the elementary act of the ATP energy use resulting in fixing the extended actin filament. 2. Break of the hydrogen bonds, realizing this fixing, due to thermal fluctuations for the time tau. The average life-time turns out to be the order of time necessary for the movement of z-membrane sarcomere for the value of action filament extension delta 1, which is necessary for the process of muscle contraction to be continued.

  10. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Tatzuo; Inoko, Yoji; Hiragi, Yuzuru; Kataoka, Mikio; Amemiya, Yoshiyuki; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-11-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. 26 refs.; 8 figs.

  11. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    International Nuclear Information System (INIS)

    Ueki, Tatzuo; Inoko, Yoji; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-01-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50 s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150 s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. (Auth.)

  12. Kaempferol glycosides and cardenolide glycosides, cytotoxic constituents from the seeds of Draba nemorosa (Brassicaceae).

    Science.gov (United States)

    Moon, Surk-Sik; Rahman, Md Aziz Abdur; Manir, Md Maniruzzaman; Jamal Ahamed, V S

    2010-08-01

    Bioassay-directed fractionation of a methanolic extract from the seeds of Draba nemorosa (Brassicaceae) led to isolation of a new flavonol glycoside, drabanemoroside (5, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranose) along with four known flavonoid derivatives (1-4), four cardenolide glycosides (6-9). Kaempferol glycosides 2 and 5 showed strong cytotoxicity against human small lung cancer cell line A549 and melanoma SK-Mel-2 with an IC(50) of 0.5 microg/mL and 1.9 microg/mL, respectively. Cardenolide glycosides 6-9 showed potent cytotoxicity (A549) in the range of 0.01-0.032 microg/mL. Their structures were characterized based on spectroscopic data (2D NMR, HRTOFMS, IR, and UV) and comparison of literature values. The carbohydrate units were also confirmed by comparing the hydrolysate of 5 with authentic monosaccharides.

  13. Activation of the Hg-C Bond of Methylmercury by [S2]-Donor Ligands.

    Science.gov (United States)

    Karri, Ramesh; Banerjee, Mainak; Chalana, Ashish; Jha, Kunal Kumar; Roy, Gouriprasanna

    2017-10-16

    Here we report that [S 2 ]-donor ligands Bmm OH , Bmm Me , and Bme Me bind rapidly and reversibly to the mercury centers of organomercurials, RHgX, and facilitate the cleavage of Hg-C bonds of RHgX to produce stable tetracoordinated Hg(II) complexes and R 2 Hg. Significantly, the rate of cleavage of Hg-C bonds depends critically on the X group of RHgX (X = BF 4 - , Cl - , I - ) and the [S 2 ]-donor ligands used to induce the Hg-C bonds. For instance, the initial rate of cleavage of the Hg-C bond of MeHgI induced by Bme Me is almost 2-fold higher than the initial rate obtained by Bmm OH or Bmm Me , indicating that the spacer between the two imidazole rings of [S 2 ]-donor ligands plays a significant role here in the cleavage of Hg-C bonds. Surprisingly, we noticed that the initial rate of cleavage of the Hg-C bond of MeHgI induced by Bme Me (or Bmm Me ) is almost 10-fold and 100-fold faster than the cleavage of Hg-C bonds of MeHgCl and [MeHg]BF 4 respectively, under identical reaction conditions, suggesting that the Hg-C bond of [MeHg]BF 4 is highly inert at room temperature (21 °C). We also show here that the nature of the final stable cleaved products, i.e. Hg(II) complexes, depends on the X group of RHgX and the [S 2 ]-donor ligands. For instance, the reaction of Bmm Me with MeHgCl (1:1 molar ratio) afforded the formation of the 16-membered metallacyclic dinuclear mercury compound (Bmm Me ) 2 Hg 2 Cl 4 , in which the two Cl atoms are located inside the ring, whereas due to the large size of the I atom, a similar reaction with MeHgI yielded polymeric [(Bmm Me ) 2 HgI 2 ] m ·(MeHgI) n . However, the treatment of Bmm Me with ionic [RHg]BF 4 led to the formation of the tetrathione-coordinated mononuclear mercury compound [(Bmm Me ) 2 Hg](BF 4 ) 2 , where BF 4 - serves as a counteranion.

  14. Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds.

    Science.gov (United States)

    Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing

    2017-08-03

    We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.

  15. Glycosides from the sea cucumber Cucumaria frondosa. IV. Structure of frondosides A{sub 2}-4, A{sub 2}-7, and A{sub 2}-8, three new minor monosulfated triterpene glycosides

    Energy Technology Data Exchange (ETDEWEB)

    Silchenko, A.S.; Avilov, S.A.; Antonov, A.S.; Kalinovsky, A.I.; Dmitrenok, P.S.; Kalinin, V.I. [Pacific Inst. of Bioorganic Chemistry, Far East Div. of the Russian Academy of Sciences, Vladivostok (Russian Federation)], E-mail: kalininv@piboc.dvo.ru; Woodward, C.; Collin, P.D. [Coastside Bio Resources Inc., Stonington, Maine (United States)

    2005-12-15

    Frondosides A{sub 2}-4, A{sub 2}-7, and A{sub 2}-8 are new monosulfated triterpene glycosides isolated from the sea cucumber Cucumaria frondosa. Their structures have been elucidated on the basis of spectral data (2D NMR and MS). Frondosides A{sub 2}-7 and A{sub 2}-8 are isomers and differ from each other only by the position of a double bond in their non-holostane-type aglycones. (author)

  16. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction...... processes. In the case of glycosaminoglycan-derived amidyl radicals, evidence has been obtained in studies with model glycosides that these radicals undergo rapid intramolecular abstraction reactions to give carbon-centered radicals at C-2 on the N-acetyl glycosamine rings (via a 1,2-hydrogen atom shift......) and at C-4 on the neighboring uronic acid residues (via 1,5-hydrogen atom shifts). The C-4 carbon-centered radicals, and analogous species derived from model glycosides, undergo pH-independent beta-scission reactions that result in glycosidic bond cleavage. With N-acetyl glucosamine C-1 alkyl glycosides...

  17. Structures and Biogenesis of Fallaxosides D4, D5, D6 and D7, Trisulfated Non-Holostane Triterpene Glycosides from the Sea Cucumber Cucumaria fallax

    Directory of Open Access Journals (Sweden)

    Alexandra S. Silchenko

    2016-07-01

    Full Text Available Four new trisulfated triterpene glycosides, fallaxosides D4 (1, D5 (2, D6 (3 and D7 (4 have been isolated from the sea cucumber Cucumaria fallax (Cucumariidae, Dendrochirotida. The structures of the glycosides have been elucidated by 2D NMR spectroscopy and HRESIMS. All the glycosides have the lanostane aglycones of a rare non-holostane type with 7(8-, 8(9- or 9(11-double bonds, one or two hydroxyl groups occupying unusual positions in the polycyclic nucleus and shortened or normal side chains. The pentasaccharide carbohydrate moieties of 1–4 have three sulfate groups. The cytotoxic activity of glycosides 1–4 against the ascite form of mouse Ehrlich carcinoma cells and mouse spleen lymphocytes and hemolytic activity against mouse erythrocytes have been studied.

  18. An N-Glycosidase from Escherichia coli That Releases Free Uracil from DNA Containing Deaminated Cytosine Residues

    Science.gov (United States)

    Lindahl, Tomas

    1974-01-01

    An enzyme that liberates uracil from single-stranded and double-stranded DNA containing deaminated cytosine residues and from deoxycytidylate-deoxyuridylate copolymers in the absence of Mg++ has been purified 30-fold from cell extracts of E. coli. The enzyme does not release uracil from deoxyuridine, dUMP, uridine, or RNA, nor does it liberate the normally occurring pyrimidine bases, cytosine and thymine, from DNA. The enzymatic cleavage of N-glycosidic bonds in DNA occurs without concomitant cleavage of phosphodiester bonds, resulting in the formation of free uracil and DNA strands of unaltered chain length that contain apyrimidinic sites as reaction products. The enzyme may be active in DNA repair, converting deaminated dCMP residues to an easily repairable form. PMID:4610583

  19. Mass spectrometric investigation of synthetic glycoside of muramyl dipeptide immobilized on fumed silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulik, Tetiana V., E-mail: tanyakulyk@gala.net [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Azizova, Liana R., E-mail: liana_azizova@ukr.net [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Palyanytsya, Borys B. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Zemlyakov, Alexander E.; Tsikalova, Victoria N. [Vernadsky Tauric National University, pr. Akademika Vernadskogo 4, Simferopol, 95007 (Ukraine)

    2010-05-25

    N-Acetylmuramyl-L-alanyl-D-isoglutamine or muramyl dipeptide is a cleavage product of peptidoglycan by lysozyme. This study explored the use of the temperature-programmed desorption mass spectrometry (TPDMS) in analysis of glycoside of muramyl dipeptide: O-{l_brace}(4-tert-butylcyclohexyl)-2-acetamido-2, 3-dideoxy-{beta}-D-glucopyranoside-3-yl{r_brace}-D-lactoyl-L-alanyl-D-isoglutamine (MDP) on the surface of fumed silica. Stages of pyrolysis of MDP in condensed state and on the silica surface have been determined. Three stages have been clear identified under pyrolysis of MDP on the silica surface. Kinetic parameters of thermal reactions on the fumed silica surface and in the condensed state have been calculated.

  20. Naturally occurring methyl salicylate glycosides.

    Science.gov (United States)

    Mao, Ping; Liu, Zizhen; Xie, Meng; Jiang, Rui; Liu, Weirui; Wang, Xiaohong; Meng, Shen; She, Gaimei

    2014-01-01

    As an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates' without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.

  1. Methods for the enzymatic modification of steviol glycosides, modified steviol glycosides obtainable thereby, and the use thereof as sweeteners

    NARCIS (Netherlands)

    te Poele, Evelien; Dijkhuizen, Lubbert; Gerwig, Gerrit; Kamerling, Johannis

    2016-01-01

    The present invention relates generally to the production of steviol glycosides. Provided is a method for enzymatically providing a modified steviol glycoside, comprising incubating a steviol glycoside substrate in the presence of sucrose and the glucansucrase GTF180 of Lactobacillus reuteri strain

  2. Acid Rearrangement of Secoiridoids Related to Oleuropein and Secologanin

    DEFF Research Database (Denmark)

    Bianco, Armandodoriano; Jensen, Søren Rosendal; Olesen, Jens

    2003-01-01

    Acid treatment of an iridoid glycoside results in the cleavage of the acetal bond between the sugar unit and the monoterpenoid aglycon. Iridoids possessing non-conjugated enol ether systems, however, undergo the hydration of the iridoid enol ether functionality in acid medium, as well as the hydr...... as the hydrolysis of the bond. We examined the acid rearrangement of secoiridoids such as oleuropein (1) and secologanin (2) and their reduction products oleuropeinol (3) and secologaninol (4), to examine whether similar behaviour also occurs in this case....

  3. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  4. Perspectives for the industrial enzymatic production of glycosides.

    Science.gov (United States)

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  5. [Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].

    Science.gov (United States)

    Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D

    2011-01-01

    The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.

  6. Disulphide bond formation in food protein aggregation and gelation

    NARCIS (Netherlands)

    Visschers, R.W.; Jongh, de H.H.J.

    2005-01-01

    In this short review we discuss the role of cysteine residues and cystine bridges for the functional aggregation of food proteins. We evaluate how formation and cleavage of disulphide bonds proceeds at a molecular level, and how inter- and intramolecular disulfide bonds can be detected and modified.

  7. UV Photofragmentation Dynamics of Protonated Cystine: Disulfide Bond Rupture.

    Science.gov (United States)

    Soorkia, Satchin; Dehon, Christophe; Kumar, S Sunil; Pedrazzani, Mélanie; Frantzen, Emilie; Lucas, Bruno; Barat, Michel; Fayeton, Jacqueline A; Jouvet, Christophe

    2014-04-03

    Disulfide bonds (S-S) play a central role in stabilizing the native structure of proteins against denaturation. Experimentally, identification of these linkages in peptide and protein structure characterization remains challenging. UV photodissociation (UVPD) can be a valuable tool in identifying disulfide linkages. Here, the S-S bond acts as a UV chromophore and absorption of one UV photon corresponds to a σ-σ* transition. We have investigated the photodissociation dynamics of protonated cystine, which is a dimer of two cysteines linked by a disulfide bridge, at 263 nm (4.7 eV) using a multicoincidence technique in which fragments coming from the same fragmentation event are detected. Two types of bond cleavages are observed corresponding to the disulfide (S-S) and adjacent C-S bond ruptures. We show that the S-S cleavage leads to three different fragment ions via three different fragmentation mechanisms. The UVPD results are compared to collision-induced dissociation (CID) and electron-induced dissociation (EID) studies.

  8. Nonperfect synchronization of bond-forming and bond-rupturing processes in the reaction H + H2 → H2 + H

    International Nuclear Information System (INIS)

    Chandra, A.K.; Rao, V.S.

    1996-01-01

    The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs

  9. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    Directory of Open Access Journals (Sweden)

    José Manuel Calderón-Montaño

    2014-01-01

    Full Text Available Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies.

  10. Perspectives for the Industrial Enzymatic Production of Glycosides

    NARCIS (Netherlands)

    Roode, de B.M.; Franssen, M.C.R.; Padt, van der A.; Boom, R.M.

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus,

  11. Triisobutylaluminium (TIBAL Promoted Rearrangement of C-glycosides

    Directory of Open Access Journals (Sweden)

    P. Sinay

    2005-08-01

    Full Text Available Triisobutylaluminium-promoted rearrangement of unsaturated glycosides containing electron-donating aglycons, such as C-aryl glycosides, provides direct access to highly functionalised cyclohexane derivatives.

  12. Variants of glycoside hydrolases

    Science.gov (United States)

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  13. Synthesis of Capsaicin Glycosides and 8-Nordihydrocapsaicin Glycosides as Potential Weight-Loss Formulations

    Directory of Open Access Journals (Sweden)

    Hisashi Katsuragi

    2010-03-01

    Full Text Available The enzymatic synthesis of capsaicin glycosides and 8-nordihydrocapsaicin glycosides was investigated using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Capsaicin and 8-nordihydrocapsaicin were converted into their β-glucoside and β-maltooligosaccharide (amylose conjugate, i.e. β-maltoside and β-maltotrioside, by sequencial glycosylation with almond β-glucosidase and CGTase. The β-glucoside and β-maltoside of capsaicin and β-glucoside of 8-nordihydrocapsaicin showed inhibitory effects on high-fat-diet-induced elevations in body weight of mice.

  14. Synthesis of Capsaicin Glycosides and 8-Nordihydrocapsaicin Glycosides as Potential Weight-Loss Formulations

    Directory of Open Access Journals (Sweden)

    Hisashi Katsuragi

    2010-01-01

    Full Text Available The enzymatic synthesis of capsaicin glycosides and 8-nordihydrocapsaicin glycosides was investigated using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Capsaicin and 8-nordihydrocapsaicin were converted into their β-glucoside and β-maltooligosaccharide (amylose conjugate, i.e. β-maltoside and β-maltotrioside, by sequencial glycosylation with almond β-glucosidase and CGTase. The β-glucoside and β-maltoside of capsaicin and β-glucoside of 8-nordihydrocapsaicin showed inhibitory effects on high-fat-diet-induced elevations in body weight of mice.

  15. Electrochemical bond cleavage in pesticide ioxynil. Kinetic analysis by voltammetry and impedance spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Sokolová, R.; Giannarelli, S.; Fanelli, N.; Pospíšil, Lubomír

    2017-01-01

    Roč. 49, SI C (2017), s. 134-138 ISSN 0324-1130 Institutional support: RVO:61388963 Keywords : electrochemical impedance spectroscopy * rate constant * self-protonation * faradaic phase angle * halogen cleavage * EC processes fitting Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 0.238, year: 2016

  16. Iridoid glycosides from Thunbergia grandiflora.

    Science.gov (United States)

    Ismail, L D; el-Azizi, M M; Khalifa, T I; Stermitz, F R

    1996-07-01

    The novel iridoid glycosides, isounedoside and grandifloric acid, were isolated from Thunbergia grandiflora. Grandifloric acid contains C-10 as a carboxylic acid group, the presence of which was predicted by recent iridoid biosynthesis studies carried out within T. alata. Isounedoside contains a rare 6,7-epoxide functional group. A revision in some of the NMR spectral assignments for the known iridoid glycoside alatoside was also made.

  17. A new furostanol glycoside from Tribulus terrestris.

    Science.gov (United States)

    Xu, Yajuan; Liu, Yonghong; Xu, Tunhai; Xie, Shengxu; Si, Yunshan; Liu, Yue; Zhou, Haiou; Liu, Tonghua; Xu, Dongming

    2010-01-27

    Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furostane-20(22)-en-12-one-3beta, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-beta-D-galactopyranoside (1) on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  18. Cleavage of olefinic double bonds by mediated anodic oxidation

    International Nuclear Information System (INIS)

    Baeumer, U.-St.; Schaefer, H.J.

    2003-01-01

    Seven alkenes, e.g. 1-decene, methyl oleate, cyclododecene, norbornene, are cleaved by indirect anodic oxidation with IO 4 - /RuCl 3 as mediator to carboxylic acids. The best performance was achieved with two alternative ex cell-methods. Periodate is regenerated from iodate in a divided cell at a PbO 2 /Ti-anode. In the chemical reactor alkene and the produced carboxylic acid are immobilized in a chromatography column on Chromosorb W and oxidized with IO 4 - /RuO 4 in CH 3 CN/water. In the alternative version the alkene is oxidized in an emulsion generated by sonication and the organic phase is retained in the reactor by a separator. Acids and diacids are obtained in 61-91% chemical yield and good current yields. The amount of consumed periodate can be reduced to less than 5% of the amount needed for the chemical oxidation. The mediated anodic cleavage of alkenes is altogether an interesting alternative to ozonolysis

  19. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  20. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-03

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.

  1. Insights into the Reaction Mechanism of Aromatic Ring Cleavage by Homogentisate Dioxygenase: A Quantum Mechanical/Molecular Mechanical Study.

    Science.gov (United States)

    Qi, Yue; Lu, Jiarui; Lai, Wenzhen

    2016-05-26

    To elucidate the reaction mechanism of the ring cleavage of homogentisate by homogentisate dioxygenase, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out by using two systems in different protonation states of the substrate C2 hydroxyl group. When the substrate C2 hydroxyl group is ionized (the ionized pathway), the superoxo attack on the substrate is the rate-limiting step in the catalytic cycle, with a barrier of 15.9 kcal/mol. Glu396 was found to play an important role in stabilizing the bridge species and its O-O cleavage product by donating a proton via a hydrogen-bonded water molecule. When the substrate C2 hydroxyl group is not ionized (the nonionized pathway), the O-O bond cleavage of the bridge species is the rate-limiting step, with a barrier of 15.3 kcal/mol. The QM/MM-optimized geometries for the dioxygen and alkylperoxo complexes using the nonionized model (for the C2 hydroxyl group) are in agreement with the experimental crystal structures, suggesting that the C2 hydroxyl group is more likely to be nonionized.

  2. A New Furostanol Glycoside from Tribulus terrestris

    Directory of Open Access Journals (Sweden)

    Tonghua Liu

    2010-01-01

    Full Text Available Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-β-D-glucopyranosyl-(25S-5α-furostane-20(22-en-12-one-3β, 26-diol-3-O-α-L-rhamnopyranosyl-(1→2-[β-D-glucopyranosyl-(1→4]-β-D-galactopyranoside (1 on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  3. Phytosterol glycosides reduce cholesterol absorption in humans.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Anderson Spearie, Catherine L; Ostlund, Richard E

    2009-04-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (Pphytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.

  4. Forging C-C Bonds Through Decarbonylation of Aryl Ketones.

    Science.gov (United States)

    Somerville, Rosie J; Martin, Ruben

    2017-06-06

    The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian; Jia, Jiaqi; Rueping, Magnus

    2017-01-01

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  6. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  7. Simultaneous determination of iridoid glycosides, phenethylalcohol glycosides and furfural derivatives in Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrometry

    DEFF Research Database (Denmark)

    Xu, Jun; Wu, Jie; Zhu, Ling-Ying

    2012-01-01

    In this study, a sensitive and selective method for simultaneously quantifying eight major components (four iridoid glycosides, three phenethylalcohol glycosides and one furfural derivative) of Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrom......In this study, a sensitive and selective method for simultaneously quantifying eight major components (four iridoid glycosides, three phenethylalcohol glycosides and one furfural derivative) of Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass...

  8. New acylated flavone and cyanogenic glycosides from Linum grandiflorum

    DEFF Research Database (Denmark)

    Mohammed, Magdy M. D.; Christensen, Lars Porskjær; Ibrahim, Nabaweya A.

    2009-01-01

    The first investigation of Linum grandiflorum resulted in the isolation of one new acylated flavone O-diglycoside known as luteolin 7-O-a-D-(6000-E-feruloyl)glucopyranosyl (1!2)--D-glucopyranoside, and one new cyanogenic glycoside known as 2-[(30-isopropoxy-O--D-glucopyranosyl)oxy]-2......-methylbutanenitrile, together with four known flavonoid glycosides, three known cyanogenic glycosides and one alkyl glycoside. The new compounds were structurally elucidated via the extensive 1D, 2D NMR and DIFNOE together with ESI-TOFCID-MS/MS and HR-MALDI/MS....

  9. Cyanohydrin glycosides of Passiflora

    DEFF Research Database (Denmark)

    Jaroszewski, Jerzy W; Olafsdottir, Elin S; Wellendorph, Petrine

    2002-01-01

    this glycoside co-occurs with simple beta-D-glucopyranosides: tetraphyllin A, deidaclin, tetraphyllin B, volkenin, epivolkenin and taraktophyllin. P. citrina contains passicapsin, a rare glycoside with the 2,6-dideoxy-beta-D-xylo-hexopyranosyl moiety, while P. herbertiana contains tetraphyllin A, deidaclin...... Passiflora species. These alpha-hydroxyamides, presumably formed during processing of the plant material, behave as cyanogenic compounds when treated with commercial Helix pomatia crude enzyme preparation. Thus, the enzyme preparation appears to contain an amide dehydratase, which converts alpha......-hydroxyamides to cyanohydrins that liberate cyanide; this finding is of interest in connection with analysis of plant tissues and extracts using Helix pomatia enzymes....

  10. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate.

    Science.gov (United States)

    Purkayastha, Sidd; Markosyan, Avetik; Prakash, Indra; Bhusari, Sachin; Pugh, George; Lynch, Barry; Roberts, Ashley

    2016-06-01

    The safety of steviol glycosides is based on data available on several individual steviol glycosides and on the terminal absorbed metabolite, steviol. Many more steviol glycosides have been identified, but are not yet included in regulatory assessments. Demonstration that these glycosides share the same metabolic fate would indicate applicability of the same regulatory paradigm. In vitro incubation assays with pooled human fecal homogenates, using rebaudiosides A, B, C, D, E, F and M, as well as steviolbioside and dulcoside A, at two concentrations over 24-48 h, were conducted to assess the metabolic fate of various steviol glycoside classes and to demonstrate that likely all steviol glycosides are metabolized to steviol. The data show that glycosidic side chains containing glucose, rhamnose, xylose, fructose and deoxy-glucose, including combinations of α(1-2), β-1, β(1-2), β(1-3), and β(1-6) linkages, were degraded to steviol mostly within 24 h. Given a common metabolite structure and a shared metabolic fate, safety data available for individual steviol glycosides can be used to support safety of purified steviol glycosides in general. Therefore, steviol glycosides specifications adopted by the regulatory authorities should include all steviol glycosides belonging to the five groups of steviol glycosides and a group acceptable daily intake established. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nickel-Catalyzed Alkoxy-Alkyl Interconversion with Alkylborane Reagents through C−O Bond Activation of Aryl and Enol Ethers

    KAUST Repository

    Guo, Lin

    2016-11-07

    A nickel-catalyzed alkylation of polycyclic aromatic methyl ethers as well as methyl enol ethers with B-alkyl 9-BBN and trialkylborane reagents that involves the cleavage of stable C(sp2)−OMe bonds is described. The transformation has a wide substrate scope and good chemoselectivity profile while proceeding under mild reaction conditions; it provides a versatile way to form C(sp2)−C(sp3) bonds that does not suffer from β-hydride elimination. Furthermore, a selective and sequential alkylation process by cleavage of inert C−O bonds is presented to demonstrate the advantage of this method.

  12. Fracture mechanics and physics approach to cleavage analysis in bcc monocrystals

    International Nuclear Information System (INIS)

    Ivanova, V.S.; Plastinin, V.M.

    1980-01-01

    On monocrystals of molybdenum obtained by electron--beam zone melting studied are the bonds between micro-and macroparameters of fracture controlling the limit state. Monocrystals of three orientations have been studied, namely >001 110 111<. Confirmed is an important role of plastic deformation in the (110) family planes at cleavage forming in the (100) family planes. A correlation connection is established between threshold value of the stress intensity coefficient and activation energy of plastic deformation

  13. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties.

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Rahman, M Aminur; Islam, Mohamad Tofazzal

    2017-10-17

    Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.

  14. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.

    2014-08-11

    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  15. Phytosterol glycosides reduce cholesterol absorption in humans

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  16. [Determination of phenylethanoid glycosides in Orobanche coerulescens].

    Science.gov (United States)

    Han, Guo-qing; Li, Cai-feng; Wang, Xiao-qin; Li, Min-hui; Li, Jing

    2015-11-01

    Orobanche caerulescens is an important medicinal resource in Orobanchaceae. The present study aims to establish methods for determination of acteoside, crenatoside, and total phenylethanoid glycosides in O. caerulescens, and determine the content in 15 samples to evaluate the resource utilization of this medicinal plant. The content of acteoside and crenatoside were quantitatively determined by HPLC, while total phenylpropanoid glycosides was estimated by UV-VIS spectrophotometry. According to the results, the content of acteoside was the highest in O. caerulescens, followed by crenatoside. The contents of acteoside, crenatoside, and total phenylethanoid glycosides were between 1.15% - 15.60%, 0.83% - 4.47%, and 6.78% - 27.43%, respectively, which had significant differences. The acquisition time has great influence on the content of main components of O. caerulescens. The content of phenylethanoid glycosides is higher in the samples which were collected at the flowering stage. The two determination methods were proved to be simple, accurate and reliable, and can be used to evaluate the quality and resource utilization of O. caerulescens.

  17. Chemical Bond Energies of 3d Transition Metals Studied by Density Functional Theory

    DEFF Research Database (Denmark)

    Moltved, Klaus A.d; Kepp, Kasper P.

    2018-01-01

    Despite their vast importance to inorganic chemistry, materials science and catalysis, the accuracy of modelling the formation or cleavage of metal-ligand (M-L) bonds depends greatly on the chosen functional and the type of bond in a way that is not systematically understood. In order to approach...

  18. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose

    International Nuclear Information System (INIS)

    Wang, Shurong; Dai, Gongxin; Ru, Bin; Zhao, Yuan; Wang, Xiaoliu; Xiao, Gang; Luo, Zhongyang

    2017-01-01

    The influence of torrefaction on cellulose structural characteristics and the resulting pyrolysis behavior was investigated in this study. Torrefaction reduced O/C ratio in cellulose and increased its high heating value. The crystallinity of cellulose increased slightly first and then decreased sharply with the increase of torrefaction temperature, which could be ascribed to competitive degradation between crystalline region and amorphous region, as indicated by "1"3C CP/MAS NMR analysis. Besides, the cleavage of β-1,4-glycosidic bond and the dehydration of hydroxyl were the major reactions occurring in torrefaction. Avrami-Erofeev model was found to be the most suitable kinetic reaction model for explaining the thermogravimetric weight loss during the pyrolysis of the raw and torrefied cellulose. A distributed activation energy model based on Avrami-Erofeev model was subsequently used to reveal the pyrolytic kinetics. It was found that the changes in cellulose structure influenced the kinetic parameters greatly. Torrefaction also changed pyrolytic product distribution. The yields of furfural, alicyclic ketones and anhydrosugars increased while that of 5-hydroxymethyl-furfural decreased as torrefaction temperature increased. - Highlights: • Competitive degradation of crystalline and amorphous regions caused CrI change. • Cleavage of glycosidic bond and dehydration of hydroxyl occurred during torrefaction. • Am-DAEM was used to analyze the raw and torrefied cellulose pyrolysis kinetics. • Torrefaction changed cellulose pyrolytic products distribution greatly.

  19. Selective bond cleavage in potassium collisions with pyrimidine bases of DNA.

    Science.gov (United States)

    Almeida, Diogo; Ferreira da Silva, Filipe; García, Gustavo; Limão-Vieira, Paulo

    2013-01-11

    Electron transfer in alkali-molecule collisions to gas phase thymine and uracil yielding H- formation is selectively controlled in the energy range between 5.3 and 66.1 eV. By tuning the collision energy, electron transfer from the alkali to partly deuterated thymine, methylated thymine at the N1 and methylated uracil at the N3 positions, H- loss proceeds not only through the breaking of the (C-H) against (N-H) bonds but also through N1 against N3 sites. Such selectivity, as far as bond and site are concerned, is here reported for the first time by electron transfer induced dissociation experiments in alkali-molecule collisions.

  20. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  1. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions

    Directory of Open Access Journals (Sweden)

    Oussama Ahrazem

    2016-10-01

    Full Text Available Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs, a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon–carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.

  2. Phytosteryl glycosides reduce cholesterol absorption: mechanisms in mice

    Science.gov (United States)

    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with...

  3. Apoptotic activities of cardenolide glycosides from Asclepias subulata.

    Science.gov (United States)

    Rascón-Valenzuela, L A; Velázquez, C; Garibay-Escobar, A; Vilegas, W; Medina-Juárez, L A; Gámez-Meza, N; Robles-Zepeda, R E

    2016-12-04

    Asclepias subulata Decne. (Apocynaceae) is a shrub occurring in Sonora-Arizona desert. The ethnic groups of Sonora, Mexico, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To determine the cell death pathways that the cardenolide glycosides with antiproliferative activity found in the methanol extract of A. subulata are able to activate. The effect of cardenolide glycosides isolated of A. subulata on induction of apoptosis in cancer cells was evaluated through the measuring of several key events of apoptosis. A549 cells were treated for 12h with doses of 3.0, 0.2, 3.0 and 1.0µM of 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively. Apoptotic and necrotic cell levels were measured by double staining with annexin V-FITC/PI. Mitochondrial membrane depolarization was examined through JC-1 staining. Apoptosis cell death and the apoptosis pathways activated by cardenolide glycosides isolated of A. subulata were further characterized by the measurement of caspase-3, caspase-8 and caspase-9 activity. Apoptotic assays showed that the four cardenolide glycosides isolated of A. subulata induced apoptosis in A549 cells, which was evidencing by phosphatidylserine externalization in 18.2%, 17.0%, 23.9% and 22.0% for 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively, compared with 4.6% of control cells. Cell death was also associated with a decrease in mitochondrial membrane potential, which was more than 75% in the treated cultures respect to control. The activation of caspase-3 was observed in all cardenolide glycosides-treated cancer cells indicating the caspase-dependent apoptosis of A549 cells. Extrinsic and intrinsic apoptosis pathways were activated by cardenolide glycosides treatment at the doses tested. In this study was found that cardenolide glycosides, 12, 16-dihydroxicalotropin, calotropin

  4. Anthracycline glycosides

    International Nuclear Information System (INIS)

    Vicario, G.P.; Penco, S.; Arcamone, F.

    1980-01-01

    An invention is described which relates to anthracycline glycosides, and provides as new compounds the radiochemically labelled [14- 14 C] daunorubicin and [14- 14 C] doxorubicin and their hydrochlorides. These are important for the study of the distribution pharmaco-kinetics and metabolism of these compounds which are antitumour medicines. The stability and specificity of the 14 C-label makes these compounds useful for both experimental and medical purposes. (author)

  5. Phytosterol glycosides reduce cholesterol absorption in humans

    OpenAIRE

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series ...

  6. Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage.

    Science.gov (United States)

    Kwong, M. Y.; Harris, R. J.

    1994-01-01

    Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891

  7. Glycosides in medicine: "The role of glycosidic residue in biological activity"

    Czech Academy of Sciences Publication Activity Database

    Křen, Vladimír; Martínková, Ludmila

    2001-01-01

    Roč. 8, - (2001), s. 1303-1328 ISSN 0929-8673 R&D Projects: GA ČR GA303/99/1382; GA ČR GA303/98/0414 Institutional research plan: CEZ:AV0Z5020903 Keywords : glycosides Subject RIV: EE - Microbiology, Virology Impact factor: 5.760, year: 2001

  8. GH97 is a new family of glycoside hydrolases, which is related to the α-galactosidase superfamily

    Directory of Open Access Journals (Sweden)

    Naumoff Daniil G

    2005-08-01

    Full Text Available Abstract Background As a rule, about 1% of genes in a given genome encode glycoside hydrolases and their homologues. On the basis of sequence similarity they have been grouped into more than ninety GH families during the last 15 years. The GH97 family has been established very recently and initially included only 18 bacterial proteins. However, the evolutionary relationship of the genes encoding proteins of this family remains unclear, as well as their distribution among main groups of the living organisms. Results The extensive search of the current databases allowed us to double the number of GH97 family proteins. Five subfamilies were distinguished on the basis of pairwise sequence comparison and phylogenetic analysis. Iterative sequence analysis revealed the relationship of the GH97 family with the GH27, GH31, and GH36 families of glycosidases, which belong to the α-galactosidase superfamily, as well as a more distant relationship with some other glycosidase families (GH13 and GH20. Conclusion The results of this study show an unexpected sequence similarity of GH97 family proteins with glycoside hydrolases from several other families, that have (β/α8-barrel fold of the catalytic domain and a retaining mechanism of the glycoside bond hydrolysis. These data suggest a common evolutionary origin of glycosidases representing different families and clans.

  9. Cleavage of Sn-C and S-C(alkyl) bonds on an organotin scaffold: synthesis and characterization of a novel organotin-sulfite cluster bearing methyltin- and dimethyltin fragments.

    Science.gov (United States)

    Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Mahon, Mary F; Molloy, Kieran C

    2010-05-17

    Hydrolysis of the mixed-ligand dimethyltin(ethoxy)ethanesulfonate, [Me(2)Sn(OEt)(OSO(2)Et)](n) (1a) in moist hexane proceeds via disproportionation and partial cleavage of Sn-C and S-C bonds to afford a novel oxo-/hydroxo- organotin cluster of the composition [(Me(2)Sn)(MeSn)(4)(OSO(2)Et)(2)(OH)(4)(O)(2)(SO(3))(2)] (1) bearing both mono- and dimethyltin fragments and in situ generated sulfite (SO(3)(2-)) anion in the structural framework. On the other hand, similar reactions with analogous mixed ligand diorganotin precursors, [R(2)Sn(OR(1))(OSO(2)R(1))](n) (R = n-Bu, R(1) = Et (2a); R = Et, R(1) = Me (3a)), result in the formation of tetranuclear diorganotin clusters, [{(n-Bu(2)Sn)(2)(OH)(OSO(2)Et)}O](2) (2) and [(Et(2)Sn)(4)(OH)(O)(2)(OSO(2)Me)(3)] (3), respectively. The activation of the Sn-C or S-C bond is not observed in these cases. These findings provide a preliminary insight into the unusual reactivity of 1a under hydrolytic conditions.

  10. Amino acid sequence requirements in the human IgA1 hinge for cleavage by streptococcal IgA1 proteases

    DEFF Research Database (Denmark)

    Senior, BW; Batten, MR; Kilian, Mogens

    2002-01-01

    All the IgA1 proteases of the different pathogenic species of Streptococcus cleave the hinge of the alpha chain of human IgA1 only at one proline-threonine peptide bond. In order to study the importance of these amino acids for cleavage, several hinge mutant recombinant IgA1 antibodies were const...... constructed. The mutations were found to be without major effect upon the structure or functional abilities of the antibodies. However, they had a major effect upon their sensitivity to cleavage by some of the IgA1 proteases....

  11. Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Natália G. Graebin

    2016-08-01

    Full Text Available Glycoside hydrolases (GH are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.

  12. Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi

    Directory of Open Access Journals (Sweden)

    Franco Cairo João Paulo L

    2011-11-01

    Full Text Available Abstract Background Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production. Results The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis. Conclusions Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole

  13. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    Directory of Open Access Journals (Sweden)

    Dmitry L. Aminin

    2015-03-01

    Full Text Available Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata. They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor, Akt (protein kinase B, ERK (extracellular signal-regulated kinases, FAK (focal adhesion kinase, MMP-9 (matrix metalloproteinase-9 and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics.

  14. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  15. Acylated-oxypregnane glycosides from the roots of Asclepias syriaca.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2009-02-01

    Twenty new pregnane glycosides were obtained from the roots of Asclepias syriaca L. (Asclepiadaceae). These glycosides were confirmed to contain ikemagenin, 12-O-nicotinoyllineolon, 5alpha,6-dihydroikemagenin, and 12-O-tigloylisolineolon, as their aglycones, using both spectroscopic and chemical methods.

  16. Photochemistry and pharmacology of 9, 19-cyclolanostane glycosides isolated from genus Cimicifuga.

    Science.gov (United States)

    Su, Yang; Chi, Wen-Cheng; Wu, Lun; Wang, Qiu-Hong; Kuang, Hai-Xue

    2016-10-01

    The constituents of Cimicifuga plants have been extensively investigated, and the principal metabolites are 9, 19-cyclolanostane triterpenoid glycosides, which often exhibit extensive pharmacological activities. 9, 19-Cyclolanostane triterpenoid glycosides are distributed widely in genus Cimicifuga rather than in other members of the Ranunculaceae family. So far, more than 140 cycloartane triterpene glycosides have been isolated from Cimicifuga spp.. The aim of this review was to summarize all 9, 19-cyclolanostane triterpenoid glycosides based on the available relevant scientific literatures from 2000 to 2014. Biological studies of cycloartane triterpene glycosides from Cimicifuga spp. are also discussed. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. Steroidal glycosides from the roots of Asclepias curassavica.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2008-03-01

    Twenty-six new acylated-oxypregnane glycosides were obtained along with three known cardenolide glycosides from the roots of Asclepias curassavica (Asclepiadaceae). The new compounds were confirmed to contain 12-O-benzoylsarcostin, 12-O-benzoyldeacylmetaplexigenin, kidjolanin, and 12-O-benzoyltayloron, and one new acylated-oxypregnane, 12-O-(E)-cinnamoyltayloron, as their aglycones, using both spectroscopic and chemical methods.

  18. The use of neutron scattering to determine the functional structure of glycoside hydrolase.

    Science.gov (United States)

    Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko

    2016-10-01

    Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. New benzophenone and quercetin galloyl glycosides from Psidium guajava L.

    Science.gov (United States)

    Matsuzaki, Keiichi; Ishii, Rie; Kobiyama, Kaori

    2010-01-01

    New benzophenone and flavonol galloyl glycosides were isolated from an 80% MeOH extract of Psidium guajava L. (Myrtaceae) together with five known quercetin glycosides. The structures of the novel glycosides were elucidated to be 2,4,6-trihydroxybenzophenone 4-O-(6″-O-galloyl)-β-d-glucopyranoside (1, guavinoside A), 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6″-O-galloyl)-β-d-glucopyranoside (2, guavinoside B), and quercetin 3-O-(5″-O-galloyl)-α-l-arabinofuranoside (3, guavinoside C) by NMR, MS, UV, and IR spectroscopies. Isolated phenolic glycosides showed significant inhibitory activities against histamine release from rat peritoneal mast cells, and nitric oxide production from a murine macrophage-like cell line, RAW 264.7. PMID:20354804

  20. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles

    DEFF Research Database (Denmark)

    Hansen, Jonas; Diness, Frederik; Meldal, Morten Peter

    2016-01-01

    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity...... directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed....

  1. Phenolic glycosides from sugar maple (Acer saccharum) bark.

    Science.gov (United States)

    Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P

    2011-11-28

    Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines.

  2. The contribution of wine-derived monoterpene glycosides to retronasal odour during tasting.

    Science.gov (United States)

    Parker, Mango; Black, Cory A; Barker, Alice; Pearson, Wes; Hayasaka, Yoji; Francis, I Leigh

    2017-10-01

    This study investigated the sensory significance of monoterpene glycosides during tasting, by retronasal perception of odorant aglycones released in-mouth. Monoterpene glycosides were isolated from Gewürztraminer and Riesling juices and wines, chemically characterised and studied using sensory time-intensity methodology, together with a synthesised monoterpene glucoside. When assessed in model wine at five times wine-like concentration, Gewürztraminer glycosides and geranyl glucoside gave significant fruity flavour, although at wine-like concentrations, or in the presence of wine volatiles, the effect was not significant. Gewürztraminer glycosides, geranyl glucoside and guaiacyl glucoside were investigated using a sensory panel (n=39), revealing large inter-individual variability, with 77% of panellists responding to at least one glycoside. The study showed for the first time that grape-derived glycosides can contribute perceptible fruity flavour, providing a means of enhancing flavour in wines, and confirms the results of previous studies that the effect is highly variable across individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage

    Science.gov (United States)

    Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2017-07-01

    γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.

  4. Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA

    Science.gov (United States)

    2013-01-01

    Background Rhubarb is an important Chinese medicinal herb with a long history of over 2000 years and has been commonly used as a laxative. It is the radix and rhizome of Rheum officinale Baill., R. palmatum L. and R. tanguticum Maxim, all of which are mainly distributed in a broad region in the Tibetan plateau. Anthraquinone glycosides are a series of major active ingredients found in all three species. They are key intermediates in the anthraquinone secondary metabolism and the sennnoside biosynthesis. The variation of the anthraquinone glycoside content in rhubarb in response to specific factors remains an attractive topic. Results A simple and sensitive Ultra Performance Liquid Chromatography with Photo-Diode Array (UPLC-PDA) detector was developed for the simultaneous determination of six anthraquinone glycosides in rhubarb, i.e., aloeemodin-8-O-glucoside, rhein-8-O-glucoside, chrysophanol-1-O-glucoside, emodin-1-O-glucoside, chrysophanol-8-O-glucoside, emodin-8-O-glucoside. Twenty-seven batches from three species were submitted to the multi-component analysis. The results showed that the anthraquinone glycoside content varied significantly even within the same species. The results showed that the anthraquinone glycoside content varied significantly within the same species but not between different species. The PCA and content analysis results confirmed that the plant species has no obvious effect on the content variation. Neither was any significant correlation observed between the anthraquinone glycoside content and the geographic distribution of the rhubarb. Through correlational analysis, altitude was found to be the main factor that affects the anthraquinone glycoside content in rhubarb. Rhubarb grown at higher altitude has higher anthraquinone glycoside content. Conclusions This work provides a rapid, sensitive and accurate UPLC-PDA method for the simultaneous determination of six anthraquinone glycosides in rhubarb. The anthraquinone glycoside content

  5. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  6. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Srimontree, Watchara; Guo, Lin; Minenkov, Yury; Poater, Albert; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel

  7. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Battista, J.R.; Dodson, L.A.; Walker, G.C.

    1988-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. It has been shown that the UmuD protein shares homology with LexA, the repressor of the SOS genes. In this paper the authors describe a series of genetic experiments that indicate that the purpose of RecA-mediated cleavage of UmuD at its bond between Cys-24 and Gly-25 is to activate UmuD for its role in mutagenesis and that the COOH-terminal fragment of UmuD is necessary and sufficient for the role of UmuD in UV mutagenesis. Other genetic experiments are presented that (i) support the hypothesis that the primary role of Ser-60 in UmuD function is to act as a nucleophile in the RecA-mediated cleavage reaction and (ii) raise the possibility that RecA has a third role in UV mutagenesis besides mediating the cleavage of LexA and UmuD

  8. Caffeoyl phenylethanoid glycosides in Sanango racemosum and in the gesneriaceae

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal

    1996-01-01

    An investigation of Samango racemosum for systematically useful glycosides has been performed. No iridoids could be detected, but reverse phase chromatography provided the caffeoyl phenylethanoid glycosides (CPGs) calceolarioside C and conandroside together with the new 2-(3,4-dihydroxyphenyl...

  9. H-1-NMR Fingerprinting of Vaccinium vitis-idaea Flavonol Glycosides

    NARCIS (Netherlands)

    Riihinen, K.R.; Mihaleva, V.V.; Gödecke, T.; Soininen, P.; Laatikainen, R.; Vervoort, J.; Lankin, D.C.; Pauli, G.F.

    2013-01-01

    Introduction - The fruits of Vaccinium vitis-idaea L. are a valuable source of biologically active flavonoid derivatives. For studies focused on the purification of its quercetin glycosides (QGs) and related glycosides from plants and for the purpose of biological studies, the availability of

  10. Analysis of positional isotope exchange in ATP by cleavage of the βP-OγP bond. Demonstration of negligible positional isotope exchange by myosin

    International Nuclear Information System (INIS)

    Dale, M.P.; Hackney, D.D.

    1987-01-01

    A method for analysis of positional isotope exchange (PIX) during ATP ↔ HOH oxygen exchange is presented that uses a two-step degradation of ATP resulting in cleavage of the βP-OγP bond. This cleavage yields P/sub i/ derived from the γ-phosphoryl of ATP that contains all four of the γ oxygens. Both PIX between the β, γ-bridge and β-nonbridge positions and washout of the γ-nonbridge oxygens can be simultaneously followed by using ATP labeled with 17 O at the β-nonbridge positions and 18 O at the β,γ-bridge and γ-nonbridge positions. Application of this method to ATP ↔ HOH exchange during single turnovers of myosin indicates that the bulk of the ATP undergoes rapid washout of γ-nonbridge oxygens in the virtual absence of PIX. At 25 0 C with subfragment 1 the scrambling rate is at the limit of detectability of approximately 0.001 s -1 , which is 50-fold slower than the steady-state rate. This corresponds to a probability of scrambling for the β-oxygens of bound ADP of 1 in 10,000 for each cycle of reversible hydrolysis of bound ATP. A fraction of the ATP, however, does not undergo rapid washout. With myosin and stoichiometric ATP at 0 0 C, this fraction correspond to 10% of the ATP remaining at 36 s, or 2% of the initial ATP, and an equivalent level of ATP is found that does not bind irreversibly to myosin in a cold chase experiment. A significant level of apparent PIX is observed with subfragment 1 in the fraction that resists washout, and this apparent PIX is shown to be due to contaminant adenylate kinase activity. This apparent PIX due to adenylate kinase provides a possible explanation for the PIX observed by Geeves et al. with subfragment 1

  11. Plant-derived cardiac glycosides: Role in heart ailments and cancer management.

    Science.gov (United States)

    Patel, Seema

    2016-12-01

    Cardiac glycosides, the cardiotonic steroids such as digitalis have been in use as heart ailment remedy since ages. They manipulate the renin-angiotensin axis to improve cardiac output. However; their safety and efficacy have come under scrutiny in recent times, as poisoning and accidental mortalities have been observed. In order to better understand and exploit them as cardiac ionotropes, studies are being pursued using different cardiac glycosides such as digitoxin, digoxin, ouabain, oleandrin etc. Several cardiac glycosides as peruvoside have shown promise in cancer control, especially ovary cancer and leukemia. Functional variability of these glycosides has revealed that not all cardiac glycosides are alike. Apart from their specific affinity to sodium-potassium ATPase, their therapeutic dosage and behavior in poly-morbidity conditions needs to be considered. This review presents a concise account of the key findings in recent years with adequate elaboration of the mechanisms. This compilation is expected to contribute towards management of cardiac, cancer, even viral ailments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic

  13. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  14. The fate of H atom adducts to 3'-uridine monophosphate.

    Science.gov (United States)

    Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A

    2010-07-29

    The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.

  15. Investigations on organolead compounds V. Lead---lead bond cleavage reactions of hexaphenyldilead

    NARCIS (Netherlands)

    Willemsens, L.C.; Kerk, G.J.M. van der

    1968-01-01

    It has been shown that a number of nucleophilic and weakly electrophilic reagents (organolithium and organomagnesium compounds, metallic lithium, potassium permanganate, sodium ethoxide, diaryl disulphides, sulphur, ozone, hypochlorous acid and iodine/iodide) selectively cleave the lead---lead bond

  16. Role of Austenite in Brittle Fracture of Bond Region of Super Duplex Stainless Steel

    Science.gov (United States)

    Kitagawa, Yoshihiko; Ikeuchi, Kenji; Kuroda, Toshio

    Weld simulation of heat-affected zone (HAZ) was performed to investigate the mechanism by which austenite affects the toughness of super duplex stainless steel. Thermal cycles of various peak temperatures in the range from 1373 K to 1673 K corresponding to the HAZ were applied to SAF2507 super duplex stainless steel specimens. Charpy impact test was carried out using the specimens after the weld simulation, and the fracture surfaces were observed by SEM using three-dimensionally reconstruction technique. Austenite content decreased with increasing the peak temperature when the peak temperature exceeded 1473 K and the impact value decreased with increasing the peak temperature and decreasing the austenite content. The thermal cycle of the peak temperature of 1673 K corresponding to weld bond region caused decreasing of austenite content which was 22% lower than that of the base metal. The ductile-brittle transition temperature was measured. As a result the temperature increased rapidly in the weld bond region, the peak temperature of which exceeded 1623 K by the grain growth of ferrite matrix occurring subsequently to the completely dissolution of austenite. The morphology of the fracture surfaces after impact testing at 77 K showed cleavage fracture of ferrite. The {100} orientations of cleavage fracture facets were measured using three-dimensional images of the fracture surfaces and the results were visualized as the orientation color maps. The results showed that there were cleavage fractures consisting of a few facets parallel to each other. It was considered that a few facets existed in one ferrite grain. It was concluded that Widmanstätten austenite divided the large fracture into smaller cleavage facets in a ferrite grain and then suppressed the degradation of bond toughness of duplex stainless steel.

  17. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  18. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.).

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Gutiérrez-Uribe, Janet A; Cepeda-Cañedo, Eduardo; Serna-Saldívar, Sergio O

    2017-08-22

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp (AP-BL) ) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp (AP-BL) values than triglycosides. Sugar substituents affected the Papp (AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.

  19. Method Development for Extraction and Quantification of Glycosides in Leaves of Stevia Rebaudiana

    International Nuclear Information System (INIS)

    Salmah Moosa; Hazlina Ahmad Hassali; Norazlina Noordin

    2015-01-01

    A solid-liquid extraction and an UHPLC method for determination of glycosides from the leave parts of Stevia rebaudiana were developed. Steviol glycosides found in the leaves of Stevia are natural sweetener and commercially sold as sugar substitutes. Extraction of the glycosides consisted of solvent extraction of leaf powder using various solvents followed by its concentration using rotary evaporator and analysis using Ultra High Performance Liquid Chromatography (UHPLC). Existing analytical methods are mainly focused on the quantification of either rebaudioside A or stevioside, whereas other glycosides, such as rebaudioside B and rebaudioside D present in the leaves also contribute to sweetness or its biological activity. Therefore, we developed an improved method by changing the UHPLC conditions to enable a rapid and reliable determination of four steviol glycosides rather than just two using an isocratic UHPLC method. (author)

  20. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, María J.

    2013-09-04

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  1. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, Marí a J.; Alqué zar, Berta; Aló s, Enriqueta; Medina, Ví ctor; Carmona, Lourdes; Bruno, Mark; Al-Babili, Salim; Zacarí as, Lorenzo

    2013-01-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  2. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    KAUST Repository

    Diaz-Sanchez, V.; F. Estrada, A.; Limon, M. C.; Al-Babili, Salim; Avalos, J.

    2013-01-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  3. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    KAUST Repository

    Diaz-Sanchez, V.

    2013-07-26

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  4. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    Science.gov (United States)

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  5. Separation, purification and identification of flavonoid glycosides using reversed phase hplc

    International Nuclear Information System (INIS)

    Hasan, A.; Khan, M.A.

    2002-01-01

    Optimal high performance liquid chromatography (HPLC) separation conditions and semi-preparative scale isolation of flavonoid glycosides from three plant species namely Vitex nagunda, Rubus ulmifolious and Malotus philipensis is reported. Identification of purified flavonoid glycoside was achieved using spiking technique in HPLC. (author)

  6. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  7. Cardiac Glycoside Plants Self-Poisoning

    Directory of Open Access Journals (Sweden)

    Radenkova-Saeva J.

    2014-06-01

    Full Text Available Cardiac glycosides are found in a diverse group of plants including Digitalis purpurea and Digitalis lanata (foxgloves, Nerium oleander, Convallaria majalis (lily of the valley, Strophanthus gratus, etc. Nerium Oleander is an indoor and ornamental plant of an evergreen shrub. It’s widespread in countries with a Mediterranean climate. Oleander is one of the most poisonous plants known to humans. All parts of the nerium oleander are poisonous, primarily due to the contained cardiac glycosides - oleandrin, nerin, digitoxigenin, and olinerin of which oleandrin is the principal toxin. The bark contains the toxic substances of rosagenin which causes strychnine-like effects. Signs of poisoning appear a few hours after the adoption of the parts of the plant. Two cases of Nerium Oleander poisoning were presented. Clinical picture included gastrointestinal, cardiovascular and central nervous system effects. The clinical symptoms were characterized by nausea, vomiting, salivation, colic, diarrhoea, ventricular tachycardia, dysrhythmia, heart block, ataxia, drowsiness, muscular tremor. Treatment included administration of activated charcoal, symptomatic and supportive care.

  8. Factors affecting the equilibrium constant of homolysis of complexes with metal-carbon σ bonds in aqueous solutions. Pulse radiolysis studies

    International Nuclear Information System (INIS)

    Meyerstein, D.; Ben-Gurion Univ. of the Negev, Beersheba

    1989-01-01

    Pulse-Radiolysis is a powerful technique for the determination of the equilibrium constants of the homolytic cleavage of metal-carbon σ bonds in aqueous solutions. In most systems studied the observed reaction is: L m-1 M (n+1) -R + L ↔ ML m. n + ·R. Therefore the results do not enable a direct determination of the metal-carbon bond dissociation energies. The results obtained indicate that these equilibrium constants are not directly related to the redox potential of either L .m M (n) or of ·R, or to the activation energies for the homolytic cleavage of a family of similarly substituted ethanes. (author)

  9. Oxidative cleavage of the octyl side chain of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045) in rat and dog liver preparations.

    Science.gov (United States)

    Umehara, K; Kudo, S; Hirao, Y; Morita, S; Uchida, M; Odomi, M; Miyamoto, G

    2000-08-01

    The metabolism of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045), a new potent biguanide antiseptic, was investigated using rat and dog liver preparations to elucidate the mechanism of OPB-2045 metabolite formation, in which the octyl side chain is reduced to four, five, or six carbon atoms. Chemical structures of metabolites were characterized by 1H NMR, fast atom bombardment/mass spectrometry, and liquid chromatography/electrospray ionization-tandem mass spectrometry. Three main metabolites were observed during incubation of OPB-2045 with rat liver S9: 2-octanol (M-1), 3-octanol (M-2), and 4-octanol (M-3). In the incubation of OPB-2045 with dog liver S9, eight metabolites were observed, seven of which being M-1, M-2, M-3, 2-octanone (M-4), threo-2,3-octandiol (M-5), erythro-2,3-octandiol (M-6), and 1,2-octandiol (M-7). M-5 and M-6 were further biotransformed to a ketol derivative and C-C bond cleavage metabolite (hexanoic acid derivative), an in vivo end product, in the incubation with dog liver microsomes. The reactions required NADPH as a cofactor and were significantly inhibited by the various inhibitors of cytochrome P450 (i.e., CO, n-octylamine, SKF 525-A, metyrapone, and alpha-naphthoflavone). The results indicate that the degraded products of OPB-2045 are produced by C-C bond cleavage after monohydroxylation, dihydroxylation, and ketol formation at the site of the octyl side chain with possible involvement of cytochrome P450 systems. This aliphatic C-C bond cleavage by sequential oxidative reactions may play an important role in the metabolism of other drugs or endogenous compounds that possess aliphatic chains.

  10. A metagenome-derived thermostable β-glucanase with an unusual module architecture which defines the new glycoside hydrolase family GH148.

    Science.gov (United States)

    Angelov, Angel; Pham, Vu Thuy Trang; Übelacker, Maria; Brady, Silja; Leis, Benedikt; Pill, Nicole; Brolle, Judith; Mechelke, Matthias; Moerch, Matthias; Henrissat, Bernard; Liebl, Wolfgang

    2017-12-11

    The discovery of novel and robust enzymes for the breakdown of plant biomass bears tremendous potential for the development of sustainable production processes in the rapidly evolving new bioeconomy. By functional screening of a metagenomic library from a volcano soil sample a novel thermostable endo-β-glucanase (EngU) which is unusual with regard to its module architecture and cleavage specificity was identified. Various recombinant EngU variants were characterized. Assignment of EngU to an existing glycoside hydrolase (GH) family was not possible. Two regions of EngU showed weak sequence similarity to proteins of the GH clan GH-A, and acidic residues crucial for catalytic activity of EngU were identified by mutation. Unusual, a carbohydrate-binding module (CBM4) which displayed binding affinity for β-glucan, lichenin and carboxymethyl-cellulose was found as an insertion between these two regions. EngU hydrolyzed β-1,4 linkages in carboxymethyl-cellulose, but displayed its highest activity with mixed linkage (β-1,3-/β-1,4-) glucans such as barley β-glucan and lichenin, where in contrast to characterized lichenases cleavage occurred predominantly at the β-1,3 linkages of C4-substituted glucose residues. EngU and numerous related enzymes with previously unknown function represent a new GH family of biomass-degrading enzymes within the GH-A clan. The name assigned to the new GH family is GH148.

  11. Structure Elucidation of New Acetylated Saponins, Lessoniosides A, B, C, D, and E, and Non-Acetylated Saponins, Lessoniosides F and G, from the Viscera of the Sea Cucumber Holothuria lessoni

    Science.gov (United States)

    Bahrami, Yadollah; Franco, Christopher M. M.

    2015-01-01

    Sea cucumbers produce numerous compounds with a wide range of chemical structural diversity. Among these, saponins are the most diverse and include sulfated, non-sulfated, acetylated and methylated congeners with different aglycone and sugar moieties. In this study, MALDI and ESI tandem mass spectrometry, in the positive ion mode, were used to elucidate the structure of new saponins extracted from the viscera of H. lessoni. Fragmentation of the aglycone provided structural information on the presence of the acetyl group. The presence of the O-acetyl group was confirmed by observing the mass transition of 60 u corresponding to the loss of a molecule of acetic acid. Ion fingerprints from the glycosidic cleavage provided information on the mass of the aglycone (core), and the sequence and type of monosaccharides that constitute the sugar moiety. The tandem mass spectra of the saponin precursor ions [M + Na]+ provided a wealth of detailed structural information on the glycosidic bond cleavages. As a result, and in conjunction with existing literature, we characterized the structure of five new acetylated saponins, Lessoniosides A–E, along with two non-acetylated saponins Lessoniosides F and G at m/z 1477.7, which are promising candidates for future drug development. The presented strategy allows a rapid, reliable and complete analysis of native saponins. PMID:25603350

  12. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach.

    Science.gov (United States)

    Well, Caroline; Frank, Oliver; Hofmann, Thomas

    2013-11-27

    Meeting the rising consumer demand for natural food ingredients, steviol glycosides, the sweet principle of Stevia rebaudiana Bertoni (Bertoni), have recently been approved as food additives in the European Union. As regulatory constraints require sensitive methods to analyze the sweet-tasting steviol glycosides in foods and beverages, a HILIC-MS/MS method was developed enabling the accurate and reliable quantitation of the major steviol glycosides stevioside, rebaudiosides A-F, steviolbioside, rubusoside, and dulcoside A by using the corresponding deuterated 16,17-dihydrosteviol glycosides as suitable internal standards. This quantitation not only enables the analysis of the individual steviol glycosides in foods and beverages but also can support the optimization of breeding and postharvest downstream processing of Stevia plants to produce preferentially sweet and least bitter tasting Stevia extracts.

  13. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates.

    Science.gov (United States)

    Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P

    2017-07-01

    The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation

  14. Recent development of phosphorylases possessing large potential for oligosaccharide synthesis

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Kitaoka, Motomitsu; Svensson, Birte

    2013-01-01

    Phosphorylases are one group of carbohydrate active enzymes involved in the cleavage and formation of glycosidic linkages together with glycoside hydrolases and sugar nucleotide-dependent glycosyltransferases. Noticeably, the catalyzed phosphorolysis is reversible, making phosphorylases suitable...

  15. Synthesis and Sensory Evaluation of ent-Kaurane Diterpene Glycosides

    Directory of Open Access Journals (Sweden)

    Venkata Sai Prakash Chaturvedula

    2012-07-01

    Full Text Available Catalytic hydrogenation of the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana, namely rubusoside, stevioside, and rebaudioside-A has been carried out using Pd(OH2 and their corresponding dihydro derivatives have been isolated as the products. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data and chemical studies. Also, we report herewith the sensory evaluation of all the reduced compounds against their corresponding original steviol glycosides and sucrose for the sweetness property of these molecules.

  16. Variation of quercetin glycoside derivatives in three onion (Allium cepa L. varieties

    Directory of Open Access Journals (Sweden)

    Jung-Ho Kwak

    2017-09-01

    Full Text Available The aim of this study was to quantify the contents of individual quercetin glycosides in red, yellow and chartreuse onion by High Performance Liquid Chromatography (HPLC analysis. Acid hydrolysis of individual quercetin glycosides using 6 M hydrochloric acid guided to identify and separate quercetin 7,4′-diglucoside, quercetin 3-glucoside, quercetin 4′-glucoside, and quercetin. The contents of total quercetin glycosides varied extensively among three varieties (ranged from 16.10 to 103.93 mg/g DW. Quercetin was the predominant compound that accounted mean 32.21 mg/g DW in red onion (43.6% of the total and 127.92 mg/g DW in chartreuse onion (78.3% of the total followed by quercetin 3-glucoside (28.83 and 24.16 mg/g DW respectively. Quercetin 3-glucoside levels were much higher in yellow onion (43.85 mg/g DW followed by quercetin 30.08 mg/g DW. Quercetin 4′-glucoside documented the lowest amount that documented mean 2.4% of the total glycosides. The varied contents of glycosides present in the different onion varieties were significant.

  17. Ultrasonication-Assisted Solvent Extraction of Quercetin Glycosides from ‘Idared’ Apple Peels

    Directory of Open Access Journals (Sweden)

    Gwendolyn M. Huber

    2011-11-01

    Full Text Available Quercetin and quercetin glycosides are physiologically active flavonol molecules that have been attributed numerous health benefits. Recovery of such molecules from plant matrices depends on a variety of factors including polarity of the extraction solvent. Among the solvents of a wide range of dielectric constants, methanol recovered the most quercetin and its glycosides from dehydrated ‘Idared’ apple peels. When ultra-sonication was employed to facilitate the extraction, exposure of 15 min of ultrasound wavelengths of dehydrated apple peel powder in 80% to 100% (v/v methanol in 1:50 (w:v solid to solvent ratio provided the optimum extraction conditions for quercetin and its glycosides. Acidification of extraction solvent with 0.1% (v/v or higher concentrations of HCl led to hydrolysis of naturally occurring quercetin glycosides into the aglycone as an extraction artifact.

  18. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil

    DEFF Research Database (Denmark)

    Johansen, Henrik; Damgaard, Lars Holm; Olsen, Carl Erik

    2007-01-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-b-D-glucoside) produced by sorghum has been studied...

  19. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins.RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes.SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  20. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Cecilia Prata

    2017-01-01

    Full Text Available Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance.

  1. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Science.gov (United States)

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance. PMID:28947927

  2. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry

    OpenAIRE

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R. Ogorzalek; Julian, Ryan R.; Loo, Joseph A.

    2015-01-01

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in comb...

  3. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  4. Microstructure and cleavage in lath martensitic steels

    International Nuclear Information System (INIS)

    Morris, John W Jr; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-01-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  5. Positions of disulfide bonds in rye (Secale cereale) seed chitinase-a.

    Science.gov (United States)

    Yamagami, T; Funatsu, G; Ishiguro, M

    2000-06-01

    The positions of disulfide bonds of rye seed chitinase-a (RSC-a) were identified by the isolation of disulfide-containing peptides produced with enzymatic and/or chemical cleavages of RSC-a, followed by sequencing them. An unequivocal assignment of disulfide bonds in this enzyme was as follows: Cys3-Cysl8, Cys12-Cys24, Cys15-Cys42, Cys17-Cys31, and Cys35-Cys39 in the chitin-binding domain (CB domain), Cys82-Cys144, Cys156-Cys164, and Cys282-Cys295 in the catalytic domain (Cat domain), and Cys263 was a free form.

  6. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter

    2017-01-01

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  7. The influence of stevia glycosides on the growth of Lactobacillus reuteri strains.

    Science.gov (United States)

    Deniņa, I; Semjonovs, P; Fomina, A; Treimane, R; Linde, R

    2014-03-01

    Use of stevia-derived sweeteners was recently officially approved by the European Commission, and their application in the food industry has increased, especially in functional foods. However, there are scarce data about the influence of stevia on probiotic bacteria, which are important both as an inhabitant of the human gut and as a functional food additive. Taking into consideration the broad application of Lactobacillus reuteri in functional foods, the aim of the research was to evaluate the influence of stevia glycosides on its growth. Six Lact. reuteri strains were tested for their ability to grow in the presence of stevioside and rebaudioside A (0·2-2·6 g l(-1) ). The effect of stevia glycosides on biomass concentration, cell count, pH and lactic and acetic acid synthesis was analysed. Both glycosides impaired the growth of analysed strains. However, the inhibitory effect was strain specific, and the concentration-dependent effect was not observed for all parameters. The most pronounced concentration-dependent effect was on lactic and acetic acid production. Taking into account the observed strain-specific inhibitory effect of stevia glycosides, it could be suggested to evaluate the influence of them on each strain employed before their simultaneous application in functional foods. The study showed that the growth of Lactobacillus reuteri strains was inhibited in the presence of stevia sweeteners stevioside and rebaudioside A. Probiotics, for example Lact. reuteri strains, are often used as functional additives in health foods and are an important natural inhabitant of the human gastrointestinal tract. Stevia glycosides application in food is increasing; yet, there are no data about the influence of stevia glycosides on Lact. reuteri growth and very few data on growth of other lactobacilli, either in probiotic foods or in the gastrointestinal tract. This research shows that it is necessary to evaluate the influence of stevia glycosides on other groups

  8. Zinc mediated activation of terminal alkynes: stereoselective synthesis of alkynyl glycosides.

    Science.gov (United States)

    Tatina, Madhu Babu; Kusunuru, Anil Kumar; Yousuf, Syed Khalid; Mukherjee, Debaraj

    2014-10-28

    Zinc mediated alkynylation reaction was studied for the preparation of C-glycosides from unactivated alkynes. Different glycosyl donors such as glycals and anomeric acetates were tested towards an alkynyl zinc reagent obtained from alkynes using zinc dust and ethyl bromoacetate as an additive. The method provides simple, mild and stereoselective access to alkynyl glycosides both from aromatic and aliphatic acetylenes.

  9. Modeling and inferring cleavage patterns in proliferating epithelia.

    Directory of Open Access Journals (Sweden)

    Ankit B Patel

    2009-06-01

    Full Text Available The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage plane. Our findings show that cleavage patterns generate "signature" equilibrium distributions of polygonal cell shapes. These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore, we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental evidence suggests that indeed plants and fruitflies use distinct division mechanisms.

  10. Rh(III)-Catalyzed Synthesis of N-Unprotected Indoles from Imidamides and Diazo Ketoesters via C-H Activation and C-C/C-N Bond Cleavage.

    Science.gov (United States)

    Qi, Zisong; Yu, Songjie; Li, Xingwei

    2016-02-19

    The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed.

  11. NMR Characterization of Flavanone Naringenin 7-O-Glycoside Diastereomer

    Directory of Open Access Journals (Sweden)

    SUN Li-juan

    2017-12-01

    Full Text Available To discriminate R and S flavanone glycoside using NMR, the mixture of R and S naringenin 7-O-glycoside was first isolated from Gleditsia sinensis. 1H and 13C NMR data of the mixture were recorded with 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC in DMSO-d6 solution. The two diastereomers were then separated with chiral chromatographic isolation, with their absolute configurations determined by circular dichroism. To avoid the disturbance of protons from glucose residues to dihydroflavonoid, 1H NMR spectra were acquired for pure R and S naringenin 7-O-glycoside and their mixture in CD3CN. The two diastereomers showed the largest proton chemical shift differences at the end group of glucose residue (H-1" with a chemical shift difference of 9.4 Hz. The OH-5 proton showed a chemical shift difference of 5.8 Hz. The chemical shift of the three protons on ring C were all influenced by configuration.

  12. Bond selective photochemistry in CH2BrI through electronic excitation at 210 nm

    International Nuclear Information System (INIS)

    Butler, L.J.; Hintsa, E.J.; Lee, Y.T.

    1986-01-01

    To explore the possibility of bond selective photochemistry in an excited electronic state, we have studied the photolysis of CH 2 BrI in a molecular beam at 210 nm. Following the direct local excitation of a repulsive transition on the C--Br bond at 210 nm, the fragments were detected by time-of-flight mass spectrometry. The dominant channel was found to be C--Br fission (60%) releasing an average of 15 kcal/mol into translation with the remainder reacting to form CH 2 +IBr and CH 2 +I+Br. There was no evidence for the primary fission of the C--I bond, making this the first clear example of the selective cleavage of a stronger bond in a molecule over the weakest one

  13. 1-O-vinyl glycosides via Tebbe olefination, their use as chiral auxiliaries and monomers.

    Science.gov (United States)

    Yuan, Jialong; Lindner, Kristof; Frauenrath, Holger

    2006-07-21

    A series of anomerically pure 1-O-formyl glycosides 1 was prepared and converted into the corresponding 1-O-vinyl glycosides 2 by Tebbe olefination. The unsubstituted vinyl glycosides were obtained as anomerically pure compounds in good yields, and the method of preparation was compatible with the presence of a variety of functional groups. Remarkably, the anomeric formate group was regioselectively converted into the corresponding olefin in the presence of acetate and benzoate protecting groups. With the perspective to use the 1-O-vinyl glycosides as monomers for the preparation of glycosylated poly(vinyl alcohol) derivatives with controlled tacticity, their scope as chiral auxiliaries for a stereodifferentiation in addition reactions to the olefin function was investigated by using the [2+2] cycloaddition to dichloroketene as a model reaction. In particular, vinyl 2,3,4,6-tetra-O-benzoyl-alpha-d-mannopyranoside (2i) exhibited excellent diastereoselectivity. Finally, the 1-O-vinyl glycosides were successfully subjected to radical homopolymerization in bulk or used as electron-rich comonomers in radical copolymerizations with maleic anhydride, yielding alternating, glycosylated poly(vinyl alcohol-alt-maleic anhydride).

  14. Intermolecular cleavage by UmuD-like mutagenesis proteins

    Science.gov (United States)

    McDonald, John P.; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger

    1998-01-01

    The activity of a number of proteins is regulated by self-processing reactions. Elegant examples are the cleavage of the prokaryotic LexA and λCI transcriptional repressors and the UmuD-like mutagenesis proteins. Various studies support the hypothesis that LexA and λCI cleavage reactions are predominantly intramolecular in nature. The recently described crystal structure of the Escherichia coli UmuD′ protein (the posttranslational cleavage product of the UmuD protein) suggests, however, that the region of the protein corresponding to the cleavage site is at least 50 Å away from the catalytic active site. We considered the possibility, therefore, that the UmuD-like proteins might undergo self-processing that, in contrast to LexA and λCI, occurs via an intermolecular rather than intramolecular reaction. To test this hypothesis, we introduced into E. coli compatible plasmids with mutations at either the cleavage or the catalytic site of three UmuD-like proteins. Cleavage of these proteins only occurs in the presence of both plasmids, indicating that the reaction is indeed intermolecular in nature. Furthermore, this intermolecular reaction is completely dependent upon the multifunctional RecA protein and leads to the restoration of cellular mutagenesis in nonmutable E. coli strains. Intermolecular cleavage of a biotinylated UmuD active site mutant was also observed in vitro in the presence of the wild-type UmuD′ protein, indicating that in addition to the intact UmuD protein, the normal cleavage product (UmuD′) can also act as a classical enzyme. PMID:9465040

  15. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase

    DEFF Research Database (Denmark)

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide

    2005-01-01

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1...... translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products...

  16. A general synthesis of C8-arylpurine phosphoramidites.

    Science.gov (United States)

    Vongsutilers, Vorasit; Daft, Jonathan R; Shaughnessy, Kevin H; Gannett, Peter M

    2009-09-02

    A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2'-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.

  17. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.

    Science.gov (United States)

    Warashina, Tsutomu; Shikata, Kimiko; Miyase, Toshio; Fujii, Satoshi; Noro, Tadataka

    2008-08-01

    Three new cardenolide glycosides and six new acylated lignan glycosides were obtained along with nineteen known compounds from the aerial parts of Asclepias curassavica L. (Asclepiadaceae). The structure of each compound was determined based on interpretations of NMR and MS measurements and chemical evidence.

  18. 8,14-Secopregnane glycosides from the aerial parts of Asclepias tuberosa.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2009-07-01

    Twenty pregnane glycosides, tuberoside A(1)-L(5), were isolated from the diethyl ether-soluble fraction of the MeOH extract from the aerial parts of Asclepias tuberosa (Asclepiadaceae). The pregnane glycosides were composed of 8,12;8,20-diepoxy-8,14-secopregnane as aglycon, and D-cymarose, D-oleandrose, D-digitoxose and/or D-glucose as the component sugars. Their structures were established using NMR spectroscopic analysis and chemical methodologies.

  19. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis.

    Directory of Open Access Journals (Sweden)

    Andrea Perne

    2009-12-01

    Full Text Available Cardiac glycosides are Na(+/K(+-pump inhibitors widely used to treat heart failure. They are also highly cytotoxic, and studies have suggested specific anti-tumor activity leading to current clinical trials in cancer patients. However, a definitive demonstration of this putative anti-cancer activity and the underlying molecular mechanism has remained elusive.Using an unbiased transcriptomics approach, we found that cardiac glycosides inhibit general protein synthesis. Protein synthesis inhibition and cytotoxicity were not specific for cancer cells as they were observed in both primary and cancer cell lines. These effects were dependent on the Na(+/K(+-pump as they were rescued by expression of a cardiac glycoside-resistant Na(+/K(+-pump. Unlike human cells, rodent cells are largely resistant to cardiac glycosides in vitro and mice were found to tolerate extremely high levels.The physiological difference between human and mouse explains the previously observed sensitivity of human cancer cells in mouse xenograft experiments. Thus, published mouse xenograft models used to support anti-tumor activity for these drugs require reevaluation. Our finding that cardiac glycosides inhibit protein synthesis provides a mechanism for the cytotoxicity of CGs and raises concerns about ongoing clinical trials to test CGs as anti-cancer agents in humans.

  20. Use of qNMR for speciation of flaxseeds (Linum usitatissimum) and quantification of cyanogenic glycosides.

    Science.gov (United States)

    Roulard, Romain; Fontaine, Jean-Xavier; Jamali, Arash; Cailleu, Dominique; Tavernier, Reynald; Guillot, Xavier; Rhazi, Larbi; Petit, Emmanuel; Molinie, Roland; Mesnard, François

    2017-12-01

    This report describes a routine method taking less than 20 min to quantify cyanogenic glycosides such as linustatin and neolinustatin from flaxseeds (Linum usitatissimum L.) using 1 H nuclear magnetic resonance. After manual dehulling, a higher linustatin content was shown in the almond fraction, while neolinustatin and total cyanogenic glycoside contents were significantly higher in hulls. Linustatin and neolinustatin were quantified in seven cultivars grown in two locations in three different years. Linustatin, neolinustatin, and total cyanogenic glycosides ranged between 91 and 267 mg/100 g, 78-272 mg/100 g, and 198-513 mg/100 g dry weight flaxseeds, respectively. NMR revealed differences of up to 70% between samples with standard deviation variations lower than 6%. This study shows that NMR is a very suitable tool to perform flaxseed varietal selection for the cyanogenic glycoside content. Graphical abstract qNMR can be used to perform flaxseed varietal selection for the cyanogenic glycoside content.

  1. Biodesulfurization of Naphthothiophene and Benzothiophene through Selective Cleavage of Carbon-Sulfur Bonds by Rhodococcus sp. Strain WU-K2R

    Science.gov (United States)

    Kirimura, Kohtaro; Furuya, Toshiki; Sato, Rika; Ishii, Yoshitaka; Kino, Kuniki; Usami, Shoji

    2002-01-01

    Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 mM NTH within 7 days. WU-K2R could also grow in the medium with NTH sulfone, benzothiophene (BTH), 3-methyl-BTH, or 5-methyl-BTH as the sole source of sulfur but could not utilize DBT, DBT sulfone, or 4,6-dimethyl-DBT. On the other hand, WU-K2R did not utilize NTH or BTH as the sole source of carbon. By gas chromatography-mass spectrometry analysis, desulfurized NTH metabolites were identified as NTH sulfone, 2′-hydroxynaphthylethene, and naphtho[2,1-b]furan. Moreover, since desulfurized BTH metabolites were identified as BTH sulfone, benzo[c][1,2]oxathiin S-oxide, benzo[c][1,2]oxathiin S,S-dioxide, o-hydroxystyrene, 2-(2′-hydroxyphenyl)ethan-1-al, and benzofuran, it was concluded that WU-K2R desulfurized NTH and BTH through the sulfur-specific degradation pathways with the selective cleavage of carbon-sulfur bonds. Therefore, Rhodococcus sp. strain WU-K2R, which could preferentially desulfurize asymmetric heterocyclic sulfur compounds such as NTH and BTH through the sulfur-specific degradation pathways, is a unique desulfurizing biocatalyst showing properties different from those of DBT-desulfurizing bacteria. PMID:12147483

  2. Structure Elucidation of New Acetylated Saponins, Lessoniosides A, B, C, D, and E, and Non-Acetylated Saponins, Lessoniosides F and G, from the Viscera of the Sea Cucumber Holothuria lessoni

    Directory of Open Access Journals (Sweden)

    Yadollah Bahrami

    2015-01-01

    Full Text Available Sea cucumbers produce numerous compounds with a wide range of chemical structural diversity. Among these, saponins are the most diverse and include sulfated, non-sulfated, acetylated and methylated congeners with different aglycone and sugar moieties. In this study, MALDI and ESI tandem mass spectrometry, in the positive ion mode, were used to elucidate the structure of new saponins extracted from the viscera of H. lessoni. Fragmentation of the aglycone provided structural information on the presence of the acetyl group. The presence of the O-acetyl group was confirmed by observing the mass transition of 60 u corresponding to the loss of a molecule of acetic acid. Ion fingerprints from the glycosidic cleavage provided information on the mass of the aglycone (core, and the sequence and type of monosaccharides that constitute the sugar moiety. The tandem mass spectra of the saponin precursor ions [M + Na]+ provided a wealth of detailed structural information on the glycosidic bond cleavages. As a result, and in conjunction with existing literature, we characterized the structure of five new acetylated saponins, Lessoniosides A–E, along with two non-acetylated saponins Lessoniosides F and G at m/z 1477.7, which are promising candidates for future drug development. The presented strategy allows a rapid, reliable and complete analysis of native saponins.

  3. Kaempferol 3,7,4'-glycosides from the flowers of Clematis cultivars.

    Science.gov (United States)

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2013-08-01

    A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7,4'-di-O-beta-glucopyranoside (1) was isolated from the flowers of Clematis cultivars "Jackmanii Superba" and "Fujimusume", together with the known compound kaempferol 3,7,4'-tri-O-beta-glucopyranoside (2). The chemical structures of the isolated kaemferol glycosides were established by UV, 1H and 13C NMR spectroscopy, LC-MS, and characterization of acid hydrolysates.

  4. Identification of a flavonoid C-glycoside as potent antioxidant.

    Science.gov (United States)

    Wen, Lingrong; Zhao, Yupeng; Jiang, Yueming; Yu, Limei; Zeng, Xiaofang; Yang, Jiali; Tian, Miaomiao; Liu, Huiling; Yang, Bao

    2017-09-01

    Flavonoids have been documented to have good antioxidant activities in vitro. However, reports on the cellular antioxidant activities of flavonoid C-glycosides are very limited. In this work, an apigenin C-glycoside was purified from Artocarpus heterophyllus by column chromatography and was identified to be 2″-O-β-D-xylosylvitexin by nuclear magnetic resonance spectroscopy. The cellular antioxidant activity and anticancer activity of 2″-O-β-D-xylosylvitexin were evaluated for the first time. The quantitative structure-activity relationship was analysed by molecular modeling. Apigenin presented an unexpected cellular antioxidation behaviour. It had an antioxidant activity at low concentration and a prooxidant activity at high concentration, whereas 2″-O-β-D-xylosylvitexin showed a dose-dependent cellular antioxidant activity. It indicated that C-glycosidation improved the cellular antioxidation performance of apigenin and eliminated the prooxidant effect. The ortho-dihydroxyl at C-3'/C-4' and C-3 hydroxyl in the flavonoid skeleton play important roles in the antioxidation behaviour. The cell proliferation assay revealed a low cytotoxicity of 2″-O-β-D-xylosylvitexin. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. FURTHER FLAVONOL GLYCOSIDES OF EMBELIA SCHIMPERI ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Fractionation of the methanolic extract of Embelia schimperi leaves has led to the isolation of two novel flavonol glycosides. The compounds were characterized as isorhamnetin 3-O- β-galactoysyl (1→ 4)-β-galactoside and quercetin 3-O-[α-rhamnosyl (1→2)] [α-rhamnosyl (1→ 4)]-α- rhamnoside. Also reported ...

  6. Cytotoxic cardiac glycosides and other compounds from Asclepias syriaca.

    Science.gov (United States)

    Araya, Juan J; Kindscher, Kelly; Timmermann, Barbara N

    2012-03-23

    Phytochemical investigation of the dried biomass of Asclepias syriaca afforded five new compounds (1-5), along with 19 known structures. Overall, the secondary metabolites isolated and identified from this plant showed a wide structural diversity including pentacyclic triterpenes, cardiac glycosides, flavonoid glycosides, lignans, a phenylethanoid, and a glycosylated megastigmane. In addition, the isolates were tested against the cancer breast cell line Hs578T, and those showing IC(50) values lower than 50 μM (1 and 6-9) were further investigated in three additional breast cancer cell lines (MCF-7, T47D, and Sk-Br-3) and the normal breast cell line Hs578Bst.

  7. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC).

    Science.gov (United States)

    Zhu, Yindi; Liu, Yue; Zhan, Ying; Liu, Lin; Xu, Yajuan; Xu, Tunhai; Liu, Tonghua

    2013-12-16

    Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane-ethyl acetate-methanol-water (0.7:4:0.8:4, v/v/v/v) was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg), isoquercitrin (21.1 mg), reynoutrin (65.2 mg), quercetin-3-O-β-D-arabinopyranoside (71.7 mg), quercetin-3-O-α-L-arabinofuranoside (105.6 mg) and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-β-D-glucopyranoside (98.4 mg) were separated from crude sample (19.8 g). The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95%) were determined using HPLC.

  8. Preparative Isolation and Purification of Five Flavonoid Glycosides and One Benzophenone Galloyl Glycoside from Psidium guajava by High-Speed Counter-Current Chromatography (HSCCC

    Directory of Open Access Journals (Sweden)

    Yindi Zhu

    2013-12-01

    Full Text Available Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane–ethyl acetate–methanol–water (0.7:4:0.8:4, v/v/v/v was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg, isoquercitrin (21.1 mg, reynoutrin (65.2 mg, quercetin-3-O-β-D-arabinopyranoside (71.7 mg, quercetin-3-O-α-L-arabinofuranoside (105.6 mg and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl-β-D-glucopyranoside (98.4 mg were separated from crude sample (19.8 g. The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95% were determined using HPLC.

  9. Glycoside hydrolases having multiple hydrolase activities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A

    2017-08-08

    Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.

  10. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...

  11. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  12. Extraction, radiolabeling and in vivo biological evaluation of {sup 131}I labeled egonol glycosides extract

    Energy Technology Data Exchange (ETDEWEB)

    Akguel, Yurdanur; Pazar, Erdinc [Ege Univ., Izmir (Turkey). Chemistry Dept.; Yilmaz, Habibe; Sanlier, Senay Hamarat [Ege Univ., Izmir (Turkey). Biochemistry Dept.; Lambrecht, Fatma Yurt [Ege Univ., Izmir (Turkey). Dept. of Nuclear Applications; Yilmaz, Osman [Dokuz Eyluel Univ., Izmir (Turkey). Dept. of Lab. Animal Science

    2015-09-01

    Crude extract of S. officinalis L. was found to have suspending agent, hemolytic, antitumor, antioxidant and antimicrobial activities. Its major components benzofurans and benzofuran glycosides have antifungal, anticancer, antibacterial and anticomplement activities and display acetylcholinesterase-cyclooxygenase inhibitory and cytotoxic properties. Recently, it has been reported that egonolgentiobioside is a valuable target for structural modification and warrants further investigation for its potential as a novel pharmaceutical tool for the prevention of estrogen deficiency induced diseases. The aim of the current study is to perform in vivo biological evaluation of a glycosides extract, which was isolated from the fruits endocarp of Styrax officinalis L, identified as egonolgentiobioside and homoegonolgentiobioside and labeled with {sup 131}I. The radiolabeled glycosides extract was labeled with {sup 131}I with high yield. The labeled obtained radiolabeled compound was found to be quite stable and lipophilic. In order to determine its tissue distribution, an in vivo study was performed using healthy female Albino Wistar rats injected by {sup 131}I-glycosides. The biodistribution results showed that clearance of the radiolabeled compound is through the hepatobiliary pathway. The experimental study indicated that the radiolabeled glycosides extract accumulated in the large intestine. Therefore, the potential of {sup 131}I-glycosides might be evaluated in colon cancer cell lines and this might be a promising of tumor-imaging agent.

  13. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.).

    Science.gov (United States)

    Mayorga, H; Knapp, H; Winterhalter, P; Duque, C

    2001-04-01

    The bound volatile fraction of cape gooseberry (Physalis peruviana L.) fruit harvested in Colombia has been examined by HRGC and HRGC-MS after enzymatic hydrolysis using a nonselective pectinase (Rohapect D5L). Forty bound volatiles could be identified, with 21 of them being reported for the first time in cape gooseberry. After preparative isolation of the glycosidic precursors on XAD-2 resin, purification by multilayer coil countercurrent chromatography and HPLC of the peracetylated glycosides were carried out. Structure elucidation by NMR, ESI-MS/MS, and optical rotation enabled the identification of (1S,2S)-1-phenylpropane-1,2-diol 2-O-beta-D-glucopyranoside (1) and p-menth-4(8)-ene-1,2-diol 1-O-alpha-L-arabinopyranosyl-(1-6)-beta-D-glucopyranoside (2). Both glycosides have been identified for the first time in nature. They could be considered as immediate precursors of 1-phenylpropane-1,2-diol and p-menth-4(8)-ene-1,2-diol, typical volatiles found in the fruit of cape gooseberry.

  14. Quantification of DNA cleavage specificity in Hi-C experiments.

    Science.gov (United States)

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. A remote but significant sequence homology between glycoside hydrolase clan GH-H and glycoside hydrolase family GH 31

    DEFF Research Database (Denmark)

    Janecek, S.; Svensson, Birte; MacGregor, E.A.

    2007-01-01

    Although both the α-amylase super-family, i.e. the glycoside hydrolase (GH) clan GH-H (the GH families 13, 70 and 77), and family GH31 share some characteristics, their different catalytic machinery prevents classification of GH31 in clan GH-H. A significant but remote evolutionary relatedness is...

  16. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  17. New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum.

    Science.gov (United States)

    Masuoka, Chikako; Ono, Masateru; Ito, Yasuyuki; Okawa, Masafumi; Nohara, Toshihiro

    2002-10-01

    A new megastigmane glycoside, called pipeloside A, and a new aromadendrane type sesquiterpenoid, pipelol A, were isolated from the MeOH extract of the aerial part of Piper elongatum VAHL. along with a known megastigmane glycoside, byzantionoside B. The structures of these compounds were elucidated on the basis of spectroscopic data and chemical evidence.

  18. Characterization and engineering of thermostable glycoside hydrolases

    NARCIS (Netherlands)

    Lieshout, van J.F.T.

    2007-01-01

    Glycosidehydrolasesform a class of enzymes that play an important role in sugar-converting processes. They are applied as biocatalyst in both the hydrolysis of natural polymers to mono- andoligo-saccharides, and the reverse hydrolysis or

  19. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

    International Nuclear Information System (INIS)

    Kubas, G.J.; Eckert, J.; Luo, X.L.

    1997-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H 2 ) binding to metals. Studies of these unique sigma complexes (M hor-ellipsis H-Y; Y double-bond H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H 2 , silanes, and halocarbons. The first metal-SiH 4 complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found

  20. A New ent-Kaurane Glycoside from the Stems of Acanthopanax gracilistylus

    Institute of Scientific and Technical Information of China (English)

    XIAN Li-na; QIAN Shi-hui

    2010-01-01

    Objective To study the chemical constituents from the stems of Acanthopanax gracilistylus.Methods Thechemical constituents of the plant were isolated and puried by column chromatography and their structures wereelucidated on the basis of physicochemical properties and spectral data.Results A new ent-kaurane glycoside,named kaurane acid glycoside A { 16α,17-dihydroxy-ent-kauran-19-oic 19-[β-D-glucopyranosyl-(1→2)-β-Dglucopyranosyl]ester}(1),was isolated from the n-butanol part.Conclusion Compound 1 is a new one.

  1. Cleavage events and sperm dynamics in chick intrauterine embryos.

    Directory of Open Access Journals (Sweden)

    Hyung Chul Lee

    Full Text Available This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.

  2. Preparation of fluorescence quenched libraries containing interchain disulphide bonds for studies of protein disulphide isomerases

    DEFF Research Database (Denmark)

    Spetzler, J C; Westphal, V; Winther, Jakob R.

    1998-01-01

    Protein disulphide isomerase is an enzyme that catalyses disulphide redox reactions in proteins. In this paper, fluorogenic and interchain disulphide bond containing peptide libraries and suitable substrates, useful in the study of protein disulphide isomerase, are described. In order to establish...... the quenching chromophore (Tyr(NO2)) and Cys(pNpys) activated for reaction with a second thiol. The formation and cleavage of the interchain disulphide bonds in the library were monitored under a fluorescence microscope. Substrates to investigate the properties of protein disulphide isomerase in solution were...

  3. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Á ngela L.; Beyer, Peter D.; Gó mez-Gó mez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  4. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah

    2014-08-05

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  5. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    Science.gov (United States)

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. In vivo analysis of the Notch receptor S1 cleavage.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2009-08-01

    Full Text Available A ligand-independent cleavage (S1 in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control.

  7. Radiation-induced cleavage of disulfide bonds in proteins. Clivage radiolytique des ponts disulfure des proteines

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V; Tourbez, H; Lhoste, J M [Paris-11 Univ., 91 - Orsay (FR); Houee-Levin, C [Paris-5 Univ., 75 (FR)

    1991-06-01

    The reduction of the disulfide bonds in apo-Riboflavin-Binding Protein (apoRBP) by the CO{sub 2}{sup -}{center dot} radical occurred under {gamma}-ray irradiation as a chain reaction whose efficiency increased upon acidification of the medium. Pulse-radiolysis analysis showed a rapid one-electron oxidation of the disulfide bonds yielding the anionic or protonated form of the disulfide radical. The main decay path of this radical under acidic conditions consisted of the rapid formation of a thiyl radical intermediate in equilibrium with the closed, cyclic form. At pH 8 the disulfide radical anion decayed via intramolecular and/or intermolecular routes including disproportionation, protein-protein crosslinking, non-dismutative recombination processes, and reaction with sulfhydryl groups in pre-reduced systems.

  8. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    Science.gov (United States)

    Su, Xiaoyun; Zhang, Jing; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  9. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Su

    Full Text Available The glycoside hydrolases (GH of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  10. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  11. Iridoid glycoside biosynthesis in Penstemon secundiflorus. Another H-5, H-9 trans iridoid glycoside

    DEFF Research Database (Denmark)

    Krull, Robert E.; Stermitz, Frank R.; Franzyk, Henrik

    1998-01-01

    Isolation and characterization of the new iridoid 10-hydroxy-(5 alpha H)-6-epidihydrocornin from Penstemon secundiflorus (Scrophulariaceae) is described. In biosynthetic experiments, deoxyloganic acid was incorporated into the transfused iridoid glycosides (5 alpha H)-6-epidihydrocornin and 10-hy......-hydroxy-(5 alpha H)-6-epidihydrocornin in P. secundiflorus. Formation of the trans-fused compounds is therefore a late event in the biosynthesis and does not occur during iridoid formation by cyclization of the open chain monoterpene precursor. In the same plant, 8-epideoxyloganic acid...

  12. Non-targeted glycosidic profiling of international wines using neutral loss-high resolution mass spectrometry.

    Science.gov (United States)

    Barnaba, C; Dellacassa, E; Nicolini, G; Nardin, T; Serra, M; Larcher, R

    2018-07-06

    Many metabolites naturally occur as glycosides, since sugar moieties can be crucial for their biological activity and increase their water solubility. In the plant kingdom they may occur as glycosides or sugar esters, depending on precursor chemical structure, and in wine they have traditionally attracted attention due to their organoleptic properties, such as astringency and bitterness, and because they affect the colour and aroma of wines. A new approach directed at detailed description of glycosides in a large selection of monovarietal wines (8 samples each of Pinot Blanc, Muller Thurgau, Riesling, Traminer, Merlot, Pinot Noir and Cabernet Sauvignon) was developed by combining high performance liquid chromatography with high resolution tandem mass spectrometry. Analytical separation was performed on an Accucore™ Polar Premium LC column, while mass analysis was performed in negative ion mode with an non-targeted screening approach, using a Full MS/AIF/NL dd-MS 2 experiment at a resolving power of 140,000 FWHM. Over 280 glycoside-like compounds were detected, of which 133 (including low-molecular weight phenols, flavonoids and monoterpenols) were tentatively identified in the form of pentose (6), deoxyhexose (17), hexose (73), hexose-pentose (16), hexose-deoxyhexose (7), dihexose (5) and hexose ester (9) derivatives. It was not possible to univocally define the corresponding chemical structure for the remaining 149 glycosides. Non-parametric statistical analysis showed it was possible to well characterise the glycosylated profile of all red and Traminer wines, while the identified glycosides were almost entirely lacking in Pinot Blanc, Riesling and Muller Thurgau wines. Also Tukey's Honestly Significant Difference test (p wines from each other according to their glycosylated profile. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. In vitro measurement of beta-carotene cleavage activity : methodological considerations and the effect of other carotenoids on beta-carotene cleavage

    NARCIS (Netherlands)

    Vliet, T. van; Schaik, F. van; Schreurs, W.H.P.; Berg, H. van den

    1996-01-01

    In view of controversies about assessment of the β-carotene cleavage activity, methodological aspects and problems of the dioxygenase assay are described. Using rat and hamster intestinal preparations the method was optimized on retinal formation, the only cleavage product we could demonstrate. It

  14. Size effects and strain localization in atomic-scale cleavage modeling

    International Nuclear Information System (INIS)

    Elsner, B A M; Müller, S

    2015-01-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics. (paper)

  15. Pharmacological treatment of cardiac glycoside poisoning

    OpenAIRE

    Roberts, Darren M.; Gallapatthy, Gamini; Dunuwille, Asunga; Chan, Betty S.

    2015-01-01

    Cardiac glycosides are an important cause of poisoning, reflecting their widespread clinical usage and presence in natural sources. Poisoning can manifest as varying degrees of toxicity. Predominant clinical features include gastrointestinal signs, bradycardia and heart block. Death occurs from ventricular fibrillation or tachycardia. A wide range of treatments have been used, the more common including activated charcoal, atropine, ??adrenoceptor agonists, temporary pacing, anti?digoxin Fab a...

  16. A New Flavone C-Glycoside from Gentiana lutea

    OpenAIRE

    Sachiko, Yamada; Rie, Kakuda; Yasunori, Yaoita; Masao, Kikuchi; Tohoku Pharmaceutical University; Tohoku Pharmaceutical University; Tohoku Pharmaceutical University; Tohoku Pharmaceutical University

    2005-01-01

    A new flavone C-glycoside, 6"-O-β-D-xylopyranosylisosaponarin (1), was isolated, together with four known compounds from the rhizomes and roots of Gentiana lutea. The structure of the new compound was elucidated on the basis of spectral data.

  17. Benzofuran Glycosides from Styrax Benzoin

    International Nuclear Information System (INIS)

    Hasliza Yusof; Laily Din; Wan Ahmad Yaacob

    2014-01-01

    Separation of methanol extracts of the fruits and stem bark of Styrax benzoin using various chromatography (vacuum liquid chromatography, column chromatography and preparative thin layer chromatography) gave four benzofuran glycosides namely egonol gentiobioside (1), egonol gentiotrioside (2), egonol glucoside (3) and masutakeside (4). The compounds were identified by spectroscopic analysis (NMR, mass and infra-red spectral data) and by comparison of the data with that of the literature. Isolation of compounds from this plant has never been reported before. (author)

  18. A General Synthesis of C8-Arylpurine Phosphoramidites

    Directory of Open Access Journals (Sweden)

    Vorasit Vongsutilers

    2009-09-01

    Full Text Available A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2′-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.

  19. Trends in Strong Chemical Bonding in C2, CN, CN-, CO, N2, NO, NO+, and O2

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    The strong chemical bonds between C, N, and O play a central role in chemistry, and their formation and cleavage are critical steps in very many catalytic processes. The close-lying molecular orbital energies and large correlation effects pose a challenge to electronic structure calculations and ...

  20. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    Science.gov (United States)

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  1. Pripper: prediction of caspase cleavage sites from whole proteomes

    Directory of Open Access Journals (Sweden)

    Salmi Jussi

    2010-06-01

    Full Text Available Abstract Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for

  2. Profiling of iridoid glycosides in Vaccinium species by UHPLC-MS.

    Science.gov (United States)

    Heffels, Peter; Müller, Laura; Schieber, Andreas; Weber, Fabian

    2017-10-01

    The iridoid profile of four Vaccinium species was investigated using UHPLC-MS to obtain further information about this group of species for phytochemical characterization. Fruits of bog bilberry (Vaccinium uliginosum L.) showed 14 different iridoid glycosides with a total amount of 20mg/kg fresh weight (FW), whereas bilberry (Vaccinium myrtillus L.) contained 11 iridoid glycosides and a total amount of 127mg/kg FW. Highbush blueberry (Vaccinium corymbosum L.) and lowbush blueberry (Vaccinium angustifolium L.) contained none of the investigated iridoid glycosides. Among the different iridoids, the isomers scandoside and deacetylasperulosidic acid as well as a dihydro derivative thereof were described for the first time in the Ericaceae family. The p-coumaroyl isomers of scandoside, deacetylasperulosidic acid and dihydromonotropein are reported for the first time in V. myrtillus and V. uliginosum. Monotropein and its p-coumaroyl isomers were found for the first time in V. uliginosum. The comparison of iridoid profiles in bilberry fruit and juice samples revealed constant proportions throughout the juice processing. Quantification and profile determination of iridoids may be used for species differentiation and thus for authentication purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A new withanolide glycoside from physalis peruviana

    Science.gov (United States)

    Ahmad; Malik; Afza; Yasmin

    1999-03-01

    A new withanolide glycoside, 17beta-hydroxy-14, 20-epoxy-1-oxo-[22R]-3beta-[O-beta-D-glucopyranosyl]-witha-5, 24-dienolide (1), has been isolated from the whole plant of Physalis peruviana. Its identity was determined using a combination of spectroscopic data including 2D NMR techniques and chemical transformations.

  4. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Merson, E.; Kudrya, A.V.; Trachenko, V.A.; Merson, D.; Danilov, V.; Vinogradov, A.

    2016-01-01

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  5. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merson, E. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Kudrya, A.V.; Trachenko, V.A. [Department of Physical Metallurgy and the Physics of Strength, NUST MISiS, Moscow 119490 (Russian Federation); Merson, D. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Laboratory for Advanced Materials, Kazan Federal University, Naberezhnye Chelny 423812, Republic of Tatarstan (Russian Federation); Danilov, V. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Vinogradov, A. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Department of Engineering Design and Materials, Norwegian University of Science and Technology – NTNU, N-7491 Trondheim (Norway)

    2016-05-17

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  6. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry.

    Science.gov (United States)

    Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M

    2017-08-15

    The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.

  7. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    OpenAIRE

    Antunes-Ricardo, Marilena; Guti?rrez-Uribe, Janet A.; Mart?nez-Vitela, Carlos; Serna-Sald?var, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on d...

  8. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    Science.gov (United States)

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  9. Brominated Oxylipins and Oxylipin Glycosides from Red Sea Corals

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dembitsk, V. M.

    - (2003), s. 309-316 ISSN 1434-193X Institutional research plan: CEZ:AV0Z5020903 Keywords : glycosides * natural products * oxylipins Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2003

  10. Cleavage and synthesis function of high and low redox potential laccases towards 4-morpholinoaniline and aminated as well as chlorinated phenols.

    Science.gov (United States)

    Hahn, Veronika; Mikolasch, Annett; Schauer, Frieder

    2014-02-01

    Laccases are able to mediate both cleavage and synthesis processes. The basis for this dual reaction capability lies in the property of the enzyme laccase to oxidize phenolic, and to some extent non-phenolic substances, to reactive radicals which can undergo on the one hand separations of small substitutents or large molecule parts from the parent compound and on the other hand coupling reactions with other radicals or molecules which are not themselves oxidizable by laccase. The cleavage of the non-phenolic compound 4-morpholinoaniline as well as the deamination of 4-aminophenol and the dechlorination of 4-chlorophenol resulted in the formation of 1,4-hydroquinone which is immediately oxidized by laccase to 1,4-benzoquinone. The formation of the 1,4-hydroquinone/1,4-benzoquinone is the rate limiting step for the synthesis of the heteromolecular dimers and trimers composed of 1,4-benzoquinone and one or two molecules of morpholine. In addition to the synthesis of new compounds from the cleavage products, 4-morpholinoaniline polymerized probably via azo groups and C-N bonds to a homomolecular dimer and trimer. Similarities and differences in cleavage and synthesis reactions catalyzed by the low redox potential laccase of Myceliophthora thermophila (0.46 V) and the high redox potential laccase of Pycnoporus cinnabarinus (0.79 V) were determined. In addition, the dependency of the cleavage and synthesis efficiencies on the (a) structure and redox potential of the laccase, (b) structure and redox potential of the substrate, (c) pH value of the buffer used, (d) incubation temperature, (e) solvent concentration, and (f) laccase activity is discussed in general.

  11. Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure.

    Science.gov (United States)

    Pluvinage, Benjamin; Fillo, Alexander; Massel, Patricia; Boraston, Alisdair B

    2017-09-05

    Family 81 glycoside hydrolases (GHs), which are known to cleave β-1,3-glucans, are found in archaea, bacteria, eukaryotes, and viruses. Here we examine the structural and functional features of the GH81 catalytic module, BhGH81, from the Bacillus halodurans protein BH0236 to probe the molecular basis of β-1,3-glucan recognition and cleavage. BhGH81 displayed activity on laminarin, curdlan, and pachyman, but not scleroglucan; the enzyme also cleaved β-1,3-glucooligosaccharides as small as β-1,3-glucotriose. The crystal structures of BhGH81 in complex with various β-1,3-glucooligosaccharides revealed distorted sugars in the -1 catalytic subsite and an arrangement consistent with an inverting catalytic mechanism having a proposed conformational itinerary of 2 S 0 → 2,5 B ‡ → 5 S 1 . Notably, the architecture of the catalytic site, location of an adjacent ancillary β-1,3-glucan binding site, and the surface properties of the enzyme indicate the likely ability to recognize the double and/or triple-helical quaternary structures adopted by β-1,3-glucans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    Directory of Open Access Journals (Sweden)

    Rita eSharma

    2013-08-01

    Full Text Available Glycoside hydrolases (GH catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/. This database integrates multiple data types including the structural features, orthologous relationships, mutant availability and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification.

  14. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.

  15. Functional analysis of coordinated cleavage in V(D)J recombination.

    Science.gov (United States)

    Kim, D R; Oettinger, M A

    1998-08-01

    V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.

  16. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  17. Angucycline Glycosides from Mangrove-Derived Streptomyces diastaticus subsp. SCSIO GJ056

    Directory of Open Access Journals (Sweden)

    Chun Gui

    2018-05-01

    Full Text Available Nine new angucycline glycosides designated urdamycins N1–N9 (1–9, together with two known congener urdamycins A (10 and B (11, were obtained from a mangrove-derived Streptomyces diastaticus subsp. SCSIO GJ056. The structures of new compounds were elucidated on the basis of extensive spectroscopic data analysis. The absolute configurations of 6–9 were assigned by electronic circular dichroism calculation method. Urdamycins N6 (6 and N9 (9 represent the first naturally occurring (5R, 6R-angucycline glycosides, which are diastereomers of urdamycins N7 (7 and N8 (8, respectively.

  18. Synthesis and evaluation of cardiac glycoside mimics as potential anticancer drugs

    DEFF Research Database (Denmark)

    Jensen, Marie; Schmidt, Steffen; Fedosova, Natalya

    2011-01-01

    recent years cardiac glycosides have furthermore been suggested to possess valuable anticancer activity. To mimic the labile trisaccharide of digitoxin with a stabile carbohydrate surrogate, we have used sulfur linked ethylene glycol moieties of varying length (mono-, di-, tri- or tetra-ethylene glycol...... the shortest mimics were found to have highest efficacy, with the best ligand having a monoethylene glycol unit (IC(50) 0.24 μM), which was slightly better than digitoxigenin (IC(50) 0.64 μM), while none of the novel cardiac glycoside mimics display an in vitro effect as high as digitoxin (IC(50) 0.02 μM)....

  19. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers.

    Science.gov (United States)

    Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2008-11-01

    The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.

  20. Iridoid and phenylethanoid glycosides in the New Zealand sun hebes (Veronica; Plantaginaceae)

    DEFF Research Database (Denmark)

    Taskova, Rilka M.; Kokubun, Tetsuo; Garnock-Jones, Phil J.

    2012-01-01

    The sun hebes are a small clade of New Zealand Veronica formerly classified as Heliohebe. The water-soluble compounds of Veronica pentasepala, Veronica raoulii and Veronica hulkeana were studied and 30 compounds including 15 iridoid glucosides, 12 phenylethanoid glycosides, the acetophenone...... and F, all derivatives of aragoside. The esters of cinnamic acid derivatives with iridoid and phenylethanoid glycosides and an unusually high concentration of verminoside were found to be the most distinctive chemotaxonomic characters of the sun hebes. The chemical profiles of the species were compared...

  1. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    Science.gov (United States)

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

  3. Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color.

    Science.gov (United States)

    Iwashina, Tsukasa; Yamaguchi, Masa-atsu; Nakayama, Masayoshi; Onozaki, Takashi; Yoshida, Hiroyuki; Kawanobu, Shuji; Onoe, Hiroshi; Okamura, Masachika

    2010-12-01

    Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, 1H and 13C NMR spectra as kaempferol 3-O-neohesperidoside, kaempferol 3-O-sophoroside and kaempferol 3-O-glucosyl-(1 --> 2)-[rhamnosyl-(1 --> 6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-O-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers.

  4. A Review on the Pharmacology and Toxicology of Steviol Glycosides Extracted from Stevia rebaudiana.

    Science.gov (United States)

    Momtazi-Borojeni, Amir Abbas; Esmaeili, Seyed-Alireza; Abdollahi, Elham; Sahebkar, Amirhossein

    2017-01-01

    Stevia rebaudiana Bertoni is a sweet and nutrient-rich plant belonging to the Asteraceae family. Stevia leaves contain steviol glycosides including stevioside, rebaudioside (A to F), steviolbioside, and isosteviol, which are responsible for the plant's sweet taste, and have commercial value all over the world as a sugar substitute in foods, beverages and medicines. Among the various steviol glycosides, stevioside, rebaudioside A and rebaudioside C are the major metabolites and these compounds are on average 250-300 times sweeter than sucrose. Steviol is the final product of Stevia metabolism. The metabolized components essentially leave the body and there is no accumulation. Beyond their value as sweeteners, Stevia and its glycosdies possess therapeutic effects against several diseases such as cancer, diabetes mellitus, hypertension, inflammation, cystic fibrosis, obesity and tooth decay. Studies have shown that steviol glycosides found in Stevia are not teratogenic, mutagenic or carcinogenic and cause no acute and subacute toxicity. The present review provides a summary on the biological and pharmacological properties of steviol glycosides that might be relevant for the treatment of human diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  6. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter

    2017-01-01

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  7. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones.

    Science.gov (United States)

    Mazziotta, Andrea; Makarov, Ilya S; Fristrup, Peter; Madsen, Robert

    2017-06-02

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide. The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step. The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid and a benzyl anion.

  8. A new C-methylated flavonoid glycoside from Pinus densiflora.

    Science.gov (United States)

    Jung, M J; Choi, J H; Chung, H Y; Jung, J H; Choi, J S

    2001-12-01

    A new C-methyl flavonol glycoside, 5,7,8,4'-tetrahydroxy-3-methoxy-6-methylflavone 8-O-beta-D-glucopyranoside (1), has been isolated from the needles of Pinus densiflora, together with kaempferol 3-O-beta-(6"-acetyl)-galactopyranoside.

  9. Turbo-extraction of glycosides from Stevia rebaudiana using a fractional factorial design

    Directory of Open Access Journals (Sweden)

    Paula M. Martins

    Full Text Available ABSTRACT Stevia rebaudiana (Bertoni Bertoni, Asteraceae, leaf extract has recently called the attention of food industry as a proposal for natural sweetener. The sweet flavor is attributed to the glycosides, in especial stevioside and rebaudioside A, which are the plant main chemical markers. The aim of the work reported here was to optimize the turbo-extraction of stevia leaves using water, ethanol 70% and 90% (w/w as green solvents. A 25-2 factorial design was applied to study the linear effects of the drug size, solvent to drug ratio, temperature, time and also the turbolysis speed on the extraction of glycosides. The glycosides exhaustive extraction showed that ethanol 70% gave better results and was used for turbo-extraction. The stevioside and rebaudioside A contents were quantified by a validated method by high performance liquid chromatographic with photodiode array detector. The contents of stevioside and rebaudioside A in fluid extract increased with the drug size, but decreased at high shearing speeds and solvent to drug ratio, while their yields decreased at higher temperature and were not affected by turbo speed. An increase in solvent to drug ratio reduced significantly the glycosides percent in dried extract. Optimal solution for S. rebaudiana leaves turbo-extraction was determined by desirability functions. The optimal extraction condition corresponded to drug size of 780 µm, solvent to drug ratio of 10, extraction time of 18 min; temperature of 23 ºC and turbo speed of 20,000 rpm, resulting in yields of 4.98% and 2.70%, for stevioside and rebaudioside A, respectively. These yields are comparable to the ones recently published for dynamic maceration, but with the advantage of shorter extraction times. This work demonstrates that turbolysis is promising for S. rebaudiana glycosides extraction and stimulate new research on the purification of these extracts, which may become an interesting source of income for developing

  10. Immunoaffinity Knockout of Saponin Glycosides from Asparagus racemosus to Assess Anti-lipid Peroxidation.

    Science.gov (United States)

    Onlom, Churanya; Phrompittayarat, Watoo; Putalun, Waraporn; Waranuch, Neti; Ingkaninan, Kornkanok

    2017-07-01

    Asparagus racemosus Willd (Asparagaceae family), known as Shatavari, is important in Ayurveda and traditional Thai medicines. The saponin glycosides, shatavarin I and IV are major constituents in its roots and may be responsible for their actions including protection against lipid peroxidation and carcinogenesis. To develop an immunoaffinity column for isolating compounds with structures related to shatavarin IV from crude extracts of A. racemosus root. The monoclonal antibody recognising shatavarin IV (mAbShavIV) was coupled to an Affi-Gel Hz gel to isolate compounds with structures related to shatavarin IV from the other components of crude extracts of A. racemosus root. The saponin glycosides in each fraction were analysed by mAbShavIV ELISA and LC-MS/MS. The pooled wash-through fractions contained 3% of loaded mAbShavIV reactive saponin glycosides, while eluted fractions released ~ 90% of shatavarin saponin glycosides in a single step. Using thiobarbiturate (TBARs) to measure lipid-peroxidation, the extract, and the pooled wash-through fractions showed moderate protection against Cu + -induced oxidation of human low density lipoprotein (LDL) (IC 50 11.3 ± 1.4 and 12.6 ± 0.9 μg/mL, respectively). In contrast, the saponin glycosides eluted from the mAbShavIV-column had weaker protectant (IC 50 29.7 ± 1.8 μg/mL) suggesting that A. racemosus shatavarins do not inhibit carcinogenesis through preventing lipid peroxidation. The strategy described here demonstrates its utility for isolating a group of related compounds from the rest of the extract with selectivity and recovery rate. Pharmacological efficacy and synergistic effects of the components obtained can be further investigated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. (Anti)mutagenic and immunomodulatory properties of quercetin glycosides

    Czech Academy of Sciences Publication Activity Database

    Valentová, Kateřina; Šíma, Petr; Rybková, Z.; Křižan, Jiří; Malachová, K.; Křen, Vladimír

    2016-01-01

    Roč. 96, č. 5 (2016), s. 1492-1499 ISSN 0022-5142 R&D Projects: GA ČR(CZ) GAP301/11/0767; GA MŠk(CZ) LD14096 Institutional support: RVO:61388971 Keywords : quercetin glycosides * (anti)mutagenicity * mice Subject RIV: EE - Microbiology, Virology Impact factor: 2.463, year: 2016

  12. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    Science.gov (United States)

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  13. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n).

    Science.gov (United States)

    Rösch, Daniel; Krumbein, Angelika; Mügge, Clemens; Kroh, Lothar W

    2004-06-30

    Four flavonol glycosides were isolated from an extract of sea buckthorn pomace (Hippophaë rhamnoides) by Sephadex LH-20 gel chromatography and semipreparative HPLC. Their structures were elucidated by hydrolysis studies, ESI-MS(n), UV, and (1)H and (13)C NMR spectroscopy. The occurrence of the major flavonol glycoside kaempferol 3-O-beta-sophoroside-7-O-alpha-rhamnoside in sea buckthorn is described here for the first time. A further 21 flavonol glycosides of Sephadex LH-20 fractions of sea buckthorn pomace were characterized by HPLC-DAD-ESI-MS. The characteristic MS-MS and MS(3) fragmentation pattern of flavonol glycosides previously identified in sea buckthorn juice and of flavonol glycosides identified by NMR spectroscopy gave valuable indications for their identification. The results demonstrate that loss of the sugar moiety from C-7 of the aglycon is more favored than fission of the glycosidic linkage at the C-3 position. Thus, most of the compounds identified were 7-rhamnosides of isorhamnetin, kaempferol, and quercetin, which exhibit different substitution patterns at the C-3 position, mainly glucosides, rutinosides, and sophorosides. In addition, numerous flavonol glycosides were detected lacking a sugar moiety at C-7. Finally, eight flavonol derivatives were identified that are acylated by hydroxybenzoic or hydoxycinnamic acids.

  14. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  15. A new cultural cleavage in post-modern society

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane

    2007-09-01

    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  16. Unexpected tolerance of alpha-cleavage of the prion protein to sequence variations.

    Directory of Open Access Journals (Sweden)

    José B Oliveira-Martins

    Full Text Available The cellular form of the prion protein, PrP(C, undergoes extensive proteolysis at the alpha site (109K [see text]H110. Expression of non-cleavable PrP(C mutants in transgenic mice correlates with neurotoxicity, suggesting that alpha-cleavage is important for PrP(C physiology. To gain insights into the mechanisms of alpha-cleavage, we generated a library of PrP(C mutants with mutations in the region neighbouring the alpha-cleavage site. The prevalence of C1, the carboxy adduct of alpha-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the alpha-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, alpha-cleavage was size-dependently impaired by deletions within the domain 106-119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that alpha-cleavage is executed by an alpha-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrP(C.

  17. Application of Ni(II-assisted peptide bond hydrolysis to non-enzymatic affinity tag removal.

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    Full Text Available In this study, we demonstrate a non-enzymatic method for hydrolytic peptide bond cleavage, applied to the removal of an affinity tag from a recombinant fusion protein, SPI2-SRHWAP-His(6. This method is based on a highly specific Ni(II reaction with (S/TXHZ peptide sequences. It can be applied for the protein attached to an affinity column or to the unbound protein in solution. We studied the effect of pH, temperature and Ni(II concentration on the efficacy of cleavage and developed an analytical protocol, which provides active protein with a 90% yield and ∼100% purity. The method works well in the presence of non-ionic detergents, DTT and GuHCl, therefore providing a viable alternative for currently used techniques.

  18. Rapid analysis of the main components of the total glycosides of Ranunculus japonicus by UPLC/Q-TOF-MS.

    Science.gov (United States)

    Rui, Wen; Chen, Hongyuan; Tan, Yuzhi; Zhong, Yanmei; Feng, Yifan

    2010-05-01

    A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples.

  19. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola [Cornell University, Ithaca, NY 14853-1301 (United States); Università di Sassari, (Italy); Zhang, Yang [Cornell University, Ithaca, NY 14853-1301 (United States); Allegrini, Simone [Università di Sassari, (Italy); Tozzi, Maria Grazia [Università di Pisa, (Italy); Sgarrella, Francesco [Università di Sassari, (Italy); Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  20. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  1. Diarylheptanoid Glycosides of Morella salicifolia Bark

    Directory of Open Access Journals (Sweden)

    Edna Makule

    2017-12-01

    Full Text Available A methanolic extract of Morella salicifolia bark was fractionated by various chromatographic techniques yielding six previously unknown cyclic diarylheptanoids, namely, 7-hydroxymyricanol 5-O-β-d-glucopyranoside (1, juglanin B 3-O-β-d-glucopyranoside (2, 16-hydroxyjuglanin B 17-O-β-d-glucopyranoside (3, myricanone 5-O-β-d-gluco-pranosyl-(1→6-β-d-glucopyranoside (4, neomyricanone 5-O-β-d-glucopranosyl-(1→6-β-d-glucopyranoside (5, and myricanone 17-O-α-l-arabino-furanosyl-(1→6-β-d-glucopyranoside (6, respectively, together with 10 known cyclic diarylheptanoids. The structural diversity of the diarylheptanoid pattern in M. salicifolia resulted from varying glycosidation at C-3, C-5, and C-17 as well as from substitution at C-11 with hydroxy, carbonyl or sulfate groups, respectively. Structure elucidation of the isolated compounds was achieved on the basis of one- and two-dimensional nuclear magnetic resonance (NMR as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS analyses. The absolute configuration of the glycosides was confirmed after hydrolysis and synthesis of O-(S-methyl butyrated (SMB sugar derivatives by comparison of their 1H-NMR data with those of reference sugars. Additionally, absolute configuration of diarylheptanoid aglycones at C-11 was determined by electronic circular dichroism (ECD spectra simulation and comparison with experimental CD spectra after hydrolysis.

  2. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 μmol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  3. Kininogen Cleavage Assay: Diagnostic Assistance for Kinin-Mediated Angioedema Conditions.

    Directory of Open Access Journals (Sweden)

    Rémi Baroso

    Full Text Available Angioedema without wheals (AE is a symptom characterised by localised episodes of oedema presumably caused by kinin release from kininogen cleavage. It can result from a hereditary deficiency in C1 Inhibitor (C1Inh, but it can present with normal level of C1Inh. These forms are typically difficult to diagnose although enhanced kinin production is suspected or demonstrated in some cases.We wanted to investigate bradykinin overproduction in all AE condition with normal C1Inh, excluding cases with enhanced kinin catabolism, and to propose this parameter as a disease biomarker.We retrospectively investigated high molecular weight kininogen (HK cleavage pattern, using gel electrophoresis and immunorevelation. Plasma samples were drawn using the same standardised procedure from blood donors or AE patients with normal C1Inh conditions, normal kinin catabolism, and without prophylaxis.Circulating native HK plasma concentrations were similar in the healthy men (interquartile range: 98-175μg/mL, n = 51 and in healthy women (90-176μg/mL, n = 74, while HK cleavage was lower (p14.4% HK cleavage for men; 33.0% HK cleavage for women, with >98% specificity achieved for all parameters. In plasma from patients undergoing recovery two months after oestrogen/progestin combination withdrawal (n = 13 or two weeks after AE attack (n = 2, HK cleavage was not fully restored, suggesting its use as a post-attack assay.As a diagnostic tool, HK cleavage can offer physicians supportive arguments for kinin production in suspected AE cases and improve patient follow-up in clinical trials or prophylactic management.

  4. Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.

    Science.gov (United States)

    Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark

    2015-03-21

    Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.

  5. A new phenylpropanoid glycoside from Jasminum subtriplinerve Blume.

    Science.gov (United States)

    Huong, Nguyen Thi Hong; Cu, Nguyen Khac Quynh; Quy, Trinh Van; Zidorn, Christian; Ganzera, Markus; Stuppner, Hermann

    2008-01-01

    From the ethyl acetate extract of the aerial parts of Jasminum subtriplinerve Blume (Oleaceae), 6'-O-menthiafoloylverbascoside (1), rutin (2), isoverbascoside (4), isooleoverbascoside (6), apiosylverbascoside (7), astragalin (9), isoquercitrin (10), and verbascoside (11) were isolated. Their structures were elucidated by extensive MS and NMR spectroscopy. Amongst 6'-O-menthiafoloylverbascoside (1) is a new phenylpropanoid glycoside.

  6. Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata.

    Science.gov (United States)

    Muzitano, Michelle F; Cruz, Elaine A; de Almeida, Ana Paula; Da Silva, Silvia A G; Kaiser, Carlos R; Guette, Catherine; Rossi-Bergmann, Bartira; Costa, Sônia S

    2006-01-01

    Quercitrin (quercetin 3- O-alpha- L-rhamnopyranoside), one of the constituents of the biologically active aqueous extract obtained from Kalanchoe pinnata, is demonstrated to be a potent antileishmanial compound (IC50 approximately 1 microg/mL) with a low toxicity profile. This is the first time that antileishmanial activity is demonstrated for a flavonoid glycoside.

  7. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    OpenAIRE

    Soliman, Fathy M.; Shehata, Afaf H.; Khaleel, Amal E.; Ezzat, Shahera M.

    2002-01-01

    An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl)-rhamnoside (1) was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside) (2), quercitrin (3), isorhamnetin-3-O-β-D-glucoside (4), isoquercitrin (5), rutin (6), and miquelianin (quercetin-3...

  8. HOPEAPHENOL-O-GLYCOSIDE, A COMPOUND ISOLATED FROM STEM BARK Anisoptera marginata (Dipterocarpaceae

    Directory of Open Access Journals (Sweden)

    Sri Atun

    2010-06-01

    Full Text Available Isolation and structure elucidation of some compounds from stem bark of Anisoptera marginata had been done. The isolation of those compounds was carried out by chromatographyc method and structure elucidation was performed by interpretation of spectroscopic data, including UV, IR,  1H and 13C NMR 1D and 2D, and FABMS. From acetone extract stem bark A. marginata we isolated five known compounds namely bergenin (1, (--ε-vinipherin (2, (--ampelopsin A (3, vaticanol B (4, (--hopeaphenol (5, and a glycoside compound namely hopeaphenol-O- glycoside (6.   Keywords: Dipterocarpaceae; Anisoptera marginata; hopeaphenol-O-glucoside

  9. New 8,12;8,20-diepoxy-8,14-secopregnane hexa- and hepta-glycosides from the roots of Asclepias tuberosa.

    Science.gov (United States)

    Warashina, Tsutomu; Miyase, Toshio

    2018-01-01

    Previously, phytochemical investigation of the roots of Asclepias tuberosa (Asclepiadaceae) led to the isolation of some 8,12;8,20-diepoxy-8,14-secopregnane tri-, tetra-, and penta-glycosides. An additional eight new minor 8,12;8,20-diepoxy-8,14-secopregnane glycosides were afforded in the recent investigation of this plant. These glycosides consisted of six or seven 2,6-dideoxy-hexopyranoses together with the aglycone, tuberogenin. The structures of each of these compounds were established using NMR, mass spectroscopic analysis and chemical evidence. As 8,12;8,20-diepoxy-8,14-secopregnane-type glycosides were observed only in A. tuberosa, these compounds were considered to be characteristic phytochemicals of this plant.

  10. Detection of nucleic acid sequences by invader-directed cleavage

    Science.gov (United States)

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  11. An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system.

    Science.gov (United States)

    Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu

    2009-01-01

    Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.

  12. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  13. Phenylpropanoid glycosides in Italian Orobanche spp., sect. Orobanche.

    Science.gov (United States)

    Serafini, M; Corazzi, G; Poli, F; Piccin, A; Tomassini, L; Foddai, S

    2005-09-01

    We studied the occurrence of phenylpropanoid glycosides (PhG) in five species of the genus Orobanche L., collected in the Latium region of Italy. The presence of orobanchoside and verbascoside in all four species confirms that these PhGs are taxonomic markers of the genus. The results suggest that O. gracilis form. citrina could be a diverse entity.

  14. Stability of a metabolizable ester bond in radioimmunoconjugates

    International Nuclear Information System (INIS)

    Arano, Yasushi; Wakisaka, Kouji; Mukai, Takahiro; Uezono, Takashi; Motonari, Hiroshi; Akizawa, Hiromichi; Kairiyama, Claudia; Ohmomo, Yoshiro; Tanaka, Chiaki; Ishiyama, Munetaka; Sakahara, Harumi; Konishi, Junji; Yokoyama, Akira

    1996-01-01

    Ester bonds have been used as metabolizable linkages to reduce radioactivity levels in non-target tissues following the administration of antibodies labeled with metallic radionuclides. In this radiochemical design of antibodies, while the ester bonds should be cleaved rapidly in non-target tissues, high stability of the ester bonds in plasma is also required to preserve target radioactivity levels. To assess the structural requirements to stabilize the ester bond, a new benzyl-EDTA-derived bifunctional chelating agent with an ester bond, (1-[4-[4-(2-maleimidoethoxy)succinamido]benzyl]ethylenediamine-N,N,N',N'- tetraacetic acid; MESS-Bz-EDTA), was developed. MESS-Bz-EDTA was coupled with a thiolated monoclonal antibody (OST7, IgG 1 ) prepared by reducing its disulfide bonds to introduce the ester bond close and proximal to the antibody molecule. For comparison, 1-[4-(5-maleimidopentyl)aminobenzyl]ethylenediamine-N,N,N',N'-tetraacetic acid (EMCS-Bz-EDTA) and meleimidoethyl 3-[ 131 I]iodohippurate (MIH) was coupled to OST7 under the same conjunction chemistry. When incubated in 50% murine plasma or a buffered-solution of neutral pH, OST7-MESS-Bz-EDTA- 111 In rapidly released the radioactivity, and more than 95% of the initial radioactivity was liberated after a 24 h incubation in both solutions, due to a cleavage of the ester bond. On the other hand, only about 20% of the radioactivity was released from OST7-MIH- 131 I in both solutions during the same incubation period. In mice biodistribution studies, while a slightly faster radioactivity clearance from the blood with less radioactivity levels in the liver and kidneys was observed with OST7-MIH- 131 I than with OST7-EMCS-Bz-EDTA- 111 In, OST7-MESS-Bz-EDTA- 111 In indicated radioactivity clearance from the blood much faster than and almost comparable to that of OST7-MIH- 131 I and succinamidobenzyl-EDTA- 111 In, respectively. These findings as well as previous findings on radiolabeled antibodies with ester bonds

  15. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak

    2018-02-20

    A ligand-controlled and site-selective nickel catalyzed Suzuki-Miyaura cross-coupling reaction with aromatic esters and alkyl organoboron reagents as coupling partners was developed. This methodology provides a facile route for C(sp2)-C(sp3) bond formation in a straightforward fashion by successful suppression of the undesired β-hydride elimination process. By simply switching the phosphorus ligand, the ester substrates are converted into the alkylated arenes and ketone products, respectively. The utility of this newly developed protocol was demonstrated by its wide substrate scope, broad functional group tolerance and application in the synthesis of key intermediates for the synthesis of bioactive compounds. DFT studies on the oxidative addition step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel complexes with monodentate phosphorus ligands favor activation of the C(acyl)-O bond, which later generates the ketone product.

  16. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.

    Science.gov (United States)

    Macdonald, Spencer S; Patel, Ankoor; Larmour, Veronica L C; Morgan-Lang, Connor; Hallam, Steven J; Mark, Brian L; Withers, Stephen G

    2018-03-02

    Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N -acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Total peroxynitrite scavenging capacity of phenylethanoid and flavonoid glycosides from the flowers of Buddleja officinalis.

    Science.gov (United States)

    Tai, Bui Huu; Jung, Bong Yong; Cuong, Nguyen Manh; Linh, Pham Thuy; Tung, Nguyen Huu; Nhiem, Nguyen Xuan; Huong, Tran Thu; Anh, Ngo Thi; Kim, Jeong Ah; Kim, Sang Kyum; Kim, Young Ho

    2009-12-01

    Nine compounds, including six phenylethanoid glycosides: acteoside (1); bioside (2); echinacoside (3); poliumoside (4); phenylethyl glycoside (5); salidroside (6) and three flavonoids; linarin (7); apigenin (8); isorhoifolin (9), were isolated from the flowers of Buddleja officinalis MAXIM. (Buddlejaceae). Chemical structures were confirmed by (1)H-, and (13)C-NMR, and MS spectral methods and compared with those reported in the literature. Antioxidant activities of the methanol and water extracts, and all isolated compounds were evaluated using the total oxidant scavenging capacity (TOSC) assay against peroxynitrite. Results of the assay showed that the phenylethanoid glycosides, a major class of compounds of the flowers of B. officinalis, possess strong antioxidant activity. Of these, acteoside, echinacoside and poliumoside have 9.9-, 9.8- and 9.5-fold TOSC value, respectively, compared with the positive control, Trolox.

  18. Cleavage of the interchain disulfide bonds in rituximab increases its affinity for FcγRIIIA.

    Science.gov (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Kobayashi, Eiji; Fukuchi, Kaori; Tsukimoto, Mitsutoshi; Kojima, Shuji; Kohroki, Junya; Akimoto, Kazunori; Masuho, Yasuhiko

    2013-07-05

    The Fc region of human IgG1 mediates effector function via binding to Fcγ receptors and complement activation. The H and L chains of IgG1 antibodies are joined by four interchain disulfide bonds. In this study, these bonds within the therapeutic IgG1 rituximab (RTX) were cleaved either by mild reduction followed by alkylation or by mild S-sulfonation; consequently, two modified RTXs - A-RTX (alkylated) and S-RTX (S-sulfonated) - were formed, and both were almost as potent as unmodified RTX when binding CD20 antigen. Unexpectedly, each modified RTX had a higher binding affinity for FcγRIIIA (CD16A) than did unmodified RTX. However, S-RTX and A-RTX were each less potent than RTX in an assay of antibody-dependent cellular cytotoxicity (ADCC). In this ADCC assay, each modified RTX showed decreased secretion of granzyme B, but no change in perforin secretion, from effector cells. These results provide significant information on the structures within IgG1 that are involved in binding FcγRIIIA, and they may be useful in the development of therapeutic antagonists for FcγRIIIA. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Human skeletal muscle digitalis glycoside receptors (Na,K-ATPase)--importance during digitalization.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1993-02-01

    The aims of the present study were to evaluate in humans the putative importance of skeletal muscle digitalis glycoside receptors (Na,K-ATPase) in the volume of distribution of digoxin and to assess whether therapeutic digoxin exposure might cause digitalis receptor upregulation in skeletal muscle. Samples of the vastus lateralis were obtained postmortem from 11 long-term (9 months to 9 years) digitalized (125-187.5 micrograms daily) and eight undigitalized subjects. In intact samples from digitalized patients, vanadate-facilitated 3H-ouabain binding increased 15% (p 0.30) before and after washing in specific digoxin antibody fragments, respectively. Thus, the present study indicates a approximately 13% occupancy of skeletal muscle digitalis glycoside receptors with digoxin during digitalization. In light of the large skeletal muscle contribution to body mass, this indicates that the skeletal muscle Na,K-ATPase pool constitutes a major volume of distribution for digoxin during digitalization. The results gave no indication of skeletal muscle digitalis glycoside receptor upregulation in response to digoxin treatment. On the contrary, there was evidence of significantly lower (37%, p digitalized patients, which may be of importance for skeletal muscle incapacity in heart failure.

  20. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  1. Effects of pregnane glycosides on food intake depend on stimulation of the melanocortin pathway and BDNF in an animal model.

    Science.gov (United States)

    Komarnytsky, Slavko; Esposito, Debora; Rathinasabapathy, Thirumurugan; Poulev, Alexander; Raskin, Ilya

    2013-02-27

    Pregnane glycosides appear to modulate food intake by possibly affecting the hypothalamic feeding circuits; however, the mechanisms of the appetite-regulating effect of pregnane glycosides remain obscure. Here, we show that pregnane glycoside-enriched extracts from swamp milkweed Asclepias incarnata at 25-100 mg/kg daily attenuated food intake (up to 47.1 ± 8.5% less than controls) and body weight gain in rats (10% for males and 9% for females, respectively) by activating melanocortin signaling and inhibiting gastric emptying. The major milkweed pregnane glycoside, ikemagenin, exerted its appetite-regulating effect by decreasing levels of agouti-related protein (0.6-fold) but not NPY satiety peptides. Ikemagenin treatment also increased secretion of brain-derived neurotropic factor (BDNF) downstream of melanocortin receptors in the hypothalamus (1.4-fold) and in the C6 rat glioma cell culture in vitro (up to 6-fold). These results support the multimodal effects of pregnane glycosides on feeding regulation, which depends on the activity of the melanocortin signaling pathway and BDNF.

  2. Full Length Research Paper Curcumin induces cleavage of -catenin ...

    African Journals Online (AJOL)

    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be ...

  3. Flavononol Glycosides of Reseda arabica (Resedaceae

    Directory of Open Access Journals (Sweden)

    Djemaa Berrehal

    2012-07-01

    Full Text Available Five flavonol glycosides, kaempferol 3,7-di-O- α -L-rhamnopyranoside (1 , isorhamnetin 3,7-di-O- α -L-rhamnopyranoside (2 , kaempferol 3-O- β -D-glucopyranoside-7-O- α -L-rhamnopyranoside (3 , isorhamnetin 3-O- β -D-glucopyranoside-7-O- α -L-rhamnopyranoside (4, Kaempferol 3-O- β -xylopyranosyl-(1'''→2''-O- α -L-rhamnopyranoside-7-O- α -L-rhamnopyranoside (5, have been isolated from the aerial parts of Reseda arabica. Their structures were established on the basis of physical and spectroscopic analysis, and by comparison with the literature data.

  4. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  5. Selenoglutathione Diselenide: Unique Redox Reactions in the GPx-Like Catalytic Cycle and Repairing of Disulfide Bonds in Scrambled Protein.

    Science.gov (United States)

    Shimodaira, Shingo; Asano, Yuki; Arai, Kenta; Iwaoka, Michio

    2017-10-24

    Selenoglutathione (GSeH) is a selenium analogue of naturally abundant glutathione (GSH). In this study, this water-soluble small tripeptide was synthesized in a high yield (up to 98%) as an oxidized diselenide form, i.e., GSeSeG (1), by liquid-phase peptide synthesis (LPPS). Obtained 1 was applied to the investigation of the glutathione peroxidase (GPx)-like catalytic cycle. The important intermediates, i.e., GSe - and GSeSG, besides GSeO 2 H were characterized by 77 Se NMR spectroscopy. Thiol exchange of GSeSG with various thiols, such as cysteine and dithiothreitol, was found to promote the conversion to GSe - significantly. In addition, disproportionation of GSeSR to 1 and RSSR, which would be initiated by heterolytic cleavage of the Se-S bond and catalyzed by the generated selenolate, was observed. On the basis of these redox behaviors, it was proposed that the heterolytic cleavage of the Se-S bond can be facilitated by the interaction between the Se atom and an amino or aromatic group, which is present at the GPx active site. On the other hand, when a catalytic amount of 1 was reacted with scrambled 4S species of RNase A in the presence of NADPH and glutathione reductase, native protein was efficiently regenerated, suggesting a potential use of 1 to repair misfolded proteins through reduction of the non-native SS bonds.

  6. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases

    DEFF Research Database (Denmark)

    Batten, MR; Senior, BW; Kilian, Mogens

    2003-01-01

    The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either...... side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial...... effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement...

  7. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0...

  8. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.

    Science.gov (United States)

    Marca, Eduardo; Valero-Gonzalez, Jessika; Delso, Ignacio; Tejero, Tomás; Hurtado-Guerrero, Ramon; Merino, Pedro

    2013-12-15

    A series of β-(1,3)-d-glucans have been synthesized incorporating structural variations specifically on the reducing end of the oligomers. Both O- and C-glucosides derived from di- and trisaccharides have been obtained in good overall yields and with complete selectivity. Whereas the O-glycosides were obtained via a classical Koenigs-Knorr glycosylation, the corresponding C-glycosides were obtained through allylation of the anomeric carbon and further cross-metathesis reaction. Finally, the compounds were evaluated against two glycosidases and two endo-glucanases and no inhibitory activity was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. RecA-mediated cleavage reaction of Lambda repressor and DNA ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... hydrolyze ATP at all, but fulfills RecA functions such as cleavage of Lambda repressor and strand .... DNA binding properties of RecA and may result in an in- .... AMP-PNP there is no cleavage of Lambda repressor (Figure.

  10. Two new monoterpenoid glycosides from the fresh rhizome of Tongling White Ginger (Zingiber officinale).

    Science.gov (United States)

    Guo, Tao; Tan, Su-Bei; Wang, Ya; Chang, Jun

    2018-01-01

    Two new monoterpenoid glycosides, trans-1,8-cineole-3,6-dihydroxy-3-O-β-D-glucopyranoside (1), and 5,9-dihydroxy borneol 2-O-β-D-glucopyranoside (2), together with four known monoterpenoid glycosides (3-6), were isolated from the water-soluble constituents of the fresh rhizome of Tongling White Ginger (Zingiber officinale). Their structures were decisively elucidated by spectroscopic analysis. In vitro tests for antimicrobial activity showed that compounds 1 and 3 possess significant activity against two Gram-positive organisms, Staphylococcus aureus and Staphylococcus epidermidis.

  11. Three flavonol glycosides from Ricinus communis | Aqil | Bulletin of ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 11, No 1 (1997) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Three flavonol glycosides from Ricinus ...

  12. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-01-01

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  13. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  14. Metabolite Profiling of Triterpene Glycosides of the Far Eastern Sea Cucumber Eupentacta fraudatrix and Their Distribution in Various Body Components Using LC-ESI QTOF-MS.

    Science.gov (United States)

    Popov, Roman S; Ivanchina, Natalia V; Silchenko, Alexandra S; Avilov, Sergey A; Kalinin, Vladimir I; Dolmatov, Igor Yu; Stonik, Valentin A; Dmitrenok, Pavel S

    2017-10-02

    The Far Eastern sea cucumber Eupentacta fraudatrix is an inhabitant of shallow waters of the south part of the Sea of Japan. This animal is an interesting and rich source of triterpene glycosides with unique chemical structures and various biological activities. The objective of this study was to investigate composition and distribution in various body components of triterpene glycosides of the sea cucumber E. fraudatrix . We applied LC-ESI MS (liquid chromatography-electrospray mass spectrometry) of whole body extract and extracts of various body components for metabolic profiling and structure elucidation of triterpene glycosides from the E. fraudatrix . Totally, 54 compounds, including 26 sulfated, 18 non-sulfated and 10 disulfated glycosides were detected and described. Triterpene glycosides from the body walls, gonads, aquapharyngeal bulbs, guts and respiratory trees were extracted separately and the distributions of the detected compounds in various body components were analyzed. Series of new glycosides with unusual structural features were described in E. fraudatrix , which allow clarifying the biosynthesis of these compounds. Comparison of the triterpene glycosides contents from the five different body components revealed that the profiles of triterpene glycosides were qualitatively similar, and only some quantitative variabilities for minor compounds were observed.

  15. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site.

    Directory of Open Access Journals (Sweden)

    Helena Kellett-Clarke

    Full Text Available CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA, a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the-LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies.

  16. A new phenolic glycoside from the aerial parts of Solidago canadensis.

    Science.gov (United States)

    Zhang, JinSong; Zhang, XinQin; Lei, GuangQing; Li, Bo; Chen, JiaKuan; Zhou, TongShui

    2007-01-01

    A new phenolic glycoside, 2'-hydroxy-4',6'-di-O-beta-D-glucopyranosyl-butyrrophenone (1), was isolated from the aerial parts of Solidago canadensis. The structure was elucidated on the basis of spectroscopic methods.

  17. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  18. Radioiodine labelling of tyramin derivatives of some digitalis glycosides and their aglyka for the scintiscanning of the adrenal glands

    International Nuclear Information System (INIS)

    Focken, P.H.

    1978-01-01

    The first part of the present work deals with the synthesis and radio-iodination of tyramine derivatives of digitoxigenin, digoxigenin, gitoxigenin and their glycosides. In the second part, animal experiments on rats and dogs for organ-specific enrichment of the synthesized compounds are described. The regioselective reductive amination of cardenolide ketones and glycoside dialdehydes with tyramin is successful with sodium cyano-boron hydride as reducing agent. Monotyraminyl genins are produced from the aglyka whilst glycosides convert to mono- and dityraminyl glycosides. A known radio-iodination method is modified to meet the requirements of the present problem. The radio-iodination is carried out with the nuclides 123 I, 125 I and 131 I. Scintiscanning of the adrenal glands of rats and dogs is possible within a few hours with 131 I-3-tyraminyl-3-desoxi-digitoxigenin. (orig./AJ) [de

  19. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost.

    Science.gov (United States)

    Yu, Xiaofeng; Zhu, Yiling; Fan, Jingyi; Wang, Dujun; Gong, Xiaohui; Ouyang, Zhen

    2017-08-01

    In order to determine the molecular mechanism underlying the influence of frost on chemical changes in mulberry leaves, the UFGT activity, expression level, and accumulation of flavonoid glycosides in mulberry leaves (Morus alba L.) were studied. The expression of UFGT gene was investigated by quantitative real-time PCR (qRT-PCR) and the UFGT activity, accumulation of flavonoid glycosides was studied by high performance liquid chromatography. Then, the correlation between the expression level of UFGT, the UFGT activity, and the flavonoid glycosides accumulation with temperature was explored. The accumulation of isoquercitrin and astragalin is significantly positively correlated with UFGT gene expression and UFGT activity. On the contrary, the average temperature was significantly negatively correlated with the level of UFGT gene expression and UFGT activity. The results show that after frost, low temperature can induce the expression of UFGT gene in mulberry leaves, resulting in the accumulation of flavonoid glycosides. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  20. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry.

    Science.gov (United States)

    Schmidt, Susanne; Zietz, Michaela; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W; Krumbein, Angelika

    2010-07-30

    Kale is a member of the Brassicaceae family and has a complex profile of flavonoid glycosides. Therefore, kale is a suitable matrix to discuss in a comprehensive study the different fragmentation patterns of flavonoid glycosides. The wide variety of glycosylation and acylation patterns determines the health-promoting effects of these glycosides. The aim of this study is to investigate the naturally occurring flavonoids in kale. A total of 71 flavonoid glycosides of quercetin, kaempferol and isorhamnetin were identified using a high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)) method. Of these 71 flavonol glycosides, 27 were non-acylated, 30 were monoacylated and 14 were diacylated. Non-acylated flavonol glycosides were present as mono-, di-, tri- and tetraglycosides. This is the first time that the occurrence of four different fragmentation patterns of non-acylated flavonol triglycosides has been reported in one matrix simultaneously. In addition, 44 flavonol glycosides were acylated with p-coumaric, caffeic, ferulic, hydroxyferulic or sinapic acid. While monoacylated glycosides existed as di-, tri- and tetraglycosides, diacylated glycosides occurred as tetra- and pentaglycosides. To the best of our knowledge, 28 compounds in kale are reported here for the first time. These include three acylated isorhamnetin glycosides (isorhamnetin-3-O-sinapoyl-sophoroside-7-O-D-glucoside, isorhamnetin-3-O-feruloyl-sophoroside-7-O-diglucoside and isorhamnetin-3-O-disinapoyl-triglucoside-7-O-diglucoside) and seven non-acylated isorhamnetin glycosides. Copyright 2010 John Wiley & Sons, Ltd.

  1. Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity.

    Science.gov (United States)

    Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-01-21

    The ternary iron(II) complex [Fe(L')(L")](PF6)3(1) as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N'-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(ii) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to one imine moiety leading to the formation of a stereochemically constrained five-membered ring. Ligand L" which is formed from an intermolecular reaction involving one imine moiety of L and pyridine-2-carbaldehyde has an emissive cationic imidazopyridine pendant arm. The complex binds to double-stranded DNA in the minor groove giving a Kapp value of 4.1 x 10(5) M(-1) and displays oxidative cleavage of supercoiled DNA in the presence of H2O2 following a hydroxyl radical pathway. The complex also shows photo-induced DNA cleavage activity on UV light exposure involving formation of singlet oxygen as the reactive species.

  2. 8,12;8,20-Diepoxy-8,14-secopregnane glycosides from the aerial parts of Asclepias tuberosa.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2010-02-01

    Further study of constituents from the aerial parts of Asclepias tuberosa afforded twenty-two new steroidal glycosides along with tuberoside B(5) and G(5). These glycosides were confirmed to contain 8,12;8,20-diepoxy-8,14-secopregnanes, tuberogenin and its congeners, as their aglycones. The structure of each of these compounds was elucidated based on the interpretation of NMR and MS measurements and from chemical evidence.

  3. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    Science.gov (United States)

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  4. Effect of different drying methods on the composition of steviol glycosides in Stevia rebaudiana Bertoni leaves

    Science.gov (United States)

    Aranda-González, Irma; Betancur-Ancona, David; Chel-Guerrero, Luis; Moguel-Ordóñez, Yolanda

    2017-01-01

    Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g-1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.

  5. Investigation of different concentrations of MS media effects on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Kahrizi, Danial; Ghaheri, Matin; Yari, Zahra; Yari, Khirollah; Bahraminejad, Sohbat

    2018-02-10

    Stevia rebaudiana Bertoni is one of two species that contains steviol glycosides. Among steviol glycosides that extracted from leaves, stevioside and rebaudioside A are the two major and the sweetest glycosides that are about 200-300 times sweeter than sucrose with zero calories. The best method for stevia propagation is tissue culture. So, for investigation of nutrients in medium, we studied the effect of different concentrations of MS media (MS, 0.5 MS, 0.25 MS, 0 MS) on morphological traits, UGT74G1 and UGT76G1 genes expression and accumulation of steviol glycosides in stevia leaves. The best growth rate (0.472 mm/d) has occurred in plants grown in MS media. Also, the highest gene expression of UGT74G1 gene (1.000 Total lab unit) was seen under MS treatment. However, the highest expression level of UGT76G1 gene (1.701 Total lab unit) was observed at plants grown in 0 MS. The highest amount of both Stevioside and Rebaudioside A (14.23 and 8.12, respectively) were accumulated in plants under MS treatment. Obviously, dilution of MS media associated with decreasing in both expression of the intended genes and accumulation of steviol glycosides.

  6. Antidepressant-like effect of peony glycosides in mice.

    Science.gov (United States)

    Mao, Qing-Qiu; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2008-09-26

    The root part of Paeonia lactiflora Pall. (Ranunculaceae), known as peony, is often used in Chinese herbal formulae for the treatment of depression-like disorders. Previous studies in our laboratory have shown that an ethanol extract of peony produced antidepressive effects in mouse models of depression. It is well known that peony contains glycosides such as paeoniflorin and albiflorin, yet it remains unclear whether the total glycosides of peony (TGP) are effective. The present study aims to evaluate the antidepressant-like effects of TGP. The antidepressant-like effects of TGP was determined by using animal models of depression including forced swim and tail suspension tests. The acting mechanism was explored by determining the effect of TGP on the activities of monoamine oxidases. Intragastric administration of TGP at 80 and 160 mg/kg for seven days caused a significant reduction of immobility time in both forced swim and tail suspension tests, yet TGP did not stimulate locomotor activity in the open-field test. In addition, TGP treatment antagonized reserpine-induced ptosis and inhibited the activities of monoamine oxidases in mouse cerebrum. These results suggest that the antidepressive effects of TGP are mediated, at least in part, by the inhibition of monoamine oxidases.

  7. Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels

    International Nuclear Information System (INIS)

    Im, Young-Roc; Lee, Byeong-Joo; Oh, Yong Jun; Hong, Jun Hwa; Lee, Hu-Chul

    2004-01-01

    The effects of the microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels were examined. A four-point bend test and double-notched bend specimens were used to measure the cleavage fracture strength of the alloys and identify the cleavage initiating micro-cracks, respectively. The cleavage fracture strength and DBTT of Mn-Ni-Mo bainitic steels were strongly affected by the alloy carbon content. The decrease in the alloy carbon content resulted in a decrease in the inter-lath cementite-crowded layers and higher cleavage fracture strength. Micro-cracks that formed across the inter-lath cementite-crowded layers were observed to initiate cleavage fracture. The width of these inter-lath cementite-crowded layers was accepted as a cleavage initiating micro-crack size in the micro-mechanical modeling of the cleavage fracture, and the measured cleavage strength values of the bainitic Mn-Ni-Mo steels were well represented by the modified Griffith relationship

  8. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Tatiana Radchenko

    Full Text Available Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids. This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The

  9. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry.

    Science.gov (United States)

    Morrison, Lindsay J; Chai, Wenrui; Rosenberg, Jake A; Henkelman, Graeme; Brodbelt, Jennifer S

    2017-08-02

    Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.

  10. Characterization of SNARE Cleavage Products Generated by Formulated Botulinum Neurotoxin Type-A Drug Products

    Directory of Open Access Journals (Sweden)

    Jack Xie

    2010-08-01

    Full Text Available The study evaluated substrate cleavage product(s generated by three botulinum neurotoxin serotype A (BoNT/A medicinal drug products utilizing a novel and highly specific, light-chain activity, high-performance liquid chromatography (LCA-HPLC method. Samples were reacted with a commercially available BoNT/A fluorescent substrate derived from the SNAP-25 sequence. Reaction products were separated by reversed-phase HPLC. The method detected an atypical cleavage pattern by one of the formulated drug products. IncobotulinumtoxinA produced two cleavage fragments rather than the single fragment typically generated by BoNT/A. Identification confirmed the secondary cleavage at a position corresponding to SNAP-25 Arg198–Ala199 (normal BoNT/A cleavage is Gln197–Arg198. Arg198–Ala199 is also the cleavage site for trypsin and serotype C toxin. Normal cleavage was observed for all other BoNT/A drug product samples, as well as 900-kD and 150-kD bulk toxin BoNT/A. The reason for this unexpected secondary cleavage pattern by one formulated BoNT/A drug product is unknown. Possible explanations include a contaminating protease and/or damage to the 150-kD type-A toxin causing nonspecific substrate recognition and subsequent cleavage uncharacteristic of type-A toxin. The BoNT/A drug products were also analyzed via the LCA-HPLC assay using a commercial BoNT/C fluorescent substrate derived from the syntaxin sequence. Cleavage of the serotype C substrate by incobotulinumtoxinA was also confirmed whilst neither of the other drug products cleaved the syntaxin substrate.

  11. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  12. Reagents for the assay of cardenolide glycosides and aglycones

    International Nuclear Information System (INIS)

    Wilkinson, S.

    1976-01-01

    Some novel reagents are described for use in the radioimmunoassay of the 3-glycone derivatives of cardenolides (cardiac glycosides) and more especially digoxin, digitoxin, gitoxin, periplocin and lanatosides. Using these reagents these cardenolides and their derivatives may be assayed both in aqueous solution and in urine. A method is also described for performing such assays, including a suitable kit. (U.K.)

  13. Endogenous Turnover of Cyanogenic Glycosides in Plants

    DEFF Research Database (Denmark)

    Picmanova, Martina

    , there is strong evidence that CNglcs serve a no less significant purpose as a transport and storage form of reduced nitrogen which may be remobilized and recycled to balance the needs of primary metabolism during certain developmental events. Reduced nitrogen from CNglcs may be recovered either via HCN refixation...... revealed the formation of glycosides of amides, carboxylic acids and "anitriles", including their di- and triglycosides, evidently derived from CNglcs. Based on results common to the three phylogenetically unrelated plant species, a recycling endogenous turnover pathway for CNglcs was suggested in which...

  14. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    Directory of Open Access Journals (Sweden)

    Shahera M. Ezzat

    2002-02-01

    Full Text Available An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl-rhamnoside (1 was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside (2, quercitrin (3, isorhamnetin-3-O-β-D-glucoside (4, isoquercitrin (5, rutin (6, and miquelianin (quercetin-3-O-β-D-glucuronide (7. Structure elucidation of the above mentioned flavonoids was achieved by UV, 1H- and 13C-NMR, 1H-1H COSY, HMQC and EI-MS.

  15. A new phenolic glycoside from the stem of Dendrobium nobile.

    Science.gov (United States)

    Zhou, Xue-Ming; Zheng, Cai-Juan; Wu, Jia-Ting; Chen, Guang-Ying; Zhang, Bin; Sun, Chong-Ge

    2017-05-01

    A new phenolic glycoside dendroside (1), together with seven known compounds (2-8) were isolated from the stems of Dendrobium nobile. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The inhibitory activities of all compounds against three cancer cell lines HeLa, MCF-7 and A549 were evaluated.

  16. Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder.

    Science.gov (United States)

    Zhang, Dan; Liu, Rui; Sun, Lan; Huang, Chao; Wang, Chao; Zhang, Dong-Ming; Zhang, Tian-Tai; Du, Guan-Hua

    2011-05-09

    Gaultheria yunnanensis (Franch.) Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-β-D-xylopyranosyl(1-6)-O-β-D-gluco-pyranoside (J12122) and methyl benzoate-2-O-β-D-xylopyranosyl(1-2)[O-β-D-xylopyranosyl(1-6)]-O-β-D-glucopyranoside (J12123), are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO), and level of reactive oxygen species (ROS). The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS.

  17. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.

    Science.gov (United States)

    Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho

    2008-02-01

    The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic

  18. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph. [A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiy Prospect 59, 119333 Moscow (Russian Federation); Kachalova, Galina S. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, 142290 Pushchino, Moscow Region (Russian Federation); Betzel, Christian [Institute fur Biochemie und Lebensmittelchemie, University of Hamburg, c/o DESY, Building 22, Notkestrasse 85, 22604 Hamburg (Germany); Morgunova, Ekaterina Yu.; Zhukhlistova, Nadezhda E.; Mikhailov, Al’bert M., E-mail: amm@ns.crys.ras.ru [A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiy Prospect 59, 119333 Moscow (Russian Federation)

    2007-10-01

    S. typhimurium uridine phosphorylase has been isolated and crystallized in the presence of ligand. Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.

  19. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E. (Cornell); (Sassari); (Pisa)

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  20. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  1. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...

  2. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    International Nuclear Information System (INIS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-01-01

    Cleavage strength for YBCO-coated conductor is extremely low, typically 0.5 MPa. The remarkable weakness is due to cracks on the slit edge of the conductor. The cleavage stress appears on YBCO double pancake coils impregnated with epoxy. The cleavage stress should be avoided in the coil winding. Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  3. Development and application of a quantitative method based on LC-QqQ MS/MS for determination of steviol glycosides in Stevia leaves.

    Science.gov (United States)

    Molina-Calle, M; Sánchez de Medina, V; Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D

    2016-07-01

    Stevia is a currently well-known plant thanks to the presence of steviol glycosides, which are considered as sweeteners obtained from a natural source. In this research, a method based on LC-MS/MS by using a triple quadrupole detector was developed for quantitation of 8 steviol glycosides in extracts from Stevia leaves. The ionization and fragmentation parameters for selected reaction monitoring were optimized. Detection and quantitation limits ranging from 0.1 to 0.5ng/mL and from 0.5 to 1ng/mL, respectively, were achieved: the lowest attained so far. The steviol glycosides were quantified in extracts from leaves of seven varieties of Stevia cultivated in laboratory, greenhouse and field. Plants cultivated in field presented higher concentration of steviol glycosides than those cultivated in greenhouse. Thus, the way of cultivation clearly influences the concentration of these compounds. The inclusion of branches together with leaves as raw material was also evaluated, showing that this inclusion modifies, either positively or negatively, the concentration of steviol glycosides. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spectroscopic Identification of the Au-C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold.

    Science.gov (United States)

    Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan

    2016-11-08

    Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.

  5. Flavonoid Glycosides from Siparuna gigantotepala Leaves and Their Antioxidant Activity.

    Science.gov (United States)

    Torres Castañeda, Harlen Gerardo; Colmenares Dulcey, Ana Julia; Isaza Martínez, José Hipólito

    2016-01-01

    Two new flavonol glycosides were isolated from the leaves of Siparuna gigantotepala. Their structures were determined to be kaempferol 3-O-β-xylopyranosyl-(1→2)-α-arabinofuranoside (1) and kaempferol 3,7-di-O-methyl-4'-O-α-rhamnopyranosyl-(1→2)-β-glucopyranoside (2). In addition, three known flavonol glycosides, rutin (3), kaempferol 3-O-rutinoside (4), and kaempferol 3,7-di-O-methyl-4'-O-rutinoside (5), and three flavonol aglycones, quercetin (6), kaempferol 3,7-dimethyl ether (7), and kaempferol 3,7,4'-trimethyl ether (8), were also isolated and are reported here for the first time in this species. The structures of compounds 1 and 2 were established on the basis of their LC-MS and one- and two-dimensional (1D)- and (2D)-NMR spectroscopic analyses, combined with acid methanolysis and silylation of sugar moieties for GC-MS. Evaluation of the antioxidant activity, conducted in the 96-well plate format, showed that the flavonoids isolated possess strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and moderate oxygen radical absorption capacity.

  6. Development and application of a fluorescent glucose uptake assay for the high-throughput screening of non-glycoside SGLT2 inhibitors.

    Science.gov (United States)

    Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi

    2015-07-10

    Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts.

    Science.gov (United States)

    Periche, Angela; Castelló, Maria Luisa; Heredia, Ana; Escriche, Isabel

    2015-06-01

    This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid-liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves.

  8. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes

    Science.gov (United States)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud

    2016-12-01

    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  9. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  10. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  11. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus.

    Science.gov (United States)

    Marincola, Gabriella; Wolz, Christiane

    2017-06-02

    In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity.

    Science.gov (United States)

    Huang, Hui-Chi; Lin, Ming-Kuem; Yang, Hsin-Ling; Hseu, You-Cheng; Liaw, Chih-Chuang; Tseng, Yen-Hsueh; Tsuzuki, Minoru; Kuo, Yueh-Hsiung

    2013-09-01

    Two new cardenolides, kalantubolide A (1) and kalantubolide B (2), and two bufadienolide glycosides, kalantuboside A (3) and kalantuboside B (4), as well as eleven known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora. The structures of compounds were assigned based on 1D and 2D NMR spectroscopic analyses including HMQC, HMBC, and NOESY. Biological evaluation indicated that cardenolides (1-2) and bufadienolide glycosides (3-7) showed strong cytotoxicity against four human tumor cell lines (A549, Cal-27, A2058, and HL-60) with IC50 values ranging from 0.01 µM to 10.66 µM. Cardenolides (1-2) also displayed significant cytotoxicity toward HL-60 tumor cell line. In addition, compounds 3, 4, 5, 6, and 7 blocked the cell cycle in the G2/M-phase and induced apoptosis in HL-60 cells. Georg Thieme Verlag KG Stuttgart · New York.

  13. Protein cleavage strategies for an improved analysis of the membrane proteome

    Directory of Open Access Journals (Sweden)

    Poetsch Ansgar

    2006-03-01

    Full Text Available Abstract Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria. Results For the membrane proteomes from all three analyzed organisms, we identified cleavage conditions that achieve better sequence and proteome coverage than trypsin. Greater improvement was obtained for bacteria than for yeast, which was attributed to differences in protein size and GRAVY. It was demonstrated for bacteriorhodopsin that the in silico predictions agree well with the experimental observations. Conclusion For all three examined organisms, it was found that a combination of chymotrypsin and staphylococcal peptidase I gave significantly better results than trypsin. As some of the improved cleavage conditions are not more elaborate than trypsin digestion and have been proven useful in practice, we suppose that the cleavage at both hydrophilic and hydrophobic amino acids should facilitate in general the analysis of membrane proteins for all organisms.

  14. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  15. Characterization of a Non-Canonical Signal Peptidase Cleavage Site in a Replication Protein from Tomato Ringspot Virus.

    Directory of Open Access Journals (Sweden)

    Ting Wei

    Full Text Available The NTB-VPg polyprotein from tomato ringspot virus is an integral membrane replication protein associated with endoplasmic reticulum membranes. A signal peptidase (SPase cleavage was previously detected in the C-terminal region of NTB-VPg downstream of a 14 amino acid (aa-long hydrophobic region (termed TM2. However, the exact location of the cleavage site was not determined. Using in vitro translation assays, we show that the SPase cleavage site is conserved in the NTB-VPg protein from various ToRSV isolates, although the rate of cleavage varies from one isolate to another. Systematic site-directed mutagenesis of the NTB-VPg SPase cleavage sites of two ToRSV isolates allowed the identification of sequences that affect cleavage efficiency. We also present evidence that SPase cleavage in the ToRSV-Rasp2 isolate occurs within a GAAGG sequence likely after the AAG (GAAG/G. Mutation of a downstream MAAV sequence to AAAV resulted in SPase cleavage at both the natural GAAG/G and the mutated AAA/V sequences. Given that there is a distance of seven aa between the two cleavage sites, this indicates that there is flexibility in the positioning of the cleavage sites relative to the inner surface of the membrane and the SPase active site. SPase cleavage sites are typically located 3-7 aa downstream of the hydrophobic region. However, the NTB-VPg GAAG/G cleavage site is located 17 aa downstream of the TM2 hydrophobic region, highlighting unusual features of the NTB-VPg SPase cleavage site. A putative 11 aa-long amphipathic helix was identified immediately downstream of the TM2 region and five aa upstream of the GAAG/G cleavage site. Based on these results, we present an updated topology model in which the hydrophobic and amphipathic domains form a long tilted helix or a bent helix in the membrane lipid bilayer, with the downstream cleavage site(s oriented parallel to the membrane inner surface.

  16. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.

    Science.gov (United States)

    Puttick, G M; Bowers, M D

    1988-01-01

    The behavioral and physiological effects of plant allelochemicals have been difficult to demonstrate; it is not often clear whether the compounds are deterrent, toxic, or both. In this study, we compared the qualitative and quantitative effects of several iridoid glycosides on a generalist lepidopteran herbivore,Spodoptera eridania (Noctuidae). Larval growth and survivorship and larval preference or avoidance were measured on artificial diets containing different iridoid glycosides at different concentrations. We also tested the toxicity/deterrence of these compounds. We found that iridoid glycosides retarded larval growth significantly at relatively low concentrations and that they were usually avoided in preference tests. The toxicity/ deterrence test did not always reflect the results of these other tests. The merits of using a variety of methods for determining deterrence and/or toxicity of plant allelochemicals are discussed.

  17. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives

    OpenAIRE

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung

    2014-01-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratr...

  18. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide.

    Science.gov (United States)

    Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao

    2018-05-30

    The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Saccharification of cellulose by acetolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Yamanaka, S; Takinami, K

    1978-01-01

    For saccharification of cellulose, an acetolysis method using assimilable acid with a microorganism was applied. Based on this method, a new method which gave totally assimilable products was established. The rigid crystalline structure of cellulose was disrupted by acetolysis with 2-2.5 times as much acetic anhydride as cellulose on a weight basis and 1 N sulfuric acid as a catalyst. Then for cleavage of O-acetyl ester and glycosidic bonds, the resulting amorphous acetolysate of cellulose could easily be hydrolyzed by heating in 1 N sulfuric acid at 120/sup 0/C for 1-1.5 h without over-disruption of glucose. Ninety-eight % of the cellulose used was recovered in the form of hydrolysate having about 30% saccharide concentration. The hydrolysate obtained was composed of 74% glucose, 13% cellobiose and 11% mono-O-acetyl glucose on a weight basis.

  20. Dopaol 2-keto- and 2,3-diketo-glycosides from Chelone obliqua (Scrophulariaceae)

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Olsen, Carl Erik; Jensen, Søren Rosendal

    2004-01-01

    Two unique 2-(3,4-dihydroxyphenyl)ethyl glycosides, namely, dopaol beta-D-2-ketoglucopyranoside and dopaol beta-D-2,3-diketoglucopyranoside, were isolated from Chelone obliqua together with the iridoid glucoside catalpol, dopaol beta-D-glucopyranoside, descaffeoylverbascoside, and verbascoside. G...

  1. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein.

    Science.gov (United States)

    Kuyumcu-Martinez, Muge; Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; Green, Kim Y; Lloyd, Richard E

    2004-08-01

    Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.

  2. Anti-Inflammatory Activity of Methyl Salicylate Glycosides Isolated from Gaultheria yunnanensis (Franch. Rehder

    Directory of Open Access Journals (Sweden)

    Guan-Hua Du

    2011-05-01

    Full Text Available Gaultheria yunnanensis (Franch. Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-b-D-xylopyranosyl(1-6-O-b-D-gluco-pyranoside (J12122 and methyl benzoate-2-O-β-D-xylopyranosyl(1-2[O-β-D-xylopyranosyl(1-6]-O-β-D-glucopyranoside (J12123, are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO, and level of reactive oxygen species (ROS. The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS.

  3. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  4. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    Science.gov (United States)

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  5. Determination of bond energies by mass spectrometry. Some transition metal carbonyls

    International Nuclear Information System (INIS)

    Michels, G.D.

    1979-01-01

    Two groups of transition metal carbonyls have been studied, M(CO) 6 and M(CO) 5 CS complexes of the Group VIB metals and M 2 (CO) 10 complexes of the Group VIIB metals. Results for the hexacarbonyl complexes indicate that the measured fragmentation energies are in error by 0.25 +- 0.02 eV per CO produced. This is attributed to excitation of CO to the first vibrational state. Least-squares dissociation energies calculated from corrected data for M(CO) 5 CS complexes indicate that the M--CS bond is 3 to 4 times stronger than the M--CO bonds. Substitution of CS for CO in going from M(CO) 6 to M(CO) 5 CS weakens the remaining M--CO bonds by an average of 0.2 eV. Previously unreported MnTc(CO) 10 and TcRe(CO) 10 are prepared by halide substitution of Tc(CO) 5 Br and Re(CO) 5 Br with Mn(CO) 5 - and Tc(CO) 5 - , respectively. In the positive ion, metal and mixed-metal decacarbonyls are considered as (CO) 5 M + --M(CO) 5 complexes possessing five strong and five weak M--CO bonds. For Mn 2 (CO) 10 and Re 2 (CO) 10 , M + --M dissociation energies are 3.0 +- 0.1 and 4.0 +- 0.3 eV, respectively. These energies are 2.5 times greater than those reported for homolytic cleavage to M(CO) 5 + and M(CO) 5

  6. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Directory of Open Access Journals (Sweden)

    Takuji Oyama

    Full Text Available CpMan5B is a glycoside hydrolase (GH family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196 in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  7. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Science.gov (United States)

    Oyama, Takuji; Schmitz, George E; Dodd, Dylan; Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  8. Radioimmunoassay method for the determination of cardiotonic glycosides

    International Nuclear Information System (INIS)

    1975-01-01

    A kit method for the in vitro determination of digoxin and digitoxin is described. The blood serum is mixed with the reagent which consists of an aqueous buffer solution containing a radiolabeled hapten for the glycoside. Antiserum with specific antibodies is added and the mixture is incubated. Thereafter, a thin strip of membrane mainly consisting of an ionexchanger is brought into contact with the mixture to separate the antibody bound hapten from the unbound hapten. The ratios of both are determined by counting the radioactive hapten

  9. Soulieoside R : A New Cycloartane Triterpenoid Glycoside from Souliea vaginata

    Directory of Open Access Journals (Sweden)

    Qiongyu Zou

    2018-01-01

    Full Text Available A new cycloartane triterpenoid glycoside, named soulieoside R, was isolated from the rhizomes of Souliea vaginata. Its structure was characterized by comprehensive analyses of 1H, 13C NMR, COSY, HSQC, HMBC, NOESY spectroscopic, and HRESIMS mass spectrometric data, as well as chemical methods. The new compound showed weak inhibitory activity against three human cancer cell lines.

  10. A new lignan glycoside from the rhizomes of Imperata cylindrica.

    Science.gov (United States)

    Lee, Dae-Young; Han, Kyung-Min; Song, Myoung-Chong; Lee, Do-Gyeong; Rho, Yeong-Deok; Baek, Nam-In

    2008-01-01

    A new lignan glycoside, 6-acetyl-1-[1,3-(4,4'-dihydroxy-3,3'-dimethoxy-beta-truxinyl)-beta-d-fructofuranosyl]-alpha-d-glucopyranoside (1), named impecyloside, was isolated from the rhizomes of Imperata cylindrica. The structure of the compound was determined by spectroscopic data including FABMS, UV, IR, 1H NMR and 13C NMR (DEPT) and 2D NMR (COSY, HSQC, HMBC).

  11. Identification of Iridoids in Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Sevast. by UPLC-ESI-qTOF-MS/MS

    Directory of Open Access Journals (Sweden)

    Alicja Z. Kucharska

    2016-09-01

    Full Text Available Iridoid profiles of honeysuckle berry were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry UPLC-ESI-qTOF-MS/MS in positive and negative ions mode. The MS fragmentation pathways of detected iridoid glycosides were also studied in both modes. In the negative ESI mass spectra, iridoids with a methyl ester or lactone structure have preferentially produced adduct [M + HCOOH − H]− ions. However, protonated ions of molecular fragments, which were released by glycosidic bond cleavage and following fragmentation of aglycone rings, were more usable for iridoid structure analysis. In addition, the neutral losses of H2O, CO, CO2, CH3OH, acetylene, ethenone and cyclopropynone have provided data confirming the presence of functional substituents in the aglycone. Among the 13 iridoids, 11 were identified in honeysuckle berries for the first time: pentosides of loganic acid (two isomers, pentosides of loganin (three isomers, pentosyl sweroside, and additionally 7-epi-loganic acid, 7-epi-loganin, sweroside, secologanin, and secoxyloganin. The five pentoside derivatives of loganic acid and loganin have not been previously detected in the analyzed species. Honeysuckle berries are a source of iridoids with different structures, compounds that are rarely present in fruits.

  12. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry.

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri

    2007-01-01

    Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.

  13. Endocytic down-regulation of ErbB2 is stimulated by cleavage of its C-terminus

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Bruun, Silas; Grandal, Michael Vibo

    2007-01-01

    inhibition of HSP90 with geldanamycin this cleavage is accompanied by proteasome-dependent endocytosis of ErbB2. However, it is unknown whether C-terminal cleavage is linked to endocytosis. To study ErbB2 cleavage and endocytic trafficking, we fused yellow fluorescent protein (YFP) and cyan fluorescent...

  14. Effects of elevated CO2 and ozone on phenolic glycosides of trembling aspen

    Science.gov (United States)

    James K. Nitao; Muraleedharan G. Nair; William J. Mattson; Daniel A. Herms; Bruce A. Birr; Mark D. Coleman; Terry M. Trier; J. G. Isebrands

    1996-01-01

    We tested the effects of elevated CO2 and ozone on concentrations of the phenolic glycosides salicortin and tremulacin in immature and mature foliage of the trembling aspen (Populus tremuloides) clones 216, 259, and 271.

  15. Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Foldynová-Trantírková, Silvie; Špačková, Naďa; Robeyns, K.; Meervelt van, L.; Blankenfeldt, W.; Vokáčová, Zuzana; Šponer, Jiří; Trantírek, Lukáš

    2009-01-01

    Roč. 37, č. 21 (2009), s. 7321-7331 ISSN 0305-1048 R&D Projects: GA AV ČR(CZ) IAA400040802; GA AV ČR IAA400550701; GA ČR GA203/09/1476; GA MŠk(CZ) LC06030; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60220518; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : pyrimidalization * glycosidic torion angle Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.479, year: 2009

  16. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    Directory of Open Access Journals (Sweden)

    Sinem Ö. ENGİNLER

    2015-01-01

    Full Text Available Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocytes were collected. The cumulus oocyte complexes were recovered by the slicing method. A total of 1818 selected oocytes were divided into two groups and used for maturation (88.25%. The first group was created as supplemented with cysteamine (Group A and second group (Group B, control without cysteamine in TCM-199. The two groups were incubated for 24 h at 38.8 °C in an atmosphere of 5% CO2 in humidified air for in vitro maturation (IVM. After IVM, oocytes were fertilized with 50 x 107 / mL fresh ram semen in BSOF medium for 18 h. After fertilization, maturation groups were divided into two subgroups with different culture media: Group AI-SOF (Synthetic Oviduct Fluid medium, Group AII-CR1aa (Charles Rosencrans medium, Group BI-SOF and Group BII-CR1aa were achieved. Cleavage rates were evaluated at day 2. post insemination. The rates of cleavage were detected as 59.54% (184/309, 55.44% (173/312, 65.34% (215/329, 59.34% (200/337 respectively, with showing no statistically significant difference between the groups at the level of P>0.05. In conclusion, supplementing cysteamine to maturation media in TCM-199 did not affect the cleavage rates of sheep embryos in SOF and CR1aa culture media.

  17. Bilary and urinary excretion of five cardiac glycosides and its correlation with their physical and chemical properties.

    Science.gov (United States)

    Marzo, A; Ghirardi, P

    1977-05-01

    Biliary and urinary excretion of five tritium-labelled cardiac glycosides, i.e. Ouabain, K-strophanthoside, Digoxin, Digitoxin and Deslanatoside C, were investigated in anaesthetized guinea-pigs 5 h after i.v. or enteral administration. Urinary excretion is the main route of elimination in the case of Ouabain and Deslanatoside C. Conversely, biliary excretion is predominant in the case of Digoxin and Digitoxin. K-strophanthoside is excreted both via bile and urine. In conscious guinea-pigs treated i.v. with the same cardiac glycosides the highest levels were observed in urine, bile, kidneys and liver. The relative values of those levels were in agreement with the excretion pattern observed in anaesthetized animals. An inverse linear relation (P less than 0.05) was encountered between biliary excretion rate and polarity of glycoside molecula. This correlation has been previously observed by other authors in other species, but not in the rabbit. This suggests that the correlation may not be considered generally applicable at present.

  18. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    Science.gov (United States)

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  19. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; André, G.; Gottschalk, T.E.

    2004-01-01

    and oligosaccharides, respectively. Bond cleavage analysis of oligosaccharide degradation by wild-type and mutant AMY1 supports that Tyr105 is critical for binding at subsite -6. Substrate binding is improved by T212(Y/W) introduced at subsite +4 and the [Y105A/ T212(Y/W)] AMY1 double mutants synergistically enhanced......The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites - 6 and +4 ( substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved...... in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and 1% activity (k(cat)/K-m) on starch, amylose DP17, and 2-chloro-4-nitrophenyl β-D-maltoheptaoside, whereas T212Y at subsite +4 has 32, 370, and 90...

  20. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo

    2018-02-09

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5\\'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5\\'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5\\'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5\\'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5\\'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5\\' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5\\'-flaps.

  1. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo; Hamdan, Samir; Hingorani, Manju M

    2018-01-01

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5'-flaps.

  2. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.

    Science.gov (United States)

    Zhu, Feng; Rodriguez, Jacob; Yang, Tianyi; Kevlishvili, Ilia; Miller, Eric; Yi, Duk; O'Neill, Sloane; Rourke, Michael J; Liu, Peng; Walczak, Maciej A

    2017-12-13

    Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd 2 (dba) 3 (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the β-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the β-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric

  3. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    Directory of Open Access Journals (Sweden)

    Asztalos Andrea

    2012-08-01

    Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures

  4. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  5. Additional New Minor Cucurbitane Glycosides from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2014-03-01

    Full Text Available Continuous phytochemical studies of the crude extract of Luo Han Guo (Siraitia grosvenorii furnished three additional new cucurbitane triterpene glycosides, namely 11-deoxymogroside V, 11-deoxyisomogroside V, and 11-deoxymogroside VI. The structures of all the isolated compounds were characterized on the basis of extensive NMR and mass spectral data as well as hydrolysis studies. The complete 1H- and 13C-NMR spectral assignments of the three unknown compounds are reported for the first time based on COSY, TOCSY, HSQC, and HMBC spectroscopic data.

  6. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors.

    Science.gov (United States)

    Nile, Shivraj Hariram; Nile, Arti Shivraj; Keum, Young Soo; Sharma, Kavita

    2017-11-15

    This study aimed to determine the flavonol glycosides from onion solid waste (OSW) using HPLC analysis, with antioxidant and enzyme inhibitory activities. We found considerable amount of quercetin-4'-O-monoglucoside (QMG: 254.85), quercetin-3,4'-O-diglucoside (QDG: 162.34), quercetin (Q: 60.44), and isorhamnetin-3-glucoside (IMG: 23.92) (mg/100g) dry weight (DW) of OSW. For OSW, the methanol and ethanol showed the strongest antioxidant activities, followed by ethyl acetate, chloroform, and n-hexane extracts. Among the flavonols, Q and QDG possessed higher antioxidant activities. OSW and flavonol glycosides displayed significant enzyme inhibitory activity, with IC 50 values ranging from 12.5±0.11 to 32.5±0.28 for OSW, 8.2±0.07 to 16.8±0.02 for flavonol glycosides, and 4.2±0.05μg/mL for thiourea (positive control) towards urease; while 15.2±0.8 to 35.8±0.2 (μg/mL) for OSW, 10.5±0.06 to 20.8±0.05 (μg/mL) for flavonol glycosides, and 6.5±0.05μg/mL for allopurinol (positive control) towards xanthine oxidase, respectively. The OSW and flavonol glycosides may thus be considered as potential antioxidant and antigout agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cardenolide glycosides from Elaeodendron australe var. integrifolium.

    Science.gov (United States)

    Butler, Mark S; Towerzey, Leanne; Pham, Ngoc B; Hyde, Edward; Wadi, Sao Khemar; Guymer, Gordon P; Quinn, Ronald J

    2014-02-01

    Extracts from dried leaf and stems of Elaeodendron australe var. integrifolium (Celastraceae) collected in South East Queensland, Australia, were active in an assay that measured Ca(2+) driven expression of IL-2/luciferase designed to identify inhibitors of the ICRAC channel. Bioassay-guided isolation using C18 and polyamide column chromatography, HPLC (Phenyl and C18) and centrifugal partition chromatography (CPC) led to the isolation of digitoxigenin (1) and three cardenolide glycosides, glucoside 2, quinovoside 3 and the new natural product xyloside 4, as the active components with low nM activity in the reporter assay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    Science.gov (United States)

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier

  9. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  10. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  11. Separation of glycosidic catiomers by TWIM-MS using CO2 as a drift gas.

    Science.gov (United States)

    Bataglion, Giovana A; Souza, Gustavo Henrique Martins Ferreira; Heerdt, Gabriel; Morgon, Nelson H; Dutra, José Diogo Lisboa; Freire, Ricardo Oliveira; Eberlin, Marcos N; Tata, Alessandra

    2015-02-01

    Traveling wave ion mobility mass spectrometry (TWIM-MS) is shown to be able to separate and characterize several isomeric forms of diterpene glycosides stevioside (Stv) and rebaudioside A (RebA) that are cationized by Na(+) and K(+) at different sites. Determination and characterization of these coexisting isomeric species, herein termed catiomers, arising from cationization at different and highly competitive coordinating sites, is particularly challenging for glycosides. To achieve this goal, the advantage of using CO2 as a more massive and polarizable drift gas, over N2, was demonstrated. Post-TWIM-MS/MS experiments were used to confirm the separation. Optimization of the possible geometries and cross-sectional calculations for mobility peak assignments were also performed. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Extraction of Stevia rebaudiana bertoni sweetener glycosides by supercritical fluid methods.

    Directory of Open Access Journals (Sweden)

    Juan José Hinojosa-González

    2017-05-01

    Full Text Available Aim. The aim was to evaluate the supercritical carbon dioxide extraction method with and without the addition of co-solvent to the system (mixture water: ethanol to obtain the glycosides from leaves of Stevia rebaudiana Bertoni. Methods. A SFT-150 SFE / SFR model with CO2 as a fluid was used for the supercritical extraction. The variables studied were temperature, pressure, extraction time and the presence or absence of the co-solvent (water-ethanol mixture in a concentration of 70:30 v/v, incorporated in different proportions to determine the effect on yield. The amount of glycoside sweeteners was analyzed by High Performance Liquid Chromatography (HPLC. Results. The pressure was the factor that favored the extraction, which was selective in obtaining Rebaudioside A with yields no greater than 2%. The inclusion of the co-solvent achieved an increase in yield to values of 2.9% Conclusion. Supercritical CO2 individually and mixed with ethanol-water as a co-solvent was not efficient to extract Stevia rebaudiana stevioside sweeteners

  13. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

    Science.gov (United States)

    Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank

    2013-01-01

    Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005

  14. From Sugars to Sugar Mimics

    DEFF Research Database (Denmark)

    The mechanism of enzymatic cleavage of glycosides has been continuously under debate and design of new glycosidase inhibitors has been based on structural similarity of putative intermediates or transition states. Recently the aminocyclopentanols have drawn considerable attention as potent glycos...

  15. Phenylethanoid Glycosides of Cistanche on menopausal syndrome model in mice

    Directory of Open Access Journals (Sweden)

    Shuo Tian

    2017-05-01

    Full Text Available Cistanche is the traditional and precious Chinese herbal, with two thousand years of use history in China. It has the effect on tonifying kidney, strong supplement to the liver and kidney, and replenishing essence and blood, known as the “desert ginseng”. Here, we explored the mechanism of Phenylethanoid Glycosides of Cistanche (PGC to the model mice of menopausal syndrome, as well as the therapeutic effect and characteristics of PGC to the menopausal syndrome. In this study, KM mice were reproduced by the complete resection of the ovaries on both sides of the back to establish the model mice of menopausal syndrome (MPS, and received distilled water or drugs, respectively. Model mice received distilled water. Mice received 200 mg/(kg day high doses of Phenylethanoid Glycosides of Cistanche (HPGC, and 100 mg/(kg day medium doses of Phenylethanoid Glycosides of Cistanche (MPGC, and 50 mg/(kg day low doses of Phenylethanoid Glycosides of Cistanche (LPGC. After 21 days, it could determine the number of independent activities and the number of standing, the latent period of first entering the dark room, and the electric number. It also calculated the viscera index of uterus, thymus, spleen, measured the levels of estradiol (E2, testosterone (T, luteinizing hormone (LH, and follicle-stimulating hormone (FSH in the serum. Furthermore, it observed the pathological changes of uterus, thymus, spleen and pituitary of mice. The results showed that behavioral indicators: Compared with the model group (MG, HPGC, MPGC, LPGC could increase the independent activities (P < 0.01; HPGC, MPGC could increase the number of standing, the latent period of first entering the dark room, and reduce the electric number (P < 0.01; LPGC could increase the number of standing (P < 0.05; Viscera index: Compared with MG, HPGC, MPGC could increase the viscera index of uterus, thymus, spleen (P < 0.01; LPGC could increase the viscera index of uterus (P < 0

  16. Effect of harvest timing on leaf production and yield of diterpene glycosides in Stevia rebaudiana Bert: a specialty perennial crop for Mississippi

    Science.gov (United States)

    Stevia rebaundiana (Bertoni), a perennial shrub of the Asteraceae, is one of the most important sources of non-caloric natural sweeteners. Stevia’s plant extracts and glycosides have been used for several years in Paraguay and Brazil. Several studies suggest that Stevia and its glycosides exert ben...

  17. Pressure modulates the self-cleavage step of the hairpin ribozyme

    Science.gov (United States)

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-03-01

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.

  18. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum.

    Science.gov (United States)

    De Melo, Giany O; Malvar, David do C; Vanderlinde, Frederico A; Rocha, Fabio F; Pires, Priscila Andrade; Costa, Elson A; de Matos, Lécia G; Kaiser, Carlos R; Costa, Sônia S

    2009-07-15

    To identify the compounds responsible for the antinociceptive and anti-inflammatory effects previously described for Sedum dendroideum, through bioassay-guided fractionation procedures. Antinociceptive activity was evaluated through mouse acetic acid-induced writhing model. The anti-inflammatory activity was assessed through croton oil-induced mouse ear oedema and carrageenan-induced peritonitis. The Sedum dendroideum juice afforded seven known flavonoids identified with basis on NMR data. The oral administration of the major kaempferol glycosides kaempferitrin [1] (17.29 micromol/kg), kaempferol 3-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside [2] (16.82 micromol/kg), kaempferol 3-O-neohesperidoside-7-O-alpha-rhamnopyranoside [3] (13.50 micromol/kg) or alpha-rhamnoisorobin [5] (23.13 micromol/kg) inhibited by 47.3%, 25.7%, 60.2% and 58.0%, respectively, the acetic acid-induced nociception (indomethacin: 27.95 micromol/kg, p.o.; 68.9%). Flavonoids 1, 2, 3 or 5, at the same doses, reduced by 39.5%, 46.5%, 35.6% and 33.3%, respectively, the croton oil-induced oedema (dexamethasone: 5.09 micromol/kg, s.c.; 83.7%) and impaired leukocyte migration by 42.9%, 46.3%, 50.4% and 49.6%, respectively (dexamethasone: 5.09 micromol/kg, s.c.; 66.1%). Our findings show that the major kaempferol glycosides may account for the renowned medicinal use of Sedum dendroideum against pain and inflammatory troubles.

  19. Steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.) promote dermal fibroblast migration in vitro.

    Science.gov (United States)

    Esposito, Debora; Munafo, John P; Lucibello, Teresa; Baldeon, Manuel; Komarnytsky, Slavko; Gianfagna, Thomas J

    2013-07-09

    Preparations derived from bulbs of various Lilium species have been used to promote the healing of skin abrasions, sores and burns and to aid in healing wounds in Traditional Chinese and Greco-Roman Medicine. To evaluate fractionated Easter lily bulb extracts and their steroidal glycosides (1-5) for the promotion of dermal fibroblast migration in vitro, a model for the early events in wound healing. An activity-guided screening approach was used by coupling sequential solvent extraction, gel permeation chromatography (GPC), and semi-preparative reverse-phase high performance liquid chromatography (RP-HPLC) with an in vitro dermal fibroblast migration assay. Cytotoxicity was evaluated with methyl thiazole tetrazolium (MTT). To gain insight into the mode of action of the steroidal glycosides, nitric oxide (NO) production, and expression of genes for transforming growth factor beta-1 (TGF-β) and its receptors were evaluated. Fractionated bulb extracts and the two isolated steroidal glycoalkaloids (1) and (2) induced NO production and TGF-β receptor I mRNA expression in fibroblast cell culture. In a cytotoxicity assay, steroidal glycosides (1) and (3) had IC50 values of 8.2 and 8.7 µM, but the natural acetylation of the C-6″' hydroxy of the terminal glucose unit in (2) resulted in a 3-fold decrease in cell cytotoxicity when compared with (1). Results from the dermal fibroblast migration assay revealed that the steroidal glycoalkaloids (1) and (2), and the furostanol saponin (3) promoted fibroblast migration from the range of 23.7±5.7 to 37.7±5.1%, as compared with the control. Collectively, our data demonstrate that the steroidal glycosides present in Easter lily bulbs induce, at least in part, the observed dermal fibroblast migration activity of the bulb extracts. This is the first evidence that steroidal glycosides from Lilium longiflorum may potentially play a role in the wound healing process and may provide a scientific basis for the historical use of lily

  20. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    Science.gov (United States)

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  1. Carbohydrate analysis of hemicelluloses by gas chromatography-mass spectrometry of acteylated methyl glycosides

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Plackett, David; Egsgaard, Helge

    2012-01-01

    A method based on gas chromatography–mass spectrometry analysis of acetylated methyl glycosides was developed in order to analyze monosaccharides obtained from various hemicelluloses. The derivatives of monosaccharide standards, arabinose, glucose, and xylose were studied in detail and 13C...

  2. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles.

    Science.gov (United States)

    Foppa, Lucas; Copéret, Christophe; Comas-Vives, Aleix

    2016-12-28

    Carbon monoxide is a ubiquitous molecule, a key feedstock and intermediate in chemical processes. Its adsorption and activation, typically carried out on metallic nanoparticles (NPs), are strongly dependent on the particle size. In particular, small NPs, which in principle contain more corner and step-edge atoms, are surprisingly less reactive than larger ones. Hereby, first-principles calculations on explicit Ru NP models (1-2 nm) show that both small and large NPs can present step-edge sites (e.g., B 5 and B 6 sites). However, such sites display strong particle-size-dependent reactivity because of very subtle differences in local chemical bonding. State-of-the-art crystal orbital Hamilton population analysis allows a detailed molecular orbital picture of adsorbed CO on step-edges, which can be classified as flat (η 1 coordination) and concave (η 2 coordination) sites. Our analysis shows that the CO π-metal d π hybrid band responsible for the electron back-donation is better represented by an oxygen lone pair on flat sites, whereas it is delocalized on both C and O atoms on concave sites, increasing the back-bonding on these sites compared to flat step-edges or low-index surface sites. The bonding analysis also rationalizes why CO cleavage is easier on step-edge sites of large NPs compared to small ones irrespective of the site geometry. The lower reactivity of small NPs is due to the smaller extent of the Ru-O interaction in the η 2 adsorption mode, which destabilizes the η 2 transition-state structure for CO direct cleavage. Our findings provide a molecular understanding of the reactivity of CO on NPs, which is consistent with the observed particle size effect.

  3. NATURAL PLANT TOXICANT – CYANOGENIC GLYCOSIDE AMYGDALIN: CHARACTERISTIC, METABOLISM AND THE EFFECT ON ANIMAL REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Eduard Kolesár

    2015-02-01

    Full Text Available The amount of cyanogenic glycosides, as natural plant toxicants, in plants varies with plant species and environmental effects. Cyanogenic glycoside as an amygdalin was detected in apricot kernels, bitter almonds and peach, plum, pear and apple seeds. Amygdalin itself is non-toxic, but its HCN production decomposed by some enzymes is toxic substance. Target of this review was to describe the characteristic, metabolism and possible effects of amygdalin on reproductive processes. Previous studies describe the effects of natural compound amygdalin on female and male reproductive systems focused on process of steroidogenesis, spermatozoa motility and morphological abnormalities of spermatozoa. In accordance to the previous studies on amygdalin its benefit is controversial.

  4. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    Science.gov (United States)

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  5. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome

    Directory of Open Access Journals (Sweden)

    Lafuente Esther M

    2010-09-01

    Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific

  6. A Chalcone Glycoside from the Fruits of Sorbus commixta Hedl.

    Directory of Open Access Journals (Sweden)

    Kyu Yun Chai

    2009-12-01

    Full Text Available Sorbus commixta Hedl. (Rosaceae has been traditionally used in oriental countries for the treatment of asthma and other bronchial disorders. In this study, a chalcone glycoside was isolated from the ethyl acetate extract of the fruits of this plant. The compound was identified as neosakuranin based on the spectroscopic analysis and comparion with literature data. This is the first report of isolation of neosakuranin from Sorbus commixta.

  7. Soulieoside O, a new cyclolanostane triterpenoid glycoside from Souliea vaginata.

    Science.gov (United States)

    Wu, Hai-Feng; Li, Peng-Fei; Zhu, Yin-Di; Zhang, Xiao-Po; Ma, Guo-Xu; Xu, Xu-Dong; Liu, Yi-Lin; Luo, Zheng-Hong; Chen, Di-Zhao; Zou, Qiong-Yu; Zhao, Zi-Jian

    2017-12-01

    A new cyclolanostane triterpenoid glycoside, soulieoside O (1), together with 25-O-acetylcimigenol-3-O-β-d-xylopyranoside (2) and cimigenol-3-O-β-d-xylopyranoside (3), was isolated from the rhizomes of Souliea vaginata. Their structures were characterized by spectroscopic analysis and chemical methods. The new compound showed moderate inhibitory activity against three human cancer cell lines with IC 50 values of 9.3-22.5 μM.

  8. High production of succinyl isoflavone glycosides by Bacillus licheniformis ZSP01 resting cells in aqueous miscible organic medium.

    Science.gov (United States)

    Zhang, Sen; Chen, Guoguang; Chu, Jianlin; Wu, Bin; He, Bingfang

    2015-01-01

    To achieve efficient production of succinyldaidzin and succinylgenistin, resting cells of a solvent-stable strain Bacillus licheniformis ZSP01 were used to react with pure isoflavones or soybean flour extract in a reaction medium with 10% dimethyl sulfoxide. Strikingly, 0.8 mM daidzein, 0.8 mM genistein, 2.0 mM daidzin, and 2.0 mM genistin were transformed to succinyl isoflavone glycosides in 27 H (yield >90%). The soybean flour extract (6.1%, w/v) contained 0.32 mM daidzein, 0.84 mM daidzin, 0.38 mM genistein, and 1.04 mM genistin. Over 95% of total isoflavones (daidzein, daidzin, genistein, and genistin) in the soybean flour extract were converted to succinyl isoflavone glycosides after 27 H. Strain ZSP01 shows both high glycosylation and succinylation activities. These results suggest that B. licheniformis ZSP01 could be useful for the efficient production of succinyl soybean isoflavone glycosides. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  9. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    Science.gov (United States)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  10. Phytochemical study of the trunk bark of Citharexylum spinosum L. growing in Tunisia: Isolation and structure elucidation of iridoid glycosides.

    Science.gov (United States)

    Saidi, Ilyes; Waffo-Téguo, Pierre; Ayeb-Zakhama, Asma E L; Harzallah-Skhiri, Fethia; Marchal, Axel; Ben Jannet, Hichem

    2018-02-01

    A phytochemical investigation of the trunk bark ethyl acetate extract of Citharexylum spinosum L. has led to the isolation of four previously undescribed iridoid glycosides, tunispinosides A-D, and five known phenylethanoid glycosides, verbascoside, leucosceptoside A, martynoside, isoverbascoside and plantainoside C, together with 4-hydroxy-2,6-dimethoxyphenyl 6'-O-vanilloyl-β-D-glucopyranoside, two 8,3'-neolignan glycosides, plucheosides D 1 -D 2 , coniferyl aldehyde, vanillic acid, syringic acid, ferulic acid and tyrosol. All compounds were isolated for the first time from C. spinosum. Their isolation was carried out using silica gel column and high performance liquid chromatography (HPLC). Structures were established by spectroscopic means including 1D and 2D NMR experiments, and spectrometric ESI-HRMS analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Crystallographic Studies Evidencing the High Energy Tolerance to Disrupting the Interface Disulfide Bond of Thioredoxin 1 from White Leg Shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Adam A. Campos-Acevedo

    2014-12-01

    Full Text Available Thioredoxin (Trx is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2. This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  12. Crystallographic studies evidencing the high energy tolerance to disrupting the interface disulfide bond of thioredoxin 1 from white leg shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Campos-Acevedo, Adam A; Rudiño-Piñera, Enrique

    2014-12-15

    Thioredoxin (Trx) is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx) revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2). This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  13. Fractographic observations of cleavage initiation in the ductile-brittle transition region of a reactor-pressure-vessel steel

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Shetty, D.K.; Skidmore, A.J.

    1983-01-01

    This note reports the results of a fractographic study conducted on a group of 1T compact fracture toughness specimens of a heavy-section A508 steel denoted TSE6 tested in the ductile-brittle transition region (22 and 82 0 C). The fatigue-precracked specimens were loaded at a rapid rate (760 or 550 mm per second) to promote cleavage-crack growth and lower-bound toughness behavior. All specimens experienced unstable cleavage fracture prior to reaching a maximum in the load displacement curve. Some ductile crack growth occurred in half of the specimens. The objective of fractographic examinations was to understand the observed statistical variations in cleavage initiation by (a) locating the origins of unstable cleavage fracture in the vicinity of the fatigue-precrack or ductilerupture crack fronts, (b) identifying microstructural features associated with the triggering of cleavage, and (c) documenting characteristic fracture surface dimensions such as the extent of stable-crack growth prior to unstable cleavage (Δα) and the distance of the cleavage origin from the ductilerupture front, /chi/ (or fatigue-crack front when Δα = 0)

  14. Cyanogenic glycosides in plant-based foods available in New Zealand.

    Science.gov (United States)

    Cressey, Peter; Saunders, Darren; Goodman, Janet

    2013-01-01

    Cyanogenic glycosides occur in a wide range of plant species. The potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide, which may result in acute cyanide poisoning and has also been implicated in the aetiology of several chronic diseases. One hundred retail foods were sampled and analysed for the presence of total hydrocyanic acid using an acid hydrolysis-isonicotinic/barbituric acid colourimetric method. Food samples included cassava, bamboo shoots, almonds and almond products, pome fruit products, flaxseed/linseed, stone fruit products, lima beans, and various seeds and miscellaneous products, including taro leaves, passion fruit, spinach and canned stuffed vine leaves. The concentrations of total hydrocyanic acid (the hydrocyanic acid equivalents of all cyanogenic compounds) found were consistent with or lower than concentrations reported in the scientific literature. Linseed/flaxseed contained the highest concentrations of total hydrocyanic acid of any of the analysed foods (91-178 mg kg(-1)). Linseed-containing breads were found to contain total hydrocyanic acid at concentrations expected from their linseed content, indicating little impact of processing on the total hydrocyanic acid content. Simulation modelling was used to assess the risk due to the total hydrocyanic acid in fruit juice and linseed-containing bread. 

  15. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  16. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels

    Energy Technology Data Exchange (ETDEWEB)

    Martin, May L.; Fenske, Jamey A.; Liu, Grace S.; Sofronis, Petros [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, Ian M., E-mail: ianr@illinois.edu [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States)

    2011-02-15

    Quasi-cleavage, a common feature of hydrogen-induced fracture surfaces, is generally taken as being cleavage-like but not along a known cleavage plane. Despite the frequency with which this surface is observed, the relationship to the underlying microstructure remains unknown. Through a combination of topographical reconstruction of secondary electron microscope fractographs and a transmission electron microscopy study of the microstructure from site-specific locations, it will be shown that the features on quasi-cleavage surfaces are ridges that can be correlated with sub-surface intense and highly localized deformation bands. It will be demonstrated that the fracture surface arises from the growth and coalescence of voids that initiate at and extend along slip band intersections. This mechanism and process is fully consistent with hydrogen enhancing and localizing plastic processes.

  17. Gas chromatography-mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media

    Science.gov (United States)

    Chiantore, Oscar; Riedo, Chiara; Scalarone, Dominique

    2009-07-01

    Plant gums are complex polysaccharides used in the field of cultural heritage especially as binding media. Classification of polysaccharides may be achieved on the basis of monosaccharides composition after cleavage of glycosidic bond. Characterization of plant gums in works of art is complicated by the necessity of to use a method minimally invasive and requiring a small mount of sample. Pyrolisys is an useful method to obtain polysaccharides decomposition and generally pyrolysis products can be identified by the use of gas chromatography-mass spectrometry. This paper describes a method where two plant gums, arabic and tragacanth, were pyrolized in presence of silylating agents (HMDS e BSTFA alone and with TMCS as catalyst) using an on-line Py-GC/MS apparatus. Some characteristic trimethylsilyl derivatives of monosaccharides were identified on the basis of mass spectra. The presence of characteristic pyrolysis products of sugars allows to distinguish the two gums.

  18. Preparation of Low Molecular Weight Chitosan by Radiation and its Application for Plant Growth Promoter. Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    Darwis, D.; Puspitasari, T.; Iramani, D.; Susilowati, Sri; Pangerteni, D.S., E-mail: darmawan_p3tir@batan.go.id [National Nuclear Energy Agency, Centre for Application of Isotopes and Radiation Technology (Indonesia)

    2014-07-15

    Chitosan was prepared through the alkaline deacetylation of chitin from shrimp shell waste. Chitosan with a degree of deacetylation of about 70% was produced by hot alkaline deacetylation (DDA) at 90°C for 8 hours or at room temperature deacetylation for 7 days. Through these processes, chitosan with an average molecular weight (Mw) of 141 k Dalton was obtained. Low molecular weight chitosan, Mw 14 k Dalton called “Fitosan” was prepared by irradiating chitosan using gamma rays at a dose of 75 kGy. The results showed that gamma irradiation is an effective method of degrading chitosan by cleavages of glycosidic bond. To improve crop yields and suppress diseases due to virus, bacteria, and fungi, Fitosan was successfully applied to chili, potato, and soybean. Socio-economic impacts of the use of Fitosan on the plants include increased income and improvement of the welfare of farmers. (author)

  19. Chemotaxonomy of Plantago. Iridoid glucosides and caffeoyl phenylethanoid glycosides

    DEFF Research Database (Denmark)

    Rønsted, N.; Göbel, E.; Franzyk, Henrik

    2000-01-01

    Data for 34 species of Plantago (Plantaginaceae), including subgen. Littorella (=Littorella uniflora), have been collected with regard to their content of iridoid glucosides and caffeoyl phenylethanoid glycosides (CPGs). In the present work, 21 species were investigated for the first time and man...... in the family. Finally, the close relationship between Plantago and Veronica suggested by chloroplast DNA sequence analysis, could be corroborated by the common occurrence of the rare 8,9-unsaturated iridoids in these two genera. (C) 2000 Elsevier Science Ltd. All rights reserved....

  20. Cameroonenoside A: A New Antialgal Phenolic Glycoside from Helichrysum cameroonense

    Directory of Open Access Journals (Sweden)

    Kakam Zanetsie Antoine

    2011-01-01

    Full Text Available Helichrysum cameroonense is known for its medicinal value . This paper deals with a phytochemical investigation of this species, from which cameroonenoside A (1, a new cinnamic acid glycoside ester has been isolated. Its structure was determined by comprehensive analyses of its 1H and 13C NMR, COSY, HMQC, and HMBC spectroscopic, and HREIMS mass spectrometric data. Preliminary studies showed that cameroonenoside A (1 showed algicidal activity against Chlorella fusca

  1. Analysis of the hydrolysis of inulin using real time 1H NMR spectroscopy

    Science.gov (United States)

    Barclay, Thomas; Ginic-Markovic, Milena; Johnston, Martin R.; Cooper, Peter D.; Petrovsky, Nikolai

    2012-01-01

    The hydrolysis of various carbohydrates was investigated under acidic conditions in real time by 1H NMR spectroscopy, with a focus on the polysaccharide inulin. Sucrose was used as a model compound to illustrate the applicability of this technique. The hydrolysis of sucrose was shown to follow pseudo first order kinetics and have an activation energy of 107.0 kJ.mol−1 (s.d. 1.7 kJ.mol−1). Inulin, pullulan and glycogen also all followed pseudo first order kinetics, but had an initiation phase at least partially generated by the protonation of the glycosidic bonds. It was also demonstrated that polysaccharide chain length has an effect on the hydrolysis of inulin. For short chain inulin (DPn 18, s.d. 0.70) the activation energy calculated for the hydrolytic cleavage of glucose was similar to sucrose at 108.5 kJ.mol−1 (std. dev. 0.60). For long chain inulin (DPn 30, s.d. 1.3) the activation energy for the hydrolytic cleavage of glucose was reduced to 80.5 kJ.mol−1 (s.d. 2.3 kJ.mol−1). This anomaly has been attributed to varied conformations for the two different lengths of inulin chain in solution. PMID:22464225

  2. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark; Beyer, Peter D.; Al-Babili, Salim

    2015-01-01

    amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating

  3. Flavonoid glycosides from Persea caerulea. Unraveling their interactions with SDS-micelles through matrix-assisted DOSY, PGSE, mass spectrometry, and NOESY.

    Science.gov (United States)

    Álvarez, Juan M; Raya-Barón, Álvaro; Nieto, Pedro M; Cuca, Luis E; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto; Fernández, Ignacio

    2016-04-13

    Two flavonoid glycosides derived from rhamnopyranoside (1) and arabinofuranoside (2) have been isolated from leaves of Persea caerulea for the first time. The structures of 1 and 2 have been established by 1 H NMR, 13 C NMR, and IR spectroscopy, together with LC-ESI-TOF and LC-ESI-IT MS spectrometry. From the MS and MS/MS data, the molecular weights of the intact molecules as well as those of quercetin and kaempferol together with their sugar moieties were deduced. The NMR data provided information on the identity of the compounds, as well as the α and β configurations and the position of the glycosides on quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate (SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion resolution of these two glycosides, by the application of matrix-assisted diffusion ordered spectroscopy (DOSY) and pulse field gradient spin echo (PGSE) methodologies, showing that SDS micelles offer a significant resolution which can, in part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity, and steric effects. In addition, intra-residue and inter-residue proton-proton distances using nuclear Overhauser effect build-up curves were used to elucidate the conformational preferences of these two flavonoid glycosides when interacting with the micelles. By the combination of both diffusion and nuclear Overhauser spectroscopy techniques, the average location site of kaempferol and quercetin glycosides has been postulated, with the former exhibiting a clear insertion into the interior of the SDS-micelle, whereas the latter is placed closer to the surface. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  5. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    Science.gov (United States)

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  6. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Mojtaba [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rizi, Mohsen Saboktakin, E-mail: M.saboktakin@Pa.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jafarian, Morteza [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Honarmand, Mehrdad [Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Javadinejad, Hamid Reza; Ghaheri, Ali [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Bahramipour, Mohammad Taghi [Materials Engineering Department, Hakim Sabzevari University, Sabzevar, 397 (Iran, Islamic Republic of); Ebrahimian, Marzieh [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2016-06-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  7. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    International Nuclear Information System (INIS)

    Jafarian, Mojtaba; Rizi, Mohsen Saboktakin; Jafarian, Morteza; Honarmand, Mehrdad; Javadinejad, Hamid Reza; Ghaheri, Ali; Bahramipour, Mohammad Taghi; Ebrahimian, Marzieh

    2016-01-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  8. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Wu, Sujun; Jin, Huijin; Sun, Yanbin; Cao, Luowei

    2014-01-01

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σ F , of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σ F were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  9. A set of simple cell processes is sufficient to model spiral cleavage.

    Science.gov (United States)

    Brun-Usan, Miguel; Marín-Riera, Miquel; Grande, Cristina; Truchado-Garcia, Marta; Salazar-Ciudad, Isaac

    2017-01-01

    During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species. © 2017. Published by The Company of Biologists Ltd.

  10. Glycoside Hydrolases across Environmental Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Renaud Berlemont

    2016-12-01

    Full Text Available Across many environments microbial glycoside hydrolases support the enzymatic processing of carbohydrates, a critical function in many ecosystems. Little is known about how the microbial composition of a community and the potential for carbohydrate processing relate to each other. Here, using 1,934 metagenomic datasets, we linked changes in community composition to variation of potential for carbohydrate processing across environments. We were able to show that each ecosystem-type displays a specific potential for carbohydrate utilization. Most of this potential was associated with just 77 bacterial genera. The GH content in bacterial genera is best described by their taxonomic affiliation. Across metagenomes, fluctuations of the microbial community structure and GH potential for carbohydrate utilization were correlated. Our analysis reveals that both deterministic and stochastic processes contribute to the assembly of complex microbial communities.

  11. Antioxidant phenylpropanoid glycosides from Buddleja davidii.

    Science.gov (United States)

    Ahmad, Ijaz; Ahmad, Nisar; Wang, Fanghai

    2009-08-01

    Phytochemical investigations on the n-BuOH-soluble fraction of the whole plant of Buddleja davidii led to the isolation of the phenylpropanoid glycosides 1-10. Their structures were determined by 1D and 2D NMR spectroscopic techniques. All the compounds showed potent antioxidative activity in three different tests, with IC(50) values in the range 4.15-9.47 microM in the hydroxyl radical ( OH) inhibitory activity test, 40.32-81.15 microM in the total ROS (reactive oxygen species) inhibitory activity test, and 2.26-7.79 microM in the peroxynitrite (ONOO(-)) scavenging activity test. Calceolarioside A (1) displayed the strongest scavenging potential with IC(50) values of (4.15 +/- 0.07, 40.32 +/- 0.09, 2.26 +/- 0.03 microM) for OH, total ROS and scavenging of ONOO(-), respectively.

  12. No upregulation of digitalis glycoside receptor (Na,K-ATPase) concentration in human heart left ventricle samples obtained at necropsy after long term digitalisation.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1991-08-01

    The aim was to evaluate the hypothesis that digitalis glycosides increase the concentration of their specific receptor (Na,K-ATPase) in human myocardial tissue, thereby possibly reducing the inotropic effect of long term digitalis treatment. Intact samples of left ventricle were obtained at necropsy from patients who had been on long term treatment with digoxin and from patients not previously given digoxin. Digitalis glycoside receptors were quantified using vanadate facilitated 3H-ouabain binding before and after washing samples in buffer containing excess digoxin antibody fragments for 16 h at 30 degrees C. This washing procedure has previously been shown to reduce prior specific digoxin binding in human left ventricle by 95% and to allow subsequent vanadate facilitated complete quantification of 3H-ouabain binding sites. In this context it was performed to reduce occupancy of digitalis glycoside receptors by digoxin, caused by digitalisation before 3H-ouabain binding. 11 patients who had been on long term treatment with digoxin and eight who had not previously been given digoxin were studied. Left ventricle samples were obtained at necropsy at around 15 h after death. Standard 3H-ouabain binding was 39% less in samples from digitalised than from undigitalised subjects (p less than 0.001). Washing samples in buffer containing excess digoxin antibody fragments induced an increase in 3H-ouabain binding from 174(SEM 10) to 265(20) pmol.g-1 wet weight (n = 11, p less than 0.001) in samples from digitalised patients. After washing, the digitalis glycoside receptor concentration in left ventricle samples showed a tendency to a lower value (14%, p greater than 0.10) in patients exposed to digoxin compared to left ventricle samples from individuals unexposed to digitalis glycoside treatment. Calculating 3H-ouabain binding relative to dry ventricular muscle weight confirmed the results obtained using wet weight as reference. The results suggest that digoxin treatment in

  13. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes

    NARCIS (Netherlands)

    Vujičić-Žagar, Andreja; Pijning, Tjaard; Kralj, Slavko; López, Cesar A.; Eeuwema, Wieger; Dijkhuizen, Lubbert; Dijkstra, Bauke W.

    2010-01-01

    Glucansucrases are large enzymes belonging to glycoside hydrolase family 70, which catalyze the cleavage of sucrose into fructose and glucose, with the concomitant transfer of the glucose residue to a growing α-glucan polymer. Among others, plaque-forming oral bacteria secrete these enzymes to

  14. Effect of 1,25-dihydroxycholecalciferol and 1,25-dihydroxycholecalciferol glycoside on 2,3-diphosphoglycerate levels of the rat erythrocyte.

    Science.gov (United States)

    Skliar, M I; Fernandez, M C; Faienza, H; Orsatti, M B; Puche, R C; Boland, R L; Skliar, M I

    1980-12-01

    The erythrocytes of rats treated with 1, 25-dihydroxycholecalciferol or 1, 25-dihydroxycholecalciferol glycoside showed decreased levels of 2, 3-diphosphoglycerate. The same result has been obtained in vitro, indicating a direct effect of the sterol on the red cell. The glycoside is less active than the free sterol in vivo and more active in vitro. The decreased levels of diphosphoglycerate induced tissue hypoxia as shown by a higher plasma lactate/pyruvate ratio and a three fold increase in plasma erythropoietin concentration.

  15. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.

    Science.gov (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2013-07-16

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  16. Cleavage mechanoluminescence in elemental and III-V semiconductors

    International Nuclear Information System (INIS)

    Chandra, B.P.; Patel, R.P.; Gour, Anubha S.; Chandra, V.K.; Gupta, R.K.

    2003-01-01

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value I m at the time t m corresponding to completion of the cleavage of the semiconductor, and then it decreases following power law decay. Expressions are derived for the ML intensity I m corresponding to the peak of the ML intensity versus time curve and for the total ML intensity I T . It is shown that both I m and I T should increase directly with the area of the newly created surfaces of the crystals. From the measurements of the ML intensity, the velocity of crack propagation in material can be determined by using the relation v=H/t m

  17. Implementation of a combinatorial cleavage and deprotection scheme

    DEFF Research Database (Denmark)

    Nielsen, John; Rasmussen, Palle H.

    1996-01-01

    Phthalhydrazide libraries are synthesized in solution from substituted hydrazines and phthalimides in several different library formats including single compounds, indexed sub-libraries and a full library. When carried out during solid-phase synthesis, this combinatorial cleavage and deprotection...

  18. Lignans and aromatic glycosides from Piper wallichii and their antithrombotic activities.

    Science.gov (United States)

    Shi, Yan-Ni; Shi, Yi-Ming; Yang, Lian; Li, Xing-Cong; Zhao, Jin-Hua; Qu, Yan; Zhu, Hong-Tao; Wang, Dong; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2015-03-13

    Piper wallichii (Miq.) Hand.-Mazz. is a medicinal plant used widely for the treatment of rheumatoid arthritis, inflammatory diseases, cerebral infarction and angina in China. Previous study showed that lignans and neolignans from Piper spp. had potential inhibitory activities on platelet aggregation. In the present study, we investigated the chemical constituents of Piper wallichii and their antithrombotic activities, to support its traditional uses. The methanolic extract of the air-dried stems of Piper wallichii was separated and purified using various chromatographic methods, including semi-preparative HPLC. The chemical structures of the isolates were determined by detailed spectroscopic analysis, and acidic hydrolysis in case of the new glycoside 2. Determination of absolute configurations of the new compound 1 was facilitated by calculated electronic circular dichroism using time-dependent density-functional theory. All compounds were tested for their inhibitory effects on platelet aggregation induced by platelet activating factor (PAF) in rabbits׳ blood model, from which the active ones were further evaluated the in vivo antithrombotic activity in zebrafish model. A new neolignan, piperwalliol A (1), and four new aromatic glycosides, piperwalliosides A-D (2-5) were isolated from the stems of Piper wallichii, along with 25 known compounds, including 13 lignans, six aromatic glycosides, two phenylpropyl aldehydes, and four biphenyls. Five known compounds (6-10) showed in vitro antiplatelet aggregation activities. Among them, (-)-syringaresinol (6) was the most active compound with an IC50 value of 0.52 mM. It is noted that in zebrafish model, the known lignan 6 showed good in vivo antithrombotic effect with a value of 37% at a concentration of 30 μM, compared with the positive control aspirin with the inhibitory value of 74% at a concentration of 125μM. This study demonstrated that lignans, phenylpropanoid and biphenyl found in Piper wallichii may be

  19. Phenylethanoid Glycoside Profiles and Antioxidant Activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model.

    Science.gov (United States)

    Jiang, Yirong; Mao, Shuqin; Huang, Weisu; Lu, Baiyi; Cai, Zengxuan; Zhou, Fei; Li, Maiquan; Lou, Tiantian; Zhao, Yajing

    2016-03-30

    Variations of phenylethanoid glycoside profiles and antioxidant activities in Osmanthus fragrans flowers through the digestive tract were evaluated by a simulated digestion model and UPLC/PDA/MS. Major phenylethanoid glycosides and phenolic acids, namely, salidroside, acteoside, isoacteoside, chlorogenic acid, and caffeic acid, were identified in four cultivars of O. fragrans flowers, and the concentration of acteoside was the highest, being up to 71.79 mg/g dry weight. After simulated digestion, total phenylethanoid glycoside contents and antioxidant activities were significantly decreased. Acteoside was identified as decomposing into caffeic acid, whereas salidroside was found to be stable during simulated digestion. According to Pearson's correlation analysis, acteoside contents showed good correlations with antioxidant activities during simulated digestion (R(2) = 0.994, P < 0.01). In conclusion, acteoside was the major contributor to the antioxidant activity of O. fragrans flowers, and salidroside was considered as the major antioxidant compound of O. fragrans flowers in vivo.

  20. Structual Effects of Cytidine 2^' Ribose Modifications as Determined by Irmpd Action Spectroscopy

    Science.gov (United States)

    Hamlow, Lucas; He, Chenchen; Fan, Lin; Wu, Ranran; Yang, Bo; Rodgers, M. T.; Berden, Giel; Oomens, J.

    2015-06-01

    Modified nucleosides, both naturally occurring and synthetic play an important role in understanding and manipulating RNA and DNA. Naturally occurring modified nucleosides are commonly found in functionally important regions of RNA and also affect antibiotic resistance or sensitivity. Synthetic modifications of nucleosides such as fluorinated and arabinosyl nucleosides have found uses as anti-virals and chemotherapy agents. Understanding the effect that modifications have on structure and glycosidic bond stability may lend insight into the functions of these modified nucleosides. Modifications such as the naturally occurring 2^'-O-methylation and the synthetic 2^'-fluorination are believed to help stabilize the nucleoside through the glycosidic bond stability and intramolecular hydrogen bonding. Changing the sugar from ribose to arabinose alters the stereochemistry at the 2^' position and thus shifts the 3D orientation of the 2^'-hydroxyl group, which also affects intramolecular hydrogen bonding and glycosidic bond stability. The structures of 2^'-deoxy-2^'-fluorocytidine, 2^'-O-methylcytidine and cytosine arabinoside are examined in the current work by measuring the infrared spectra in the IR fingerprint region using infrared multiple photon dissociation (IRMPD) action spectroscopy. The structures accessed in the experiments were determined via comparison of the measured IRMPD action spectra to the theoretical linear IR spectra determined by density functional theory and molecular modeling for the stable low-energy structures. Although glycosidic bond stability cannot be quantitatively determined from this data, complementary TCID studies will establish the effect of these modifications. Comparison of these modified nucleosides with their RNA and DNA analogues will help elucidate differences in their intrinsic chemistry.

  1. A New Flavonoid Glycoside from Salix denticulata Aerial Parts

    Directory of Open Access Journals (Sweden)

    Amita Bamola

    2009-09-01

    Full Text Available Abstract: A new flavonoid glycoside (1 has been isolated from the aerial parts of Salix denticulata (Salicaceae together with five known compounds, β-sitosterol, 2,6-dihydroxy- 4-methoxy acetophenone, eugenol-1-O-β-D-glucopyranoside, 1-O-β-D-(3’-benzoyl salicyl alcohol and luteolin-7-O-β-D-glucopyranosyl-(1-6-glucopyranoside. The structure of 1 was elucidated as 2’,5-dihydroxy-3’-methoxyflavone-7-O-β-D-glucopyranoside by means of chemical and spectral data including 2D NMR studies.

  2. Two New Flavone Glycosides from Chenopodiumambrosioides Growing Wildly in Egypt

    Directory of Open Access Journals (Sweden)

    Hala M. Hammoda

    2015-06-01

    Full Text Available Chenopodiumambrosioides (Chenopodiaceae growing wildly in Egypt was subjected to antioxidant –guided phytochemical investigation and the EtOAc fraction afforded the two new flavone glycosides; scutellarein-7-O-α-rhamnopyranosyl-(1→2-α-rhamnopyranosyl-(1→2-α-rhamnopyranoside (1 and scutella-rein-7-O-α-rhamnopyranosyl-(1→2-α-rhamnopyranoside (2. In addition, the invitro antioxidant activities of the plant alcohol extract, CHCl 3 fraction, EtOAc fraction and isolates were studied.

  3. New steroidal glycosides from Tribulus terrestris L.

    Science.gov (United States)

    Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2012-01-01

    Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-β-D-glucopyranosyl-5α-furostan-12-one-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-5α-furostan-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments.

  4. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    Science.gov (United States)

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  5. Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus

    Science.gov (United States)

    Licitra, Beth N.; Millet, Jean K.; Regan, Andrew D.; Hamilton, Brian S.; Rinaldi, Vera D.; Duhamel, Gerald E.

    2013-01-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  6. Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

    Science.gov (United States)

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook

    2014-01-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410

  7. A new flavonol glycoside from glandless cotton seeds

    Directory of Open Access Journals (Sweden)

    Shanqin Yuan

    2012-02-01

    Full Text Available A new flavonol glycoside, namely quercetin 3-O-[α-d-apiofuranosyl(1–5-β-d-apiofuranosyl(1–2]-α-l-rhamnopyranosyl(1–6-β-d-glucopyranoside (1, was isolated from glandless cotton seeds together with the known compounds quercetin 3-O-α-l-rhamnopyranosyl(1–2-[α-l-rhamnopyranosyl(1–6]-β-d-glucopyranoside (manghaslin, 2, kaempferol 3-O-β-d-apiofruranosyl(1–2-β-d-glucopyranoside (3 and kaempferol 3-O-α-l-rhamnopyranosyl(1–6-β-d-glucopyranoside (4. It is interesting that the tetrasaccharide fragment of 1 contained both a β-apiosyl and an unusual α-apiosyl group.

  8. Hepatoprotective glycosides from the rhizomes of Imperata cylindrical.

    Science.gov (United States)

    Ma, Jie; Sun, Hua; Liu, Hui; Shi, Gao-Na; Zang, Ying-Da; Li, Chuang-Jun; Yang, Jing-Zhi; Chen, Fang-You; Huang, Ji-Wu; Zhang, Dan; Zhang, Dong-Ming

    2018-05-01

    Three new C-methylated phenylpropanoid glycosides (1, 2), a new 8-4'-oxyneolignan (3), together with two known analogs (4, 5), were isolated from the rhizomes of Imperata cylindrical Beauv. var. major (Nees) C. E. Hubb. Their structures were determined by spectroscopic and chemical methods. Compounds 1, 2, and 5 (10 μM) exhibited pronounced hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced HepG2 cell damage in vitro assays. Furthermore, their antioxidant activities against Fe 2+ -cysteine-induced rat liver microsomal lipid peroxidation and the effects on the secretion of TNF-α in murine peritoneal macrophages (RAW264.7) induced by lipopolysaccharides were evaluated.

  9. Mechanism of the alkali degradation of (6-4) photoproduct-containing DNA.

    Science.gov (United States)

    Arichi, Norihito; Inase, Aki; Eto, Sachise; Mizukoshi, Toshimi; Yamamoto, Junpei; Iwai, Shigenori

    2012-03-21

    The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by β-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.

  10. Carbon-sulfur bond formation by reductive elimination of gold(iii) thiolates.

    Science.gov (United States)

    Currie, Lucy; Rocchigiani, Luca; Hughes, David L; Bochmann, Manfred

    2018-04-10

    Whereas the reaction of the gold(iii) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, -d[1a]/dt = k[1a][AdSH]. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.

  11. Biological Cleavage of the C–P Bond in Perfluoroalkyl Phosphinic Acids in Male Sprague-Dawley Rats and the Formation of Persistent and Reactive Metabolites

    Science.gov (United States)

    Yeung, Leo W.Y.; Mabury, Scott A.

    2017-01-01

    Background: Perfluoroalkyl phosphinic acids (PFPiAs) have been detected in humans, wildlife, and various environmental matrices. These compounds have been used with perfluoroalkyl phosphonic acids (PFPAs) as surfactants in consumer products and as nonfoaming additives in pesticide formulations. Unlike the structurally related perfluoroalkyl sulfonic and carboxylic acids, little is known about the biological fate of PFPiAs. Objectives: We determined the biotransformation products of PFPiAs and some pharmacokinetic parameters in a rat model. Methods: Male Sprague-Dawley rats received an oral gavage dose of either C6/C8PFPiA, C8/C8PFPiA, or C8PFPA. Blood was sampled over time, and livers were harvested upon sacrifice. Analytes were quantified using ultra-high-performance liquid chromatography–tandem mass spectrometry or gas chromatography–mass spectrometry. Results: PFPiAs were metabolized to the corresponding PFPAs and 1H-perfluoroalkanes (1H-PFAs), with 70% and 75% biotransformation 2 wk after a single bolus dose for C6/C8PFPiA and C8/C8PFPiA, respectively. This is the first reported cleavage of a C-P bond in mammals, and the first attempt, with a single-dose exposure, to characterize the degradation of any perfluoroalkyl acid. Elimination half-lives were 1.9±0.5 and 2.8±0.8 days for C6/C8PFPiA and C8/C8PFPiA, respectively, and 0.95±0.17 days for C8PFPA. Although elimination half-lives were not determined for 1H-PFAs, concentrations were higher than the corresponding PFPAs 48 h after rats were dosed with PFPiAs, suggestive of slower elimination. Conclusions: PFPiAs were metabolized in Sprague-Dawley rats to form persistent PFPAs as well as 1H-PFAs, which contain a labile hydrogen that may undergo further metabolism. These results in rats produced preliminary findings of the pharmacokinetics and metabolism of PFPiAs, which should be further investigated in humans. If there is a parallel between the disposition of these chemicals in humans and rats, then

  12. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in identification of three isoflavone glycosides and their corresponding metabolites.

    Science.gov (United States)

    Xu, Xiafen; Li, Xinhui; Liang, Xianrui

    2018-02-15

    Metabolites of isoflavones have attracted much attention in recent years due to their potential bioactivities. However, the complex constituents of the metabolic system and the low level of metabolites make them difficult to analyze. A mass spectrometry (MS) method was applied in our identification of metabolites and study of their fragmentation pathways due to the advantages of rapidity, sensitivity, and low level of sample consumption. Three isoflavone glycosides and their metabolites were identified using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/QTOF-MS). These metabolites were obtained by anaerobically incubating three isoflavone glycosides with human intestinal flora. The characteristic fragments of isoflavone glycosides and their metabolites were used for the identification work. Two metabolites from ononin, three metabolites from irilone-4'-O-β-D-glucoside, and five metabolites from sissotrin were identified respectively by the retention time (RT), accurate mass, and mass spectral fragmentation patterns. The losses of the glucosyl group, CO from the [M+H] + ion were observed for all the three isoflavone glycosides. The characteristic retro-Diels-Alder (RDA) fragmentation patterns were used to differentiate the compounds. The metabolic pathways of the three isoflavone glycosides were proposed according to the identified chemical structures of the metabolites. A selective, sensitive and rapid method was established for detecting and identifying three isoflavone glycosides and their metabolites using UPLC/QTOF-MS. The established method can be used for further rapid structural identification studies of metabolites and natural products. Furthermore, the proposed metabolic pathways will be helpful for understanding the in vivo metabolic process of isoflavone. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Unlike Quercetin Glycosides, Cyanidin Glycoside in Red Leaf Lettuce Responds More Sensitively to Increasing Low Radiation Intensity before than after Head Formation Has Started

    OpenAIRE

    Becker, Christine; Klaering, Hans-Peter; Schreiner, Monika; Kroh, Lothar W.; Krumbein, Angelika

    2014-01-01

    This study investigated the effect of low-level photosynthetic photon flux density (PPFD; 43–230 μmol m–2 s–1) on the major phenolic compounds of red leaf lettuce in three growth stages, before, during, and after head formation, using HPLC-DAD-ESI-MS2 and evaluating via multiple regression analysis. Generally, the light-related increase of flavonoid glycosides was structure and growth stage-dependent. In detail, an interaction was detected between plant age and PPFD regarding cyanidin-3-O-(6″...

  14. New polyacetylenes glycoside from Eclipta prostrate with DGAT inhibitory activity.

    Science.gov (United States)

    Meng, Xiao; Li, Ban-Ban; Lin, Xin; Jiang, Yi-Yu; Zhang, Le; Li, Hao-Ze; Cui, Long

    2018-06-08

    One new polyacetylene glycoside eprostrata Ⅰ (1), together with seven known compounds (2-8), were isolated from Eclipta prostrata. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated inhibitory activity on DGAT in an in vitro assay. Compounds 1-8 were found to exhibit inhibitory activity of DGAT1 with IC 50 values ranging from 74.4 ± 1.3 to 101.1 ± 1.1 μM.

  15. Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*

    Science.gov (United States)

    Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.

    2009-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093

  16. Restriction enzyme cleavage of ultraviolet-damaged Simian virus 40 and pBR322 DNA

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1983-01-01

    Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases. (author)

  17. Transcript Quantification of Genes Involved in Steviol Glycoside Biosynthesis in Stevia rebaudiana Bertoni by Real-Time Polymerase Chain Reaction (RT-PCR).

    Science.gov (United States)

    Modi, Arpan; Kumar, Nitish; Narayanan, Subhash

    2016-01-01

    Stevia (Stevia rebaudiana Bertoni) is a medicinal plant having sweet, diterpenoid glycosides known as steviol glycosides which are 200-300 times sweeter than sucrose (0.4 % solution). They are synthesized mainly in the leaves via plastid localized 2-C-methyl-D-erythrose-4-phosphate pathway (MEP pathway). Fifteen genes are involved in the formation of these glycosides. In the present protocol, a method for the quantification of transcripts of these genes is shown. The work involves RNA extraction and cDNA preparation, and therefore, procedures for the confirmation of DNA-free cDNA preparation have also been illustrated. Moreover, details of plant treatments are not mentioned as this protocol may apply to relative gene expression profile in any medicinal plant with any treatment. The treatments are numbered as T0 (Control), T1, T2, T3, and T4.

  18. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity

    OpenAIRE

    Nagappan, Guhan; Zaitsev, Eugene; Senatorov, Vladimir V.; Yang, Jianmin; Hempstead, Barbara L.; Lu, Bai

    2009-01-01

    Pro- and mature neurotrophins often elicit opposing biological effects. For example, mature brain-derived neurotrophic factor (mBDNF) is critical for long-term potentiation induced by high-frequency stimulation, whereas proBDNF facilitate long-term depression induced by low-frequency stimulation. Because mBDNF is derived from proBDNF by endoproteolytic cleavage, mechanisms regulating the cleavage of proBDNF may control the direction of BDNF regulation. Using methods that selectively detect pr...

  19. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    Science.gov (United States)

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the

  20. Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis.

    Science.gov (United States)

    Li, Yushan; Chen, Xigui; Satake, Masayuki; Oshima, Yasukatsu; Ohizumi, Yasushi

    2004-04-01

    Three new acetylated flavonoid glycosides, 5,6,4'-trihydroxyflavone 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1), apigenin 7-O-alpha-L-3-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and apigenin 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), were isolated from Scoparia dulcis together with the known compound eugenyl beta-D-glucopyranoside (4). Their structures were elucidated by spectroscopic analyses. Compounds 2 and 3 showed an enhancing activity of nerve growth factor-mediated neurite outgrowth in PC12D cells.