WorldWideScience

Sample records for glycoside hydrolase families

  1. A remote but significant sequence homology between glycoside hydrolase clan GH-H and glycoside hydrolase family GH 31

    DEFF Research Database (Denmark)

    Janecek, S.; Svensson, Birte; MacGregor, E.A.

    2007-01-01

    Although both the α-amylase super-family, i.e. the glycoside hydrolase (GH) clan GH-H (the GH families 13, 70 and 77), and family GH31 share some characteristics, their different catalytic machinery prevents classification of GH31 in clan GH-H. A significant but remote evolutionary relatedness is...

  2. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases

    DEFF Research Database (Denmark)

    Janeček, Štefan; Svensson, Birte; MacGregor, E. Ann

    2014-01-01

    of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α...... investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases....

  3. Steady state kinetic analysis of substrate specificity of glycoside hydrolases from families 13 and 38

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum

    Glycosidases are widespread in nature, where they perform a diverse range of functions. The glycoside hydrolase (GH) family 38, α-mannosidase II enzymes play a crucial role in mammalian cells, in the maturation of N-glycosylated proteins in the Golgi apparatus and in catabolism in cytosol...

  4. Variants of glycoside hydrolases

    Science.gov (United States)

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  5. Glycoside hydrolases having multiple hydrolase activities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A

    2017-08-08

    Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.

  6. COMPARATIVE MODELLING AND LIGAND BINDING SITE PREDICTION OF A FAMILY 43 GLYCOSIDE HYDROLASE FROM Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    2012-06-01

    Full Text Available The phylogenetic analysis of Clostridium thermocellum family 43 glycoside hydrolase (CtGH43 showed close evolutionary relation with carbohydrate binding family 6 proteins from C. cellulolyticum, C. papyrosolvens, C. cellulyticum, and A. cellulyticum. Comparative modeling of CtGH43 was performed based on crystal structures with PDB IDs 3C7F, 1YIF, 1YRZ, 2EXH and 1WL7. The structure having lowest MODELLER objective function was selected. The three-dimensional structure revealed typical 5-fold beta–propeller architecture. Energy minimization and validation of predicted model with VERIFY 3D indicated acceptability of the proposed atomic structure. The Ramachandran plot analysis by RAMPAGE confirmed that family 43 glycoside hydrolase (CtGH43 contains little or negligible segments of helices. It also showed that out of 301 residues, 267 (89.3% were in most favoured region, 23 (7.7% were in allowed region and 9 (3.0% were in outlier region. IUPred analysis of CtGH43 showed no disordered region. Active site analysis showed presence of two Asp and one Glu, assumed to form a catalytic triad. This study gives us information about three-dimensional structure and reaffirms the fact that it has the similar core 5-fold beta–propeller architecture and so probably has the same inverting mechanism of action with the formation of above mentioned catalytic triad for catalysis of polysaccharides.

  7. Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases.

    Science.gov (United States)

    Higgins, Melanie A; Whitworth, Garrett E; El Warry, Nahida; Randriantsoa, Mialy; Samain, Eric; Burke, Robert D; Vocadlo, David J; Boraston, Alisdair B

    2009-09-18

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-beta-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-beta-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  8. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tasuku; Saikawa, Kyo [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Kim, Seonah [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Fujita, Kiyotaka [Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima (Japan); Ishiwata, Akihiro [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); Kaeothip, Sophon [ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Arakawa, Takatoshi; Wakagi, Takayoshi [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Beckham, Gregg T., E-mail: Gregg.Beckham@nrel.gov [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Ito, Yukishige [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Fushinobu, Shinya, E-mail: asfushi@mail.ecc.u-tokyo.ac.jp [Department of Biotechnology, The University of Tokyo, Tokyo (Japan)

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.

  9. 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H

    NARCIS (Netherlands)

    Gangoiti Muñecas, Joana; van Leeuwen, Sander S; Gerwig, Gerrit J; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert

    2017-01-01

    Lactic acid bacteria possess a diversity of glucansucrase (GS) enzymes that belong to glycoside hydrolase family 70 (GH70) and convert sucrose into α-glucan polysaccharides with (α1 → 2)-, (α1 → 3)-, (α1 → 4)- and/or (α1 → 6)-glycosidic bonds. In recent years 3 novel subfamilies of GH70 enzymes,

  10. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    International Nuclear Information System (INIS)

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  11. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  12. Crystal Structure of α-1,4-Glucan Lyase, a Unique Glycoside Hydrolase Family Member with a Novel Catalytic Mechanism

    NARCIS (Netherlands)

    Rozeboom, Henriëtte J.; Yu, Shukun; Madrid, Susan; Kalk, Kor H.; Zhang, Ran; Dijkstra, Bauke W.

    2013-01-01

    α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades

  13. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose

    NARCIS (Netherlands)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical

  14. Discovery of α-L-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Katayama, Takane; Arakawa, Takatoshi

    2017-01-01

    Enzymes of the glycoside hydrolase family 42 (GH42) are widespread in bacteria of the human gut microbiome and play fundamental roles in the decomposition of both milk and plant oligosaccharides. All GH42 enzymes characterized so far have β-galactosidase activity. Here, we report the existence...

  15. Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes

    Directory of Open Access Journals (Sweden)

    Pascal Viens

    2015-10-01

    Full Text Available Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC or chitosan oligosaccharides (CHOS from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms.

  16. The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach.

    Directory of Open Access Journals (Sweden)

    Jose Sergio Hleap

    Full Text Available The Glycoside Hydrolase Family 13 (GH13 is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a framework to analyze the response to selection of GH13 protein structures given some phylogenetic and simulated dynamic information. We find that the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-strands that alternate along the peptide backbone, common to all amylases is not selectable since it is under purifying selection. We also show a method to rank important residues with higher inferred response to selection. These residues can be altered to effect change in properties. In this work, we define fitness as inferred thermodynamic stability. We show that under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good candidates to increase the stability of the truncated α-amylase protein from Geobacillus thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1. Overall, this paper demonstrates the feasibility of a framework for the analysis of protein structures for any other fitness landscape.

  17. GH97 is a new family of glycoside hydrolases, which is related to the α-galactosidase superfamily

    Directory of Open Access Journals (Sweden)

    Naumoff Daniil G

    2005-08-01

    Full Text Available Abstract Background As a rule, about 1% of genes in a given genome encode glycoside hydrolases and their homologues. On the basis of sequence similarity they have been grouped into more than ninety GH families during the last 15 years. The GH97 family has been established very recently and initially included only 18 bacterial proteins. However, the evolutionary relationship of the genes encoding proteins of this family remains unclear, as well as their distribution among main groups of the living organisms. Results The extensive search of the current databases allowed us to double the number of GH97 family proteins. Five subfamilies were distinguished on the basis of pairwise sequence comparison and phylogenetic analysis. Iterative sequence analysis revealed the relationship of the GH97 family with the GH27, GH31, and GH36 families of glycosidases, which belong to the α-galactosidase superfamily, as well as a more distant relationship with some other glycosidase families (GH13 and GH20. Conclusion The results of this study show an unexpected sequence similarity of GH97 family proteins with glycoside hydrolases from several other families, that have (β/α8-barrel fold of the catalytic domain and a retaining mechanism of the glycoside bond hydrolysis. These data suggest a common evolutionary origin of glycosidases representing different families and clans.

  18. New insights into plant glycoside hydrolase family 32 in Agave species.

    Science.gov (United States)

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

  19. New insights into plant glycoside hydrolase family 32 in Agave species

    Directory of Open Access Journals (Sweden)

    Emmanuel eAvila-de Dios

    2015-08-01

    Full Text Available In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (enzymes belonging to plant glycoside hydrolase family 32 from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae and A. striata. Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

  20. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2.

    Directory of Open Access Journals (Sweden)

    David Talens-Perales

    Full Text Available In this work we report a detailed analysis of the topology and phylogenetics of family 2 glycoside hydrolases (GH2. We distinguish five topologies or domain architectures based on the presence and distribution of protein domains defined in Pfam and Interpro databases. All of them share a central TIM barrel (catalytic module with two β-sandwich domains (non-catalytic at the N-terminal end, but differ in the occurrence and nature of additional non-catalytic modules at the C-terminal region. Phylogenetic analysis was based on the sequence of the Pfam Glyco_hydro_2_C catalytic module present in most GH2 proteins. Our results led us to propose a model in which evolutionary diversity of GH2 enzymes is driven by the addition of different non-catalytic domains at the C-terminal region. This model accounts for the divergence of β-galactosidases from β-glucuronidases, the diversification of β-galactosidases with different transglycosylation specificities, and the emergence of bicistronic β-galactosidases. This study also allows the identification of groups of functionally uncharacterized protein sequences with potential biotechnological interest.

  1. The Structural Basis of Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Abbott,D.; Boraston, A.

    2007-01-01

    Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 {angstrom} resolution) and a digalacturonic acid product complex (solved to 2.10 {angstrom} resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.

  2. Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31.

    Science.gov (United States)

    Miyazaki, Takatsugu; Ishizaki, Yuichi; Ichikawa, Megumi; Nishikawa, Atsushi; Tonozuka, Takashi

    2015-07-01

    Glycoside hydrolase family 31 (GH31) proteins have been reportedly identified as exo-α-glycosidases with activity for α-glucosides and α-xylosides. We focused on a GH31 subfamily, which contains proteins with low sequence identity (Pedobacter heparinus and Pedobacter saltans. The enzymes unexpectedly exhibited α-galactosidase activity, but were not active on α-glucosides and α-xylosides. The crystal structures of one of the enzymes, PsGal31A, in unliganded form and in complexes with D-galactose or L-fucose and the catalytic nucleophile mutant in unliganded form and in complex with p-nitrophenyl-α-D-galactopyranoside, were determined at 1.85-2.30 Å (1 Å=0.1 nm) resolution. The overall structure of PsGal31A contains four domains and the catalytic domain adopts a (β/α)8-barrel fold that resembles the structures of other GH31 enzymes. Two catalytic aspartic acid residues are structurally conserved in the enzymes, whereas most residues forming the active site differ from those of GH31 α-glucosidases and α-xylosidases. PsGal31A forms a dimer via a unique loop that is not conserved in other reported GH31 enzymes; this loop is involved in its aglycone specificity and in binding L-fucose. Considering potential genes for α-L-fucosidases and carbohydrate-related proteins within the vicinity of Pedobacter Gal31, the identified Gal31 enzymes are likely to function in a novel sugar degradation system. This is the first report of α-galactosidases which belong to GH31 family. © 2015 Authors; published by Portland Press Limited.

  3. First glycoside hydrolase family 2 enzymes from Thermus antranikianii and Thermus brockianus with β-glucosidase activity

    Directory of Open Access Journals (Sweden)

    Carola eSchröder

    2015-06-01

    Full Text Available Two genes tagh2 and tbgh2 coding for enzymes with hydrolytic activity towards esculin were identified from the extreme thermophilic, aerobic bacteria Thermus antranikianii (Ta and T. brockianus (Tb. Shortened conserved domains predicted a membership of the enzymes of glycoside hydrolase (GH family 2. At present, β-galactosidase activity is found frequently in GH family 2 but β-glucosidase activity has not been reported in this family before. The enzymes TaGH2 and TbGH2 preferred hydrolysis of nitrophenol-linked β-D-glucopyranosides with specific activities of 3,966 U/mg and 660 U/mg, respectively. Residual activities of 40 % (TaGH2 and 51 % (TbGH2 towards 4-NP-β-D-galactopyranoside were observed. Furthermore, TaGH2 hydrolyzed cellobiose. TbGH2, however, showed no activity on cellobiose or lactose. The enzymes exhibited highest activity at 95 °C (TaGH2 and 90 °C (TbGH2 at pH 6.5. Both enzymes were extremely thermostable and thermal activation up to 250 % was observed at temperatures between 50 and 60 °C. Accordingly, the first thermoactive glycoside hydrolase family 2 enzymes with β glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to the enzymes of GH family 2.

  4. Cloning, recombinant production, crystallization and preliminary X-ray diffraction analysis of a family 101 glycoside hydrolase from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Gregg, Katie J.; Boraston, Alisdair B.

    2009-01-01

    The catalytic module of a family 101 glycoside hydrolase from S. pneumoniae was cloned, recombinantly produced and crystallized. Streptococcus pneumoniae is a serious human pathogen that is responsible for a wide range of diseases including pneumonia, meningitis, septicaemia and otitis media. The full virulence of this bacterium is reliant on carbohydrate processing and metabolism, as revealed by biochemical and genetic studies. One carbohydrate-processing enzyme is a family 101 glycoside hydrolase (SpGH101) that is responsible for catalyzing the liberation of galactosyl β1,3-N-acetyl-d-galactosamine (Galβ1,3GalNAc) α-linked to serine or threonine residues of mucin-type glycoproteins. The 124 kDa catalytic module of this enzyme (SpGH101CM) was cloned and overproduced in Escherichia coli and purified. Crystals were obtained in space group P2 1 and diffracted to 2.0 Å resolution, with unit-cell parameters a = 81.86, b = 88.91, c = 88.77 Å, β = 112.46°. SpGH101CM also qualitatively displayed good activity towards the synthetic substrate p-nitrophenyl-2-acetamido-2-deoxy-3-O-(β-d-galactopyranosyl) -α-d-galactopyranoside, which is consistent with the classification of this enzyme as an endo-α-N-acetylgalactosaminidase

  5. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hiras, Jennifer; Wu, Yu-Wei; Deng, Kai; Nicora, Carrie D.; Aldrich, Joshua T.; Frey, Dario; Kolinko, Sebastian; Robinson, Errol W.; Jacobs, Jon M.; Adams, Paul D.; Northen, Trent R.; Simmons, Blake A.; Singer, Steven W.

    2016-08-23

    ABSTRACT

    Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacteriumThermobispora bisporathat were highly abundant in the most active consortium. Among the cellulases fromT. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite ofT. bisporahydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered.

    IMPORTANCECellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose

  6. Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism

    Science.gov (United States)

    Liberato, Marcelo V.; Silveira, Rodrigo L.; Prates, Érica T.; de Araujo, Evandro A.; Pellegrini, Vanessa O. A.; Camilo, Cesar M.; Kadowaki, Marco A.; Neto, Mario De O.; Popov, Alexander; Skaf, Munir S.; Polikarpov, Igor

    2016-04-01

    Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.

  7. Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to recognition of long-chain substrates

    DEFF Research Database (Denmark)

    Tagami, Takayoshi; Okuyama, Masayuki; Nakai, Hiroyuki

    2013-01-01

    Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers...

  8. Enzymatic synthesis of β-xylosyl-oligosaccharides by transxylosylation using two beta-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Nakai, Hiroyuki; Gotfredsen, Charlotte Held

    2011-01-01

    Two beta-xylosidases of glycoside hydrolase family 3 (GH 3) from Aspergillus nidulans FGSC A4, BxlA and BxlB were produced recombinantly in Pichia pastoris and secreted to the culture supernatants in yields of 16 and 118 mg/L, respectively. BxlA showed about sixfold higher catalytic efficiency (k...

  9. Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Natália G. Graebin

    2016-08-01

    Full Text Available Glycoside hydrolases (GH are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.

  10. Streptococcus pneumoniae Endohexosaminidase D, Structural and Mechanistic Insight into Substrate-Assisted Catalysis in Family 85 Glycoside Hydrolases

    International Nuclear Information System (INIS)

    Abbott, D.; Macauley, M.; Vocadlo, D.; Boraston, A.

    2009-01-01

    Endo-?-d-glucosaminidases from family 85 of glycoside hydrolases (GH85 endohexosaminidases) act to cleave the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. Endohexosaminidase D (Endo-D), produced by Streptococcus pneumoniae, is believed to contribute to the virulence of this organism by playing a role in the deglycosylation of IgG antibodies. Endohexosaminidases have received significant attention for this reason and, moreover, because they are powerful tools for chemoenzymatic synthesis of proteins having defined glycoforms. Here we describe mechanistic and structural studies of the catalytic domain (SpGH85) of Endo-D that provide compelling support for GH85 enzymes using a catalytic mechanism involving substrate-assisted catalysis. Furthermore, the structure of SpGH85 in complex with the mechanism-based competitive inhibitor NAG-thiazoline (Kd = 28 ?m) provides a coherent rationale for previous mutagenesis studies of Endo-D and other related GH85 enzymes. We also find GH85, GH56, and GH18 enzymes have a similar configuration of catalytic residues. Notably, GH85 enzymes have an asparagine in place of the aspartate residue found in these other families of glycosidases. We propose that this residue, as the imidic acid tautomer, acts analogously to the key catalytic aspartate of GH56 and GH18 enzymes. This topographically conserved arrangement of the asparagine residue and a conserved glutamic acid, coupled with previous kinetic studies, suggests these enzymes may use an unusual proton shuttle to coordinate effective general acid and base catalysis to aid cleavage of the glycosidic bond. These results collectively provide a blueprint that may be used to facilitate protein engineering of these enzymes to improve their function as biocatalysts for synthesizing glycoproteins having defined glycoforms and also may serve as a guide for generating inhibitors of GH85 enzymes.

  11. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Wu Jiajie

    2010-10-01

    Full Text Available Abstract Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice, the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar. To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model and Sorghum bicolor (sorghum. We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51, we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets

  12. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Science.gov (United States)

    Oyama, Takuji; Schmitz, George E; Dodd, Dylan; Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  13. Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens

    International Nuclear Information System (INIS)

    Ficko-Blean, Elizabeth; Boraston, Alisdair B.

    2005-01-01

    Crystallization of a family 84 glycoside hydrolase, a putative virulence factor, secreted by C. perfringens is reported. Clostridium perfringens is a ubiquitous environmental organism that is capable of causing a variety of diseases in mammals, including gas gangrene and necrotic enteritis in humans. The activity of a secreted hyaluronidase, attributed to the NagH protein, contributes to the pathogenicity of this organism. The family 84 catalytic module of one of the three homologues of NagH found in C. perfringens (ATCC 13124) has been cloned. The 69 kDa catalytic module of NagJ, here called GH84C, was overproduced in Escherichia coli and purified by immobilized metal-affinity chromatography (IMAC). Crystals belonging to space group I222 or I2 1 2 1 2 1 with unit-cell parameters a = 130.39, b = 150.05, c = 155.43 Å were obtained that diffracted to 2.1 Å. Selenomethionyl crystals have also been produced, leading to the possibility of solving the phase problem by MAD using synchrotron radiation

  14. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Directory of Open Access Journals (Sweden)

    Takuji Oyama

    Full Text Available CpMan5B is a glycoside hydrolase (GH family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196 in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  15. Engineering of family-5 glycoside hydrolase (Cel5A from an uncultured bacterium for efficient hydrolysis of cellulosic substrates.

    Directory of Open Access Journals (Sweden)

    Amar A Telke

    Full Text Available Cel5A, an endoglucanase, was derived from the metagenomic library of vermicompost. The deduced amino acid sequence of Cel5A shows high sequence homology with family-5 glycoside hydrolases, which contain a single catalytic domain but no distinct cellulose-binding domain. Random mutagenesis and cellulose-binding module (CBM fusion approaches were successfully applied to obtain properties required for cellulose hydrolysis. After two rounds of error-prone PCR and screening of 3,000 mutants, amino acid substitutions were identified at various positions in thermotolerant mutants. The most heat-tolerant mutant, Cel5A_2R2, showed a 7-fold increase in thermostability. To enhance the affinity and hydrolytic activity of Cel5A on cellulose substrates, the family-6 CBM from Saccharophagus degradans was fused to the C-terminus of the Cel5A_2R2 mutant using overlap PCR. The Cel5A_2R2-CBM6 fusion protein showed 7-fold higher activity than the native Cel5A on Avicel and filter paper. Cellobiose was a major product obtained from the hydrolysis of cellulosic substrates by the fusion enzyme, which was identified by using thin layer chromatography analysis.

  16. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.

    Science.gov (United States)

    Nelson, Cassandra E; Attia, Mohamed A; Rogowski, Artur; Morland, Carl; Brumer, Harry; Gardner, Jeffrey G

    2017-12-01

    Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure.

    Science.gov (United States)

    Pluvinage, Benjamin; Fillo, Alexander; Massel, Patricia; Boraston, Alisdair B

    2017-09-05

    Family 81 glycoside hydrolases (GHs), which are known to cleave β-1,3-glucans, are found in archaea, bacteria, eukaryotes, and viruses. Here we examine the structural and functional features of the GH81 catalytic module, BhGH81, from the Bacillus halodurans protein BH0236 to probe the molecular basis of β-1,3-glucan recognition and cleavage. BhGH81 displayed activity on laminarin, curdlan, and pachyman, but not scleroglucan; the enzyme also cleaved β-1,3-glucooligosaccharides as small as β-1,3-glucotriose. The crystal structures of BhGH81 in complex with various β-1,3-glucooligosaccharides revealed distorted sugars in the -1 catalytic subsite and an arrangement consistent with an inverting catalytic mechanism having a proposed conformational itinerary of 2 S 0 → 2,5 B ‡ → 5 S 1 . Notably, the architecture of the catalytic site, location of an adjacent ancillary β-1,3-glucan binding site, and the surface properties of the enzyme indicate the likely ability to recognize the double and/or triple-helical quaternary structures adopted by β-1,3-glucans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comprehensive functional characterization of the Glycoside Hydrolase Family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification

    International Nuclear Information System (INIS)

    Nelson, Cassandra E.; Attia, Mohamed A.; Rogowski, Artur; Morland, Carl; Brumer, Harry; Gardner, Jeffrey G.

    2017-01-01

    Here, lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1!3)/β(1!4) mixed-linkage glucan (MLG), and β(1!3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active Enzymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach we have delineated the physiological roles of the four C. japonicus Glycoside Hydrolase Family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1!3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1!3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.

  19. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes.

    Science.gov (United States)

    Duan, Cheng-Jie; Huang, Ming-Yue; Pang, Hao; Zhao, Jing; Wu, Chao-Xing; Feng, Jia-Xun

    2017-07-01

    In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat /K M ) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.

  20. Diverse modes of galacto-specific carbohydrate recognition by a family 31 glycoside hydrolase from Clostridium perfringens.

    Directory of Open Access Journals (Sweden)

    Julie M Grondin

    Full Text Available Clostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31. This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized. NMR-based experiments demonstrated a preference of each module for galacto-configured sugars, including the ability of all three CBM32s to recognize the common mucin monosaccharide GalNAc. X-ray crystal structures of the CpGH31 CBM32s, both in apo form and bound to GalNAc, revealed the finely-tuned molecular strategies employed by these sequentially variable CBM32s in coordinating a common ligand. The data highlight that sequence similarities to previously characterized CBMs alone are insufficient for identifying the molecular mechanism of ligand binding by individual CBMs. Furthermore, the overlapping ligand binding profiles of the three CBMs provide a fail-safe mechanism for the recognition of GalNAc among the dense eukaryotic carbohydrate networks of the colonic mucosa. These findings expand our understanding of ligand targeting by large, multi-modular carbohydrate-active enzymes, and offer unique insights into of the expanding ligand-binding preferences and binding site topologies observed in CBM32s.

  1. The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase.

    Science.gov (United States)

    Honda, Yuji; Arai, Sachiko; Suzuki, Kentaro; Kitaoka, Motomitsu; Fushinobu, Shinya

    2016-02-15

    Exo-β-D-glucosaminidase (EC 3.2.1.165) from Photobacterium profundum (PpGlcNase) is an inverting GH (glycoside hydrolase) belonging to family 9. We have determined the three-dimensional structure of PpGlcNase to describe the first structure-function relationship of an exo-type GH9 glycosidase. PpGlcNase has a narrow and straight active-site pocket, in contrast with the long glycan-binding cleft of a GH9 endoglucanase. This is because PpGlcNase has a long loop, which blocks the position corresponding to subsites -4 to -2 of the endoglucanase. The pocket shape of PpGlcNase explains its substrate preference for a β1,4-linkage at the non-reducing terminus. Asp(139), Asp(143) and Glu(555) in the active site were located near the β-O1 hydroxy group of GlcN (D-glucosamine), with Asp(139) and Asp(143) holding a nucleophilic water molecule for hydrolysis. The D139A, D143A and E555A mutants significantly decreased hydrolytic activity, indicating their essential role. Of these mutants, D139A exclusively exhibited glycosynthase activity using α-GlcN-F (α-D-glucosaminyl fluoride) and GlcN as substrates, to produce (GlcN)2. Using saturation mutagenesis at Asp(139), we obtained D139E as the best glycosynthase. Compared with the wild-type, the hydrolytic activity of D139E was significantly suppressed (strategy for creating an effective glycosynthase from inverting GHs. However, for GH9, where two acidic residues seem to share the catalytic base role, mutation of Asp(139) might inevitably reduce F(-)-release activity. © 2016 Authors; published by Portland Press Limited.

  2. From Soil to Structure, a Novel Dimeric β-Glucosidase Belonging to Glycoside Hydrolase Family 3 Isolated from Compost Using Metagenomic Analysis

    Science.gov (United States)

    McAndrew, Ryan P.; Park, Joshua I.; Heins, Richard A.; Reindl, Wolfgang; Friedland, Gregory D.; D'haeseleer, Patrik; Northen, Trent; Sale, Kenneth L.; Simmons, Blake A.; Adams, Paul D.

    2013-01-01

    A recent metagenomic analysis sequenced a switchgrass-adapted compost community to identify enzymes from microorganisms that were specifically adapted to switchgrass under thermophilic conditions. These enzymes are being examined as part of the pretreatment process for the production of “second-generation” biofuels. Among the enzymes discovered was JMB19063, a novel three-domain β-glucosidase that belongs to the GH3 (glycoside hydrolase 3) family. Here, we report the structure of JMB19063 in complex with glucose and the catalytic variant D261N crystallized in the presence of cellopentaose. JMB19063 is first structure of a dimeric member of the GH3 family, and we demonstrate that dimerization is required for catalytic activity. Arg-587 and Phe-598 from the C-terminal domain of the opposing monomer are shown to interact with bound ligands in the D261N structure. Enzyme assays confirmed that these residues are absolutely essential for full catalytic activity. PMID:23580647

  3. The gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch

    NARCIS (Netherlands)

    Gangoiti, Joana; van Leeuwen, Sander S; Vafiadi, Christina; Dijkhuizen, Lubbert

    BACKGROUND: Originally the glycoside hydrolase (GH) family 70 only comprised glucansucrases of lactic acid bacteria which synthesize α-glucan polymers from sucrose. Recently we have identified 2 novel subfamilies of GH70 enzymes represented by the Lactobacillus reuteri 121 GtfB and the

  4. Glycoside Hydrolases across Environmental Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Renaud Berlemont

    2016-12-01

    Full Text Available Across many environments microbial glycoside hydrolases support the enzymatic processing of carbohydrates, a critical function in many ecosystems. Little is known about how the microbial composition of a community and the potential for carbohydrate processing relate to each other. Here, using 1,934 metagenomic datasets, we linked changes in community composition to variation of potential for carbohydrate processing across environments. We were able to show that each ecosystem-type displays a specific potential for carbohydrate utilization. Most of this potential was associated with just 77 bacterial genera. The GH content in bacterial genera is best described by their taxonomic affiliation. Across metagenomes, fluctuations of the microbial community structure and GH potential for carbohydrate utilization were correlated. Our analysis reveals that both deterministic and stochastic processes contribute to the assembly of complex microbial communities.

  5. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme.

    Science.gov (United States)

    Nascimento, Alessandro S; Muniz, Joao Renato C; Aparício, Ricardo; Golubev, Alexander M; Polikarpov, Igor

    2014-09-01

    Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. β-Mannosidases are enzymes capable of cleaving nonreducing residues of β-d-mannose from β-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. β-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 β-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 β-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of β-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. Coordinates and observed structure factor amplitudes have been deposited with the Protein Data Bank (4CVU and 4UOJ). The T. harzianum β-mannosidase 2A nucleotide sequence has GenBank accession number BankIt1712036 GeneMark.hmm KJ624918. © 2014 FEBS.

  6. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; DeVeaux, Linda C.

    2018-04-16

    substrate range than represented by the glycoside hydrolase family in which the enzymes were categorized.

  7. A metagenome-derived thermostable β-glucanase with an unusual module architecture which defines the new glycoside hydrolase family GH148.

    Science.gov (United States)

    Angelov, Angel; Pham, Vu Thuy Trang; Übelacker, Maria; Brady, Silja; Leis, Benedikt; Pill, Nicole; Brolle, Judith; Mechelke, Matthias; Moerch, Matthias; Henrissat, Bernard; Liebl, Wolfgang

    2017-12-11

    The discovery of novel and robust enzymes for the breakdown of plant biomass bears tremendous potential for the development of sustainable production processes in the rapidly evolving new bioeconomy. By functional screening of a metagenomic library from a volcano soil sample a novel thermostable endo-β-glucanase (EngU) which is unusual with regard to its module architecture and cleavage specificity was identified. Various recombinant EngU variants were characterized. Assignment of EngU to an existing glycoside hydrolase (GH) family was not possible. Two regions of EngU showed weak sequence similarity to proteins of the GH clan GH-A, and acidic residues crucial for catalytic activity of EngU were identified by mutation. Unusual, a carbohydrate-binding module (CBM4) which displayed binding affinity for β-glucan, lichenin and carboxymethyl-cellulose was found as an insertion between these two regions. EngU hydrolyzed β-1,4 linkages in carboxymethyl-cellulose, but displayed its highest activity with mixed linkage (β-1,3-/β-1,4-) glucans such as barley β-glucan and lichenin, where in contrast to characterized lichenases cleavage occurred predominantly at the β-1,3 linkages of C4-substituted glucose residues. EngU and numerous related enzymes with previously unknown function represent a new GH family of biomass-degrading enzymes within the GH-A clan. The name assigned to the new GH family is GH148.

  8. Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 β-xylosidase from Geobacillus thermoleovorans IT-08

    International Nuclear Information System (INIS)

    Rohman, Ali; Oosterwijk, Niels van; Kralj, Slavko; Dijkhuizen, Lubbert; Dijkstra, Bauke W.; Puspaningsih, Ni Nyoman Tri

    2007-01-01

    The β-xylosidase was crystallized using PEG 6000 as precipitant. 5% PEG 6000 yielded bipyramid-shaped tetragonal crystals diffracting to 1.55 Å resolution, and 13% PEG 6000 gave rectangular monoclinic crystals diffracting to 1.80 Å resolution. The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-β-xylanase and β-xylosidase. β-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-β-xylanase into xylose monomers. The β-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of glycoside hydrolase family 43, was crystallized at room temperature using the hanging-drop vapour-diffusion method. Two crystal forms were observed. Bipyramid-shaped crystals belonging to space group P4 3 2 1 2, with unit-cell parameters a = b = 62.53, c = 277.4 Å diffracted to 1.55 Å resolution. The rectangular crystals belonged to space group P2 1 , with unit-cell parameters a = 57.94, b = 142.1, c = 153.9 Å, β = 90.5°, and diffracted to 1.80 Å resolution

  9. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity.

    Science.gov (United States)

    Miyazaki, Takatsugu; Ichikawa, Megumi; Yokoi, Gaku; Kitaoka, Motomitsu; Mori, Haruhide; Kitano, Yoshikazu; Nishikawa, Atsushi; Tonozuka, Takashi

    2013-09-01

    Proteins belonging to glycoside hydrolase family 63 (GH63) are found in bacteria, archaea and eukaryotes. Although the eukaryotic GH63 proteins have been identified as processing α-glucosidase I, the substrate specificities of the bacterial and archaeal GH63 proteins are not clear. Here, we converted a bacterial GH63 enzyme, Escherichia coli YgjK, to a glycosynthase to probe its substrate specificity. Two mutants of YgjK (E727A and D324N) were constructed, and both mutants showed glycosynthase activity. The reactions of E727A with β-D-glucosyl fluoride and monosaccharides showed that the largest amount of glycosynthase product accumulated when galactose was employed as an acceptor molecule. The crystal structure of E727A complexed with the reaction product indicated that the disaccharide bound at the active site was 2-O-α-D-glucopyranosyl-α-D-galactopyranose (Glc12Gal). A comparison of the structures of E727A-Glc12Gal and D324N-melibiose showed that there were two main types of conformation: the open and closed forms. The structure of YgjK adopted the closed form when subsite -1 was occupied by glucose. These results suggest that sugars containing the Glc12Gal structure are the most likely candidates for natural substrates of YgjK. © 2013 FEBS.

  10. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome.

    Science.gov (United States)

    Kudo, Kanako; Watanabe, Akira; Ujiie, Seiryu; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    By a global search of the genome database of Aspergillus oryzae, we found 23 genes encoding putative β-glucosidases, among which 10 genes with a signal peptide belonging to glycoside hydrolase family 3 (GH3) were overexpressed in A. oryzae using the improved glaA gene promoter. Consequently, crude enzyme preparations from three strains, each harboring the genes AO090038000223 (bglA), AO090103000127 (bglF), and AO090003001511 (bglJ), showed a substrate preference toward p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and thus were purified to homogeneity and enzymatically characterized. All the purified enzymes (BglA, BglF, and BglJ) preferentially hydrolyzed aryl β-glycosides, including pNPGlc, rather than cellobiose, and these enzymes were proven to be aryl β-glucosidases. Although the specific activity of BglF toward all the substrates tested was significantly low, BglA and BglJ showed appreciably high activities toward pNPGlc and arbutin. The kinetic parameters of BglA and BglJ for pNPGlc suggested that both the enzymes had relatively higher hydrolytic activity toward pNPGlc among the fungal β-glucosidases reported. The thermal and pH stabilities of BglA were higher than those of BglJ, and BglA was particularly stable in a wide pH range (pH 4.5-10). In contrast, BglJ was the most heat- and alkaline-labile among the three β-glucosidases. Furthermore, BglA was more tolerant to ethanol than BglJ; as a result, it showed much higher hydrolytic activity toward isoflavone glycosides in the presence of ethanol than BglJ. This study suggested that the mining of novel β-glucosidases exhibiting higher activity from microbial genome sequences is of great use for the production of beneficial compounds such as isoflavone aglycones. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Glycoside hydrolase family 13 α-glucosidases encoded by Bifidobacterium breve UCC2003; A comparative analysis of function, structure and phylogeny.

    Science.gov (United States)

    Kelly, Emer D; Bottacini, Francesca; O'Callaghan, John; Motherway, Mary O'Connell; O'Connell, Kerry Joan; Stanton, Catherine; van Sinderen, Douwe

    2016-05-02

    Bifidobacterium breve is a noted inhabitant and one of the first colonizers of the human gastro intestinal tract (GIT). The ability of this bacterium to persist in the GIT is reflected by the abundance of carbohydrate-active enzymes that are encoded by its genome. One such family of enzymes is represented by the α-glucosidases, of which three, Agl1, Agl2 and MelD, have previously been identified and characterized in the prototype B. breve strain UCC2003. In this report, we describe an additional B. breve UCC2003-encoded α-glucosidase, along with a B. breve UCC2003-encoded α-glucosidase-like protein, designated here as Agl3 and Agl4, respectively, which together with the three previously described enzymes belong to glycoside hydrolase (GH) family 13. Agl3 was shown to exhibit hydrolytic specificity towards the α-(1→6) linkage present in palatinose; the α-(1→3) linkage present in turanose; the α-(1→4) linkages found in maltotriose and maltose; and to a lesser degree, the α-(1→2) linkage found in sucrose and kojibiose; and the α-(1→5) linkage found in leucrose. Surprisingly, based on the substrates analyzed, Agl4 did not exhibit biologically relevant α-glucosidic activity. With the presence of four functionally active GH13 α-glucosidases, B. breve UCC2003 is capable of hydrolyzing all α-glucosidic linkages that can be expected in glycan substrates in the lower GIT. This abundance of α-glucosidases provides B. breve UCC2003 with an adaptive ability and metabolic versatility befitting the transient nature of growth substrates in the GIT. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes.

    Directory of Open Access Journals (Sweden)

    Nele Ilmberger

    Full Text Available A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs, which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals.

  13. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

    Science.gov (United States)

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-10-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Characterization and engineering of thermostable glycoside hydrolases

    NARCIS (Netherlands)

    Lieshout, van J.F.T.

    2007-01-01

    Glycosidehydrolasesform a class of enzymes that play an important role in sugar-converting processes. They are applied as biocatalyst in both the hydrolysis of natural polymers to mono- andoligo-saccharides, and the reverse hydrolysis or

  15. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Li Luen-Luen

    2011-08-01

    Full Text Available Abstract Background To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. Results From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-α-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-β-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-β-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Conclusions Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate. Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  16. Protein features as determinants of wild-type glycoside hydrolase thermostability

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus; Kiemer, Lars; Nielsen, Morten

    2017-01-01

    -silico methods guiding the discovery process would be of high value. To develop such an in-silico method and provide the data foundation of it, we determined the melting temperatures of 602 fungal glycoside hydrolases from the families GH5, 6, 7, 10, 11, 43 and AA9 (formerly GH61). We, then used sequence...... and homology modeled structure information of these enzymes to develop the ThermoP melting temperature prediction method. Futhermore, in the context of thermostability, we determined the relative importance of 160 molecular features, such as amino acid frequencies and spatial interactions, and exemplified...

  17. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    Science.gov (United States)

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  18. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses

    Directory of Open Access Journals (Sweden)

    James Timothy Y

    2009-06-01

    Full Text Available Abstract Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32 into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi

  19. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    Energy Technology Data Exchange (ETDEWEB)

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D' haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  20. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community.

    Directory of Open Access Journals (Sweden)

    Martin Allgaier

    Full Text Available Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, approximately 10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 degrees C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  1. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  2. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair.

    Science.gov (United States)

    Whitney, John C; Chou, Seemay; Russell, Alistair B; Biboy, Jacob; Gardiner, Taylor E; Ferrin, Michael A; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D

    2013-09-13

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.

  3. Identification, Structure, and Function of a Novel Type VI Secretion Peptidoglycan Glycoside Hydrolase Effector-Immunity Pair*

    Science.gov (United States)

    Whitney, John C.; Chou, Seemay; Russell, Alistair B.; Biboy, Jacob; Gardiner, Taylor E.; Ferrin, Michael A.; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D.

    2013-01-01

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity. PMID:23878199

  4. Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database : The Lactobacillus reuteri NCC 2613 GtfB

    NARCIS (Netherlands)

    Gangoiti, Joana; van Leeuwen, Sander S.; Meng, Xiangfeng; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert

    2017-01-01

    The Glycoside hydrolase (GH) family 70 originally was established for glucansucrases of lactic acid bacteria (LAB) converting sucrose into α-glucan polymers. In recent years we have identified 3 subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD) as 4,6-α-glucanotransferases, cleaving

  5. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    Science.gov (United States)

    Su, Xiaoyun; Zhang, Jing; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  6. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Su

    Full Text Available The glycoside hydrolases (GH of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  7. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes.

    Science.gov (United States)

    Saburi, Wataru; Morimoto, Naoki; Mukai, Atsushi; Kim, Dae Hoon; Takehana, Toshihiko; Koike, Seiji; Matsui, Hirokazu; Mori, Haruhide

    2013-01-01

    α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2-10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The kcat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s(-1), 67.6 s(-1), and 5.33 s(-1), respectively, and the Km values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.

  8. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    Directory of Open Access Journals (Sweden)

    Rita eSharma

    2013-08-01

    Full Text Available Glycoside hydrolases (GH catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/. This database integrates multiple data types including the structural features, orthologous relationships, mutant availability and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification.

  9. Identification and characterization of some Aspergillus pectinolytic glycoside hydrolases

    NARCIS (Netherlands)

    Zandleven, J.S.

    2006-01-01

    Keywords: Aspergillusniger , Arabidopsis thaliana , homogalacturonan, rhamnogalacturonan, xylogalacturonan, xylogalacturonan hydrolase, exo-polygalacturonasePectinases are used for many food

  10. Draft genome sequence of Streptomyces sp. strain F1, a potential source for glycoside hydrolases isolated from Brazilian soil

    Directory of Open Access Journals (Sweden)

    Ricardo Rodrigues de Melo

    Full Text Available ABSTRACT Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296 bp and G + C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria.

  11. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird?s-Nest Fern

    OpenAIRE

    Wu, Guan-Long; Kuo, Tzu-Hao; Tsay, Tung-Tsuan; Tsai, Isheng J.; Chen, Peichen J.

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird's-nest ferns or rice possess different parasitic capacities in bird's-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nem...

  12. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography

    Science.gov (United States)

    Wan, Qun; Parks, Jerry M.; Hanson, B. Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E.; Graham, David E.; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey

    2015-01-01

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen. PMID:26392527

  13. Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization

    Directory of Open Access Journals (Sweden)

    Dougherty Michael J

    2012-07-01

    Full Text Available Abstract Background Metagenomics approaches provide access to environmental genetic diversity for biotechnology applications, enabling the discovery of new enzymes and pathways for numerous catalytic processes. Discovery of new glycoside hydrolases with improved biocatalytic properties for the efficient conversion of lignocellulosic material to biofuels is a critical challenge in the development of economically viable routes from biomass to fuels and chemicals. Results Twenty-two putative ORFs (open reading frames were identified from a switchgrass-adapted compost community based on sequence homology to related gene families. These ORFs were expressed in E. coli and assayed for predicted activities. Seven of the ORFs were demonstrated to encode active enzymes, encompassing five classes of hemicellulases. Four enzymes were over expressed in vivo, purified to homogeneity and subjected to detailed biochemical characterization. Their pH optima ranged between 5.5 - 7.5 and they exhibit moderate thermostability up to ~60-70°C. Conclusions Seven active enzymes were identified from this set of ORFs comprising five different hemicellulose activities. These enzymes have been shown to have useful properties, such as moderate thermal stability and broad pH optima, and may serve as the starting points for future protein engineering towards the goal of developing efficient enzyme cocktails for biomass degradation under diverse process conditions.

  14. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Directory of Open Access Journals (Sweden)

    Caroline da Silva Moraes

    2014-08-01

    Full Text Available The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females or blood feeders (females only, and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18 and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes.

  15. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Science.gov (United States)

    Moraes, Caroline da Silva; Diaz-Albiter, Hector M.; Faria, Maiara do Valle; Sant'Anna, Maurício R. V.; Dillon, Rod J.; Genta, Fernando A.

    2014-01-01

    The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females) or blood feeders (females only), and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases, and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18, and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes. PMID:25140153

  16. Draft genome sequence of Streptomyces sp. strain F1, a potential source for glycoside hydrolases isolated from Brazilian soil.

    Science.gov (United States)

    Melo, Ricardo Rodrigues de; Persinoti, Gabriela Felix; Paixão, Douglas Antonio Alvaredo; Squina, Fábio Márcio; Ruller, Roberto; Sato, Helia Harumi

    Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296bp and G+C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Genome mining and motif truncation of glycoside hydrolase family 5 endo-β-1,4-mannanase encoded by Aspergillus oryzae RIB40 for potential konjac flour hydrolysis or feed additive.

    Science.gov (United States)

    Tang, Cun-Duo; Shi, Hong-Ling; Tang, Qing-Hai; Zhou, Jun-Shi; Yao, Lun-Guang; Jiao, Zhu-Jin; Kan, Yun-Chao

    2016-11-01

    Two novel glycosyl hydrolase family 5 (GH5) β-mannanases (AoMan5A and AoMan5B) were identified from Aspergillus oryzae RIB40 by genome mining. The AoMan5A contains a predicted family 1 carbohydrate binding module (CBM-1), located at its N-terminal. The AoMan5A, AoMan5B and truncated mutant AoMan5AΔCL (truncating the N-terminal CBM and linker of AoMan5A) were expressed retaining the N-terminus of the native protein in Pichia pastoris GS115 by pPIC9K M . The specific enzyme activity of the purified reAoMan5A, reAoMan5B and reAoMan5AΔCL towards locust bean gum at pH 3.6 and 40°C for 10min, was 8.3, 104.2 and 15.8U/mg, respectively. The temperature properties of the reAoMan5AΔCL were improved by truncating CBM. They can degrade the pretreated konjac flour and produce prebiotics. In addition, they had excellent stability under simulative gastric fluid and simulative prilling process. All these properties make these recombinant β-mannanases potential additives for use in the food and feed industries. Copyright © 2016. Published by Elsevier Inc.

  18. Insight into glycoside hydrolases for debranched xylan degradation from extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus.

    Directory of Open Access Journals (Sweden)

    Xiaojing Jia

    Full Text Available Caldicellulosiruptor lactoaceticus 6A, an anaerobic and extremely thermophilic bacterium, uses natural xylan as carbon source. The encoded genes of C. lactoaceticus 6A for glycoside hydrolase (GH provide a platform for xylan degradation. The GH family 10 xylanase (Xyn10A and GH67 α-glucuronidase (Agu67A from C. lactoaceticus 6A were heterologously expressed, purified and characterized. Both Xyn10A and Agu67A are predicted as intracellular enzymes as no signal peptides identified. Xyn10A and Agu67A had molecular weight of 47.0 kDa and 80.0 kDa respectively as determined by SDS-PAGE, while both appeared as homodimer when analyzed by gel filtration. Xyn10A displayed the highest activity at 80 °C and pH 6.5, as 75 °C and pH 6.5 for Agu67A. Xyn10A had good stability at 75 °C, 80 °C, and pH 4.5-8.5, respectively, and was sensitive to various metal ions and reagents. Xyn10A possessed hydrolytic activity towards xylo-oligosaccharides (XOs and beechwood xylan. At optimum conditions, the specific activity of Xyn10A was 44.6 IU/mg with beechwood xylan as substrate, and liberated branched XOs, xylobiose, and xylose. Agu67A was active on branched XOs with methyl-glucuronic acids (MeGlcA sub-chains, and primarily generated XOs equivalents and MeGlcA. The specific activity of Agu67A was 1.3 IU/mg with aldobiouronic acid as substrate. The synergistic action of Xyn10A and Agu67A was observed with MeGlcA branched XOs and xylan as substrates, both backbone and branched chain of substrates were degraded, and liberated xylose, xylobiose, and MeGlcA. The synergism of Xyn10A and Agu67A provided not only a thermophilic method for natural xylan degradation, but also insight into the mechanisms for xylan utilization of C. lactoaceticus.

  19. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng

    2015-10-01

    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  20. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

    Science.gov (United States)

    Díez-Municio, Marina; Herrero, Miguel; Olano, Agustín; Moreno, F Javier

    2014-01-01

    Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-α-glucosyl-lactose are also described and commented. PMID:24690139

  1. The use of neutron scattering to determine the functional structure of glycoside hydrolase.

    Science.gov (United States)

    Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko

    2016-10-01

    Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase.

    Science.gov (United States)

    Honda, Yuji; Fushinobu, Shinya; Hidaka, Masafumi; Wakagi, Takayoshi; Shoun, Hirofumi; Taniguchi, Hajime; Kitaoka, Motomitsu

    2008-04-01

    The tyrosine residue Y198 is known to support a nucleophilic water molecule with the general base residue, D263, in the reducing-end xylose-releasing exo-oligoxylanase (Rex). A mutation in the tyrosine residue changing it into phenylalanine caused a drastic decrease in the hydrolytic activity and a small increase in the F(-) releasing activity from alpha-xylobiosyl fluoride in the presence of xylose. In contrast, mutations at D263 resulted in the decreased F(-) releasing activity. As a result of the high F(-) releasing activity and low hydrolytic activity, Y198F of Rex accumulates a large amount of product during the glycosynthase reaction. We propose a novel method for producing a glycosynthase from an inverting glycoside hydrolase by mutating a residue that holds the nucleophilic water molecule with the general base residue while keeping the general base residue intact.

  3. Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships.

    Science.gov (United States)

    Fushinobu, Shinya; Alves, Victor D; Coutinho, Pedro M

    2013-10-01

    Recent progress in three-dimensional structure analyses of glycoside hydrolases (GHs) and polysaccharide lyases (PLs), the historically relevant enzyme classes involved in the cleavage of glycosidic bonds of carbohydrates and glycoconjugates, is reviewed. To date, about 80% and 95% of the GH and PL families, respectively, have a representative crystal structure. New structures have been determined for enzymes acting on plant cell wall polysaccharides, sphingolipids, blood group antigens, milk oligosaccharides, N-glycans, oral biofilms and dietary seaweeds. Some GH enzymes have very unique catalytic residues such as the Asp-His dyad. New methods such as high-speed atomic force microscopy and computational simulation have opened up a path to investigate both the dynamics and the detailed molecular interactions displayed by these enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  5. Mechanism-based fluorescent labeling of beta-galactosidases. An efficient method in proteomics for glycoside hydrolases.

    Science.gov (United States)

    Kurogochi, Masaki; Nishimura, Shin-Ichiro; Lee, Yuan Chuan

    2004-10-22

    (4-N-5-Dimethylaminonaphthalene-1-sulfonyl-2-difluoromethylphenyl)-beta-d-galactopyranoside was synthesized and successfully tested on beta-galactosidases from Xanthomonas manihotis (Wong-Madden, S. T., and Landry, D. Glycobiology (1995) 5, 19-28 and Taron, C. H., Benner, J. S., Hornstra, L. J., and Guthrie, E. P. (1995) Glycobiology 5, 603-610), Escherichia coli (Jacobson, R. H., Zhang, X. J., DuBose, R. F., and Matthews, B. W. (1994) Nature 369, 761-766), and Bacillus circulans (Fujimoto, H., Miyasato, M., Ito, Y., Sasaki, T., and Ajisaka, K. (1988) Glycoconj. J. 15, 155-160) for the rapid identification of the catalytic site. Reaction of the irreversible inhibitor with enzymes proceeded to afford a fluorescence-labeled protein suitable for further high throughput characterization by using antidansyl antibody and matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF). Specific probing by a fluorescent aglycon greatly facilitated identification of the labeled peptide fragments from beta-galactosidases. It was demonstrated by using X. manihotis beta-galactosidase that the Arg-58 residue, which is located within a sequence of 56IPRAYWKD63, was labeled by nucleophilic attack of the guanidinyl group. This sequence including Arg-58 (Leu-46 to Tyr-194) was similar to that (Met-1 to Tyr-151) of Thermus thermophilus A4, which is the first known structure of glycoside hydrolases family 42 (Hidaka, M., Fushinobu, S., Ohtsu, N., Motoshima, H., Matsuzawa, H., Shoun, H., and Wakagi, T. (2002) J. Mol. Biol. 322, 79-91). A catalytic glutamic acid (Glu-537) of E. coli beta-galactosidase was proved to be labeled by the same procedure, suggesting that the modification site with this irreversible substrate might depend both on the nucleophilicity of the amino acids and their spatial arrangement in the individual catalytic cavity. Similarly, a Glu-259 in 257TLEE260 was selectively labeled using B. circulans beta-galactosidase, indicating that Glu

  6. Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi

    Directory of Open Access Journals (Sweden)

    Franco Cairo João Paulo L

    2011-11-01

    Full Text Available Abstract Background Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production. Results The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis. Conclusions Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole

  7. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    Science.gov (United States)

    Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087

  8. Resin Glycosides from the Morning Glory Family

    Science.gov (United States)

    Pereda-Miranda, Rogelio; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon

    Resin glycosides are part of a very extensive family of secondary metabolites known as glycolipids or lipo-oligosaccharides and are constituents of complex resins (glycoresins) (1) unique to the morning glory family, Convolvulaceae (2). These active principles are responsible for the drastic purgative action of all the important Convolvulaceous species used in traditional medicine throughout the world since ancient times. Several commercial purgative crude drugs can be prepared from the roots of different species of Mexican morning glories. Their incorporation as therapeutic agents in Europe is an outstanding example of the assimilation of botanical drugs from the Americas as substitutes for traditional Old World remedies (3). Even though phytochemical investigations on the constituents of these drugs were initiated during the second half of the nineteenth century, the structure of their active ingredients still remains poorly known for some examples of these purgative roots. During the last two decades, the higher resolution capabilities of modern analytical isolation techniques used in conjunction with powerful spectroscopic methods have facilitated the elucidation of the active principles of these relevant herbal products.

  9. Comparative Analysis of Glycoside Hydrolases Activities from Phylogenetically Diverse Marine Bacteria of the Genus Arenibacter

    Directory of Open Access Journals (Sweden)

    Valery Mikhailov

    2013-06-01

    Full Text Available A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active β-N-acetylglucosaminidases and α-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases.

  10. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers.

    Science.gov (United States)

    Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2008-11-01

    The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.

  11. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.

    Science.gov (United States)

    Brulc, Jennifer M; Antonopoulos, Dionysios A; Miller, Margret E Berg; Wilson, Melissa K; Yannarell, Anthony C; Dinsdale, Elizabeth A; Edwards, Robert E; Frank, Edward D; Emerson, Joanne B; Wacklin, Pirjo; Coutinho, Pedro M; Henrissat, Bernard; Nelson, Karen E; White, Bryan A

    2009-02-10

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).

  12. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2015-05-01

    Full Text Available In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme cocktail, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60°C to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy.

  13. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Tisch Doris

    2011-12-01

    Full Text Available Abstract Background In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. Results As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency. Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. Conclusions The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light

  14. The Immunoreactive Exo-1,3-β-Glucanase from the Pathogenic Oomycete Pythium insidiosum Is Temperature Regulated and Exhibits Glycoside Hydrolase Activity.

    Directory of Open Access Journals (Sweden)

    Angsana Keeratijarut

    Full Text Available The oomycete organism, Pythium insidiosum, is the etiologic agent of the life-threatening infectious disease called "pythiosis". Diagnosis and treatment of pythiosis is difficult and challenging. Novel methods for early diagnosis and effective treatment are urgently needed. Recently, we reported a 74-kDa immunodominant protein of P. insidiosum, which could be a diagnostic target, vaccine candidate, and virulence factor. The protein was identified as a putative exo-1,3-ß-glucanase (Exo1. This study reports on genetic, immunological, and biochemical characteristics of Exo1. The full-length exo1 coding sequence (2,229 bases was cloned. Phylogenetic analysis showed that exo1 is grouped with glucanase-encoding genes of other oomycetes, and is far different from glucanase-encoding genes of fungi. exo1 was up-regulated upon exposure to body temperature, and its gene product is predicted to contain BglC and X8 domains, which are involved in carbohydrate transport, binding, and metabolism. Based on its sequence, Exo1 belongs to the Glycoside Hydrolase family 5 (GH5. Exo1, expressed in E. coli, exhibited ß-glucanase and cellulase activities. Exo1 is a major intracellular immunoreactive protein that can trigger host immune responses during infection. Since GH5 enzyme-encoding genes are not present in human genomes, Exo1 could be a useful target for drug and vaccine development against this pathogen.

  15. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes.

    Science.gov (United States)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    2016-01-15

    The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two beta-Glycoside Hydrolases

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina; Sparding, Nadja; Majumder, Avishek

    2015-01-01

    Probiotics, prebiotics, and combinations there of, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro-and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins...... of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis....... Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium...

  17. A GH57 4-alpha-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production

    NARCIS (Netherlands)

    Paul, Catherine J.; Leemhuis, Hans; Dobruchowska, Justyna M.; Grey, Carl; Onnby, Linda; van Leeuwen, Sander S.; Dijkhuizen, Lubbert; Karlsson, Eva Nordberg

    4-alpha-Glucanotransferase (GTase) enzymes (EC 2.4.1.25) modulate the size of alpha-glucans by cleaving and reforming alpha-1,4 glycosidic bonds in alpha-glucans, an essential process in starch and glycogen metabolism in plants and microorganisms. The glycoside hydrolase family 57 enzyme (GTase57)

  18. A Trapped Covalent Intermediate of a Glycoside Hydrolase on the Pathway to Transglycosylation. Insights from Experiments and Quantum Mechanics/Molecular Mechanics Simulations.

    Science.gov (United States)

    Raich, Lluís; Borodkin, Vladimir; Fang, Wenxia; Castro-López, Jorge; van Aalten, Daan M F; Hurtado-Guerrero, Ramón; Rovira, Carme

    2016-03-16

    The conversion of glycoside hydrolases (GHs) into transglycosylases (TGs), i.e., from enzymes that hydrolyze carbohydrates to enzymes that synthesize them, represents a promising solution for the large-scale synthesis of complex carbohydrates for biotechnological purposes. However, the lack of knowledge about the molecular details of transglycosylation hampers the rational design of TGs. Here we present the first crystallographic structure of a natural glycosyl-enzyme intermediate (GEI) of Saccharomyces cerevisiae Gas2 in complex with an acceptor substrate and demonstrate, by means of quantum mechanics/molecular mechanics metadynamics simulations, that it is tuned for transglycosylation (ΔG(⧧) = 12 kcal/mol). The 2-OH···nucleophile interaction is found to be essential for catalysis: its removal raises the free energy barrier significantly (11 and 16 kcal/mol for glycosylation and transglycosylation, respectively) and alters the conformational itinerary of the substrate (from (4)C1 → [(4)E](⧧) → (1,4)B/(4)E to (4)C1 → [(4)H3](⧧) → (4)C1). Our results suggest that changes in the interactions involving the 2-position could have an impact on the transglycosylation activity of several GHs.

  19. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus.

    Directory of Open Access Journals (Sweden)

    Mengying Li

    Full Text Available N-linked glycosylation is a way of glycosylation for newly synthesized protein, which plays a key role in the maturation and transport of proteins. Glycoside hydrolases (GHs are essential in this process, and are involved in processing of N-linked glycoproteins or degradation of carbohydrate structures. Here, we identified and characterized MoGls2 in Magnaporthe oryzae, which is a yeast glucosidase II homolog Gls2 and is required for trimming the final glucose in N-linked glycans and normal cell wall synthesis. Target deletion of MoGLS2 in M. oryzae resulted in a reduced mycelial growth, an increased conidial production, delayed conidial germination and loss the ability of sexual reproduction. Pathogenicity assays revealed that the ΔMogls2 mutant showed significantly decreased in virulence and infectious growth. Further studies showed that the mutant was less sensitive to salt and osmotic stress, and increased sensitivity to cell wall stresses. Additionally, the ΔMogls2 mutant showed a defect in cell wall integrity. Our results indicate that MoGls2 is a key protein for the growth and development of M. oryzae, involving in the regulation of asexual/sexual development, stress response, cell wall integrity and infectious growth.

  20. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β-Glycoside Hydrolases

    Directory of Open Access Journals (Sweden)

    Gabriella C. van Zanten

    2015-01-01

    Full Text Available Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE in the acidic (pH 4–7 and the alkaline (pH 6–11 regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5–13.9-fold or decreasing 1.5–7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881 and phospho-β-galactosidase II (LBA0726. The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism.

  1. Phylogenetic diversity and environment-specific distributions of glycosyl hydrolase family 10 xylanases in geographically distant soils.

    Directory of Open Access Journals (Sweden)

    Guozeng Wang

    Full Text Available BACKGROUND: Xylan is one of the most abundant biopolymers on Earth. Its degradation is mediated primarily by microbial xylanase in nature. To explore the diversity and distribution patterns of xylanase genes in soils, samples of five soil types with different physicochemical characters were analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Partial xylanase genes of glycoside hydrolase (GH family 10 were recovered following direct DNA extraction from soil, PCR amplification and cloning. Combined with our previous study, a total of 1084 gene fragments were obtained, representing 366 OTUs. More than half of the OTUs were novel (identities of <65% with known xylanases and had no close relatives based on phylogenetic analyses. Xylanase genes from all the soil environments were mainly distributed in Bacteroidetes, Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Dictyoglomi and some fungi. Although identical sequences were found in several sites, habitat-specific patterns appeared to be important, and geochemical factors such as pH and oxygen content significantly influenced the compositions of xylan-degrading microbial communities. CONCLUSION/SIGNIFICANCE: These results provide insight into the GH 10 xylanases in various soil environments and reveal that xylan-degrading microbial communities are environment specific with diverse and abundant populations.

  2. Functional analysis of the Escherichia coli genome for members of the alpha/beta hydrolase family.

    Science.gov (United States)

    Zhang, L; Godzik, A; Skolnick, J; Fetrow, J S

    1998-01-01

    Database-searching methods based on sequence similarity have become the most commonly used tools for characterizing newly sequenced proteins. Due to the often underestimated functional diversity in protein families and superfamilies, however, it is difficult to make the characterization specific and accurate. In this work, we have extended a method for active-site identification from predicted protein structures. The structural conservation and variation of the active sites of the alpha/beta hydrolases with known structures were studied. The similarities were incorporated into a three-dimensional motif that specifies essential requirements for the enzymatic functions. A threading algorithm was used to align 651 Escherichia coli open reading frames (ORFs) to one of the members of the alpha/beta hydrolase fold family. These ORFs were then screened according to our three-dimensional motif and with an extra requirement that demands conservation of the key active-site residues among the proteins that bear significant sequence similarity to the ORFs. 17 ORFs from E. coli were predicted to have hydrolase activity and their putative active-site residues were identified. Most were in agreement with the experiments and results of other database-searching methods. The study further suggests that YHET_ECOLI, a hypothetical protein classified as a member of the UPF0017 family (an uncharacterized protein family), bears all the hallmarks of the alpha/beta hydrolase family. The novel feature of our method is that it uses three-dimensional structural information for function prediction. The results demonstrate the importance and necessity of such a method to fill the gap between sequence alignment and function prediction; furthermore, the method provides a way to verify the structure predictions, which enables an expansion of the applicable scope of the threading algorithms.

  3. The apo structure of sucrose hydrolase from Xanthomonas campestris pv. campestris shows an open active-site groove

    DEFF Research Database (Denmark)

    Champion, Elise; Remaud-Simeon, Magali; Skov, Lars Kobberøe

    2009-01-01

    Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestris...... of GH-13. Comparisons with structures of the highly similar sucrose hydrolase from X. axonopodis pv. glycines most notably showed that residues Arg516 and Asp138, which form a salt bridge in the X. axonopodis sucrose complex and define part of the subsite -1 glucosyl-binding determinants...

  4. Production of enzymatically active recombinant full-length barley high pI alpha-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification

    DEFF Research Database (Denmark)

    Næsted, Henrik; Kramhøft, Birte; Lok, F.

    2006-01-01

    Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under contr...... nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants. (c) 2005 Elsevier Inc. All rights reserved....

  5. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases.

    Science.gov (United States)

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Douché, Thibaut; Bonassi, Maria Beatriz Rodrigues; Cataldi, Thaís Regiani; Fonseca, Juliana Guimarães; San Clemente, Hélène; Pont-Lezica, Rafael; Labate, Carlos Alberto

    2016-01-11

    Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane

  6. Raffinose family oligosaccharide utilisation by probiotic bacteria: insight into substrate recognition, molecular architecture and diversity of GH36 alpha-galactosidases

    DEFF Research Database (Denmark)

    Abou Hachem, Maher; Fredslund, Folmer; Andersen, Joakim Mark

    2012-01-01

    The organisation of genes conferring utilisation of raffinose family oligosaccharides (RFOs) has been analysed in several probiotic bacteria from the Bifidobacterium and Lactobacillus genera. Glycoside hydrolase family 36 (GH36) alpha-galatosidase encoding genes occur together with sugar transpor...

  7. Functional analysis of the Glucan Degradation Locus (GDL) in Caldicellulosiruptor bescii reveals essential roles of component glycoside hydrolases in plant biomass deconstruction.

    Science.gov (United States)

    Conway, Jonathan M; McKinley, Bennett S; Seals, Nathaniel L; Hernandez, Diana; Khatibi, Piyum A; Poudel, Suresh; Giannone, Richard J; Hettich, Robert L; Williams-Rhaesa, Amanda M; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2017-10-06

    The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but one that can be exploited for conversion of lignocellulosic feedstocks into bio-based fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The Glucan Degradation Locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative post-translational modifying enzymes, in addition to multi-domain, multi-functional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation, as compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GHs in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extent to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomasses (switchgrass or poplar) was examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture and not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization. Importance The efficient and extensive degradation of complex

  8. Production and characterisation of glycoside hydrolases from GH3, GH5, GH10, GH11 and GH61 for chemo-enzymatic synthesis of xylo- and mannooligosaccharides

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol

    Produktion og karakterisering af glykosid hydrolaser fro GH3, GH5, GH10, GH11 og GH61 til chemo-enzymatisk syntese af xylo- og mannooligosakkarider Biprodukter fra hydrolyse af plantecellevægge er kilder til oligosakkarider, som potentielt kan fungere som prebiotika ved at stimulere væksten af...... omfatter karakterisering af de producerede enzymer samt cDNA kloning af formodet GH61 endo Produktion og karakterisering af glykosid hydrolaser fro GH3, GH5, GH10, GH11 og GH61 til chemo-enzymatisk syntese af xylo- og mannooligosakkarider Biprodukter fra hydrolyse af plantecellevægge er kilder til...

  9. Ethanol production with a flocculating mutant of Zymomonas mobilis and immobilized glycoside hydrolases. Ethanolgewinnung mit einer flockenden Mutante von Zymomonas mobilis und immobilisierten Glycosidhydrolasen

    Energy Technology Data Exchange (ETDEWEB)

    Tramm-Werner, S.

    1987-05-25

    A method to extend the substrate spectrum of Z. mobilis was developed. Higher ethanol yields were achieved by simultaneous use of hydrolases cross-linked with glutar aldehyde together with the flocculating Zymomonas cells (TW 602). Apart from the high product yields, the method is characterized by low susceptibility to infections.

  10. Identification of the C-Terminal GH5 Domain from CbCel9B/Man5A as the First Glycoside Hydrolase with Thermal Activation Property from a Multimodular Bifunctional Enzyme.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available Caldicellulosiruptor bescii encodes at least six unique multimodular glycoside hydrolases crucial for plant cell wall polysaccharides degradation, with each having two catalytic domains separated by two to three carbohydrate binding modules. Among the six enzymes, three have one N- or C-terminal GH5 domain with identical amino acid sequences. Despite a few reports on some of these multimodular enzymes, little is known about how the conserved GH5 domains behave, which are believed to be important due to the gene duplication. We thus cloned a representative GH5 domain from the C-terminus of a multimodular protein, i.e. the bifunctional cellulase/mannanase CbCel9B/Man5A which has been reported, and expressed it in Escherichia coli. Without any appending CBMs, the recombinant CbMan5A was still able to hydrolyze a variety of mannan substrates with different backbone linkages or side-chain decorations. While CbMan5A displayed the same pH optimum as CbCel9B/Man5A, it had an increased optimal temperature (90°C and moreover, was activated by heating at 70°C and 80°C, a property not ever reported for the full-length protein. The turnover numbers of CbMan5A on mannan substrates were, however, lower than those of CbCel9B/Man5A. These data suggested that evolution of CbMan5A and the other domains into a single polypeptide is not a simple assembly; rather, the behavior of one module may be affected by the other ones in the full-length enzyme. The differential scanning calorimetry analysis further indicated that heating CbMan5A was not a simple transition state process. To the best knowledge of the authors, CbMan5A is the first glycoside hydrolase with thermal activation property identified from a multimodular bifunctional enzyme.

  11. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost.

    Science.gov (United States)

    Izquierdo, Javier A; Sizova, Maria V; Lynd, Lee R

    2010-06-01

    The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with minor representation of clostridial clusters I and XIV and a novel Lutispora species cluster. Our studies reveal different levels of 16S rRNA gene diversity, ranging from 3 to 18 operational taxonomic units (OTUs), as well as variability in community membership across the three enrichment cultures. By comparison, glycosyl hydrolase family 48 (GHF48) diversity analyses revealed a narrower breadth of novel clostridial genes associated with cultured and uncultured cellulose degraders. The novel GHF48 genes identified in this study were related to the novel clostridia Clostridium straminisolvens and Clostridium clariflavum, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured species.

  12. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes.

    Science.gov (United States)

    Hobson, Neil; Deyholos, Michael K

    2013-05-23

    Several β-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on β-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species. Using the recently published flax genome assembly, we identified 43 β-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue. Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles unique to flax, which will require

  13. Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis

    Directory of Open Access Journals (Sweden)

    Nicolas Millet

    2018-01-01

    Full Text Available Cell wall biosynthesis and remodeling are essential for fungal growth and development. In the fungal pathogen Aspergillus fumigatus, the β(1,3glucan is the major cell wall polysaccharide. This polymer is synthesized at the plasma membrane by a transmembrane complex, then released into the parietal space to be remodeled by enzymes, and finally incorporated into the pre-existing cell wall. In the Glycosyl-Hydrolases family 17 (GH17 of A. fumigatus, two β(1,3glucanosyltransferases, Bgt1p and Bgt2p, have been previously characterized. Disruption of BGT1 and BGT2 did not result in a phenotype, but sequence comparison and hydrophobic cluster analysis showed that three other genes in A. fumigatus belong to the GH17 family, SCW4, SCW11, and BGT3. In constrast to Δbgt1bgt2 mutants, single and multiple deletion of SCW4, SCW11, and BGT3 showed a decrease in conidiation associated with a higher conidial mortality and an abnormal conidial shape. Moreover, mycelium was also affected with a slower growth, stronger sensitivity to cell wall disturbing agents, and altered cell wall composition. Finally, the synthetic interactions between Bgt1p, Bgt2p, and the three other members, which support a functional cooperation in cell-wall assembly, were analyzed. Our data suggest that Scw4p, Scw11p, and Bgt3p are essential for cell wall integrity and might have antagonistic and distinct functions to Bgt1p and Bgt2p.

  14. Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis

    Science.gov (United States)

    Millet, Nicolas; Latgé, Jean-Paul; Mouyna, Isabelle

    2018-01-01

    Cell wall biosynthesis and remodeling are essential for fungal growth and development. In the fungal pathogen Aspergillus fumigatus, the β(1,3)glucan is the major cell wall polysaccharide. This polymer is synthesized at the plasma membrane by a transmembrane complex, then released into the parietal space to be remodeled by enzymes, and finally incorporated into the pre-existing cell wall. In the Glycosyl-Hydrolases family 17 (GH17) of A. fumigatus, two β(1,3)glucanosyltransferases, Bgt1p and Bgt2p, have been previously characterized. Disruption of BGT1 and BGT2 did not result in a phenotype, but sequence comparison and hydrophobic cluster analysis showed that three other genes in A. fumigatus belong to the GH17 family, SCW4, SCW11, and BGT3. In constrast to Δbgt1bgt2 mutants, single and multiple deletion of SCW4, SCW11, and BGT3 showed a decrease in conidiation associated with a higher conidial mortality and an abnormal conidial shape. Moreover, mycelium was also affected with a slower growth, stronger sensitivity to cell wall disturbing agents, and altered cell wall composition. Finally, the synthetic interactions between Bgt1p, Bgt2p, and the three other members, which support a functional cooperation in cell-wall assembly, were analyzed. Our data suggest that Scw4p, Scw11p, and Bgt3p are essential for cell wall integrity and might have antagonistic and distinct functions to Bgt1p and Bgt2p. PMID:29385695

  15. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides

    Directory of Open Access Journals (Sweden)

    Jihen Ati

    2017-09-01

    Full Text Available Carbohydrate related enzymes, like glycosyltransferases and glycoside hydrolases, are nowadays more easily accessible and are thought to represent powerful and greener alternatives to conventional chemical glycosylation procedures. The knowledge of their corresponding mechanisms has already allowed the development of efficient biocatalysed syntheses of complex O-glycosides. These enzymes can also now be applied to the formation of rare or unnatural glycosidic linkages.

  16. Aspergillus nidulans α-galactosidase of glycoside hydrolase family 36 catalyses the formation of α-galacto-oligosaccharides by transglycosylation

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Baumann, Martin; Petersen, B. O.

    2010-01-01

    xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α-galactosyl to 6-OH of the terminal residue in the α-linked melibiose, maltose, trehalose, sucrose and turanose in 6–46% yield and the β-linked lactose, lactulose and cellobiose in 28...

  17. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  18. A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation

    NARCIS (Netherlands)

    Martens-Uzunova, E.S.; Zandleven, J.S.; Benen, J.A.E.; Awad, H.; Kools, H.J.; Beldman, G.; Voragen, A.G.J.; Berg, van den J.A.; Schaap, P.J.

    2006-01-01

    The fungus Aspergillus niger is an industrial producer of pectin degrading enzymes. The recent solving of the genomic sequence of A. niger allowed an inventory of the entire genome of the fungus for potential carbohydrate degrading enzymes. By applying bioinformatics tools 12 new genes putatively

  19. Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8

    NARCIS (Netherlands)

    Camargo, de Brenda R.; Claassens, Nico J.; Quirino, Betania Ferraz; Noronha, Eliane F.; Kengen, Servé W.M.

    2018-01-01

    An extensive list of putative cellulosomal enzymes from C. thermocellum is now available in the public databanks, however, most of these remain unvalidated with regard to their activity and expression control mechanisms. This is particularly true of those enzymes putatively involved in hemicellulose

  20. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Katayama, Takane; Abou Hachem, Maher

    2014-01-01

    resembling various milk and plant galactooligosaccharides distinguishes the three GH42 members, Bga42A, Bga42B and Bga42C, encoded by the probiotic B. longum subsp. infantis ATCC 15697 and revealed the glycosyl residue at subsite +1 and its linkage to the terminal Gal at subsite −1 to be key specificity...

  1. Two new acylated flavonol glycosides from Mimosa pigra L. leaves sub-family Mimosoideae

    Directory of Open Access Journals (Sweden)

    Chinedu J. Okonkwo

    2016-12-01

    Conclusion: Myricetin, quercetin and their glycoside derivatives are strong antioxidants; and elicit cytotoxic effect on human cancer cell lines among other pharmacological activities. The isolation of acylated flavonoids in M. pigra provided an important insight on the evolutionary trend of the medicinal plant. While the dominance of flavonols, may account for the various ethnomedicinal uses of the herb and the mechanism and mode of its confirmed pharmacological actions.

  2. Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ∆brlA and ∆flbA

    Science.gov (United States)

    van Munster, Jolanda M.; Nitsche, Benjamin M.; Akeroyd, Michiel; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.; Ram, Arthur F. J.

    2015-01-01

    Background The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. Results In this study, we used developmental mutants (ΔflbA and ΔbrlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. Conclusion The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall

  3. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA.

    Directory of Open Access Journals (Sweden)

    Jolanda M van Munster

    Full Text Available The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis.In this study, we used developmental mutants (ΔflbA and ΔbrlA which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced.The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall modification

  4. Novel glycoside hydrolases from thermophilic fungi

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to isolated polypeptides having cellulolytic activity or hemicellulolytic activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of produ...

  5. Bifidobacterium glycoside hydrolases and (potential) prebiotics

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Voragen, A.G.J.

    2008-01-01

    Carbohydrates occur in food as natural constituents or are added as ingredients. In the last decade a number of novel dietary carbohydrates have been introduced as ingredients for food applications, responding to the growing awareness among consumers of the link between health and diet. One

  6. The starch-binding domain family CBM41 - an in silico analysis of evolutionary relationships

    DEFF Research Database (Denmark)

    Janeček, Štefan; Majzlová, Katarína; Svensson, Birte

    2017-01-01

    Within the CAZy database, there are 81 carbohydrate-binding module (CBM) families. A CBM represents a non-catalytic domain in a modular arrangement of glycoside hydrolases (GHs). The present in silico study has been focused on starch-binding domains from the family CBM41 that are usually part...

  7. Pregnane glycosides from Sansevieria trifasciata.

    Science.gov (United States)

    Mimaki, Y; Inoue, T; Kuroda, M; Sashida, Y

    1997-01-01

    Phytochemical analysis of the whole plant of Sansevieria trifasciata, one of the most common Agavaceae plants, has resulted in the isolation of four new pregnane glycosides. Their structures have been determined by spectroscopic analysis and acid- and alkaline-catalysed hydrolysis to be 1 beta,3 beta-dihydroxypregna-5,16-dien-20-one glycosides. This is believed to be the first report of the isolation of the pregnane glycosides from a plant of the family Agavaceae.

  8. Crystallization and preliminary X-ray analysis of a family 19 glycosyl hydrolase from Carica papaya latex

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Joëlle, E-mail: jhuet@ulb.ac.be [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Azarkan, Mohamed [Laboratoire de Chimie Générale (CP 609), Faculté de Médecine, Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, B-1070 Bruxelles (Belgium); Looze, Yvan [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Villeret, Vincent [CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille 1-Université de Lille 2-Institut Pasteur de Lille, IFR142, 1 Rue du Professeur Calmette, F-59021 Lille (France); Wintjens, René, E-mail: jhuet@ulb.ac.be [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium)

    2008-05-01

    A chitinase isolated from the latex of the tropical species Carica papaya has been crystallized. The addition of N-acetyl-d-glucosamine to the crystallization solution has improved the diffraction quality resolution of the crystal to 1.8 Å resolution. A chitinase isolated from the latex of the tropical species Carica papaya has been purified to homogeneity and crystallized. This enzyme belongs to glycosyl hydrolase family 19 and exhibits exceptional resistance to proteolysis. The initially observed crystals, which diffracted to a resolution of 2.0 Å, were improved through modification of the crystallization protocol. Well ordered crystals were subsequently obtained using N-acetyl-d-glucosamine, the monomer resulting from the hydrolysis of chitin, as an additive to the crystallization solution. Here, the characterization of a chitinase crystal that belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 69.08, b = 44.79, c = 76.73 Å, β = 95.33° and two molecules per asymmetric unit, is reported. Diffraction data were collected to a resolution of 1.8 Å. Structure refinement is currently in progress.

  9. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  10. High genetic diversity and different distributions of glycosyl hydrolase family 10 and 11 xylanases in the goat rumen.

    Directory of Open Access Journals (Sweden)

    Guozeng Wang

    Full Text Available BACKGROUND: The rumen harbors a complex microbial ecosystem for efficient hydrolysis of plant polysaccharides which are the main constituent of the diet. Xylanase is crucial for hemicellulose hydrolysis and plays an important role in the plant cell wall degradation. Xylanases of ruminal strains were widely studied, but few studies have focused on their diversity in rumen microenvironment. METHODOLOGY/PRINCIPAL FINDINGS: We explored the genetic diversity of xylanases belonging to two major glycosyl hydrolase families (GH 10 and 11 in goat rumen contents by analyzing the amplicons generated with two degenerate primer sets. Fifty-two distinct GH 10 and 35 GH 11 xylanase gene fragments (similarity <95% were retrieved, and most had low identities with known sequences. Based on phylogenetic analysis, all GH 10 xylanase sequences fell into seven clusters, and 88.5% of them were related to xylanases from Bacteroidetes. Five clusters of GH 11 xylanase sequences were identified. Of these, 85.7% were related to xylanases from Firmicutes, and 14.3% were related to those of rumen fungi. Two full-length xylanase genes (one for each family were directly cloned and expressed in Escherichia coli. Both the recombinant enzymes showed substantial xylanase activity, and were purified and characterized. Combined with the results of sheep rumen, Bacteroidetes and Firmicutes are the two major phyla of xylan-degrading microorganisms in rumen, which is distinct from the representatives of other environments such as soil and termite hindgut, suggesting that xylan-degrading microorganisms are environment specific. CONCLUSION/SIGNIFICANCE: The numerous new xylanase genes suggested the functional diversity of xylanase in the rumen microenvironment which may have great potential applications in industry and agriculture. The phylogenetic diversity and different distributions of xylanase genes will help us understand their roles in plant cell wall degradation in the rumen

  11. 1H, 15N and 13C backbone and side-chain resonance assignments of a family 32 carbohydrate-binding module from the Clostridium perfringens NagH.

    Science.gov (United States)

    Grondin, Julie M; Chitayat, Seth; Ficko-Blean, Elizabeth; Boraston, Alisdair B; Smith, Steven P

    2012-10-01

    The Gram-positive anaerobe Clostridium perfringens is an opportunistic bacterial pathogen that secretes a battery of enzymes involved in glycan degradation. These glycoside hydrolases are thought to be involved in turnover of mucosal layer glycans, and in the spread of major toxins commonly associated with the development of gastrointestinal diseases and gas gangrene in humans. These enzymes employ multi-modularity and carbohydrate-binding function to degrade extracellular eukaryotic host sugars. Here, we report the full (1)H, (15)N and (13)C chemical shift resonance assignments of the first family 32 carbohydrate-binding module from NagH, a secreted family 84 glycoside hydrolase.

  12. Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus--structural basis of substrate recognition

    NARCIS (Netherlands)

    Ilari, A.; Fiorillo, A.; Angelaccio, S.; Florio, R.; Chiaraluce, R.; Oost, van der J.; Consalvi, V.

    2009-01-01

    Bacterial and archaeal endo-beta-1,3-glucanases that belong to glycoside hydrolase family 16 share a beta-jelly-roll fold, but differ significantly in sequence and in substrate specificity. The crystal structure of the laminarinase (EC 3.2.1.39) from the hyperthermophilic archaeon Pyrococcus

  13. Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-ß-d-xylanase

    NARCIS (Netherlands)

    Rantanen, H.; Virkki, L.; Tuomainen, P.; Kabel, M.A.; Schols, H.A.; Tenkanen, M.

    2007-01-01

    Commercial xylanase preparation Shearzyme®, which contains the glycoside hydrolase family 10 endo-1,4-ß-d-xylanase from Aspergillus aculeatus, was used to prepare short-chain arabinoxylo-oligosaccharides (AXOS) from rye arabinoxylan (AX). A major AXOS was formed as a hydrolysis product. Longer AXOS

  14. Anthracycline glycosides

    International Nuclear Information System (INIS)

    Vicario, G.P.; Penco, S.; Arcamone, F.

    1980-01-01

    An invention is described which relates to anthracycline glycosides, and provides as new compounds the radiochemically labelled [14- 14 C] daunorubicin and [14- 14 C] doxorubicin and their hydrochlorides. These are important for the study of the distribution pharmaco-kinetics and metabolism of these compounds which are antitumour medicines. The stability and specificity of the 14 C-label makes these compounds useful for both experimental and medical purposes. (author)

  15. Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 beta-xylosidase from Geobacillus thermoleovorans IT-08

    NARCIS (Netherlands)

    Rohman, Ali; van Oosterwijk, Niels; Kralj, Slavko; Dijkhuizen, Lubbert; Dijkstra, Bauke W.; Puspaningsih, Ni Nyoman Tri

    2007-01-01

    The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-beta-xylanase and beta-xylosidase. beta-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-beta-xylanase into xylose monomers. The beta-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of

  16. Crystal Structure of Homoserine Transacetylase from Haemophilus Influenzae Reveals a New Family of alpha/beta-Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Mirza,I.; Nazi, I.; Korczynska, M.; Wright, G.; Berghuis, A.

    2005-01-01

    Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the properties of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs. hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.

  17. Molecular cloning, overexpression, and enzymatic characterization of glycosyl hydrolase family 16 β-Agarase from marine bacterium Saccharophagus sp. AG21 in Escherichia coli.

    Science.gov (United States)

    Lee, Youngdeuk; Oh, Chulhong; De Zoysa, Mahanama; Kim, Hyowon; Wickramaarachchi, Wickramaarachchige Don Niroshana; Whang, Ilson; Kang, Do-Hyung; Lee, Jehee

    2013-01-01

    An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The β-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) β-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to β-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant β-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at 55oC and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by FeSO4 (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a β-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

  18. Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes.

    Directory of Open Access Journals (Sweden)

    Joana Gangoiti

    Full Text Available Previously we have reported that the Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 uses the 4,6-α-glucanotransferase GtfD to convert maltodextrins and starch into a reuteran-like polymer consisting of (α1→4 glucan chains connected by alternating (α1→4/(α1→6 linkages and (α1→4,6 branching points. This enzyme constituted the single evidence for this reaction and product specificity in the GH70 family, mostly containing glucansucrases encoded by lactic acid bacteria (http://www.CAZy.org. In this work, 4 additional GtfD-like proteins were identified in taxonomically diverse plant-associated bacteria forming a new GH70 subfamily with intermediate characteristics between the evolutionary related GH13 and GH70 families. The GtfD enzyme encoded by Paenibacillus beijingensis DSM 24997 was characterized providing the first example of a reuteran-like polymer synthesizing 4,6-α-glucanotransferase in a Gram-positive bacterium. Whereas the A. chroococcum GtfD activity on amylose resulted in the synthesis of a high molecular polymer, in addition to maltose and other small oligosaccharides, two reuteran-like polymer distributions are produced by P. beijingensis GtfD: a high-molecular mass polymer and a low-molecular mass polymer with an average Mw of 27 MDa and 19 kDa, respectively. Compared to the A. chroooccum GtfD product, both P. beijingensis GtfD polymers contain longer linear (α1→4 sequences in their structure reflecting a preference for transfer of even longer glucan chains by this enzyme. Overall, this study provides new insights into the evolutionary history of GH70 enzymes, and enlarges the diversity of natural enzymes that can be applied for modification of the starch present in food into less and/or more slowly digestible carbohydrate structures.

  19. Gene cloning and characterization of a cold-adapted β-glucosidase belonging to glycosyl hydrolase family 1 from a psychrotolerant bacterium Micrococcus antarcticus.

    Science.gov (United States)

    Fan, Hong-Xia; Miao, Li-Li; Liu, Ying; Liu, Hong-Can; Liu, Zhi-Pei

    2011-06-10

    The gene bglU encoding a cold-adapted β-glucosidase (BglU) was cloned from Micrococcus antarcticus. Sequence analysis revealed that the bglU contained an open reading frame of 1419 bp and encoded a protein of 472 amino acid residues. Based on its putative catalytic domains, BglU was classified as a member of the glycosyl hydrolase family 1 (GH1). BglU possessed lower arginine content and Arg/(Arg+Lys) ratio than mesophilic GH1 β-glucosidases. Recombinant BglU was purified with Ni2+ affinity chromatography and subjected to enzymatic characterization. SDS-PAGE and native staining showed that it was a monomeric protein with an apparent molecular mass of 48 kDa. BglU was particularly thermolabile since its half-life time was only 30 min at 30°C and it exhibited maximal activity at 25°C and pH 6.5. Recombinant BglU could hydrolyze a wide range of aryl-β-glucosides and β-linked oligosaccharides with highest activity towards cellobiose and then p-nitrophenyl-β-d-glucopyranoside (pNPG). Under the optimal conditions with pNPG as substrate, the K(m) and k(cat) were 7 mmol/L and 7.85 × 103/s, respectively. This is the first report of cloning and characterization of a cold-adapted β-glucosidase belonging to GH1 from a psychrotolerant bacterium. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    Science.gov (United States)

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  1. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae*

    Science.gov (United States)

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko

    2016-01-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-d-xylopyranose-(1→6)-d-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  2. Cyanohydrin glycosides of Passiflora

    DEFF Research Database (Denmark)

    Jaroszewski, Jerzy W; Olafsdottir, Elin S; Wellendorph, Petrine

    2002-01-01

    this glycoside co-occurs with simple beta-D-glucopyranosides: tetraphyllin A, deidaclin, tetraphyllin B, volkenin, epivolkenin and taraktophyllin. P. citrina contains passicapsin, a rare glycoside with the 2,6-dideoxy-beta-D-xylo-hexopyranosyl moiety, while P. herbertiana contains tetraphyllin A, deidaclin...... Passiflora species. These alpha-hydroxyamides, presumably formed during processing of the plant material, behave as cyanogenic compounds when treated with commercial Helix pomatia crude enzyme preparation. Thus, the enzyme preparation appears to contain an amide dehydratase, which converts alpha......-hydroxyamides to cyanohydrins that liberate cyanide; this finding is of interest in connection with analysis of plant tissues and extracts using Helix pomatia enzymes....

  3. Photochemistry and pharmacology of 9, 19-cyclolanostane glycosides isolated from genus Cimicifuga.

    Science.gov (United States)

    Su, Yang; Chi, Wen-Cheng; Wu, Lun; Wang, Qiu-Hong; Kuang, Hai-Xue

    2016-10-01

    The constituents of Cimicifuga plants have been extensively investigated, and the principal metabolites are 9, 19-cyclolanostane triterpenoid glycosides, which often exhibit extensive pharmacological activities. 9, 19-Cyclolanostane triterpenoid glycosides are distributed widely in genus Cimicifuga rather than in other members of the Ranunculaceae family. So far, more than 140 cycloartane triterpene glycosides have been isolated from Cimicifuga spp.. The aim of this review was to summarize all 9, 19-cyclolanostane triterpenoid glycosides based on the available relevant scientific literatures from 2000 to 2014. Biological studies of cycloartane triterpene glycosides from Cimicifuga spp. are also discussed. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Solution Structure of Archaeoglobus fulgidis Peptidyl-tRNA Hydrolase(Pth2) Provides Evidence for an Extensive Conserved Family of Pth2 Enzymes in Archaea, Bacteria and Eukaryotes.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Robert; Mirkovic, Nebojsa; Goldsmith-Fischman, Sharon; Acton, Thomas; Chiang, Yiwen; Huang, Yuanpeng; Ma, LiChung; Rajan, Paranji K.; Cort, John R.; Kennedy, Michael A.; Liu, Jinfeng; Rost, Burkhard; Honig, Barry; Murray, Diana; Montelione, Gaetano

    2005-11-01

    The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6 kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four a-helices and a mixed b-sheet consisting of four parallel and anti-parallel b-strands, where the a-helices sandwich the b-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii and Sulfolobus solfataricus, reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Database but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families.

  5. Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages.

    Science.gov (United States)

    Rico-Díaz, Agustín; Ramírez-Escudero, Mercedes; Vizoso-Vázquez, Ángel; Cerdán, M Esperanza; Becerra, Manuel; Sanz-Aparicio, Julia

    2017-06-01

    β-Galactosidases are biotechnologically interesting enzymes that catalyze the hydrolysis or transgalactosylation of β-galactosides. Among them, the Aspergillus niger β-galactosidase (AnβGal) belongs to the glycoside hydrolase family 35 (GH35) and is widely used in the industry due to its high hydrolytic activity which is used to degrade lactose. We present here its three-dimensional structure in complex with different oligosaccharides, to illustrate the structural determinants of the broad specificity of the enzyme against different glycoside linkages. Remarkably, the residues Phe264, Tyr304, and Trp806 make a dynamic hydrophobic platform that accommodates the sugar at subsite +1 suggesting a main role on the recognition of structurally different substrates. Moreover, complexes with the trisaccharides show two potential subsites +2 depending on the substrate type. This feature and the peculiar shape of its wide cavity suggest that AnβGal might accommodate branched substrates from the complex net of polysaccharides composing the plant material in its natural environment. Relevant residues were selected and mutagenesis analyses were performed to evaluate their role in the catalytic performance and the hydrolase/transferase ratio of AnβGal. Thus, we generated mutants with improved transgalactosylation activity. In particular, the variant Y304F/Y355H/N357G/W806F displays a higher level of galacto-oligosaccharides production than the Aspergillus oryzae β-galactosidase, which is the preferred enzyme in the industry owing to its high transferase activity. Our results provide new knowledge on the determinants modulating specificity and the catalytic performance of fungal GH35 β-galactosidases. In turn, this fundamental background gives novel tools for the future improvement of these enzymes, which represent an interesting target for rational design. Structural data are available in PDB database under the accession numbers 5IFP (native form), 5IHR (in complex with 6

  6. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    . asperellum was grown on wheat bran, the greatest range of enzymes activity was detected and a total of 175 glycoside hydrolases from 48 glycoside hydrolase families were identified in the transcriptome. The glycoside hydrolases were identified on a functional level using the bioinformatical tool Peptide...... the theory that the glycoside hydrolases have evolved from a common ancestor, followed by a specialization in which saprotrophic fungi such as T. reesei and T. longibrachiatum lost a significant number of genes including several glycoside hydrolases....

  7. Specific characteristics of family 45 endoglucanases from Mucorales in the use of textiles and laundry.

    Science.gov (United States)

    Shimonaka, Atsushi; Koga, Jinichiro; Baba, Yuko; Nishimura, Tomoko; Murashima, Koichiro; Kubota, Hidetoshi; Kono, Toshiaki

    2006-04-01

    We examined the characteristics of family 45 endoglucanases (glycoside hydrolases family 45; GH45) from Mucorales belonging to Zygomycota in the use of textiles and laundry. The defibrillation activities on lyocell fabric of family 45 endoglucanases from Mucorales, such as RCE1 and RCE2 from Rhizopus oryzae, MCE1 and MCE2 from Mucor circinelloides, and PCE1 from Phycomyces nitens, were much higher than those of the other family 45 endoglucanases. By contrast, family 45 endoglucanases from Mucorales were less resistant to anionic surfactant and oxidizing agent, main components in detergents, than the other family 45 endoglucanases. RCE1 consists of two distinct modules, a catalytic module and a carbohydrate-binding module family 1 (CBM1), and these common specific characteristics were considered to due to the catalytic module, but not to the CBM1.

  8. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts.

    Science.gov (United States)

    Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G

    2008-02-01

    The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.

  9. New insight into structure/function relationships in plant alpha-amylase family GH13 members

    DEFF Research Database (Denmark)

    Seo, Eun-Seong; Andersen, Joakim Mark; Nielsen, Morten Munch

    2010-01-01

    Two carbohydrate binding surface sites (SBSs) on barley α-amylase 1 (AMY1) of glycoside hydrolase family 13 (GH13) displayed synergy in interactions with starch granules, thus being pivotal for hydrolysis of supramolecular substrates. Mutational analysis showed that SBS1 is more critical for the ......Two carbohydrate binding surface sites (SBSs) on barley α-amylase 1 (AMY1) of glycoside hydrolase family 13 (GH13) displayed synergy in interactions with starch granules, thus being pivotal for hydrolysis of supramolecular substrates. Mutational analysis showed that SBS1 is more critical...... binding domains (SBDs) mediate binding to starch granules. SBDs are currently categorised into 9 carbohydrate binding module (CBM) families. A novel CBM20 subfamily encountered in regulatory enzymes possesses characteristically low affinity for β-CD. Although α-amylase is essential for starch mobilisation...... in germinating barley seeds, efficient degradation requires the concerted action of α-amylase, β-amylase, limit dextrinase (LD) and possibly α-glucosidase. Limit dextrinase (LD) is encoded by a single gene and represents the sole debranching activity during germination. Recent expression of functional LD...

  10. An effective approach for annotation of protein families with low sequence similarity and conserved motifs: identifying GDSL hydrolases across the plant kingdom.

    Science.gov (United States)

    Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica

    2016-02-18

    The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through

  11. Naturally occurring methyl salicylate glycosides.

    Science.gov (United States)

    Mao, Ping; Liu, Zizhen; Xie, Meng; Jiang, Rui; Liu, Weirui; Wang, Xiaohong; Meng, Shen; She, Gaimei

    2014-01-01

    As an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates' without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.

  12. Iridoid glycosides from Thunbergia grandiflora.

    Science.gov (United States)

    Ismail, L D; el-Azizi, M M; Khalifa, T I; Stermitz, F R

    1996-07-01

    The novel iridoid glycosides, isounedoside and grandifloric acid, were isolated from Thunbergia grandiflora. Grandifloric acid contains C-10 as a carboxylic acid group, the presence of which was predicted by recent iridoid biosynthesis studies carried out within T. alata. Isounedoside contains a rare 6,7-epoxide functional group. A revision in some of the NMR spectral assignments for the known iridoid glycoside alatoside was also made.

  13. The carbohydrate-binding module family 20-diversity, structure, and function

    DEFF Research Database (Denmark)

    Christiansen, Camilla; Abou Hachem, Maher; Janecek, S.

    2009-01-01

    , laforins. The clear evolutionary relatedness of CBM20s to CBM21s, CBM48s and CBM53s suggests a common clan hosting most of the known SBDs. This review surveys the diversity within the CBM20 family, and makes an evolutionary comparison with CBM21s, CBM48s and CBM53s, discussing intrafamily and interfamily......Starch-active enzymes often possess starch-binding domains (SBDs) mediating attachment to starch granules and other high molecular weight substrates. SBDs are divided into nine carbohydrate-binding module (CBM) families, and CBM20 is the earliest-assigned and best characterized family. High...... diversity characterizes CBM20s, which occur in starch-active glycoside hydrolase families 13, 14, 15, and 77, and enzymes involved in starch or glycogen metabolism, exemplified by the starch-phosphorylating enzyme glucan, water dikinase 3 from Arabidopsis thaliana and the mammalian glycogen phosphatases...

  14. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  15. Acylated flavone glycosides from Veronica

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Jensen, Søren Rosendal

    2003-01-01

    A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two rare allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from...

  16. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    Science.gov (United States)

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  17. Benzofuran Glycosides from Styrax Benzoin

    International Nuclear Information System (INIS)

    Hasliza Yusof; Laily Din; Wan Ahmad Yaacob

    2014-01-01

    Separation of methanol extracts of the fruits and stem bark of Styrax benzoin using various chromatography (vacuum liquid chromatography, column chromatography and preparative thin layer chromatography) gave four benzofuran glycosides namely egonol gentiobioside (1), egonol gentiotrioside (2), egonol glucoside (3) and masutakeside (4). The compounds were identified by spectroscopic analysis (NMR, mass and infra-red spectral data) and by comparison of the data with that of the literature. Isolation of compounds from this plant has never been reported before. (author)

  18. Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase.

    Science.gov (United States)

    Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-12-01

    Glycoside hydrolases are divided into two groups, known as inverting and retaining enzymes, based on their hydrolytic mechanisms. Glycoside hydrolase family 63 (GH63) is composed of inverting α-glycosidases, which act mainly on α-glucosides. We previously found that Escherichia coli GH63 enzyme, YgjK, can hydrolyze 2-O-α-d-glucosyl-d-galactose. Two constructed glycosynthase mutants, D324N and E727A, which catalyze the transfer of a β-glucosyl fluoride donor to galactose, lactose, and melibiose. Here, we determined the crystal structures of D324N and E727A soaked with a mixture of glucose and lactose at 1.8- and 2.1-Å resolutions, respectively. Because glucose and lactose molecules are found at the active sites in both structures, it is possible that these structures mimic the enzyme-product complex of YgjK. A glucose molecule found at subsite -1 in both structures adopts an unusual 1 S 3 skew-boat conformation. Comparison between these structures and the previously determined enzyme-substrate complex structure reveals that the glucose pyranose ring might be distorted immediately after nucleophilic attack by a water molecule. These structures represent the first enzyme-product complex for the GH63 family, as well as the structurally-related glycosidases, and it may provide insight into the catalytic mechanism of these enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  20. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced Lichenan utilization and solvent production

    NARCIS (Netherlands)

    Lopez-Contreras, A.; Oost, van der J.; Claassen, P.; Mooibroek, H.; Vos, de W.M.

    2001-01-01

    Growth and the production of acetone, butanol, and ethanol by Clostridium beijerinckii NCIMB 8052 on several polysaccharides and sugars were analyzed. On crystalline cellulose, growth and solvent production were observed only when a mixture of fungal cellulases was added to the medium. On lichenan

  1. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    OpenAIRE

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hyd...

  2. Cellulase variants

    Science.gov (United States)

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  3. GH32 family activity: a topological approach through protein contact networks.

    Science.gov (United States)

    Cimini, Sara; Di Paola, Luisa; Giuliani, Alessandro; Ridolfi, Alessandra; De Gara, Laura

    2016-11-01

    The application of Protein Contact Networks methodology allowed to highlight a novel response of border region between the two domains to substrate binding. Glycoside hydrolases (GH) are enzymes that mainly hydrolyze the glycosidic bond between two carbohydrates or a carbohydrate and a non-carbohydrate moiety. These enzymes are involved in many fundamental and diverse biological processes in plants. We have focused on the GH32 family, including enzymes very similar in both sequence and structure, each having however clear specificities of substrate preferences and kinetic properties. Structural and topological differences among proteins of the GH32 family have been here identified by means of an emerging approach (Protein Contact network, PCN) based on the formalization of 3D structures as contact networks among amino-acid residues. The PCN approach proved successful in both reconstructing the already known functional domains and in identifying the structural counterpart of the properties of GH32 enzymes, which remain uncertain, like their allosteric character. The main outcome of the study was the discovery of the activation upon binding of the border (cleft) region between the two domains. This reveals the allosteric nature of the enzymatic activity for all the analyzed forms in the GH32 family, a character yet to be highlighted in biochemical studies. Furthermore, we have been able to recognize a topological signature (graph energy) of the different affinity of the enzymes towards small and large substrates.

  4. A New Furostanol Glycoside from Tribulus terrestris

    Directory of Open Access Journals (Sweden)

    Tonghua Liu

    2010-01-01

    Full Text Available Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-β-D-glucopyranosyl-(25S-5α-furostane-20(22-en-12-one-3β, 26-diol-3-O-α-L-rhamnopyranosyl-(1→2-[β-D-glucopyranosyl-(1→4]-β-D-galactopyranoside (1 on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  5. A new furostanol glycoside from Tribulus terrestris.

    Science.gov (United States)

    Xu, Yajuan; Liu, Yonghong; Xu, Tunhai; Xie, Shengxu; Si, Yunshan; Liu, Yue; Zhou, Haiou; Liu, Tonghua; Xu, Dongming

    2010-01-27

    Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furostane-20(22)-en-12-one-3beta, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-beta-D-galactopyranoside (1) on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  6. Phytosterol glycosides reduce cholesterol absorption in humans

    OpenAIRE

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series ...

  7. Chemotaxonomy of Plantago. Iridoid glucosides and caffeoyl phenylethanoid glycosides

    DEFF Research Database (Denmark)

    Rønsted, N.; Göbel, E.; Franzyk, Henrik

    2000-01-01

    Data for 34 species of Plantago (Plantaginaceae), including subgen. Littorella (=Littorella uniflora), have been collected with regard to their content of iridoid glucosides and caffeoyl phenylethanoid glycosides (CPGs). In the present work, 21 species were investigated for the first time and man...... in the family. Finally, the close relationship between Plantago and Veronica suggested by chloroplast DNA sequence analysis, could be corroborated by the common occurrence of the rare 8,9-unsaturated iridoids in these two genera. (C) 2000 Elsevier Science Ltd. All rights reserved....

  8. N (6-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1.

    Directory of Open Access Journals (Sweden)

    Claire Amiable

    Full Text Available The gene dnph1 (or rcl encodes a hydrolase that cleaves the 2'-deoxyribonucleoside 5'-monophosphate (dNMP N-glycosidic bond to yield a free nucleobase and 2-deoxyribose 5-phosphate. Recently, the crystal structure of rat DNPH1, a potential target for anti-cancer therapies, suggested that various analogs of AMP may inhibit this enzyme. From this result, we asked whether N (6-substituted AMPs, and among them, cytotoxic cytokinin riboside 5'-monophosphates, may inhibit DNPH1. Here, we characterized the structural and thermodynamic aspects of the interactions of these various analogs with DNPH1. Our results indicate that DNPH1 is inhibited by cytotoxic cytokinins at concentrations that inhibit cell growth.

  9. Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family

    DEFF Research Database (Denmark)

    Skov, L K; Mirza, Osman Asghar; Henriksen, A

    2001-01-01

    Amylosucrase (E.C. 2.4.1.4) is a member of Family 13 of the glycoside hydrolases (the alpha-amylases), although its biological function is the synthesis of amylose-like polymers from sucrose. The structure of amylosucrase from Neisseria polysaccharea is divided into five domains: an all helical N...... of amylosucrase is at the bottom of a pocket at the molecular surface. A substrate binding site resembling the amylase 2 subsite is not found in amylosucrase. The site is blocked by a salt bridge between residues in the second and eight loops of the (beta/alpha)(8)-barrel. The result is an exo-acting enzyme. Loop......-terminal domain that is not similar to any known fold, a (beta/alpha)(8)-barrel A-domain, B- and B'-domains displaying alpha/beta-structure, and a C-terminal eight-stranded beta-sheet domain. In contrast to other Family 13 hydrolases that have the active site in the bottom of a large cleft, the active site...

  10. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family

    Directory of Open Access Journals (Sweden)

    Aronson Nathan N

    2007-06-01

    Full Text Available Abstract Background Chitinases (EC.3.2.1.14 hydrolyze the β-1,4-linkages in chitin, an abundant N-acetyl-β-D-glucosamine polysaccharide that is a structural component of protective biological matrices such as insect exoskeletons and fungal cell walls. The glycoside hydrolase 18 (GH18 family of chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Mammals are not known to synthesize chitin or metabolize it as a nutrient, yet the human genome encodes eight GH18 family members. Some GH18 proteins lack an essential catalytic glutamic acid and are likely to act as lectins rather than as enzymes. This study used comparative genomic analysis to address the evolutionary history of the GH18 multiprotein family, from early eukaryotes to mammals, in an effort to understand the forces that shaped the human genome content of chitinase related proteins. Results Gene duplication and loss according to a birth-and-death model of evolution is a feature of the evolutionary history of the GH18 family. The current human family likely originated from ancient genes present at the time of the bilaterian expansion (approx. 550 mya. The family expanded in the chitinous protostomes C. elegans and D. melanogaster, declined in early deuterostomes as chitin synthesis disappeared, and expanded again in late deuterostomes with a significant increase in gene number after the avian/mammalian split. Conclusion This comprehensive genomic study of animal GH18 proteins reveals three major phylogenetic groups in the family: chitobiases, chitinases/chitolectins, and stabilin-1 interacting chitolectins. Only the chitinase/chitolectin group is associated with expansion in late deuterostomes. Finding that the human GH18 gene family is closely linked to the human major histocompatibility complex paralogon on chromosome 1, together with the recent association of GH18 chitinase activity with Th2 cell inflammation, suggests that its late expansion

  11. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    OpenAIRE

    Soliman, Fathy M.; Shehata, Afaf H.; Khaleel, Amal E.; Ezzat, Shahera M.

    2002-01-01

    An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl)-rhamnoside (1) was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside) (2), quercitrin (3), isorhamnetin-3-O-β-D-glucoside (4), isoquercitrin (5), rutin (6), and miquelianin (quercetin-3...

  12. Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function

    International Nuclear Information System (INIS)

    Merritt, Ethan A.; Holmes, Margaret; Buckner, Frederick S.; Van Voorhis, Wesley C.; Quartly, Erin; Phizicky, Eric M.; Lauricella, Angela; Luft, Joseph; DeTitta, George; Neely, Helen; Zucker, Frank; Hol, Wim G. J.

    2008-01-01

    T. brucei gene Tb10.6k15.0140 codes for an α/β-hydrolase fold protein of unknown function. The 2.2 Å crystal structure shows that members of this sequence family retain a conserved Ser residue at the expected site of a catalytic nucleophile, but that trypanosomatid sequences lack structural homologs for the other expected residues of the catalytic triad. The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family

  13. Phytosterol glycosides reduce cholesterol absorption in humans.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Anderson Spearie, Catherine L; Ostlund, Richard E

    2009-04-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (Pphytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.

  14. Caffeoyl phenylethanoid glycosides in Sanango racemosum and in the gesneriaceae

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal

    1996-01-01

    An investigation of Samango racemosum for systematically useful glycosides has been performed. No iridoids could be detected, but reverse phase chromatography provided the caffeoyl phenylethanoid glycosides (CPGs) calceolarioside C and conandroside together with the new 2-(3,4-dihydroxyphenyl...

  15. Triisobutylaluminium (TIBAL Promoted Rearrangement of C-glycosides

    Directory of Open Access Journals (Sweden)

    P. Sinay

    2005-08-01

    Full Text Available Triisobutylaluminium-promoted rearrangement of unsaturated glycosides containing electron-donating aglycons, such as C-aryl glycosides, provides direct access to highly functionalised cyclohexane derivatives.

  16. InterProScan Result: DC552514 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available 016286 Glycoside hydrolase, family 29, bacteria/metazoa/fungi Molecular Function: alpha-L-fucosidase activity (GO:0004560)|Biological Process: fucose metabolic process (GO:0006004) ...

  17. InterProScan Result: DY231230 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available 6286 Glycoside hydrolase, family 29, bacteria/metazoa/fungi Molecular Function: alpha-L-fucosidase activity (GO:0004560)|Biological Process: fucose metabolic process (GO:0006004) ...

  18. Perspectives for the Industrial Enzymatic Production of Glycosides

    NARCIS (Netherlands)

    Roode, de B.M.; Franssen, M.C.R.; Padt, van der A.; Boom, R.M.

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus,

  19. Cytosolic cholesterol ester hydrolase in adrenal cortex

    OpenAIRE

    Tocher, Douglas R.

    1983-01-01

    Cholesterol ester hydrolase (CEH) in adrenocortical cytosol was known to be phosphorylated and activated, in response to ACTH in a cAMPdependent protein kinase mediated process. The purification of CEH from bovine adrenocortical cytosol was attempted. The use of detergents to solubilise the enzyme from lipid-rich aggregates was investigated and sodium cholate was found to be effective. A purification procedure using cholate solubilised enzyme was developed. The detergent int...

  20. Kaempferol glycosides and cardenolide glycosides, cytotoxic constituents from the seeds of Draba nemorosa (Brassicaceae).

    Science.gov (United States)

    Moon, Surk-Sik; Rahman, Md Aziz Abdur; Manir, Md Maniruzzaman; Jamal Ahamed, V S

    2010-08-01

    Bioassay-directed fractionation of a methanolic extract from the seeds of Draba nemorosa (Brassicaceae) led to isolation of a new flavonol glycoside, drabanemoroside (5, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranose) along with four known flavonoid derivatives (1-4), four cardenolide glycosides (6-9). Kaempferol glycosides 2 and 5 showed strong cytotoxicity against human small lung cancer cell line A549 and melanoma SK-Mel-2 with an IC(50) of 0.5 microg/mL and 1.9 microg/mL, respectively. Cardenolide glycosides 6-9 showed potent cytotoxicity (A549) in the range of 0.01-0.032 microg/mL. Their structures were characterized based on spectroscopic data (2D NMR, HRTOFMS, IR, and UV) and comparison of literature values. The carbohydrate units were also confirmed by comparing the hydrolysate of 5 with authentic monosaccharides.

  1. Phytosterol glycosides reduce cholesterol absorption in humans

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  2. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    Directory of Open Access Journals (Sweden)

    Dmitry L. Aminin

    2015-03-01

    Full Text Available Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata. They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor, Akt (protein kinase B, ERK (extracellular signal-regulated kinases, FAK (focal adhesion kinase, MMP-9 (matrix metalloproteinase-9 and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics.

  3. [Determination of phenylethanoid glycosides in Orobanche coerulescens].

    Science.gov (United States)

    Han, Guo-qing; Li, Cai-feng; Wang, Xiao-qin; Li, Min-hui; Li, Jing

    2015-11-01

    Orobanche caerulescens is an important medicinal resource in Orobanchaceae. The present study aims to establish methods for determination of acteoside, crenatoside, and total phenylethanoid glycosides in O. caerulescens, and determine the content in 15 samples to evaluate the resource utilization of this medicinal plant. The content of acteoside and crenatoside were quantitatively determined by HPLC, while total phenylpropanoid glycosides was estimated by UV-VIS spectrophotometry. According to the results, the content of acteoside was the highest in O. caerulescens, followed by crenatoside. The contents of acteoside, crenatoside, and total phenylethanoid glycosides were between 1.15% - 15.60%, 0.83% - 4.47%, and 6.78% - 27.43%, respectively, which had significant differences. The acquisition time has great influence on the content of main components of O. caerulescens. The content of phenylethanoid glycosides is higher in the samples which were collected at the flowering stage. The two determination methods were proved to be simple, accurate and reliable, and can be used to evaluate the quality and resource utilization of O. caerulescens.

  4. FURTHER FLAVONOL GLYCOSIDES OF EMBELIA SCHIMPERI ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Fractionation of the methanolic extract of Embelia schimperi leaves has led to the isolation of two novel flavonol glycosides. The compounds were characterized as isorhamnetin 3-O- β-galactoysyl (1→ 4)-β-galactoside and quercetin 3-O-[α-rhamnosyl (1→2)] [α-rhamnosyl (1→ 4)]-α- rhamnoside. Also reported ...

  5. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...

  6. A new withanolide glycoside from physalis peruviana

    Science.gov (United States)

    Ahmad; Malik; Afza; Yasmin

    1999-03-01

    A new withanolide glycoside, 17beta-hydroxy-14, 20-epoxy-1-oxo-[22R]-3beta-[O-beta-D-glucopyranosyl]-witha-5, 24-dienolide (1), has been isolated from the whole plant of Physalis peruviana. Its identity was determined using a combination of spectroscopic data including 2D NMR techniques and chemical transformations.

  7. Methods for the enzymatic modification of steviol glycosides, modified steviol glycosides obtainable thereby, and the use thereof as sweeteners

    NARCIS (Netherlands)

    te Poele, Evelien; Dijkhuizen, Lubbert; Gerwig, Gerrit; Kamerling, Johannis

    2016-01-01

    The present invention relates generally to the production of steviol glycosides. Provided is a method for enzymatically providing a modified steviol glycoside, comprising incubating a steviol glycoside substrate in the presence of sucrose and the glucansucrase GTF180 of Lactobacillus reuteri strain

  8. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    International Nuclear Information System (INIS)

    Manikandan, K.; Bhardwaj, Amit; Ghosh, Amit; Reddy, V. S.; Ramakumar, S.

    2005-01-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution

  9. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K. [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bhardwaj, Amit [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ghosh, Amit [Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036 (India); Reddy, V. S. [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ramakumar, S., E-mail: ramak@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2005-08-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution.

  10. Hydrolase activity in Jerusalem artichoke and chicory

    Energy Technology Data Exchange (ETDEWEB)

    Klaushofer, H.; Abraham, B.; Leichtfried, G.

    1988-03-01

    Post-harvest storage of chicory and Jerusalem artichoke and overwintering of Jerusalem artichoke in the soil cause a more or less pronounced shortening of the fructan chain, depending on the variety. The proportion of fructose in the total fructan thus shifts towards glucose. This reduction on the fructose/glucose ratio is undesirable if the intention is to obtain a sweetener of high fructose content. In this work an attempt was made, via the quantity of fructose formed after a 4(3)-hour reaction of a tuber (root) extract with inulin, to assign a characteristic value to the depolymerization tendency of the material in question. However, since the plant extract not only contains enzymes (hydrolase A and B) that shorten the fructan chains but the activity of fructosyltransferase (SST, FFT) and enzymes of microbial origin (inulinase II, invertase) must also be considered, the concept of 'hydrolase activity' used by the authors is essentially an expression of 'total activity'. The activity unit (EU) is defined as the ability to split of 1 ..mu..mol of fructose from (chicory) inulin per minute under experimental conditions. Values of 0.25 to 0.77 EU/g dry solids were found in Jerusalem artichoke. Considerable differences may occur between varieties from the same cultivated area and the same harvest period. With one and the same variety, the activity appears to be subject to marked yearly fluctuations, so that at present, because of hydrolase activity, nothing certain can be said about the depolymerization tendency of a variety.

  11. Iridoid glycosides from Eucnide bartonioides

    DEFF Research Database (Denmark)

    Rodriguez, Veronica; Schripsema, Jan; Jensen, Søren Rosendal

    1997-01-01

    Eucnide bartonioides yielded morroniside as the main iridoid constituent. In addition, six minor iridoid glucosides were isolated namely the known glucosides: kingiside, sweroside, secologanol, 8-epi-loganin and loganin as well as a novel iridoid glucoside, which Ly spectroscopic methods was assi......Eucnide bartonioides yielded morroniside as the main iridoid constituent. In addition, six minor iridoid glucosides were isolated namely the known glucosides: kingiside, sweroside, secologanol, 8-epi-loganin and loganin as well as a novel iridoid glucoside, which Ly spectroscopic methods...... was assigned to be 5-hydroxyloganin. The compound 8-epi-loganin has so far been reported only from Scrophulariaceae and related families and it is rather unexpected in Loasaceae. (C) 1997 Elsevier Science Ltd. All rights reserved....

  12. A Review on the Pharmacology and Toxicology of Steviol Glycosides Extracted from Stevia rebaudiana.

    Science.gov (United States)

    Momtazi-Borojeni, Amir Abbas; Esmaeili, Seyed-Alireza; Abdollahi, Elham; Sahebkar, Amirhossein

    2017-01-01

    Stevia rebaudiana Bertoni is a sweet and nutrient-rich plant belonging to the Asteraceae family. Stevia leaves contain steviol glycosides including stevioside, rebaudioside (A to F), steviolbioside, and isosteviol, which are responsible for the plant's sweet taste, and have commercial value all over the world as a sugar substitute in foods, beverages and medicines. Among the various steviol glycosides, stevioside, rebaudioside A and rebaudioside C are the major metabolites and these compounds are on average 250-300 times sweeter than sucrose. Steviol is the final product of Stevia metabolism. The metabolized components essentially leave the body and there is no accumulation. Beyond their value as sweeteners, Stevia and its glycosdies possess therapeutic effects against several diseases such as cancer, diabetes mellitus, hypertension, inflammation, cystic fibrosis, obesity and tooth decay. Studies have shown that steviol glycosides found in Stevia are not teratogenic, mutagenic or carcinogenic and cause no acute and subacute toxicity. The present review provides a summary on the biological and pharmacological properties of steviol glycosides that might be relevant for the treatment of human diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Pharmacological treatment of cardiac glycoside poisoning

    OpenAIRE

    Roberts, Darren M.; Gallapatthy, Gamini; Dunuwille, Asunga; Chan, Betty S.

    2015-01-01

    Cardiac glycosides are an important cause of poisoning, reflecting their widespread clinical usage and presence in natural sources. Poisoning can manifest as varying degrees of toxicity. Predominant clinical features include gastrointestinal signs, bradycardia and heart block. Death occurs from ventricular fibrillation or tachycardia. A wide range of treatments have been used, the more common including activated charcoal, atropine, ??adrenoceptor agonists, temporary pacing, anti?digoxin Fab a...

  14. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence....... In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...

  15. Perspectives for the industrial enzymatic production of glycosides.

    Science.gov (United States)

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  16. Immunomodulatory N-acyl Dopamine Glycosides from the Icelandic Marine Sponge Myxilla incrustans Collected at a Hydrothermal Vent Site

    DEFF Research Database (Denmark)

    Einarsdottir, Eydis; Liu, Hong Bing; Freysdottir, Jona

    2016-01-01

    A chemical investigation of the sponge (Porifera) Myxilla incrustans collected from the unique submarine hydrothermal vent site Strytan, North of Iceland, revealed a novel family of closely related N-acyl dopamine glycosides. Three new compounds, myxillin A (1), B (2) and C (3), were isolated...

  17. Synthesis of Capsaicin Glycosides and 8-Nordihydrocapsaicin Glycosides as Potential Weight-Loss Formulations

    Directory of Open Access Journals (Sweden)

    Hisashi Katsuragi

    2010-03-01

    Full Text Available The enzymatic synthesis of capsaicin glycosides and 8-nordihydrocapsaicin glycosides was investigated using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Capsaicin and 8-nordihydrocapsaicin were converted into their β-glucoside and β-maltooligosaccharide (amylose conjugate, i.e. β-maltoside and β-maltotrioside, by sequencial glycosylation with almond β-glucosidase and CGTase. The β-glucoside and β-maltoside of capsaicin and β-glucoside of 8-nordihydrocapsaicin showed inhibitory effects on high-fat-diet-induced elevations in body weight of mice.

  18. Synthesis of Capsaicin Glycosides and 8-Nordihydrocapsaicin Glycosides as Potential Weight-Loss Formulations

    Directory of Open Access Journals (Sweden)

    Hisashi Katsuragi

    2010-01-01

    Full Text Available The enzymatic synthesis of capsaicin glycosides and 8-nordihydrocapsaicin glycosides was investigated using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Capsaicin and 8-nordihydrocapsaicin were converted into their β-glucoside and β-maltooligosaccharide (amylose conjugate, i.e. β-maltoside and β-maltotrioside, by sequencial glycosylation with almond β-glucosidase and CGTase. The β-glucoside and β-maltoside of capsaicin and β-glucoside of 8-nordihydrocapsaicin showed inhibitory effects on high-fat-diet-induced elevations in body weight of mice.

  19. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.

    Science.gov (United States)

    Macdonald, Spencer S; Patel, Ankoor; Larmour, Veronica L C; Morgan-Lang, Connor; Hallam, Steven J; Mark, Brian L; Withers, Stephen G

    2018-03-02

    Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N -acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Immunoaffinity Knockout of Saponin Glycosides from Asparagus racemosus to Assess Anti-lipid Peroxidation.

    Science.gov (United States)

    Onlom, Churanya; Phrompittayarat, Watoo; Putalun, Waraporn; Waranuch, Neti; Ingkaninan, Kornkanok

    2017-07-01

    Asparagus racemosus Willd (Asparagaceae family), known as Shatavari, is important in Ayurveda and traditional Thai medicines. The saponin glycosides, shatavarin I and IV are major constituents in its roots and may be responsible for their actions including protection against lipid peroxidation and carcinogenesis. To develop an immunoaffinity column for isolating compounds with structures related to shatavarin IV from crude extracts of A. racemosus root. The monoclonal antibody recognising shatavarin IV (mAbShavIV) was coupled to an Affi-Gel Hz gel to isolate compounds with structures related to shatavarin IV from the other components of crude extracts of A. racemosus root. The saponin glycosides in each fraction were analysed by mAbShavIV ELISA and LC-MS/MS. The pooled wash-through fractions contained 3% of loaded mAbShavIV reactive saponin glycosides, while eluted fractions released ~ 90% of shatavarin saponin glycosides in a single step. Using thiobarbiturate (TBARs) to measure lipid-peroxidation, the extract, and the pooled wash-through fractions showed moderate protection against Cu + -induced oxidation of human low density lipoprotein (LDL) (IC 50 11.3 ± 1.4 and 12.6 ± 0.9 μg/mL, respectively). In contrast, the saponin glycosides eluted from the mAbShavIV-column had weaker protectant (IC 50 29.7 ± 1.8 μg/mL) suggesting that A. racemosus shatavarins do not inhibit carcinogenesis through preventing lipid peroxidation. The strategy described here demonstrates its utility for isolating a group of related compounds from the rest of the extract with selectivity and recovery rate. Pharmacological efficacy and synergistic effects of the components obtained can be further investigated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. New acylated flavone and cyanogenic glycosides from Linum grandiflorum

    DEFF Research Database (Denmark)

    Mohammed, Magdy M. D.; Christensen, Lars Porskjær; Ibrahim, Nabaweya A.

    2009-01-01

    The first investigation of Linum grandiflorum resulted in the isolation of one new acylated flavone O-diglycoside known as luteolin 7-O-a-D-(6000-E-feruloyl)glucopyranosyl (1!2)--D-glucopyranoside, and one new cyanogenic glycoside known as 2-[(30-isopropoxy-O--D-glucopyranosyl)oxy]-2......-methylbutanenitrile, together with four known flavonoid glycosides, three known cyanogenic glycosides and one alkyl glycoside. The new compounds were structurally elucidated via the extensive 1D, 2D NMR and DIFNOE together with ESI-TOFCID-MS/MS and HR-MALDI/MS....

  2. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Directory of Open Access Journals (Sweden)

    María Inés Marchesini

    Full Text Available Choloylglycine hydrolase (CGH, E.C. 3.5.1.24 is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  3. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  4. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    Directory of Open Access Journals (Sweden)

    Leandro C de Oliveira

    Full Text Available Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5 was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105. In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features.

  5. Isolation of high-quality total RNA from rumen anaerobic bacteria and fungi, and subsequent detection of glycoside hydrolases.

    Science.gov (United States)

    Wang, Pan; Qi, Meng; Barboza, Perry; Leigh, Mary Beth; Ungerfeld, Emilio; Selinger, L Brent; McAllister, Tim A; Forster, Robert J

    2011-07-01

    The rumen is one of the most powerful fibrolytic fermentation systems known. Gene expression analyses, such as reverse transcription PCR (RT-PCR), microarrays, and metatranscriptomics, are techniques that could significantly expand our understanding of this ecosystem. The ability to isolate and stabilize representative RNA samples is critical to obtaining reliable results with these procedures. In this study, we successfully isolated high-quality total RNA from the solid phase of ruminal contents by using an improved RNA extraction method. This method is based on liquid nitrogen grinding of whole ruminal solids without microbial detachment and acid guanidinium - phenol - chloroform extraction combined with column purification. Yields of total RNA were as high as 150 µg per g of fresh ruminal content. The typical large subunit/small subunit rRNA ratio ranged from 1.8 to 2.0 with an RNA integrity number (Agilent Technologies) greater than 8.5. By eliminating the detachment step, the resulting RNA was more representative of the complete ecosystem. Our improved method removed a major barrier limiting analysis of rumen microbial function from a gene expression perspective. The polyA-tailed eukaryotic mRNAs obtained have successfully been applied to next-generation sequencing, and metatranscriptomic analysis of the solid fraction of rumen contents revealed abundant sequences related to rumen fungi.

  6. Glycosides in medicine: "The role of glycosidic residue in biological activity"

    Czech Academy of Sciences Publication Activity Database

    Křen, Vladimír; Martínková, Ludmila

    2001-01-01

    Roč. 8, - (2001), s. 1303-1328 ISSN 0929-8673 R&D Projects: GA ČR GA303/99/1382; GA ČR GA303/98/0414 Institutional research plan: CEZ:AV0Z5020903 Keywords : glycosides Subject RIV: EE - Microbiology, Virology Impact factor: 5.760, year: 2001

  7. Endogenous Turnover of Cyanogenic Glycosides in Plants

    DEFF Research Database (Denmark)

    Picmanova, Martina

    , there is strong evidence that CNglcs serve a no less significant purpose as a transport and storage form of reduced nitrogen which may be remobilized and recycled to balance the needs of primary metabolism during certain developmental events. Reduced nitrogen from CNglcs may be recovered either via HCN refixation...... revealed the formation of glycosides of amides, carboxylic acids and "anitriles", including their di- and triglycosides, evidently derived from CNglcs. Based on results common to the three phylogenetically unrelated plant species, a recycling endogenous turnover pathway for CNglcs was suggested in which...

  8. Cardenolide glycosides from Elaeodendron australe var. integrifolium.

    Science.gov (United States)

    Butler, Mark S; Towerzey, Leanne; Pham, Ngoc B; Hyde, Edward; Wadi, Sao Khemar; Guymer, Gordon P; Quinn, Ronald J

    2014-02-01

    Extracts from dried leaf and stems of Elaeodendron australe var. integrifolium (Celastraceae) collected in South East Queensland, Australia, were active in an assay that measured Ca(2+) driven expression of IL-2/luciferase designed to identify inhibitors of the ICRAC channel. Bioassay-guided isolation using C18 and polyamide column chromatography, HPLC (Phenyl and C18) and centrifugal partition chromatography (CPC) led to the isolation of digitoxigenin (1) and three cardenolide glycosides, glucoside 2, quinovoside 3 and the new natural product xyloside 4, as the active components with low nM activity in the reporter assay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Flavononol Glycosides of Reseda arabica (Resedaceae

    Directory of Open Access Journals (Sweden)

    Djemaa Berrehal

    2012-07-01

    Full Text Available Five flavonol glycosides, kaempferol 3,7-di-O- α -L-rhamnopyranoside (1 , isorhamnetin 3,7-di-O- α -L-rhamnopyranoside (2 , kaempferol 3-O- β -D-glucopyranoside-7-O- α -L-rhamnopyranoside (3 , isorhamnetin 3-O- β -D-glucopyranoside-7-O- α -L-rhamnopyranoside (4, Kaempferol 3-O- β -xylopyranosyl-(1'''→2''-O- α -L-rhamnopyranoside-7-O- α -L-rhamnopyranoside (5, have been isolated from the aerial parts of Reseda arabica. Their structures were established on the basis of physical and spectroscopic analysis, and by comparison with the literature data.

  10. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    Directory of Open Access Journals (Sweden)

    Shahera M. Ezzat

    2002-02-01

    Full Text Available An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl-rhamnoside (1 was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside (2, quercitrin (3, isorhamnetin-3-O-β-D-glucoside (4, isoquercitrin (5, rutin (6, and miquelianin (quercetin-3-O-β-D-glucuronide (7. Structure elucidation of the above mentioned flavonoids was achieved by UV, 1H- and 13C-NMR, 1H-1H COSY, HMQC and EI-MS.

  11. Phytosteryl glycosides reduce cholesterol absorption: mechanisms in mice

    Science.gov (United States)

    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with...

  12. Acylated-oxypregnane glycosides from the roots of Asclepias syriaca.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2009-02-01

    Twenty new pregnane glycosides were obtained from the roots of Asclepias syriaca L. (Asclepiadaceae). These glycosides were confirmed to contain ikemagenin, 12-O-nicotinoyllineolon, 5alpha,6-dihydroikemagenin, and 12-O-tigloylisolineolon, as their aglycones, using both spectroscopic and chemical methods.

  13. Steroidal glycosides from the roots of Asclepias curassavica.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2008-03-01

    Twenty-six new acylated-oxypregnane glycosides were obtained along with three known cardenolide glycosides from the roots of Asclepias curassavica (Asclepiadaceae). The new compounds were confirmed to contain 12-O-benzoylsarcostin, 12-O-benzoyldeacylmetaplexigenin, kidjolanin, and 12-O-benzoyltayloron, and one new acylated-oxypregnane, 12-O-(E)-cinnamoyltayloron, as their aglycones, using both spectroscopic and chemical methods.

  14. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    Directory of Open Access Journals (Sweden)

    José Manuel Calderón-Montaño

    2014-01-01

    Full Text Available Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies.

  15. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic

  16. Cardiac Glycoside Plants Self-Poisoning

    Directory of Open Access Journals (Sweden)

    Radenkova-Saeva J.

    2014-06-01

    Full Text Available Cardiac glycosides are found in a diverse group of plants including Digitalis purpurea and Digitalis lanata (foxgloves, Nerium oleander, Convallaria majalis (lily of the valley, Strophanthus gratus, etc. Nerium Oleander is an indoor and ornamental plant of an evergreen shrub. It’s widespread in countries with a Mediterranean climate. Oleander is one of the most poisonous plants known to humans. All parts of the nerium oleander are poisonous, primarily due to the contained cardiac glycosides - oleandrin, nerin, digitoxigenin, and olinerin of which oleandrin is the principal toxin. The bark contains the toxic substances of rosagenin which causes strychnine-like effects. Signs of poisoning appear a few hours after the adoption of the parts of the plant. Two cases of Nerium Oleander poisoning were presented. Clinical picture included gastrointestinal, cardiovascular and central nervous system effects. The clinical symptoms were characterized by nausea, vomiting, salivation, colic, diarrhoea, ventricular tachycardia, dysrhythmia, heart block, ataxia, drowsiness, muscular tremor. Treatment included administration of activated charcoal, symptomatic and supportive care.

  17. Diarylheptanoid Glycosides of Morella salicifolia Bark

    Directory of Open Access Journals (Sweden)

    Edna Makule

    2017-12-01

    Full Text Available A methanolic extract of Morella salicifolia bark was fractionated by various chromatographic techniques yielding six previously unknown cyclic diarylheptanoids, namely, 7-hydroxymyricanol 5-O-β-d-glucopyranoside (1, juglanin B 3-O-β-d-glucopyranoside (2, 16-hydroxyjuglanin B 17-O-β-d-glucopyranoside (3, myricanone 5-O-β-d-gluco-pranosyl-(1→6-β-d-glucopyranoside (4, neomyricanone 5-O-β-d-glucopranosyl-(1→6-β-d-glucopyranoside (5, and myricanone 17-O-α-l-arabino-furanosyl-(1→6-β-d-glucopyranoside (6, respectively, together with 10 known cyclic diarylheptanoids. The structural diversity of the diarylheptanoid pattern in M. salicifolia resulted from varying glycosidation at C-3, C-5, and C-17 as well as from substitution at C-11 with hydroxy, carbonyl or sulfate groups, respectively. Structure elucidation of the isolated compounds was achieved on the basis of one- and two-dimensional nuclear magnetic resonance (NMR as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS analyses. The absolute configuration of the glycosides was confirmed after hydrolysis and synthesis of O-(S-methyl butyrated (SMB sugar derivatives by comparison of their 1H-NMR data with those of reference sugars. Additionally, absolute configuration of diarylheptanoid aglycones at C-11 was determined by electronic circular dichroism (ECD spectra simulation and comparison with experimental CD spectra after hydrolysis.

  18. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Břicháč, Jiří; Kyslík, Pavel

    2005-01-01

    Roč. 120, - (2005), s. 364-375 ISSN 0168-1656 Institutional research plan: CEZ:AV0Z5020903 Keywords : screening * epoxide hydrolase * biotransformation Subject RIV: EE - Microbiology, Virology Impact factor: 2.687, year: 2005

  19. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry.

    Science.gov (United States)

    Schmidt, Susanne; Zietz, Michaela; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W; Krumbein, Angelika

    2010-07-30

    Kale is a member of the Brassicaceae family and has a complex profile of flavonoid glycosides. Therefore, kale is a suitable matrix to discuss in a comprehensive study the different fragmentation patterns of flavonoid glycosides. The wide variety of glycosylation and acylation patterns determines the health-promoting effects of these glycosides. The aim of this study is to investigate the naturally occurring flavonoids in kale. A total of 71 flavonoid glycosides of quercetin, kaempferol and isorhamnetin were identified using a high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)) method. Of these 71 flavonol glycosides, 27 were non-acylated, 30 were monoacylated and 14 were diacylated. Non-acylated flavonol glycosides were present as mono-, di-, tri- and tetraglycosides. This is the first time that the occurrence of four different fragmentation patterns of non-acylated flavonol triglycosides has been reported in one matrix simultaneously. In addition, 44 flavonol glycosides were acylated with p-coumaric, caffeic, ferulic, hydroxyferulic or sinapic acid. While monoacylated glycosides existed as di-, tri- and tetraglycosides, diacylated glycosides occurred as tetra- and pentaglycosides. To the best of our knowledge, 28 compounds in kale are reported here for the first time. These include three acylated isorhamnetin glycosides (isorhamnetin-3-O-sinapoyl-sophoroside-7-O-D-glucoside, isorhamnetin-3-O-feruloyl-sophoroside-7-O-diglucoside and isorhamnetin-3-O-disinapoyl-triglucoside-7-O-diglucoside) and seven non-acylated isorhamnetin glycosides. Copyright 2010 John Wiley & Sons, Ltd.

  20. Use of full recovery hydrolasing equipment for facility decommissioning - 16325

    International Nuclear Information System (INIS)

    Martin, Scott A.; Adams, Scott R.

    2009-01-01

    The removal of surface contamination is a major challenge for nearly all nuclear facilities undergoing, or awaiting, decommissioning. Conventional means of surface decontamination can expose workers to unnecessary hazards, and are often not fit-for-purpose due to size constraints or weight restrictions. Additionally, conventional methods are not always easily deployed remotely due to their complexity or required services. The use of ultra high pressure water for surface decontamination, known as hydrolasing, is recognized as a technology which can be used in various applications requiring surface removal. Hydrolasing is an advantageous technology for many reasons including its versatility, overall simplicity and relative ease of remote deployment. For the nuclear industry, one of the largest challenges with regards to the use of hydrolasing is the requirement for the full recovery of the injected water and removed solids. For nonnuclear applications, there is often no requirement for recovery of the liquid and solid waste, which has led to few system designs which will recover the waste in full. S.A. Robotics' experience with the deployment of ultra high pressure water systems for nuclear applications has shown that full recovery of injected water and removed solids is achievable in both underwater and in-air applications. Innovative equipment and system design have allowed S.A. Robotics' hydrolasing systems to achieve near 100% solid and liquid recovery during concrete hydrolasing. This technology has been deployed for Fluor Hanford at Hanford's K-Basins, as well as for UKAEA as part of the Windscale Piles decommissioning project. The purpose of this paper is to provide a short description of the hydrolasing process and the associated waste issues, describe the unique design features of S.A. Robotics' hydrolasing systems which combat these issues, and provide an overview of two of the hydrolasing projects that S.A. Robotics has completed. (authors)

  1. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian

    2014-01-01

    to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only...... when the product is formed. The functional proton wire present in IH-b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification...

  2. Antioxidant phenylpropanoid glycosides from Buddleja davidii.

    Science.gov (United States)

    Ahmad, Ijaz; Ahmad, Nisar; Wang, Fanghai

    2009-08-01

    Phytochemical investigations on the n-BuOH-soluble fraction of the whole plant of Buddleja davidii led to the isolation of the phenylpropanoid glycosides 1-10. Their structures were determined by 1D and 2D NMR spectroscopic techniques. All the compounds showed potent antioxidative activity in three different tests, with IC(50) values in the range 4.15-9.47 microM in the hydroxyl radical ( OH) inhibitory activity test, 40.32-81.15 microM in the total ROS (reactive oxygen species) inhibitory activity test, and 2.26-7.79 microM in the peroxynitrite (ONOO(-)) scavenging activity test. Calceolarioside A (1) displayed the strongest scavenging potential with IC(50) values of (4.15 +/- 0.07, 40.32 +/- 0.09, 2.26 +/- 0.03 microM) for OH, total ROS and scavenging of ONOO(-), respectively.

  3. New steroidal glycosides from Tribulus terrestris L.

    Science.gov (United States)

    Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2012-01-01

    Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-β-D-glucopyranosyl-5α-furostan-12-one-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-5α-furostan-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments.

  4. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  5. Profiling of iridoid glycosides in Vaccinium species by UHPLC-MS.

    Science.gov (United States)

    Heffels, Peter; Müller, Laura; Schieber, Andreas; Weber, Fabian

    2017-10-01

    The iridoid profile of four Vaccinium species was investigated using UHPLC-MS to obtain further information about this group of species for phytochemical characterization. Fruits of bog bilberry (Vaccinium uliginosum L.) showed 14 different iridoid glycosides with a total amount of 20mg/kg fresh weight (FW), whereas bilberry (Vaccinium myrtillus L.) contained 11 iridoid glycosides and a total amount of 127mg/kg FW. Highbush blueberry (Vaccinium corymbosum L.) and lowbush blueberry (Vaccinium angustifolium L.) contained none of the investigated iridoid glycosides. Among the different iridoids, the isomers scandoside and deacetylasperulosidic acid as well as a dihydro derivative thereof were described for the first time in the Ericaceae family. The p-coumaroyl isomers of scandoside, deacetylasperulosidic acid and dihydromonotropein are reported for the first time in V. myrtillus and V. uliginosum. Monotropein and its p-coumaroyl isomers were found for the first time in V. uliginosum. The comparison of iridoid profiles in bilberry fruit and juice samples revealed constant proportions throughout the juice processing. Quantification and profile determination of iridoids may be used for species differentiation and thus for authentication purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Brominated Oxylipins and Oxylipin Glycosides from Red Sea Corals

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dembitsk, V. M.

    - (2003), s. 309-316 ISSN 1434-193X Institutional research plan: CEZ:AV0Z5020903 Keywords : glycosides * natural products * oxylipins Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2003

  7. New benzophenone and quercetin galloyl glycosides from Psidium guajava L.

    Science.gov (United States)

    Matsuzaki, Keiichi; Ishii, Rie; Kobiyama, Kaori

    2010-01-01

    New benzophenone and flavonol galloyl glycosides were isolated from an 80% MeOH extract of Psidium guajava L. (Myrtaceae) together with five known quercetin glycosides. The structures of the novel glycosides were elucidated to be 2,4,6-trihydroxybenzophenone 4-O-(6″-O-galloyl)-β-d-glucopyranoside (1, guavinoside A), 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6″-O-galloyl)-β-d-glucopyranoside (2, guavinoside B), and quercetin 3-O-(5″-O-galloyl)-α-l-arabinofuranoside (3, guavinoside C) by NMR, MS, UV, and IR spectroscopies. Isolated phenolic glycosides showed significant inhibitory activities against histamine release from rat peritoneal mast cells, and nitric oxide production from a murine macrophage-like cell line, RAW 264.7. PMID:20354804

  8. Phenolic glycosides from sugar maple (Acer saccharum) bark.

    Science.gov (United States)

    Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P

    2011-11-28

    Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines.

  9. Simultaneous determination of iridoid glycosides, phenethylalcohol glycosides and furfural derivatives in Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrometry

    DEFF Research Database (Denmark)

    Xu, Jun; Wu, Jie; Zhu, Ling-Ying

    2012-01-01

    In this study, a sensitive and selective method for simultaneously quantifying eight major components (four iridoid glycosides, three phenethylalcohol glycosides and one furfural derivative) of Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrom......In this study, a sensitive and selective method for simultaneously quantifying eight major components (four iridoid glycosides, three phenethylalcohol glycosides and one furfural derivative) of Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass...

  10. Iridoid glycoside biosynthesis in Penstemon secundiflorus. Another H-5, H-9 trans iridoid glycoside

    DEFF Research Database (Denmark)

    Krull, Robert E.; Stermitz, Frank R.; Franzyk, Henrik

    1998-01-01

    Isolation and characterization of the new iridoid 10-hydroxy-(5 alpha H)-6-epidihydrocornin from Penstemon secundiflorus (Scrophulariaceae) is described. In biosynthetic experiments, deoxyloganic acid was incorporated into the transfused iridoid glycosides (5 alpha H)-6-epidihydrocornin and 10-hy......-hydroxy-(5 alpha H)-6-epidihydrocornin in P. secundiflorus. Formation of the trans-fused compounds is therefore a late event in the biosynthesis and does not occur during iridoid formation by cyclization of the open chain monoterpene precursor. In the same plant, 8-epideoxyloganic acid...

  11. Pharmacological treatment of cardiac glycoside poisoning.

    Science.gov (United States)

    Roberts, Darren M; Gallapatthy, Gamini; Dunuwille, Asunga; Chan, Betty S

    2016-03-01

    Cardiac glycosides are an important cause of poisoning, reflecting their widespread clinical usage and presence in natural sources. Poisoning can manifest as varying degrees of toxicity. Predominant clinical features include gastrointestinal signs, bradycardia and heart block. Death occurs from ventricular fibrillation or tachycardia. A wide range of treatments have been used, the more common including activated charcoal, atropine, β-adrenoceptor agonists, temporary pacing, anti-digoxin Fab and magnesium, and more novel agents include fructose-1,6-diphosphate (clinical trial in progress) and anticalin. However, even in the case of those treatments that have been in use for decades, there is debate regarding their efficacy, the indications and dosage that optimizes outcomes. This contributes to variability in use across the world. Another factor influencing usage is access. Barriers to access include the requirement for transfer to a specialized centre (for example, to receive temporary pacing) or financial resources (for example, anti-digoxin Fab in resource poor countries). Recent data suggest that existing methods for calculating the dose of anti-digoxin Fab in digoxin poisoning overstate the dose required, and that its efficacy may be minimal in patients with chronic digoxin poisoning. Cheaper and effective medicines are required, in particular for the treatment of yellow oleander poisoning which is problematic in resource poor countries. © 2015 The British Pharmacological Society.

  12. Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Lutje Spelberg, Jeffrey H.; Rink, Rick; Kellogg, Richard M.; Janssen, Dick B.

    1998-01-01

    The recombinant epoxide hydrolase from Agrobacterium radiobacter AD1 was used to obtain enantiomerically pure epoxides by means of a kinetic resolution. Epoxides such as styrene oxide and various derivatives thereof and phenyl glycidyl ether were obtained in high enantiomeric excess and in

  13. Properties of epoxide hydrolase from the yeast Rhodotorula glutinis

    NARCIS (Netherlands)

    Ariës-Kronenburg, N.A.E.

    2002-01-01

    Epoxide hydrolases are ubiquitous enzymes that can be found in nearly all living organisms. Some of the enzymes play an important role in detoxifying xenobiotic and metabolic compounds. Others are important in the growth of organisms like

  14. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H

    1982-01-01

    Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis in the pres......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...... membranes (basolateral and intracellular membranes) exhibited in SDS-polyacrylamide gel electrophoresis the same size of constituent polypeptides and the same catalytic and immunological properties as a normal brush border lactase/phlorizin hydrolase....

  15. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  16. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  17. Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase.

    Science.gov (United States)

    Placido, Antonio; Hai, Tran; Ferrer, Manuel; Chernikova, Tatyana N; Distaso, Marco; Armstrong, Dale; Yakunin, Alexander F; Toshchakov, Stepan V; Yakimov, Michail M; Kublanov, Ilya V; Golyshina, Olga V; Pesole, Graziano; Ceci, Luigi R; Golyshin, Peter N

    2015-12-01

    A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/β-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/β-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1.

  18. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Holland, Nina T.; Eskenazi, Brenda; Casida, John E.

    2007-01-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC 50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined

  19. Glycosidic Bond Cleavage is Not Required for Phytosteryl Glycoside-Induced Reduction of Cholesterol Absorption in Mice

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Moreau, Robert A.

    2012-01-01

    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with tracers cholesterol-d7 and sitostanol-d4. In a three-day fecal recovery study, ASG reduced cholesterol absorption efficiency by 45 ± 6% compared with 40 ± 6% observed with PSE. Four hours after gavage, plasma and liver cholesterol-d7 levels were reduced 86% or more when ASG was present. Liver total phytosterols were unchanged after ASG administration but were significantly increased after PSE. After ASG treatment both ASG and deacylated steryl glycosides (SG) were found in the gut mucosa and lumen. ASG was quantitatively recovered from stool samples as SG. These results demonstrate that ASG reduces cholesterol absorption in mice as efficiently as PSE while having little systemic absorption itself. Cleavage of the glycosidic linkage is not required for biological activity of ASG. Phytosteryl glycosides should be included in measurements of bioactive phytosterols. PMID:21538209

  20. Cytotoxic cardiac glycosides and other compounds from Asclepias syriaca.

    Science.gov (United States)

    Araya, Juan J; Kindscher, Kelly; Timmermann, Barbara N

    2012-03-23

    Phytochemical investigation of the dried biomass of Asclepias syriaca afforded five new compounds (1-5), along with 19 known structures. Overall, the secondary metabolites isolated and identified from this plant showed a wide structural diversity including pentacyclic triterpenes, cardiac glycosides, flavonoid glycosides, lignans, a phenylethanoid, and a glycosylated megastigmane. In addition, the isolates were tested against the cancer breast cell line Hs578T, and those showing IC(50) values lower than 50 μM (1 and 6-9) were further investigated in three additional breast cancer cell lines (MCF-7, T47D, and Sk-Br-3) and the normal breast cell line Hs578Bst.

  1. Radiation-induced O-glycoside bond scission in carbohydrates

    International Nuclear Information System (INIS)

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  2. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.

    2015-01-01

    thermophilic sources, have higher optimal temperatures and apparent melting temperatures than Re-LEH. The new LEH enzymes have been crystallized and their structures solved to high resolution in the native form and in complex with the inhibitor valpromide for Tomsk-LEH and poly(ethylene glycol) for CH55-LEH......,2-epoxide hydrolase (LEH) family of enzymes. These two LEHs (Tomsk-LEH and CH55-LEH) show EH activities towards different epoxide substrates, differing in most cases from those previously identified for Rhodococcus erythropolis (Re-LEH) in terms of stereoselectivity. Tomsk-LEH and CH55-LEH, both from....... The structural analysis has provided insights into the LEH mechanism, substrate specificity and stereoselectivity of these new LEH enzymes, which has been supported by mutagenesis studies....

  3. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    Science.gov (United States)

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  4. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate.

    Science.gov (United States)

    Purkayastha, Sidd; Markosyan, Avetik; Prakash, Indra; Bhusari, Sachin; Pugh, George; Lynch, Barry; Roberts, Ashley

    2016-06-01

    The safety of steviol glycosides is based on data available on several individual steviol glycosides and on the terminal absorbed metabolite, steviol. Many more steviol glycosides have been identified, but are not yet included in regulatory assessments. Demonstration that these glycosides share the same metabolic fate would indicate applicability of the same regulatory paradigm. In vitro incubation assays with pooled human fecal homogenates, using rebaudiosides A, B, C, D, E, F and M, as well as steviolbioside and dulcoside A, at two concentrations over 24-48 h, were conducted to assess the metabolic fate of various steviol glycoside classes and to demonstrate that likely all steviol glycosides are metabolized to steviol. The data show that glycosidic side chains containing glucose, rhamnose, xylose, fructose and deoxy-glucose, including combinations of α(1-2), β-1, β(1-2), β(1-3), and β(1-6) linkages, were degraded to steviol mostly within 24 h. Given a common metabolite structure and a shared metabolic fate, safety data available for individual steviol glycosides can be used to support safety of purified steviol glycosides in general. Therefore, steviol glycosides specifications adopted by the regulatory authorities should include all steviol glycosides belonging to the five groups of steviol glycosides and a group acceptable daily intake established. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Crystallization of mouse S-adenosyl-l-homocysteine hydrolase

    International Nuclear Information System (INIS)

    Ishihara, Masaaki; Kusakabe, Yoshio; Ohsumichi, Tsuyoshi; Tanaka, Nobutada; Nakanishi, Masayuki; Kitade, Yukio; Nakamura, Kazuo T.

    2010-01-01

    Mouse S-adenosyl-l-homocysteine hydrolase has been crystallized in the presence of the reaction product adenosine. Diffraction data to 1.55 Å resolution were collected using synchrotron radiation. S-Adenosyl-l-homocysteine hydrolase (SAHH; EC 3.3.1.1) catalyzes the reversible hydrolysis of S-adenosyl-l-homocysteine to adenosine and l-homocysteine. For crystallographic investigations, mouse SAHH (MmSAHH) was overexpressed in bacterial cells and crystallized using the hanging-drop vapour-diffusion method in the presence of the reaction product adenosine. X-ray diffraction data to 1.55 Å resolution were collected from an orthorhombic crystal form belonging to space group I222 with unit-cell parameters a = 100.64, b = 104.44, c = 177.31 Å. Structural analysis by molecular replacement is in progress

  6. Evaluation of fish models of soluble epoxide hydrolase inhibition.

    OpenAIRE

    Newman, J W; Denton, D L; Morisseau, C; Koger, C S; Wheelock, C E; Hinton, D E; Hammock, B D

    2001-01-01

    Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrol...

  7. Structural insight into catalytic mechanism of PET hydrolase

    OpenAIRE

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-01-01

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  8. Structural insight into catalytic mechanism of PET hydrolase.

    Science.gov (United States)

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-12-13

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  9. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    Science.gov (United States)

    1986-07-01

    M 4 Q r 000 44 Table 11. Purification of arylester hydrolase Specific Total Total Activity Volume Activity Proteina (Umoles/ Purifi- Fraction (mL...did get re-adjusted after the sample was applied. After the sample was applied the column was washed with the above MES buffer an.+eluted with 100 ml...Lieske (94) and compared them to the reversed phase HPLC retention times we have previously reported (16). We get an excellent linear correlation

  10. IMMOBILIZATION OF TANNIN ACYL HYDROLASE FROM ASPERGILLUS NIGER

    OpenAIRE

    B. Lenin Kumar*, N. Lokeswari and D. Sriramireddy

    2013-01-01

    ABSTRACT: Tannin acyl hydrolase, commonly referred to as tannase (E.C. 3.1.1.20), an inducible extra-cellular enzyme produced by a number of animals, plants and microbes. In this investigation, tannase production under solid-state fermentation by using Aspergillus niger and the waste residue of cashew husk was used as substrate for obtaining the desired fermented product. Microbial tannase is more stable than tannase from other sources like plants or animals. Tannase from fungal sources are r...

  11. Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Andrew P. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Abdubek, Polat [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Astakhova, Tamara [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Axelrod, Herbert L. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bakolitsa, Constantina [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Cai, Xiaohui [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Carlton, Dennis [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Chen, Connie [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Chiu, Hsiu-Ju [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Chiu, Michelle [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Clayton, Thomas [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Das, Debanu [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Deller, Marc C. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Duan, Lian; Ellrott, Kyle [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Farr, Carol L. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Feuerhelm, Julie; Grant, Joanna C. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Grzechnik, Anna; Han, Gye Won [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Jaroszewski, Lukasz [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Jin, Kevin K. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Klock, Heath E.; Knuth, Mark W. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Kozbial, Piotr [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Krishna, S. Sri [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Kumar, Abhinav; Lam, Winnie W. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marciano, David [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); McMullan, Daniel [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Miller, Mitchell D. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Morse, Andrew T. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Nigoghossian, Edward [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Nopakun, Amanda [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Okach, Linda; Puckett, Christina [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Reyes, Ron [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Tien, Henry J. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Trame, Christine B.; Bedem, Henry van den [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Weekes, Dana [Joint Center for Structural Genomics, http://www.jcsg.org (US); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (US); Wooten, Tiffany [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Xu, Qingping [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Hodgson, Keith O. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Wooley, John [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Elsliger, Marc-André [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Deacon, Ashley M. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Godzik, Adam [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (US); Lesley, Scott A. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Wilson, Ian A., E-mail: wilson@scripps.edu [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US)

    2010-10-01

    The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-terminal domain. BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP-810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B. thetaiotaomicron as a predominant bacterial symbiont in the human distal gut microbiome. The crystal structure of BT2081 at 2.05 Å resolution represents the first structure from this new protein family. BT2081 consists of an N-terminal domain, which adopts a β-sandwich immunoglobulin-like fold, and a larger C-terminal domain with a β-sandwich jelly-roll fold. Structural analyses reveal that both domains are similar to those found in various carbohydrate-active enzymes. The C-terminal β-jelly-roll domain contains a potential carbohydrate-binding site that is highly conserved among BT2081 homologs and is situated in the same location as the carbohydrate-binding sites that are found in structurally similar glycoside hydrolases (GHs). However, in BT2081 this site is partially occluded by surrounding loops, which results in a deep solvent-accessible pocket rather than a shallower solvent-exposed cleft.

  12. Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism

    International Nuclear Information System (INIS)

    Yeh, Andrew P.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-terminal domain. BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP-810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B. thetaiotaomicron as a predominant bacterial symbiont in the human distal gut microbiome. The crystal structure of BT2081 at 2.05 Å resolution represents the first structure from this new protein family. BT2081 consists of an N-terminal domain, which adopts a β-sandwich immunoglobulin-like fold, and a larger C-terminal domain with a β-sandwich jelly-roll fold. Structural analyses reveal that both domains are similar to those found in various carbohydrate-active enzymes. The C-terminal β-jelly-roll domain contains a potential carbohydrate-binding site that is highly conserved among BT2081 homologs and is situated in the same location as the carbohydrate-binding sites that are found in structurally similar glycoside hydrolases (GHs). However, in BT2081 this site is partially occluded by surrounding loops, which results in a deep solvent-accessible pocket rather than a shallower solvent-exposed cleft

  13. Soulieoside R : A New Cycloartane Triterpenoid Glycoside from Souliea vaginata

    Directory of Open Access Journals (Sweden)

    Qiongyu Zou

    2018-01-01

    Full Text Available A new cycloartane triterpenoid glycoside, named soulieoside R, was isolated from the rhizomes of Souliea vaginata. Its structure was characterized by comprehensive analyses of 1H, 13C NMR, COSY, HSQC, HMBC, NOESY spectroscopic, and HRESIMS mass spectrometric data, as well as chemical methods. The new compound showed weak inhibitory activity against three human cancer cell lines.

  14. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    Science.gov (United States)

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  15. A new C-methylated flavonoid glycoside from Pinus densiflora.

    Science.gov (United States)

    Jung, M J; Choi, J H; Chung, H Y; Jung, J H; Choi, J S

    2001-12-01

    A new C-methyl flavonol glycoside, 5,7,8,4'-tetrahydroxy-3-methoxy-6-methylflavone 8-O-beta-D-glucopyranoside (1), has been isolated from the needles of Pinus densiflora, together with kaempferol 3-O-beta-(6"-acetyl)-galactopyranoside.

  16. Investigations of Reactive Carbohydrates in Glycosidic Bond Formation and Degradation

    DEFF Research Database (Denmark)

    Heuckendorff, Mads

    The overall objective of the research described in this thesis was to explore the field of glycosidic bond formation and degradation. In more detail, the objective was to do further research in the field of highly reactive glycosyl donors. New ways of making highly reactive donors were explored...

  17. Bottom-up elucidation of glycosidic bond stereochemistry

    DEFF Research Database (Denmark)

    Gray, Christopher J.; Schindler, Baptiste; Migas, Lukasz G.

    2017-01-01

    a particular challenge. Here, we show that "memory" of anomeric configuration is retained following gas-phase glycosidic bond fragmentation during tandem mass spectrometry (MS(2)). These findings allow for integration of MS(2) with ion mobility spectrometry (IM-MS(2)) and lead to a strategy to distinguish α...

  18. A New Flavone C-Glycoside from Gentiana lutea

    OpenAIRE

    Sachiko, Yamada; Rie, Kakuda; Yasunori, Yaoita; Masao, Kikuchi; Tohoku Pharmaceutical University; Tohoku Pharmaceutical University; Tohoku Pharmaceutical University; Tohoku Pharmaceutical University

    2005-01-01

    A new flavone C-glycoside, 6"-O-β-D-xylopyranosylisosaponarin (1), was isolated, together with four known compounds from the rhizomes and roots of Gentiana lutea. The structure of the new compound was elucidated on the basis of spectral data.

  19. (Anti)mutagenic and immunomodulatory properties of quercetin glycosides

    Czech Academy of Sciences Publication Activity Database

    Valentová, Kateřina; Šíma, Petr; Rybková, Z.; Křižan, Jiří; Malachová, K.; Křen, Vladimír

    2016-01-01

    Roč. 96, č. 5 (2016), s. 1492-1499 ISSN 0022-5142 R&D Projects: GA ČR(CZ) GAP301/11/0767; GA MŠk(CZ) LD14096 Institutional support: RVO:61388971 Keywords : quercetin glycosides * (anti)mutagenicity * mice Subject RIV: EE - Microbiology, Virology Impact factor: 2.463, year: 2016

  20. Reagents for the assay of cardenolide glycosides and aglycones

    International Nuclear Information System (INIS)

    Wilkinson, S.

    1976-01-01

    Some novel reagents are described for use in the radioimmunoassay of the 3-glycone derivatives of cardenolides (cardiac glycosides) and more especially digoxin, digitoxin, gitoxin, periplocin and lanatosides. Using these reagents these cardenolides and their derivatives may be assayed both in aqueous solution and in urine. A method is also described for performing such assays, including a suitable kit. (U.K.)

  1. Phenylpropanoid glycosides in Italian Orobanche spp., sect. Orobanche.

    Science.gov (United States)

    Serafini, M; Corazzi, G; Poli, F; Piccin, A; Tomassini, L; Foddai, S

    2005-09-01

    We studied the occurrence of phenylpropanoid glycosides (PhG) in five species of the genus Orobanche L., collected in the Latium region of Italy. The presence of orobanchoside and verbascoside in all four species confirms that these PhGs are taxonomic markers of the genus. The results suggest that O. gracilis form. citrina could be a diverse entity.

  2. A new phenylpropanoid glycoside from Jasminum subtriplinerve Blume.

    Science.gov (United States)

    Huong, Nguyen Thi Hong; Cu, Nguyen Khac Quynh; Quy, Trinh Van; Zidorn, Christian; Ganzera, Markus; Stuppner, Hermann

    2008-01-01

    From the ethyl acetate extract of the aerial parts of Jasminum subtriplinerve Blume (Oleaceae), 6'-O-menthiafoloylverbascoside (1), rutin (2), isoverbascoside (4), isooleoverbascoside (6), apiosylverbascoside (7), astragalin (9), isoquercitrin (10), and verbascoside (11) were isolated. Their structures were elucidated by extensive MS and NMR spectroscopy. Amongst 6'-O-menthiafoloylverbascoside (1) is a new phenylpropanoid glycoside.

  3. Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata.

    Science.gov (United States)

    Muzitano, Michelle F; Cruz, Elaine A; de Almeida, Ana Paula; Da Silva, Silvia A G; Kaiser, Carlos R; Guette, Catherine; Rossi-Bergmann, Bartira; Costa, Sônia S

    2006-01-01

    Quercitrin (quercetin 3- O-alpha- L-rhamnopyranoside), one of the constituents of the biologically active aqueous extract obtained from Kalanchoe pinnata, is demonstrated to be a potent antileishmanial compound (IC50 approximately 1 microg/mL) with a low toxicity profile. This is the first time that antileishmanial activity is demonstrated for a flavonoid glycoside.

  4. A new phenolic glycoside from the stem of Dendrobium nobile.

    Science.gov (United States)

    Zhou, Xue-Ming; Zheng, Cai-Juan; Wu, Jia-Ting; Chen, Guang-Ying; Zhang, Bin; Sun, Chong-Ge

    2017-05-01

    A new phenolic glycoside dendroside (1), together with seven known compounds (2-8) were isolated from the stems of Dendrobium nobile. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The inhibitory activities of all compounds against three cancer cell lines HeLa, MCF-7 and A549 were evaluated.

  5. Three flavonol glycosides from Ricinus communis | Aqil | Bulletin of ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 11, No 1 (1997) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Three flavonol glycosides from Ricinus ...

  6. Apoptotic activities of cardenolide glycosides from Asclepias subulata.

    Science.gov (United States)

    Rascón-Valenzuela, L A; Velázquez, C; Garibay-Escobar, A; Vilegas, W; Medina-Juárez, L A; Gámez-Meza, N; Robles-Zepeda, R E

    2016-12-04

    Asclepias subulata Decne. (Apocynaceae) is a shrub occurring in Sonora-Arizona desert. The ethnic groups of Sonora, Mexico, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To determine the cell death pathways that the cardenolide glycosides with antiproliferative activity found in the methanol extract of A. subulata are able to activate. The effect of cardenolide glycosides isolated of A. subulata on induction of apoptosis in cancer cells was evaluated through the measuring of several key events of apoptosis. A549 cells were treated for 12h with doses of 3.0, 0.2, 3.0 and 1.0µM of 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively. Apoptotic and necrotic cell levels were measured by double staining with annexin V-FITC/PI. Mitochondrial membrane depolarization was examined through JC-1 staining. Apoptosis cell death and the apoptosis pathways activated by cardenolide glycosides isolated of A. subulata were further characterized by the measurement of caspase-3, caspase-8 and caspase-9 activity. Apoptotic assays showed that the four cardenolide glycosides isolated of A. subulata induced apoptosis in A549 cells, which was evidencing by phosphatidylserine externalization in 18.2%, 17.0%, 23.9% and 22.0% for 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively, compared with 4.6% of control cells. Cell death was also associated with a decrease in mitochondrial membrane potential, which was more than 75% in the treated cultures respect to control. The activation of caspase-3 was observed in all cardenolide glycosides-treated cancer cells indicating the caspase-dependent apoptosis of A549 cells. Extrinsic and intrinsic apoptosis pathways were activated by cardenolide glycosides treatment at the doses tested. In this study was found that cardenolide glycosides, 12, 16-dihydroxicalotropin, calotropin

  7. Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range.

    Science.gov (United States)

    Sakaguchi, Masayoshi; Shimodaira, Satoru; Ishida, Shin-Nosuke; Amemiya, Miko; Honda, Shotaro; Sugahara, Yasusato; Oyama, Fumitaka; Kawakita, Masao

    2015-08-01

    Two glucoamylase-like genes, TVN1315 and Ta0286, from the archaea Thermoplasma volcanium and T. acidophilum, respectively, were expressed in Escherichia coli. The gene products, TVN1315 and Ta0286, were identified as archaeal trehalases. These trehalases belong to the CAZy database family GH15, although they have putative (α/α)6 barrel catalytic domain structures similar to those of GH37 and GH65 family trehalases from other organisms. These newly identified trehalases function within a narrow range of acidic pH values (pH 3.2 to 4.0) and at high temperatures (50 to 60°C), and these enzymes display Km values for trehalose higher than those observed for typical trehalases. These enzymes were inhibited by validamycin A; however, the inhibition constants (Ki) were higher than those of other trehalases. Three TVN1315 mutants, corresponding to E408Q, E571Q, and E408Q/E571Q mutations, showed reduced activity, suggesting that these two glutamic acid residues are involved in trehalase catalysis in a manner similar to that of glucoamylase. To date, TVN1315 and Ta0286 are the first archaeal trehalases to be identified, and this is the first report of the heterologous expression of GH15 family trehalases. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 family enzymes as well as glycoside hydrolase family enzymes; additionally, these enzymes provide insight into archaeal trehalose metabolism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features.

    Science.gov (United States)

    Lu, Haiqiang; Zhang, Huitu; Shi, Pengjun; Luo, Huiying; Wang, Yaru; Yang, Peilong; Yao, Bin

    2013-09-01

    A novel β-mannanase gene, man5XZ7, was cloned from thermophilic fungus Thielavia arenaria XZ7, and successfully expressed in Pichia pastoris. The gene (1,110 bp) encodes a 369-amino acid polypeptide with a molecular mass of approximately 40.8 kDa. The deduced sequence of Man5XZ7 consists of a putative 17-residue signal peptide and a catalytic module belonging to glycoside hydrolase (GH) family 5, and displays 76 % identity with the experimentally verified GH 5 endo-β-1,4-mannanase from Podospora anserina. Recombinant Man5XZ7 was optimally active at 75 °C and pH 5.0 and exhibited high activity at a wide temperature range (>50.0 % activity at 50-85 °C). Moreover, it had good adaptability to acidic to basic pH (>74.1 % activity at pH 4.0-7.0 and 25.6 % even at pH 9.0) and good stability from pH 3.0 to 10.0. These enzymatic properties showed that Man5XZ7 was a new thermophilic and alkali-tolerant β-mannanase. Further amino acid composition analysis indicated that Man5XZ7 has several characteristic features of thermophilic enzymes.

  9. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives

    OpenAIRE

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung

    2014-01-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratr...

  10. A Chalcone Glycoside from the Fruits of Sorbus commixta Hedl.

    Directory of Open Access Journals (Sweden)

    Kyu Yun Chai

    2009-12-01

    Full Text Available Sorbus commixta Hedl. (Rosaceae has been traditionally used in oriental countries for the treatment of asthma and other bronchial disorders. In this study, a chalcone glycoside was isolated from the ethyl acetate extract of the fruits of this plant. The compound was identified as neosakuranin based on the spectroscopic analysis and comparion with literature data. This is the first report of isolation of neosakuranin from Sorbus commixta.

  11. Cameroonenoside A: A New Antialgal Phenolic Glycoside from Helichrysum cameroonense

    Directory of Open Access Journals (Sweden)

    Kakam Zanetsie Antoine

    2011-01-01

    Full Text Available Helichrysum cameroonense is known for its medicinal value . This paper deals with a phytochemical investigation of this species, from which cameroonenoside A (1, a new cinnamic acid glycoside ester has been isolated. Its structure was determined by comprehensive analyses of its 1H and 13C NMR, COSY, HMQC, and HMBC spectroscopic, and HREIMS mass spectrometric data. Preliminary studies showed that cameroonenoside A (1 showed algicidal activity against Chlorella fusca

  12. A new lignan glycoside from the rhizomes of Imperata cylindrica.

    Science.gov (United States)

    Lee, Dae-Young; Han, Kyung-Min; Song, Myoung-Chong; Lee, Do-Gyeong; Rho, Yeong-Deok; Baek, Nam-In

    2008-01-01

    A new lignan glycoside, 6-acetyl-1-[1,3-(4,4'-dihydroxy-3,3'-dimethoxy-beta-truxinyl)-beta-d-fructofuranosyl]-alpha-d-glucopyranoside (1), named impecyloside, was isolated from the rhizomes of Imperata cylindrica. The structure of the compound was determined by spectroscopic data including FABMS, UV, IR, 1H NMR and 13C NMR (DEPT) and 2D NMR (COSY, HSQC, HMBC).

  13. Soulieoside O, a new cyclolanostane triterpenoid glycoside from Souliea vaginata.

    Science.gov (United States)

    Wu, Hai-Feng; Li, Peng-Fei; Zhu, Yin-Di; Zhang, Xiao-Po; Ma, Guo-Xu; Xu, Xu-Dong; Liu, Yi-Lin; Luo, Zheng-Hong; Chen, Di-Zhao; Zou, Qiong-Yu; Zhao, Zi-Jian

    2017-12-01

    A new cyclolanostane triterpenoid glycoside, soulieoside O (1), together with 25-O-acetylcimigenol-3-O-β-d-xylopyranoside (2) and cimigenol-3-O-β-d-xylopyranoside (3), was isolated from the rhizomes of Souliea vaginata. Their structures were characterized by spectroscopic analysis and chemical methods. The new compound showed moderate inhibitory activity against three human cancer cell lines with IC 50 values of 9.3-22.5 μM.

  14. Identification of a flavonoid C-glycoside as potent antioxidant.

    Science.gov (United States)

    Wen, Lingrong; Zhao, Yupeng; Jiang, Yueming; Yu, Limei; Zeng, Xiaofang; Yang, Jiali; Tian, Miaomiao; Liu, Huiling; Yang, Bao

    2017-09-01

    Flavonoids have been documented to have good antioxidant activities in vitro. However, reports on the cellular antioxidant activities of flavonoid C-glycosides are very limited. In this work, an apigenin C-glycoside was purified from Artocarpus heterophyllus by column chromatography and was identified to be 2″-O-β-D-xylosylvitexin by nuclear magnetic resonance spectroscopy. The cellular antioxidant activity and anticancer activity of 2″-O-β-D-xylosylvitexin were evaluated for the first time. The quantitative structure-activity relationship was analysed by molecular modeling. Apigenin presented an unexpected cellular antioxidation behaviour. It had an antioxidant activity at low concentration and a prooxidant activity at high concentration, whereas 2″-O-β-D-xylosylvitexin showed a dose-dependent cellular antioxidant activity. It indicated that C-glycosidation improved the cellular antioxidation performance of apigenin and eliminated the prooxidant effect. The ortho-dihydroxyl at C-3'/C-4' and C-3 hydroxyl in the flavonoid skeleton play important roles in the antioxidation behaviour. The cell proliferation assay revealed a low cytotoxicity of 2″-O-β-D-xylosylvitexin. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. NMR Characterization of Flavanone Naringenin 7-O-Glycoside Diastereomer

    Directory of Open Access Journals (Sweden)

    SUN Li-juan

    2017-12-01

    Full Text Available To discriminate R and S flavanone glycoside using NMR, the mixture of R and S naringenin 7-O-glycoside was first isolated from Gleditsia sinensis. 1H and 13C NMR data of the mixture were recorded with 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC in DMSO-d6 solution. The two diastereomers were then separated with chiral chromatographic isolation, with their absolute configurations determined by circular dichroism. To avoid the disturbance of protons from glucose residues to dihydroflavonoid, 1H NMR spectra were acquired for pure R and S naringenin 7-O-glycoside and their mixture in CD3CN. The two diastereomers showed the largest proton chemical shift differences at the end group of glucose residue (H-1" with a chemical shift difference of 9.4 Hz. The OH-5 proton showed a chemical shift difference of 5.8 Hz. The chemical shift of the three protons on ring C were all influenced by configuration.

  16. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.).

    Science.gov (United States)

    Mayorga, H; Knapp, H; Winterhalter, P; Duque, C

    2001-04-01

    The bound volatile fraction of cape gooseberry (Physalis peruviana L.) fruit harvested in Colombia has been examined by HRGC and HRGC-MS after enzymatic hydrolysis using a nonselective pectinase (Rohapect D5L). Forty bound volatiles could be identified, with 21 of them being reported for the first time in cape gooseberry. After preparative isolation of the glycosidic precursors on XAD-2 resin, purification by multilayer coil countercurrent chromatography and HPLC of the peracetylated glycosides were carried out. Structure elucidation by NMR, ESI-MS/MS, and optical rotation enabled the identification of (1S,2S)-1-phenylpropane-1,2-diol 2-O-beta-D-glucopyranoside (1) and p-menth-4(8)-ene-1,2-diol 1-O-alpha-L-arabinopyranosyl-(1-6)-beta-D-glucopyranoside (2). Both glycosides have been identified for the first time in nature. They could be considered as immediate precursors of 1-phenylpropane-1,2-diol and p-menth-4(8)-ene-1,2-diol, typical volatiles found in the fruit of cape gooseberry.

  17. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry

    Science.gov (United States)

    March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.

    2006-01-01

    A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.

  18. Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE.

    Science.gov (United States)

    Cibik, R; Chapot-Chartier, M P

    2000-11-01

    The autolysis of lactic acid bacteria plays a major role during cheese ripening. The aim of this study was to evaluate the autolytic properties and peptidoglycan hydrolase content of dairy leuconostocs. Autolysis of 59 strains of dairy Leuconostoc was examined under starvation conditions in potassium phosphate buffer. The ability of dairy leuconostocs to lyse is strain dependant and not related to the species. The peptidoglycan hydrolase profile of Leuc. mesenteroides subsp. mesenteroides 10L was analysed by renaturing gel electrophoresis. Two major activity bands migrating at 41 and 52 kDa were observed. According to the specificity analysis, strain 10L seems to contain a glycosidase and an N-acetyl-muramyl-L-alanine amidase, or an endopeptidase. The peptidoglycan hydrolase profiles of various Leuconostoc species were also compared. Several peptidoglycan hydrolase activities could be detected in the different Leuconostoc species. Further characterization of the peptidoglycan hydrolases will help to control autolysis of leuconostocs in cheese.

  19. Using directed evolution to probe the substrate specificity of mandelamide hydrolase.

    Science.gov (United States)

    Wang, Pan-Fen; Yep, Alejandra; Kenyon, George L; McLeish, Michael J

    2009-02-01

    Mandelamide hydrolase (MAH), a member of the amidase signature family, catalyzes the hydrolysis of mandelamide to mandelate and ammonia. X-ray structures of several members of this family, but not that of MAH, have been reported. These reveal nearly superimposable conformations of the unusual Ser-cisSer-Lys catalytic triad. Conversely, the residues involved in substrate recognition are not conserved, implying that the binding pocket could be modified to change the substrate specificity, perhaps by directed evolution. Here we show that MAH is able to hydrolyze small aliphatic substrates such as lactamide, albeit with low efficiency. A selection method to monitor changes in mandelamide/lactamide preference was developed and used to identify several mutations affecting substrate binding. A homology model places some of these mutations close to the catalytic triad, presumably in the MAH active site. In particular, Gly202 appears to control the preference for aromatic substrates as the G202A variant showed three orders of magnitude decrease in k(cat)/K(m) for (R)- and (S)-mandelamide. This reduction in activity increased to six orders of magnitude for the G202V variant.

  20. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  1. Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants.

    Science.gov (United States)

    Mohamed, Mahmoud S M; Saleh, Ahmed M; Abdel-Farid, Ibrahim B; El-Naggar, Sabry A

    2017-09-01

    Fusarium oxysporum, the causal agent of rot and wilt diseases, is one of the most detrimental phytopathogens for the productivity of many economic crops. The present study was conducted to evaluate the potentiality of some xerophytic plants as eco-friendly approach for management of F. oxysporum. Phenolic rich extracts from five plants namely: Horwoodia dicksoniae, Citrullus colocynthis, Gypsophila capillaris, Pulicaria incisa and Rhanterium epapposum were examined in vitro. The different extracts showed high variability in their phenolic and flavonoid contents as well as total antioxidant capacity. A strong positive correlation existed between the antifungal activity of the tested extracts and their contents of both total phenolics and flavonoids (r values are 0.91 and 0.82, respectively). Extract of P. incisa was the most effective in reducing the mycelial growth (IC 50 =0.92mg/ml) and inhibiting the activities of CMCase, pectinase, amylase and protease by 36, 42, 58 and 55%, respectively. The high performance liquid chromatography analysis of P. incisa extract revealed the presence of eight phenolic acids along with five polyphenolic compounds. The flavonol, quercetin and its glycosides rutin and quercetrin were the most abundant followed by the phenolic acids, t-cinnamic, caffeic, ferulic and vanillic. P. incisa extract not only affects the growth and hydrolases of F. oxysporum but also induces ultrastructure changes in the mycelium, as revealed by transmission electron microscopy. To our knowledge, this is the first study to investigate the mechanisms underlying the antifungal activity of P. incisa. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ∆brlA and ∆flbA

    NARCIS (Netherlands)

    van Munster, Jolanda M.; Nitsche, Benjamin M.; Akeroyd, Michiel; Dijkhuizen, Lubbert; van der Maarel, Marc J.E.C.; Ram, Arthur F.J.

    2015-01-01

    BACKGROUND: The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example

  3. Additional New Minor Cucurbitane Glycosides from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2014-03-01

    Full Text Available Continuous phytochemical studies of the crude extract of Luo Han Guo (Siraitia grosvenorii furnished three additional new cucurbitane triterpene glycosides, namely 11-deoxymogroside V, 11-deoxyisomogroside V, and 11-deoxymogroside VI. The structures of all the isolated compounds were characterized on the basis of extensive NMR and mass spectral data as well as hydrolysis studies. The complete 1H- and 13C-NMR spectral assignments of the three unknown compounds are reported for the first time based on COSY, TOCSY, HSQC, and HMBC spectroscopic data.

  4. Two New Flavone Glycosides from Chenopodiumambrosioides Growing Wildly in Egypt

    Directory of Open Access Journals (Sweden)

    Hala M. Hammoda

    2015-06-01

    Full Text Available Chenopodiumambrosioides (Chenopodiaceae growing wildly in Egypt was subjected to antioxidant –guided phytochemical investigation and the EtOAc fraction afforded the two new flavone glycosides; scutellarein-7-O-α-rhamnopyranosyl-(1→2-α-rhamnopyranosyl-(1→2-α-rhamnopyranoside (1 and scutella-rein-7-O-α-rhamnopyranosyl-(1→2-α-rhamnopyranoside (2. In addition, the invitro antioxidant activities of the plant alcohol extract, CHCl 3 fraction, EtOAc fraction and isolates were studied.

  5. A New Iridoid Glycoside from the Roots of Dipsacus asper

    Directory of Open Access Journals (Sweden)

    Zhonglin Yang

    2012-02-01

    Full Text Available A new iridoid glycoside, named loganic acid ethyl ester (1, together with five known compounds: chlorogenic acid (2, caffeic acid (3, loganin (4, cantleyoside (5 and syringaresinol-4′,4′′-O-bis-β-D-glucoside (6 were isolated from the roots of Dipsacus asper. The structure of compound 1 was elucidated on the basis of detailed spectroscopic analyses. Lignan is isolated from Dipsacaceae species for the first time. Compounds 1, 4 and 5 had moderate neuroprotective effects against the Aβ25–35 induced cell death in PC12 cells.

  6. New polyacetylenes glycoside from Eclipta prostrate with DGAT inhibitory activity.

    Science.gov (United States)

    Meng, Xiao; Li, Ban-Ban; Lin, Xin; Jiang, Yi-Yu; Zhang, Le; Li, Hao-Ze; Cui, Long

    2018-06-08

    One new polyacetylene glycoside eprostrata Ⅰ (1), together with seven known compounds (2-8), were isolated from Eclipta prostrata. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated inhibitory activity on DGAT in an in vitro assay. Compounds 1-8 were found to exhibit inhibitory activity of DGAT1 with IC 50 values ranging from 74.4 ± 1.3 to 101.1 ± 1.1 μM.

  7. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  8. Radioimmunoassay method for the determination of cardiotonic glycosides

    International Nuclear Information System (INIS)

    1975-01-01

    A kit method for the in vitro determination of digoxin and digitoxin is described. The blood serum is mixed with the reagent which consists of an aqueous buffer solution containing a radiolabeled hapten for the glycoside. Antiserum with specific antibodies is added and the mixture is incubated. Thereafter, a thin strip of membrane mainly consisting of an ionexchanger is brought into contact with the mixture to separate the antibody bound hapten from the unbound hapten. The ratios of both are determined by counting the radioactive hapten

  9. A New Flavonoid Glycoside from Salix denticulata Aerial Parts

    Directory of Open Access Journals (Sweden)

    Amita Bamola

    2009-09-01

    Full Text Available Abstract: A new flavonoid glycoside (1 has been isolated from the aerial parts of Salix denticulata (Salicaceae together with five known compounds, β-sitosterol, 2,6-dihydroxy- 4-methoxy acetophenone, eugenol-1-O-β-D-glucopyranoside, 1-O-β-D-(3’-benzoyl salicyl alcohol and luteolin-7-O-β-D-glucopyranosyl-(1-6-glucopyranoside. The structure of 1 was elucidated as 2’,5-dihydroxy-3’-methoxyflavone-7-O-β-D-glucopyranoside by means of chemical and spectral data including 2D NMR studies.

  10. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    Science.gov (United States)

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  11. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  13. H-1-NMR Fingerprinting of Vaccinium vitis-idaea Flavonol Glycosides

    NARCIS (Netherlands)

    Riihinen, K.R.; Mihaleva, V.V.; Gödecke, T.; Soininen, P.; Laatikainen, R.; Vervoort, J.; Lankin, D.C.; Pauli, G.F.

    2013-01-01

    Introduction - The fruits of Vaccinium vitis-idaea L. are a valuable source of biologically active flavonoid derivatives. For studies focused on the purification of its quercetin glycosides (QGs) and related glycosides from plants and for the purpose of biological studies, the availability of

  14. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.).

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Gutiérrez-Uribe, Janet A; Cepeda-Cañedo, Eduardo; Serna-Saldívar, Sergio O

    2017-08-22

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp (AP-BL) ) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp (AP-BL) values than triglycosides. Sugar substituents affected the Papp (AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.

  15. New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum.

    Science.gov (United States)

    Masuoka, Chikako; Ono, Masateru; Ito, Yasuyuki; Okawa, Masafumi; Nohara, Toshihiro

    2002-10-01

    A new megastigmane glycoside, called pipeloside A, and a new aromadendrane type sesquiterpenoid, pipelol A, were isolated from the MeOH extract of the aerial part of Piper elongatum VAHL. along with a known megastigmane glycoside, byzantionoside B. The structures of these compounds were elucidated on the basis of spectroscopic data and chemical evidence.

  16. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.

    Science.gov (United States)

    Warashina, Tsutomu; Shikata, Kimiko; Miyase, Toshio; Fujii, Satoshi; Noro, Tadataka

    2008-08-01

    Three new cardenolide glycosides and six new acylated lignan glycosides were obtained along with nineteen known compounds from the aerial parts of Asclepias curassavica L. (Asclepiadaceae). The structure of each compound was determined based on interpretations of NMR and MS measurements and chemical evidence.

  17. Zinc mediated activation of terminal alkynes: stereoselective synthesis of alkynyl glycosides.

    Science.gov (United States)

    Tatina, Madhu Babu; Kusunuru, Anil Kumar; Yousuf, Syed Khalid; Mukherjee, Debaraj

    2014-10-28

    Zinc mediated alkynylation reaction was studied for the preparation of C-glycosides from unactivated alkynes. Different glycosyl donors such as glycals and anomeric acetates were tested towards an alkynyl zinc reagent obtained from alkynes using zinc dust and ethyl bromoacetate as an additive. The method provides simple, mild and stereoselective access to alkynyl glycosides both from aromatic and aliphatic acetylenes.

  18. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil

    DEFF Research Database (Denmark)

    Johansen, Henrik; Damgaard, Lars Holm; Olsen, Carl Erik

    2007-01-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-b-D-glucoside) produced by sorghum has been studied...

  19. Separation, purification and identification of flavonoid glycosides using reversed phase hplc

    International Nuclear Information System (INIS)

    Hasan, A.; Khan, M.A.

    2002-01-01

    Optimal high performance liquid chromatography (HPLC) separation conditions and semi-preparative scale isolation of flavonoid glycosides from three plant species namely Vitex nagunda, Rubus ulmifolious and Malotus philipensis is reported. Identification of purified flavonoid glycoside was achieved using spiking technique in HPLC. (author)

  20. Identification and characterisation of a novel acylpeptide hydrolase from Sulfolobus solfataricus: structural and functional insights.

    Directory of Open Access Journals (Sweden)

    Marta Gogliettino

    Full Text Available A novel acylpeptide hydrolase, named APEH-3(Ss, was isolated from the hypertermophilic archaeon Sulfolobus solfataricus. APEH is a member of the prolyl oligopeptidase family which catalyzes the removal of acetylated amino acid residues from the N terminus of oligopeptides. The purified enzyme shows a homotrimeric structure, unique among the associate partners of the APEH cluster and, in contrast to the archaeal APEHs which show both exo/endo peptidase activities, it appears to be a "true" aminopeptidase as exemplified by its mammalian counterparts, with which it shares a similar substrate specificity. Furthermore, a comparative study on the regulation of apeh gene expression, revealed a significant but divergent alteration in the expression pattern of apeh-3(Ss and apeh(Ss (the gene encoding the previously identified APEH(Ss from S. solfataricus, which is induced in response to various stressful growth conditions. Hence, both APEH enzymes can be defined as stress-regulated proteins which play a complementary role in enabling the survival of S. solfataricus cells under different conditions. These results provide new structural and functional insights into S. solfataricus APEH, offering a possible explanation for the multiplicity of this enzyme in Archaea.

  1. Antidepressant-like effect of peony glycosides in mice.

    Science.gov (United States)

    Mao, Qing-Qiu; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2008-09-26

    The root part of Paeonia lactiflora Pall. (Ranunculaceae), known as peony, is often used in Chinese herbal formulae for the treatment of depression-like disorders. Previous studies in our laboratory have shown that an ethanol extract of peony produced antidepressive effects in mouse models of depression. It is well known that peony contains glycosides such as paeoniflorin and albiflorin, yet it remains unclear whether the total glycosides of peony (TGP) are effective. The present study aims to evaluate the antidepressant-like effects of TGP. The antidepressant-like effects of TGP was determined by using animal models of depression including forced swim and tail suspension tests. The acting mechanism was explored by determining the effect of TGP on the activities of monoamine oxidases. Intragastric administration of TGP at 80 and 160 mg/kg for seven days caused a significant reduction of immobility time in both forced swim and tail suspension tests, yet TGP did not stimulate locomotor activity in the open-field test. In addition, TGP treatment antagonized reserpine-induced ptosis and inhibited the activities of monoamine oxidases in mouse cerebrum. These results suggest that the antidepressive effects of TGP are mediated, at least in part, by the inhibition of monoamine oxidases.

  2. Flavonoid Glycosides from Siparuna gigantotepala Leaves and Their Antioxidant Activity.

    Science.gov (United States)

    Torres Castañeda, Harlen Gerardo; Colmenares Dulcey, Ana Julia; Isaza Martínez, José Hipólito

    2016-01-01

    Two new flavonol glycosides were isolated from the leaves of Siparuna gigantotepala. Their structures were determined to be kaempferol 3-O-β-xylopyranosyl-(1→2)-α-arabinofuranoside (1) and kaempferol 3,7-di-O-methyl-4'-O-α-rhamnopyranosyl-(1→2)-β-glucopyranoside (2). In addition, three known flavonol glycosides, rutin (3), kaempferol 3-O-rutinoside (4), and kaempferol 3,7-di-O-methyl-4'-O-rutinoside (5), and three flavonol aglycones, quercetin (6), kaempferol 3,7-dimethyl ether (7), and kaempferol 3,7,4'-trimethyl ether (8), were also isolated and are reported here for the first time in this species. The structures of compounds 1 and 2 were established on the basis of their LC-MS and one- and two-dimensional (1D)- and (2D)-NMR spectroscopic analyses, combined with acid methanolysis and silylation of sugar moieties for GC-MS. Evaluation of the antioxidant activity, conducted in the 96-well plate format, showed that the flavonoids isolated possess strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and moderate oxygen radical absorption capacity.

  3. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    Science.gov (United States)

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  4. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach.

    Science.gov (United States)

    Well, Caroline; Frank, Oliver; Hofmann, Thomas

    2013-11-27

    Meeting the rising consumer demand for natural food ingredients, steviol glycosides, the sweet principle of Stevia rebaudiana Bertoni (Bertoni), have recently been approved as food additives in the European Union. As regulatory constraints require sensitive methods to analyze the sweet-tasting steviol glycosides in foods and beverages, a HILIC-MS/MS method was developed enabling the accurate and reliable quantitation of the major steviol glycosides stevioside, rebaudiosides A-F, steviolbioside, rubusoside, and dulcoside A by using the corresponding deuterated 16,17-dihydrosteviol glycosides as suitable internal standards. This quantitation not only enables the analysis of the individual steviol glycosides in foods and beverages but also can support the optimization of breeding and postharvest downstream processing of Stevia plants to produce preferentially sweet and least bitter tasting Stevia extracts.

  5. Method Development for Extraction and Quantification of Glycosides in Leaves of Stevia Rebaudiana

    International Nuclear Information System (INIS)

    Salmah Moosa; Hazlina Ahmad Hassali; Norazlina Noordin

    2015-01-01

    A solid-liquid extraction and an UHPLC method for determination of glycosides from the leave parts of Stevia rebaudiana were developed. Steviol glycosides found in the leaves of Stevia are natural sweetener and commercially sold as sugar substitutes. Extraction of the glycosides consisted of solvent extraction of leaf powder using various solvents followed by its concentration using rotary evaporator and analysis using Ultra High Performance Liquid Chromatography (UHPLC). Existing analytical methods are mainly focused on the quantification of either rebaudioside A or stevioside, whereas other glycosides, such as rebaudioside B and rebaudioside D present in the leaves also contribute to sweetness or its biological activity. Therefore, we developed an improved method by changing the UHPLC conditions to enable a rapid and reliable determination of four steviol glycosides rather than just two using an isocratic UHPLC method. (author)

  6. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  7. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa

    KAUST Repository

    Shih, P. B.; Yang, J.; Morisseau, C.; German, J. B.; Scott-Van Zeeland, A. A.; Armando, A. M.; Quehenberger, O.; Bergen, A. W.; Magistretti, Pierre J.; Berrettini, W.; Halmi, K. A.; Schork, N.; Hammock, B. D.; Kaye, W.

    2015-01-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product

  8. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kyslík, Pavel

    2006-01-01

    Roč. 1760, - (2006), s. 245-252 ISSN 0006-3002 Institutional research plan: CEZ:AV0Z50200510 Keywords : epoxide hydrolase * enantioselectivity * aspergillus niger Subject RIV: EE - Microbiology, Virology

  9. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    CHRONISTER, G.B.

    2005-01-01

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  10. Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-like transglycosylase

    NARCIS (Netherlands)

    Barends, T.R.M.; Bultema, J.B.; Kaper, T.; Maarel, M.J.E.C. van der; Dijkhuizen, L.; Dijkstra, B.W.

    2007-01-01

    Amylomaltases are glycosyl hydrolases belonging to glycoside hydrolase family 77 that are capable of the synthesis of large cyclic glucans and the disproportionation of oligosaccharides. Using protein crystallography, we have generated a flip book movie of the amylomaltase catalytic cycle in atomic

  11. Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii*

    Science.gov (United States)

    Das, Subha Narayan; Wagenknecht, Martin; Nareddy, Pavan Kumar; Bhuvanachandra, Bhoopal; Niddana, Ramana; Balamurugan, Rengarajan; Swamy, Musti J.; Moerschbacher, Bruno M.; Podile, Appa Rao

    2016-01-01

    We report here the role and mechanism of specificity of a family 32 carbohydrate binding module (CBM32) of a glycoside hydrolase family 8 chitosanase from Paenibacillus elgii (PeCsn). Both the activity and mode of action of PeCsn toward soluble chitosan polymers were not different with/without the CBM32 domain of P. elgii (PeCBM32). The decreased activity of PeCsn without PeCBM32 on chitosan powder suggested that PeCBM32 increases the relative concentration of enzyme on the substrate and thereby enhanced enzymatic activity. PeCBM32 specifically bound to polymeric and oligomeric chitosan and showed very weak binding to chitin and cellulose. In isothermal titration calorimetry, the binding stoichiometry of 2 and 1 for glucosamine monosaccharide (GlcN) and disaccharide (GlcN)2, respectively, was indicative of two binding sites in PeCBM32. A three-dimensional model-guided site-directed mutagenesis and the use of defined disaccharides varying in the pattern of acetylation suggested that the amino groups of chitosan and the polar residues Glu-16 and Glu-38 of PeCBM32 play a crucial role for the observed binding. The specificity of CBM32 has been further elucidated by a generated fusion protein PeCBM32-eGFP that binds to the chitosan exposing endophytic infection structures of Puccinia graminis f. sp. tritici. Phylogenetic analysis showed that CBM32s appended to chitosanases are highly conserved across different chitosanase families suggesting their role in chitosan recognition and degradation. We have identified and characterized a chitosan-specific CBM32 useful for in situ staining of chitosans in the fungal cell wall during plant-fungus interaction. PMID:27405759

  12. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    Science.gov (United States)

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Azeroside C: a new phloroacetophenone glycoside from the roots of Dorema glabrum Fisch. & C.A. Mey

    Directory of Open Access Journals (Sweden)

    M.R. Delnavazi*

    2017-11-01

    Full Text Available Background and objectives: Dorema glabrum Fisch. & C.A. Meyfrom Umbelliferae family is a monocarpic species distributed in north-west of Iran, Azerbaijan republic and Armenia. The gum-resin of this species is traditionally used for the treatment of bronchitis, catarrh and diarrhea, as well as for its diuretic properties. Recently, we have reported the isolation of five phloroacetophenone glycosides including echisoside, pleoside, hyrcanoside, azerosides A and B from the roots of D. glabrum. The work is a part of our ongoing research on phytochemical constituents of this medicinal plant. Methods: The air dried and ground roots of D. glabrum collected from Jolfa region (East-Azerbaijan, Iran was macerated, successively with n-hexane, chloroform, ethyl acetate and methanol-water (8:2. The hydroalcoholic extract was subjected to phytochemical analysis using Sephadex-LH20 and RP-18 column chromatography. Structure of the isolated compound was elucidated by 1H-NMR, 13C-NMR, HMBC, HSQC, EI-MS and CHNS elemental analysis. Results: A new structure of 2-O-[β-D-glucopyranosyl-(1''→3'-β-D-glucopyranosyl]-4-O-methyl-phloroacetophenone, which was named azeroside C, was isolated and identified from D. glabrum roots. Conclusion: The presence of new phloroacetophenone glycosides in D. glabrum highlights this species as a source of this group of natural products which can be used for further pharmacological and toxicological studies.

  14. Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA

    Science.gov (United States)

    2013-01-01

    Background Rhubarb is an important Chinese medicinal herb with a long history of over 2000 years and has been commonly used as a laxative. It is the radix and rhizome of Rheum officinale Baill., R. palmatum L. and R. tanguticum Maxim, all of which are mainly distributed in a broad region in the Tibetan plateau. Anthraquinone glycosides are a series of major active ingredients found in all three species. They are key intermediates in the anthraquinone secondary metabolism and the sennnoside biosynthesis. The variation of the anthraquinone glycoside content in rhubarb in response to specific factors remains an attractive topic. Results A simple and sensitive Ultra Performance Liquid Chromatography with Photo-Diode Array (UPLC-PDA) detector was developed for the simultaneous determination of six anthraquinone glycosides in rhubarb, i.e., aloeemodin-8-O-glucoside, rhein-8-O-glucoside, chrysophanol-1-O-glucoside, emodin-1-O-glucoside, chrysophanol-8-O-glucoside, emodin-8-O-glucoside. Twenty-seven batches from three species were submitted to the multi-component analysis. The results showed that the anthraquinone glycoside content varied significantly even within the same species. The results showed that the anthraquinone glycoside content varied significantly within the same species but not between different species. The PCA and content analysis results confirmed that the plant species has no obvious effect on the content variation. Neither was any significant correlation observed between the anthraquinone glycoside content and the geographic distribution of the rhubarb. Through correlational analysis, altitude was found to be the main factor that affects the anthraquinone glycoside content in rhubarb. Rhubarb grown at higher altitude has higher anthraquinone glycoside content. Conclusions This work provides a rapid, sensitive and accurate UPLC-PDA method for the simultaneous determination of six anthraquinone glycosides in rhubarb. The anthraquinone glycoside content

  15. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  16. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds.

    Science.gov (United States)

    Wang, Fang; Zhong, Huan-Huan; Chen, Wei-Ke; Liu, Qing-Pu; Li, Cun-Yu; Zheng, Yun-Feng; Peng, Guo-Ping

    2017-08-01

    Moringa oleifera seed has remarkable curative effects on reducing blood pressure, blood sugar and enhancing human immunity. In this study, one novel phenolic glycoside (1) together with four known compounds 2-5 were isolated from the macroporous resin adsorption extract of M. oleifera seeds, and the compound 3 was reported for the first time from this plant. The structure of the new crystalline compound was determined on the basis of spectroscopic analyses including mass spectrometry, 1D and 2D NMR experiments. The hypoglycaemic activity of isolated compounds was investigated with HepG2 cell and STZ-induced mice. It was found that compound 1, 4 and 5 could promote the glucose consumption of insulin resistance cells and reduce blood glucose levels of STZ-induced mice. This study concludes that compound 1, 4 and 5 may be developed as new and safe hypoglycaemic drugs.

  17. A New Acylated Flavonol Glycoside from Chenopodium foliosum

    Directory of Open Access Journals (Sweden)

    Zlatina Kokanova-Nedialkova, , , , , and

    2014-07-01

    Full Text Available A new acylated flavonol glycoside, namely gomphrenol-3-O-( 5 '''-O-E-feruloyl-β-D-apiofuranosyl-(1→2[β-D-glucopyranosyl-(1→6]-β-D-glucopyranoside (1 was isolated from the aerial parts of Chenopodium foliosum Asch. The structure of 1 was determined by means of spectroscopic methods (1D and 2D NMR, UV, IR, and HRESIMS. Radical scavenging and antioxidant activities of 1 were established using DPPH and ABTS radicals, FRAP assay and inhibition of lipid peroxidation (LP in linoleic acid system by the ferric thiocyanate method. Compound 1 showed low activity (DPPH and ABTS or lack of activity (FRAP and LP. In combination with CCl 4, 1 reduced the damage caused by the hepatotoxic agent and preserved cell viability and GSH level, decreased LDH leakage and reduced lipid damage. Effects were concentration dependent, most visible at the highest concentration (100 µg/m L , and similar to those of silymarin .

  18. Two new lignan glycosides from the seeds of Cuscuta chinensis.

    Science.gov (United States)

    He, Xiang-Hui; Yang, Wen-Zhi; Meng, A-Hui; He, Wen-Ni; Guo, De-An; Ye, Min

    2010-11-01

    Two new lignan glycosides, 2'-hydroxyl asarinin 2'-O-β-D-glucopyranoside (cuscutoside C, 1) and 2'-hydroxyl asarinin 2'-O-β-D-apiofuranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranoside (cuscutoside D, 2), were isolated from the seeds of Cuscuta chinensis Lam., along with six known compounds, 2'-hydroxyl asarinin 2'-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (3), 2'-hydroxyl asarinin 2'-O-β-D-apiofuranosyl-(1 → 2)-β-D-glucopyranoside (cuscutoside A, 4), kaempferol 3,7-di-O-β-D-glucopyranoside (5), 5-caffeoyl quinic acid (6), 4-caffeoyl quinic acid (7), and cinnamic acid (8). Their structures were elucidated on the basis of spectroscopic analyses including HR-ESI-MS, ESI-MS/MS, (1)H and (13)C NMR, HSQC, HMBC, and TOCSY.

  19. Flavonoid glycosides from Erythroxylum pulchrum A. St.-Hil. (Erythroxylaceae)

    International Nuclear Information System (INIS)

    Albuquerque, Camila Holanda de; Tavares, Josean Fechine; Oliveira, Steno Lacerda de; Silva, Taina Souza; Costa, Vicente Carlos de Oliveira; Silva, Marcelo Sobral da; Goncalves, Gregorio Fernandes; Pessoa, Hilzeth de Luna Freire; Agra, Maria de Fatima

    2014-01-01

    The phytochemical investigation of Erythroxylum pulchrum St. Hil. (Erythroxylaceae) led to the isolation of three known flavonoid glycosides quercetin-3-O-α-L-rhaminoside, ombuin-3-ruthinoside and ombuin-3-ruthinoside-5-glucoside. These flavonoids are being described for the first time in this E. pulchrum. The structures of the compounds were determined by analysis of IR, MS and NMR data, as well as by comparison with literature data. The methanolic extract of leaves from E. pulchrum inhibited the growth of the Bacillus subtilis CCT 0516, Escherichia coli ATCC 2536, Pseudomonas aeruginosa ATCC 8027, P. aeruginosa ATCC 25619, Staphylococcus aureus ATCC 6538, S. aureus ATCC 25925, Streptococcus sanguinis ATCC 15300, S. salivarius ATCC 7073, S. mutans ATCC 25175 and Streptococcus ATCC. S. aureus ATCC 25925 was the most sensitive among the other S. sanguinis while S. salivarius proved the most resistant. (author)

  20. Three New Flavone Glycosides from Drymaria diandra Bl.

    Institute of Scientific and Technical Information of China (English)

    Zhong-Tao DING; Xue-Qiong YANG; Qiu-E CAO; Fei LI

    2005-01-01

    In order to find new structural and biologically active compounds, the constituents from the whole plant of Drymaria diandra B1. (Caryophyllaceae) were investigated and three new flavone glycosides,named drymariatins B (1), C (2), and D (3), were isolated by solvent partition, Si gel, sephadex LH-20, and Rp-18 column chromatography. Using spectroscopic methods, including two-dimensional nuclear magnetic resonance analysis, the structures of these compounds were elucidated as 6-C-(2-deoxy-β-D-fucopyranosyl)-5,7,4'-trihydroxyl-flavone, 6-C-(2-deoxy-β-D-fucopyranosyl)-7-O-(β-D-glucopyranosyl)-5,4'-dihydroxylflavone, and 6-C-(3-keto-β-digitoxopyranosyl)-7-O-(β-D-glucopyranosyl)-5,4'-dihydroxyl-flavone.

  1. A new antibacterial benzophenone glycoside from Psidium guajava (Linn.) leaves.

    Science.gov (United States)

    Ukwueze, Stanley E; Osadebe, Patience O; Okoye, Festus B C

    2015-01-01

    Bioactivity-guided fractionation of methanol extract from the leaves of Psidium guajava L. (Myrtaceae) yielded a new benzophenone glycoside, Guajaphenone A (2) together with two known compounds, Garcimangosone D (1) and Guaijaverin (3). Their structures were elucidated by analysis of spectroscopic data including 1D and 2D NMR and electrospray ionisation mass spectrometry (ESI-MS). The isolated compounds were screened against standard strains of Gram-positive and Gram-negative bacteria using broth dilution assay method, and the MIC values determined and compared with reference antibiotic ceftriaxone. They were found to have significant antibacterial activities against Escherichia coli and Staphylococcus aureus with all of them showing better activities against S. aureus, but displaying weaker activities, in comparison to ceftriaxone. However, despite reduced effect of these compounds against the organisms, this work opens the perspective to use these molecules as 'leads' for the design of novel and selective drug candidates for some tropical infectious diseases.

  2. Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis.

    Science.gov (United States)

    Li, Yushan; Chen, Xigui; Satake, Masayuki; Oshima, Yasukatsu; Ohizumi, Yasushi

    2004-04-01

    Three new acetylated flavonoid glycosides, 5,6,4'-trihydroxyflavone 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1), apigenin 7-O-alpha-L-3-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and apigenin 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), were isolated from Scoparia dulcis together with the known compound eugenyl beta-D-glucopyranoside (4). Their structures were elucidated by spectroscopic analyses. Compounds 2 and 3 showed an enhancing activity of nerve growth factor-mediated neurite outgrowth in PC12D cells.

  3. Phenylethanoid Glycosides of Cistanche on menopausal syndrome model in mice

    Directory of Open Access Journals (Sweden)

    Shuo Tian

    2017-05-01

    Full Text Available Cistanche is the traditional and precious Chinese herbal, with two thousand years of use history in China. It has the effect on tonifying kidney, strong supplement to the liver and kidney, and replenishing essence and blood, known as the “desert ginseng”. Here, we explored the mechanism of Phenylethanoid Glycosides of Cistanche (PGC to the model mice of menopausal syndrome, as well as the therapeutic effect and characteristics of PGC to the menopausal syndrome. In this study, KM mice were reproduced by the complete resection of the ovaries on both sides of the back to establish the model mice of menopausal syndrome (MPS, and received distilled water or drugs, respectively. Model mice received distilled water. Mice received 200 mg/(kg day high doses of Phenylethanoid Glycosides of Cistanche (HPGC, and 100 mg/(kg day medium doses of Phenylethanoid Glycosides of Cistanche (MPGC, and 50 mg/(kg day low doses of Phenylethanoid Glycosides of Cistanche (LPGC. After 21 days, it could determine the number of independent activities and the number of standing, the latent period of first entering the dark room, and the electric number. It also calculated the viscera index of uterus, thymus, spleen, measured the levels of estradiol (E2, testosterone (T, luteinizing hormone (LH, and follicle-stimulating hormone (FSH in the serum. Furthermore, it observed the pathological changes of uterus, thymus, spleen and pituitary of mice. The results showed that behavioral indicators: Compared with the model group (MG, HPGC, MPGC, LPGC could increase the independent activities (P < 0.01; HPGC, MPGC could increase the number of standing, the latent period of first entering the dark room, and reduce the electric number (P < 0.01; LPGC could increase the number of standing (P < 0.05; Viscera index: Compared with MG, HPGC, MPGC could increase the viscera index of uterus, thymus, spleen (P < 0.01; LPGC could increase the viscera index of uterus (P < 0

  4. A new phenylethanoid glycoside from Orobanche cernua Loefling.

    Science.gov (United States)

    Qu, Zheng-yi; Zhang, Yu-wei; Zheng, Si-Wen; Yao, Chun-lin; Jin, Yin-ping; Zheng, Pei-he; Sun, Cheng-he; Wang, Ying-ping

    2016-01-01

    A novel phenylethanoid glycoside, 3'-O-methyl isocrenatoside (1), along with two known compounds, methyl caffeate (2) and protocatechuic aldehyde (3), were isolated from the fresh whole plant of Orobanche cernua Loefling. All the isolated compounds (1-3) were elucidated on the basis of spectroscopic analysis including IR, MS and NMR data. The cytotoxic activities of these compounds were evaluated. Results showed that 3'-O-methyl isocrenatoside (1) and methyl caffeate (2) exhibited significant cytotoxicity, with IC50 values of 71.89, 36.97 μg/mL and 32.32, 34.58 μg/mL against the B16F10 murine melanoma and Lewis lung carcinoma cell lines, respectively.

  5. A new flavonol glycoside from glandless cotton seeds

    Directory of Open Access Journals (Sweden)

    Shanqin Yuan

    2012-02-01

    Full Text Available A new flavonol glycoside, namely quercetin 3-O-[α-d-apiofuranosyl(1–5-β-d-apiofuranosyl(1–2]-α-l-rhamnopyranosyl(1–6-β-d-glucopyranoside (1, was isolated from glandless cotton seeds together with the known compounds quercetin 3-O-α-l-rhamnopyranosyl(1–2-[α-l-rhamnopyranosyl(1–6]-β-d-glucopyranoside (manghaslin, 2, kaempferol 3-O-β-d-apiofruranosyl(1–2-β-d-glucopyranoside (3 and kaempferol 3-O-α-l-rhamnopyranosyl(1–6-β-d-glucopyranoside (4. It is interesting that the tetrasaccharide fragment of 1 contained both a β-apiosyl and an unusual α-apiosyl group.

  6. Four new flavonol glycosides from the leaves of Brugmansia suaveolens.

    Science.gov (United States)

    Geller, Fabiana; Murillo, Renato; Steinhauser, Lisa; Heinzmann, Berta; Albert, Klaus; Merfort, Irmgard; Laufer, Stefan

    2014-05-22

    Four new flavonol glycosides were isolated from the leaves of Brugmansia suaveolens: kaempferol 3-O-β-D-glucopyranosyl-(1'''→2'')-O-α-L-arabinopyranoside (1), kaempferol 3-O-β-D-glucopyranosyl-(1'''→2'')-O-α-L-arabinopyranoside-7-O-į-D-gluco-pyranoside (2), kaempferol 3-O-β-D-[6'''-O-(E-caffeoyl)]-glucopyranosyl-(1'''→2'')-O-α-l-arabinopyranoside-7-O-β-D-glucopyranoside (3), and kaempferol 3-O-β-D-[2'''-O-(E-caffeoyl)]-glucopyranosyl-(1'''→2'')-O-α-l-arabinopyranoside-7-O-β-D-glucopyranoside (4). The structure elucidation was performed by MS, 1D and 2D NMR analyses.

  7. Four New Flavonol Glycosides from the Leaves of Brugmansia suaveolens

    Directory of Open Access Journals (Sweden)

    Fabiana Geller

    2014-05-01

    Full Text Available Four new flavonol glycosides were isolated from the leaves of Brugmansia suaveolens: kaempferol 3-O-β-D-glucopyranosyl-(1'''→2''-O-α-L-arabinopyranoside (1, kaempferol 3-O-β-D-glucopyranosyl-(1'''→2''-O-α-L-arabinopyranoside-7-O-į-D-gluco-pyranoside (2, kaempferol 3-O-β-D-[6'''-O-(E-caffeoyl]-glucopyranosyl-(1'''→2''-O-α-l-arabinopyranoside-7-O-β-D-glucopyranoside (3, and kaempferol 3-O-β-D-[2'''-O-(E-caffeoyl]-glucopyranosyl-(1'''→2''-O-α-l-arabinopyranoside-7-O-β-D-glucopyranoside (4. The structure elucidation was performed by MS, 1D and 2D NMR analyses.

  8. Hepatoprotective glycosides from the rhizomes of Imperata cylindrical.

    Science.gov (United States)

    Ma, Jie; Sun, Hua; Liu, Hui; Shi, Gao-Na; Zang, Ying-Da; Li, Chuang-Jun; Yang, Jing-Zhi; Chen, Fang-You; Huang, Ji-Wu; Zhang, Dan; Zhang, Dong-Ming

    2018-05-01

    Three new C-methylated phenylpropanoid glycosides (1, 2), a new 8-4'-oxyneolignan (3), together with two known analogs (4, 5), were isolated from the rhizomes of Imperata cylindrical Beauv. var. major (Nees) C. E. Hubb. Their structures were determined by spectroscopic and chemical methods. Compounds 1, 2, and 5 (10 μM) exhibited pronounced hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced HepG2 cell damage in vitro assays. Furthermore, their antioxidant activities against Fe 2+ -cysteine-induced rat liver microsomal lipid peroxidation and the effects on the secretion of TNF-α in murine peritoneal macrophages (RAW264.7) induced by lipopolysaccharides were evaluated.

  9. Cloning and characterization of human liver cytosolic beta-glycosidase

    NARCIS (Netherlands)

    De Graaf, M; Van Veen, IC; Van Der Meulen-Muileman, IH; Gerritsen, WR; Pinedo, HM; Haisma, HJ

    2001-01-01

    Cytosolic beta -glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta -D-glycosides. including beta -D-glucoside acid beta -D-galactoside. We therefore refer to this enzyme as cytosolic beta

  10. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum.

    Science.gov (United States)

    De Melo, Giany O; Malvar, David do C; Vanderlinde, Frederico A; Rocha, Fabio F; Pires, Priscila Andrade; Costa, Elson A; de Matos, Lécia G; Kaiser, Carlos R; Costa, Sônia S

    2009-07-15

    To identify the compounds responsible for the antinociceptive and anti-inflammatory effects previously described for Sedum dendroideum, through bioassay-guided fractionation procedures. Antinociceptive activity was evaluated through mouse acetic acid-induced writhing model. The anti-inflammatory activity was assessed through croton oil-induced mouse ear oedema and carrageenan-induced peritonitis. The Sedum dendroideum juice afforded seven known flavonoids identified with basis on NMR data. The oral administration of the major kaempferol glycosides kaempferitrin [1] (17.29 micromol/kg), kaempferol 3-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside [2] (16.82 micromol/kg), kaempferol 3-O-neohesperidoside-7-O-alpha-rhamnopyranoside [3] (13.50 micromol/kg) or alpha-rhamnoisorobin [5] (23.13 micromol/kg) inhibited by 47.3%, 25.7%, 60.2% and 58.0%, respectively, the acetic acid-induced nociception (indomethacin: 27.95 micromol/kg, p.o.; 68.9%). Flavonoids 1, 2, 3 or 5, at the same doses, reduced by 39.5%, 46.5%, 35.6% and 33.3%, respectively, the croton oil-induced oedema (dexamethasone: 5.09 micromol/kg, s.c.; 83.7%) and impaired leukocyte migration by 42.9%, 46.3%, 50.4% and 49.6%, respectively (dexamethasone: 5.09 micromol/kg, s.c.; 66.1%). Our findings show that the major kaempferol glycosides may account for the renowned medicinal use of Sedum dendroideum against pain and inflammatory troubles.

  11. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties.

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Rahman, M Aminur; Islam, Mohamad Tofazzal

    2017-10-17

    Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.

  12. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Cecilia Prata

    2017-01-01

    Full Text Available Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance.

  13. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Science.gov (United States)

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance. PMID:28947927

  14. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  15. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins.RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes.SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  16. Epoxide hydrolase affects estrogen production in the human ovary.

    Science.gov (United States)

    Hattori, N; Fujiwara, H; Maeda, M; Fujii, S; Ueda, M

    2000-09-01

    To investigate the mechanisms of ovarian cell differentiation, we raised a new monoclonal antibody, HCL-3, which reacted with human luteal cells. It also reacted with human and porcine hepatocytes. The immunoaffinity-purified HCL-3 antigen from human corpora lutea (CL) was shown to be a 46-kDa protein. The N-terminal 22 amino acids of the 46-kDa protein from porcine liver exhibited high homology (82%) to human microsomal epoxide hydrolase (mEH). The purified HCL-3 antigen from human CL or porcine liver showed EH enzyme activity, confirming that HCL-3 antigen is identical to mEH, which is reported to detoxify the toxic substrates in the liver. In human follicles, mEH was immunohistochemically detected on granulosa and theca interna cells. In the menstrual and pregnant CL, mEH was also expressed on large and small luteal cells. A competitive inhibitor of EH, 1,2-epoxy-3,3,3-trichloropropane, inhibited the conversion of estradiol from testosterone by granulosa cells cultured in vitro, indicating the involvement of mEH in ovarian estrogen production. Because anticonvulsant sodium valproate and its analogues were reported to inhibit EH enzyme activity, these findings provide a new insight into the etiology of endocrine disorders that are frequently observed among epileptic patients taking anticonvulsant drugs.

  17. Microfluidic glycosyl hydrolase screening for biomass-to-biofuel conversion.

    Science.gov (United States)

    Bharadwaj, Rajiv; Chen, Zhiwei; Datta, Supratim; Holmes, Bradley M; Sapra, Rajat; Simmons, Blake A; Adams, Paul D; Singh, Anup K

    2010-11-15

    The hydrolysis of biomass to fermentable sugars using glycosyl hydrolases such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Enhancement in hydrolysis efficiency is necessary and requires improvement in both enzymes and processing strategies. Advances in both areas in turn strongly depend on the progress in developing high-throughput assays to rapidly and quantitatively screen a large number of enzymes and processing conditions. For example, the characterization of various cellodextrins and xylooligomers produced during the time course of saccharification is important in the design of suitable reactors, enzyme cocktail compositions, and biomass pretreatment schemes. We have developed a microfluidic-chip-based assay for rapid and precise characterization of glycans and xylans resulting from biomass hydrolysis. The technique enables multiplexed separation of soluble cellodextrins and xylose oligomers in around 1 min (10-fold faster than HPLC). The microfluidic device was used to elucidate the mode of action of Tm_Cel5A, a novel cellulase from hyperthermophile Thermotoga maritima . The results demonstrate that the cellulase is active at 80 °C and effectively hydrolyzes cellodextrins and ionic-liquid-pretreated switchgrass and Avicel to glucose, cellobiose, and cellotriose. The proposed microscale approach is ideal for quantitative large-scale screening of enzyme libraries for biomass hydrolysis, for development of energy feedstocks, and for polysaccharide sequencing.

  18. Heterologous expression of the methyl carbamate-degrading hydrolase MCD.

    Science.gov (United States)

    Naqvi, Tatheer; Cheesman, Matthew J; Williams, Michelle R; Campbell, Peter M; Ahmed, Safia; Russell, Robyn J; Scott, Colin; Oakeshott, John G

    2009-10-26

    The methyl carbamate-degrading hydrolase (MCD) of Achromobacter WM111 has considerable potential as a pesticide bioremediation agent. However this potential has been unrealisable until now because of an inability to express MCD in heterologous hosts such as Escherichia coli. Herein, we describe the first successful attempt to express appreciable quantities of MCD in active form in E. coli, and the subsequent characterisation of the heterologously expressed material. We find that the properties of this material closely match the previously reported properties of MCD produced from Achromobacter WM111. This includes the presence of two distinct forms of the enzyme that we show are most likely due to the presence of two functional translational start sites. The purified enzyme catalyses the hydrolysis of a carbamate (carbaryl), a carboxyl ester (alpha-naphthyl acetate) and a phophotriester (dimethyl umbelliferyl phosphate) and it is relatively resistant to thermal and solvent-mediated denaturation. The robust nature and catalytic promiscuity of MCD suggest that it could be exploited for various biotechnological applications.

  19. Hepatic cholesterol ester hydrolase in human liver disease.

    Science.gov (United States)

    Simon, J B; Poon, R W

    1978-09-01

    Human liver contains an acid cholesterol ester hydrolase (CEH) of presumed lysosomal origin, but its significance is unknown. We developed a modified CEH radioassay suitable for needle biopsy specimens and measured hepatic activity of this enzyme in 69 patients undergoing percutaneous liver biopsy. Histologically normal livers hydrolyzed 5.80 +/- 0.78 SEM mumoles of cholesterol ester per hr per g of liver protein (n, 10). Values were similar in alcoholic liver disease (n, 17), obstructive jaundice (n, 9), and miscellaneous hepatic disorders (n, 21). In contrast, mean hepatic CEH activity was more than 3-fold elevated in 12 patients with acute hepatitis, 21.05 +/- 2.45 SEM mumoles per hr per g of protein (P less than 0.01). In 2 patients studied serially, CEH returned to normal as hepatitis resolved. CEH activity in all patients paralleled SGOT levels (r, 0.84; P less than 0.01). There was no correlation with serum levels of free or esterified cholesterol nor with serum activity of lecithin-cholesterol acyltransferase, the enzyme responsible for cholesterol esterification in plasma. These studies confirm the presence of CEH activity in human liver and show markedly increased activity in acute hepatitis. The pathogenesis and clinical significance of altered hepatic CEH activity in liver disease require further study.

  20. Fractionation and Characterization of Tannin Acyl Hydrolase from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    YUNITA ARIAN SANI ANWAR

    2009-09-01

    Full Text Available We previously produced tannin acyl hydrolase (tannase from Aspergillus niger isolated from cacao pod. In the present study the enzyme was subjected to fractionation by ammonium sulphate followed by dialysis process. The saturation level of ammonium sulphate used was 30-80% where the best enzyme activity was obtained at the saturation level of 60%. Compared to that of crude enzyme, specific activity of tannase after dialysis was four folds. Characterization results showed that optimum activity was at 35-50 oC and pH 6. Tannase was activated by K+ and Na+ at concentration of 0.01 and 0.05 M respectively. Mg2+ was found activate tannase only at 0.01 M. Addition of metal ions like Zn2+, Cu2+, Ca2+, Mn2+ and Fe2+ inhibited the enzyme activity. Kinetics analysis of various substrates tested showed that the Km value of tannic acid and gallotannin was 0.401 and 6.611 mM respectively. Vmax value of tannic acid was 10.804 U/ml and of gallotannin was 12.406 U/ml. Based on Michaelis-Menten constant (Km, the tannase obtained in the present study was more active in hydrolysing depside bonds rather than ester bonds.

  1. Fractionation and Characterization of Tannin Acyl Hydrolase from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    YUNITA ARIAN SANI ANWAR

    2009-09-01

    Full Text Available We previously produced tannin acyl hydrolase (tannase from Aspergillus niger isolated from cacao pod. In the present study the enzyme was subjected to fractionation by ammonium sulphate followed by dialysis process. The saturation level of ammonium sulphate used was 30–80% where the best enzyme activity was obtained at the saturation level of 60%. Compared to that of crude enzyme, specific activity of tannase after dialysis was four folds. Characterization results showed that optimum activity was at 35–50 °C and pH 6. Tannase was activated by K+ and Na+ at concentration of 0.01 and 0.05 M respectively. Mg2+ was found activate tannase only at 0.01 M. Addition of metal ions like Zn2+, Cu2+, Ca2+, Mn2+ and Fe2+ inhibited the enzyme activity. Kinetics analysis of various substrates tested showed that the Km value of tannic acid and gallotannin was 0.401 and 6.611 mM respectively. Vmax value of tannic acid was 10.804 U/ml and of gallotannin was 12.406 U/ml. Based on Michaelis-Menten constant (Km, the tannase obtained in the present study was more active in hydrolysing depside bonds rather than ester bonds.

  2. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  3. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    Science.gov (United States)

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synthesis and Sensory Evaluation of ent-Kaurane Diterpene Glycosides

    Directory of Open Access Journals (Sweden)

    Venkata Sai Prakash Chaturvedula

    2012-07-01

    Full Text Available Catalytic hydrogenation of the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana, namely rubusoside, stevioside, and rebaudioside-A has been carried out using Pd(OH2 and their corresponding dihydro derivatives have been isolated as the products. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data and chemical studies. Also, we report herewith the sensory evaluation of all the reduced compounds against their corresponding original steviol glycosides and sucrose for the sweetness property of these molecules.

  5. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes : Prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Dini Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered

  6. A new phenolic glycoside from the aerial parts of Solidago canadensis.

    Science.gov (United States)

    Zhang, JinSong; Zhang, XinQin; Lei, GuangQing; Li, Bo; Chen, JiaKuan; Zhou, TongShui

    2007-01-01

    A new phenolic glycoside, 2'-hydroxy-4',6'-di-O-beta-D-glucopyranosyl-butyrrophenone (1), was isolated from the aerial parts of Solidago canadensis. The structure was elucidated on the basis of spectroscopic methods.

  7. Ultrasonication-Assisted Solvent Extraction of Quercetin Glycosides from ‘Idared’ Apple Peels

    Directory of Open Access Journals (Sweden)

    Gwendolyn M. Huber

    2011-11-01

    Full Text Available Quercetin and quercetin glycosides are physiologically active flavonol molecules that have been attributed numerous health benefits. Recovery of such molecules from plant matrices depends on a variety of factors including polarity of the extraction solvent. Among the solvents of a wide range of dielectric constants, methanol recovered the most quercetin and its glycosides from dehydrated ‘Idared’ apple peels. When ultra-sonication was employed to facilitate the extraction, exposure of 15 min of ultrasound wavelengths of dehydrated apple peel powder in 80% to 100% (v/v methanol in 1:50 (w:v solid to solvent ratio provided the optimum extraction conditions for quercetin and its glycosides. Acidification of extraction solvent with 0.1% (v/v or higher concentrations of HCl led to hydrolysis of naturally occurring quercetin glycosides into the aglycone as an extraction artifact.

  8. Effects of elevated CO2 and ozone on phenolic glycosides of trembling aspen

    Science.gov (United States)

    James K. Nitao; Muraleedharan G. Nair; William J. Mattson; Daniel A. Herms; Bruce A. Birr; Mark D. Coleman; Terry M. Trier; J. G. Isebrands

    1996-01-01

    We tested the effects of elevated CO2 and ozone on concentrations of the phenolic glycosides salicortin and tremulacin in immature and mature foliage of the trembling aspen (Populus tremuloides) clones 216, 259, and 271.

  9. Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color.

    Science.gov (United States)

    Iwashina, Tsukasa; Yamaguchi, Masa-atsu; Nakayama, Masayoshi; Onozaki, Takashi; Yoshida, Hiroyuki; Kawanobu, Shuji; Onoe, Hiroshi; Okamura, Masachika

    2010-12-01

    Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, 1H and 13C NMR spectra as kaempferol 3-O-neohesperidoside, kaempferol 3-O-sophoroside and kaempferol 3-O-glucosyl-(1 --> 2)-[rhamnosyl-(1 --> 6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-O-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers.

  10. Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.

    Directory of Open Access Journals (Sweden)

    Dong Wha Jun

    Full Text Available Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs, one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC, activates the Fanconi anemia (FA/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+/K(+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

  11. Evaluation of fish models of soluble epoxide hydrolase inhibition.

    Science.gov (United States)

    Newman, J W; Denton, D L; Morisseau, C; Koger, C S; Wheelock, C E; Hinton, D E; Hammock, B D

    2001-01-01

    Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrolysis and inhibitor susceptibility. Low lethality was observed in either larval or embryonic fish exposed to diuron [N-(3,4-dichlorophenyl), N'-dimethyl urea], desmethyl diuron [N-(3,4-dichlorophenyl), N'-methyl urea], or siduron [N-(1-methylcyclohexyl), N'-phenyl urea]. Dose-dependent inhibition of sEH was a sublethal effect of substituted urea exposure with the potency of siduron diuron = diuron, differing from the observed in vitro sEH inhibition potency of siduron > desmethyl diuron > diuron. Further, siduron exposure synergized the toxicity of trans-stilbene oxide in fathead minnows. Medaka embryos exposed to diuron, desmethyl diuron, or siduron displayed dose-dependent delays in hatch, and elevated concentrations of diuron and desmethyl diuron produced developmental toxicity. The dose-dependent toxicity and in vivo sEH inhibition correlated, suggesting a potential, albeit undefined, relationship between these factors. Additionally, the observed inversion of in vitro to in vivo potency suggests that these fish models may provide tools for investigating the in vivo stability of in vitro inhibitors while screening for untoward effects. PMID:11171526

  12. Identification of oxidized protein hydrolase as a potential prodrug target in prostate cancer

    International Nuclear Information System (INIS)

    McGoldrick, Christopher A; Jiang, Yu-Lin; Paromov, Victor; Brannon, Marianne; Krishnan, Koyamangalath; Stone, William L

    2014-01-01

    Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells. Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results. The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells. These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH

  13. 8,14-Secopregnane glycosides from the aerial parts of Asclepias tuberosa.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2009-07-01

    Twenty pregnane glycosides, tuberoside A(1)-L(5), were isolated from the diethyl ether-soluble fraction of the MeOH extract from the aerial parts of Asclepias tuberosa (Asclepiadaceae). The pregnane glycosides were composed of 8,12;8,20-diepoxy-8,14-secopregnane as aglycon, and D-cymarose, D-oleandrose, D-digitoxose and/or D-glucose as the component sugars. Their structures were established using NMR spectroscopic analysis and chemical methodologies.

  14. Kaempferol 3,7,4'-glycosides from the flowers of Clematis cultivars.

    Science.gov (United States)

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2013-08-01

    A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7,4'-di-O-beta-glucopyranoside (1) was isolated from the flowers of Clematis cultivars "Jackmanii Superba" and "Fujimusume", together with the known compound kaempferol 3,7,4'-tri-O-beta-glucopyranoside (2). The chemical structures of the isolated kaemferol glycosides were established by UV, 1H and 13C NMR spectroscopy, LC-MS, and characterization of acid hydrolysates.

  15. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    OpenAIRE

    Antunes-Ricardo, Marilena; Guti?rrez-Uribe, Janet A.; Mart?nez-Vitela, Carlos; Serna-Sald?var, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on d...

  16. Extraction, radiolabeling and in vivo biological evaluation of {sup 131}I labeled egonol glycosides extract

    Energy Technology Data Exchange (ETDEWEB)

    Akguel, Yurdanur; Pazar, Erdinc [Ege Univ., Izmir (Turkey). Chemistry Dept.; Yilmaz, Habibe; Sanlier, Senay Hamarat [Ege Univ., Izmir (Turkey). Biochemistry Dept.; Lambrecht, Fatma Yurt [Ege Univ., Izmir (Turkey). Dept. of Nuclear Applications; Yilmaz, Osman [Dokuz Eyluel Univ., Izmir (Turkey). Dept. of Lab. Animal Science

    2015-09-01

    Crude extract of S. officinalis L. was found to have suspending agent, hemolytic, antitumor, antioxidant and antimicrobial activities. Its major components benzofurans and benzofuran glycosides have antifungal, anticancer, antibacterial and anticomplement activities and display acetylcholinesterase-cyclooxygenase inhibitory and cytotoxic properties. Recently, it has been reported that egonolgentiobioside is a valuable target for structural modification and warrants further investigation for its potential as a novel pharmaceutical tool for the prevention of estrogen deficiency induced diseases. The aim of the current study is to perform in vivo biological evaluation of a glycosides extract, which was isolated from the fruits endocarp of Styrax officinalis L, identified as egonolgentiobioside and homoegonolgentiobioside and labeled with {sup 131}I. The radiolabeled glycosides extract was labeled with {sup 131}I with high yield. The labeled obtained radiolabeled compound was found to be quite stable and lipophilic. In order to determine its tissue distribution, an in vivo study was performed using healthy female Albino Wistar rats injected by {sup 131}I-glycosides. The biodistribution results showed that clearance of the radiolabeled compound is through the hepatobiliary pathway. The experimental study indicated that the radiolabeled glycosides extract accumulated in the large intestine. Therefore, the potential of {sup 131}I-glycosides might be evaluated in colon cancer cell lines and this might be a promising of tumor-imaging agent.

  17. The contribution of wine-derived monoterpene glycosides to retronasal odour during tasting.

    Science.gov (United States)

    Parker, Mango; Black, Cory A; Barker, Alice; Pearson, Wes; Hayasaka, Yoji; Francis, I Leigh

    2017-10-01

    This study investigated the sensory significance of monoterpene glycosides during tasting, by retronasal perception of odorant aglycones released in-mouth. Monoterpene glycosides were isolated from Gewürztraminer and Riesling juices and wines, chemically characterised and studied using sensory time-intensity methodology, together with a synthesised monoterpene glucoside. When assessed in model wine at five times wine-like concentration, Gewürztraminer glycosides and geranyl glucoside gave significant fruity flavour, although at wine-like concentrations, or in the presence of wine volatiles, the effect was not significant. Gewürztraminer glycosides, geranyl glucoside and guaiacyl glucoside were investigated using a sensory panel (n=39), revealing large inter-individual variability, with 77% of panellists responding to at least one glycoside. The study showed for the first time that grape-derived glycosides can contribute perceptible fruity flavour, providing a means of enhancing flavour in wines, and confirms the results of previous studies that the effect is highly variable across individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance.

    Science.gov (United States)

    Kern, Marcelo; McGeehan, John E; Streeter, Simon D; Martin, Richard N A; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P; Payne, Christina M; Himmel, Michael E; Schnorr, Kirk; Beckham, Gregg T; Cragg, Simon M; Bruce, Neil C; McQueen-Mason, Simon J

    2013-06-18

    Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.

  19. Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100.

    Science.gov (United States)

    Eneyskaya, Elena V; Ivanen, Dina R; Bobrov, Kirill S; Isaeva-Ivanova, Lyudmila S; Shabalin, Konstantin A; Savel'ev, Andrew N; Golubev, Alexander M; Kulminskaya, Anna A

    2007-01-15

    The beta-xylosidase from Aspergillus awamori X-100 belonging to the family 3 glycoside hydrolase revealed a distinctive transglycosylating ability to produce xylooligosaccharides with degree of polymerization more than 7. In order to explain this fact, the enzyme has been subjected to the detailed biochemical study. The enzymatic hydrolysis of p-nitrophenyl beta-D-xylopyranoside was found to occur with overall retention of substrate anomeric configuration suggesting cleavage of xylosidic bonds through a double-displacement mechanism. Kinetic study with aryl beta-xylopyranosides substrates, in which leaving group pK(a)s were in the range of 3.96-10.32, revealed monotonic function of log(k(cat)) and no correlation of log(k(cat)/Km) versus pKa values indicating deglycosylation as a rate-limiting step for the enzymatic hydrolysis. The classical bell-shaped pH dependence of k(cat)/Km indicated two ionizable groups in the beta-xylosidase active site with apparent pKa values of 2.2 and 6.4. The kinetic parameters of hydrolysis, Km and k(cat), of p-nitrophenyl beta-D-1,4-xylooligosaccharides were very close to those for hydrolysis of p-nitrophenyl-beta-D-xylopyranoside. Increase of p-nitrophenyl-beta-D-xylopyranoside concentration up to 80 mM led to increasing of the reaction velocity resulting in k(cat)(app)=81 s(-1). Addition of alpha-methyl D-xylopyranoside to the reaction mixture at high concentration of p-nitrophenyl-beta-D-xylopyranoside (50 mM) caused an acceleration of the beta-xylosidase-catalyzed reactions and appearance of a new transglycosylation product, alpha-methyl D-xylopyranosyl-1,4-beta-D-xylopyranoside, that was identified by 1H NMR spectroscopy. The kinetic model suggested for the enzymatic reaction was consistent with the results obtained.

  20. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina.

    Science.gov (United States)

    Ayyari, Mahdi; Salehi, Peyman; Ebrahimi, Samad Nejad; Zimmermann, Stefanie; Portmann, Lena; Krauth-Siegel, R Luise; Kaiser, Marcel; Brun, Reto; Rezadoost, Hassan; Rezazadeh, Shamsali; Hamburger, Matthias

    2014-01-01

    O-Methyl (1), O-ethyl (2), and O-butyl (3) 4-[(α-L-rhamnosyloxy) benzyl] thiocarbamate (E), along with 4-(α-L-rhamnosyloxy) benzyl isothiocyanate (4) have been isolated from the aerial parts of Moringa peregrina. The compounds were tested for in vitro activity against Trypanosoma brucei rhodesiense and cytotoxicity in rat skeletal myoblasts (L6 cells). The most potent compound was 4 with an IC50 of 0.10 µM against T.b. rhodesiense and a selectivity index of 73, while the thiocarbamate glycosides 1, 2, and 3 showed only moderate activity. Intraperitoneal administration of 50 mg/kg body weight/day of 4 in the T.b. rhodesiense STIB 900 acute mouse model revealed significant in vivo toxicity. Administration of 10 mg/kg body weight/day resulted in a 95% reduction of parasitemia on day 7 postinfection, but did not cure the animals. Because of its high in vitro activity and its ability to irreversibly inhibit trypanothione reductase, an attractive parasite-specific target enzyme, 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate (4), can be considered as a lead structure for the development and characterization of novel antitrypanosomal drugs. Georg Thieme Verlag KG Stuttgart · New York.

  1. Six new C21 steroidal glycosides from Asclepias curassavica L.

    Science.gov (United States)

    Li, Jun-Zhu; Liu, Hai-Yang; Lin, Yi-Ju; Hao, Xiao-Jiang; Ni, Wei; Chen, Chang-Xiang

    2008-07-01

    Six new C(21) steroidal glycosides, named curassavosides A-F (3-8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (4), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (5), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-d-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (8), respectively. All compounds (1-8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.

  2. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica.

    Science.gov (United States)

    Li, Jun-Zhu; Qing, Chen; Chen, Chang-Xiang; Hao, Xiao-Jiang; Liu, Hai-Yang

    2009-04-01

    A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively.

  3. Additional Minor Diterpene Glycosides from Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2013-10-01

    Full Text Available Two additional novel minor diterpene glycosides were isolated from the commercial extract of the leaves of Stevia rebaudiana Bertoni. The structures of the new compounds were identified as 13-{β-D-glucopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-xylopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3]-O-β-D-glucupyranosyl-ester} (1, and 13-{β-D-6-deoxy-glucopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-glucopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3-β-D-gluco-pyranosyl-ester} (2, on the basis of extensive 1D (1H- and 13C- 2D NMR (COSY, HSQC and HMBC and MS spectroscopic data as well as chemical studies.

  4. Effects of synthetic glycosides on steroid balance in Macaca fascicularis

    International Nuclear Information System (INIS)

    Malinow, M.R.; Elliott, W.H.; McLaughlin, P.; Upson, B.

    1987-01-01

    The predominantly beta-anomer of diosgenin glucoside (DG) was synthesized and its effects on cholesterol homeostasis were tested in monkeys. Cynomolgus macaques (Macaca fascicularis) were fed, during two 3-week periods, a semipurified diet with 0.1% cholesterol and a similar ration containing 1% DG, respectively. A Chow diet was given for 5 weeks between the experimental periods. Cholesterol and bile acid balance were analyzed during the last week of each semipurified diet. Diosgenin glucoside reduced cholesterolemia from 292 mg/dl to 172 mg/dl, decreased intestinal absorption of exogenous cholesterol from 62.4% to 26.0%, and increased secretion of endogenous cholesterol from -0.8 to 93.5 mg/day. The fecal excretion of neutral steroids rose from 40.7 to 157.3 mg/day; that of bile acids changed, nonsignificantly, from 23.1 to 16.0 mg/day. The cholesterol balance was -44 mg/day in the control period, and 88 mg/day in the DG-fed animals. No toxic signs were observed. Thus, when long-term studies demonstrate that the glucoside is well tolerated, DG and other synthetic glycosides with similar activities may be of use in the management of hypercholesterolemia and atherosclerosis

  5. [A new phenethyl alcohol glycoside from Orobanche coerulescens].

    Science.gov (United States)

    Zhang, Qiang-Rong

    2017-03-01

    The constituents of the whole plant of Orobanche coerulescens were isolated and purified by using various column chromatographic techniques including D101, silica gel and ODS. The structures were identified by spectroscopic analyses including NMR and MS. A new phenylethanol glycoside was isolated from the whole plant of O. coerulescens, and was identified as 2-(3-methoxy-4-hydroxyphenyl)-ethanol-1-O- [(1→3)-O-α-L-rhamnopyranosyl-4, 6-O-di-feruloyl]-β-D-glucopyranoside, named as orobancheoside B. Through the antibacterial activity test, orobancheoside B was proved to have certain antibacterial activity, and be one of the main active components of O. coerulescens. The research result will laid a foundation for the medicinal materials and quality control research. Activity screening, broomrape orobancheoside B has certain antibacterial activity, as one of the main active components of O. coerulescens, and to constantly improve the quality of the medicinal materials laid a foundation. Copyright© by the Chinese Pharmaceutical Association.

  6. New acylated flavonoid glycosides from flowers of Aerva javanica.

    Science.gov (United States)

    Mussadiq, Sara; Riaz, Naheed; Saleem, Muhammad; Ashraf, Muhammad; Ismail, Tayaba; Jabbar, Abdul

    2013-07-01

    Chromatographic purification of ethyl acetate soluble fraction of the methanolic extract of the flowers of Aerva javanica yielded three new acylated flavone glycosides: kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-galactoside (1), kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-(3″-E-p-coumaroyl)galactoside (2), and kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-(4″-E-p-coumaroyl)galactoside (3), along with p-coumaric acid (4), caffeic acid (5), gallic acid (6), eicosanyl-trans-p-coumarate (7), hexadecyl ferulate (8), and hexacosyl ferulate (9). The compounds 1-9 were characterized using 1D ((1)H, (13)C) and 2D NMR (HMQC, HMBC, and COSY) spectroscopy and mass spectrometry (EI-MS, HR-EI-MS, FAB-MS, and HR-FAB-MS) and in comparison with the reported data in the literature. Compound 1 showed weak inhibitory activity against enzymes, such as acetylcholinesterase, butyrylcholinesterase, and lipoxygenase with IC50 values 205.1, 304.1, and 212.3 μM, respectively, whereas compounds 2 and 3 were only weakly active against the enzyme acetylcholinesterase.

  7. [Flavonoid glycosides from callus cultures of Dysosma versipellis].

    Science.gov (United States)

    Chen, Ri-Dao; Duan, Rui-Gang; Zou, Jian-Hua; Li, Jun-Wei; Liu, Xiao-Yue; Wang, Hai-Yan; Li, Qiu-Hong; Dai, Jun-Gui

    2016-01-01

    Various chromatographic techniques, including silica gel column chromatography, Sephadex LH-20, preparative thin-layer chromatography, and preparative HPLC, were employed to isolate the chemical constituents from callus cultures of Dysosma versipellis. Structures of the compounds were elucidated based on UV, IR, MS and NMR spectroscopic data analysis. Totally, seven flavonoid glycosides were isolated from the 95% ethanol extract of the callus cultures and identified as kaempferol-3-O-[6″-(3″'-methoxy)-malonyl]-β-D-glucopyranoside(1), kaempferol-3-O-(6″-O-acetyl)-β-D-glucopyranoside(2), kaempferide-3-O-β-D-glucopyranoside(3), kaempferol-3-O-β-D-glucopyranoside(4), isoquercitrin(5), quercetin-4'-O-β-D-glucopyranoside(6) and kaempferol-3-(6″-malonyl)-β-D-glucopyranoside(7), respectively.All these compounds were isolated from callus cultures of D. versipellis for the first time.Compounds 1, 2, 3, 6 and 7 were firstly obtained from plant materials of D. versipellis, and compound 1 was a new compound. Copyright© by the Chinese Pharmaceutical Association.

  8. Fatal cardiac glycoside poisoning due to mistaking foxglove for comfrey.

    Science.gov (United States)

    Wu, I-Lin; Yu, Jiun-Hao; Lin, Chih-Chuan; Seak, Chen-June; Olson, Kent R; Chen, Hsien-Yi

    2017-08-01

    Accidental ingestion of foxglove (Digitalis purpurea) can cause significant cardiac toxicity. We report a patient who ingested foxglove mistaking it for comfrey and developed refractory ventricular arrhythmias. The patient died despite treatment with digoxin-specific antibody fragments (DSFab) and veno-arterial extracorporeal membrane oxygenation (VA-ECMO). A 55-year-old woman presented to the emergency department with nausea, vomiting and generalized weakness eight hours after drinking "comfrey" tea. She had bradycardia (54 beats/min) and hyperkalemia (7.6 mEq/L). Electrocardiogram revealed a first-degree atrioventricular conduction block with premature atrial contractions, followed by polymorphic ventricular tachycardia three hours after arrival. A serum digoxin level was 151.2 ng/mL. The patient developed ventricular fibrillation while waiting for Digibind infusion. Resuscitation was performed and an emergent VA-ECMO was set up. A total of eight vials of Digibind were given over the next 16 hours. She temporarily regained consciousness, but remained hemodynamically unstable and subsequently developed lower limb ischemia and multiple organ failure, and she expired on hospital day seven. A botanist confirmed that the plant was foxglove. The diagnosis of cardiac glycoside plant poisoning can be difficult in the absence of an accurate exposure history. In facilities where DSFab is unavailable or insufficient, early VA-ECMO might be considered in severely cardiotoxic patients unresponsive to conventional therapy.

  9. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  10. Epoxide hydrolase-lasalocid a structure provides mechanistic insight into polyether natural product biosynthesis.

    Science.gov (United States)

    Wong, Fong T; Hotta, Kinya; Chen, Xi; Fang, Minyi; Watanabe, Kenji; Kim, Chu-Young

    2015-01-14

    Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.

  11. High-throughput analysis of endogenous fruit glycosyl hydrolases using a novel chromogenic hydrogel substrate assay

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Lausen, Thomas Frederik

    2017-01-01

    A broad range of enzyme activities can be found in a wide range of different fruits and fruiting bodies but there is a lack of methods where many samples can be handled in a high-throughput and efficient manner. In particular, plant polysaccharide degrading enzymes – glycosyl hydrolases (GHs) play...... led to a more profound understanding of the importance of GH activity and regulation, current methods for determining glycosyl hydrolase activity are lacking in throughput and fail to keep up with data output from transcriptome research. Here we present the use of a versatile, easy...

  12. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    Directory of Open Access Journals (Sweden)

    Naira F. Z. Schneider

    2018-03-01

    Full Text Available Cardiac glycosides (CGs are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

  13. A comparative study on the metabolism of Epimedium koreanum Nakai-prenylated flavonoids in rats by an intestinal enzyme (lactase phlorizin hydrolase) and intestinal flora.

    Science.gov (United States)

    Zhou, Jing; Chen, Yan; Wang, Ying; Gao, Xia; Qu, Ding; Liu, Congyan

    2013-12-24

    The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin>epimedin B>epimedin A>epimedin C>baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin>epimedin A>epimedin C>epimedin B>baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What's more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora.

  14. Intrinsically disordered regions may lower the hydration free energy in proteins: a case study of nudix hydrolase in the bacterium Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Omar Awile

    Full Text Available The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nudix hydrolase family from D. radiodurans possessing low-complexity N- and C-terminal tails, which exhibit sequence signatures of intrinsic disorder and have unknown function. The enzyme catalyzes the hydrolysis of oxidatively damaged and mutagenic nucleotides, and it is thought to play an important role in D. radiodurans during the recovery phase after exposure to ionizing radiation or desiccation. We use molecular dynamics simulations to study the dynamics of the protein, and study its hydration free energy using the GB/SA formalism. We show that the presence of disordered tails significantly decreases the hydration free energy of the whole protein. We hypothesize that the tails increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally. We extrapolate this to other intrinsically disordered regions in proteins, and propose a novel function for them: intrinsically disordered regions increase the "surface-properties" of the folded domains they are attached to, making them on the whole more hydrophilic and potentially influencing, in this way, their localization and cellular activity.

  15. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  16. Regulatory regions in the rat lactase-phlorizin hydrolase gene that control cell-specific expression

    NARCIS (Netherlands)

    Verhave, Menno; Krasinski, Stephen D.; Christian, Sara I.; van Schaik, Sandrijn; van den Brink, Gijs R.; Doting, Edwina M. H.; Maas, Saskia M.; Wolthers, Katja C.; Grand, Richard J.; Montgomery, Robert K.

    2004-01-01

    OBJECTIVES: Lactase-phlorizin hydrolase (LPH) is an enterocyte-specific gene whose expression has been well-characterized, not only developmentally but also along the crypt-villus axis and along the length of the small bowel. Previous studies from the authors' laboratory have demonstrated that 2 kb

  17. High-throughput screening for gene libraries expressing carbohydrate hydrolase activity

    NARCIS (Netherlands)

    Leemhuis, Hans; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert

    2003-01-01

    A simple and fast method is described allowing screening of large number of Escherichia coli clones (4000 per day) for the presence of functional or improved carbohydrate hydrolase enzymes. The procedure is relatively cheap and has the advantage that carbohydrate degrading activity can be directly

  18. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were

  19. Cloning and characterization of an epoxide hydrolase-encoding gene from Rhodotorula glutinis

    NARCIS (Netherlands)

    Visser, H.; Vreugdenhil, S.; Bont, de J.A.M.; Verdoes, J.C.

    2000-01-01

    We cloned and characterized the epoxide hydrolase gene, EPH1, from Rhodotorula glutinis. The EPH1 open reading frame of 1230 bp was interrupted by nine introns and encoded a polypeptide of 409 amino acids with a calculated molecular mass of 46.3 kDa. The amino acid sequence was similar to that of

  20. In Silico Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase Inhibitors

    Directory of Open Access Journals (Sweden)

    Christina Hung Hung Ha

    2015-01-01

    Full Text Available Human African Trypanosomiasis is endemic to 37 countries of sub-Saharan Africa. It is caused by two related species of Trypanosoma brucei. Current therapies suffer from resistance and public accessibility of expensive medicines. Finding safer and effective therapies of natural origin is being extensively explored worldwide. Pentamidine is the only available therapy for inhibiting the P2 adenosine transporter involved in the purine salvage pathway of the trypanosomatids. The objective of the present study is to use computational studies for the investigation of the probable trypanocidal mechanism of flavonoids. Docking experiments were carried out on eight flavonoids of varying level of hydroxylation, namely, flavone, 5-hydroxyflavone, 7-hydroxyflavone, chrysin, apigenin, kaempferol, fisetin, and quercetin. Using AutoDock 4.2, these compounds were tested for their affinity towards inosine-adenosine-guanosine nucleoside hydrolase and the inosine-guanosine nucleoside hydrolase, the major enzymes of the purine salvage pathway. Our results showed that all of the eight tested flavonoids showed high affinities for both hydrolases (lowest free binding energy ranging from −10.23 to −7.14 kcal/mol. These compounds, especially the hydroxylated derivatives, could be further studied as potential inhibitors of the nucleoside hydrolases.

  1. Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides

    NARCIS (Netherlands)

    Zandleven, J.S.; Beldman, G.; Bosveld, M.; Benen, J.A.E.; Voragen, A.G.J.

    2005-01-01

    XGH (xylogalacturonan hydrolase; GH 28) is an enzyme that is capable of degrading XGA (xylogalacturonan), which is a polymer of ¿-D-galacturonic acid, highly substituted with ß-D-xylose. XGA is present in cell walls of various plants and exudates, such as gum tragacanth. XGA oligosaccharides were

  2. Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase

    NARCIS (Netherlands)

    Zandleven, J.S.; Beldman, G.; Bosveld, M.; Schols, H.A.; Voragen, A.G.J.

    2006-01-01

    Action of xylogalacturonan hydrolase (XGH) towards xylogalacturonan (XGA) present in the alkali saponified ¿modified hairy regions¿ from potato and apple pectin was studied. Analysis of enzymatic degradation products from XGA in these complex pectins demonstrated that the degradable

  3. The role of epoxide hydrolase Y113H gene variant in pancreatic diseases.

    NARCIS (Netherlands)

    Ockenga, J.; Strunck, S.; Post, C.; Schulz, H.U.; Halangk, J.; Pfutzer, R.H.; Lohr, M.; Oettle, H.; Kage, A.; Rosendahl, J.; Keim, V.; Drenth, J.P.H.; Jansen, J.B.M.J.; Lochs, H.; Witt, H.

    2009-01-01

    OBJECTIVES: Chronic pancreatitis (CP) and pancreatic adenocarcinoma (pCA) are associated with risk factors such as alcohol intake and tobacco smoking. Microsomal epoxide hydrolase (EPHX1) is a phase II detoxifying enzyme capable of tobacco-borne toxicant inactivation. We studied the role of the

  4. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav

    2016-01-01

    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  5. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis.

    Directory of Open Access Journals (Sweden)

    Andrea Perne

    2009-12-01

    Full Text Available Cardiac glycosides are Na(+/K(+-pump inhibitors widely used to treat heart failure. They are also highly cytotoxic, and studies have suggested specific anti-tumor activity leading to current clinical trials in cancer patients. However, a definitive demonstration of this putative anti-cancer activity and the underlying molecular mechanism has remained elusive.Using an unbiased transcriptomics approach, we found that cardiac glycosides inhibit general protein synthesis. Protein synthesis inhibition and cytotoxicity were not specific for cancer cells as they were observed in both primary and cancer cell lines. These effects were dependent on the Na(+/K(+-pump as they were rescued by expression of a cardiac glycoside-resistant Na(+/K(+-pump. Unlike human cells, rodent cells are largely resistant to cardiac glycosides in vitro and mice were found to tolerate extremely high levels.The physiological difference between human and mouse explains the previously observed sensitivity of human cancer cells in mouse xenograft experiments. Thus, published mouse xenograft models used to support anti-tumor activity for these drugs require reevaluation. Our finding that cardiac glycosides inhibit protein synthesis provides a mechanism for the cytotoxicity of CGs and raises concerns about ongoing clinical trials to test CGs as anti-cancer agents in humans.

  6. Use of qNMR for speciation of flaxseeds (Linum usitatissimum) and quantification of cyanogenic glycosides.

    Science.gov (United States)

    Roulard, Romain; Fontaine, Jean-Xavier; Jamali, Arash; Cailleu, Dominique; Tavernier, Reynald; Guillot, Xavier; Rhazi, Larbi; Petit, Emmanuel; Molinie, Roland; Mesnard, François

    2017-12-01

    This report describes a routine method taking less than 20 min to quantify cyanogenic glycosides such as linustatin and neolinustatin from flaxseeds (Linum usitatissimum L.) using 1 H nuclear magnetic resonance. After manual dehulling, a higher linustatin content was shown in the almond fraction, while neolinustatin and total cyanogenic glycoside contents were significantly higher in hulls. Linustatin and neolinustatin were quantified in seven cultivars grown in two locations in three different years. Linustatin, neolinustatin, and total cyanogenic glycosides ranged between 91 and 267 mg/100 g, 78-272 mg/100 g, and 198-513 mg/100 g dry weight flaxseeds, respectively. NMR revealed differences of up to 70% between samples with standard deviation variations lower than 6%. This study shows that NMR is a very suitable tool to perform flaxseed varietal selection for the cyanogenic glycoside content. Graphical abstract qNMR can be used to perform flaxseed varietal selection for the cyanogenic glycoside content.

  7. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  8. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D; Ramirez, Catherine; Devkota, Krishna P; Snyder, Tara M

    2017-01-31

    Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX-a novel steviol glycoside-from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation-based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data-of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog.

  9. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    Science.gov (United States)

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Plant-derived cardiac glycosides: Role in heart ailments and cancer management.

    Science.gov (United States)

    Patel, Seema

    2016-12-01

    Cardiac glycosides, the cardiotonic steroids such as digitalis have been in use as heart ailment remedy since ages. They manipulate the renin-angiotensin axis to improve cardiac output. However; their safety and efficacy have come under scrutiny in recent times, as poisoning and accidental mortalities have been observed. In order to better understand and exploit them as cardiac ionotropes, studies are being pursued using different cardiac glycosides such as digitoxin, digoxin, ouabain, oleandrin etc. Several cardiac glycosides as peruvoside have shown promise in cancer control, especially ovary cancer and leukemia. Functional variability of these glycosides has revealed that not all cardiac glycosides are alike. Apart from their specific affinity to sodium-potassium ATPase, their therapeutic dosage and behavior in poly-morbidity conditions needs to be considered. This review presents a concise account of the key findings in recent years with adequate elaboration of the mechanisms. This compilation is expected to contribute towards management of cardiac, cancer, even viral ailments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Variation of quercetin glycoside derivatives in three onion (Allium cepa L. varieties

    Directory of Open Access Journals (Sweden)

    Jung-Ho Kwak

    2017-09-01

    Full Text Available The aim of this study was to quantify the contents of individual quercetin glycosides in red, yellow and chartreuse onion by High Performance Liquid Chromatography (HPLC analysis. Acid hydrolysis of individual quercetin glycosides using 6 M hydrochloric acid guided to identify and separate quercetin 7,4′-diglucoside, quercetin 3-glucoside, quercetin 4′-glucoside, and quercetin. The contents of total quercetin glycosides varied extensively among three varieties (ranged from 16.10 to 103.93 mg/g DW. Quercetin was the predominant compound that accounted mean 32.21 mg/g DW in red onion (43.6% of the total and 127.92 mg/g DW in chartreuse onion (78.3% of the total followed by quercetin 3-glucoside (28.83 and 24.16 mg/g DW respectively. Quercetin 3-glucoside levels were much higher in yellow onion (43.85 mg/g DW followed by quercetin 30.08 mg/g DW. Quercetin 4′-glucoside documented the lowest amount that documented mean 2.4% of the total glycosides. The varied contents of glycosides present in the different onion varieties were significant.

  12. 1-O-vinyl glycosides via Tebbe olefination, their use as chiral auxiliaries and monomers.

    Science.gov (United States)

    Yuan, Jialong; Lindner, Kristof; Frauenrath, Holger

    2006-07-21

    A series of anomerically pure 1-O-formyl glycosides 1 was prepared and converted into the corresponding 1-O-vinyl glycosides 2 by Tebbe olefination. The unsubstituted vinyl glycosides were obtained as anomerically pure compounds in good yields, and the method of preparation was compatible with the presence of a variety of functional groups. Remarkably, the anomeric formate group was regioselectively converted into the corresponding olefin in the presence of acetate and benzoate protecting groups. With the perspective to use the 1-O-vinyl glycosides as monomers for the preparation of glycosylated poly(vinyl alcohol) derivatives with controlled tacticity, their scope as chiral auxiliaries for a stereodifferentiation in addition reactions to the olefin function was investigated by using the [2+2] cycloaddition to dichloroketene as a model reaction. In particular, vinyl 2,3,4,6-tetra-O-benzoyl-alpha-d-mannopyranoside (2i) exhibited excellent diastereoselectivity. Finally, the 1-O-vinyl glycosides were successfully subjected to radical homopolymerization in bulk or used as electron-rich comonomers in radical copolymerizations with maleic anhydride, yielding alternating, glycosylated poly(vinyl alcohol-alt-maleic anhydride).

  13. Total peroxynitrite scavenging capacity of phenylethanoid and flavonoid glycosides from the flowers of Buddleja officinalis.

    Science.gov (United States)

    Tai, Bui Huu; Jung, Bong Yong; Cuong, Nguyen Manh; Linh, Pham Thuy; Tung, Nguyen Huu; Nhiem, Nguyen Xuan; Huong, Tran Thu; Anh, Ngo Thi; Kim, Jeong Ah; Kim, Sang Kyum; Kim, Young Ho

    2009-12-01

    Nine compounds, including six phenylethanoid glycosides: acteoside (1); bioside (2); echinacoside (3); poliumoside (4); phenylethyl glycoside (5); salidroside (6) and three flavonoids; linarin (7); apigenin (8); isorhoifolin (9), were isolated from the flowers of Buddleja officinalis MAXIM. (Buddlejaceae). Chemical structures were confirmed by (1)H-, and (13)C-NMR, and MS spectral methods and compared with those reported in the literature. Antioxidant activities of the methanol and water extracts, and all isolated compounds were evaluated using the total oxidant scavenging capacity (TOSC) assay against peroxynitrite. Results of the assay showed that the phenylethanoid glycosides, a major class of compounds of the flowers of B. officinalis, possess strong antioxidant activity. Of these, acteoside, echinacoside and poliumoside have 9.9-, 9.8- and 9.5-fold TOSC value, respectively, compared with the positive control, Trolox.

  14. Development of glycoside-bound radiopharmaceuticals; Novel radioiodination method for digoxin

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Yasutaka; Dote, Nobuhito; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira (Kyoto Univ. (Japan). Faculty of Pharmaceutical Science); Fujibayashi, Yasuhisa; Konishi, Junji

    1994-01-01

    We combined 2-hydroxy-3-methylbenzoylhydrazide (HMBH) with glycosides as a novel method for the radioiodination of physiologically active glycosides. This method was tested using digoxin, which is one of the cardiac glycosides. A digoxin-HMBH conjugate was synthesized by periodate cleavage of the third sugar ring, and was readily radiolabelled with Na[[sup 125]I] by the chloramine-T method. [sup 125]I labelled digoxin-HMBH conjugate retained Na[sup +], K[sup +]-ATPase binding in vivo and in vitro, and also retained immunoreactivity to an anti-digoxin antibody. Thus, this [sup 125]I labelled digoxin-HMBH conjugate represents a potential radiopharmaceutical for Na[sup +], K[sup +]-ATPase imaging, as well as for the radioimmunoassay of digoxin. (author).

  15. Antiproliferative activity of cardenolide glycosides from Asclepias subulata.

    Science.gov (United States)

    Rascón-Valenzuela, L; Velázquez, C; Garibay-Escobar, A; Medina-Juárez, L A; Vilegas, W; Robles-Zepeda, R E

    2015-08-02

    Asclepias subulata Decne. is a shrub occurring in Sonora-Arizona desert (Mexico-USA). The ethnic groups, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To isolate the compounds responsible for antiproliferative activity of the methanol extract of A. subulata. A bioguided fractionation of methanol extract of A. subulata was performed using MTT assay to measure the antiproliferative activity of different compounds on three human cancer cell lines (A549, LS 180 and PC-3), one murine cancer cell line (RAW 264.7) and one human normal cell line (ARPE-19). The methanol extract was partitioned with hexane, ethyl acetate and ethanol. The active fractions, ethanol and residual, were fractioned by silica-column chromatography and active sub-fractions were separated using HPLC. The chemical structures of isolated compounds were elucidated with different chemical and spectroscopic methods. A new cardenolide glycoside, 12, 16-dihydroxycalotropin, and three known, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, were isolated of active sub-fractions. All isolated compounds showed a strong antiproliferative activity in human cancer cells. Calotropin was the more active with IC50 values of 0.0013, 0.06 and 0.41 µM on A549, LS 180 and PC-3 cell lines, respectively; while 12, 16-dihydroxycalotropin reached values of 2.48, 5.62 and 11.70 µM, on the same cells; corotoxigenin 3-O-glucopyranoside had IC50 of 2.64, 3.15 and 6.62 µM and desglucouzarin showed values of 0.90, 6.57 and 6.62, µM. Doxorubicin, positive control, showed IC50 values of 1.78, 6.99 and 3.18 µM, respectively. The isolated compounds had a weak effect on murine cancer cells and human normal cells, exhibiting selectivity to human cancer cells. In this study, we found that 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin are responsible of antiproliferative properties of A. subulata, and that these

  16. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.

    Science.gov (United States)

    Tajwar, Razia; Shahid, Saher; Zafar, Rehan; Akhtar, Muhammad Waheed

    2017-11-01

    Xylanase XynB of the hyperthermophile Thermotoga maritima, which belongs to glycoside hydrolase family 10 (GH10), does not have an associated carbohydrate binding module (CBM) in the native state. CBM6 and CBM22 from a thermophile Clostridium thermocellum were fused to the catalytic domain of XynB (XynB-C) to determine the effects on activity and other properties. XynB-B22C and XynB-CB22, produced by fusing CBM22 to the N- and C-terminal of XynB-C, showed 1.7- and 3.24-fold increase in activity against the insoluble birchwood xylan, respectively. Similarly, CBM6 when attached to the C-terminal of XynB-C resulted in 2.0-fold increase in activity, whereas its attachment to the N-terminal did not show any increase of activity. XynB-B22C and XynB-CB22 retained all the activity, whereas XynB-B6C and XynB-CB6 lost 17 and 11% of activity, respectively, at 60°C for 4h. Thermostability data and the secondary structure contents obtained by molecular modelling are in agreement with the data from circular dichroism analysis. Molecular modelling analysis showed that the active site residues of the catalytic domain and the binding residues of CBM6 and CBM22 were located on the surface of molecule, except XynB-B6C, where the binding residues were found somewhat buried. In the case of XynB-CB22, the catalytic and the binding residues seem to be located favorably adjacent to each other, thus showing higher increase in activity. This study shows that the active site residues of the catalytic domain and the binding residues of the CBM are arranged in a unique fashion, not reported before. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Non-targeted glycosidic profiling of international wines using neutral loss-high resolution mass spectrometry.

    Science.gov (United States)

    Barnaba, C; Dellacassa, E; Nicolini, G; Nardin, T; Serra, M; Larcher, R

    2018-07-06

    Many metabolites naturally occur as glycosides, since sugar moieties can be crucial for their biological activity and increase their water solubility. In the plant kingdom they may occur as glycosides or sugar esters, depending on precursor chemical structure, and in wine they have traditionally attracted attention due to their organoleptic properties, such as astringency and bitterness, and because they affect the colour and aroma of wines. A new approach directed at detailed description of glycosides in a large selection of monovarietal wines (8 samples each of Pinot Blanc, Muller Thurgau, Riesling, Traminer, Merlot, Pinot Noir and Cabernet Sauvignon) was developed by combining high performance liquid chromatography with high resolution tandem mass spectrometry. Analytical separation was performed on an Accucore™ Polar Premium LC column, while mass analysis was performed in negative ion mode with an non-targeted screening approach, using a Full MS/AIF/NL dd-MS 2 experiment at a resolving power of 140,000 FWHM. Over 280 glycoside-like compounds were detected, of which 133 (including low-molecular weight phenols, flavonoids and monoterpenols) were tentatively identified in the form of pentose (6), deoxyhexose (17), hexose (73), hexose-pentose (16), hexose-deoxyhexose (7), dihexose (5) and hexose ester (9) derivatives. It was not possible to univocally define the corresponding chemical structure for the remaining 149 glycosides. Non-parametric statistical analysis showed it was possible to well characterise the glycosylated profile of all red and Traminer wines, while the identified glycosides were almost entirely lacking in Pinot Blanc, Riesling and Muller Thurgau wines. Also Tukey's Honestly Significant Difference test (p wines from each other according to their glycosylated profile. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 μmol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  19. In-silico analysis of Aspergillus niger beta-glucosidases

    Science.gov (United States)

    Yeo S., L.; Shazilah, K.; Suhaila, S.; Abu Bakar F., D.; Murad A. M., A.

    2014-09-01

    Genomic data mining was carried out and revealed a total of seventeen β-glucosidases in filamentous fungi Aspergillus niger. Two of them belonged to glycoside hydrolase family 1 (GH1) while the rest belonged to genes in family 3 (GH3). These proteins were then named according to the nomenclature as proposed by the International Union of Biochemistry (IUB), starting from the lowest pI and glycoside hydrolase family. Their properties were predicted using various bionformatic tools showing the presence of domains for signal peptide and active sites. Interestingly, one particular domain, PA14 (protective antigen) was present in four of the enzymes, predicted to be involved in carbohydrate binding. A phylogenetic tree grouped the two glycoside hydrolase families with GH1 and GH3 related organisms. This study showed that the various domains present in these β-glucosidases are postulated to be crucial for the survival of this fungus, as supported by other analysis.

  20. Two new monoterpenoid glycosides from the fresh rhizome of Tongling White Ginger (Zingiber officinale).

    Science.gov (United States)

    Guo, Tao; Tan, Su-Bei; Wang, Ya; Chang, Jun

    2018-01-01

    Two new monoterpenoid glycosides, trans-1,8-cineole-3,6-dihydroxy-3-O-β-D-glucopyranoside (1), and 5,9-dihydroxy borneol 2-O-β-D-glucopyranoside (2), together with four known monoterpenoid glycosides (3-6), were isolated from the water-soluble constituents of the fresh rhizome of Tongling White Ginger (Zingiber officinale). Their structures were decisively elucidated by spectroscopic analysis. In vitro tests for antimicrobial activity showed that compounds 1 and 3 possess significant activity against two Gram-positive organisms, Staphylococcus aureus and Staphylococcus epidermidis.

  1. Angucycline Glycosides from Mangrove-Derived Streptomyces diastaticus subsp. SCSIO GJ056

    Directory of Open Access Journals (Sweden)

    Chun Gui

    2018-05-01

    Full Text Available Nine new angucycline glycosides designated urdamycins N1–N9 (1–9, together with two known congener urdamycins A (10 and B (11, were obtained from a mangrove-derived Streptomyces diastaticus subsp. SCSIO GJ056. The structures of new compounds were elucidated on the basis of extensive spectroscopic data analysis. The absolute configurations of 6–9 were assigned by electronic circular dichroism calculation method. Urdamycins N6 (6 and N9 (9 represent the first naturally occurring (5R, 6R-angucycline glycosides, which are diastereomers of urdamycins N7 (7 and N8 (8, respectively.

  2. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.

    Science.gov (United States)

    Marca, Eduardo; Valero-Gonzalez, Jessika; Delso, Ignacio; Tejero, Tomás; Hurtado-Guerrero, Ramon; Merino, Pedro

    2013-12-15

    A series of β-(1,3)-d-glucans have been synthesized incorporating structural variations specifically on the reducing end of the oligomers. Both O- and C-glucosides derived from di- and trisaccharides have been obtained in good overall yields and with complete selectivity. Whereas the O-glycosides were obtained via a classical Koenigs-Knorr glycosylation, the corresponding C-glycosides were obtained through allylation of the anomeric carbon and further cross-metathesis reaction. Finally, the compounds were evaluated against two glycosidases and two endo-glucanases and no inhibitory activity was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A New ent-Kaurane Glycoside from the Stems of Acanthopanax gracilistylus

    Institute of Scientific and Technical Information of China (English)

    XIAN Li-na; QIAN Shi-hui

    2010-01-01

    Objective To study the chemical constituents from the stems of Acanthopanax gracilistylus.Methods Thechemical constituents of the plant were isolated and puried by column chromatography and their structures wereelucidated on the basis of physicochemical properties and spectral data.Results A new ent-kaurane glycoside,named kaurane acid glycoside A { 16α,17-dihydroxy-ent-kauran-19-oic 19-[β-D-glucopyranosyl-(1→2)-β-Dglucopyranosyl]ester}(1),was isolated from the n-butanol part.Conclusion Compound 1 is a new one.

  4. HOPEAPHENOL-O-GLYCOSIDE, A COMPOUND ISOLATED FROM STEM BARK Anisoptera marginata (Dipterocarpaceae

    Directory of Open Access Journals (Sweden)

    Sri Atun

    2010-06-01

    Full Text Available Isolation and structure elucidation of some compounds from stem bark of Anisoptera marginata had been done. The isolation of those compounds was carried out by chromatographyc method and structure elucidation was performed by interpretation of spectroscopic data, including UV, IR,  1H and 13C NMR 1D and 2D, and FABMS. From acetone extract stem bark A. marginata we isolated five known compounds namely bergenin (1, (--ε-vinipherin (2, (--ampelopsin A (3, vaticanol B (4, (--hopeaphenol (5, and a glycoside compound namely hopeaphenol-O- glycoside (6.   Keywords: Dipterocarpaceae; Anisoptera marginata; hopeaphenol-O-glucoside

  5. Iridoid and phenylethanoid glycosides in the New Zealand sun hebes (Veronica; Plantaginaceae)

    DEFF Research Database (Denmark)

    Taskova, Rilka M.; Kokubun, Tetsuo; Garnock-Jones, Phil J.

    2012-01-01

    The sun hebes are a small clade of New Zealand Veronica formerly classified as Heliohebe. The water-soluble compounds of Veronica pentasepala, Veronica raoulii and Veronica hulkeana were studied and 30 compounds including 15 iridoid glucosides, 12 phenylethanoid glycosides, the acetophenone...... and F, all derivatives of aragoside. The esters of cinnamic acid derivatives with iridoid and phenylethanoid glycosides and an unusually high concentration of verminoside were found to be the most distinctive chemotaxonomic characters of the sun hebes. The chemical profiles of the species were compared...

  6. Synthesis and evaluation of cardiac glycoside mimics as potential anticancer drugs

    DEFF Research Database (Denmark)

    Jensen, Marie; Schmidt, Steffen; Fedosova, Natalya

    2011-01-01

    recent years cardiac glycosides have furthermore been suggested to possess valuable anticancer activity. To mimic the labile trisaccharide of digitoxin with a stabile carbohydrate surrogate, we have used sulfur linked ethylene glycol moieties of varying length (mono-, di-, tri- or tetra-ethylene glycol...... the shortest mimics were found to have highest efficacy, with the best ligand having a monoethylene glycol unit (IC(50) 0.24 μM), which was slightly better than digitoxigenin (IC(50) 0.64 μM), while none of the novel cardiac glycoside mimics display an in vitro effect as high as digitoxin (IC(50) 0.02 μM)....

  7. Design of Selective Substrates and Activity-Based Probes for Hydrolase Important for Pathogenesis 1 (HIP1) from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lentz, Christian S; Ordonez, Alvaro A; Kasperkiewicz, Paulina; La Greca, Florencia; O'Donoghue, Anthony J; Schulze, Christopher J; Powers, James C; Craik, Charles S; Drag, Marcin; Jain, Sanjay K; Bogyo, Matthew

    2016-11-11

    Although serine proteases are important mediators of Mycobacterium tuberculosis (Mtb) virulence, there are currently no tools to selectively block or visualize members of this family of enzymes. Selective reporter substrates or activity-based probes (ABPs) could provide a means to monitor infection and response to therapy using imaging methods. Here, we use a combination of substrate selectivity profiling and focused screening to identify optimized reporter substrates and ABPs for the Mtb "Hydrolase important for pathogenesis 1" (Hip1) serine protease. Hip1 is a cell-envelope-associated enzyme with minimal homology to host proteases, making it an ideal target for probe development. We identified substituted 7-amino-4-chloro-3-(2-bromoethoxy)isocoumarins as irreversible inhibitor scaffolds. Furthermore, we used specificity data to generate selective reporter substrates and to further optimize a selective chloroisocoumarin inhibitor. These new reagents are potentially useful in delineating the roles of Hip1 during pathogenesis or as diagnostic imaging tools for specifically monitoring Mtb infections.

  8. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Naito, Sachio; Mochizuki, Hideki; Yasuda, Toru; Mizuno, Yoshikuni; Furusaka, Michihiro; Ikeda, Susumu; Adachi, Tomohiro; Shimizu, Hirohiko M.; Suzuki, Junichi; Fujiwara, Satoru; Okada, Tomoko; Nishikawa, Kaori; Aoki, Shunsuke; Wada, Keiji

    2006-01-01

    Here, we illustrated that the morphological structures of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) variants and Parkinson's disease (PD) exhibit good pathological correlation by a small-angle neutron scattering (SANS). UCH-L1 is a neuro-specific multiple functional enzyme, deubiquitinating, ubiquityl ligase, and also involved in stabilization of mono-ubiquitin. To examine the relationship between multiple functions of UCH-L1 and the configuration of its variants [wild-type, I93M (linked to familial Parkinson's disease), and S18Y (linked to reduced risk of Parkinson's disease)], in this report, we proposed that these were all self-assembled dimers by an application of a rotating ellipsoidal model; the configurations of these dimers were quite different. The wild-type was a rotating ellipsoidal. The globular form of the monomeric component deformed by the I93M mutation. Conversely, the S18Y polymorphism promoted the globularity. Thus, the multiple functional balance is closely linked to the intermolecular interactions between the UCH-L1 monomer and the final dimeric configuration

  9. Key role of chemical hardness to compare 2,2-diphenyl-1-picrylhydrazyl radical scavenging power of flavone and flavonol O-glycoside and C-glycoside derivatives.

    Science.gov (United States)

    Waki, Tsukasa; Nakanishi, Ikuo; Matsumoto, Ken-ichiro; Kitajima, Junichi; Chikuma, Toshiyuki; Kobayashi, Shigeki

    2012-01-01

    The antioxidant activities of flavonoids and their glycosides were measured with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH radical, DPPH(·)) scavenging method. The results show that free hydroxyl flavonoids are not necessarily more active than O-glycoside. Quercetin and kaempferol showed higher activity than apigenin. The C- and O-glycosides of flavonoids generally showed higher radical scavenging activity than aglycones; however, kaempferol C3-O-glycoside (astragalin) showed higher activity than kaempferol. In the radical scavenging activity of flavonoids, it was expected that OH substitutions at C3 and C5 and catechol substitution at C2 of B ring and intramolecular hydrogen bonding between OH at C5 and ketone at C3 would increase the activity; however, the reasons have yet to be clarified. We here show that the radical scavenging activities of flavonoids are controlled by their absolute hardness (η) and absolute electronegativity (χ) as a electronic state. Kaempferol and quercetin provide high radical scavenging activity since (i) OH substitutions at C3 and C5 strikingly decrease η of flavones, (ii) OH substitutions at C3 and C7 decrease χ and η of flavones, and (iii) phenol or o-catechol substitution at C2 of B ring decrease χ of flavones. The coordinate r(χ, η) as the electron state must be small to increase the radical scavenging activity of flavonoids. The results show that chemically soft kaempferol and quercetin have higher DPPH radical scavenging activity than chemically hard genistein and daidzein.

  10. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea

    Directory of Open Access Journals (Sweden)

    Wu Bin

    2012-01-01

    Full Text Available Abstract Background Digitalis purpurea is an important ornamental and medicinal plant. There is considerable interest in exploring its transcriptome. Results Through high-throughput 454 sequencing and subsequent assembly, we obtained 23532 genes, of which 15626 encode conserved proteins. We determined 140 unigenes to be candidates involved in cardiac glycoside biosynthesis. It could be grouped into 30 families, of which 29 were identified for the first time in D. purpurea. We identified 2660 mRNA-like npcRNA (mlncRNA candidates, an emerging class of regulators, using a computational mlncRNA identification pipeline and 13 microRNA-producing unigenes based on sequence conservation and hairpin structure-forming capability. Twenty five protein-coding unigenes were predicted to be targets of these microRNAs. Among the mlncRNA candidates, only 320 could be grouped into 140 families with at least two members in a family. The majority of D. purpurea mlncRNAs were species-specific and many of them showed tissue-specific expression and responded to cold and dehydration stresses. We identified 417 protein-coding genes with regions significantly homologous or complementary to 375 mlncRNAs. It includes five genes involved in secondary metabolism. A positive correlation was found in gene expression between protein-coding genes and the homologous mlncRNAs in response to cold and dehydration stresses, while the correlation was negative when protein-coding genes and mlncRNAs were complementary to each other. Conclusions Through comprehensive transcriptome analysis, we not only identified 29 novel gene families potentially involved in the biosynthesis of cardiac glycosides but also characterized a large number of mlncRNAs. Our results suggest the importance of mlncRNAs in secondary metabolism and stress response in D. purpurea.

  11. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC).

    Science.gov (United States)

    Zhu, Yindi; Liu, Yue; Zhan, Ying; Liu, Lin; Xu, Yajuan; Xu, Tunhai; Liu, Tonghua

    2013-12-16

    Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane-ethyl acetate-methanol-water (0.7:4:0.8:4, v/v/v/v) was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg), isoquercitrin (21.1 mg), reynoutrin (65.2 mg), quercetin-3-O-β-D-arabinopyranoside (71.7 mg), quercetin-3-O-α-L-arabinofuranoside (105.6 mg) and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-β-D-glucopyranoside (98.4 mg) were separated from crude sample (19.8 g). The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95%) were determined using HPLC.

  12. Preparative Isolation and Purification of Five Flavonoid Glycosides and One Benzophenone Galloyl Glycoside from Psidium guajava by High-Speed Counter-Current Chromatography (HSCCC

    Directory of Open Access Journals (Sweden)

    Yindi Zhu

    2013-12-01

    Full Text Available Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane–ethyl acetate–methanol–water (0.7:4:0.8:4, v/v/v/v was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg, isoquercitrin (21.1 mg, reynoutrin (65.2 mg, quercetin-3-O-β-D-arabinopyranoside (71.7 mg, quercetin-3-O-α-L-arabinofuranoside (105.6 mg and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl-β-D-glucopyranoside (98.4 mg were separated from crude sample (19.8 g. The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95% were determined using HPLC.

  13. Variation in bleomycin hydrolase gene is associated with reduced survival after chemotherapy for testicular germ cell cancer

    NARCIS (Netherlands)

    de Haas, Esther C.; Zwart, Nynke; Meijer, Coby; Nuver, Janine; Boezen, H. Marike; Suurmeijer, Albert J. H.; Hoekstra, Harald J.; van der Steege, Gerrit; Sleijfer, Dirk Th.; Gietema, Jourik A.

    2008-01-01

    Purpose Response to chemotherapy may be determined by gene polymorphisms involved in metabolism of cytotoxic drugs. A plausible candidate is the gene for bleomycin hydrolase (BLMH), an enzyme that inactivates bleomycin, an essential component of chemotherapy regimens for disseminated testicular

  14. Analysis of Flavone C-Glycosides in the Leaves of Clinacanthus nutans (Burm. f.) Lindau by HPTLC and HPLC-UV/DAD

    Science.gov (United States)

    Chelyn, June Lee; Omar, Maizatul Hasyima; Mohd Yousof, Nor Syaidatul Akmal; Ranggasamy, Ramesh; Wasiman, Mohd Isa; Ismail, Zakiah

    2014-01-01

    Clinacanthus nutans (family Acanthaceae) has been used for the treatment of inflammation and herpes viral infection. Currently, there has not been any report on the qualitative and quantitative determination of the chemical markers in the leaves of C. nutans. The C-glycosidic flavones such as shaftoside, isoorientin, orientin, isovitexin, and vitexin have been found to be major flavonoids in the leaves of this plant. Therefore, we had developed a two-step method using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC) for the rapid identification and quantification of the flavones C-glycosides in C. nutans leaves. The TLC separation of the chemical markers was achieved on silica gel 60 plate using ethyl acetate : formic acid : acetic acid : water (100 : 11 : 11 : 27 v/v/v/v) as the mobile phase. HPLC method was optimized and validated for the quantification of shaftoside, orientin, isovitexin, and vitexin and was shown to be linear in concentration range tested (0.4–200 μg/mL, r 2 ≥ 0.996), precise (RSD ≤ 4.54%), and accurate (95–105%). The concentration of shaftoside, orientin, vitexin, and isovitexin in C. nutans leave samples was 2.55–17.43, 0.00–0.86, 0.00–2.01, and 0.00–0.91 mmol/g, respectively. PMID:25405231

  15. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2017-01-01

    Full Text Available Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX—a novel steviol glycoside—from a commercially‐supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C‐13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation—based on extensive Nuclear Magnetic Resonance (NMR analysis (1H, 13C, Correlation Spectroscopy (COSY, Heteronuclear Single Quantum Coherence‐Distortionless Enhancement Polarization Transfer (HSQC‐DEPT, Heteronuclear Multiple Bond Correlation (HMBC, 1D Total Correlation Spectroscopy (TOCSY, Nuclear Overhauser Effect Spectroscopy (NOESY and mass spectral data—of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α‐linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog.

  16. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    Science.gov (United States)

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  17. Carbohydrate analysis of hemicelluloses by gas chromatography-mass spectrometry of acteylated methyl glycosides

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Plackett, David; Egsgaard, Helge

    2012-01-01

    A method based on gas chromatography–mass spectrometry analysis of acetylated methyl glycosides was developed in order to analyze monosaccharides obtained from various hemicelluloses. The derivatives of monosaccharide standards, arabinose, glucose, and xylose were studied in detail and 13C...

  18. Medicinal flowers. XXX. Eight new glycosides, everlastosides F-M, from the flowers of Helichrysum arenarium.

    Science.gov (United States)

    Morikawa, Toshio; Wang, Li-Bo; Ninomiya, Kiyofumi; Nakamura, Seikou; Matsuda, Hisashi; Muraoka, Osamu; Wu, Li-Jun; Yoshikawa, Masayuki

    2009-08-01

    Eight new glycosides, everlastosides F (1), G (2), H (3), I (4), J (5), K (6), L (7), and M (8), were isolated from the methanolic extract of the flowers of Helichrysum arenarium. Their structures were elucidated on the basis of chemical and physicochemical evidence.

  19. A new flavonol glycoside and other flavonoids from the aerial parts of Taverniera aegyptiaca

    DEFF Research Database (Denmark)

    Hassan, Ahmed R.; Amer, Khadiga F.; El-Toumy, Sayed A.

    2018-01-01

    Isolation of flavonoids from the aerial parts of Taverniera aegyptiaca Bioss. (Fabaceae) led to identification of one new flavonol glycoside, isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (1), along with eleven compounds, which previously have not been isolated from this plant...

  20. Sweet antibiotics – the role of glycosidic residues in antibiotic and antitumor activity and their randomization

    Czech Academy of Sciences Publication Activity Database

    Křen, Vladimír; Řezanka, Tomáš

    2008-01-01

    Roč. 32, č. 5 (2008), s. 858-889 ISSN 0168-6445 R&D Projects: GA MŠk(CZ) LC06010; GA AV ČR IAA400200503 Institutional research plan: CEZ:AV0Z50200510 Keywords : glycosides * sweet antibiotics * aglycone Subject RIV: CE - Biochemistry Impact factor: 7.963, year: 2008

  1. Identification, Quantification, and Sensory Characterization of Steviol Glycosides from Differently Processed Stevia rebaudiana Commercial Extracts

    NARCIS (Netherlands)

    Espinoza, M.I.; Vincken, J.P.; Sanders, M.G.; Castro, C.; Stieger, M.A.; Agosin, E.

    2014-01-01

    Stevia rebaudiana is known for its sweet-tasting ent-kaurene diterpenoid glycosides. Several manufacturing strategies are currently employed to obtain Stevia sweeteners with the lowest possible off-flavors. The chemical composition of four commercial S. rebaudiana extracts, obtained by different

  2. Extraction of steviol glycosides from fresh Stevia using acidified water; clarification followed by ultrafiltration and nanofiltration

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Elissen, H.J.H.; Huurman, Sander

    2016-01-01

    As part of the PPS Kleinschalige bioraffinage project (WP1b), fresh Stevia material was used in the extraction of steviol glycosides using water acidified through conversion of sugar by microorganisms naturally present on the plant. Two successive harvests from the same plot were used. Previous

  3. Effect of different drying methods on the composition of steviol glycosides in Stevia rebaudiana Bertoni leaves

    Science.gov (United States)

    Aranda-González, Irma; Betancur-Ancona, David; Chel-Guerrero, Luis; Moguel-Ordóñez, Yolanda

    2017-01-01

    Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g-1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.

  4. Dopaol 2-keto- and 2,3-diketo-glycosides from Chelone obliqua (Scrophulariaceae)

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Olsen, Carl Erik; Jensen, Søren Rosendal

    2004-01-01

    Two unique 2-(3,4-dihydroxyphenyl)ethyl glycosides, namely, dopaol beta-D-2-ketoglucopyranoside and dopaol beta-D-2,3-diketoglucopyranoside, were isolated from Chelone obliqua together with the iridoid glucoside catalpol, dopaol beta-D-glucopyranoside, descaffeoylverbascoside, and verbascoside. G...

  5. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology

    NARCIS (Netherlands)

    Walvoort, Maria Theresia Cornelia

    2012-01-01

    The processes of glycosidic bond formation and destruction are a central theme in glycochemistry and glycobiology, and form the basis of the research described in this Thesis. In the first part, studies towards the stereoselective construction of two complex bacterial oligosaccharide fragments are

  6. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M

    1990-01-01

    of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a proteolytic......The pig intestinal brush border enzymes aminopeptidase N (EC 3.4.11.2) and lactase-phlorizin hydrolase (EC 3.2.1.23-62) are present in the microvillar membrane as homodimers. Dimethyl adipimidate was used to cross-link the two [35S]methionine-labeled brush border enzymes from cultured mucosal...... explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation...

  7. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    Science.gov (United States)

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  8. Preparation, crystallization and preliminary X-ray crystallographic studies of diadenosine tetraphosphate hydrolase from Shigella flexneri 2a

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenxin; Wang, Qihai; Bi, Ruchang, E-mail: rcbi@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2005-12-01

    The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Diadenosine tetraphosphate (Ap{sub 4}A) hydrolase (EC 3.6.1.41) hydrolyzes Ap{sub 4}A symmetrically in prokaryotes. It plays a potential role in organisms by regulating the concentration of Ap{sub 4}A in vivo. To date, no three-dimensional structures of proteins with significant sequence homology to this protein have been determined. The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Ap{sub 4}A hydrolase crystals diffract X-rays to 3.26 Å and belong to space group P2{sub 1}, with unit-cell parameters a = 118.9, b = 54.6, c = 128.5 Å, β = 95.7°.

  9. The influence of stevia glycosides on the growth of Lactobacillus reuteri strains.

    Science.gov (United States)

    Deniņa, I; Semjonovs, P; Fomina, A; Treimane, R; Linde, R

    2014-03-01

    Use of stevia-derived sweeteners was recently officially approved by the European Commission, and their application in the food industry has increased, especially in functional foods. However, there are scarce data about the influence of stevia on probiotic bacteria, which are important both as an inhabitant of the human gut and as a functional food additive. Taking into consideration the broad application of Lactobacillus reuteri in functional foods, the aim of the research was to evaluate the influence of stevia glycosides on its growth. Six Lact. reuteri strains were tested for their ability to grow in the presence of stevioside and rebaudioside A (0·2-2·6 g l(-1) ). The effect of stevia glycosides on biomass concentration, cell count, pH and lactic and acetic acid synthesis was analysed. Both glycosides impaired the growth of analysed strains. However, the inhibitory effect was strain specific, and the concentration-dependent effect was not observed for all parameters. The most pronounced concentration-dependent effect was on lactic and acetic acid production. Taking into account the observed strain-specific inhibitory effect of stevia glycosides, it could be suggested to evaluate the influence of them on each strain employed before their simultaneous application in functional foods. The study showed that the growth of Lactobacillus reuteri strains was inhibited in the presence of stevia sweeteners stevioside and rebaudioside A. Probiotics, for example Lact. reuteri strains, are often used as functional additives in health foods and are an important natural inhabitant of the human gastrointestinal tract. Stevia glycosides application in food is increasing; yet, there are no data about the influence of stevia glycosides on Lact. reuteri growth and very few data on growth of other lactobacilli, either in probiotic foods or in the gastrointestinal tract. This research shows that it is necessary to evaluate the influence of stevia glycosides on other groups

  10. Screening brazilian macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases

    OpenAIRE

    Schinke, Cláudia; Germani, Jose Carlos

    2012-01-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipas...

  11. Murein Hydrolase Activity in the Surface Layer of Lactobacillus acidophilus ATCC 4356▿

    OpenAIRE

    Prado Acosta, Mariano; Palomino, María Mercedes; Allievi, Mariana C.; Rivas, Carmen Sanchez; Ruzal, Sandra M.

    2008-01-01

    We describe a new enzymatic functionality for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356, namely, an endopeptidase activity against the cell wall of Salmonella enterica serovar Newport, assayed via zymograms and identified by Western blotting. Based on amino acid sequence comparisons, the hydrolase activity was predicted to be located at the C terminus. Subsequent cloning and expression of the C-terminal domain in Bacillus subtilis resulted in the functional verificati...

  12. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice

    OpenAIRE

    Walentiny, D. Matthew; Vann, Robert E.; Wiley, Jenny L.

    2015-01-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ9 -tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with sim...

  13. Turbo-extraction of glycosides from Stevia rebaudiana using a fractional factorial design

    Directory of Open Access Journals (Sweden)

    Paula M. Martins

    Full Text Available ABSTRACT Stevia rebaudiana (Bertoni Bertoni, Asteraceae, leaf extract has recently called the attention of food industry as a proposal for natural sweetener. The sweet flavor is attributed to the glycosides, in especial stevioside and rebaudioside A, which are the plant main chemical markers. The aim of the work reported here was to optimize the turbo-extraction of stevia leaves using water, ethanol 70% and 90% (w/w as green solvents. A 25-2 factorial design was applied to study the linear effects of the drug size, solvent to drug ratio, temperature, time and also the turbolysis speed on the extraction of glycosides. The glycosides exhaustive extraction showed that ethanol 70% gave better results and was used for turbo-extraction. The stevioside and rebaudioside A contents were quantified by a validated method by high performance liquid chromatographic with photodiode array detector. The contents of stevioside and rebaudioside A in fluid extract increased with the drug size, but decreased at high shearing speeds and solvent to drug ratio, while their yields decreased at higher temperature and were not affected by turbo speed. An increase in solvent to drug ratio reduced significantly the glycosides percent in dried extract. Optimal solution for S. rebaudiana leaves turbo-extraction was determined by desirability functions. The optimal extraction condition corresponded to drug size of 780 µm, solvent to drug ratio of 10, extraction time of 18 min; temperature of 23 ºC and turbo speed of 20,000 rpm, resulting in yields of 4.98% and 2.70%, for stevioside and rebaudioside A, respectively. These yields are comparable to the ones recently published for dynamic maceration, but with the advantage of shorter extraction times. This work demonstrates that turbolysis is promising for S. rebaudiana glycosides extraction and stimulate new research on the purification of these extracts, which may become an interesting source of income for developing

  14. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.

    Science.gov (United States)

    Sun, Pengfei; Leeson, Cristian; Zhi, Xiaoduo; Leng, Fenfei; Pierce, Richard H; Henry, Michael S; Rein, Kathleen S

    2016-02-01

    Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    International Nuclear Information System (INIS)

    Brzezinski, Krzysztof; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4 3 2 1 2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4 3 2 1 2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation

  16. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Lack, Nathan; Lowe, Edward D.; Liu, Jie; Eltis, Lindsay D.; Noble, Martin E. M.; Sim, Edith; Westwood, Isaac M.

    2007-01-01

    The structure of HsaD, a carbon–carbon bond serine hydrolase involved in steroid catabolism that is critical for the survival of M. tuberculosis inside human macrophages, has been solved by X-ray crystallography. Data were collected at the Diamond Light Source in Oxfordshire, England: this paper describes one of the first structures determined at the new synchrotron. Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon–carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 Å resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors’ knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors

  17. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    Energy Technology Data Exchange (ETDEWEB)

    Brzezinski, Krzysztof [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland); Bujacz, Grzegorz [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Faculty of Food Chemistry and Biotechnology, Technical University of Lodz (Poland); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland)

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  18. ClbS Is a Cyclopropane Hydrolase That Confers Colibactin Resistance.

    Science.gov (United States)

    Tripathi, Prabhanshu; Shine, Emilee E; Healy, Alan R; Kim, Chung Sub; Herzon, Seth B; Bruner, Steven D; Crawford, Jason M

    2017-12-13

    Certain commensal Escherichia coli contain the clb biosynthetic gene cluster that codes for small molecule prodrugs known as precolibactins. Precolibactins are converted to colibactins by N-deacylation; the latter are postulated to be genotoxic and to contribute to colorectal cancer formation. Though advances toward elucidating (pre)colibactin biosynthesis have been made, the functions and mechanisms of several clb gene products remain poorly understood. Here we report the 2.1 Å X-ray structure and molecular function of ClbS, a gene product that confers resistance to colibactin toxicity in host bacteria and which has been shown to be important for bacterial viability. The structure harbors a potential colibactin binding site and shares similarity to known hydrolases. In vitro studies using a synthetic colibactin analog and ClbS or an active site residue mutant reveal cyclopropane hydrolase activity that converts the electrophilic cyclopropane of the colibactins into an innocuous hydrolysis product. As the cyclopropane has been shown to be essential for genotoxic effects in vitro, this ClbS-catalyzed ring-opening provides a means for the bacteria to circumvent self-induced genotoxicity. Our study provides a molecular-level view of the first reported cyclopropane hydrolase and support for a specific mechanistic role of this enzyme in colibactin resistance.

  19. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    International Nuclear Information System (INIS)

    Pavlidis, Ioannis V.; Vorhaben, Torge; Gournis, Dimitrios; Papadopoulos, George K.; Bornscheuer, Uwe T.; Stamatis, Haralambos

    2012-01-01

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme–nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme–nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  20. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pavlidis, Ioannis V. [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece); Vorhaben, Torge [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Gournis, Dimitrios [University of Ioannina, Department of Materials Science and Engineering (Greece); Papadopoulos, George K. [Epirus Institute of Technology, Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology (Greece); Bornscheuer, Uwe T. [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Stamatis, Haralambos, E-mail: hstamati@cc.uoi.gr [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece)

    2012-05-15

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme-nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme-nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  1. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-03-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.

  2. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel.

    Science.gov (United States)

    Bera, Asim K; Aukema, Kelly G; Elias, Mikael; Wackett, Lawrence P

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.

  3. A Novel Tool for Peptide Pattern Recognition Identifies 13 Subgroups of the GH61 Family

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Lange, Lene

    2011-01-01

    Proteins of the glycosyl hydrolase family 61 (gh61) are important proteins for fungal degradation of biomass. There are 132 entries for gh61 in the CAZY database, no subfamilies have been defined and each fungus may have several gh61s with very different sequences. Alignment of highly divergent s...

  4. Generation and characterization of epoxide hydrolase 3 (EPHX3-deficient mice.

    Directory of Open Access Journals (Sweden)

    Samantha L Hoopes

    Full Text Available Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs, which play an important role in blood pressure regulation, protection against ischemia-reperfusion injury, angiogenesis, and inflammation. Epoxide hydrolases metabolize EETs to their corresponding diols (dihydroxyeicosatrienoic acids; DHETs which are biologically less active. Microsomal epoxide hydrolase (EPHX1, mEH and soluble epoxide hydrolase (EPHX2, sEH were identified >30 years ago and are capable of hydrolyzing EETs to DHETs. A novel epoxide hydrolase, EPHX3, was recently identified by sequence homology and also exhibits epoxide hydrolase activity in vitro with a substrate preference for 9,10-epoxyoctadecamonoenoic acid (EpOME and 11,12-EET. EPHX3 is highly expressed in the skin, lung, stomach, esophagus, and tongue; however, its endogenous function is unknown. Therefore, we investigated the impact of genetic disruption of Ephx3 on fatty acid epoxide hydrolysis and EET-related physiology in mice. Ephx3-/- mice were generated by excising the promoter and first four exons of the Ephx3 gene using Cre-LoxP methodology. LC-MS/MS analysis of Ephx3-/- heart, lung, and skin lysates revealed no differences in endogenous epoxide:diol ratios compared to wild type (WT. Ephx3-/- mice also exhibited no change in plasma levels of fatty acid epoxides and diols relative to WT. Incubations of cytosolic and microsomal fractions prepared from Ephx3-/- and WT stomach, lung, and skin with synthetic 8,9-EET, 11,12-EET, and 9,10-EpOME revealed no significant differences in rates of fatty acid diol formation between the genotypes. Ephx3-/- hearts had similar functional recovery compared to WT hearts following ischemia/reperfusion injury. Following intranasal lipopolysaccharide (LPS exposure, Ephx3-/- mice were not different from WT in terms of lung histology, bronchoalveolar lavage fluid cell counts, or fatty acid epoxide and diol levels. We conclude that genetic

  5. Unlike Quercetin Glycosides, Cyanidin Glycoside in Red Leaf Lettuce Responds More Sensitively to Increasing Low Radiation Intensity before than after Head Formation Has Started

    OpenAIRE

    Becker, Christine; Klaering, Hans-Peter; Schreiner, Monika; Kroh, Lothar W.; Krumbein, Angelika

    2014-01-01

    This study investigated the effect of low-level photosynthetic photon flux density (PPFD; 43–230 μmol m–2 s–1) on the major phenolic compounds of red leaf lettuce in three growth stages, before, during, and after head formation, using HPLC-DAD-ESI-MS2 and evaluating via multiple regression analysis. Generally, the light-related increase of flavonoid glycosides was structure and growth stage-dependent. In detail, an interaction was detected between plant age and PPFD regarding cyanidin-3-O-(6″...

  6. Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Foldynová-Trantírková, Silvie; Špačková, Naďa; Robeyns, K.; Meervelt van, L.; Blankenfeldt, W.; Vokáčová, Zuzana; Šponer, Jiří; Trantírek, Lukáš

    2009-01-01

    Roč. 37, č. 21 (2009), s. 7321-7331 ISSN 0305-1048 R&D Projects: GA AV ČR(CZ) IAA400040802; GA AV ČR IAA400550701; GA ČR GA203/09/1476; GA MŠk(CZ) LC06030; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60220518; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : pyrimidalization * glycosidic torion angle Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.479, year: 2009

  7. Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase.

    Directory of Open Access Journals (Sweden)

    Michael D L Suits

    2010-02-01

    Full Text Available The enzymatic hydrolysis of alpha-mannosides is catalyzed by glycoside hydrolases (GH, termed alpha-mannosidases. These enzymes are found in different GH sequence-based families. Considerable research has probed the role of higher eukaryotic "GH38" alpha-mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 alpha-mannosidase II, which has been shown to be a retaining alpha-mannosidase that targets both alpha-1,3 and alpha-1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man(5(GlcNAc(2 hybrid N-glycans to GlcNAc(Man(3(GlcNAc(2. Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 alpha-mannosidases whose activity and specificity is unknown.Here we show that the Streptococcus pyogenes (M1 GAS SF370 GH38 enzyme (Spy1604; hereafter SpGH38 is an alpha-mannosidase with specificity for alpha-1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 A resolution and in complex with the inhibitor swainsonine (K(i 18 microM at 2.6 A, reveals a canonical GH38 five-domain structure in which the catalytic "-1" subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn(2+ ion. In contrast, the "leaving group" subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity.Although the in vivo function of this streptococcal GH38 alpha-mannosidase remains unknown, it is shown to be an alpha-mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600 and an additional putative glycosidase. The activity of SpGH38, together with its genomic context, strongly hints at a function

  8. Radioiodine labelling of tyramin derivatives of some digitalis glycosides and their aglyka for the scintiscanning of the adrenal glands

    International Nuclear Information System (INIS)

    Focken, P.H.

    1978-01-01

    The first part of the present work deals with the synthesis and radio-iodination of tyramine derivatives of digitoxigenin, digoxigenin, gitoxigenin and their glycosides. In the second part, animal experiments on rats and dogs for organ-specific enrichment of the synthesized compounds are described. The regioselective reductive amination of cardenolide ketones and glycoside dialdehydes with tyramin is successful with sodium cyano-boron hydride as reducing agent. Monotyraminyl genins are produced from the aglyka whilst glycosides convert to mono- and dityraminyl glycosides. A known radio-iodination method is modified to meet the requirements of the present problem. The radio-iodination is carried out with the nuclides 123 I, 125 I and 131 I. Scintiscanning of the adrenal glands of rats and dogs is possible within a few hours with 131 I-3-tyraminyl-3-desoxi-digitoxigenin. (orig./AJ) [de

  9. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost.

    Science.gov (United States)

    Yu, Xiaofeng; Zhu, Yiling; Fan, Jingyi; Wang, Dujun; Gong, Xiaohui; Ouyang, Zhen

    2017-08-01

    In order to determine the molecular mechanism underlying the influence of frost on chemical changes in mulberry leaves, the UFGT activity, expression level, and accumulation of flavonoid glycosides in mulberry leaves (Morus alba L.) were studied. The expression of UFGT gene was investigated by quantitative real-time PCR (qRT-PCR) and the UFGT activity, accumulation of flavonoid glycosides was studied by high performance liquid chromatography. Then, the correlation between the expression level of UFGT, the UFGT activity, and the flavonoid glycosides accumulation with temperature was explored. The accumulation of isoquercitrin and astragalin is significantly positively correlated with UFGT gene expression and UFGT activity. On the contrary, the average temperature was significantly negatively correlated with the level of UFGT gene expression and UFGT activity. The results show that after frost, low temperature can induce the expression of UFGT gene in mulberry leaves, resulting in the accumulation of flavonoid glycosides. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Impact determination of strength and resistance training on Glycoside hemoglobin and blood sugar on patients with type II diabetes”

    Directory of Open Access Journals (Sweden)

    Bahman Hasanvand

    2011-12-01

    Conclusion: This study shows that endurance training reduces Glycoside hemoglobin levels, the amount of strength training, although it did not significantly reduce, the strength training appears to cause more significant changes.

  11. Rapid analysis of the main components of the total glycosides of Ranunculus japonicus by UPLC/Q-TOF-MS.

    Science.gov (United States)

    Rui, Wen; Chen, Hongyuan; Tan, Yuzhi; Zhong, Yanmei; Feng, Yifan

    2010-05-01

    A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples.

  12. Structure, computational and biochemical analysis of PcCel45A endoglucanase from Phanerochaete chrysosporium and catalytic mechanisms of GH45 subfamily C members

    DEFF Research Database (Denmark)

    Godoy, Andre S.; Pereira, Caroline S.; Ramia, Marina Paglione

    2018-01-01

    The glycoside hydrolase family 45 (GH45) of carbohydrate modifying enzymes is mostly comprised of ß-1,4-endoglucanases. Significant diversity between the GH45 members has prompted the division of this family into three subfamilies: A, B and C, which may differ in terms of the mechanism, general a...

  13. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Baumann, Martin; Petersen, B.O.

    2009-01-01

    regulator of the LacI-GalR family. Enzymatic properties are described for recombinant maltose phosphorylase (MalP) of glycoside hydrolase family 65 (GH65), which is encoded by malP (GenBank: AAV43670.1) of this gene cluster and produced in Escherichia coli. MalP catalyses phosphorolysis of maltose...

  14. 8,12;8,20-Diepoxy-8,14-secopregnane glycosides from the aerial parts of Asclepias tuberosa.

    Science.gov (United States)

    Warashina, Tsutomu; Noro, Tadataka

    2010-02-01

    Further study of constituents from the aerial parts of Asclepias tuberosa afforded twenty-two new steroidal glycosides along with tuberoside B(5) and G(5). These glycosides were confirmed to contain 8,12;8,20-diepoxy-8,14-secopregnanes, tuberogenin and its congeners, as their aglycones. The structure of each of these compounds was elucidated based on the interpretation of NMR and MS measurements and from chemical evidence.

  15. Influence of phytoecdysteroids and plants steroidal glycosides on the lifespan and stress resistance of drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Mikhail Vyacheslavovich Shaposhnikov

    2014-12-01

    Full Text Available Background. Elucidation of the molecular mechanisms of effects of the active substances of plant adaptogens is a topical area of researches. Materials and methods. We studied the effect of herbal substances containing phytoecdysteroids (20-hydroxyecdysone and inokosterone of Serratula coronata L. or steroidal glycosides (dioscin and protodioscine of Trigonella foenum-graecum L. on the expression level of stress response genes (genes of heat shock proteins, DNA repair, antioxidant defense and apoptosis, stressresistanse (paraquat, starvation, hyperthermia and lifespan of Drosophila melanogaster. Results. The studied herbal substances upregulated genes of antioxidant defense mechanisms (Sod1, but downregulated the DNA repair (XPF and Rad51 and apoptosis (Hid genes. At the same time herbal substances induced weak adaptogenic and antiaging effects. Conclusion. Our results demonstrate that the herbal substances containing phytoecdysteroids and steroidal glycosides change the expression level of stress-response genes and activate mechanisms of hormesis.

  16. Synthetic Study on the Relationship Between Structure and Sweet Taste Properties of Steviol Glycosides

    Directory of Open Access Journals (Sweden)

    Grant Dubois

    2012-04-01

    Full Text Available The structure activity relationship between the C16-C17 methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C16-C17 methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.

  17. Phenolic Glycosides from Capsella bursa-pastoris (L. Medik and Their Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Joon Min Cha

    2017-06-01

    Full Text Available A new sesquilignan glycoside 1, together with seven known phenolic glycosides 2–8 were isolated from the aerial parts of Capsella bursa-pastoris. The chemical structure of the new compound 1 was elucidated by extensive nuclear magnetic resonance (NMR data (1H- and 13C-NMR, 1H-1H correlation spectroscopy (1H-1H COSY, heteronuclear single-quantum correlation (HSQC, heteronuclear multiple bond correlation (HMBC, and nuclear overhauser effect spectroscopy (NOESY and HR-FABMS analysis. The anti-inflammatory effects of 1–8 were evaluated in lipopolysaccharide (LPS-stimulated murine microglia BV-2 cells. Compounds 4 and 7 exhibited moderate inhibitory effects on nitric oxide production in LPS-activated BV-2 cells, with IC50 values of 17.80 and 27.91 µM, respectively.

  18. Separation of glycosidic catiomers by TWIM-MS using CO2 as a drift gas.

    Science.gov (United States)

    Bataglion, Giovana A; Souza, Gustavo Henrique Martins Ferreira; Heerdt, Gabriel; Morgon, Nelson H; Dutra, José Diogo Lisboa; Freire, Ricardo Oliveira; Eberlin, Marcos N; Tata, Alessandra

    2015-02-01

    Traveling wave ion mobility mass spectrometry (TWIM-MS) is shown to be able to separate and characterize several isomeric forms of diterpene glycosides stevioside (Stv) and rebaudioside A (RebA) that are cationized by Na(+) and K(+) at different sites. Determination and characterization of these coexisting isomeric species, herein termed catiomers, arising from cationization at different and highly competitive coordinating sites, is particularly challenging for glycosides. To achieve this goal, the advantage of using CO2 as a more massive and polarizable drift gas, over N2, was demonstrated. Post-TWIM-MS/MS experiments were used to confirm the separation. Optimization of the possible geometries and cross-sectional calculations for mobility peak assignments were also performed. Copyright © 2015 John Wiley & Sons, Ltd.

  19. NATURAL PLANT TOXICANT – CYANOGENIC GLYCOSIDE AMYGDALIN: CHARACTERISTIC, METABOLISM AND THE EFFECT ON ANIMAL REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Eduard Kolesár

    2015-02-01

    Full Text Available The amount of cyanogenic glycosides, as natural plant toxicants, in plants varies with plant species and environmental effects. Cyanogenic glycoside as an amygdalin was detected in apricot kernels, bitter almonds and peach, plum, pear and apple seeds. Amygdalin itself is non-toxic, but its HCN production decomposed by some enzymes is toxic substance. Target of this review was to describe the characteristic, metabolism and possible effects of amygdalin on reproductive processes. Previous studies describe the effects of natural compound amygdalin on female and male reproductive systems focused on process of steroidogenesis, spermatozoa motility and morphological abnormalities of spermatozoa. In accordance to the previous studies on amygdalin its benefit is controversial.

  20. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity.

    Science.gov (United States)

    Huang, Hui-Chi; Lin, Ming-Kuem; Yang, Hsin-Ling; Hseu, You-Cheng; Liaw, Chih-Chuang; Tseng, Yen-Hsueh; Tsuzuki, Minoru; Kuo, Yueh-Hsiung

    2013-09-01

    Two new cardenolides, kalantubolide A (1) and kalantubolide B (2), and two bufadienolide glycosides, kalantuboside A (3) and kalantuboside B (4), as well as eleven known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora. The structures of compounds were assigned based on 1D and 2D NMR spectroscopic analyses including HMQC, HMBC, and NOESY. Biological evaluation indicated that cardenolides (1-2) and bufadienolide glycosides (3-7) showed strong cytotoxicity against four human tumor cell lines (A549, Cal-27, A2058, and HL-60) with IC50 values ranging from 0.01 µM to 10.66 µM. Cardenolides (1-2) also displayed significant cytotoxicity toward HL-60 tumor cell line. In addition, compounds 3, 4, 5, 6, and 7 blocked the cell cycle in the G2/M-phase and induced apoptosis in HL-60 cells. Georg Thieme Verlag KG Stuttgart · New York.

  1. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20.

    Science.gov (United States)

    Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar

    2014-01-01

    Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Hint2, the mitochondrial nucleoside 5'-phosphoramidate hydrolase; properties of the homogeneous protein from sheep (Ovis aries) liver.

    Science.gov (United States)

    Bretes, Ewa; Wojdyła-Mamoń, Anna M; Kowalska, Joanna; Jemielity, Jacek; Kaczmarek, Renata; Baraniak, Janina; Guranowski, Andrzej

    2013-01-01

    Adenosine 5'-phosphoramidate (NH2-pA) is a rare natural nucleotide and its biochemistry and biological functions are poorly recognized. All organisms have proteins that may be involved in the catabolism of NH2-pA. They are members of the HIT protein family and catalyze hydrolytic splitting of NH2-pA to 5'-AMP and ammonia. At least five HIT proteins have been identified in mammals; however, the enzymatic and molecular properties of only Fhit and Hint1 have been comprehensively studied. Our study focuses on the Hint2 protein purified by a simple procedure to homogeneity from sheep liver mitochondrial fraction (OaHint2). Hint1 protein was also prepared from sheep liver (OaHint1) and the molecular and kinetic properties of the two proteins compared. Both function as homodimers and behave as nucleoside 5'-phosphoramidate hydrolases. The molecular mass of the OaHint2 monomer is 16 kDa and that of the OaHint1 monomer 14.9 kDa. Among potential substrates studied, NH2-pA appeared to be the best; the Km and kcat values estimated for this compound are 6.6 μM and 68.3 s⁻¹, and 1.5 μM and 11.0 s⁻¹ per natively functioning dimer of OaHint2 and OaHint1, respectively. Studies of the rates of hydrolysis of different NH2-pA derivatives show that Hint2 is more specific towards compounds with a P-N bond than Hint1. The thermostability of these two proteins is also compared.

  3. Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea

    DEFF Research Database (Denmark)

    Jensen, Malene H; Mirza, Osman Asghar; Albenne, Cecile

    2004-01-01

    The alpha-retaining amylosucrase from the glycoside hydrolase family 13 performs a transfer reaction of a glucosyl moiety from sucrose to an acceptor molecule. Amylosucrase has previously been shown to be able to use alpha-D-glucopyranosyl fluoride as a substrate, which suggested that it could also...... the first covalent intermediate of an alpha-retaining glycoside hydrolase where the glucosyl moiety is identical to the expected biologically relevant entity. Comparison to other enzymes with anticipated glucosylic covalent intermediates suggests that this structure is a representative model...... for such intermediates. Analysis of the active site shows how oligosaccharide binding disrupts the putative nucleophilic water binding site found in the hydrolases of the GH family 13. This reveals important parts of the structural background for the shift in function from hydrolase to transglycosidase seen...

  4. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  5. A New Triterpene Glycoside from the Sea Cucumber Holothuria Scabra Collected in Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Van Thanh

    2017-11-01

    Full Text Available Bioassay guided fractionation led to the isolation of a new triterpene glycoside, holothurinogenin B (1 along with three known compounds, holothurin B (2, holothurin A (3, and holothurin A2 (4, from the methanol extract of the Vietnamese sea cucumber Holothuria scabra. Their structures were deduced from the spectral analysis (1D-NMR, 2D-NMR, MS and chemical evidences.

  6. A possible glycosidic benzophenone with full substitution on B-ring from Psidium guajava leaves.

    Science.gov (United States)

    Venditti, Alessandro; Ukwueze, Stanley E

    2017-04-01

    Bidimensional NMR analysis may be a useful tool to resolve the structure of chemical compounds also in mixture. This letter would demonstrate how these techniques could be applied e.g. to the reported case on identification of benzophenone glycoside from Psidium guajava. A tentative structure for the secondary component, not yet described, was possibly proposed on the basis of observation and critic review of available 1D and 2D NMR spectra.

  7. Quantitative modeling of flavonoid glycosides isolated from Paliurus spina-christi Mill.

    OpenAIRE

    Medić-Šarić, Marica; Maleš, Željan; Šarić, Slavko; Brantner, Adelheid

    1996-01-01

    Several QSPR models for predicting the properties of flavonoid glycosides isolated from Paliurus spina-christi Mill, and of some related flavonoids were described and evaluated. Log P values for all of them were calculated according to the method of Rekker. All investigated flavonoids showed expressive hydrophobicity. Significant correlation between the partition coefficient, log P, and van der Waals volume, Vw (calculated according to the method described by Moriguchi et al.) was obtained. T...

  8. Antifungal (Gaeumannomyces graminis var. tritici) activity of various glycosides of medicagenic acid

    OpenAIRE

    Stefan Martyniuk; Marian Jurzysta

    2012-01-01

    Different concentrations of medicagenic acid and five glycosides of this acid isolated from alfalfa (Medicago sativa) were added to agar medium (corn meal agar, CMA) inoculated with cultures of Gaeumannomyces graminis var. tritici (Ggt). After 7 days of incubation at 25oC colony radius was measured and % of inhibition calculated in relation to the control medium (CMA enriched with the solvent of the tested compounds). Within the tested concentrations, only 3-O-β -D -glucopiranoside medicagena...

  9. A sulphated flavone glycoside from Livistona australis and its antioxidant and cytotoxic activity.

    Science.gov (United States)

    Kassem, Mona E S; Shoela, Soha; Marzouk, Mona M; Sleem, Amany A

    2012-01-01

    A new flavone glycoside tricin 7-O-β-glucopyranoside-2″-sulphate sodium salt along with 14 known flavonoid compounds were isolated and identified from the aqueous methanol extract of Livistona australis leaves. Their structures were established on the basis of extensive NMR (¹H, ¹³C, HSQC and H-H COSY) and ESIMS data. Antioxidant and cytotoxicity properties of the methanol extract of the leaves as well as the new compound were investigated.

  10. THERAPEUTIC EFFECT OF SOLASODINE RHAMNOSYL GLYCOSIDES FOR LARGE SKIN CANCERS: TWO CLINICAL CASES

    OpenAIRE

    Bill E. Cham

    2012-01-01

    Solasodine rhamnosyl glycosides (BEC) are a new class of antineoplastics, the efficiency of which administered via intravenous, intraperitoneal, and intratumoral routes is higher than that of many other antitumor agents. Early investigations have established the efficiency of topical BEC applications as a treatment option for non-melanoma skin cancers. There have recently been two clinical cases that count in favor of the fact that the cream formulation Curaderm containing BEC has a very high...

  11. Three new Anthraquinones, one new Benzochromene and one new Furfural glycoside from Lasianthus acuminatissimus.

    Science.gov (United States)

    Huang, Teng; Ming, Jianxin; Zhong, Jialiang; Zhong, Youquan; Wu, Huaqiang; Liu, Hongdong; Li, Bin

    2018-06-01

    Three new anthraquinones, lasianthurin B (1), C (2), lasianthuoside D (3), a new benzochromene, lasianthurin D (4), and a new furfural glycoside, lasianthuoside E (5), together with one known compound 4- hydroxymethyl-2-furaldehyde (6) were isolated from an alcohol extract of the root of Lasianthus acuminatissimus. Their structures were elucidated on the basis of extensive spectroscopic data analysis (including 1D, 2D NMR, X-ray, and MS experiments) and comparsion to literature data.

  12. Enzymes that cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides

    Science.gov (United States)

    Kravit, Nancy G.; Schmidt, Katherine A.

    2017-10-24

    The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.

  13. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.

  14. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    Science.gov (United States)

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  15. Human skeletal muscle digitalis glycoside receptors (Na,K-ATPase)--importance during digitalization.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1993-02-01

    The aims of the present study were to evaluate in humans the putative importance of skeletal muscle digitalis glycoside receptors (Na,K-ATPase) in the volume of distribution of digoxin and to assess whether therapeutic digoxin exposure might cause digitalis receptor upregulation in skeletal muscle. Samples of the vastus lateralis were obtained postmortem from 11 long-term (9 months to 9 years) digitalized (125-187.5 micrograms daily) and eight undigitalized subjects. In intact samples from digitalized patients, vanadate-facilitated 3H-ouabain binding increased 15% (p 0.30) before and after washing in specific digoxin antibody fragments, respectively. Thus, the present study indicates a approximately 13% occupancy of skeletal muscle digitalis glycoside receptors with digoxin during digitalization. In light of the large skeletal muscle contribution to body mass, this indicates that the skeletal muscle Na,K-ATPase pool constitutes a major volume of distribution for digoxin during digitalization. The results gave no indication of skeletal muscle digitalis glycoside receptor upregulation in response to digoxin treatment. On the contrary, there was evidence of significantly lower (37%, p digitalized patients, which may be of importance for skeletal muscle incapacity in heart failure.

  16. Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts.

    Science.gov (United States)

    Periche, Angela; Castelló, Maria Luisa; Heredia, Ana; Escriche, Isabel

    2015-06-01

    This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid-liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves.

  17. Anti-Inflammatory Activity of Methyl Salicylate Glycosides Isolated from Gaultheria yunnanensis (Franch. Rehder

    Directory of Open Access Journals (Sweden)

    Guan-Hua Du

    2011-05-01

    Full Text Available Gaultheria yunnanensis (Franch. Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-b-D-xylopyranosyl(1-6-O-b-D-gluco-pyranoside (J12122 and methyl benzoate-2-O-β-D-xylopyranosyl(1-2[O-β-D-xylopyranosyl(1-6]-O-β-D-glucopyranoside (J12123, are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO, and level of reactive oxygen species (ROS. The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS.

  18. Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder.

    Science.gov (United States)

    Zhang, Dan; Liu, Rui; Sun, Lan; Huang, Chao; Wang, Chao; Zhang, Dong-Ming; Zhang, Tian-Tai; Du, Guan-Hua

    2011-05-09

    Gaultheria yunnanensis (Franch.) Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-β-D-xylopyranosyl(1-6)-O-β-D-gluco-pyranoside (J12122) and methyl benzoate-2-O-β-D-xylopyranosyl(1-2)[O-β-D-xylopyranosyl(1-6)]-O-β-D-glucopyranoside (J12123), are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO), and level of reactive oxygen species (ROS). The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS.

  19. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  20. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    Science.gov (United States)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  1. Some hydrolase activities from the tick Hyalomma lusitanicum Koch, 1844 (Ixodoidea: Ixodida

    Directory of Open Access Journals (Sweden)

    Giménez-Pardo C.

    2008-12-01

    Full Text Available In this work has been made a detection and preliminary characterization of some hydrolases in whole extracts from unfed adult males and females of Hyalomma lusitanicum, one of the vectors for Theileria annulata that causes Mediterranean theileriosis in cattle. We have elected as targets, proteases as enzymes implicated in the nutritional processes of ticks, esterases that are usually implicated in resistance to organophosphates and phosphatises often implicated in protein phosphorilation and control of ticks salivary gland. The biological role and physiological significance are discussed in terms of the possibility of use these enzymes as possible in future anti-tick vaccination or acaricide resistance.

  2. Studies on whole cell fluorescence-based screening for epoxide hydrolases and Baeyer-Villiger monooxygenases

    International Nuclear Information System (INIS)

    Bicalho, Beatriz; Chen, Lu S.; Marsaioli, Anita J.; Grognux, Johann; Reymond, Jean-Louis

    2004-01-01

    Biocatalysis reactions were performed on microtiter plates (200 μL) aiming at the utilization of fluorogenic substrates (100 μmol L -1 ) for rapid whole cell screening for epoxide hydrolases (EHs) and Baeyer-Villiger monooxygenases (BVMOs). A final protocol was achieved for EHs, with 3 new enzymatic sources being detected (Agrobacterium tumefaciens, Pichia stipitis, Trichosporom cutaneum). The fluorogenic assay for BVMO did not work as expected. However, an approach to possible variables involved (aeration; pH) provided the first detection of a BVMO activity in T. cutaneum. (author)

  3. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Dandanell, Gert

    2005-01-01

    as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 k...... the neutral form of xanthosine....

  4. Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules

    DEFF Research Database (Denmark)

    Binti Jamek, Shariza; Nyffenegger, Christian; Muschiol, Jan

    2017-01-01

    "exo-chitobiose hydrolases." In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer...

  5. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    Energy Technology Data Exchange (ETDEWEB)

    Khristov, D; Marinopolski, G

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions.

  6. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    International Nuclear Information System (INIS)

    Khristov, D.; Marinopolski, G.

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions

  7. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii.

    Directory of Open Access Journals (Sweden)

    Riccardo Arrigucci

    Full Text Available Bacterial cell division ends with the separation of the daughter cells, a process that requires peptidoglycan hydrolases (PGHs. Bacteria lacking cell separating PGHs are impaired in cell separation with the formation of long chains or clusters. We identified a gene in Streptococcus gordonii encoding for a putative glucosaminidase (lytB. The lytB isogenic mutant grew in long bacterial chains and resulted in impaired biofilm formation. Purified recombinant LytB showed a murolytic activity on Micrococcus lysodeikticus cell suspension and was able to disperse the long chains of the mutant, restoring the wild type diplococci/short chain phenotype. LytB protein was localized only in culture supernatant cell fraction of S. gordonii, and co-cultures of wild type and lytB mutant showed a significant reduction of bacterial chain length, indicating that LytB is a secreted enzyme. Our results demonstrate that LytB is a secreted peptidoglycan hydrolase required for S. gordonii cell separation.

  8. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    Science.gov (United States)

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P media identified CMM 2105, CMM 1091, and PEL as the fastest-growing isolates. The lipase activity of four isolates grown on olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  9. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion

    Directory of Open Access Journals (Sweden)

    Jay E. Mellon

    2015-08-01

    Full Text Available Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates.

  10. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  11. The Serine Hydrolase ABHD6 Is a Critical Regulator of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gwynneth Thomas

    2013-10-01

    Full Text Available The serine hydrolase α/β hydrolase domain 6 (ABHD6 has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6’s role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.

  12. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    Science.gov (United States)

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    Directory of Open Access Journals (Sweden)

    Luis V. Rodríguez-Durán

    2011-01-01

    Full Text Available Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  14. Novel strategies for upstream and downstream processing of tannin acyl hydrolase.

    Science.gov (United States)

    Rodríguez-Durán, Luis V; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  15. Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.

    Science.gov (United States)

    Robinson, Serina L; Badalamenti, Jonathan P; Dodge, Anthony G; Tassoulas, Lambros J; Wackett, Lawrence P

    2018-03-12

    Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min -1 mg -1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L. (Michigan)

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  17. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    Science.gov (United States)

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  19. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher

    2013-01-01

    , raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities...... of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose...

  20. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    Science.gov (United States)

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.