WorldWideScience

Sample records for glycoprotein glycoform receptor

  1. Zonal variation in the distribution of an alpha 1-acid glycoprotein glycoform receptor in human adrenal cortex

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1999-01-01

    receptor was located in the cytoplasm of glomerulosa and outer fasciculata cells. The intensity of the reaction product decreased in the fasciculata, and no staining was seen in inner fasciculata and reticularis. Inhibition with the simple sugars, mannose and GlcNAc confirmed a lectin-like reaction...... specific receptor. The binding of alpha 1-acid glycoprotein glycoform B and alpha 1-acid glycoprotein glycoform C to the glycoform specific receptor is inhibited by the steroid hormones cortisone, aldosterone, estradiol and progesterone but not by testosterone. The pronounced changes in the distribution...

  2. Two lectin-like receptors for alpha 1-acid glycoprotein in mouse testis

    DEFF Research Database (Denmark)

    Andersen, U O; Kirkeby, S; Bøg-Hansen, T C

    1997-01-01

    Three glycoforms of alpha 1-acid glycoprotein (AGP) were biotinylated to examine their binding in mouse testis by light microscopy. The transition from one stage to another in the spermatogenic cycle is marked with an appearance of a receptor for the Concanavalin A (Con A) non-reactive glycoform...

  3. Appearance and cellular distribution of lectin-like receptors for alpha 1-acid glycoprotein in the developing rat testis

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1996-01-01

    A histochemical avidin-biotin technique with three different alpha 1-acid glycoprotein glycoforms showed pronounced alterations in the cellular localization of two alpha 1-acid glycoprotein lectin-like receptors during cell differentiation in the developing rat testis. The binding of alpha 1-acid...

  4. Meet the multifunctional and sexy glycoforms of glycodelin.

    Science.gov (United States)

    Lapid, Kfir; Sharon, Nathan

    2006-03-01

    Glycodelin, a human-secreted glycoprotein that appears in a small number of glycoforms, exhibits diverse biological activities, such as in contraception and immunosuppression. Moreover, different tissue-specific glycoforms appear to mediate diverse functions. Quite unusually, the glycodelin N-linked glycans differ between the male and female glycoforms. The fact that these glycans are fundamental for exerting the physiological activities of the different glycoforms, makes them an interesting target for glycobiology research. This review will focus on the involvement of the glycans in glycodelin activity and compare between the several glycoforms.

  5. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method.

    Science.gov (United States)

    Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki

    2006-02-17

    Capillary electrophoresis (CE) is an effective tool to analyze carbohydrate mixture derived from glycoproteins with high resolution. However, CE has a disadvantage that a few nanoliters of a sample solution are injected to a narrow capillary. Therefore, we have to prepare a sample solution of high concentration for CE analysis. In the present study, we applied head column field-amplified sample stacking method to the analysis of N-linked oligosaccharides derived from glycoprotein separated by two-dimensional gel electrophoresis. Model studies demonstrated that we achieved 60-360 times concentration effect on the analysis of carbohydrate chains labeled with 3-aminobenzoic acid (3-AA). The method was applied to the analysis of N-linked oligosaccharides from glycoproteins separated and detected on PAGE gel. Heterogeneity of alpha1-acid glycoprotein (AGP), i.e. glycoforms, was examined by 2D-PAGE and N-linked oligosaccharides were released by in-gel digestion with PNGase F. The released oligosaccharides were derivatized with 3-AA and analyzed by CE. The results showed that glycoforms having lower pI values contained a larger amount of tetra- and tri-antennary oligosaccharides. In contrast, glycoforms having higher pI values contained bi-antennary oligosaccharides abundantly. The result clearly indicated that the spot of a glycoprotein glycoform detected by Coomassie brilliant blue staining on 2D-PAGE gel is sufficient for quantitative profiling of oligosaccharides.

  6. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferas...

  7. Humanizing recombinant glycoproteins from Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Anders Holmgaard; Amann, Thomas; Kol, Stefan

    With new tools for gene-editing like zinc-fingers, TALENS and CRISPR, it is now feasible totailor-make the N-Glycoforms for therapeutic glycoproteins that have previously been almost impossible. We here demonstrate a case of humanizing a recombinant human glycoprotein that in Wild type (WT) Chinese...

  8. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics.

    Science.gov (United States)

    Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro

    2014-01-01

    Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.

  9. Towards Controlling the Glycoform: A Model Framework Linking Extracellular Metabolites to Antibody Glycosylation

    Directory of Open Access Journals (Sweden)

    Philip M. Jedrzejewski

    2014-03-01

    Full Text Available Glycoproteins represent the largest group of the growing number of biologically-derived medicines. The associated glycan structures and their distribution are known to have a large impact on pharmacokinetics. A modelling framework was developed to provide a link from the extracellular environment and its effect on intracellular metabolites to the distribution of glycans on the constant region of an antibody product. The main focus of this work is the mechanistic in silico reconstruction of the nucleotide sugar donor (NSD metabolic network by means of 34 species mass balances and the saturation kinetics rates of the 60 metabolic reactions involved. NSDs are the co-substrates of the glycosylation process in the Golgi apparatus and their simulated dynamic intracellular concentration profiles were linked to an existing model describing the distribution of N-linked glycan structures of the antibody constant region. The modelling framework also describes the growth dynamics of the cell population by means of modified Monod kinetics. Simulation results match well to experimental data from a murine hybridoma cell line. The result is a modelling platform which is able to describe the product glycoform based on extracellular conditions. It represents a first step towards the in silico prediction of the glycoform of a biotherapeutic and provides a platform for the optimisation of bioprocess conditions with respect to product quality.

  10. Galectin-3 guides intracellular trafficking of some human serotransferrin glycoforms

    DEFF Research Database (Denmark)

    Carlsson, Carl Michael; Bengtson, Per; Cucak, Helena

    2013-01-01

    these transferrin glycoforms differently after preloading with exogenously added galectin-3. In all, this study provides the first evidence of a functional role for transferrin glycans, in intracellular trafficking after uptake. Moreover, the galectin-3 bound glycoform increased in cancer, suggesting...

  11. Correlating the Impact of Well-Defined Oligosaccharide Structures on Physical Stability Profiles of IgG1-Fc Glycoforms.

    Science.gov (United States)

    More, Apurva S; Toprani, Vishal M; Okbazghi, Solomon Z; Kim, Jae H; Joshi, Sangeeta B; Middaugh, C Russell; Tolbert, Thomas J; Volkin, David B

    2016-02-01

    As part of a series of articles in this special issue describing 4 well-defined IgG1-Fc glycoforms as a model system for biosimilarity analysis (high mannose-Fc, Man5-Fc, GlcNAc-Fc and N297Q-Fc aglycosylated), the focus of this work is comparisons of their physical properties. A trend of decreasing apparent solubility (thermodynamic activity) by polyethylene glycol precipitation (pH 4.5, 6.0) and lower conformational stability by differential scanning calorimetry (pH 4.5) was observed with reducing size of the N297-linked oligosaccharide structures. Using multiple high-throughput biophysical techniques, the physical stability of the Fc glycoproteins was then measured in 2 formulations (NaCl and sucrose) across a wide range of temperatures (10°C-90°C) and pH (4.0-7.5) conditions. The data sets were used to construct 3-index empirical phase diagrams and radar charts to visualize the regions of protein structural stability. Each glycoform showed improved stability in the sucrose (vs. salt) formulation. The HM-Fc and Man5-Fc displayed the highest relative stability, followed by GlcNAc-Fc, with N297Q-Fc being the least stable. Thus, the overall physical stability profiles of the 4 IgG1-Fc glycoforms also show a correlation with oligosaccharide structure. These data sets are used to develop a mathematical model for biosimilarity analysis (as described in a companion article by Kim et al. in this issue). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. A workflow for large-scale empirical identification of cell wall N-linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry

    Science.gov (United States)

    Glycosylation is a common post-translational modification of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has b...

  13. Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats.

    Science.gov (United States)

    Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R

    1995-08-04

    Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.

  14. Structural characterization of the Man5 glycoform of human IgG3 Fc

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Ishan S.; Lovell, Scott; Mehzabeen, Nurjahan; Battaile, Kevin P.; Tolbert, Thomas J. (Kansas); (HWMRI)

    2017-12-01

    Immunoglobulin G (IgG) consists of four subclasses in humans: IgG1, IgG2, IgG3 and IgG4, which are highly conserved but have unique differences that result in subclass-specific effector functions. Though IgG1 is the most extensively studied IgG subclass, study of other subclasses is important to understand overall immune function and for development of new therapeutics. When compared to IgG1, IgG3 exhibits a similar binding profile to Fcγ receptors and stronger activation of complement. All IgG subclasses are glycosylated at N297, which is required for Fcγ receptor and C1q complement binding as well as maintaining optimal Fc conformation. We have determined the crystal structure of homogenously glycosylated human IgG3 Fc with a GlcNAc2Man5 (Man5) high mannose glycoform at 1.8 Å resolution and compared its structural features with published structures from the other IgG subclasses. Although the overall structure of IgG3 Fc is similar to that of other subclasses, some structural perturbations based on sequence differences were revealed. For instance, the presence of R435 in IgG3 (and H435 in the other IgG subclasses) has been implicated to result in IgG3-specific properties related to binding to protein A, protein G and the neonatal Fc receptor (FcRn). The IgG3 Fc structure helps to explain some of these differences. Additionally, protein-glycan contacts observed in the crystal structure appear to correlate with IgG3 affinity for Fcγ receptors as shown by binding studies with IgG3 Fc glycoforms. Finally, this IgG3 Fc structure provides a template for further studies aimed at engineering the Fc for specific gain of function.

  15. Mechanical circulatory support is associated with loss of platelet receptors glycoprotein Ibα and glycoprotein VI.

    Science.gov (United States)

    Lukito, P; Wong, A; Jing, J; Arthur, J F; Marasco, S F; Murphy, D A; Bergin, P J; Shaw, J A; Collecutt, M; Andrews, R K; Gardiner, E E; Davis, A K

    2016-11-01

    Essentials Relationship of acquired von Willebrand disease (VWD) and platelet dysfunction is explored. Patients with ventricular assist devices and on extracorporeal membrane oxygenation are investigated. Acquired VWD and platelet receptor shedding is demonstrated in the majority of patients. Loss of platelet adhesion receptors glycoprotein (GP) Ibα and GPVI may increase bleeding risk. Background Ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) are associated with bleeding that is not fully explained by anticoagulant or antiplatelet use. Exposure of platelets to elevated shear in vitro leads to increased shedding. Objectives To investigate whether loss of platelet receptors occurs in vivo, and the relationship with acquired von Willebrand syndrome (AVWS). Methods Platelet counts, coagulation tests and von Willebrand factor (VWF) analyses were performed on samples from 21 continuous flow VAD (CF-VAD), 20 ECMO, 12 heart failure and seven aortic stenosis patients. Levels of platelet receptors were measured by flow cytometry or ELISA. Results The loss of high molecular weight VWF multimers was observed in 18 of 19 CF-VAD and 14 of 20 ECMO patients, consistent with AVWS. Platelet receptor shedding was demonstrated by elevated soluble glycoprotein (GP) VI levels in plasma and significantly reduced surface GPIbα and GPVI levels in CF-VAD and ECMO patients as compared with healthy donors. Platelet receptor levels were also significantly reduced in heart failure patients. Conclusions These data link AVWS and increased platelet receptor shedding in patients with CF-VADs or ECMO for the first time. Loss of the platelet surface receptors GPIbα and GPVI in heart failure, CF-VAD and ECMO patients may contribute to ablated platelet adhesion/activation, and limit thrombus formation under high/pathologic shear conditions. © 2016 International Society on Thrombosis and Haemostasis.

  16. Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation

    DEFF Research Database (Denmark)

    Pinto, Rita; Carvalho, Ana S; Conze, Tim

    2012-01-01

    Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these b......Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification...... of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA......) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a) ) and Sialyl-Le(x) (SLe(x) ) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla...

  17. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells

    DEFF Research Database (Denmark)

    Napoletano, Chiara; Rughetti, Aurelia; Agervig Tarp, Mads P

    2007-01-01

    . This results in the expression of tumor-associated glycoforms and in MUC1 carrying the tumor-specific glycan Tn (GalNAcalpha1-O-Ser/Thr). Glycopeptides corresponding to three tandem repeats of MUC1, enzymatically glycosylated with 9 or 15 mol of GalNAc, were shown to specifically bind and to be internalized...... and ELISA done on subcellular fractions of iDCs showed that the Tn-MUC1 glycopeptides colocalized with HLA class I and II compartments after internalization. Importantly, although Tn-MUC1 recombinant protein was bound and internalized by MGL, the glycoprotein entered the HLA class II compartment......, but not the HLA class I pathway. These data indicate that MGL expressed on iDCs is an optimal receptor for the internalization of short GalNAcs carrying immunogens to be delivered into HLA class I and II compartments. Such glycopeptides therefore represent a new way of targeting the HLA class I and II pathways...

  18. Distinguishing Truncated and Normal MUC1 Glycoform Targeting from Tn-MUC1-Specific CAR T Cells

    DEFF Research Database (Denmark)

    Posey, Avery D; Clausen, Henrik; June, Carl H

    2016-01-01

    Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate potent clinical antitumor effects in a variety of blood cancers. However, clinical activity in solid tumors has been disappointing and toxicity has been a serious concern (Lamers et al., 2013; Morgan et al., 2010......). We recently found that a CAR composed of a scFv antibody fragment specific for the Tn-glycoform of MUC1 had potent activity in preclinical models of blood cancer and adenocarcinoma (Posey et al., 2016)....

  19. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  20. A Gastric Glycoform of MUC5AC Is a Biomarker of Mucinous Cysts of the Pancreas.

    Directory of Open Access Journals (Sweden)

    Jessica Sinha

    Full Text Available Molecular indicators to specify the risk posed by a pancreatic cyst would benefit patients. Previously we showed that most cancer-precursor cysts, termed mucinous cysts, produce abnormal glycoforms of the proteins MUC5AC and endorepellin. Here we sought to validate the glycoforms as a biomarker of mucinous cysts and to specify the oligosaccharide linkages that characterize MUC5AC. We hypothesized that mucinous cysts secrete MUC5AC displaying terminal N-acetylglucosamine (GlcNAc in either alpha or beta linkage. We used antibody-lectin sandwich assays to detect glycoforms of MUC5AC and endorepellin in cyst fluid samples from three independent cohorts of 49, 32, and 66 patients, and we used monoclonal antibodies to test for terminal, alpha-linked GlcNAc and the enzyme that produces it. A biomarker panel comprising the previously-identified glycoforms of MUC5AC and endorepellin gave 96%, 96%, and 87% accuracy for identifying mucinous cysts in the three cohorts with an average sensitivity of 92% and an average specificity of 94%. Glycan analysis showed that MUC5AC produced by a subset of mucinous cysts displays terminal alpha-GlcNAc, a motif expressed in stomach glands. The alpha-linked glycoform of MUC5AC was unique to intraductal papillary mucinous neoplasms (IPMN, whereas terminal beta-linked GlcNAc was increased in both IPMNs and mucinous cystic neoplasms (MCN. The enzyme that synthesizes alpha-GlcNAc, A4GNT, was expressed in the epithelia of mucinous cysts that expressed alpha-GlcNAc, especially in regions with high-grade dysplasia. Thus IPMNs secrete a gastric glycoform of MUC5AC that displays terminal alpha-GlcNAc, and the combined alpha-GlcNAc and beta-GlcNAc glycoforms form an accurate biomarker of mucinous cysts.

  1. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function.

    Science.gov (United States)

    Patel, Kashyap R; Roberts, Jacob T; Subedi, Ganesh P; Barb, Adam W

    2018-03-09

    CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody-CD16a interactions, the asparagine-linked carbohydrates ( N -glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N -glycans (23%). These proportions indicated restricted N -glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N -glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ-chain in HEK293F cells was expected to produce N -glycoforms similar to NK cell-derived CD16a but yielded N -glycoforms different from NK cell-derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N -glycan composition affected antibody binding: CD16a with oligomannose N -glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N -glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein's structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N -glycan composition and antibody-binding affinity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Global site-specific analysis of glycoprotein N-glycan processing.

    Science.gov (United States)

    Cao, Liwei; Diedrich, Jolene K; Ma, Yuanhui; Wang, Nianshuang; Pauthner, Matthias; Park, Sung-Kyu Robin; Delahunty, Claire M; McLellan, Jason S; Burton, Dennis R; Yates, John R; Paulson, James C

    2018-06-01

    N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.

  3. MoFi: A Software Tool for Annotating Glycoprotein Mass Spectra by Integrating Hybrid Data from the Intact Protein and Glycopeptide Level.

    Science.gov (United States)

    Skala, Wolfgang; Wohlschlager, Therese; Senn, Stefan; Huber, Gabriel E; Huber, Christian G

    2018-04-18

    Hybrid mass spectrometry (MS) is an emerging technique for characterizing glycoproteins, which typically display pronounced microheterogeneity. Since hybrid MS combines information from different experimental levels, it crucially depends on computational methods. Here, we describe a novel software tool, MoFi, which integrates hybrid MS data to assign glycans and other post-translational modifications (PTMs) in deconvoluted mass spectra of intact proteins. Its two-stage search algorithm first assigns monosaccharide/PTM compositions to each peak and then compiles a hierarchical list of glycan combinations compatible with these compositions. Importantly, the program only includes those combinations which are supported by a glycan library as derived from glycopeptide or released glycan analysis. By applying MoFi to mass spectra of rituximab, ado-trastuzumab emtansine, and recombinant human erythropoietin, we demonstrate how integration of bottom-up data may be used to refine information collected at the intact protein level. Accordingly, our software reveals that a single mass frequently can be explained by a considerable number of glycoforms. Yet, it simultaneously ranks proteoforms according to their probability, based on a score which is calculated from relative glycan abundances. Notably, glycoforms that comprise identical glycans may nevertheless differ in score if those glycans occupy different sites. Hence, MoFi exposes different layers of complexity that are present in the annotation of a glycoprotein mass spectrum.

  4. Galectin-1-binding glycoforms of haptoglobin with altered intracellular trafficking, and increase in metastatic breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Michael C Carlsson

    Full Text Available Sera from 25 metastatic breast cancer patients and 25 healthy controls were subjected to affinity chromatography using immobilized galectin-1. Serum from the healthy subjects contained on average 1.2 mg per ml (range 0.7-2.2 galectin-1 binding glycoproteins, whereas serum from the breast cancer patients contained on average 2.2 mg/ml (range 0.8-3.9, with a higher average for large primary tumours. The major bound glycoproteins were α-2-macroglobulin, IgM and haptoglobin. Both the IgM and haptoglobin concentrations were similar in cancer compared to control sera, but the percentage bound to galectin-1 was lower for IgM and higher for haptoglobin: about 50% (range 20-80 in cancer sera and about 30% (range 25-50 in healthy sera. Galectin-1 binding and non-binding fractions were separated by affinity chromatography from pooled haptoglobin from healthy sera. The N-glycans of each fraction were analyzed by mass spectrometry, and the structural differences and galectin-1 mutants were used to identify possible galectin-1 binding sites. Galectin-1 binding and non-binding fractions were also analyzed regarding their haptoglobin function. Both were similar in forming complex with haemoglobin and mediate its uptake into alternatively activated macrophages. However, after uptake there was a dramatic difference in intracellular targeting, with the galectin-1 non-binding fraction going to a LAMP-2 positive compartment (lysosomes, while the galectin-1 binding fraction went to larger galectin-1 positive granules. In conclusion, galectin-1 detects a new type of functional biomarker for cancer: a specific type of glycoform of haptoglobin, and possibly other serum glycoproteins, with a different function after uptake into tissue cells.

  5. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen S.

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  6. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  7. Site-specific glycoprofiling of N-linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Mysling, Simon; Højrup, Peter

    2009-01-01

    Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides was perf......Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides...... was performed to determine the relationship between the relative abundances of the individual glycoforms and the MALDI-TOF MS signal strength. Glycopeptides derived from glycoproteins containing neutral glycans (ribonuclease B, IgG, and ovalbumin) were initially profiled and yielded excellent and reproducible...... quantitation (correlation coefficient r = 0.9958, n = 5) when evaluated against a normal phase HPLC 2-AB glycan profile. Similarly, precise quantitation was observed for various forms of N-glycans (free, permethylated, and fluorescence-labeled) using MS. In addition, three different sialoglycopeptides from...

  8. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M

    2007-01-01

    Erythropoiesis occurs in erythroblastic islands, where developing erythroblasts closely interact with macrophages. The adhesion molecules that govern macrophage-erythroblast contact have only been partially defined. Our previous work has implicated the rat ED2 antigen, which is highly expressed...... on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... that it enhanced erythroid proliferation and/or survival, but did not affect differentiation. These findings identify CD163 on macrophages as an adhesion receptor for erythroblasts in erythroblastic islands, and suggest a regulatory role for CD163 during erythropoiesis....

  9. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.

    Science.gov (United States)

    Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian

    2017-07-03

    Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes

    DEFF Research Database (Denmark)

    Chow, Samuel Z; Speck, Madeleine; Yoganathan, Piriya

    2014-01-01

    Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated...

  11. Characterisation of the carbohydrate components of Taenia solium metacestode glycoprotein antigens.

    Science.gov (United States)

    Restrepo, B I; Obregón-Henao, A; Mesa, M; Gil, D L; Ortiz, B L; Mejía, J S; Villota, G E; Sanzón, F; Teale, J M

    2000-05-01

    Human neurocysticercosis is caused by Taenia solium metacestodes. It usually affects the central nervous system of humans and can be confused with other brain pathologies. The Lens culinaris-binding glycoproteins from this parasite have been shown to be ideal targets for the development of a highly specific immunoassay for the diagnosis of neurocysticercosis. In the present study we characterised the carbohydrates associated with five antigenic glycoproteins of T. solium metacestodes in the range of 12-28 kilodaltons. Lectin-affinities and enzymatic deglycosylations suggested that each of the five antigens contain various glycoforms of asparagine-linked carbohydrates of the hybrid, complex and probably high mannose type. These carbohydrates accounted for at least 30-66% of the apparent molecular mass of the glycoconjugates. In contrast, there was no evidence for the presence of O-linked carbohydrates. Lectin affinity patterns suggested that the sugars are short and truncated in their biosynthetic route, and that some contain terminal galactose moieties. Elucidating the precise structure of the carbohydrates and establishing their role in antigenicity will be essential to design strategies to produce them in large and reproducible amounts for the development of improved immunoassays.

  12. Structural and functional analysis of glycoprotein butyrylcholinesterase using atomistic molecular dynamics

    Science.gov (United States)

    Bernardi, Austen; Faller, Roland

    Atomistic molecular dynamics (MD) has proven to be a powerful tool for studying the structure and dynamics of biological systems on nanosecond to microsecond time scales and nanometer length scales. In this work we study the effects of modifying the glycan distribution on the structure and function of full length monomeric butyrylcholinesterase (BChE). BChE exists as a monomer, dimer, or tetramer, and is a therapeutic glycoprotein with nine asparagine glycosylation sites per monomer. Each monomer acts as a stoichiometric scavenger for organophosphorus (OP) nerve agents (e.g. sarin, soman). Glycan distributions are highly heterogeneous and have been shown experimentally to affect certain glycoproteins' stability and reactivity. We performed structural analysis of various biologically relevant glycoforms of BChE using classical atomistic MD. Functional analysis was performed through binding energy simulations using umbrella sampling with BChE and OP cofactors. Additionally, we assess the quality of the glycans' conformational sampling. We found that the glycan distribution has a significant effect on the structure and function of BChE on timescales available to atomistic MD. This project is funded by the DTRA Grant HDTRA1-15-1-0054.

  13. Glycoprotein VI/Fc receptor γ chain-independent tyrosine phosphorylation and activation of murine platelets by collagen

    OpenAIRE

    Jarvis, Gavin E.; Best, Denise; Watson, Steve P.

    2004-01-01

    We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRγ (Fc receptor γ) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRγ chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induc...

  14. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  15. Glycoform-selective prion formation in sporadic and familial forms of prion disease

    NARCIS (Netherlands)

    Xiao, X.; Yuan, J.; Haïk, S.; Cali, I.; Zhan, Y.; Moudjou, M.; Li, B.; Laplanche, J.L.; Laude, H.; Langeveld, J.P.M.; Gambetti, P.

    2013-01-01

    The four glycoforms of the cellular prion protein (PrP(C)) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrP(Sc)) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrP(Sc) in the recently identified

  16. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN

    Science.gov (United States)

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E.; Huante, Matthew B.; Slack, Olga A.L.; Carpio, Victor H.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)–any amino acid (X)–serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: “Gc-large” and “Gc-small”, and N1077 was responsible for “Gc-large” band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN. PMID:27223297

  17. Glycoform-Selective Prion Formation in Sporadic and Familial Forms of Prion Disease

    Science.gov (United States)

    Xiao, Xiangzhu; Yuan, Jue; Haïk, Stéphane; Cali, Ignazio; Zhan, Yian; Moudjou, Mohammed; Li, Baiya; Laplanche, Jean-Louis; Laude, Hubert; Langeveld, Jan; Gambetti, Pierluigi; Kitamoto, Tetsuyuki; Kong, Qingzhong; Brandel, Jean-Philippe; Cobb, Brian A.; Petersen, Robert B.; Zou, Wen-Quan

    2013-01-01

    The four glycoforms of the cellular prion protein (PrPC) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrPSc) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrPSc in the recently identified variably protease-sensitive prionopathy (VPSPr) is the absence of a diglycosylated form, also notable in familial Creutzfeldt-Jakob disease (fCJD), which is linked to mutations in PrP either from Val to Ile at residue 180 (fCJDV180I) or from Thr to Ala at residue 183 (fCJDT183A). Here we report that fCJDV180I, but not fCJDT183A, exhibits a proteinase K (PK)-resistant PrP (PrPres) that is markedly similar to that observed in VPSPr, which exhibits a five-step ladder-like electrophoretic profile, a molecular hallmark of VPSPr. Remarkably, the absence of the diglycosylated PrPres species in both fCJDV180I and VPSPr is likewise attributable to the absence of PrPres glycosylated at the first N-linked glycosylation site at residue 181, as in fCJDT183A. In contrast to fCJDT183A, both VPSPr and fCJDV180I exhibit glycosylation at residue 181 on di- and monoglycosylated (mono181) PrP prior to PK-treatment. Furthermore, PrPV180I with a typical glycoform profile from cultured cells generates detectable PrPres that also contains the diglycosylated PrP in addition to mono- and unglycosylated forms upon PK-treatment. Taken together, our current in vivo and in vitro studies indicate that sporadic VPSPr and familial CJDV180I share a unique glycoform-selective prion formation pathway in which the conversion of diglycosylated and mono181 PrPC to PrPSc is inhibited, probably by a dominant-negative effect, or by other co-factors. PMID:23527023

  18. Pre-evacuation hCG glycoforms in uneventful complete hydatidiform mole and persistent trophoblastic disease.

    NARCIS (Netherlands)

    Thomas, C.M.G.; Kerkmeijer, L.G.W.; Ariaens, H.J.; Steen, R. van der; Massuger, L.F.A.G.; Sweep, F.C.

    2010-01-01

    OBJECTIVE: To investigate whether the glycoform distribution patterns of human chorionic gonadotropin (hCG) obtained by chromatofocusing in pre-evacuation serum are different for patients who will eventually develop into persistent trophoblastic disease in case of complete hydatidiform mole

  19. Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry.

    Science.gov (United States)

    Wang, Jizhen; Manicassamy, Balaji; Caffrey, Michael; Rong, Lijun

    2011-06-01

    Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

  20. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    The E glycoprotein of dengue virus is responsible for the viral binding to the receptor. The crystal structure of envelope glycoprotein has already been determined. However, where the well-defined Bcell and T-cell epitopes are located is still a question. Because of the large variations among the four dengue genotypes, it is ...

  1. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms.

    Directory of Open Access Journals (Sweden)

    Ying-Ming Wang

    Full Text Available Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.

  2. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors

    NARCIS (Netherlands)

    Annenkov, A.; Rigby, A.; Amor, S.; Zhou, D.M.; Yousaf, N.; Hemmer, B.; Chernajovsky, Y.

    2011-01-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 (IGF1R)

  3. Effect of dietary fat on hepatic liver X receptor expression in P-glycoprotein deficient mice: implications for cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Lee Stephen D

    2008-06-01

    Full Text Available Abstract Pgp (P-glycoprotein, MDR1, ABCB1 is an energy-dependent drug efflux pump that is a member of the ATP-binding cassette (ABC family of proteins. Preliminary studies have reported that nonspecific inhibitors of Pgp affect synthesis and esterification of cholesterol, putatively by blocking trafficking of cholesterol from the plasma membrane to the endoplasmic reticulum, and that relative increases in Pgp within a given cell type are associated with increased accumulation of cholesterol. Several key efflux proteins involved in the cholesterol metabolic pathway are transcriptionally regulated by the nuclear hormone liver X receptor (LXR. Therefore, to examine the interplay between P-glycoprotein and the cholesterol metabolic pathway, we utilized a high fat, normal cholesterol diet to upregulate LXRα without affecting dietary cholesterol. Our research has demonstrated that mice lacking in P-glycoprotein do not exhibit alterations in hepatic total cholesterol storage, circulating plasma total cholesterol levels, or total cholesterol concentration in the bile when compared to control animals on either a normal (25% calories from dietary fat or high fat (45% calories from dietary fat diet. However, p-glycoprotein deficient mice (Mdr1a-/-/1b-/- exhibit increased hepatic LXRα protein expression and an elevation in fecal cholesterol concentration when compared to controls.

  4. Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

    DEFF Research Database (Denmark)

    Vieira Campos, Diana Alexandra; Freitas, Daniela; Gomes, Joana

    2015-01-01

    biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SC lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses...... at least partially truncated O-glycans. Overall we identified 499 O-glycoproteins and 1,236 O-glycosites in gastric cancer SCs, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer...... with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to demonstrate that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set...

  5. A sheep hydatid cyst glycoprotein as receptors for three toxic lectins, as well as Abrus precatorius and Ricinus communis agglutinins.

    Science.gov (United States)

    Wu, A M; Song, S C; Wu, J H; Pfüller, U; Chow, L P; Lin, J Y

    1995-01-18

    The binding properties of a glycoprotein with blood group P1 specificity isolated from sheep hydatid cyst fluid with Gal and GalNAc specific lectins was investigated by quantitative precipitin and precipitin inhibition assays. The glycoprotein completely precipitated Ricinus communis agglutinin (RCA1), Abrus precatorius agglutinin (APA) and Mistletoe toxic lectin-I (ML-I). Only 1.0 microgram of P1 glycoprotein was required to precipitate 50% of 5.1 micrograms ML-I nitrogen. It also reacted well with abrin-a and ricin, precipitating over 73% of the lectin nitrogen added, but poorly or weakly with Dolichos biflorus (DBL), Vicia villosa (VVL, a mixture of A4, A2B2 and B4), VVL-B4, Arachis hypogaea (PNA), Maclura pomifera (MPL), Bauchinia purpurea alba (BPL) and Wistaria floribunda (WFL) lectins. When an inhibition assay in the range of 5.1 micrograms N to 5.9 micrograms N of lectins (ML-I, abrin-a; ricin, RCA1, and APA, and 10 micrograms P1 active glycoprotein interaction was performed; from 76 to 100% of the precipitations were inhibited by 0.44 and 0.52 mumol of Gal alpha 1-->4Gal and Gal beta 1-->4GlcNAc, respectively, but not or insignificantly with 1.72 mumol of GlcNAc. The Gal alpha 1-->4Gal disaccharide found in this P1 active glycoprotein is a frequently occurring sequence of many glycosphingolipids located at the surface of mammalian cell membranes, especially human erythrocytes and intestinal cells for ligand binding and microbial toxin attachment. The present finding suggests that the Gal alpha 1-->4Gal beta 1-->4GlcNAc sequence in this P1 active glycoprotein is one of the best glycoprotein receptors for three toxic lectins (ricin, abrin-a, and ML-I) as well as for APA, and RCA1, and the result of inhibition assay implies that these lectins are recognizing part or all of the Gal alpha 1-->4Gal beta 1-->4GlcNAc sequence in the P1 active glycoprotein.

  6. Preferential Acquisition and Activation of Plasminogen Glycoform II by PAM Positive Group A Streptococcal Isolates.

    Science.gov (United States)

    De Oliveira, David M P; Law, Ruby H P; Ly, Diane; Cook, Simon M; Quek, Adam J; McArthur, Jason D; Whisstock, James C; Sanderson-Smith, Martina L

    2015-06-30

    Plasminogen (Plg) circulates in the host as two predominant glycoforms. Glycoform I Plg (GI-Plg) contains glycosylation sites at Asn289 and Thr346, whereas glycoform II Plg (GII-Plg) is exclusively glycosylated at Thr346. Surface plasmon resonance experiments demonstrated that Plg binding group A streptococcal M protein (PAM) exhibits comparative equal affinity for GI- and GII-Plg in the "closed" conformation (for GII-Plg, KD = 27.4 nM; for GI-Plg, KD = 37.0 nM). When Plg was in the "open" conformation, PAM exhibited an 11-fold increase in affinity for GII-Plg (KD = 2.8 nM) compared with that for GI-Plg (KD = 33.2 nM). The interaction of PAM with Plg is believed to be mediated by lysine binding sites within kringle (KR) 2 of Plg. PAM-GI-Plg interactions were fully inhibited with 100 mM lysine analogue ε-aminocaproic acid (εACA), whereas PAM-GII-Plg interactions were shown to be weakened but not inhibited in the presence of 400 mM εACA. In contrast, binding to the KR1-3 domains of GII-Plg (angiostatin) by PAM was completely inhibited in the presence 5 mM εACA. Along with PAM, emm pattern D GAS isolates express a phenotypically distinct SK variant (type 2b SK) that requires Plg ligands such as PAM to activate Plg. Type 2b SK was able to generate an active site and activate GII-Plg at a rate significantly higher than that of GI-Plg when bound to PAM. Taken together, these data suggest that GAS selectively recruits and activates GII-Plg. Furthermore, we propose that the interaction between PAM and Plg may be partially mediated by a secondary binding site outside of KR2, affected by glycosylation at Asn289.

  7. Platelet Glycoprotein IIb/IIIa Receptor Inhibition in Non-ST-Elevation Acute Coronary Syndromes : Early Benefit During Medical Treatment Only, With Additional Protection During Percutaneous Coronary Intervention

    NARCIS (Netherlands)

    K.M. Akkerhuis (Martijn); P. Théroux (Pierre); R.M. Califf (Robert); E.J. Topol (Eric); M.L. Simoons (Maarten); H. Boersma (Eric)

    1999-01-01

    textabstractBACKGROUND: Glycoprotein (GP) IIb/IIIa receptor blockers prevent life-threatening cardiac complications in patients with acute coronary syndromes without ST-segment elevation and protect against thrombotic complications associated with percutaneous coronary

  8. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses.

    Science.gov (United States)

    Kreuchwig, Annika; Kleinau, Gunnar; Krause, Gerd

    2013-08-01

    The first version of a glycoprotein hormone receptor (GPHR) information resource was designed to link functional with structural GPHR information, in order to support sequence-structure-function analysis of the LH, FSH, and TSH receptors (http://ssfa-gphr.de). However, structural information on a binding- and signaling-sensitive extracellular fragment (∼100 residues), the hinge region, had been lacking. A new FSHR crystal structure of the hormone-bound extracellular domain has recently been solved. The structure comprises the leucine-rich repeat domain and most parts of the hinge region. We have not only integrated the new FSHR/FSH structure and the derived homology models of TSHR/TSH, LHCGR/CG, and LHCGR/LH into our web-based information resource, but have additionally provided novel tools to analyze the advanced structural features, with the common characteristics and distinctions between GPHRs, in a more precise manner. The hinge region with its second hormone-binding site allows us to assign functional data to the new structural features between hormone and receptor, such as binding details of a sulfated tyrosine (conserved throughout the GPHRs) extending into a pocket of the hormone. We have also implemented a protein interface analysis tool that enables the identification and visualization of extracellular contact points between interaction partners. This provides a starting point for comparing the binding patterns of GPHRs. Together with the mutagenesis data stored in the database, this will help to decipher the essential residues for ligand recognition and the molecular mechanisms of signal transduction, extending from the extracellular hormone-binding site toward the intracellular G protein-binding sites.

  9. Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation

    NARCIS (Netherlands)

    M.W.P. Bruysters (Martijn); M. Verhoef-Post (Miriam); A.P.N. Themmen (Axel)

    2008-01-01

    textabstractThe luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein

  10. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibalpha

    DEFF Research Database (Denmark)

    Bergmeier, W; Bouvard, D; Eble, J A

    2001-01-01

    Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from the v...

  11. Glycoprotein Ibalpha signalling in platelet apoptosis and clearance

    NARCIS (Netherlands)

    van der Wal, E.

    2010-01-01

    Storage of platelets at low temperature reduces bacterial growth and might better preserve the haemostatic function of platelets than current procedures. Incubation at 0C is known to expose ?-N-acetyl-D-glucosamine-residues on glycoprotein (GP)Ibalpha inducing receptor-clustering and platelet

  12. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available Hendra virus and Nipah virus, comprising the genus Henipavirus, are recently emerged, highly pathogenic and often lethal zoonotic agents against which there are no approved therapeutics. Two surface glycoproteins, the attachment (G and fusion (F, mediate host cell entry. The crystal structures of the Hendra G glycoprotein alone and in complex with the ephrin-B2 receptor reveal that henipavirus uses Tryptophan 122 on ephrin-B2/B3 as a "latch" to facilitate the G-receptor association. Structural-based mutagenesis of residues in the Hendra G glycoprotein at the receptor binding interface document their importance for viral attachments and entry, and suggest that the stability of the Hendra-G-ephrin attachment complex does not strongly correlate with the efficiency of viral entry. In addition, our data indicates that conformational rearrangements of the G glycoprotein head domain upon receptor binding may be the trigger leading to the activation of the viral F fusion glycoprotein during virus infection.

  13. Clearance and binding of radiolabeled glycoproteins by cells of the murine mononuclear phagocyte system

    International Nuclear Information System (INIS)

    Imber, M.J.

    1982-01-01

    The clearance and binding of radiolabeled lactoferrin and fast α 2 -macroglobulin were studied. Both glycoproteins cleared rapidly following intravenous injection in mice, and both bound specifically to discrete receptors on murine peritoneal macrophages. The simultaneous presence of excess, unlabeled ligands specific for receptors recognizing terminal fucose, mannose, N-acetylglucosamine or galactose residues did not inhibit the clearance or binding of either lactoferrin or fast-α 2 M. The clearance and binding of enzymatically defucosylated lactoferrin was indistinguishable from native lactoferrin, indicating that terminal α(1-3)-linked fucose on lactoferrin is not necessary for receptor recognition. The clearance and binding of two fast -α 2 M forms, α 2 M-trypsin and α 2 M-MeNH 2 cross compete with each other. Saturation binding studies indicated that the total binding of mannosyl -BSA, fusocyl-BSA, and N-acetylglucosaminyl-BSA to macrophages activated by BCG was approximately 15% of the levels observed with inflammatory macrophages elicited by thioglycollate broth. Cross-competition binding studies demonstrated a common surface receptor mediated binding of all three neoglycoprotein ligands and was identical to the receptor on mononuclear phagocytes that binds mannosyl- and N-acetylglucosaminyl-terminated glycoproteins. These results suggest that difference between discrete states of macrophage function may be correlated with selective changes in levels of the surface receptor for mannose-containing glycoproteins

  14. Determinants of foamy virus envelope glycoprotein mediated resistance to superinfection

    International Nuclear Information System (INIS)

    Berg, Angelika; Pietschmann, Thomas; Rethwilm, Axel; Lindemann, Dirk

    2003-01-01

    Little is known about the nature of foamy virus (FV) receptor molecules on target cells and their interaction with the viral glycoproteins. Similar to other viruses, cellular expression of the FV Env protein is sufficient to induce resistance to exogenous FV, a phenomenon called superinfection resistance (SIR). In this study we define determinants of the FV Env protein essential for mediating SIR. FV Env requires the extracellular domains of the SU and the TM subunits as well as membrane anchorage, efficient cell surface transport, and most probably correct subunit processing. This is in contrast to murine leukemia virus where secreted proteins comprising the receptor-binding domain in SU are sufficient to induce SIR. Furthermore, we demonstrate that cellular expression of the prototype FV envelope proteins induces SIR against pseudotypes with glycoproteins of other FV species, including of simian, feline, bovine, and equine origin. This implies that all of them use the same receptor molecules for viral entry

  15. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay

    KAUST Repository

    Abu Samra, Dina Bashir Kamil; Al Kilani, Alia; Hamdan, Samir; Sakashita, Kosuke; Gadhoum, Samah Z.; Merzaban, Jasmeen

    2015-01-01

    Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow onand off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2015-06-29

    Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow onand off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Distinct spatial relationship of interleukin-9 receptor with IL-2R and MHC glycoproteins in human T lymphoma cells

    OpenAIRE

    Nizsalóczki, Enikő; Csomós, István; Nagy, Péter; Fazekas, Zsolt; Goldman, Carolyn K.; Waldmann, Thomas A.; Damjanovich, Sándor; Vámosi, György; Mátyus, László; Bodnár, Andrea

    2014-01-01

    The IL-9R consists of the α-subunit and the γc-chain shared with other cytokine receptors, including IL-2R, an important regulator of T cells. We have previously shown that IL-2R is expressed in common clusters with MHC glycoproteins in lipid rafts of human T lymphoma cells raising the question what the relationship between clusters of IL-2R/MHC and IL-9R is. Confocal microscopic co-localization and FRET experiments capable of detecting membrane protein organization at different size scales r...

  18. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    Science.gov (United States)

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  20. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  1. Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Afsson shariat

    2015-11-01

    Full Text Available Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Blood samples were taken from 5 healthy volunteers. Following the generation of monocyte-derived dendritic cells on the fifth day of cell culture, half of the immature dendritic cells were treated with cytomegalovirus glycoprotein B, and the rest of them were induced to mature dendritic untreated cells and were used as the control group. The maturation and function of dendritic cells were evaluated in these two groups. Results: The gene expression level of toll-like receptor-4 significantly increased in the group treated with glycoprotein B (p < 0.05, whereas there were no significant differences in the expression rates of CD83, CD86, CD1a, and HLA-DR and the secretion of IL-23 from monocyte-derived dendritic cells between the treated groups and the controls. Conclusion: The increase in the gene expression of toll-like receptor-4 in monocyte-derived dendritic cells treated with cytomegalovirus glycoprotein B showed that cell contact is required to elicit cellular antiviral response and toll-like receptor activation. Thus, it is critical to recognize the viral and cellular determinants of the immune system in order to develop new therapeutic strategies against cytomegalovirus.

  2. Glycoprotein Ibα clustering in platelet storage and function

    NARCIS (Netherlands)

    Gitz, E.

    2013-01-01

    Platelets are anucleated, discoid-shaped cells that play an essential role in the formation of a hemostatic plug to prevent blood loss from injured vessels. Initial platelet arrest at the damaged arterial vessel wall is mediated through the interaction between the platelet receptor glycoprotein (GP)

  3. Interaction between Ebola Virus Glycoprotein and Host Toll-Like Receptor 4 Leads to Induction of Proinflammatory Cytokines and SOCS1 ▿ †

    OpenAIRE

    Okumura, Atsushi; Pitha, Paula M.; Yoshimura, Akihiko; Harty, Ronald N.

    2009-01-01

    Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and sup...

  4. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  5. Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; Ligtenberg, Antoon; White, Mitchell R.

    2006-01-01

    We previously found that scavenger receptor cysteine-rich gp-340 (glycoprotein-340), isolated from lung or saliva, directly inhibits human IAVs (influenza A viruses). We now show that salivary gp-340 has broad antiviral activity against human, equine and porcine IAV strains. Although lung...

  6. Activity-induced and developmental downregulation of the Nogo receptor

    DEFF Research Database (Denmark)

    Josephson, Anna; Trifunovski, Alexandra; Schéele, Camilla

    2003-01-01

    The three axon growth inhibitory proteins, myelin associated glycoprotein, oligodendrocyte-myelin glycoprotein and Nogo-A, can all bind to the Nogo-66 receptor (NgR). This receptor is expressed by neurons with high amounts in regions of high plasticity where Nogo expression is also high. We hypot...

  7. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor

    International Nuclear Information System (INIS)

    Imai, Y.; Singer, M.S.; Fennie, C.; Lasky, L.A.; Rosen, S.D.

    1991-01-01

    Lymphocyte attachment to high endothelial venules within lymph nodes is mediated by the peripheral lymph node homing receptor (pnHR), originally defined on mouse lymphocytes by the MEL-14 mAb. The pnHR is a calcium-dependent lectin-like receptor, a member of the LEC-CAM family of adhesion proteins. Here, using a soluble recombinant form of the homing receptor, we have identified an endothelial ligand for the pnHR as an ∼ 50-kD sulfated, fucosylated, and sialylated glycoprotein, which we designate Sgp50 (sulfated glycoprotein of 50 kD). Recombinant receptor binding to this lymph node-specific glycoprotein requires calcium and is inhibitable by specific carbohydrates and by MEL-14 mAb. Sialylation of the component is required for binding. Additionally, the glycoprotein is precipitated by MECA-79, an adhesion-blocking mAb reactive with lymph node HEV. A related glycoprotein of ∼ 90 kD (designated as Sgp90) is also identified

  8. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    Science.gov (United States)

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578. We propose a simple and high-throughput glycoproteomics-based methodology that allows the separation of glycopeptide glycoforms on the basis of the number of sialic acids, and their automatic and rapid identification without prior knowledge of protein glycosites or type and structure of the glycans. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction

    International Nuclear Information System (INIS)

    Moore, K.L.; Varki, A.; McEver, R.P.

    1991-01-01

    GMP-140 is a rapidly inducible receptor for neutrophils and monocytes expressed on activated platelets and endothelial cells. It is a member of the selectin family of lectin-like cell surface molecules that mediate leukocyte adhesion. We used a radioligand binding assay to characterize the interaction of purified GMP-140 with human neutrophils. Unstimulated neutrophils rapidly bound [125I]GMP-140 at 4 degrees C, reaching equilibrium in 10-15 min. Binding was Ca2+ dependent, reversible, and saturable at 3-6 nM free GMP-140 with half-maximal binding at approximately 1.5 nM. Receptor density and apparent affinity were not altered when neutrophils were stimulated with 4 beta-phorbol 12-myristate 13-acetate. Treatment of neutrophils with proteases abolished specific binding of [125I]GMP-140. Binding was also diminished when neutrophils were treated with neuraminidase from Vibrio cholerae, which cleaves alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids, or from Newcastle disease virus, which cleaves only alpha 2-3- and alpha 2-8-linked sialic acids. Binding was not inhibited by an mAb to the abundant myeloid oligosaccharide, Lex (CD15), or by the neoglycoproteins Lex-BSA and sialyl-Lex-BSA. We conclude that neutrophils constitutively express a glycoprotein receptor for GMP-140, which contains sialic acid residues that are essential for function. These findings support the concept that GMP-140 interacts with leukocytes by a lectin-like mechanism

  10. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  11. Characterization of an immunodominant cancer-specific O-glycopeptide epitope in murine podoplanin (OTS8)

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Schjoldager, Katrine T; Cló, Emiliano

    2010-01-01

    antibody 237, developed to a spontaneous murine fibrosarcoma, was shown to be directed to murine podoplanin (OTS8) with truncated Tn O-glycans. Our understanding of such cancer-specific auto-antibodies to truncated glycoforms of glycoproteins is limited. Here we have investigated immunogenicity...... of a chemoenzymatically produced Tn-glycopeptide derived from the putative murine podoplanin O-glycopeptide epitope. We found that the Tn O-glycopeptide was highly immunogenic in mice and produced a Tn-glycoform specific response with no reactivity against unglycosylated peptides or the O-glycopeptide with extended O......-glycan (STn and T glycoforms). The immunodominant epitope was strictly dependent on the peptide sequence, required Tn at a specific single Thr residue (Thr(77)), and antibodies to the epitope were not found in naive mice. We further tested a Tn O-glycopeptide library derived from human podoplanin...

  12. Comparative Profiling of Triple-Negative Breast Carcinomas Tissue Glycoproteome by Sequential Purification of Glycoproteins and Stable Isotope Labeling

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available Background: Women with triple negative breast cancers (TNBCs have a poor prognosis due to lack of suitable targeted therapies. Changes in the protein glycosylation are increasingly being recognized as an important modification associated with cancer etiology. Methods: In an attempt to identify TNBC biomarkers with greater diagnostic and prognostic capabilities, hydrazide- based chemistry method combined with LC-MS/MS were used to purify and identify N-linked glycopeptides or glycoproteins of tissues from TNBC patients. Results: A total of 550 unique N-linked glycoproteins were identified, among these proteins, 72 unique N-linked glycoproteins were significantly regulated in tumor tissues, of which 56 proteins were upregulated and 16 proteins were downregulated. To assess the validity of the results, three selected proteins including Vascular endothelial growth factor receptor 1, Insulin receptor, Tissue factor pathway inhibitor were selected for western blot analysis, and these proteins were found as potential biomarkers of TNBC. The top three pathways of differentially expressed glycoproteins participated in were caveolar-mediated endocytosis signaling, agrin interactions at neuromuscular junction and LXR/RXR activation. Conclusion: This work provides potential glycoprotein markers to function as a novel tissue-based biomarker for TNBC.

  13. Identification of Fc Gamma Receptor Glycoforms That Produce Differential Binding Kinetics for Rituximab.

    Science.gov (United States)

    Hayes, Jerrard M; Frostell, Asa; Karlsson, Robert; Müller, Steffen; Martín, Silvia Míllan; Pauers, Martin; Reuss, Franziska; Cosgrave, Eoin F; Anneren, Cecilia; Davey, Gavin P; Rudd, Pauline M

    2017-10-01

    Fc gamma receptors (FcγR) bind the Fc region of antibodies and therefore play a prominent role in antibody-dependent cell-based immune responses such as ADCC, CDC and ADCP. The immune effector cell activity is directly linked to a productive molecular engagement of FcγRs where both the protein and glycan moiety of antibody and receptor can affect the interaction and in the present study we focus on the role of the FcγR glycans in this interaction. We provide a complete description of the glycan composition of Chinese hamster ovary (CHO) expressed human Fcγ receptors RI (CD64), RIIa Arg131/His131 (CD32a), RIIb (CD32b) and RIIIa Phe158/Val158 (CD16a) and analyze the role of the glycans in the binding mechanism with IgG. The interactions of the monoclonal antibody rituximab with each FcγR were characterized and we discuss the CHO-FcγRIIIa Phe158/Val158 and CHO-FcγRI interactions and compare them to the equivalent interactions with human (HEK293) and murine (NS0) produced receptors. Our results reveal clear differences in the binding profiles of rituximab, which we attribute in each case to the differences in host cell-dependent FcγR glycosylation. The glycan profiles of CHO expressed FcγRI and FcγRIIIa Phe158/Val158 were compared with the glycan profiles of the receptors expressed in NS0 and HEK293 cells and we show that the glycan type and abundance differs significantly between the receptors and that these glycan differences lead to the observed differences in the respective FcγR binding patterns with rituximab. Oligomannose structures are prevalent on FcγRI from each source and likely contribute to the high affinity rituximab interaction through a stabilization effect. On FcγRI and FcγRIIIa large and sialylated glycans have a negative impact on rituximab binding, likely through destabilization of the interaction. In conclusion, the data show that the IgG1-FcγR binding kinetics differ depending on the glycosylation of the FcγR and further support a

  14. Microvesicle Cargo of Tumor-Associated MUC1 to Dendritic Cells Allows Cross-presentation and Specific Carbohydrate Processing

    DEFF Research Database (Denmark)

    Rughetti, Aurelia; Rahimi, Hassan; Belleudi, Francesca

    2014-01-01

    Tumor-associated glycoproteins are a group of antigens with high immunogenic interest: The glycoforms generated by the aberrant glycosylation are tumor-specific and the novel glycoepitopes exposed can be targets of tumor-specific immune responses. The MUC1 antigen is one of the most relevant tumo...

  15. Differential effect on TCR:CD3 stimulation of a 90-kD glycoprotein (gp90/Mac-2BP), a member of the scavenger receptor cysteine-rich domain protein family

    DEFF Research Database (Denmark)

    Silvestri, B; Calderazzo, F; Coppola, V

    1998-01-01

    We studied the effects of a 90-kD glycoprotein (gp90/Mac-2BP) belonging to the scavenger receptor family, present in normal serum and at increased levels in inflammatory disease and cancer patients, on some T cell function parameters. Whereas the lymphocyte proliferative response to non-specific ......We studied the effects of a 90-kD glycoprotein (gp90/Mac-2BP) belonging to the scavenger receptor family, present in normal serum and at increased levels in inflammatory disease and cancer patients, on some T cell function parameters. Whereas the lymphocyte proliferative response to non......-specific mitogens such as phytohaemagglutinin (PHA) and concanavalin A (Con A), but not pokeweed mitogen (PWM), was strongly reduced, probably due to the lectin-binding properties of gp90/Mac-2BP, the response to T cell receptor (TCR) agonists such as superantigens and allogeneic cells was potentiated. When...... lymphocytes were stimulated with different anti-TCR:CD3 MoAbs, both in soluble and solid-phase form, gp90/Mac-2BP was able to down-regulate the proliferative response to anti-CD3 MoAb, whereas the response to anti-TCR alphabeta MoAb was enhanced. A similar differential effect was observed when a MoAb against...

  16. Identification of distinct glycoforms of IgA1 in plasma from patients with IgA nephropathy and healthy individuals

    DEFF Research Database (Denmark)

    Lehoux, Sylvain; Mi, Rongjuan; Aryal, Rajindra P

    2014-01-01

    Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis worldwide and is histologically characterized by the deposition of IgA1 and consequent inflammation in the glomerular mesangium. Prior studies suggested that serum IgA1 from IgAN patients contains aberrant, undergal......Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis worldwide and is histologically characterized by the deposition of IgA1 and consequent inflammation in the glomerular mesangium. Prior studies suggested that serum IgA1 from IgAN patients contains aberrant...... there are different glycoforms of IgA1 in plasma from patients with IgAN and healthy individuals. While total plasma IgA in IgAN patients was elevated ~1.6-fold compared to that in healthy donors, IgA1 in all samples was unexpectedly separable into two distinct glycoforms: one with core 1 based O......-glycans, and the other exclusively containing Tn/STn structures. Importantly, Tn antigen present on IgA1 from IgAN patients and controls was convertible into the core 1 structure in vitro by recombinant T-synthase. Our results demonstrate that undergalactosylation of O-glycans in IgA1 is not restricted to Ig...

  17. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners.

    Science.gov (United States)

    Muramatsu, Takashi

    2016-05-01

    Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society.

  18. Molecular cloning of a novel, putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals

    DEFF Research Database (Denmark)

    Nothacker, H P; Grimmelikhuijzen, C J

    1993-01-01

    hormone (FSH, TSH, LH/CG) receptor family from mammals, including a very large, extracellular N terminus (18-25% sequence identity) and a 7 transmembrane region (44-48% sequence identity). As with the mammalian glycoprotein hormone receptor genes, the sea anemone receptor gene yields transcripts which can...... be alternatively spliced, thereby yielding a shortened receptor variant only containing the large extracellular (soluble) N terminus. All this is strong evidence that the putative glycoprotein hormone receptor from sea anemones is evolutionarily related to those from mammals. This is the first report showing...

  19. Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein.

    Science.gov (United States)

    Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M

    2016-06-01

    Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the

  20. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340.

    Science.gov (United States)

    Prakobphol, A; Xu, F; Hoang, V M; Larsson, T; Bergstrom, J; Johansson, I; Frängsmyr, L; Holmskov, U; Leffler, H; Nilsson, C; Borén, T; Wright, J R; Strömberg, N; Fisher, S J

    2000-12-22

    Salivary agglutinin is a high molecular mass component of human saliva that binds Streptococcus mutans, an oral bacterium implicated in dental caries. To study its protein sequence, we isolated the agglutinin from human parotid saliva. After trypsin digestion, a portion was analyzed by matrix-assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), which gave the molecular mass of 14 unique peptides. The remainder of the digest was subjected to high performance liquid chromatography, and the separated peptides were analyzed by MALDI-TOF/post-source decay; the spectra gave the sequences of five peptides. The molecular mass and peptide sequence information showed that salivary agglutinin peptides were identical to sequences in lung (lavage) gp-340, a member of the scavenger receptor cysteine-rich protein family. Immunoblotting with antibodies that specifically recognized either lung gp-340 or the agglutinin confirmed that the salivary agglutinin was gp-340. Immunoblotting with an antibody specific to the sialyl Le(x) carbohydrate epitope detected expression on the salivary but not the lung glycoprotein, possible evidence of different glycoforms. The salivary agglutinin also interacted with Helicobacter pylori, implicated in gastritis and peptic ulcer disease, Streptococcus agalactiae, implicated in neonatal meningitis, and several oral commensal streptococci. These results identify the salivary agglutinin as gp-340 and suggest it binds bacteria that are important determinants of either the oral ecology or systemic diseases.

  1. Glycoprotein Ibα receptor instability is associated with loss of quality in platelets produced in culture.

    Science.gov (United States)

    Robert, Amélie; Boyer, Lucie; Pineault, Nicolas

    2011-03-01

    The development of culture processes for hematopoietic progenitors could lead to the development of a complementary source of platelets for therapeutic purposes. However, functional characterization of culture-derived platelets remains limited, which raises some uncertainties about the quality of platelets produced in vitro. The aim of this study was to define the proportion of functional platelets produced in cord blood CD34+ cell cultures. Toward this, the morphological and functional properties of culture-derived platelet-like particles (PLPs) were critically compared to that of blood platelets. Flow cytometry combined with transmission electron microscopy analyses revealed that PLPs formed a more heterogeneous population of platelets at a different stage of maturation than blood platelets. The majority of PLPs harbored the fibrinogen receptor αIIbβ3, but a significant proportion failed to maintain glycoprotein (GP)Ibα surface expression, a component of the vWF receptor essential for platelet functions. Importantly, GPIbα extracellular expression correlated closely with platelet function, as the GPIIb+ GPIbα+ PLP subfraction responded normally to agonist stimulation as evidenced by α-granule release, adhesion, spreading, and aggregation. In contrast, the GPIIb+ GPIbα⁻ subfraction was unresponsive in most functional assays and appeared to be metabolically inactive. The present study confirms that functional platelets can be generated in cord blood CD34+ cell cultures, though these are highly susceptible to ectodomain shedding of receptors associated with loss of function. Optimization of culture conditions to prevent these deleterious effects and to homogenize PLPs is necessary to improve the quality and yields of culture-derived platelets before they can be recognized as a suitable complementary source for therapeutic purposes.

  2. Efficient subgroup C avian sarcoma and leukosis virus receptor activity requires the IgV domain of the Tvc receptor and proper display on the cell membrane.

    Science.gov (United States)

    Munguia, Audelia; Federspiel, Mark J

    2008-11-01

    We recently identified and cloned the receptor for subgroup C avian sarcoma and leukosis viruses [ASLV(C)], i.e., Tvc, a protein most closely related to mammalian butyrophilins, which are members of the immunoglobulin protein family. The extracellular domain of Tvc contains two immunoglobulin-like domains, IgV and IgC, which presumably each contain a disulfide bond important for native function of the protein. In this study, we have begun to identify the functional determinants of Tvc responsible for ASLV(C) receptor activity. We found that the IgV domain of the Tvc receptor is responsible for interacting with the glycoprotein of ASLV(C). Additional experiments demonstrated that a domain was necessary as a spacer between the IgV domain and the membrane-spanning domain for efficient Tvc receptor activity, most likely to orient the IgV domain a proper distance from the cell membrane. The effects on ASLV(C) glycoprotein binding and infection efficiency were also studied by site-directed mutagenesis of the cysteine residues of Tvc as well as conserved amino acid residues of the IgV Tvc domain compared to other IgV domains. In this initial analysis of Tvc determinants important for interacting with ASLV(C) glycoproteins, at least two aromatic amino acid residues in the IgV domain of Tvc, Trp-48 and Tyr-105, were identified as critical for efficient ASLV(C) infection. Interestingly, one or more aromatic amino acid residues have been identified as critical determinants in the other ASLV(A-E) receptors for a proper interaction with ASLV glycoproteins. This suggests that the ASLV glycoproteins may share a common mechanism of receptor interaction with an aromatic residue(s) on the receptor critical for triggering conformational changes in SU that initiate the fusion process required for efficient virus infection.

  3. Efficient Subgroup C Avian Sarcoma and Leukosis Virus Receptor Activity Requires the IgV Domain of the Tvc Receptor and Proper Display on the Cell Membrane▿

    Science.gov (United States)

    Munguia, Audelia; Federspiel, Mark J.

    2008-01-01

    We recently identified and cloned the receptor for subgroup C avian sarcoma and leukosis viruses [ASLV(C)], i.e., Tvc, a protein most closely related to mammalian butyrophilins, which are members of the immunoglobulin protein family. The extracellular domain of Tvc contains two immunoglobulin-like domains, IgV and IgC, which presumably each contain a disulfide bond important for native function of the protein. In this study, we have begun to identify the functional determinants of Tvc responsible for ASLV(C) receptor activity. We found that the IgV domain of the Tvc receptor is responsible for interacting with the glycoprotein of ASLV(C). Additional experiments demonstrated that a domain was necessary as a spacer between the IgV domain and the membrane-spanning domain for efficient Tvc receptor activity, most likely to orient the IgV domain a proper distance from the cell membrane. The effects on ASLV(C) glycoprotein binding and infection efficiency were also studied by site-directed mutagenesis of the cysteine residues of Tvc as well as conserved amino acid residues of the IgV Tvc domain compared to other IgV domains. In this initial analysis of Tvc determinants important for interacting with ASLV(C) glycoproteins, at least two aromatic amino acid residues in the IgV domain of Tvc, Trp-48 and Tyr-105, were identified as critical for efficient ASLV(C) infection. Interestingly, one or more aromatic amino acid residues have been identified as critical determinants in the other ASLV(A-E) receptors for a proper interaction with ASLV glycoproteins. This suggests that the ASLV glycoproteins may share a common mechanism of receptor interaction with an aromatic residue(s) on the receptor critical for triggering conformational changes in SU that initiate the fusion process required for efficient virus infection. PMID:18768966

  4. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    Science.gov (United States)

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  5. Distinctive receptor binding properties of the surface glycoprotein of a natural Feline Leukemia Virus isolate with unusual disease spectrum

    Directory of Open Access Journals (Sweden)

    Albritton Lorraine M

    2011-05-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Results Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. Conclusions The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  6. Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins.

    Science.gov (United States)

    Weir, Dawn L; Smith, Ina L; Bossart, Katharine N; Wang, Lin-Fa; Broder, Christopher C

    2013-09-01

    Australian bat lyssavirus (ABLV) is a rhabdovirus of the lyssavirus genus capable of causing fatal rabies-like encephalitis in humans. There are two variants of ABLV, one circulating in pteropid fruit bats and another in insectivorous bats. Three fatal human cases of ABLV infection have been reported with the third case in 2013. Importantly, two equine cases also arose in 2013; the first occurrence of ABLV in a species other than bats or humans. We examined the host cell entry of ABLV, characterizing its tropism and exploring its cross-species transmission potential using maxGFP-encoding recombinant vesicular stomatitis viruses that express ABLV G glycoproteins. Results indicate that the ABLV receptor(s) is conserved but not ubiquitous among mammalian cell lines and that the two ABLV variants can utilize alternate receptors for entry. Proposed rabies virus receptors were not sufficient to permit ABLV entry into resistant cells, suggesting that ABLV utilizes an unknown alternative receptor(s). Published by Elsevier Inc.

  7. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  8. Interaction and inhibition of dengue envelope glycoprotein with mammalian receptor DC-sign, an in-silico approach.

    Directory of Open Access Journals (Sweden)

    Masaud Shah

    Full Text Available Membrane fusion is the central molecular event during the entry of enveloped viruses into cells. The critical agents of this process are viral surface proteins, primed to facilitate cell bilayer fusion. The important role of Dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN in Dengue virus transmission makes it an attractive target to interfere with Dengue virus Propagation. Receptor mediated endocytosis allows the entry of virions due to the presence of endosomal membranes and low pH-induced fusion of the virus. DC-SIGN is the best characterized molecule among the candidate protein receptors and is able to mediate infection with the four serotypes of dengue virus (DENV. Unrestrained pair wise docking was used for the interaction of dengue envelope protein with DC-SIGN and monoclonal antibody 2G12. Pre-processed the PDB coordinates of dengue envelope glycoprotein and other candidate proteins were prepared and energy minimized through AMBER99 force field distributed in MOE software. Protein-protein interaction server, ZDOCK was used to find molecular interaction among the candidate proteins. Based on these interactions it was found that antibody successfully blocks the glycosylation site ASN 67 and other conserved residues present at DC-SIGN-Den-E complex interface. In order to know for certain, the exact location of the antibody in the envelope protein, co-crystallize of the envelope protein with these compounds is needed so that their exact docking locations can be identified with respect to our results.

  9. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    Science.gov (United States)

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  10. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Rafael Simó

    Full Text Available Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes and in vivo (C57BL6/mice experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not

  11. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Science.gov (United States)

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  12. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  13. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  14. Amino acid differences in glycoproteins B (gB, C (gC, H (gH and L(gL are associated with enhanced herpes simplex virus type-1 (McKrae entry via the paired immunoglobulin-like type-2 receptor α

    Directory of Open Access Journals (Sweden)

    Chowdhury Sona

    2012-06-01

    Full Text Available Abstract Background Herpes simplex virus type-1 (HSV-1 enters into cells via membrane fusion of the viral envelope with plasma or endosomal membranes mediated by viral glycoproteins. HSV-1 virions attach to cell surfaces by binding of viral glycoproteins gC, gD and gB to specific cellular receptors. Here we show that the human ocular and highly neurovirulent HSV-1 strain McKrae enters substantially more efficiently into cells via the gB-specific human paired immunoglobulin-like type-2 receptor-α (hPILR-α. Comparison of the predicted amino acid sequences between HSV-1(F and McKrae strains indicates that amino acid changes within gB, gC, gH and gL may cause increased entry via the hPILR- α receptor. Results HSV-1 (McKrae entered substantially more efficiently than viral strain F in Chinese hamster ovary (CHO cells expressing hPIRL-α but not within CHO-human nectin-1, -(CHO-hNectin-1, CHO-human HVEM (CHO-hHVEM or Vero cells. The McKrae genes encoding viral glycoproteins gB, gC, gD, gH, gL, gK and the membrane protein UL20 were sequenced and their predicted amino acid (aa sequences were compared with virulent strains F, H129, and the attenuated laboratory strain KOS. Most aa differences between McKrae and F were located at their gB amino termini known to bind with the PILRα receptor. These aa changes included a C10R change, also seen in the neurovirulent strain ANG, as well as redistribution and increase of proline residues. Comparison of gC aa sequences revealed multiple aa changes including an L132P change within the 129-247 aa region known to bind to heparan sulfate (HS receptors. Two aa changes were located within the H1 domain of gH that binds gL. Multiple aa changes were located within the McKrae gL sequence, which were preserved in the H129 isolate, but differed for the F strain. Viral glycoproteins gD and gK and the membrane protein UL20 were conserved between McKrae and F strains. Conclusions The results indicate that the observed

  15. The cellular receptors for infectious bursal disease virus | Zhu ...

    African Journals Online (AJOL)

    Virus receptors are simplistically defined as cell surface molecules that mediate binding (attachment, adsorption) and/or trigger membrane fusion or entry through other processes. Infectious bursal disease virus (IBDV) entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoprotein, ...

  16. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface.

    Directory of Open Access Journals (Sweden)

    Claudia S Priglinger

    Full Text Available Proliferative vitreoretinopathy (PVR is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers

  17. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    Science.gov (United States)

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and

  18. Experimental study of 99mTc-NGA--a imaging agent of hepatic asialo-glycoprotein receptor

    International Nuclear Information System (INIS)

    Zhang Rongjun; Jin Jian; Liang Gaolin; Wan Weixing; Li Wenxin; Tao Yonghui; Hu Mingyang

    2001-01-01

    Galactosyl neo-glycol-albumin (NGA), a specific ligand of asialo-glycoprotein receptor (ASGPR), was synthesized and identified. FITC-HSA and FITC-NGA was prepared by the method of Marshal. NGA was labeled directly with Na 99m TcO 4 . Contrasted with FITC-HSA, FITC-NGA was analyzed with flow cytometry (FCM). The results of FCM analysis showed that the amounts of ASGPR on the surface of normal hepatic cells, chronic injured ones and carcinoma ones was different obviously. Their values of MIF were 228.7, 5.81 and 1.13 respectively. The worse the hepatic cell was injured, the lower the values of MIF decreased. The amounts of ASGPR on the surface of per normal hepatic cell was about 8 x 10 6 . The ASGPRs on 1 x 10 6 hepatic cells can be saturated by 0.4 μg FITC-NGA, and the combination of ASGPR with FITC-NGA can be inhibited by 50 times amounts of NGA. It showed that NGA is a specific ligand of ASGPR. Biodistribution in mice showed that 99m Tc-NGA could be up taken specifically by liver of mice, and had the characteristic of saturation. The radioactivities of other organs were all low, and that of intestinal tract increased with time. The liver imaging of normal and model animals showed that the rates of blood clearance of normal animals were higher than that of liver injured model animal and the imaging could be inhibited by excessive NGA; The simple kinetics analysis indicated that comparing the normal animals and the model animals, the time-radioactivity curves of both hearts and livers were obviously different. The values of receptor index (LHL15) were 0.980 +- 0.010 and 0.949 +- 0.025 (n = 6), respectively

  19. Does alpha 1-acid glycoprotein act as a non-functional receptor for alpha 1-adrenergic antagonists?

    Science.gov (United States)

    Qin, M; Oie, S

    1994-11-01

    The ability of a variety of alpha 1-acid glycoproteins (AAG) to affect the intrinsic activity of the alpha 1-adrenergic antagonist prazosin was studied in rabbit aortic strip preparations. From these studies, the activity of AAG appears to be linked to their ability to bind the antagonist. However, a capability to bind prazosin was not the only requirement for this effect. The removal of sialic acid and partial removal of the galactose and mannose residues by periodate oxidation of human AAG all but eliminated the ability of AAG to affect the intrinsic pharmacologic activity of prazosin, although the binding of prazosin was not significantly affected. The presence of bovine AAG, a protein that has a low ability to bind prazosin, reduced the effect of human AAG on prazosin activity. Based upon these results, we propose that AAG is able to bind in the vicinity of the alpha 1-adrenoceptors, therefore extending the binding region for antagonists in such a way as to decrease the ability of the antagonist to interact with the receptor. The carbohydrate side-chains are important for the binding of AAG in the region of the adrenoceptor.

  20. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine.

    Science.gov (United States)

    Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong

    2018-03-01

    The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.

  1. Paired Immunoglobulin-like Receptor B Knockout Does Not Enhance Axonal Regeneration or Locomotor Recovery after Spinal Cord Injury*

    OpenAIRE

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2010-01-01

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tr...

  2. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  3. Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans.

    Science.gov (United States)

    Katoh, Toshihiko; Katayama, Takane; Tomabechi, Yusuke; Nishikawa, Yoshihide; Kumada, Jyunichi; Matsuzaki, Yuji; Yamamoto, Kenji

    2016-10-28

    Endo-β-N-acetylglucosaminidase M (Endo-M), an endoglycosidase from the fungus Mucor hiemalis, is a useful tool for chemoenzymatic synthesis of glycoconjugates, including glycoprotein-based therapeutics having a precisely defined glycoform, by virtue of its transglycosylation activity. Although Endo-M has been known to act on various N-glycans, it does not act on core-fucosylated N-glycans, which exist widely in mammalian glycoproteins, thus limiting its application. Therefore, we performed site-directed mutagenesis on Endo-M to isolate mutant enzymes that are able to act on mammalian-type core-α1,6-fucosylated glycans. Among the Endo-M mutant enzymes generated, those in which the tryptophan at position 251 was substituted with alanine or asparagine showed altered substrate specificities. Such mutant enzymes exhibited increased hydrolysis of a synthetic α1,6-fucosylated trimannosyl core structure, whereas their activity on the afucosylated form decreased. In addition, among the Trp-251 mutants, the W251N mutant was most efficient in hydrolyzing the core-fucosylated substrate. W251N mutants could act on the immunoglobulin G-derived core-fucosylated glycopeptides and human lactoferrin glycoproteins. This mutant was also capable of transferring the sialyl glycan from an activated substrate intermediate (sialyl glyco-oxazoline) onto an α1,6-fucosyl-N-acetylglucosaminyl biotin. Furthermore, the W251N mutant gained a glycosynthase-like activity when a N175Q substitution was introduced and it caused accumulation of the transglycosylation products. These findings not only give insights into the substrate recognition mechanism of glycoside hydrolase family 85 enzymes but also widen their scope of application in preparing homogeneous glycoforms of core-fucosylated glycoproteins for the production of potent glycoprotein-based therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor α-subunits and platelet glycoprotein IIb

    International Nuclear Information System (INIS)

    Fitzgerald, L.A.; Poncz, M.; Steiner, B.; Rall, S.C. Jr.; Bennett, J.S.; Phillips, D.R.

    1987-01-01

    The fibronectin receptor (FnR), the vitronectin receptor (VnR), and the platelet membrane glycoprotein (GP) IIb-IIIa complex are members of a family of cell adhesion receptors, which consist of noncovalently associated α- and β-subunits. The present study was designed to compare the cDNA-derived protein sequences of the α-subunits of human FnR, VnR, and platelet GP IIb. cDNA clones for the α-subunit of the FnR (FnR/sub α/) were obtained from a human umbilical vein endothelial (HUVE) cell library by using an oligonucleotide probe designed from a peptide sequence of platelet GP IIb. cDNA clones for platelet GP IIb were isolated from a cDNA expression library of human erythroleukemia cells by using antibodies. cDNA clones of the VnR α-subunit (VnR/sub α/) were obtained from the HUVE cell library by using an oligonucleotide probe from the partial cDNA sequence for the VnR/sub α/. Translation of these sequences showed that the FNR/sub α/, the VnR/sub α/, and GP IIb are composed of disulfide-linked large (858-871 amino acids) and small (137-158 amino acids) chains that are posttranslationally processed from a single mRNA. A single hydrophobic segment located near the carboxyl terminus of each small chain appears to be a transmembrane domain. The large chains appear to be entirely extracellular, and each contains four repeated putative Ca 2+ -binding domains of about 30 amino acids that have sequence similarities to other Ca 2+ -binding proteins. The identity among the protein sequences of the three receptor α-subunits ranges from 36.1% to 44.5%, with the Ca 2+ -binding domains having the greatest homology. These proteins apparently evolved by a process of gene duplication

  5. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  6. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway

    NARCIS (Netherlands)

    Leito, Jelani T. D.; Ligtenberg, Antoon J. M.; van Houdt, Michel; van den Berg, Timo K.; Wouters, Diana

    2011-01-01

    Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor

  7. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification.

    Science.gov (United States)

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-07-07

    Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.

  8. Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma.

    Science.gov (United States)

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-07-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers.

  9. A Multidimensional Analytical Comparison of Remicade and the Biosimilar Remsima.

    Science.gov (United States)

    Pisupati, Karthik; Tian, Yuwei; Okbazghi, Solomon; Benet, Alexander; Ackermann, Rose; Ford, Michael; Saveliev, Sergei; Hosfield, Christopher M; Urh, Marjeta; Carlson, Eric; Becker, Christopher; Tolbert, Thomas J; Schwendeman, Steven P; Ruotolo, Brandon T; Schwendeman, Anna

    2017-05-02

    In April 2016, the Food and Drug Administration approved the first biosimilar monoclonal antibody (mAb), Inflectra/Remsima (Celltrion), based off the original product Remicade (infliximab, Janssen). Biosimilars promise significant cost savings for patients, but the unavoidable differences between innovator and copycat biologics raise questions regarding product interchangeability. In this study, Remicade and Remsima were examined by native mass spectrometry, ion mobility, and quantitative peptide mapping. The levels of oxidation, deamidation, and mutation of individual amino acids were remarkably similar. We found different levels of C-terminal truncation, soluble protein aggregates, and glycation that all likely have a limited clinical impact. Importantly, we identified more than 25 glycoforms for each product and observed glycoform population differences, with afucosylated glycans accounting for 19.7% of Remicade and 13.2% of Remsima glycoforms, which translated into a 2-fold reduction in the level of FcγIIIa receptor binding for Remsima. While this difference was acknowledged in Remsima regulatory filings, our glycoform analysis and receptor binding results appear to be somewhat different from the published values, likely because of methodological differences between laboratories and improved glycoform identification by our laboratory using a peptide map-based method. Our mass spectrometry-based analysis provides rapid and robust analytical information vital for biosimilar development. We have demonstrated the utility of our multiple-attribute monitoring workflow using the model mAbs Remicade and Remsima and have provided a template for analysis of future mAb biosimilars.

  10. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... residues. The mammalian C-type lectin bovine conglutinin was examined for its ability to interact with recombinant gp160 (rgp160) produced in vaccinia virus-infected BHK21 cells. Specific binding of conglutinin to rgp160 was demonstrated by ELISA. The interaction of bovine conglutinin with rgp160...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  11. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    International Nuclear Information System (INIS)

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  12. Cell wall O-glycoproteins and N-glycoproteins: biosynthesis and some functional aspects.

    Directory of Open Access Journals (Sweden)

    Eric eNguema-Ona

    2014-10-01

    Full Text Available Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensin, the O-glycan chains of arabinogalactan proteins are highly heterogeneous consisting mostly of (i a short oligo-arabinoside chain of three to four residues, and (ii a larger -1,3-linked galactan backbone with -1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core 1,2-xylose, core 1,3-fucose residues and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins only extensin and arabinogalactan proteins are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

  13. Recombinant pestivirus E2 glycoproteins prevent viral attachment to permissive and non permissive cells with different efficiency.

    Science.gov (United States)

    Asfor, A S; Wakeley, P R; Drew, T W; Paton, D J

    2014-08-30

    Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions

    International Nuclear Information System (INIS)

    Kunz, Stefan; Edelmann, Kurt H.; Torre, Juan-Carlos de la; Gorney, Robert; Oldstone, Michael B.A.

    2003-01-01

    The glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) serves as virus attachment protein to its receptor on host cells and is a key determinant for cell tropism, pathogenesis, and epidemiology of the virus. The GP of LCMV is posttranslationally cleaved by the subtilase SKI-1/S1P into two subunits, the peripheral GP1, which is implicated in receptor binding, and the transmembrane GP2 that is structurally similar to the fusion active membrane proximal portions of the glycoproteins of other enveloped viruses. The present study shows that cleavage by SKI-1/S1P is not required for cell surface expression of LCMVGP on infected cells but is essential for its incorporation into virions and for the production of infectious virus particles. In absence of SKI-1/S1P cleavage, cell-to-cell propagation of the virus was markedly reduced. Further, proteolytic processing of LCMVGP depends on the presence of a cluster of basic amino acids at the C-terminus of the cytoplasmic domain of GP2, a structural motif that is conserved in Old World arenaviruses. The effect of the truncation of the cytoplasmic tail on cleavage suggests a structural interdependence between the cytoplasmic domain and the ectodomains of LCMVGP

  15. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  16. Human platelet glycoprotein IX: An adhesive prototype of leucine-rich glycoproteins with flank-center-flank structures

    International Nuclear Information System (INIS)

    Hickey, M.J.; Williams, S.A.; Roth, G.J.

    1989-01-01

    The glycoprotein (GP) Ib-IX complex on the surface of human platelets functions as the von Willebrand factor receptor and mediates von Willebrand factor-dependent platelet adhesion to blood vessels. GPIX is a relatively small (M r , 17,000) protein that may provide for membrane insertion and orientation of the larger component of the complex. GPIb (M r , 165,000). Using antibody screening, the authors cloned a cDNA encoding GPIX from a human erythroleukemia cell cDNA library constructed in phage λgt11. Lacking a 5' untranslated region and start codon, the cDNA sequence includes 604 nucleotides, beginning with 495 bases at the 5' end coding for 165 amino acids, followed by a stop codon and 106 noncoding bases at the 3' end. By Northern blot analysis, the GPIX cDNA hybridizes with a single 1.0-kilobase species of platelet poly(A) + RNA. Translation of the cDNA sequence gives a predicted protein sequence beginning with a truncated putative signal sequence of 5 amino acids followed by a sequence of 17 amino acids matching that determined directly by Edman degradation of intact GPIX. GPIX contains a leucine-rich glycoprotein (LRG) sequence of 24 amino acids similar to conserved LRG sequences in GPIb and other proteins from humans, Drosophila, and yeast. The role of the flank-LRG center-flank structure in the evolution and function of the LRG proteins remains to be defined

  17. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    International Nuclear Information System (INIS)

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-01-01

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  18. Fraction A of armadillo submandibular glycoprotein and its desialylated product as sialyl-Tn and Tn receptors for lectins.

    Science.gov (United States)

    Wu, A M; Shen, F; Herp, A; Song, S C; Wu, J H

    1995-02-27

    Fraction A of the armadillo submandibular glycoprotein (ASG-A) is one of the simplest glycoproteins among mammalian salivary mucins. The carbohydrate side chains of this mucous glycoprotein have one-third of the NeuAc alpha 2-->6GalNAc (sialyl-Tn) sequence and two thirds of Tn (GalNAc alpha-->Ser/Thr) residues. Those of the desialylated product (ASG-Tn) are almost exclusively unsubstituted GalNAc residues (Tn determinant). When the binding properties of these glycoproteins were tested by a precipitin assay with Gal, GalNAc and GlcNAc specific lectins, it was found that ASG-Tn reacted strongly with all of the Tn-active lectins and completely precipitated Vicia villosa (VVL both B4 and mixture of A and B), Maclura pomifera (MPA), and Artocarpus integrifolia (jacalin) lectins. However, it precipitated poorly or negligibly with Ricinus communis (RCA1); Dolichos biflorus (DBA); Viscum album, ML-I; Arachis hypogaea (PNA), and Triticum vulgaris (WGA). The reactivity of ASG-A (sialyl-Tn) was as active as that of ASG-Tn with MPA and less or slightly less active than that of ASG-Tn with VVL-A+B, VVL-B4, HPA, WFA, and jacalin, as one-third of its Tn was sialylated. These findings indicate that ASG-A and its desialylated product (ASG-Tn) are highly useful reagents for the differentiation of Tn, T (Gal beta 1-->3GalNAc), A (GalNAc alpha 1-->3Gal) or Gal specific lectins and monoclonal antibodies against such epitopes.

  19. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Sanders, Rogier W.; Vesanen, Mika; Schuelke, Norbert; Master, Aditi; Schiffner, Linnea; Kalyanaraman, Roopa; Paluch, Maciej; Berkhout, Ben; Maddon, Paul J.; Olson, William C.; Lu, Min; Moore, John P.

    2002-01-01

    The envelope glycoprotein (Env) complex of human immunodeficiency virus type I has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41

  20. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  1. Dimers of beta 2-glycoprotein I mimic the in vitro effects of beta 2-glycoprotein I-anti-beta 2-glycoprotein I antibody complexes

    NARCIS (Netherlands)

    Lutters, B. C.; Meijers, J. C.; Derksen, R. H.; Arnout, J.; de Groot, P. G.

    2001-01-01

    Anti-beta(2)-glycoprotein I antibodies are thought to cause lupus anticoagulant activity by forming bivalent complexes with beta(2)-glycoprotein I (beta(2)GPI). To test this hypothesis, chimeric fusion proteins were constructed of the dimerization domain (apple 4) of factor XI and beta(2)GPI. Both a

  2. Vertebrate scavenger receptor class B member 2 (SCARB2: comparative studies of a major lysosomal membrane glycoprotein

    Directory of Open Access Journals (Sweden)

    Roger Stephen Holmes

    2012-06-01

    Full Text Available Scavenger receptor class B member 2 (SCARB2 (also LIMP-2, CD36L2 or LGP85 is a major lysosomal membrane glycoprotein involved in endosomal and lysosomal biogenesis and maintenance. SCARB2 acts as a receptor for the lysosomal mannose-6-phosphate independent targeting of β-glucuronidase and enterovirus 71 and influences Parkinson’s disease and epilepsy. Genetic deficiency of this protein causes deafness and peripheral neuropathy in mice as well as myoclonic epilepsy and nephrotic syndrome in humans. Comparative SCARB2 amino acid sequences and structures and SCARB2 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB2 sequences shared 43-100% identity as compared with 30-36% sequence identities with other CD36-like superfamily members, SCARB1 and CD36. At least 10 N-glycosylation sites were conserved among most vertebrate SCARB2 proteins examined. Sequence alignments, key amino acid residues and conserved predicted secondary structures were examined, including cytoplasmic, transmembrane and external lysosomal membrane sequences: cysteine disulfide residues, thrombospondin (THP1 binding sites and 16 proline and 20 glycine conserved residues, which may contribute to short loop formation within the exomembrane SCARB2 sequences. Vertebrate SCARB2 genes contained 12 coding exons. The human SCARB2 gene contained a CpG island (CpG100, ten microRNA-binding sites and several transcription factor binding sites (including PPARA which may contribute to a higher level (2.4 times average of gene expression. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate SCARB2 gene with vertebrate SCARB1 and CD36 genes. These suggested that SCARB2 originated from duplications of the CD36 gene in an ancestral genome forming three vertebrate CD36 gene family members: SCARB1, SCARB2 and CD36.

  3. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  4. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria

    NARCIS (Netherlands)

    Fabriek, Babs O.; van Bruggen, Robin; Deng, Dong Mei; Ligtenberg, Antoon J. M.; Nazmi, Kamran; Schornagel, Karin; Vloet, Rianka P. M.; Dijkstra, Christine D.; van den Berg, Timo K.

    2009-01-01

    The plasma membrane glycoprotein receptor CD163 is a member of the scavenger receptor cystein-rich (SRCR) superfamily class B that is highly expressed on resident tissue macrophages in vivo. Previously, the molecule has been shown to act as a receptor for hemoglobin-haptoglobin complexes and to

  5. Secretion of biologically active glycoforms of bovine follicle stimulating hormone in plants

    NARCIS (Netherlands)

    Dirnberger, D.; Steinkellner, H.; Abdennebi, L.; Remy, J.J.; Wiel, van de D.

    2001-01-01

    We chose the follicle stimulating hormone (FSH), a pituitary heterodimeric glycoprotein hormone, as a model to assess the ability of the plant cell to express a recombinant protein that requires extensive N-glycosylation for subunit folding and assembly, intracellular trafficking, signal

  6. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    José L. Affranchino

    2014-01-01

    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  7. Structure-function relationships for the interleukin 2 receptor system

    Directory of Open Access Journals (Sweden)

    Richard J. Robb

    1987-01-01

    Full Text Available Receptors for interleukin 2 (IL-2 esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta] chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.

  8. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1 in the seizure-induced P-glycoprotein (P-gp overexpression and the underlying mechanism. Kainic acid (KA-induced mouse seizure model was used for in vivo experiments. Male C57BL/6 mice were divided into four groups: normal saline control (NS group, KA-induced epileptic seizure (EP group, and EP group pretreated with HMGB1 (EP+HMGB1 group or BoxA (HMGB1 antagonist, EP+BoxA group. Compared to the NS group, increased levels of HMGB1 and P-gp in the brain were observed in the EP group. Injection of HMGB1 before the induction of KA further increased the expression of P-gp while pre-treatment with BoxA abolished this up-regulation. Next, the regulatory role of HMGB1 and its potential involved signal pathways were investigated in mouse microvascular endothelial bEnd.3 cells in vitro. Cells were treated with HMGB1, HMGB1 plus lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS [toll-like receptor 4 (TLR4 antagonist], HMGB1 plus FPS-ZM1 [receptor for advanced glycation end products (RAGE inhibitor], HMGB1 plus SN50 [nuclear factor-kappa B (NF-κB inhibitor], or vehicle. Treatment with HMGB1 increased the expression levels of P-gp, TLR4, RAGE and the activation of NF-κB in bEnd.3 cells. These effects were inhibited by the pre-treatment with either LPS-RS or FPS-ZM1, and were abolished by the pre-treatment of SN50 or a combination treatment of both LPS-RS and FPS-ZM1. Luciferase reporter assays showed that exogenous expression of NF-κB p65 increased the promoter activity of multidrug resistance 1a (P-gp-encoding gene in endothelial cells. These data indicate that HMGB1 contributes to the overexpression of P-gp in mouse epileptic brain tissues via activation of TLR4/RAGE receptors and the downstream transcription factor NF-κB in brain microvascular endothelial cells.

  9. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-κB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway.

    Directory of Open Access Journals (Sweden)

    Mingsheng Cai

    Full Text Available The innate immune response plays a critical role in the host defense against invading pathogens, and TLR2, a member of the Toll-like receptor (TLR family, has been implicated in the immune response and initiation of inflammatory cytokine secretion against several human viruses. Previous studies have demonstrated that infectious and ultraviolet-inactivated herpes simplex virus 1 (HSV-1 virions lead to the activation of nuclear factor kappa B (NF-κB and secretion of proinflammatory cytokines via TLR2. However, except for the envelope glycoprotein gH and gL, whether there are other determinants of HSV-1 responsible for TLR2 mediated biological effects is not known yet. Here, we demonstrated that the HSV-1-encoded envelope glycoprotein gB displays as molecular target recognized by TLR2. gB coimmunoprecipitated with TLR2, TLR1 and TLR6 in transfected and infected human embryonic kidney (HEK 293T cells. Treatment of TLR2-transfected HEK293T (HEK293T-TLR2 cells with purified gB results in the activation of NF-κB reporter, and this activation requires the recruitment of the adaptor molecules myeloid differentiation primary-response protein 88 (MyD88 and tumor necrosis factor receptor-associated factor 6 (TRAF6 but not CD14. Furthermore, activation of NF-κB was abrogated by anti-gB and anti-TLR2 blocking antibodies. In addition, the expression of interleukin-8 induced by gB was abrogated by the treatment of the human monocytic cell line THP-1 with anti-TLR2 blocking antibody or by the incubation of gB with anti-gB antibody. Taken together, these results indicate the importance and potency of HSV-1 gB as one of pathogen-associated molecular patterns (PAMPs molecule recognized by TLR2 with immediate kinetics.

  10. Immuno-magnetic beads-based extraction-capillary zone electrophoresis-deep UV laser-induced fluorescence analysis of erythropoietin.

    Science.gov (United States)

    Wang, Heye; Dou, Peng; Lü, Chenchen; Liu, Zhen

    2012-07-13

    Erythropoietin (EPO) is an important glycoprotein hormone. Recombinant human EPO (rhEPO) is an important therapeutic drug and can be also used as doping reagent in sports. The analysis of EPO glycoforms in pharmaceutical and sports areas greatly challenges analytical scientists from several aspects, among which sensitive detection and effective and facile sample preparation are two essential issues. Herein, we investigated new possibilities for these two aspects. Deep UV laser-induced fluorescence detection (deep UV-LIF) was established to detect the intrinsic fluorescence of EPO while an immuno-magnetic beads-based extraction (IMBE) was developed to specifically extract EPO glycoforms. Combined with capillary zone electrophoresis (CZE), CZE-deep UV-LIF allows high resolution glycoform profiling with improved sensitivity. The detection sensitivity was improved by one order of magnitude as compared with UV absorbance detection. An additional advantage is that the original glycoform distribution can be completely preserved because no fluorescent labeling is needed. By combining IMBE with CZE-deep UV-LIF, the overall detection sensitivity was 1.5 × 10⁻⁸ mol/L, which was enhanced by two orders of magnitude relative to conventional CZE with UV absorbance detection. It is applicable to the analysis of pharmaceutical preparations of EPO, but the sensitivity is insufficient for the anti-doping analysis of EPO in blood and urine. IMBE can be straightforward and effective approach for sample preparation. However, antibodies with high specificity were the key for application to urine samples because some urinary proteins can severely interfere the immuno-extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines.

    Science.gov (United States)

    Wool-Lewis, R J; Bates, P

    1998-04-01

    Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 x 10(6) infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of MLV(Ebola) infection revealed that the host range conferred by Ebo-GP is very broad, extending to cells of a variety of species. Notably, all lymphoid cell lines tested were completely resistant to infection; we speculate that this is due to the absence of a cellular receptor for Ebo-GP on B and T cells. The generation of high-titer MLV(Ebola) pseudotypes will be useful for the analysis of immune responses to Ebola virus infection, development of neutralizing antibodies, analysis of glycoprotein function, and isolation of the cellular receptor(s) for the Ebola virus.

  12. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    DEFF Research Database (Denmark)

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C

    2012-01-01

    , and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human m......Abs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81......bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies...

  13. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  14. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    Science.gov (United States)

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  15. Human platelet glycoprotein Ia. One component is only expressed on the surface of activated platelets and may be a granule constituent

    International Nuclear Information System (INIS)

    Bienz, D.; Clemetson, K.J.

    1989-01-01

    Glycoprotein Ia (GP Ia) is a relatively minor component of human blood platelets thought to be a receptor involved in collagen-induced platelet activation. However, some difficulties exist with the definition of this glycoprotein. The expression of GP Ia on resting (prostacyclin analogue-treated) and thrombin-activated platelets was compared by surface labeling with 125 I-lactoperoxidase. Intact platelets or platelets solubilized in sodium dodecyl sulfate were labeled with periodate/[ 3 H]NaBH 4 . Analysis on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that GP Ia is very poorly labeled in resting platelets. After activation a new spot (GP Ia*) appears with the same relative molecular mass as GP Ia under reducing conditions. GP Ia and Ia* can be clearly separated by two-dimensional nonreduced/reduced gel electrophoresis. Therefore, two glycoproteins which have been termed GP Ia exist in platelets with similar molecular weight and pI under reducing conditions. One of these (GP Ia*) is only surface-labeled when platelets are activated, indicating that it is only exposed on the surface of activated platelets. Supernatant from activated platelets contains this glycoprotein as well as other granule components. This glycoprotein is missing in platelets from two patients with collagen-response defects

  16. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Science.gov (United States)

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  17. Solubilization of glycoproteins of envelope viruses by detergents

    International Nuclear Information System (INIS)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.

    1986-01-01

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-β-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines

  18. Discrepancy between molecular structure and ligand selectivity of a testicular follicle-stimulating hormone receptor of the African catfish (Clarias gariepinus)

    NARCIS (Netherlands)

    Bogerd, J.; Blomenröhr, M.; Andersson, E.; van der Putten, H.; Tensen, C.P.; Vischer, H F; Granneman, Joke C M; Janssen-Dommerholt, C; Goos, H.J.; Schulz, Rüdiger W

    A putative FSH receptor (FSH-R) cDNA was cloned from African catfish testis. Alignment of the deduced amino acid sequence with other (putative) glycoprotein hormone receptors and analysis of the African catfish gene indicated that the cloned receptor belonged to the FSH receptor subfamily. Catfish

  19. Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies

    Science.gov (United States)

    Lech, Patrycja J.; Tobin, Gregory J.; Bushnell, Ruth; Gutschenritter, Emily; Pham, Linh D.; Nace, Rebecca; Verhoeyen, Els; Cosset, François-Loïc; Muller, Claude P.; Russell, Stephen J.; Nara, Peter L.

    2013-01-01

    The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs. PMID:23300970

  20. Receptor binding studies of the living heart

    International Nuclear Information System (INIS)

    Syrota, A.

    1988-01-01

    Receptors form a class of intrinsic membrane proteins (or glycoproteins) defined by the high affinity and specificity with which they bind ligands. Many receptors are associated directly or indirectly with membrane ion channels that open or close after a conformational change of the receptor induced by the binding of the neurotransmitter. Changes in number and/or affinity of cardiac neurotransmitter receptors have been associated with myocardial ischemia and infarction, congestive heart failure, and cardiomyopathy as well as diabetes or thyroid-induced heart muscle disease. These alterations of cardiac receptors have been demonstrated in vitro on membrane homogenates from samples collected mainly during surgery or postmortem. The disadvantage of these in vitro binding techniques is that receptors lose their natural environment and their relationships with the other components of the tissue

  1. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  2. Determining the Structure of an Unliganded and Fully Glycosylated SIV gp120 Envelope Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bing; Vogan, Erik M.; Gong, Haiyun; Skehel, John J.; Wiley, Don C.; Harrison, Stephen C. (Harvard-Med); (NIMR)

    2010-07-13

    HIV/SIV envelope glycoproteins mediate the first steps in viral infection. They are trimers of a membrane-anchored polypeptide chain, cleaved into two fragments known as gp120 and gp41. The structure of HIV gp120 bound with receptor (CD4) has been known for some time. We have now determined the structure of a fully glycosylated SIV gp120 envelope glycoprotein in an unliganded conformation by X-ray crystallography at 4.0 {angstrom} resolution. We describe here our experimental and computational approaches, which may be relevant to other resolution-limited crystallographic problems. Key issues were attention to details of beam geometry mandated by small, weakly diffracting crystals, and choice of strategies for phase improvement, starting with two isomorphous derivatives and including multicrystal averaging. We validated the structure by analyzing composite omit maps, averaged among three distinct crystal lattices, and by calculating model-based, SeMet anomalous difference maps. There are at least four ordered sugars on many of the thirteen oligosaccharides.

  3. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme.

    Science.gov (United States)

    Huang, Xingchuan; Dong, Wenjuan; Milewska, Aleksandra; Golda, Anna; Qi, Yonghe; Zhu, Quan K; Marasco, Wayne A; Baric, Ralph S; Sims, Amy C; Pyrc, Krzysztof; Li, Wenhui; Sui, Jianhua

    2015-07-01

    Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an unidentified cellular receptor. hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment of RD cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonetheless, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme (RDE) capable of eliminating the binding of HKU1-S1 to RD cells, whereas the O-acetylesterase-inactive HKU1-HE mutant lost this capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 infection, we confirmed that pretreatment of HAE cells with HE but not the enzymatically inactive mutant blocked hCoV-HKU1 infection. These results demonstrate that hCoV-HKU1 exploits O-Ac-Sia as a cellular attachment receptor determinant to initiate the infection of host cells and that its HE protein possesses the corresponding sialate-O-acetylesterase RDE activity. Human coronaviruses (hCoV) are important human respiratory pathogens. Among the six hCoVs identified to date, only hCoV-HKU1 has no defined cellular receptor. It is also unclear whether hemagglutinin-esterase (HE) protein plays a role in viral entry. In this study, we found that, similarly to other members of the group 2a CoVs, sialic

  4. The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

    Science.gov (United States)

    Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan

    2016-12-15

    The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The

  5. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria

    NARCIS (Netherlands)

    Fabriek, B.O.; van Bruggen, R.; Deng, D.M.; Ligtenberg, A.J.M.; Nazmi, K.; Schornagel, K.; Vloet, R.P.M.; Dijkstra, C.D.; van den Berg, T.K.

    2009-01-01

    The plasma membrane glycoprotein re- ceptor CD163 is a member of the scaven- ger receptor cystein-rich (SRCR) super- family class B that is highly expressed on resident tissue macrophages in vivo. Pre- viously, the molecule has been shown to act as a receptor for hemoglobin- haptoglobin complexes

  6. Formation of high-order oligomers is required for functional bioactivity of an African bat henipavirus surface glycoprotein.

    Science.gov (United States)

    Behner, Laura; Zimmermann, Louisa; Ringel, Marc; Weis, Michael; Maisner, Andrea

    2018-05-01

    Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic henipaviruses originating from fruit bats in Australia and Asia that can cause severe infections in livestock and humans. In recent years, also African bat henipaviruses were identified at the nucleic acid level. To assess their potential to replicate in non-bat species, several studies were performed to characterize the two surface glycoproteins required for virus entry and spread by cell-cell fusion. It has been shown that surface expression and fusion-helper function of the receptor-binding G protein of Kumasi virus (KV), the prototypic Ghanaian bat henipavirus, is reduced compared to other non-African henipavirus G proteins. Immunostainings and pulse-chase analysis revealed a delayed export of KV G from the ER. As defects in oligomerization of viral glycoproteins can be responsible for limited surface transport thereby restricting the bioactivity, we analyzed the oligomerization pattern of KV G. In contrast to HeV and NiV whose G proteins are known to be expressed at a dimer-tetramer ratio of 1:1, KV G almost exclusively formed stable tetramers or higher oligomers. KV G also showed less stringent requirements for defined stalk cysteines to form dimers and tetramers. Interestingly, any changes in the oligomeric forms negatively affected the fusion-helper activity although surface expression and receptor binding was unchanged. This clearly indicates that the formation of mostly higher oligomeric KV G forms is not a deficiency responsible for ER retention, but is rather a basic structural feature essential for the bioactivity of this African bat henipavirus glycoprotein. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion

    International Nuclear Information System (INIS)

    Garg, Himanshu; Fuller, Frederick J.; Tompkins, Wayne A.F.

    2004-01-01

    Feline immunodeficiency virus (FIV) shares remarkable homology to primate lentiviruses, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). The process of lentiviral env glycoprotein-mediated fusion of membranes is essential for viral entry and syncytia formation. A detailed understanding of this phenomenon has helped identify new targets for antiviral drug development. Using a model based on syncytia formation between FIV env-expressing cells and a feline CD4+ T cell line we have studied the mechanism of FIV env-mediated fusion. Using this model we show that FIV env-mediated fusion mechanism and kinetics are similar to HIV env. Syncytia formation could be blocked by CXCR4 antagonist AMD3100, establishing the importance of this receptor in FIV gp120 binding. Interestingly, CXCR4 alone was not sufficient to allow fusion by a primary isolate of FIV, as env glycoprotein from FIV-NCSU 1 failed to induce syncytia in several feline cell lines expressing CXCR4. Syncytia formation could be inhibited at a post-CXCR4 binding step by synthetic peptide T1971, which inhibits interaction of heptad repeat regions of gp41 and formation of the hairpin structure. Finally, using site-directed mutagenesis, we also show that a conserved tryptophan-rich region in the membrane proximal ectodomain of gp41 is critical for fusion, possibly at steps post hairpin structure formation

  8. Glycoengineering of CHO Cells to Improve Product Quality.

    Science.gov (United States)

    Wang, Qiong; Yin, Bojiao; Chung, Cheng-Yu; Betenbaugh, Michael J

    2017-01-01

    Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.

  9. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood-brain barrier

    NARCIS (Netherlands)

    Doze, P; Van Waarde, A; Elsinga, P H; Hendrikse, N H; Vaalburg, W

    Low cerebral uptake of some therapeutic drugs can be enhanced by modulation of P-glycoprotein (P-gp), an ATP-driven drug efflux pump at the blood-brain barrier (BBB). We investigated the possibility of increasing cerebral uptake of the beta-adrenergic ligands S-1'-[(18)F]-fluorocarazolol (FCAR) and

  10. An improved radioimmunoassay for urinary Tamm-Horsfall glycoprotein

    International Nuclear Information System (INIS)

    Dawnay, A.B. St. J.; Thornley, C.; Cattell, W.R.

    1982-01-01

    A rapid specific radioimmunoassay has been used to measure Tamm-Horsfall glycoprotein (TH glycoprotein) in urine, and the method described. The apparent concentration increased with increasing dilution of urine in water, reaching a plateau at 1 in 20. This increase was greater the higher the osmolality and TH glycoprotein concentration and the lower the pH of the original sample. The apparent concentration of TH glycoprotein in neat or diluted urine was not affected by freezing or by storage at 4 0 C or room temperature for at least 2 days. A physiological range for the urinary excretion rate was established as 22-56 mg/24h, (considerably higher than the amount present in serum) based on samples from 29 individuals with normal renal function, as defined by their creatinine clearance. There was no significant correlation between serum concentrations of TH glycoprotein and its urinary excretion rate, nor between urinary excretion rate and creatinine clearance. (author)

  11. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  12. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike.

    Directory of Open Access Journals (Sweden)

    Thomas A Bowden

    Full Text Available The genus Orthobunyavirus within the family Bunyaviridae constitutes an expanding group of emerging viruses, which threaten human and animal health. Despite the medical importance, little is known about orthobunyavirus structure, a prerequisite for understanding virus assembly and entry. Here, using electron cryo-tomography, we report the ultrastructure of Bunyamwera virus, the prototypic member of this genus. Whilst Bunyamwera virions are pleomorphic in shape, they display a locally ordered lattice of glycoprotein spikes. Each spike protrudes 18 nm from the viral membrane and becomes disordered upon introduction to an acidic environment. Using sub-tomogram averaging, we derived a three-dimensional model of the trimeric pre-fusion glycoprotein spike to 3-nm resolution. The glycoprotein spike consists mainly of the putative class-II fusion glycoprotein and exhibits a unique tripod-like arrangement. Protein-protein contacts between neighbouring spikes occur at membrane-proximal regions and intra-spike contacts at membrane-distal regions. This trimeric assembly deviates from previously observed fusion glycoprotein arrangements, suggesting a greater than anticipated repertoire of viral fusion glycoprotein oligomerization. Our study provides evidence of a pH-dependent conformational change that occurs during orthobunyaviral entry into host cells and a blueprint for the structure of this group of emerging pathogens.

  13. Similarities of cellular receptors for interferon and cortisol

    International Nuclear Information System (INIS)

    Filipic, B.; Schauer, P.; Likar, M.

    1977-01-01

    Cellular receptors are molecules located on the cell membrane. Their function is to bind different molecules to the cell surface. These molecules can penetrate into the cytoplasm and trigger cellular changes. One kind of such bound molecules are interferons and corticosteroids. Until very recently very little was known about interferon's receptors on the cell surface, mechanisms of interferon's binding to them or about kinetics of such binding. On the basis of results published elsewhere and on the basis of experimental results, the authors suggest: receptors for interferon and cortisol are glycoproteins located on the cell surface, in analogy with PHA receptors they are chemically sialoglycoproteins, binding kinetics of cortisol and interferon is similar, interferon and cortisol compete for cellular receptors, binding of cortisol or interferon is dependent on allosteric configuration of receptor molecules. (author)

  14. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  15. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  16. Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36

    Directory of Open Access Journals (Sweden)

    Roger S. Holmes

    2012-09-01

    Full Text Available Platelet glycoprotein 4 (CD36 (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3] is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53–100% identity as compared with 29–32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 ‘short loops’; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA contributing to a high gene expression level (6.6 times average. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate

  17. Genomic clone encoding the α chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules

    International Nuclear Information System (INIS)

    Cosgrove, L.J.; Sandrin, M.S.; Rajasekariah, P.; McKenzie, I.F.C.

    1986-01-01

    LFA-1, an antigen involved in cytolytic T lymphocyte-mediated killing, and Mac-1, the receptor for complement component C3bi, constitute a family of structurally and functionally related cell surface glycoproteins involved in cellular interactions. In both mouse and man, Mac-1 (OKM1) and LFA-1 share a common 95-kDa β subunit but are distinguished by their α chains, which have different cellular distributions, apparent molecular masses (165 and 177 kDa, respectively), and peptide maps. The authors report the isolation of a genomic clone from a human genomic library that on transfection into mouse fibroblasts produced a molecule(s) reactive with monoclonal antibodies to OKM1, to LFA-1, and to platelet glycoprotein IIb-IIIa. This gene was cloned by several cycles of transfection of L cells with a human genomic library cloned in λ phase Charon 4A and subsequent rescue of the λ phage. Transfection with the purified recombinant λ DNA yielded a transfectant that expressed the three human α chains of OKM1, LFA-1, and glycoprotein IIb-IIIa, presumably in association with the murine β chain

  18. Efficacy and Safety of Platelet Glycoprotein Receptor Blockade in Aged and Comorbid Mice With Acute Experimental Stroke.

    Science.gov (United States)

    Kraft, Peter; Schuhmann, Michael K; Fluri, Felix; Lorenz, Kristina; Zernecke, Alma; Stoll, Guido; Nieswandt, Bernhard; Kleinschnitz, Christoph

    2015-12-01

    Despite the medical and socioeconomic effect of ischemic stroke and extensive preclinical research, treatment options for ischemic stroke are limited. We recently identified and characterized essential steps of thrombus formation in stroke and demonstrated that inhibition of the platelet glycoprotein (GP) receptors Ib and VI, but not IIb/IIIa, protects young and healthy mice from ischemic neurodegeneration. Whether these findings translate to the clinic remains unclear. Considering that the typical stroke patient is elderly with comorbidity, we aimed to analyze the efficacy and safety of novel preclinical antithrombotics in adult and comorbid mice with acute experimental stroke. We subjected adult, healthy, atherosclerotic (Ldlr(-/-)), diabetic (streptozotocin treated), and hypertensive (RenTgMK) mice to a 60-minute transient middle cerebral artery occlusion. Animals were pretreated with anti-GPVI antibodies or treated 1 hour after stroke induction with anti-GPIb or anti-GPIIb/IIIa antigen-binding fragments, respectively. Isotype treatment served as control. Twenty-four hours after transient middle cerebral artery occlusion, we visually assessed the intracerebral hemorrhage rate and measured infarct volumes (using 2,3,5-triphenyltetrazolium chloride-stained brain slices) and functional outcome (using Bederson and grip-test scores). GPIb and GPVI inhibition protected the mice from ischemic stroke without increasing bleeding complications. In contrast, GPIIb/IIIa inhibition was not protective but increased the intracerebral hemorrhage rate. Inhibition of early steps of thrombus formation protects adult and comorbid mice from ischemic stroke. The use of clinically meaningful mouse strains might improve the translation of preclinical stroke research to the clinic. © 2015 American Heart Association, Inc.

  19. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry.

    Directory of Open Access Journals (Sweden)

    Qian Liu

    Full Text Available Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion, and for syncytia formation (cell-cell fusion, often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G triggers the fusion glycoprotein (F to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry.

  20. Pipette-tip selective extraction of glycoproteins with lectin modified gold nano-particles on a polymer monolithic phase

    OpenAIRE

    Alwael, Hassan Omar Salem; Connolly, Damian; Clarke, Paul A.; Thompson, Roisin; Twamley, Brendan; O'Connor, Brendan; Paull, Brett

    2011-01-01

    The selective extraction of specific proteins (non glycosylated, glycosylated or different glycoforms) from complex sample matrices utilising selective solid phase extration (SPE) is of significant interest within the fields of proteomics and glycoproteomics. Polymer monoliths have proven to be an excellent solid support for SPE applications in bio-analysis due to their excellent mass transfer characteristics for large biomolecules. Although biorecognition molecules such as lectins can be cov...

  1. Comparison of the antiviral potential among soluble forms of herpes simplex virus type-2 glycoprotein D receptors, herpes virus entry mediator A, nectin-1 and nectin-2, in transgenic mice.

    Science.gov (United States)

    Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro

    2017-07-01

    Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.

  2. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    International Nuclear Information System (INIS)

    Hoetzel, Isidro; Cheevers, William P.

    2005-01-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain β-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding

  3. The hydroxyapatite-binding regions of a rat salivary glycoprotein.

    Science.gov (United States)

    Embery, G; Green, D R

    1989-09-01

    The regions of a salivary sulphated glycoprotein which are involved in its attachment to hydroxyapatite (Biogel HTP) have been characterised. The sulphated glycoprotein, a 35S-labelled preparation from mixed palatal and buccal minor gland secretions of the rat was bound onto hydroxyapatite and the resultant glycoprotein-hydroxyapatite complex was sequentially digested with pronase E and alpha-L-fucosidase, a treatment which released 86.8% +/- 1.7% of the radioactivity of the initially bound glycoprotein. The fragments which remained attached to the hydroxyapatite after enzymic digestion were fractionated on Sephadex G-25 and analysed for carbohydrate and amino acid components. A range of amino acids were detected which could reflect both glycosylated and non-glycosylated-binding regions. Sialic acid, although considered to be involved in the attachment process was not detected in any of the fragments remaining after enzymic digestion, a finding which provides indirect evidence that the enzymically liberated products do not subsequently re-attach to the hydroxyapatite surface. The notable feature of the fractions with average Mr estimated at 1000 or less is the high proportion of N-acetylhexosamine and N-acetylgalactosamine. It is apparent that the hexosamine residues, which normally bear the ester sulphate moieties of sulphated glycoproteins, play an important role in the attachment of sulphated glycoproteins to hydroxyapatite.

  4. Natural Products based P-glycoprotein Activators for Improved β-amyloid Clearance in Alzheimer's Disease: An in silico Approach.

    Science.gov (United States)

    Shinde, Pravin; Vidyasagar, Nikhil; Dhulap, Sivakami; Dhulap, Abhijeet; Hirwani, Raj

    2015-01-01

    Alzheimer's disease is an age related disorder and is defined to be progressive, irreversible neurodegenerative disease. The potential targets which are associated with the Alzheimer's disease are cholinesterases, N-methyl-D-aspartate receptor, Beta secretase 1, Pregnane X receptor (PXR) and P-glycoprotein (Pgp). P-glycoprotein is a member of the ATP binding cassette (ABC) transporter family, which is an important integral of the blood-brain, blood-cerebrospinal fluid and the blood-testis barrier. Reports from the literature provide evidences that the up-regulation of the efflux pump is liable for a decrease in β -amyloid intracellular accumulation and is an important hallmark in Alzheimer's disease (AD). Thus, targeting β-amyloid clearance by stimulating Pgp could be a useful strategy to prevent Alzheimer's advancement. Currently available drugs provide limited effectiveness and do not assure to cure Alzheimer's disease completely. On the other hand, the current research is now directed towards the development of synthetic or natural based therapeutics which can delay the onset or progression of Alzheimer's disease. Since ancient time medicinal plants such as Withania somnifera, Bacopa monieri, Nerium indicum have been used to prevent neurological disorders including Alzheimer's disease. Till today around 125 Indian medicinal plants have been screened on the basis of ethnopharmacology for their activity against neurological disorders. In this paper, we report bioactives from natural sources which show binding affinity towards the Pgp receptor using ligand based pharmacophore development, virtual screening, molecular docking and molecular dynamics simulation studies for the bioactives possessing acceptable ADME properties. These bioactives can thus be useful to treat Alzheimer's disease.

  5. Herpes simplex virus glycoprotein D relocates nectin-1 from intercellular contacts.

    Science.gov (United States)

    Bhargava, Arjun K; Rothlauf, Paul W; Krummenacher, Claude

    2016-12-01

    Herpes simplex virus (HSV) uses the cell adhesion molecule nectin-1 as a receptor to enter neurons and epithelial cells. The viral glycoprotein D (gD) is used as a non-canonical ligand for nectin-1. The gD binding site on nectin-1 overlaps with a functional adhesive site involved in nectin-nectin homophilic trans-interaction. Consequently, when nectin-1 is engaged with a cellular ligand at cell junctions, the gD binding site is occupied. Here we report that HSV gD is able to disrupt intercellular homophilic trans-interaction of nectin-1 and induce a rapid redistribution of nectin-1 from cell junctions. This movement does not require the receptor's interaction with the actin-binding adaptor afadin. Interaction of nectin-1 with afadin is also dispensable for virion surfing along nectin-1-rich filopodia. Cells seeded on gD-coated surfaces also fail to accumulate nectin-1 at cell contact. These data indicate that HSV gD affects nectin-1 locally through direct interaction and more globally through signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin

    Energy Technology Data Exchange (ETDEWEB)

    An, Xiuli; Gauthier, Emilie; Zhang, Xihui; Guo, Xinhua; Anstee, David; Mohandas, Narla; Anne Chasis, Joel

    2008-03-18

    The Lutheran (Lu) and Lu(v13) blood group glycoproteins function as receptors for extracellular matrix laminins. Lu and Lu(v13) are linked to the erythrocyte cytoskeleton through a direct interaction with spectrin. However, neither the molecular basis of the interaction nor its functional consequences have previously been delineated. In the present study, we defined the binding motifs of Lu and Lu(v13) on spectrin and identified a functional role for this interaction. We found that the cytoplasmic domains of both Lu and Lu(v13) bound to repeat 4 of the spectrin chain. The interaction of full-length spectrin dimer to Lu and Lu(v13) was inhibited by repeat 4 of {alpha}-spectrin. Further, resealing of this repeat peptide into erythrocytes led to weakened Lu-cytoskeleton interaction as demonstrated by increased detergent extractability of Lu. Importantly, disruption of the Lu-spectrin linkage was accompanied by enhanced cell adhesion to laminin. We conclude that the interaction of the Lu cytoplasmic tail with the cytoskeleton regulates its adhesive receptor function.

  7. Isolation of allergenically active glycoprotein from Prosopis juliflora pollen.

    Science.gov (United States)

    Thakur, I S

    1989-03-01

    An allergenically active glycoprotein was homogeneously isolated from the aqueous extract of Prosopis juliflora pollen by ConA-Sepharose affinity chromatography. The molecular weight of this glycoprotein was 20,000 dalton, determined by gel filtration and SDS-PAGE. This fraction showed a total carbohydrate concentration of 25%. The purified glycoprotein revealed immunochemically most antigenic or allergenic and demonstrated homogeneous after reaction with P. juliflora pollen antiserum, characterized by gel diffusion, Immunoelectrophoresis and Radioallergosorbent test.

  8. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  9. Intracellular localization of hydroxyproline-rich glycoprotein biosynthesis

    International Nuclear Information System (INIS)

    Robinson, D.G.; Andreae, M.; Glas, A.R.; Sauer, A.

    1984-01-01

    The structural proteins of plant cell walls are glycoproteins characterized by O-glucosidic linkages to hydroxyproline or serine. Proline, not hydroxyproline, is the translatable amino acid in hydroxyproline-rich glycoproteins (HRGP). Hydroxylation and arabinosylation of proline are sequential, post-translational events. Because of this, there is no a priori reason for expecting HRGP synthesis to follow the well-established route for secretory and plasma membrane (PM) glycoproteins, i.e., from endoplasmic reticulum (ER) via the Golgi apparatus (GA) to the PM. In this paper, two plausible alternatives for HRGO secretion are examined. Because a feature of the majority of dicotyledons is overlapping GA and PM regions in sucrose density gradients, the authors have used two monocotyledonous systems to determine the distribution of HRGP and enzyme activity

  10. Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in adipocyte plasma membranes

    International Nuclear Information System (INIS)

    Yu, K.T.; Khalaf, N.; Czech, M.P.

    1986-01-01

    In an attempt to identify putative substrates for the insulin receptor kinase, adipocyte plasma membranes were incubated with [γ- 32 P]ATP in the presence and absence of insulin. Insulin stimulates the tyrosine phosphorylation of its receptor β subunit but does not detectably alter the phosphorylation of other membrane proteins. In contrast, when plasma membranes from insulin-treated adipocytes are phosphorylated, the 32 P-labeling of a Mr=160,000 species (p160) and insulin receptor β subunit are markedly increased when compared to controls. p160 exhibits a rapid response (max. at 1 min) and high sensitivity (ED 50 = 2 x 10 -10 M) to insulin. The stimulatory effect of insulin on the phosphorylation of p160 is rapidly reversed following the addition of anti-insulin serum. Cold chase experiments indicate that insulin promotes the phosphorylation of p160 rather than inhibiting its dephosphorylation. p160 is a glycoprotein as evidenced by its adsorption to immobilized lectins and does not represent the insulin receptor precursor. The action of insulin on p160 tyrosine phosphorylation is mimicked by concanavalin A but not by EGF and other insulin-like agents such as hydrogen peroxide and vanadate. These results suggest that p160 tyrosine phosphorylation is an insulin receptor-mediated event and may participate in signalling by the insulin receptor

  11. Determination of P-Glycoprotein Expression by Flow Cytometry in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Berkay Saraymen

    2016-03-01

    Full Text Available Objective: Determination the expression of P-glycoprotein is especially problematic for normal tissues because immuno­logical methods are limited in terms of sensitivity. We aimed to determine the expression of P-glycoprotein and CD34 by flow cytometry, and to evaluate the level of expression of P-glycoprotein and CD34 with unresponsive to treatment in pa­tients diagnosed with hematologic malignancy. Methods: Our study included fifty patients diagnosed with acute myeloblastic leukemia and acute lymphoblastic leuke­mia, and twenty healthy controls who were admitted to Erci­yes University Hematology-Oncology Hospital. The suspend­ed cells from bone marrow samples of patients and the pe­ripheral blood samples of healthy people were marked with P-glycoprotein phycoerythrin and CD34 FITC or PerCP Cy 5.5; and then surface expression was measured by means of flow cytometry. Results: In 6 of 30 acute myeloblastic leukemia patients P-glycoprotein and CD34 expression, in 6 of 20 acute lympho­blastic leukemia patients P-glycoprotein, in 5 of them CD34 expression were determined. A significant relation between P-glycoprotein and CD34 expressions in acute myeloblas­tic leukemia and acute lymphoblastic leukemia bone marrow samples was reported. Conclusion: Our data indicate that flow cytometry is more reliable, precise and faster than molecular methods for mea­suring P-glycoprotein expression and suggests the pos­sibility of a significant relationship between P-glycoprotein and CD34 expressions in acute myeloblastic leukemia and acute lymphoblastic leukemia bone marrow samples. The blast cells expressing CD34 on their surface along with P-glycoprotein simultaneously show that multi drug resistance 1 gene is mostly active in immature cells.

  12. Broad target cell selectivity of Kaposi's sarcoma-associated herpesvirus glycoprotein-mediated cell fusion and virion entry

    International Nuclear Information System (INIS)

    Kaleeba, Johnan A.R.; Berger, Edward A.

    2006-01-01

    The molecular mechanism of Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) entry is poorly understood. We tested a broad variety of cell types of diverse species and tissue origin for their ability to function as targets in a quantitative reporter gene assay for KSHV-glycoprotein-mediated cell fusion. Several human, non-human primate, and rabbit cell lines were efficient targets, whereas rodent and all human lymphoblastoid cell lines were weak targets. Parallel findings were obtained with a virion entry assay using a recombinant KSHV encoding a reporter gene. No correlation was observed between target cell activity and surface expression of α3β1 integrin, a proposed KSHV receptor. We hypothesize that target cell permissiveness in both the cell fusion and virion entry assays reflects the presence of a putative KSHV fusion-entry receptor

  13. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    DEFF Research Database (Denmark)

    Horvat, B; Multhaupt, H A; Damjanov, I

    1993-01-01

    We used lectin overlay blotting and SDS-PAGE to analyze the estrous cycle-specific expression of mouse vaginal epithelial glycoproteins. Seven lectins chosen for their differential carbohydrate-binding specificity revealed 15 glycoproteins that showed cycle-related expression. Each lectin had...... in proestrus, coincident with the transformation of two superficial layers of vaginal squamous epithelium into mucinous cuboidal cells. Electron microscopic lectin histochemistry revealed the glycoproteins in the mucinous granules of surface cuboidal cells and in the lumen of the vagina. Our results illustrate...... the complexity of glycoconjugate synthesis in mouse vagina and reveal the distinct cycle-specific patterns of individual glycoprotein expression. These cyclic glycoproteins could serve as vaginal biochemical markers for the specific phases of the estrous cycle....

  14. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  15. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    Science.gov (United States)

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  16. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    Science.gov (United States)

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.

  17. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    DEFF Research Database (Denmark)

    Vibede, N; Hauser, Frank; Williamson, M

    1998-01-01

    organization of this sea anemone receptor. The receptor gene contains eight introns that are all localized within a region coding for the large extracellular N terminus. These introns occur at the same positions and have the same intron phasing as eight introns in the genes coding for the mammalian...

  18. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production

    International Nuclear Information System (INIS)

    Jarvis, Donald L.

    2003-01-01

    The baculovirus-insect cell expression system is widely used to produce recombinant glycoproteins for many different biomedical applications. However, due to the fundamental nature of insect glycoprotein processing pathways, this system is typically unable to produce recombinant mammalian glycoproteins with authentic oligosaccharide side chains. This minireview summarizes our current understanding of insect protein glycosylation pathways and our recent efforts to address this problem. These efforts have yielded new insect cell lines and baculoviral vectors that can produce recombinant glycoproteins with humanized oligosaccharide side chains

  19. Syndecans as receptors and organizers of the extracellular matrix

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Gopal, Sandeep; Couchman, John

    2009-01-01

    , the collagens and glycoproteins of the extracellular matrix are prominent. Frequently, they do so in conjunction with other receptors, most notably the integrins. For this reason, they are often referred to as "co-receptors". However, just as with integrins, syndecans can interact with actin-associated proteins...... and signalling molecules, such as protein kinases. Some aspects of syndecan signalling are understood but much remains to be learned. The functions of syndecans in regulating cell adhesion and extracellular matrix assembly are described here. Evidence from null mice suggests that syndecans have roles...

  20. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    Science.gov (United States)

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  1. Regulation of glycoprotein synthesis in yeast by mating pheromones

    International Nuclear Information System (INIS)

    Tanner, W.

    1984-01-01

    In Saccharomyces cerevisiae, glycosylated proteins amount to less than 2% of the cell protein. Two intensively studied examples of yeast glycoproteins are the external cell wall - associated invertase and the vacuolar carboxypeptidase Y. Recently, it was shown that the mating pheromone, alpha factor, specifically and strongly inhibits the synthesis of N-glycosylated proteins in haploid a cells, whereas O-glycosylated proteins are not affected. In this paper, the pathways of glycoprotein biosynthesis are summarized briefly, and evidence is presented that mating pheomones have a regulatory function in glycoprotein synthesis

  2. Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry

    Science.gov (United States)

    Moller-Tank, Sven; Kondratowicz, Andrew S.; Davey, Robert A.; Rennert, Paul D.

    2013-01-01

    The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence. PMID:23698310

  3. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    Science.gov (United States)

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  4. Strategies for induction of catalytic antibodies toward HIV-1 glycoprotein gp120 in autoimmune prone mice.

    Science.gov (United States)

    Durova, Oxana M; Vorobiev, Ivan I; Smirnov, Ivan V; Reshetnyak, Andrew V; Telegin, Georgy B; Shamborant, Olga G; Orlova, Nadezda A; Genkin, Dmitry D; Bacon, Andrew; Ponomarenko, Natalia A; Friboulet, Alain; Gabibov, Alexander G

    2009-11-01

    Tremendous efforts to produce an efficient vaccine for HIV infection have been unsuccessful. The ability of HIV to utilize sophisticated mechanisms to escape killing by host immune system rises dramatic problems in the development of antiviral therapeutics. The HIV infection proceeds by interaction of coat viral glycoprotein gp120 trimer with CD4(+) receptor of the lymphocyte. Thus this surface antigen may be regarded as a favorable target for immunotherapy. In the present study, we have developed three different strategies to produce gp120-specific response in autoimmune prone mice (SJL strain) as potential tools for production "catalytic vaccine". Therefore (i) reactive immunization by peptidylphosphonate, structural part of the coat glycoprotein, (ii) immunization by engineered fused epitopes of gp120 and encephalogenic peptide, a part of myelin basic protein, and (iii) combined vaccination by DNA and corresponding gp120 fragments incorporated into liposomes were investigated. In the first two cases monoclonal antibodies and their recombinant fragments with amidolytic and gp120-specific proteolytic activities were characterized. In the last case, catalytic antibodies with virus neutralizing activity proved in cell line models were harvested.

  5. Role for the disulfide-bonded region of human immunodeficiency virus type 1 gp41 in receptor-triggered activation of membrane fusion function

    International Nuclear Information System (INIS)

    Bellamy-McIntyre, Anna K.; Baer, Severine; Ludlow, Louise; Drummer, Heidi E.; Poumbourios, Pantelis

    2010-01-01

    The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1 QH1549.13 blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.

  6. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle†

    OpenAIRE

    Xiao, Bo; Yang, Yang; Viennois, Emilie; Zhang, Yuchen; Ayyadurai, Saravanan; Baker, Mark; Laroui, Hamed; Merlin, Didier

    2014-01-01

    Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab′-bearing quantum dots (QDs)-loaded nanoparticles (Fab′-NPs). The re...

  7. The Role of the MHV Receptor and Related Glycoproteins in Murine Hepatitis Virus Infection of Murine Cell Lines

    Science.gov (United States)

    1995-04-13

    vaccinia virus-T7 RNA polymerase s y stem for e xpression of target genes . Mol . Cell . BioI . 7 : 2538-2544 . Gagneten , S ., Gout , 0 ., Dubois-Dalcq...glycoprotein. These results showed f or the first time that two murine CEA- related genes can be co-expressed in some cell lines from inbred mice...49 Southern Hybridization ................ . ............ 50 Subcloning of PCR Products and Gene Cloning ........ 51 Growth

  8. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  9. Isolation and characterization of two antigenic glycoproteins from the pollen of Prosopis juliflora.

    Science.gov (United States)

    Thakur, I S

    1991-03-01

    Two antigenically active glycoprotein fractions were isolated from crude extract of the pollen of Prosopis juliflora using DEAE-cellulose ion exchange chromatography. The glycoproteins gave single band on polyacrylamide gel electrophoresis. The molecular weight of these two glycoprotein was 20,000 and 10,000 as determined by gel filtration on Sephadex G-75. With the help of crossed immunoelectrophoresis and gel diffusion crude extract exhibited twelve and three precipitating antigens suggesting its heterogeneous nature; and the purified glycoprotein fractions however formed single precipitin band on gel diffusion test and immunoelectrophoresis. As tested by ELISA the polyclonal antisera raised in rabbit showed strong binding affinity with glycoprotein of MW 20,000. These result indicates that the two glycoprotein fractions are not antigenically identical.

  10. Purification and characterization of the glycoprotein allergen from Prosopis juliflora pollen.

    Science.gov (United States)

    Thakur, I S

    1991-02-01

    Highly active glycoprotein allergens have been isolated from pollen of Prosopis juliflora by a combination of Sephadex G-100 gel filtration and Sodium dodecyl sulphate-Poly-acrylamide gel electrophoresis. The glycoprotein fraction was homogeneous, and had molecular weight 20,000. The purified glycoprotein allergen contained 20% carbohydrate, mainly arabinose and galactose. Enzymatic digestion of glycoprotein with protease released glycopeptides of molecular weight ranging from less than 1,000 to more than 5,000 on Sephadex G-25 gel filtration. Antigenicity or allergenicity testing of these glycopeptides by immunodiffusion, immunoelectrophoresis, and radioallergosorbent test indicated complete loss of allergenic activity after digestion with protease whereas incubation with beta-D-galactosidase and periodate oxidation had little affect on the allergenic activity of the glycoprotein fraction. But incubation with alpha-D-glucosidase did not affect the allergenic activity significantly. All these tests indicated that protein played significant role in allergenicity of P. juliflora pollen.

  11. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  12. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor.

    Directory of Open Access Journals (Sweden)

    Alessandra Ravidà

    2016-04-01

    Full Text Available Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica's tegumental coat (FhTeg and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg's binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg's ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host's immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg.

  13. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection.

    Directory of Open Access Journals (Sweden)

    Takuya Kanno

    Full Text Available Therapeutic agents to the central nervous system (CNS need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316, as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS. One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG and hemopexin (HPX, requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.

  14. Labelled antibody techniques in glycoprotein estimation

    International Nuclear Information System (INIS)

    Hazra, D.K.; Ekins, R.P.; Edwards, R.; Williams, E.S.

    1977-01-01

    The problems in the radioimmunoassay of the glycoprotein hormones (pituitary LH, FSH and TSH and human chlorionic gonadotrophin HGG) are reviewed viz: limited specificity and sensitivity in the clinical context, interpretation of disparity between bioassay and radioimmunoassay, and interlaboratory variability. The advantages and limitations of the labelled antibody techniques - classical immonoradiometric methods and 2-site or 125 I-anti-IgG indirect labelling modifications are reviewed in general, and their theoretical potential in glycoprotein assays examined in the light of previous work. Preliminary experiments in the development of coated tube 2-site assay for glycoproteins using 125 I anti-IgG labelling are described, including conditions for maximizing solid phase extraction of the antigen, iodination of anti-IgG, and assay conditions such as effects of temperature of incubation with antigen 'hormonefree serum', heterologous serum and detergent washing. Experiments with extraction and antigen-specific antisera raised in the same or different species are described as exemplified by LH and TSH assay systems, the latter apparently promising greater sensitivity than radioimmunoassay. Proposed experimental and mathematical optimisation and validation of the method as an assay system is outlined, and the areas for further work delineated. (orig.) [de

  15. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    Science.gov (United States)

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  16. Glycoprotein expression by adenomatous polyps of the colon

    Science.gov (United States)

    Roney, Celeste A.; Xie, Jianwu; Xu, Biying; Jabour, Paul; Griffiths, Gary; Summers, Ronald M.

    2008-03-01

    Colon cancer is the second leading cause of cancer related deaths in the United States. Specificity in diagnostic imaging for detecting colorectal adenomas, which have a propensity towards malignancy, is desired. Adenomatous polyp specimens of the colon were obtained from the mouse model of colorectal cancer called adenomatous polyposis coli-multiple intestinal neoplasia (APC Min). Histological evaluation, by the legume protein Ulex europaeus agglutinin I (UEA-1), determined expression of the glycoprotein α-L-fucose. FITC-labelled UEA-1 confirmed overexpression of the glycoprotein by the polyps on fluorescence microscopy in 17/17 cases, of which 13/17 included paraffin-fixed mouse polyp specimens. In addition, FITC-UEA-1 ex vivo multispectral optical imaging of 4/17 colonic specimens displayed over-expression of the glycoprotein by the polyps, as compared to non-neoplastic mucosa. Here, we report the surface expression of α-L-fucosyl terminal residues by neoplastic mucosal cells of APC specimens of the mouse. Glycoprotein expression was validated by the carbohydrate binding protein UEA-1. Future applications of this method are the development of agents used to diagnose cancers by biomedical imaging modalities, including computed tomographic colonography (CTC). UEA-1 targeting to colonic adenomas may provide a new avenue for the diagnosis of colorectal carcinoma by CT imaging.

  17. Histochemical and structural analysis of mucous glycoprotein secreted by the gill of Mytilus edulis

    International Nuclear Information System (INIS)

    Ahn, Hae-Young.

    1988-01-01

    Studies were carried out to characterized various mucous cells in the gill filament, to ascertain structural characteristics of the secreted mucous glycoproteins, and to determine the ability of the gill epithelium to incorporate [ 14 C]glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins. Using histochemical staining techniques, mucous cells containing neutral and acidic mucins were found in the lateral region, whereas mucous cells containing primarily neutral or sulfated mucins were found in the postlateral region. Serotonin, but not dopamine, stimulated the mucous secretion. In tissues pretreated with [ 14 C]glucosamine, the secreted glycoproteins contain incorporated radiolabel. Analysis by column chromatography using Bio-Gel P-2 and P-6 shows that the secretion contains two glycoprotein populations. Glycoprotein II has a molecular weight of 2.3 x 10 4 daltons. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of glycoprotein I, about 70% of the radiolabel was removed from the protein. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contains N-acetylglucosamine (GluNAc), N-acetylgalactosamine (GalNAc), and galactose, fucose and mannose. Amino acid analysis shows that the glycoproteins are rich in serine, threonine and proline

  18. Monoclonal antibody to an external epitope of the human mdr1 P-glycoprotein

    NARCIS (Netherlands)

    Arceci, R. J.; Stieglitz, K.; Bras, J.; Schinkel, A.; Baas, F.; Croop, J.

    1993-01-01

    A membrane glycoprotein, termed P-glycoprotein, has been shown to be responsible for cross-resistance to a broad range of structurally and functionally distinct cytotoxic agents. P-glycoprotein, encoded in humans by the mdr1 gene, functions as an energy-dependent efflux pump to exclude these

  19. THE ROLE OF P-GLYCOPROTEIN IN RATIONAL PHARMACOTHERAPY IN CARDIOLOGY

    Directory of Open Access Journals (Sweden)

    A. V. Shulkin

    2015-09-01

    Full Text Available On the basis of the analysis of published data the role of P-glycoprotein, carrier protein, in rational pharmacotherapy in cardiology was shown on the example of its substrates – digoxin, antiplatelet agents and anticoagulants. Determination of C3435T polymorphism of multidrug resistance gene (MDR1, encoding P-glycoprotein, in pharmacotherapy with digoxin, antiplatelet drugs (clopidogrel tikagrelol, prasugrel and anticoagulants (dabigatran etexilate, rivaroxaban, edoxaban is not feasible in routine practice. Drug in- teractions have clinical implications for the efficacy and safety of pharmacotherapy in coadministration of these drugs with P-glycoprotein substrates, inducers and inhibitors.

  20. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    International Nuclear Information System (INIS)

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.; Affranchino, Jose L.

    2007-01-01

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions

  1. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    International Nuclear Information System (INIS)

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A.

    2004-01-01

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model. Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function

  2. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    Science.gov (United States)

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  3. A Method for Determining the Content of Glycoproteins in Biological Samples

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2016-11-01

    Full Text Available The glycoprotein purified from the mycelium extract of Tremella fuciformis was marked with iodine through the iodine substitution reaction. The content of iodine, which is indicative of the amount of the marked tremella glycoprotein (ITG, was detected with Inductively coupled plasma mass spectrometry (ICP-MS. The method was found to be stable, sensitive, and accurate at detecting the content of iodine-substituted glycoprotein, and was used in the quantitative analysis of biological samples, including blood and organs. Different biological samples were collected from rats after oral administration of ITG, and were tested for iodine content by ICP-MS to calculate the amount of ITG in the samples. The results suggested that ICP-MS is a sensitive, stable, and accurate method for detection of iodinated glycoproteins in blood and organs.

  4. Up-regulation of the Neuronal Nicotinic Receptor α7 by HIV Glycoprotein 120

    Science.gov (United States)

    Ballester, Leomar Y.; Capó-Vélez, Coral M.; García-Beltrán, Wilfredo F.; Ramos, Félix M.; Vázquez-Rosa, Edwin; Ríos, Raymond; Mercado, José R.; Meléndez, Roberto I.; Lasalde-Dominicci, José A.

    2012-01-01

    Approximately 30–50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV+ individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120IIIB on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca2+, we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV+ patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection. PMID:22084248

  5. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    Science.gov (United States)

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  6. Glycoprotein of the wall of sycamore tissue-culture cells.

    Science.gov (United States)

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  7. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry

    International Nuclear Information System (INIS)

    Spear, Patricia G.; Manoj, Sharmila; Yoon, Miri; Jogger, Cheryl R.; Zago, Anna; Myscofski, Dawn

    2006-01-01

    One of the herpes simplex virus envelope glycoproteins, designated gD, is the principal determinant of cell recognition for viral entry. Other viral glycoproteins, gB, gH and gL, cooperate with gD to mediate the membrane fusion that is required for viral entry and cell fusion. Membrane fusion is triggered by the binding of gD to one of its receptors. These receptors belong to three different classes of cell surface molecules. This review summarizes recent findings on the structure and function of gD. The results presented indicate that gD may assume more than one conformation, one in the absence of receptor, another when gD is bound to the herpesvirus entry mediator, a member of the TNF receptor family, and a third when gD is bound to nectin-1, a cell adhesion molecule in the immunoglobulin superfamily. Finally, information and ideas are presented about a membrane-proximal region of gD that is required for membrane fusion, but not for receptor binding, and that may have a role in activating the fusogenic activity of gB, gH and gL

  8. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  9. Global identification of prokaryotic glycoproteins based on an Escherichia coli proteome microarray.

    Directory of Open Access Journals (Sweden)

    Zong-Xiu Wang

    Full Text Available Glycosylation is one of the most abundant protein posttranslational modifications. Protein glycosylation plays important roles not only in eukaryotes but also in prokaryotes. To further understand the roles of protein glycosylation in prokaryotes, we developed a lectin binding assay to screen glycoproteins on an Escherichia coli proteome microarray containing 4,256 affinity-purified E.coli proteins. Twenty-three E.coli proteins that bound Wheat-Germ Agglutinin (WGA were identified. PANTHER protein classification analysis showed that these glycoprotein candidates were highly enriched in metabolic process and catalytic activity classes. One sub-network centered on deoxyribonuclease I (sbcB was identified. Bioinformatics analysis suggests that prokaryotic protein glycosylation may play roles in nucleotide and nucleic acid metabolism. Fifteen of the 23 glycoprotein candidates were validated by lectin (WGA staining, thereby increasing the number of validated E. coli glycoproteins from 3 to 18. By cataloguing glycoproteins in E.coli, our study greatly extends our understanding of protein glycosylation in prokaryotes.

  10. The putative cocaine receptor in striatum is a glycoprotein with thiol function

    International Nuclear Information System (INIS)

    Cao, C.J.; Young, M.M.; Wang, J.B.; Mahran, L.; Eldefrawi, M.E.

    1990-01-01

    Dopamine transporters of bovine and rat striata are identified by their specific [ 3 H] cocaine binding and cocaine-sensitive [ 3 H] dopamine ([ 3 H]DA) uptake. Both binding and uptake functions of bovine striatal transporters were potentiated by lectins. Concanavalin A (Con A) increased the velocity but did not change the affinity of the transporter for DA. On the other hand, ConA increased its affinity for cocaine without changing the number of binding sites. The data suggest that the DA transporter is a glycoprotein. Inorganic and organic mercury reagents inhibited both [ 3 H] cocaine binding, though they were all more potent inhibitors of the former. N-ethylmaleimide inhibited [ 3 H]DA uptake totally but [ 3 H]cocaine binding only partially. Also, N-pyrenemaleimide had different effects on uptake and binding, inhibiting uptake and potentiating binding. [ 3 H]DA uptake was not affected by mercaptoethanol up to 100 mM whereas [ 3 H]cocaine binding was inhibited by concentration above 10 mM. On the other hand, both uptake and binding were fairly sensitive to dimercaprol ( 10 mM). Loss of activity after treatment with the dithio reagents may be a result of reduction of a disulfide bond, which may affect the transporter conformation

  11. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  12. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Czech, M.P.

    1985-01-01

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  14. Glycoprotein and proteoglycan techniques

    International Nuclear Information System (INIS)

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  15. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  16. Ninety-five- and 25-kDa fragments of the human immunodeficiency virus envelope glycoprotein gp120 bind to the CD4 receptor

    International Nuclear Information System (INIS)

    Nygren, A.; Bergman, T.; Matthews, T.; Joernvall, H.; Wigzell, H.

    1988-01-01

    Iodine-125-labeled gp120 (120-kDa envelope glycoprotein) from the BH10 isolate of human immunodeficiency virus is cleaved to a limited extend with the glutamate-specific protease from Staphylococcus aureus. After disulfide bond reduction, fragments with approximate molecular masses of 95, 60, 50, and 25 kDa are produced. Tests for binding to CD4-positive cells show that only two fragments, the 95- and 25- kDa peptides, are observed in cleavage products that retain the selective binding capacity of gp120. Radiosequence analysis of the fragments after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electroblotting demonstrates that the 95-kDa fragment lacks the N-terminal region of gp120 and starts at position 143 of the mature envelope protein. The 50-kDa fragment starts at the same position. The 25-kDa binding fragment was similarly deduced to be generated as a small fragment from a cleavage site in the C-terminal part of gp120. The identifications of these fragments demonstrate that radiosequence analysis utilizing 125 I-labeled tyrosine residues can function as a useful and reliable method for small-scale determination of cleavage sites in proteins. Combined, the data suggest domain-like subdivisions of gp120, define at least two intervening segments especially sensitive to proteolytic cleavage, and demonstrate the presence of a functional region for receptor binding in the C-terminal part of the molecule

  17. Crystallization and preliminary X-ray analysis of Chandipura virus glycoprotein G

    International Nuclear Information System (INIS)

    Baquero, Eduard; Buonocore, Linda; Rose, John K.; Bressanelli, Stéphane; Gaudin, Yves; Albertini, Aurélie A.

    2012-01-01

    Chandipura virus glycoprotein ectodomain (Gth) was purified and crystallized at pH 7.5. X-ray diffraction data set was collected to a resolution of 3.1 Å. Fusion in members of the Rhabdoviridae virus family is mediated by the G glycoprotein. At low pH, the G glycoprotein catalyzes fusion between viral and endosomal membranes by undergoing a major conformational change from a pre-fusion trimer to a post-fusion trimer. The structure of the G glycoprotein from vesicular stomatitis virus (VSV G), the prototype of Vesiculovirus, has recently been solved in its trimeric pre-fusion and post-fusion conformations; however, little is known about the structural details of the transition. In this work, a soluble form of the ectodomain of Chandipura virus G glycoprotein (CHAV G th ) was purified using limited proteolysis of purified virus; this soluble ectodomain was also crystallized. This protein shares 41% amino-acid identity with VSV G and thus its structure could provide further clues about the structural transition of rhabdoviral glycoproteins induced by low pH. Crystals of CHAV G th obtained at pH 7.5 diffracted X-rays to 3.1 Å resolution. These crystals belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 150.3, b = 228.2, c = 78.8 Å. Preliminary analysis of the data based on the space group and the self-rotation function indicated that there was no trimeric association of the protomers. This unusual oligomeric status could result from the presence of fusion intermediates in the crystal

  18. Synthetic glycopeptides and glycoproteins with applications in biological research

    Directory of Open Access Journals (Sweden)

    Ulrika Westerlind

    2012-05-01

    Full Text Available Over the past few years, synthetic methods for the preparation of complex glycopeptides have been drastically improved. The need for homogenous glycopeptides and glycoproteins with defined chemical structures to study diverse biological phenomena further enhances the development of methodologies. Selected recent advances in synthesis and applications, in which glycopeptides or glycoproteins serve as tools for biological studies, are reviewed. The importance of specific antibodies directed to the glycan part, as well as the peptide backbone has been realized during the development of synthetic glycopeptide-based anti-tumor vaccines. The fine-tuning of native chemical ligation (NCL, expressed protein ligation (EPL, and chemoenzymatic glycosylation techniques have all together enabled the synthesis of functional glycoproteins. The synthesis of structurally defined, complex glycopeptides or glyco-clusters presented on natural peptide backbones, or mimics thereof, offer further possibilities to study protein-binding events.

  19. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI

    International Nuclear Information System (INIS)

    Johnson, D.C.; Ligas, M.W.; Frame, M.C.; Cross, A.M.; Stow, N.D.

    1988-01-01

    Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70. Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, the authors have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI. Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG

  20. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    Science.gov (United States)

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  1. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein.

    Science.gov (United States)

    Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing

    2017-10-06

    Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Three-dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation

    OpenAIRE

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W. Andy

    2016-01-01

    Glycoproteins have vast structural diversity which plays an important role in many biological processes and have great potential as disease biomarkers. Here we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase GlycoProtein Array (polyGPA), to specifically capture and profile glycoproteomes, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture pre-oxidized glycan...

  3. Viral membrane fusion: is glycoprotein G of rhabdoviruses a representative of a new class of viral fusion proteins?

    Directory of Open Access Journals (Sweden)

    A.T. Da Poian

    2005-06-01

    Full Text Available Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.

  4. Filamentous fungi as production organisms for glycoproteins of bio-medical interest

    NARCIS (Netherlands)

    Maras, M.; Die, I. van; Contreras, R.; Hondel, C.A.M.J.J. van den

    1999-01-01

    Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20-40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but

  5. Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4.

    Science.gov (United States)

    Doricakova, Aneta; Theile, Dirk; Weiss, Johanna; Vrzal, Radim

    2017-01-01

    The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way. In addition, the effect of tamsulosin and tolterodine on P-gp activity was evaluated. We used quantitative real-time PCR, gene reporter assay, western blotting, rhodamine efflux assay, and calcein assay for determination of expression, activity, and inhibition of P-glycoprotein. The studied compounds significantly and concentration-dependently increased PXR activity in the ABCB1-driven luciferase-based reporter gene assay. We observed much stronger induction of ABCB1 mRNA by S-tamsulosin as compared to the R or racemic form. R or racemic form of tolterodine and R-tamsulosin concentration-dependently increased P-gp protein expression; the latter also enhanced P-gp efflux function in a rhodamine-based efflux assay. R-tamsulosin and all forms of tolderodine slightly inhibited P-gp. The effect on CYP3A4 expression followed the same pattern but was much weaker. Taken together, tamsulosin and tolterodine are demonstrated to interfere with P-gp and CYP3A4 regulation in an enantiomer-specific way.

  6. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform.

    Science.gov (United States)

    Pacis, Efren; Yu, Marcella; Autsen, Jennifer; Bayer, Robert; Li, Feng

    2011-10-01

    The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process. Copyright © 2011 Wiley Periodicals, Inc.

  7. Absolute Quantitation of Glycoforms of Two Human IgG Subclasses Using Synthetic Fc Peptides and Glycopeptides

    Science.gov (United States)

    Roy, Rini; Ang, Evelyn; Komatsu, Emy; Domalaon, Ronald; Bosseboeuf, Adrien; Harb, Jean; Hermouet, Sylvie; Krokhin, Oleg; Schweizer, Frank; Perreault, Hélène

    2018-05-01

    Immunoglobulins, such as immunoglobulin G (IgG), are of prime importance in the immune system. Polyclonal human IgG comprises four subclasses, of which IgG1 and IgG2 are the most abundant in healthy individuals. In an effort to develop an absolute MALDI-ToF-MS quantitative method for these subclasses and their Fc N-glycoforms, (glyco)peptides were synthesized using a solid-phase approach and used as internal standards. Tryptic digest glycopeptides from monoclonal IgG1 and IgG2 samples were first quantified using EEQYN(GlcNAc)STYR and EEQFN(GlcNAc)STFR standards, respectively. For IgG1, a similar glycopeptide where tyrosine (Y) was isotopically labelled was used to quantify monoclonal IgG1 that had been treated with the enzyme Endo-F2, i.e., yielding tryptic glycopeptide EEQYN(GlcNAc)STYR. The next step was to quantify single subclasses within polyclonal human IgG samples. Although ion abundances in the MALDI spectra often showed higher signals for IgG2 than IgG1, depending on the spotting solvent used, determination of amounts using the newly developed quantitative method allowed to obtain accurate concentrations where IgG1 species were predominant. It was observed that simultaneous analysis of IgG1 and IgG2 yielded non-quantitative results and that more success was obtained when subclasses were quantified one by one. More experiments served to assess the respective extraction and ionization efficiencies of EEQYNSTYR/EEQFNSTFR and EEQYN(GlcNAc)STYR/EEQFN(GlcNAc)STFR mixtures under different solvent and concentration conditions.

  8. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    Directory of Open Access Journals (Sweden)

    Harish Vashisth

    2015-02-01

    Full Text Available Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD and Monte Carlo (MC simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.

  9. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

    Directory of Open Access Journals (Sweden)

    Mahsa Mohseni

    2016-03-01

    Results: Combination treatment of the cells with docetaxel and vinblastine decreased the IC50 values for docetaxel from (30±3.1 to (15±2.6 nM and for vinblastine from (30±5.9 to (5±5.6 nM (P≤0.05.               P-glycoprotein mRNA expression level showed a significant up-regulation in the cells incubated with each drug alone (P≤0.001. Incubation of the cells with combined concentrations of both agents neutralized P-glycoprotein overexpression (P≤0.05. Adding verapamil, a P-glycoprotein inhibitor caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents.  Conclusion:Our results suggest that combination therapy along with P-glycoprotein inhibition can be considered as a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression.

  10. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  11. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  12. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat

    International Nuclear Information System (INIS)

    Sorrell, M.F.; Nauss, J.M.; Donohue, T.M. Jr.; Tuma, D.J.

    1983-01-01

    The effects of chronic ethanol feeding on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Liver slices from rats fed ethanol for 4-5 wk showed a decreased ability to incorporate [ 14 C]glucosamine into medium trichloracetic acid-precipitable proteins when compared to the pair-fed controls; however, the labeling of hepatocellular glycoproteins was unaffected by chronic ethanol treatment. Immunoprecipitation of radiolabeled secretory (serum) glycoproteins with antiserum against rat serum proteins showed a similar marked inhibition in the appearance of glucosamine-labeled proteins in the medium of slices from ethanol-fed rats. Minimal effects, however, were noted in the labeling of intracellular secretory glycoproteins. Protein synthesis, as determined by measuring [ 14 C]leucine incorporation into medium and liver proteins, was decreased in liver slices from ethanol-fed rats as compared to the pair-fed controls. This was the case for both total proteins as well as immunoprecipitable secretory proteins, although the labeling of secretory proteins retained in the liver slices was reduced to a lesser extent than total radiolabeled hepatic proteins. When the terminal sugar, [ 14 C]fucose, was employed as a precursor in order to more closely focus on the final steps of hepatic glycoprotein secretion, liver slices obtained from chronic ethanol-fed rats exhibited impaired secretion of fucose-labeled proteins into the medium. When ethanol (5 or 10 mM) was added to the incubation medium containing liver slices from the ethanol-fed rats, the alterations in protein and glycoprotein synthesis and secretion caused by the chronic ethanol treatment were further potentiated. The results of this study indicate that liver slices prepared from chronic ethanol-fed rats exhibit both impaired synthesis and secretion of proteins and glycoproteins, and these defects are further potentiated by acute ethanol administration

  13. Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Nicotiana alata.

    Science.gov (United States)

    Jahnen, W; Batterham, M P; Clarke, A E; Moritz, R L; Simpson, R J

    1989-05-01

    S-Gene-associated glycoproteins (S-glycoproteins) from styles of Nicotiana alata, identified by non-equilibrium two-dimensional electrophoresis, were purified by cation exchange fast protein liquid chromatography with yields of 0.5 to 8 micrograms of protein per style, depending on the S-genotype of the plant. The method relies on the highly basic nature of the S-glycoproteins. The elution profiles of the different S-glycoproteins from the fast protein liquid chromatography column were characteristic of each S-glycoprotein, and could be used to establish the S-genotype of plants in outbreeding populations. In all cases, the S-genotype predicted from the style protein profile corresponded to that predicted from DNA gel blot analysis using S-allele-specific DNA probes and to that established by conventional breeding tests. Amino-terminal sequences of five purified S-glycoproteins showed a high degree of homology with the previously published sequences of N. alata and Lycopersicon esculentum S-glycoproteins.

  14. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Morrison, A.I.; Keeble, S.; Watt, F.M.

    1988-01-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of [ 14 C]galactose- or [ 14 C]mannose- and [ 14 C]glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification

  15. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses.

    Science.gov (United States)

    Byrd-Leotis, Lauren; Liu, Renpeng; Bradley, Konrad C; Lasanajak, Yi; Cummings, Sandra F; Song, Xuezheng; Heimburg-Molinaro, Jamie; Galloway, Summer E; Culhane, Marie R; Smith, David F; Steinhauer, David A; Cummings, Richard D

    2014-06-03

    Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.

  16. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation.

    Science.gov (United States)

    Mammadova-Bach, Elmina; Ollivier, Véronique; Loyau, Stéphane; Schaff, Mathieu; Dumont, Bénédicte; Favier, Rémi; Freyburger, Geneviève; Latger-Cannard, Véronique; Nieswandt, Bernhard; Gachet, Christian; Mangin, Pierre H; Jandrot-Perrus, Martine

    2015-07-30

    Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization. © 2015 by The American Society of Hematology.

  17. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  18. Spatial Localization of the Ebola Virus Glycoprotein Mucin-Like Domain Determined by Cryo-Electron Tomography

    OpenAIRE

    Tran, Erin E. H.; Simmons, James A.; Bartesaghi, Alberto; Shoemaker, Charles J.; Nelson, Elizabeth; White, Judith M.; Subramaniam, Sriram

    2014-01-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function.

  19. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang; Abu Samra, Dina Bashir Kamil; Merzaban, Jasmeen; Khashab, Niveen M.

    2013-01-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug

  20. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  1. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology.

    Science.gov (United States)

    Aricescu, A Radu; Owens, Raymond J

    2013-06-01

    Mammalian cells are rapidly becoming the system of choice for the production of recombinant glycoproteins for structural biology applications. Their use has enabled the structural investigation of a whole new set of targets including large, multi-domain and highly glycosylated eukaryotic cell surface receptors and their supra-molecular assemblies. We summarize the technical advances that have been made in mammalian expression technology and highlight some of the structural insights that have been obtained using these methods. Looking forward, it is clear that mammalian cell expression will provide exciting and unique opportunities for an integrative approach to the structural study of proteins, especially of human origin and medically relevant, by bridging the gap between the purified state and the cellular context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  3. Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry

    Czech Academy of Sciences Publication Activity Database

    Lounková, Anna; Kosla, Jan; Přikryl, David; Štafl, Kryštof; Kučerová, Dana; Svoboda, Jan

    2017-01-01

    Roč. 114, č. 26 (2017), E5148-E5157 ISSN 0027-8424 R&D Projects: GA ČR GA15-22207S Institutional support: RVO:68378050 Keywords : Rous sarcoma virus * retrovirus * virus entry * envelope glycoprotein * receptor-independent entry Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Virology Impact factor: 9.661, year: 2016

  4. Glycoproteins of axonal transport: affinity chromatography on fucose-specific lectins

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, S.; Ohlson, C.; Karlsson, J.O.

    1982-03-01

    Rapidly transported fucose-labeled glycoproteins from axons of rabbit retinal ganglion cells were solubilized with nonionic detergents. The solubilized components were subjected to affinity chromatography on three different fucose-specific lectins. A recently characterized fucose-specific lectin from Aleuria aurantia bound reversibly approximately 60% of the applied protein-bound radioactivity. The lectins from Lotus tetragonolobus and Ulex europaeus bound are very small proportions of the labeled rapidly transported glycoproteins.

  5. Cellular receptors for human enterovirus species A

    Directory of Open Access Journals (Sweden)

    Yorihiro eNishimura

    2012-03-01

    Full Text Available Human enterovirus species A (HEV-A is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16 and enterovirus 71 (EV71 are the major causative agents of hand, foot, and mouth disease (HFMD. Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis.Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1 and scavenger receptor class B, member 2 (SCARB2, were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.

  6. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma.

    Directory of Open Access Journals (Sweden)

    Maria Kärrlander

    Full Text Available Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG, a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B, in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma.

  7. Simultaneous localization of an hepatic binding protein specific for galactose and of galactose-containing receptors on rat hepatocytes.

    Science.gov (United States)

    Horisberger, M; VonLanthen, M

    1978-11-01

    The hepatic binding protein, specific for galactose-terminated glycoproteins (asialoglycoproteins) and the receptors for the Ricinus communis lectin, specific for galactose residues (RCA1), were simultaneously localized on isolated rat hepatocytes by the gold method. The marker for the binding protein was prepared from gold granules (5 nm in diam.) labeled with ceruloplasmin and desialylated. The marker specific for galactose-containing receptors consisted of granules (17 nm in diameter) labeled with RCA1. It was established that both markers did not interact. Hepatocytes (fresh or briefly fixed with glutaraldehyde) were successively incubated with the asialoceruloplasmin and the RCA1 marker. Examination of thin sections by electron microscopy indicated that the binding protein and the RCA1 receptors were often in the proximity of each other on the plasmamembrane. Using the same technique, wheat germ agglutinin (WGA) receptors were generally found on area of the plasmamembrane poorly marked by the RCA1 gold marker. The binding of asialoceruloplasmin gold markers was studied as a function of the size of the granules. It became insignificant when the size was above 17 nm. Previous results have shown that the binding of RCA1 is low when the marker reaches 50 nm in size while WGA markers up to 75 nm are well bound by hepatocytes. It is therefore hypothesized that the binding protein and RCA1 receptors are located between glycoprotein brushes of increasing spacing while part or all of the WGA receptors are located at the periphery of the brushes.

  8. Development of a radioimmunoassay for 'Tamm-Horsfall-like' glycoprotein in serum and cerebrospinal fluid

    International Nuclear Information System (INIS)

    Hartmann, L.; Bringuier, A.-F.; Schuller, E.

    1983-01-01

    Affinity chromatography purification was combined with a radioimmunoassay for 'Tamm-Horsfall-like' glycoprotein. This enabled serum comcentrations to be established and to demonstrate its presence in cerebrospinal fluid for the first time. This assay method used in different circumstances suggests a multifocal synthesis. Nevertheless, urinary Tamm-Horsfall glycoprotein so far must be distinguished from the serum or cerebrospinal fluid Tamm-Horsfall-like glycoprotein. (Auth.)

  9. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    Science.gov (United States)

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  11. Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2009-04-01

    Full Text Available Elite suppressors (ES are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor and CCR5 (co-receptor. In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals.

  12. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Directory of Open Access Journals (Sweden)

    Mattias N E Forsell

    2008-10-01

    Full Text Available The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3. Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4 rabbits with envelope glycoprotein (Env trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  13. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Science.gov (United States)

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  14. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Preparation of 131I-asialo-α1-acid glycoprotein

    International Nuclear Information System (INIS)

    Rijk, P.P. van

    1975-01-01

    α 1 -Acid glycoprotein (orosomucoid) was prepared from a byproduct of the ethanol plasma fractionation by means of ion-exchange procedures. Immunoelectrophoresis suggested a high degree of purity; the purified protein contained 13.5% sialic acid and 17.8% hexose. The α 1 -acid glycoprotein was modified by removal of sialic acid with neurominidase (E.C. 3.2.1.18) followed by iodination with 131 I. The purpose of the preparation, its potential use as a pharmacon for liver-function studies in nuclear medicine, is the subject of further study

  16. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  17. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  18. Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Leberer, E.; Charuk, J.H.M.; MacLennan, D.H.; Green, N.M.

    1989-01-01

    Antibody screening was used to isolate a cDNA encoding the 160-kDa glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. The cDNA is identical to that encoding the 53-kDa glycoprotein except that it contains an in-frame insertion of 1,308 nucleotides near its 5' end, apparently resulting from alternative splicing. The protein encoded by the cDNA would contain a 19-residue NH 2 -terminal signal sequence and a 453-residue COOH-terminal sequence identical to the 53-kDa glycoprotein. It would also contain a 436-amino acid insert between these sequences. This insert would be highly acidic, suggesting that it might bind Ca 2+ . The purified 160-kDa glycoprotein and the glycoprotein expressed in COS-1 cells transfected with cDNA encoding the 160-kDa glycoprotein were shown to bind 45 C 2+ in a gel overlay assay. The protein was shown to be located in the lumen of the sarcoplasmic reticulum and to be associated through Ca 2+ with the membrane. The authors propose that this lumenal Ca 2+ binding glycoprotein of the sarcoplasmic reticulum be designated sarcalumenin

  19. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    International Nuclear Information System (INIS)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D.

    1989-01-01

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the α-glucosidase amyloglucosidase (50% inhibition at 5.8 μM), but it did not inhibit β-glucosidase, α- or β-mannosidase, or α- or β-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc 3 Man 7-9 (GlcNAc) 2 -oligosaccharides

  20. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  1. The expression and serological reactivity of recombinant canine herpesvirus 1 glycoprotein D

    Directory of Open Access Journals (Sweden)

    MarkéŽta Vaňkov‡á

    2016-01-01

    Full Text Available The aim of this work was to express recombinant glycoprotein D of canine herpesvirus 1 in bacterial cells and to evaluate its diagnostic sensitivity and specificity when compared to traditional serological methods. The gene fragment coding glycoprotein D of canine herpesvirus 1 was amplified by polymerase chain reaction, cloned into plasmid vector and expressed in Escherichia coli cells. Recombinant protein was then purified and used as an antigen in immunoblot for a detection of canine herpesvirus 1 specific antibodies. Antibody testing was performed on the panel of 100 canine sera by immunoblot with recombinant glycoprotein D as antigen and compared with indirect immunofluorescence assay. Serum samples were collected from 83 dogs with no history of canine herpesvirus 1 or reproductive disorders, and from 17 dogs from breeding kennels with a history of canine herpesvirus 1 related reproductive disorders. Sensitivity of glycoprotein D based immunoblot was 89.2% and specificity was 93%. Kappa value was calculated to be 0.8 between immunoblot and indirect immunofluorescence assay. Antibodies against canine herpesvirus 1 infection were detected in 33% of samples by immunoblot assay. Our study confirms that recombinant glycoprotein D expressed in bacterial cells could be used as a suitable and sensitive antigen for immunological tests and that herpesvirus infection seems to be common among the canine population in the Czech Republic.

  2. Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection

    International Nuclear Information System (INIS)

    Chu, J.J.H.; Ng, M.L.

    2003-01-01

    This study attempts to isolate and characterize West Nile virus-binding molecules on the plasma membrane of Vero and murine neuroblastoma cells that is responsible for virus entry. Pretreatment of Vero cells with proteases, glycosidases (endoglycosidase H, α-mannosidase), and sodium periodate strongly inhibited West Nile virus infection, whereas treatments with phospholipases and heparinases had no effect. The virus overlay protein blot detected a 105-kDa molecule on the plasma membrane extract of Vero and murine neuroblastoma cells that bind to WN virus. Treatment of the 105-kDa molecules with β-mercaptoethanol resulted in the virus binding to a series of lower molecular weight bands ranging from 30 to 40 kDa. The disruption of disulfide-linked subunits did not affect virus binding. N-linked sugars with mannose residues on the 105-kDa membrane proteins were found to be important in virus binding. Specific antibodies against the 105-kDa glycoprotein were highly effective in blocking virus entry. These results strongly supported the possibility that the 105-kDa protease-sensitive glycoprotein with complex N-linked sugars could be the putative receptor for WN virus

  3. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  4. Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers.

    Science.gov (United States)

    Chen, I-Hsuan; Aguilar, Hillary Andaluz; Paez Paez, J Sebastian; Wu, Xiaofeng; Pan, Li; Wendt, Michael K; Iliuk, Anton B; Zhang, Ying; Tao, W Andy

    2018-05-15

    Glycoproteins comprise more than half of current FDA-approved protein cancer markers, but the development of new glycoproteins as disease biomarkers has been stagnant. Here we present a pipeline to develop glycoproteins from extracellular vesicles (EVs) through integrating quantitative glycoproteomics with a novel reverse phase glycoprotein array and then apply it to identify novel biomarkers for breast cancer. EV glycoproteomics show promise in circumventing the problems plaguing current serum/plasma glycoproteomics and allowed us to identify hundreds of glycoproteins that have not been identified in blood. We identified 1,453 unique glycopeptides representing 556 glycoproteins in EVs, among which 20 were verified significantly higher in individual breast cancer patients. We further applied a novel glyco-specific reverse phase protein array to quantify a subset of the candidates. Together, this study demonstrates the great potential of this integrated pipeline for biomarker discovery.

  5. Homologous and heterologous antibody responses of mice immunized with purified feline herpesvirus type 1 and canine herpesvirus glycoproteins.

    Science.gov (United States)

    Limcumpao, J A; Horimoto, T; Xuan, X N; Tohya, Y; Azetaka, M; Takahashi, E; Mikami, T

    1991-06-01

    The three glycoproteins each of feline herpesvirus type 1 (FHV-1) and canine herpesvirus (CHV) were purified by affinity chromatography using glycoprotein-specific monoclonal antibodies and used individually or in combination in immunizing mice to determine their relative immunogenicity. All the glycoproteins induced detectable virus neutralizing antibodies to the homologous virus but FHV-1 gp143/108 and its cross-reacting counterpart, CHV gp145/112, elicited the highest titers not only to the homologous virus but to the heterologous virus as well. The production of ELISA antibodies after glycoprotein immunization was variable, while hemagglutination-inhibiting antibodies were produced by only 1 out of 10 FHV-1 gp60-inoculated mice. In general, the antibody titers induced by CHV glycoproteins were lower than those by FHV-1 glycoproteins. These results indicate that these glycoproteins may be useful as subunit vaccines against FHV-1 and CHV infections.

  6. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles; Lazear, Eric; Connolly, Sarah A.; Eisenberg, Roselyn J.; Cohen, Gary H.; Wiley, Don C.; Carfi, Andrea (UPENN); (IRBM); (CHLMM)

    2010-07-19

    Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves upon receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.

  7. Crystallization and preliminary crystallographic analysis of the measles virus hemagglutinin in complex with the CD46 receptor

    International Nuclear Information System (INIS)

    Santiago, César; Gutiérrez-Rodríguez, Angel; Tucker, Paul A.; Stehle, Thilo; Casasnovas, José M.

    2009-01-01

    A complex of the measles virus hemagglutinin and the CD46 receptor representing the initial step of the cell infection has been crystallized. The measles virus (MV) hemagglutinin (MV-H) mediates the attachment of MV particles to cell-surface receptors for entry into host cells. MV uses two receptors for attachment to host cells: the complement-control protein CD46 and the signalling lymphocyte activation molecule (SLAM). The MV-H glycoprotein from an Edmonston MV variant and the MV-binding fragment of the CD46 receptor were overproduced in mammalian cells and used to crystallize an MV-H–CD46 complex. Well diffracting crystals containing two complexes in the asymmetric unit were obtained and the structure of the complex was solved by the molecular-replacement method

  8. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44

    KAUST Repository

    Abu Samra, Dina Bashir Kamil; Aleisa, Fajr A; Al-Amoodi, Asma S.; Jalal Ahmed, Heba M.; Chin, Chee Jia; AbuElela, Ayman; Bergam, Ptissam; Sougrat, Rachid; Merzaban, Jasmeen

    2017-01-01

    CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.

  9. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2017-12-27

    CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.

  10. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    Science.gov (United States)

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition

  11. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  12. The haemagglutination activity of equine herpesvirus type 1 glycoprotein C.

    Science.gov (United States)

    Andoh, Kiyohiko; Hattori, Shiho; Mahmoud, Hassan Y A H; Takasugi, Maaya; Shimoda, Hiroshi; Bannai, Hiroshi; Tsujimura, Koji; Matsumura, Tomio; Kondo, Takashi; Kirisawa, Rikio; Mochizuki, Masami; Maeda, Ken

    2015-01-02

    Equine herpesvirus type 1 (EHV-1) has haemagglutination (HA) activity toward equine red blood cells (RBCs), but the identity of its haemagglutinin is unknown. To identify the haemagglutinin of EHV-1, the major glycoproteins of EHV-1 were expressed in 293T cells, and the cells or cell lysates were mixed with equine RBCs. The results showed that only EHV-1 glycoprotein C (gC)-producing cells adsorbed equine RBCs, and that the lysate of EHV-1 gC-expressing cells agglutinated equine RBCs. EHV-1 lacking gC did not show HA activity. HA activity was inhibited by monoclonal antibodies (MAbs) specific for gC, but not by antibodies directed against other glycoproteins. In addition, HA activity was not inhibited by the addition of heparin. These results indicate that EHV-1 gC can bind equine RBCs irrespective of heparin, in contrast to other herpesvirus gC proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  14. The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa.

    Science.gov (United States)

    Linardi, R L; Stokes, A M; Andrews, F M

    2013-02-01

    Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo. © 2012 Blackwell Publishing Ltd.

  15. [Pregnancy-specific beta-glycoprotein in the serum of women with a complicated early pregnancy].

    Science.gov (United States)

    Radikov, N

    1989-01-01

    The author determined pregnancy specific beta 1-glycoprotein in 109 women with threatened early pregnancy as 32 of the women suffered from abortus imminens with several unsuccessful pregnancies in the past as well as 67 women with abortus incipiens with bleeding ex utero. The author established that 87% of women with abortus imminens and preserved pregnancies had values of beta 1-glycoprotein close to those of normal pregnancy for the respective gestational week. 93% of women with abortus incipiens preserved pregnancies till term, but the specific glycoprotein was with in normal ranges. Spontaneous abortion occurred in 7% of women with low values under the 10th percentile. The present study show that examination of pregnancy specific beta 1-glycoprotein in women with threatened early pregnancy is of prognostic significance for the outcome of pregnancy.

  16. Study on the extraction and purification of glycoprotein from the yellow seahorse, Hippocampus kuda Bleeker

    Science.gov (United States)

    Su, Yuting; Xu, Yongjian

    2015-01-01

    The optimum parameters of extraction for glycoprotein from seahorse were examined and determined by Box-Behnken combined with ultrasonic extraction technology. Column chromatography of glycoprotein was used for further purification. The optimal extraction conditions of seahorse glycoprotein were extracting time 4.3 h, salt concentration 0.08 mol/L, extracting temperature 73°C, raw material, and water ratio 1:6. At the optimal conditions, the yield of saccharide reached to 1.123%, and the yield of protein reached to 5.898%. For purifying the crude glycoprotein, the stage renounces of DEAE-52 column chromatography were done, respectively, with 0.05, 0.1, 0.5 mol/L NaHCO3 solution, and further purification was done with Sephadex G-100 column chromatography. Finally, two pieces of seahorse glycoprotein were obtained by the column chromatography, that is, HG-11 and HG-21. The saccharide content was 56.7975% and 39.479%, the protein content was 30.5475% and 51.747%, respectively. PMID:26288722

  17. Improved radioimmunoassay for urinary Tamm-Horsfall glycoprotein. Investigation and resolution of factors affecting its quantification

    Energy Technology Data Exchange (ETDEWEB)

    Dawney, A B.St.J.; Thornley, C; Cattell, W R [Saint Bartholomew' s Hospital, London (UK)

    1982-09-15

    A rapid specific radioimmunoassay has been used to measure Tamm-Horsfall glycoprotein (TH glycoprotein) in urine, and the method described. The apparent concentration increased with increasing dilution of urine in water, reaching a plateau at 1 in 20. This increase was greater the higher the osmolality and TH glycoprotein concentration and the lower the pH of the original sample. The apparent concentration of TH glycoprotein in neat or diluted urine was not affected by freezing or by storage at 4/sup 0/C or room temperature for at least 2 days. A physiological range for the urinary excretion rate was established as 22-56 mg/24h, (considerably higher than the amount present in serum) based on samples from 29 individuals with normal renal function, as defined by their creatinine clearance. There was no significant correlation between serum concentrations of TH glycoprotein and its urinary excretion rate, nor between urinary excretion rate and creatinine clearance.

  18. Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2011-01-21

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.

  19. A novel PET imaging protocol identifies seizure-induced regional overactivity of P-glycoprotein at the blood-brain barrier

    Science.gov (United States)

    Bankstahl, Jens P.; Bankstahl, Marion; Kuntner, Claudia; Stanek, Johann; Wanek, Thomas; Meier, Martin; Ding, Xiao-Qi; Müller, Markus; Langer, Oliver; Löscher, Wolfgang

    2013-01-01

    About one third of epilepsy patients are pharmacoresistant. Overexpression of P-glycoprotein and other multidrug transporters at the blood-brain barrier is thought to play an important role in drug-refractory epilepsy. Thus, quantification of regionally different P-glycoprotein activity in the brain in vivo is essential to identify P-glycoprotein overactivity as the relevant mechanism for drug-resistance in an individual patient. Using the radiolabeled P-glycoprotein substrate (R)-[11C]verapamil and different doses of co-administered tariquidar, which is an inhibitor of P-glycoprotein, we evaluated whether small-animal positron emission tomography (PET) can quantify regional changes in transporter function in the rat brain at baseline and 48 h after a pilocarpine-induced status epilepticus. P-glycoprotein expression was additionally quantified by immunohistochemistry. To reveal putative seizure-induced changes in blood-brain barrier integrity, we performed gadolinium-enhanced magnetic resonance scans on a 7.0 Tesla small-animal scanner. Before P-glycoprotein modulation, brain uptake of (R)-[11C]verapamil was low in all regions investigated in control and post-status epilepticus rats. After administration of 3 mg/kg tariquidar, which inhibits P-glycoprotein only partially, we observed increased regional differentiation in brain activity uptake in post-status epilepticus versus control rats, which diminished after maximal P-glycoprotein inhibition. Regional increases in the efflux rate constant k2, but not in distribution volume VT or influx rate constant K1, correlated significantly with increases in P-glycoprotein expression measured by immunohistochemistry. This imaging protocol proves to be suitable to detect seizure-induced regional changes in P-glycoprotein activity and is readily applicable to humans, with the aim to detect relevant mechanisms of pharmacoresistance in epilepsy in vivo. PMID:21677164

  20. Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshiki; Hirao, Takeshi; Sakata, Eri; Kamiya, Yukiko; Kurimoto, Eiji; Yoshida, Yukiko; Suzuki, Tadashi; Tanaka, Keiji; Kato, Koichi

    2007-01-01

    Fbs1 is a cytosolic lectin putatively operating as a chaperone as well as a substrate-recognition subunit of the SCF Fbs1 ubiquitin ligase complex. To provide structural and functional basis of preferential binding of Fbs1 to unfolded glycoproteins, we herein characterize the interaction of Fbs1 with a heptapeptide carrying Man 3 GlcNAc 2 by nuclear magnetic resonance (NMR) spectroscopy and other biochemical methods. Inspection of the NMR data obtained by use of the isotopically labeled glycopeptide indicated that Fbs1 interacts with sugar-peptide junctions, which are shielded in native glycoprotein, in many cases, but become accessible to Fbs1 in unfolded glycoproteins. Furthermore, Fbs1 was shown to inhibit deglycosylation of denatured ribonuclease B by a cytosolic peptide:N-glycanase (PNGase). On the basis of these data, we suggest that Fbs1 captures malfolded glycoproteins, protecting them from the attack of PNGase, during the chaperoning or ubiquitinating operation in the cytosol

  1. Purification and characterization of a soluble glycoprotein from garlic (Allium sativum) and its in vitro bioactivity.

    Science.gov (United States)

    Wang, Yan; Zou, Tingting; Xiang, Minghui; Jin, Chenzhong; Zhang, Xuejiao; Chen, Yong; Jiang, Qiuqing; Hu, Yihong

    2016-10-02

    A soluble glycoprotein was purified to homogeneity from ripe garlic (Allium sativum) bulbs using ammonium sulfate precipitation, Sephadex G-100 gel filtration, and diethylaminoethyl-52 cellulose anion-exchange chromatography. A native mass of 55.7 kDa estimated on gel permeation chromatography and a molecular weight of 13.2 kDa observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported that the glycoprotein is a homotetramer. β-Elimination reaction result suggested that the glycoprotein is an N-linked type. Fourier-transform infrared spectroscopy proved that it contains sugar. Gas chromatography-mass spectrometer analysis showed that its sugar component was galactose. The glycoprotein has 1,1-diphenyl-2-picrylhydrazil free radical scavenging activity and the peroxidation inhibition ability to polyunsaturated fatty acid. These results indicated that the glycoprotein has potential for food additives, functional foods, and even biotechnological and medical applications.

  2. Annotating Human P-Glycoprotein Bioassay Data.

    Science.gov (United States)

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-08-01

    Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.

  3. Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time.

    Directory of Open Access Journals (Sweden)

    Maximilian Wei-Lin Popp

    Full Text Available The influenza virus uses the hemagglutinin (HA and neuraminidase (NA glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging.

  4. Intestinal mucus and juice glycoproteins have a liquid crystalline structure

    International Nuclear Information System (INIS)

    Denisova, E.A.; Lazarev, P.I.; Vazina, A.A.; Zheleznaya, L.A.

    1985-01-01

    X-ray diffraction patterns have been obtained from the following components of canine gastrointestinal tract: (1) native small intestine mucus layer; (2) the precipitate of the flocks formed in the duodenal juice with decreasing pH; (3) concentrated solutions of glycoproteins isolated from the duodenal juice. The X-ray patterns consist of a large number of sharp reflections of spacings between about 100 and 4 A. Some reflections are common for all components studied. All the patterns are interpreted as arising from the glycoprotein molecules ordered into a liquid crystalline structure. (author)

  5. Use of λgt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    International Nuclear Information System (INIS)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-01-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector λgt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the λgt11 vector, the cloned proteins were expressed in Escherichia coli as β-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of [ 14 C]glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX; gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved

  6. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer.

    Science.gov (United States)

    Carrascal, M A; Silva, M; Ferreira, J A; Azevedo, R; Ferreira, D; Silva, A M N; Ligeiro, D; Santos, L L; Sackstein, R; Videira, P A

    2018-05-17

    The glycan moieties sialyl-Lewis-X and/or -A (sLe X/A ) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. We observed that the CF1_T cell line expressed sLe X , but not sLe A and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLe X -CD44 and sLe X -CD13 was confirmed in clinical breast cancer tissue samples. Both CD44 and CD13 glycoforms display sLe X in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Platelet Glycoprotein Ib-IX and Malignancy

    Science.gov (United States)

    2010-09-01

    provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin - rich network produced by coagulation...process and can initiate the formation of a platelet - rich thrombus by tethering the platelet to a thrombogenic surface. Several ligands binding to GP Ib... Platelet Glycoprotein Ib-IX and Malignancy PRINCIPAL INVESTIGATOR: Jerry Ware, Ph.D

  8. The quality control of glycoprotein folding in the endoplasmic reticulum, a trip from trypanosomes to mammals

    Directory of Open Access Journals (Sweden)

    A.J. Parodi

    1998-05-01

    Full Text Available The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyltransferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.

  9. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    Full Text Available Antibody-enhanced replication (AER of dengue type-2 virus (DENV-2 strains and production of antibody-enhanced disease (AED was tested in out-bred mice. Polyclonal antibodies (PAbs generated against the nonstructural-1 (NS1 glycoprotein candidate vaccine of the New Guinea-C (NG-C or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀ of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS, displayed by diffuse alveolar damage (DAD resulting from i dramatic interstitial alveolar septa-thickening with mononuclear cells, ii some hyperplasia of alveolar type-II pneumocytes, iii copious intra-alveolar protein secretion, iv some hyaline membrane-covered alveolar walls, and v DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  10. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-10-01

    Full Text Available Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing.

  11. EGF-induced stimualtion of EGF-receptor synthesis in human cytotrophoblasts and A431 cells

    International Nuclear Information System (INIS)

    DePalo, L.; Basu, A.; Das, M.

    1987-01-01

    EGF-receptor is a transmembrane glycoprotein whose intracellular degradation is known to be enhanced by EGF. The authors tested whether the receptor is replenished during this process by an enhanced rate of synthesis. Human A431 epidermoid carcinoma cells, and primary cultures of human placental cytotrophoblasts were used in these studies. Cells were labeled with 35 S-methionine, and EGF-receptor biosynthesis was quantitated by immunoprecipitation using a monoclonal anti-EGF-receptor antibody. EGF stimulated receptor biosynthesis at concentrations of 0.1-1 nM. The effect was seen within 2 h of EGF addition. The maximal stimulatory effect was modest in A431 (∼ 2-fold), but marked in the cytotrophoblasts (>5-fold). At EGF concentrations higher than 3 nM, the stimulatory effect was abolished. In contrast, the effect of EGF on receptor degradation is negligible at low subnanomolar concentrations, and is pronounced only at saturating concentrations. These results show that occupation of the cell surface EGF-receptor by its ligand can lead to production of more receptor protein, thus counterbalancing the negative effect on receptor degradation. At low subnanomolar (mitogenic) concentrations of EGF the stimulator effect on receptor synthesis is likely to predominate over the effect on receptor degradation

  12. Mucus glycoprotein secretion by tracheal explants: effects of pollutants

    International Nuclear Information System (INIS)

    Last, J.A.; Kaizu, T.

    1980-01-01

    Tracheal slices incubated with radioactive precursors in tissue culture medium secrete labeled mucus glycoproteins into the culture medium. We have used an in vivtro approach, a combined method utilizing exposure to pneumotoxins in vivo coupled with quantitation of mucus secretion rates in vitro, to study the effects of inhaled pollutants on mucus biosynthesis by rat airways. In addition, we have purified the mucus glycoproteins secreted by rat tracheal explants in order to determine putative structural changes that might by the basis for the observed augmented secretion rates after exposure of rats to H2SO4 aerosols in combination with high ambient levels of ozone. After digestion with papain, mucus glycoproteins secreted by tracheal explants may be separated into five fractions by ion-exchange chromatography, with recovery in high yield, on columns of DEAE-cellulose. Each of these five fractions, one neutral and four acidic, migrates as a single unique spot upon cellulose acetate electrophoresis at pH values of 8.6 and 1.2. The neutral fraction, which is labeled with [3H] glucosamine, does not contain radioactivity when Na2 35SO4 is used as the precursor. Acidic fractions I to IV are all labeled with either 3H-glucosamine or Na2 35SO4 as precursor. Acidic fraction II contains sialic acid as the terminal sugar on its oligosaccharide side chains, based upon its chromatographic behavior on columns of wheat-germ agglutinin-Agarose. Treatment of this fraction with neuraminidase shifts its elution position in the gradient to a lower salt concentration, coincident with acidic fraction I. After removal of terminal sialic acid residues with either neuraminidase or low pH treatment, the resultant terminal sugar on the oligosaccharide side chains is fucose. These results are identical with those observed with mucus glycoproteins secreted by cultured human tracheal explants and purified by these same techniques

  13. Glycan structures contain information for the spatial arrangement of glycoproteins in the plasma membrane.

    Directory of Open Access Journals (Sweden)

    M Kristen Hall

    Full Text Available Glycoconjugates at the cell surface are crucial for cells to communicate with each other and the extracellular microenvironment. While it is generally accepted that glycans are vectorial biopolymers, their information content is unclear. This report provides evidence that distinct N-glycan structures influence the spatial arrangement of two integral membrane glycoproteins, Kv3.1 and E-cadherin, at the adherent membrane which in turn alter cellular properties. Distinct N-glycan structures were generated by heterologous expression of these glycoproteins in parental and glycosylation mutant Chinese hamster ovary cell lines. Unlike the N-linked glycans, the O-linked glycans of the mutant cell lines are similar to those of the parental cell line. Western and lectin blots of total membranes and GFP immunopurified samples, combined with glycosidase digestion reactions, were employed to verify the glycoproteins had predominantly complex, oligomannose, and bisecting type N-glycans from Pro(-5, Lec1, and Lec10B cell lines, respectively. Based on total internal reflection fluorescence and differential interference contrast microscopy techniques, and cellular assays of live parental and glycosylation mutant CHO cells, we propose that glycoproteins with complex, oligomannose or bisecting type N-glycans relay information for localization of glycoproteins to various regions of the plasma membrane in both a glycan-specific and protein-specific manner, and furthermore cell-cell interactions are required for deciphering much of this information. These distinct spatial arrangements also impact cell adhesion and migration. Our findings provide direct evidence that N-glycan structures of glycoproteins contribute significantly to the information content of cells.

  14. Modification of P-selectin glycoprotein ligand-1 with a natural killer cell-restricted sulfated lactosamine creates an alternate ligand for L-selectin

    Science.gov (United States)

    André, Pascale; Spertini, Olivier; Guia, Sophie; Rihet, Pascal; Dignat-George, Françoise; Brailly, Hervé; Sampol, José; Anderson, Paul J.; Vivier, Eric

    2000-01-01

    Natural killer (NK) cells are components of the innate immune system that can recognize and kill virally infected cells, tumor cells, and allogeneic cells without prior sensitization. NK cells also elaborate cytokines (e.g., interferon-γ and tumor necrosis factor-α) and chemokines (e.g., macrophage inflammatory protein-1α) that promote the acquisition of antigen-specific immunity. NK cell differentiation is accompanied by the cell surface expression of a mucin-like glycoprotein bearing an NK cell-restricted keratan sulfate-related lactosamine carbohydrate, the PEN5 epitope. Here, we report that PEN5 is a post-translational modification of P-selectin glycoprotein ligand-1 (PSGL-1). The PEN5 epitope creates on PSGL-1 a unique binding site for L-selectin, which is independent of PSGL-1 tyrosine sulfation. On the surface of NK cells, the expression of PEN5 is coordinated with the disappearance of L-selectin and the up-regulation of Killer cell Ig-like Receptors (KIR). These results indicate that NK cell differentiation is accompanied by the acquisition of a unique carbohydrate, PEN5, that can serve as part of a combination code to deliver KIR+ NK cells to specific tissues. PMID:10725346

  15. Design and synthesis of an antigenic mimic of the Ebola glycoprotein

    OpenAIRE

    Rutledge, Ryan D.; Huffman, Brian J.; Cliffel, David E.; Wright, David W.

    2008-01-01

    An antigenic mimic of the Ebola glycoprotein was synthesized and tested for its ability to be recognized by an anti-Ebola glycoprotein antibody. Epitope-mapping procedures yielded a suitable epitope that, when presented on the surface of a nanoparticle, forms a structure that is recognized by an antibody specific for the native protein. This mimic-antibody interaction has been quantitated through ELISA and QCM-based methods and yielded an affinity (Kd = 12 × 10−6 M) within two orders of magni...

  16. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle.

    Science.gov (United States)

    Xiao, Bo; Yang, Yang; Viennois, Emilie; Zhang, Yuchen; Ayyadurai, Saravanan; Baker, Mark; Laroui, Hamed; Merlin, Didier

    2014-03-21

    Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab'-bearing quantum dots (QDs)-loaded nanoparticles (Fab'-NPs). The resultant Fab'-NPs had desired particle size (~458 nm) with a narrow size distribution and zeta-potential (approximately +19 mV), low cytotoxicity, and excellent fluorescence properties. Electron microscopy images provided direct evidence for the well-dispersed distribution of QDs within spherical Fab'-NPs. Cellular uptake experiments demonstrated that Fab'-NPs were efficiently internalized into Colon-26 and RAW 264.7 cells through the CD98-mediated endocytosis pathway, and showed that the targeting effect of CD98 Fab' markedly increased their cellular uptake efficiency compared with control pegylated QDs-loaded NPs (PEG-NPs). Furthermore, ex vivo studies showed much more effective accumulation of Fab'-NPs in colitis tissue than that of PEG-NPs. These findings suggest that because of inflammation-dependent over-expression of CD98, active colitis-targeted delivery can be accomplished using NPs decorated with CD98 antibody.

  17. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  18. Involvement of Leishmania donovani major surface glycoprotein ...

    Indian Academy of Sciences (India)

    The major surface glycoprotein gp63 of the kinetoplastid protozoal parasite Leishmania is implicated as a ligand mediating uptake of the parasite into, and survival within, the host macrophage. By expressing gp63 antisense RNA from an episomal vector in L. donovani promastigotes, gp63-deficient transfectants were ...

  19. The nectin-1α transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins

    International Nuclear Information System (INIS)

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J.

    2005-01-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1α involved in cell fusion, we measured the ability of nectin-1α/nectin-2α chimeras, nectin-1α/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1α to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1α cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1α and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1α interaction in fusion

  20. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... 1National Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan. 2Department of ..... E glycoprotein and its interaction with antibody with the method of molecular dynamics and molecular model ...

  1. Stent parameters predict major adverse clinical events and the response to platelet glycoprotein IIb/IIIa blockade: findings of the ESPRIT trial.

    Science.gov (United States)

    Tcheng, James E; Lim, Ing Haan; Srinivasan, Shankar; Jozic, Joseph; Gibson, C Michael; O'Shea, J Conor; Puma, Joseph A; Simon, Daniel I

    2009-02-01

    Only limited data describe relationships between stent parameters (length and diameter), adverse events after percutaneous coronary intervention, and effects of platelet glycoprotein IIb/IIIa blockade by stent parameters. In this post hoc analysis of the 1983 patients receiving a stent in the Enhanced Suppression of the Platelet Glycoprotein IIb/IIIa Receptor with Integrilin Therapy randomized percutaneous coronary intervention trial of eptifibatide versus placebo, rates of the major adverse cardiac event (MACE) end point (death, myocardial infarction, urgent target-vessel revascularization, or thrombotic bailout) at 48 hours and 1 year were correlated with stent parameters and then analyzed by randomization to eptifibatide versus placebo. In the placebo group, MACE increased with number of stents implanted, total stent length (by quartiles of or=30 mm), and total stented vessel area (by quartiles of area or=292 mm(2)). By stent parameters, MACE at 48 hours was reduced in the eptifibatide group at stent lengths of 18 to or=30 mm (OR, 0.43; 95% CI, 0.25 to 0.75; P=0.003), stent diameters of >2.5 to <3.5 mm (OR, 0.56; 95% CI, 0.39 to 0.82; P=0.002), and with 2 stents implanted (OR, 0.39; 95% CI, 0.22 to 0.69; P=0.001). In the placebo group, near-linear relationships were observed between both increasing stent length and increasing stented vessel area and MACE at 48 hours and 1 year (all, P<0.001); these gradients were flattened in the eptifibatide group (P=0.005 for stent length). Stent parameters predict MACE after percutaneous coronary intervention. Glycoprotein IIb/IIIa blockade mitigates much of the hazard of increasing procedural complexity.

  2. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Directory of Open Access Journals (Sweden)

    Kamel El Omari

    2013-01-01

    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  3. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Science.gov (United States)

    El Omari, Kamel; Iourin, Oleg; Harlos, Karl; Grimes, Jonathan M.; Stuart, David I.

    2013-01-01

    Summary Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1) at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed. PMID:23273918

  4. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    Science.gov (United States)

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  5. Comparison of glycoprotein expression between ovarian and colon adenocarcinomas

    DEFF Research Database (Denmark)

    Multhaupt, H A; Arenas-Elliott, C P; Warhol, M J

    1999-01-01

    , carcinoembryonic antigen, and cytokeratins 7 and 20 to detect tumor-associated glycoproteins and keratin proteins in ovarian and colonic carcinomas. RESULTS: CA125, carcinoembryonic antigen, and cytokeratins 7 and 20 can distinguish between colonic and serous or endometrioid adenocarcinomas of the ovary in both...... primary and metastatic lesions. Mucinous ovarian adenocarcinomas differed in that they express carcinoembryonic antigen and cytokeratins 7 and 20 and weakly express CA125. The other glycoprotein antigens were equally expressed by ovarian and colonic adenocarcinomas and therefore were of no use...... in distinguishing between these 2 entities. CONCLUSION: A panel of monoclonal antibodies against cytokeratins 7 and 20 antigens, CA125, and carcinoembryonic antigen is useful in differentiating serous and endometrioid adenocarcinomas of the ovary from colonic adenocarcinomas. Mucinous ovarian adenocarcinomas cannot...

  6. Extracellular Glycoproteins in Embryogenic Culture of Pumpkin (Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    Hana Čipčić Paljetak

    2011-01-01

    Full Text Available The extracellular proteins in three distinctly induced embryogenic lines of pumpkin (Cucurbita pepo L. cultivated in four MS media modified regarding the nitrogen composition or auxin presence/absence have been analyzed. Extracellular glycoproteins containing α-D-mannose were specifically detected by the lectine concavalin A. During the cultivation of embryogenic tissue in the medium supplemented with reduced nitrogen, the embryos were mostly arrested at preglobular and globular developmental stages, which coincide with the absence of protein secretion. Secreted glycoproteins of 76, 68, 37 and 34 kDa were detected only if any of the three lines were cultivated in the medium that stimulates embryo development, irrespectively of the addition of 2,4-dichlorophenoxyacetic acid or tunicamycin. The glycoprotein of 64 kDa was detected in all lines cultivated in hormone-free MS medium with conventional nitrogen sources and it appears to be associated with embryo maturation. Tunicamycin treatment did not influence embryogenesis, although it specifically affected glycosylation of proteins in the investigated lines. Our results show that besides auxin, the source of nitrate is of great importance for proper protein glycosylation, excretion and developmental transition of pumpkin somatic embryos.

  7. IgA antibodies against β2 glycoprotein I in hemodialysis patients are an independent risk factor for mortality.

    Science.gov (United States)

    Serrano, Antonio; García, Florencio; Serrano, Manuel; Ramírez, Elisa; Alfaro, F Javier; Lora, David; de la Cámara, Agustín Gómez; Paz-Artal, Estela; Praga, Manuel; Morales, Jose M

    2012-06-01

    Cardiovascular complications are the most important cause of death in patients on dialysis with end-stage renal disease. Antibodies reacting with β-glycoprotein I seem to play a pathogenic role in antiphospholipid syndrome and stroke and are involved in the origin of atherosclerosis. Here we evaluated the presence of anticardiolipin and anti-β-glycoprotein I antibodies together with other vascular risk factors and their relationship with mortality and cardiovascular morbidity in a cohort of 124 hemodialysis patients prospectively followed for 2 years. Of these, 41 patients were significantly positive for IgA anti-β-glycoprotein I, and the remaining had normal values. At 24 months, overall and cardiovascular mortality and thrombotic events were all significantly higher in patients with high anti-β-glycoprotein I antibodies. Multivariate analysis using Cox regression modeling found that age, hypoalbuminemia, use of dialysis catheters, and IgA β-glycoprotein I antibodies were independent risk factors for death. Thus, IgA antibodies to β-glycoprotein I are detrimental to the clinical outcome of hemodialysis patients.

  8. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    Directory of Open Access Journals (Sweden)

    Gerd Krause

    2017-04-01

    Full Text Available The thyroid-stimulating hormone receptor (TSHR is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs. TSHR and its endogenous ligand thyrotropin (TSH are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016 concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other

  9. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work.

    Science.gov (United States)

    Kleinau, Gunnar; Worth, Catherine L; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to

  10. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    Science.gov (United States)

    Kleinau, Gunnar; Worth, Catherine L.; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to

  11. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Nathan H. Vande Burgt

    2015-10-01

    Full Text Available Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP, to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism.

  12. Serum-SP/sub 1/-pregnancy-specific-. beta. -glycoprotein in choriocarcinoma and other neoplastic disease

    Energy Technology Data Exchange (ETDEWEB)

    Searle, F; Leake, B A; Bagshawe, K D; Dent, J [Charing Cross Group of Hospitals, London (UK)

    1978-03-18

    A radioimmunoassay for a placental glycoprotein, ..beta../sub 1/SP/sub 1/, capable of detecting 2 ..mu..g/l of the glycoprotein in serum was used to measure concentrations of ..beta../sub 1/SP/sub 1/ in patients with choriocarcinoma, teratoma, colonic cancer, breast cancer, and ovarian cancer. Twelve out of 94 (13%) healthy men and healthy non-pregnant women had detectable serum-..beta../sub 1/SP/sub 1/ concentrations. Concentrations up to 50,000 ..mu..g/l were found in the sera of patients with hydatidiform mole, invasive mole, choriocarcinoma, and malignant teratoma. ..beta../sub 1/-glycoprotein concentrations were generally much lower than corresponding concentrations of chorionic gonadotrophin which is the most reliable marker for trophoblastic tumors. In a few cases, however, ..beta../sub 1/-glycoprotein measurements may be useful in the detection of minimal residual tumor. The slightly raised values found in some patients with carcinoma of the colon, breast, or ovary seem unlikely to be useful for diagnostic purposes or for monitoring the course of these cancers.

  13. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Marija [Northwestern Univ., Evanston, IL (United States); Longnecker, Richard [Northwestern Univ., Chicago, IL (United States); Jardetzky, Theodore S [Northwestern Univ., Evanston, IL (United States)

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  14. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA

    Directory of Open Access Journals (Sweden)

    Menzel Diedrik

    2011-02-01

    Full Text Available Abstract Background Hydroxyproline rich glycoproteins (HRGPs are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis, and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs, mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs, proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM. This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP

  15. Rat macrophages: membrane glycoproteins in differentiation and function

    NARCIS (Netherlands)

    van den Berg, T. K.; Döpp, E. A.; Dijkstra, C. D.

    2001-01-01

    Macrophages (mphi) play a crucial role in the immune system. The rat offers unique advantages for studying the biology of mphi. Firstly, monoclonal antibodies (mAb) against many rat mphi surface glycoproteins have become available. These have not only demonstrated a considerable heterogeneity among

  16. Electrophoretic demonstration of glycoproteins, lipoproteins, and phosphoproteins in human and bovine enamel

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Bøg-Hansen, T C

    1990-01-01

    Enamel proteins from fully mineralized human molars and from bovine tooth germs were separated by electrophoresis. The gels were stained for detection of glycoproteins, lipoproteins, and phosphoproteins. Glycoproteins were shown by periodic acid-Schiff staining and lectin blotting. In mature human...... enamel a number of high molecular weight proteins could be demonstrated after ethylenediaminetetra-acetic acid demineralization and subsequent Triton X-100 extraction. These proteins are suggested to be lipoproteins. Phosphoproteins could only be visualized in enamel matrix from the tooth germs....

  17. Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yasushi; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-08-01

    The expression of P-glycoprotein was investigated imunohistochemically in 26 brain tumor tissues and compared with the findings of technetium-99m methoxyisobutylisonitrile single photon emission computed tomography ({sup 99m}Tc-MIBI SPECT) to clarify the effect of P-glycoprotein on the diagnostic accuracy. P-glycoprotein labeling index of both tumor cells and vascular endothelial cells showed no clear relationship with the findings of {sup 99m}Tc-MIBI SPECT imaging. Expression of P-glycoprotein has no effect on the diagnostic accuracy of {sup 99m}Tc-MIBI SPECT. (author)

  18. Type 1 IGF receptor translocates to the nucleus of human tumor cells

    OpenAIRE

    Aleksic, Tamara; Chitnis, Meenali M.; Perestenko, Olga V.; Gao, Shan; Thomas, Peter H.; Turner, Gareth D.; Protheroe, Andrew S.; Howarth, Mark; Macaulay, Valentine M.

    2010-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein comprising two extracellular α subunits and two β subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated in cancers, and signals from the cell surface to promote proliferation and cell survival. Recent attention has focused on the IGF-1R as a target for cancer treatment. Here we report that the nuclei of human tumor cells contain IGF-1R, detectable using multiple antibodies to α- and ...

  19. Changes in intestinal absorption of nutrients and brush border glycoproteins after total parenteral nutrition in rats.

    Science.gov (United States)

    Miura, S; Tanaka, S; Yoshioka, M; Serizawa, H; Tashiro, H; Shiozaki, H; Imaeda, H; Tsuchiya, M

    1992-01-01

    The effect of total parenteral nutrition on nutrients absorption and glycoprotein changes of brush border membrane was examined in rat small intestine. In total parenteral nutrition rats, a marked decrease in activity of brush border enzymes was observed mainly in the proximal and middle segments of the intestine. Galactose perfusion of jejunal segment showed that hexose absorption was significantly inhibited, while intestinal absorption of glycine or dipeptide, glycylglycine was not significantly affected by total parenteral nutrition treatment. When brush border membrane glycoprotein profile was examined by [3H]-glucosamine or [3H]-fucose incorporation into jejunal loops, significant changes were observed in the glycoprotein pattern of brush border membrane especially in the high molecular weight range over 120 kDa after total parenteral nutrition treatment, suggesting strong dependency of glycoprotein synthesis on luminal substances. Molecular weight of sucrase isomaltase in brush border membrane detected by specific antibody showed no significant difference, however, in total parenteral nutrition and control rats. Also, molecular weight of specific sodium glucose cotransporter of intestinal brush border membrane detected by selective photoaffinity labelling was not altered in total parenteral nutrition rats. It may be that prolonged absence of oral food intake may produce significant biochemical changes in brush border membrane glycoprotein and absorptive capacity of small intestine, but these changes were not observed in all brush border membrane glycoproteins. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1582592

  20. Carcinoma-specific Ulex europaeus agglutinin-I binding glycoproteins of human colorectal carcinoma and its relation to carcinoembryonic antigen.

    Science.gov (United States)

    Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E

    1985-08-01

    Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.

  1. Extra-oviductal expression of oviductal glycoprotein 1 in mouse ...

    Indian Academy of Sciences (India)

    2017-01-11

    Jan 11, 2017 ... oestrogen-dependent protein, oviduct-specific glycoprotein. 1 (Ovgp1) also ... the tissues collected were testis, epididymis, prostate gland and seminal vesicle. ... The antigenic sites were unmasked by incuba- tion of sections ...

  2. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  3. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells

    NARCIS (Netherlands)

    Westra, DF; Glazenburg, KL; Harmsen, MC; Tiran, A; Scheffer, AJ; Welling, GW; The, TH; WellingWester, S

    In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell

  4. MDR1 P-glycoprotein transports endogenous opioid peptides

    NARCIS (Netherlands)

    Oude Elferink, R. P.; Zadina, J.

    2001-01-01

    MDR1 P-glycoprotein is generally regarded as an efflux pump for amphipathic toxic compounds. The question remains, however, whether certain endogenous compounds are also substrates for this transporter. Certain peptides have been shown to interact with MDR1 Pgp as well and we have therefore

  5. Transglycosidase-like activity of Mucor hiemalis endoglycosidase mutants enabling the synthesis of glycoconjugates using a natural glycan donor.

    Science.gov (United States)

    Sakaguchi, Kouta; Katoh, Toshihiko; Yamamoto, Kenji

    2016-11-01

    Glycan conversion of glycoprotein via the transglycosylation activity of endo-β-N-acetylglucosaminidase is a promising chemoenzymatic technology for the production of glycoproteins including bio-medicines with a homogeneous glycoform. Although Endo-M is a key enzyme in this process, its product undergoes rehydrolysis, which leads to a lower yield, and limits the practical application of this enzyme. We developed several Endo-M mutant enzymes including N175Q with glycosynthase-like activity and/or transglycosidase-like activity. We found that the Endo-M N175H mutant showed glycosynthase-like activity comparable to N175Q as well as transglycosidase-like activity superior to N175Q. Using a natural sialylglycopeptide as a donor substrate, N175H readily transferred the sialo-glycan onto an N-acetylglucosamine residue attached to bovine ribonuclease B (RNase B), yielding a nonnative sialoglycosylated RNase B. These results demonstrate that use of Endo-M N175H is an alternative glycoengineering technique, which provides a relatively high yield of transglycosylation product and avoids the laborious synthesis of a sugar oxazoline as a donor substrate. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  6. Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry

    International Nuclear Information System (INIS)

    Kvaratskhelia, Mamuka; Clark, Patrick K.; Hess, Sonja; Melder, Deborah C.; Federspiel, Mark J.; Hughes, Stephen H.

    2004-01-01

    We used enzymatic digestion and mass spectrometry to identify the sites of glycosylation on the SU component of the Avian Sarcoma/Leukosis virus (ASLV) Envelope Glycoprotein (Subgroup A). The analysis was done with an SU(A)-rIgG fusion protein that binds the cognate receptor (Tva) specifically. PNGase F removed all the carbohydrate from the SU(A)-rIgG fusion. PNGase F is specific for N-linked carbohydrates; this shows that all the carbohydrate on SU(A) is N-linked. There are 10 modified aspargines in SU(A) (N17, N59, N80, N97, N117, N196, N230, N246, N254, and N330). All conform to the consensus site for N-linked glycosylation NXS/T. There is one potential glycosylation site (N236) that is not modified. Removing most of the carbohydrate from the mature SU(A)-rIgG by PNGase F treatment greatly reduces the ability of the protein to bind Tva, suggesting that carbohydrate may play a direct role in receptor binding

  7. Expression of variable viruses as herpes simplex glycoprotein D and varicella zoster gE glycoprotein using a novel plasmid based expression system in insect cell

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sulaiman

    2017-11-01

    Full Text Available Several prokaryotic and eukaryotic expression systems have been used for in vitro production of viruses’ proteins. However eukaryotic expression system was always the first choice for production of proteins that undergo post-translational modification such as glycosylation. Recombinant baculoviruses have been widely used as safe vectors to express heterologous genes in the culture of insect cells, but the manipulation involved in creating, titrating, and amplifying viral stocks make it time consuming and laborious. Therefore, to facilitate rapid expression in insect cell, a plasmid based expression system was used to express herpes simplex type 1 glycoprotein D (HSV-1 gD and varicella zoster glycoprotein E (VZV gE. Recombinant plasmids were generated, transfected into insect cells (SF9, and both glycoproteins were expressed 48 h post-infection. A protein with approximately molecular weight of 64-kDa and 98-kDa for HSV-1 gD and VZV gE respectively was expressed and confirmed by SDS. Proteins were detected in insect cells cytoplasm and outer membrane by immunofluorescence. The antigenicity and immunoreactivity of each protein were confirmed by immunoblot and ELISA. Results suggest that this system can be an alternative to the traditional baculovirus expression for small scale expression system in insect cells.

  8. C-type lectins do not act as functional receptors for filovirus entry into cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo (Japan); Marzi, Andrea; Ebihara, Hideki [Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT (United States); Irimura, Tatsuro [Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo (Japan); Feldmann, Heinz [Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT (United States); Takada, Ayato, E-mail: atakada@czc.hokudai.ac.jp [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo (Japan)

    2010-12-03

    Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  9. C-type lectins do not act as functional receptors for filovirus entry into cells

    International Nuclear Information System (INIS)

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu; Marzi, Andrea; Ebihara, Hideki; Irimura, Tatsuro; Feldmann, Heinz; Takada, Ayato

    2010-01-01

    Research highlights: → Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. → Mutant GPs mediated virus entry less efficiently than wild-type GP. → Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. → C-type lectins do not independently mediate filovirus entry into cells. → Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  10. Differentiation of F4 receptor profiles in pigs based on their mucin 4 polymorphism, responsiveness to oral F4 immunization and in vitro binding of F4 to villi.

    Science.gov (United States)

    Nguyen, V U; Goetstouwers, T; Coddens, A; Van Poucke, M; Peelman, L; Deforce, D; Melkebeek, V; Cox, E

    2013-03-15

    F4(+) enterotoxigenic Escherichia coli (F4(+) ETEC) are an important cause of diarrhoea and mortality in piglets. F4(+) ETEC use their F4 fimbriae to adhere to specific receptors (F4Rs) on small intestinal brush borders, resulting in colonization of the small intestine. To prevent pigs from post-weaning diarrhoea, pigs should be vaccinated during the suckling period. Previously, we demonstrated that F4acR(+), but not F4acR(-) piglets could be orally immunized with purified F4 fimbriae resulting in a protective immunity against F4(+) ETEC infections, indicating that this immune response was F4R dependent. Recently, aminopeptidase N has been identified as a glycoprotein receptor important for this oral immune response. However, in some oral immunization experiments, a few F4acR(+) piglets did not show an antibody response upon oral immunization, suggesting additional receptors. Therefore, the binding profile of F4 to brush border membrane (glyco)proteins was determined for pigs differing in F4-specific antibody response upon oral immunization, in in vitro adhesion of F4(+)E. coli to small intestinal villi, and in Muc4 genotype. Six groups of pigs could be identified. Only two groups positive in all three assays showed two high molecular weight (MW) glycoprotein bands (>250kDa) suggesting that these high MW bands are linked to the MUC4 susceptible genotype. The fact that these bands were absent in the MUC4 resistant group which showed a positive immune response against F4 and was positive in the adhesion test confirm that at least one or perhaps more other F4Rs exist. Interestingly, two pigs that were positive in the villous adhesion assay did not show an immune response against F4 fimbriae. This suggests that a third receptor category might exist which allows the bacteria to adhere but does not allow effective immunization with soluble F4 fimbriae. Future research will be necessary to confirm or reveal the identity of these receptors. Copyright © 2012 Elsevier B

  11. Low rate doses effects of gamma radiation on glycoproteins of transmembrane junctions in fibroblasts

    International Nuclear Information System (INIS)

    Bringas, J.E.; Caceres, J.L.

    1996-01-01

    Glycoproteins of trans-membrane junctions are molecules that help to bind cells with the extracellular matrix. Integrins are the most important trans-membrane molecules among others. The damage of gamma radiation on those proteins could be an important early event that causes membrane abnormalities which may lead to cell malfunction and cancer induced by radiation due to cell dissociation. Randomized blocks with 3 repetitions of mouse embryo fibroblast cultures, were irradiated with Cobalt-60 gamma rays, during 20 days. Biological damage to glycoproteins and integrins was evaluated by cellular growth and fibroblast proliferative capacity. Integrins damage was studied by isolation by column immunoaffinity chromatography migrated on SDS-Page under reducing and non reducing conditions, and inhibition of integrins extracellular matrix adhesion by monoclonal antibodies effect. The dose/rate (0.05 Gy/day-0.2 Gy/day) of gamma given to cells did not show damage evidence on glycoproteins and integrins. If damage happened, it was repaired by cells very soon, was delayed by continuous cellular division or by glycoproteins characteristic of being multiple extracellular ligatures. Bio effects became more evident with an irradiation time greater than 20 days or a high dose/rate. (authors). 6 refs

  12. Mouse Hepatitis Virus Strain A59 and Blocking Antireceptor Monoclonal Antibody Bind to the N-Terminal Domain of Cellular Receptor

    Science.gov (United States)

    Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.

    1993-03-01

    Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.

  13. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenfei [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Wang, Ying [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Nianshuang; Wang, Dongli [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Guo, Jianying; Fu, Lili [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Shi, Xuanling, E-mail: shixuanlingsk@tsinghua.edu.cn [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-12-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.

  14. A review on the relation between the brain-serum concentration ratio of drugs and the influence of P-glycoprotein

    DEFF Research Database (Denmark)

    Ejsing, Thomas Broeng; Morling, Niels; Linnet, Kristian

    2007-01-01

    This overview on the brain-serum relationship for drugs illustrates the importance of the drug transporter P-glycoprotein at the blood-brain barrier. Generally, an inverse relationship exists between the magnitude of the brain-serum ratio and the influence of P-glycoprotein. Concerning the pharma...... the pharmacogenomics of P-glycoprotein, no clear effect of single nucleotide polymorphisms (SNPs) has been demonstrated in humans....

  15. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  16. Binding properties of a blood group Le(a+) active sialoglycoprotein, purified from human ovarian cyst, with applied lectins.

    Science.gov (United States)

    Wu, A M; WU, J H; Watkins, W M; Chen, C P; Tsai, M C

    1996-06-07

    Studies on the structures and binding properties of the glycoproteins, purified from human ovarian cyst fluids, will aid the understanding of the carbohydrate alterations occurring during the biosynthesis of blood group antigens and neoplasm formation. These glycoproteins can also serve as important biological materials to study blood group A, B, H, Le(a), Le(b), Le(x), Le(y), T and Tn determinants, precursor type I and II sequences and cold agglutinin I and i epitopes. In this study, the binding property of a cyst glycoprotein from a human blood group Le(a+) nonsecretor individual, that contains an unusually high amount (18%) of sialic acid (HOC 350) was characterized by quantitative precipitin assay with a panel of lectins exhibiting a broad range of carbohydrate-binding specificities. Native HOC 350 reacted well only with three out of nineteen lectins tested. It precipitated about 80% of Ricinus communis (RCA1), 50% of Triticum vulgaris (WGA) and 37% of Bauhinia purpurea aba (BPA) agglutinins, respectively. However, its asialo product had dramatically enhanced reactivity and reacted well with many I/II (Gal beta1 --> 3/4GcNAc), T(Gal beta1 --> 3GalNAc) and Tn(GaNIAc alphaI --> Ser/Thr) active lectins. It bound best to Jacalin, BPA, and abrin-a and completely precipitated all the lectins added. Asialo-HOC 350 also reacted strongly with Wistaria floribunda, Abrus precatorius agglutinin, ricin and RCA1 and precipitated over 75% of the lectin nitrogen added, and moderately with Arachis hypogaea, Maclura pomifera, WGA, Vicia viosa-B4, Codium fragile tomentosoides and Ulex europaeus-II. But native HOC 350 and its asialo product reacted not at all or poorly with Dolichos biflorus, Helix pomatia, Lotus tetra-gonolobus, Ulex europaeus-I, Lens culinaris lectins and Con A. The lectin-glycoform interactions through bioactive sugars were confirmed by precipitin inhibition assay. Mapping the precipitation profiles of the interactions have led to the conclusion that HOC 350

  17. Syndecans as receptors and organizers of the extracellular matrix.

    Science.gov (United States)

    Xian, Xiaojie; Gopal, Sandeep; Couchman, John R

    2010-01-01

    Syndecans are type I transmembrane proteins having a core protein modified with glycosaminoglycan chains, most commonly heparan sulphate. They are an ancient group of molecules, present in invertebrates and vertebrates. Among the plethora of molecules that can interact with heparan sulphate, the collagens and glycoproteins of the extracellular matrix are prominent. Frequently, they do so in conjunction with other receptors, most notably the integrins. For this reason, they are often referred to as "co-receptors". However, just as with integrins, syndecans can interact with actin-associated proteins and signalling molecules, such as protein kinases. Some aspects of syndecan signalling are understood but much remains to be learned. The functions of syndecans in regulating cell adhesion and extracellular matrix assembly are described here. Evidence from null mice suggests that syndecans have roles in postnatal tissue repair, inflammation and tumour progression. Developmental deficits in lower vertebrates in which syndecans are eliminated are also informative and suggest that, in mammals, redundancy is a key issue.

  18. The down-regulation of the mitogenic fibrinogen receptor (MFR) in serum-containing medium does not occur in defined medium.

    Science.gov (United States)

    Levesque, J P; Hatzfeld, A; Domart, I; Hatzfeld, J

    1990-02-01

    Normal human hemopoietic cells such as early bone marrow progenitors, or lymphoma-derived cell lines such as Raji or JM cells, possess a low-affinity receptor specific for fibrinogen. This receptor triggers a mitogenic effect. It differs from the glycoprotein IIb-IIIa which is involved in fibrinogen-induced platelet aggregation. We demonstrate here that this mitogenic fibrinogen receptor (MFR) can be internalized or reexpressed, depending on culture conditions. Internalization was temperature-dependent. At 37 degrees C in the presence of cycloheximide or actinomycin D, the half-life of cell surface MFRs was 2 h, independent of receptor occupancy. Binding of fibrinogen to the MFR resulted in a down-regulation which was fibrinogen dose-dependent. This occurred in serum-supplemented medium but not in defined medium supplemented with fatty acids. Reexpression of MFRs could be induced in 28 to 42 h by serum removal. The down-regulation of mitogenic receptors in plasma or serum could explain why normal cells do not proliferate in the peripheral blood.

  19. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    Science.gov (United States)

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins.

    Science.gov (United States)

    Leitner, Verena M; Walker, Greg F; Bernkop-Schnürch, Andreas

    2003-09-01

    Disulphide bonds between thiolated polymers (thiomers) and cysteine-rich subdomains of mucus glycoproteins are supposed to be responsible for the enhanced mucoadhesive properties of thiomers. This study set out to provide evidence for these covalent interactions using poly(acrylic acid)-cysteine conjugates of 2 and 450 kDa (PAA2-Cys, PAA450-Cys) displaying 402.5-776.0 micromol thiol groups per gram polymer. The effect of the disulphide bond breaker cysteine on thiomer-mucin disulphide bonds was monitored by (1) mucoadhesion studies and (2) rheological studies. Furthermore, (3) diffusion studies and (4) gel filtration studies were performed with thiomer-mucus mixtures. The addition of cysteine significantly (Ppolymer. Gel filtration studies showed that PAA2-Cys was able to form disulphide bonds with mucin glycoproteins resulting in an altered elution profile of the mucin/PAA2-Cys mixture in comparison to mucin alone or mucin/PAA2 mixture. According to these results, the study provides evidence for the formation of covalent bonds between thiomer and mucus glycoproteins.

  1. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Nora F. [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Faculty of Pharmacy, Suez Canal University, Ismailia (Egypt); Jasirwan, Chyntia [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine, University of Indonesia (Indonesia); Kanemoto, Satoshi; Wakata, Aika; Wang, Bochao; Hata, Yuuki [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Nagamata, Satoshi [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe (Japan); Kawabata, Akiko [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Tang, Huamin [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Immunology, Nanjing Medical University, Nanjing (China); Mori, Yasuko, E-mail: ymori@med.kobe-u.ac.jp [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan)

    2016-03-15

    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highly conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.

  2. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    International Nuclear Information System (INIS)

    Mahmoud, Nora F.; Jasirwan, Chyntia; Kanemoto, Satoshi; Wakata, Aika; Wang, Bochao; Hata, Yuuki; Nagamata, Satoshi; Kawabata, Akiko; Tang, Huamin; Mori, Yasuko

    2016-01-01

    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highly conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.

  3. Interferon-β induced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier.

    Science.gov (United States)

    Nazli, Aisha; Dizzell, Sara; Zahoor, Muhammad Atif; Ferreira, Victor H; Kafka, Jessica; Woods, Matthew William; Ouellet, Michel; Ashkar, Ali A; Tremblay, Michel J; Bowdish, Dawn Me; Kaushic, Charu

    2018-03-19

    More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.Cellular and Molecular Immunology advance online publication, 19 March 2018; doi:10.1038/cmi.2017.168.

  4. Neural glycoprotein M6a is released in extracellular vesicles and modulated by chronic stressors in blood

    OpenAIRE

    Monteleone, Melisa C.; Billi, Silvia C.; Brocco, Marcela A.; Frasch, Alberto C.

    2017-01-01

    Membrane neuronal glycoprotein M6a is highly expressed in the brain and contributes to neural plasticity promoting neurite growth and spine and synapse formation. We have previously showed that chronic stressors alter hippocampal M6a mRNA levels in rodents and tree shrews. We now show that M6a glycoprotein can be detected in mouse blood. M6a is a transmembrane glycoprotein and, as such, unlikely to be free in blood. Here we demonstrate that, in blood, M6a is transported in extracellular vesic...

  5. Glycoprotein fucosylation is increased in seminal plasma of subfertile men

    Directory of Open Access Journals (Sweden)

    Beata Olejnik

    2015-04-01

    Full Text Available Fucose, the monosaccharide frequent in N- and O-glycans, is a part of Lewis-type antigens that are known to mediate direct sperm binding to the zona pellucida. Such interaction was found to be inhibited in vitroby fucose-containing oligo- and polysaccharides, as well as neoglycoproteins. The objective of this study was to screen seminal plasma proteins of infertile/subfertile men for the content and density of fucosylated glycoepitopes, and compare them to samples of fertile normozoospermic subjects. Seminal proteins were separated in polyacrylamide gel electrophoresis and blotted onto nitrocellulose membrane and probed with fucose-specific Aleuria aurantia lectin (AAL. Twelve electrophoretic bands were selected for quantitative densitometric analysis. It was found that the content, and especially the density of fucosylated glycans, were higher in glycoproteins present in seminal plasma of subfertile men. No profound differences in fucosylation density were found among the groups of normozoospermic, oligozoospermic, asthenozoospermic, and oligoasthenozoospermic subfertile men. According to the antibody probing, AAL-reactive bands can be attributed to male reproductive tract glycoproteins, including prostate-specific antigen, prostatic acid phosphatase, glycodelin and chorionic gonadotropin. Fibronectin, α1 -acid glycoprotein, α1 -antitrypsin, immunoglobulin G and antithrombin III may also contribute to this high fucosylation. It is suggested that the abundant fucosylated glycans in the sperm environment could interfere with the sperm surface and disturb the normal course of the fertilization cascade.

  6. Separation and identification of carp pituitary proteins and glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Ryšlavá, H.; Janatová, M.; Čalounová, G.; Selicharová, Irena; Barthová, J.; Barth, Tomislav

    2005-01-01

    Roč. 50, č. 9 (2005), 430-437 ISSN 1212-1819 R&D Projects: GA MZe(CZ) QF3028 Institutional research plan: CEZ:AV0Z4055905 Keywords : carp hormones * glycoproteins * oligosaccharide chains Subject RIV: CE - Biochemistry Impact factor: 0.254, year: 2005

  7. The macrophage scavenger receptor (CD163): a double-edged sword in treatment of malignant disease

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan

    2009-01-01

    of inflammatory processes. The receptor is expressed by circulatory monocytes and it is highly expressed on tissue-resident macrophages. CD163 is also expressed on leukemic blast cells of AML type M4/M5 and tumor cells in malignant melanoma and breast cancer. Although circumstantial evidence of the potential...... was investigated in biopsies from bladder cancer patients. We demonstrated that CD163 mRNA expression was significantly elevated in muscle invasive tumors (T2-T4) compared with superficial tumors (Ta), and that a high level of CD163 mRNA expression in tumor biopsies was significantly associated with poor 13-year......The hemoglobin scavenger receptor CD163 is a transmembrane glycoprotein belonging to the scavenger receptor cysteine-rich (SRCR) domain family. It mediates the clearance of hemoglobin released to the circulation during intravascular hemolysis, and it is also involved in the regulation...

  8. Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution.

    Directory of Open Access Journals (Sweden)

    Ryan Williams

    Full Text Available Protein N-glycosylation is found in all domains of life and has a conserved role in glycoprotein folding and stability. In animals, glycoproteins transit through the Golgi where the N-glycans are trimmed and rebuilt with sequences that bind lectins, an innovation that greatly increases structural diversity and redundancy of glycoprotein-lectin interaction at the cell surface. Here we ask whether the natural tension between increasing diversity (glycan-protein interactions and site multiplicity (backup and status quo might be revealed by a phylogenic examination of glycoproteins and NXS/T(X ≠ P N-glycosylation sites. Site loss is more likely by mutation at Asn encoded by two adenosine (A-rich codons, while site gain is more probable by generating Ser or Thr downstream of an existing Asn. Thus mutations produce sites at novel positions more frequently than the reversal of recently lost sites, and therefore more paths though sequence space are made available to natural selection. An intra-species comparison of secretory and cytosolic proteins revealed a departure from equilibrium in sequences one-mutation-away from NXS/T and in (A content, indicating strong selective pressures and exploration of N-glycosylation positions during vertebrate evolution. Furthermore, secretory proteins have evolved at rates proportional to N-glycosylation site number, indicating adaptive interactions between the N-glycans and underlying protein. Given the topology of the genetic code, mutation of (A is more often nonsynonomous, and Lys, another target of many PTMs, is also encoded by two (A-rich codons. An examination of acetyl-Lys sites in proteins indicated similar evolutionary dynamics, consistent with asymmetry of the target and recognition portions of modified sites. Our results suggest that encoding asymmetry is an ancient mechanism of evolvability that increases diversity and experimentation with PTM site positions. Strong selective pressures on PTMs may have

  9. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  10. The Lyssavirus glycoprotein: A key to cross-immunity.

    Science.gov (United States)

    Buthelezi, Sindisiwe G; Dirr, Heini W; Chakauya, Ereck; Chikwamba, Rachel; Martens, Lennart; Tsekoa, Tsepo L; Stoychev, Stoyan H; Vandermarliere, Elien

    2016-11-01

    Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Directory of Open Access Journals (Sweden)

    Se Chang Park

    2013-01-01

    Full Text Available Cyprinid herpes virus 3 (CyHV-3 diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio. Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116 of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116. In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.

  12. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Science.gov (United States)

    Han, Jee Eun; Kim, Ji Hyung; Renault, Tristan; Choresca, Casiano; Shin, Sang Phil; Jun, Jin Woo; Park, Se Chang

    2013-01-01

    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies. PMID:23435236

  13. Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells.

    OpenAIRE

    Puddington, L; Woodgett, C; Rose, J K

    1987-01-01

    The envelope glycoprotein (G protein) of vesicular stomatitis virus (VSV) is transported to the basolateral plasma membrane of polarized epithelial cells, whereas the hemagglutinin glycoprotein (HA protein) of influenza virus is transported to the apical plasma membrane. To determine if the cytoplasmic domain of VSV G protein might be important in directing G protein to the basolateral membrane, we derived polarized Madin-Darby canine kidney cell lines expressing G protein or G protein with i...

  14. DNA Methylation at the Neonatal State and at the Time of Diagnosis: Preliminary Support for an Association with the Estrogen Receptor 1, Gamma-Aminobutyric Acid B Receptor 1, and Myelin Oligodendrocyte Glycoprotein in Female Adolescent Patients with OCD.

    Science.gov (United States)

    Nissen, Judith Becker; Hansen, Christine Søholm; Starnawska, Anna; Mattheisen, Manuel; Børglum, Anders Dupont; Buttenschøn, Henriette Nørmølle; Hollegaard, Mads

    2016-01-01

    Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Non-genetic factors and their interaction with genes have attracted increasing attention. Epigenetics is regarded an important interface between environmental signals and activation/repression of genomic responses. Epigenetic mechanisms have not previously been examined in OCD in children and adolescents. The aim of the present study was to examine the DNA methylation profile of selected genes in blood spots from neonates later diagnosed with OCD and in the same children/adolescents at the time of diagnosis compared with age- and sex-matched controls. Furthermore, we wanted to characterize the association of the differential methylation profiles with the severity of OCD and treatment outcome. Dried and new blood spot samples were obtained from 21 female children/adolescents with verified OCD and 12 female controls. The differential methylation was analyzed using a linear model and the correlation with the severity of OCD and treatment outcome was analyzed using the Pearson correlation. We evaluated selected Illumina Infinium HumanMethylation450 BeadChip probes within and up to 100,000 bp up- and downstream of 14 genes previously associated with OCD (SLC1A1, SLC25A12, GABBR1, GAD1, DLGAP1, MOG, BDNF, OLIG2, NTRK2 and 3, ESR1, SL6A4, TPH2, and COMT). The study found no significantly differential methylation. However, preliminary support for a difference was found for the gamma-aminobutyric acid (GABA) B receptor 1 (cg10234998, cg17099072) in blood samples at birth and for the estrogen receptor 1 (ESR1) (cg10939667), the myelin oligodendrocyte glycoprotein (MOG) (cg16650906), and the brain-derived neurotrophic factor (BDNF) (cg14080521) in blood samples at the time of diagnosis. Preliminary support for an association was observed between the methylation profiles of GABBR1 and MOG and baseline severity, treatment effect, and responder status; and between the methylation profile of ESR1 and baseline

  15. Efficacy of soluble glycoprotein fraction from Allium sativum purified by size exclusion chromatography on murine Schistosomiasis mansoni.

    Science.gov (United States)

    Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M

    2017-06-01

    In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.

    2017-05-03

    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  17. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    International Nuclear Information System (INIS)

    Curtis, B.M.

    1986-01-01

    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [ 3 H]nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed α(Mr 135,000), β(Mr 50,000), and γ(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The α and γ subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the α, β, and γ subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel

  18. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner

    DEFF Research Database (Denmark)

    Nordén, Rickard; Halim, Adnan; Nyström, Kristina

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, participating in viral receptor interactions and immunity interference, harbors a mucin-like domain with multiple clustered O-linked glycans. Using HSV-1-infected diploid human fibroblasts, an authentic target for HSV-1 infection...... of in all 11 GalNAc residues to selected Ser and Thr residues of the Thr-76-Lys-107 stretch of the mucin domain. The expression patterns of GalNAc transferases in the infected cells suggested that initial additions of GalNAc were carried out by initiating GalNAc transferases, in particular GalNAc-T2...

  19. Isolation of a mannose/N-acetylglucosamine receptor from rabbit lung

    International Nuclear Information System (INIS)

    Lennartz, M.R.; Wileman, T.E.; Stahl, P.D.

    1986-01-01

    The presence of a mannose receptor on alveolar macrophages was first described in 1978 and later extended to other macrophage populations. Recently the novel ligand, mannose-conjugated lactoperoxidase, was used to identify this receptor as a 175kD protein. A 175kD protein exhibiting mannose and N-acetylglucosamine (GlcNAc)-binding properties was isolated from rabbit lung membranes. Membranes were washed with high salt, mannose and EDTA to remove endogenously bound ligand and were subsequently extracted with 1% Triton-X 100. The extract was subjected to affinity chromatography on Mannose-Sepharose followed by GlcNAc-Agarose. Triton was exchanged for 1% CHAPS while the protein was bound to GlcNAc-Agarose, allowing the eluate to be concentrated without denaturation. The eluted protein bound [ 125 I]mannose-BSA in a mannan-inhibitable fashion. Microgram quantities of protein were isolated in this fashion. SDS-PAGE revealed a major protein band at 175kD. Amino acid analysis indicates low concentrations of methionine. Results from concanavalin A binding studies and endoglycosidase F digestion suggest that the mannose receptor is a glycoprotein containing N-linked oligosaccharides

  20. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  1. Membrane glycoproteins of differentiating skeletal muscle cells

    International Nuclear Information System (INIS)

    Miller, K.R.; Remy, C.N.; Smith, P.B.

    1987-01-01

    The composition of N-linked glycoprotein oligosaccharides was studied in myoblasts and myotubes of the C2 muscle cell line. Oligosaccharides were radioactively labelled for 15 hr with [ 3 H] mannose and plasma membranes isolated. Ten glycopeptides were detected by SDS-PAGE and fluorography. The extent of labelling was 4-6 fold greater in myoblasts vs myotubes. A glycopeptide of Mr > 100,000 was found exclusively in myoblast membranes. Lectin chromatography revealed that the proportion of tri-, tetranntenary, biantennary and high mannose chains was similar throughout differentiation. The high mannose chain fraction was devoid of hybrid chains. The major high mannose chain contained nine mannose residues. The higher level of glycopeptide labelling in myoblasts vs myotubes corresponded to a 5-fold greater rate of protein synthesis. Pulse-chase experiments were used to follow the synthesis of the Dol-oligosaccharides. Myoblasts and myotubes labelled equivalently the glucosylated tetradecasaccharide but myoblasts labelled the smaller intermediates 3-4 greater than myotubes. Myoblasts also exhibited a 2-3 fold higher Dol-P dependent glycosyl transferase activity for chain elongation and Dol-sugar synthesis. Together these results show that the degree of protein synthesis and level of Dol-P are contributing factors in the higher capacity of myoblasts to produce N-glycoproteins compared to myotubes

  2. Growth factor receptors as molecular targets for cancer diagnosis and therapy

    International Nuclear Information System (INIS)

    Zalutsky, M. R.

    1997-01-01

    Growth factor receptors are of great interest as molecular targets for the diagnosis and treatment of cancer. Growth factor receptors are frequently over expressed on malignant cell populations since many cellular oncogenes encode either growth factors of their receptors. The wild-type epidermal growth factor receptor has a molecular weight of 170 kD and is over expressed on gliomas, bladder tumors, squamous cells carcinomas and breast carcinomas. Another growth factor oncogene, c-erb B-2, encodes a 185-kD glycoprotein found on the surface of gliomas, breast and ovarian cancers as well as other carcinomas of epithelial origin. In addition to causing over expression, oncogenic transformation also can result in genomic re-arrangements. An important example from the perspective of targeting is EGFRvIII, a deletion mutant which lacks amino acids 6-273 in the extracellular domain of the epiderma growth factor receptor. The EGFRvIII molecule (145 kD) may be of great value for targeting because it appears to be tumor-specific. Antibodies have been developed with specific reactivity with these growth factor receptors. Since these antibodies are internalized into the cell after receptor binding, it is necessary to use radiolabeling methods which residualize the radioactivity in the tumor cell after intracellular catabolism. To investigate this problem they have evaluated the effect of radioiodination method on the in vitro an in vivo properties of an anti-EGFRvIII antibody. Methods studied were Iodogen, tyramine-cellobiose, and N-succinimidyl 5-iodo-3-pyridine-carboxylate with the last offering optimal localization in a human xenograft model

  3. Evidence for cooperative signal triggering at the extracellular loops of the TSH receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Jaeschke, Holger; Mueller, Sandra; Raaka, Bruce M; Neumann, Susanne; Paschke, Ralf; Krause, Gerd

    2008-08-01

    The mechanisms governing transition of the thyroid stimulating hormone (TSH) receptor (TSHR) from basal to active conformations are poorly understood. Considering that constitutively activating mutations (CAMs) and inactivating mutations in each of the extracellular loops (ECLs) trigger only partial TSHR activation or inactivation, respectively, we hypothesized that full signaling occurs via multiple extracellular signal propagation events. Therefore, individual CAMs in the extracellular region were combined to create double and triple mutants. In support of our hypothesis, combinations of mutants in the ECLs are in some cases additive, while in others they are even synergistic, with triple mutant I486A/I568V/V656F exhibiting a 70-fold increase in TSH-independent signaling. The proximity but likely different spatial orientation of the residues of activating and inactivating mutations in each ECL supports a dual functionality to facilitate signal induction and conduction, respectively. This is the first report for G-protein coupled receptors, suggesting that multiple and cooperative signal propagating events at all three ECLs are required for full receptor activation. Our findings provide new insights concerning molecular signal transmission from extracellular domains toward the transmembrane helix bundle of the glycoprotein hormone receptors.

  4. Effect of an aqueous extract of Scoparia dulcis on plasma and tissue glycoproteins in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Latha, M; Pari, L

    2005-02-01

    The influence of Scoparia dulcis, a traditionally used plant for the treatment of diabetes mellitus, was examined in streptozotocin diabetic rats on dearrangement in glycoprotein levels. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin. An aqueous extract of Scoparia dulcis plant was administered orally for 6 weeks. The effect of the Scoparia dulcis extract on blood glucose, plasma insulin, plasma and tissue glycoproteins studied was in comparison to glibenclamide. The levels of blood glucose and plasma glycoproteins were increased significantly whereas the level of plasma insulin was significantly decreased in diabetic rats. There was a significant decrease in the level of sialic acid and elevated levels of hexose, hexosamine and fucose in the liver and kidney of streptozotocin diabetic rats. Oral administration of Scoparia dulcis plant extract (SPEt) to diabetic rats led to decreased levels of blood glucose and plasma glycoproteins. The levels of plasma insulin and tissue sialic acid were increased whereas the levels of tissue hexose, hexosamine and fucose were near normal. The present study indicates that Scoparia dulcis possesses a significant beneficial effect on glycoproteins in addition to its antidiabetic effect.

  5. Lectin-like receptor for alpha 1-acid glycoprotein in the epithelium of the rat prostate gland and seminal vesicles

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1996-01-01

    by mannose and N-Acetyl-D-glucosamine. RESULTS: In vitro the receptor was also inhibited by the steroid hormones cortisone, aldosterone, progesterone, and estradiol, but not by testosterone. A significant regional variation in the expression of AGP-lectin receptor and in the localization of AGP was seen...

  6. Cereal n-glycoproteins enrichment by lectin affinity monolithic chromatography

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Bobálová, Janette; Laštovičková, Markéta

    2016-01-01

    Roč. 44, č. 2 (2016), s. 286-297 ISSN 0133-3720 R&D Projects: GA ČR(CZ) GPP503/12/P395 Institutional support: RVO:68081715 Keywords : barley * wheat * glycoprotein * mass spectrometry * lectin chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.496, year: 2016

  7. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Clagett-Dame, M.; McKelvy, J.F. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-10-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-(125I)iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide.

  8. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    International Nuclear Information System (INIS)

    Clagett-Dame, M.; McKelvy, J.F.

    1989-01-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide

  9. TROPHOBLASTIC β1 – GLYCOPROTEIN SYNTHESIS IN SEROPOSITIVE PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    R. N. Bogdanovich

    2005-01-01

    Full Text Available Abstract. The level of trophoblastic β1 – glycoprotein (SP–1 was determined in the blood sera of 200 healthy pregnant women and 184 women with threatened abortions in term till 20 weeks of pregnancy. In group of women experiencing recurrent abortions in 38 % cases antibodies to chorionic gonadotropin, in 39,5 % cases antibodies to phospholipids, in 25,5 % – antibodies to tireoglobulin were revealed in significant amounts. In 20,65 % lupus anticoagulant was found. The majority of women in this group had changes in homeostasis. The presence of autoantibodies during pregnancy is the unfavourable factor in the development of placental insufficiency. This is proved by the decreased secretion of trophoblastic β1 – glycoprotein – a marker of the fetal part of placenta. (Med. Immunol., 2005, vol.7, № 1, pp. 85588

  10. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  11. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor.

    Science.gov (United States)

    Troppmann, Britta; Kleinau, Gunnar; Krause, Gerd; Gromoll, Jörg

    2013-01-01

    BACKGROUND In recent years it became evident that several types of the luteinizing hormone/choriogonadotrophin receptor (LHCGR) exist. In addition to the classical receptor type known in rodents, an LHCGR type containing an additional exon is present in primates and humans. This specific exon 6A introduces a hitherto unknown regulatory pathway of the LHCGR at the transcriptional level which can lead to the expression of an alternative protein covering the extracellular part only. Furthermore, an LHCGR type lacking exon 10 at the mRNA and protein levels has been described in the New World primate lineage, giving rise to an additional receptor type in which amino acids of the extracellular hinge region connecting the leucine-rich repeat domain and transmembrane domain are missing. METHODS Topic-related information was retrieved by systematic searches using Medline/PubMed. Structural homology models were retrieved from a glycoprotein hormone receptors web application and from recent publications. RESULTS In a novel approach, we combine functional aspects with three-dimensional properties of the LHCGR and the different receptor types to deduce causative relationships between these two parameters. On this basis, the physiological impact and patho-physiological consequences of the different LHCGR types are inferred. CONCLUSIONS The complex system of different LHCGR types and two corresponding hormones (LH and CG) represents a major challenge for future studies on selective hormone binding, signal transduction and receptor regulation. The presence of these naturally occurring LHCGR types requires re-examining of our present view on receptor function, experimental set-ups and data interpretation, but also offers new clinical approaches to interfere with LH/CG action in humans.

  12. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    International Nuclear Information System (INIS)

    Shang Liang; Hunter, Eric

    2010-01-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.

  13. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    Science.gov (United States)

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  14. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  15. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function.

    Science.gov (United States)

    Wang, Bin; Wang, Yujie; Frabutt, Dylan A; Zhang, Xihe; Yao, Xiaoyu; Hu, Dan; Zhang, Zhuo; Liu, Chaonan; Zheng, Shimin; Xiang, Shi-Hua; Zheng, Yong-Hui

    2017-04-07

    The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP 1 and the fusion-mediating GP 2 subunits and incorporated into virions to initiate infection. GP 1 and GP 2 form heterodimers that have 15 or two N -glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N -glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP 1 NGSs are not critical, the two GP 2 NGSs, Asn 563 and Asn 618 , are essential for GP function. Further analysis uncovered that Asn 563 and Asn 618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn 563 and Asn 618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Retention and topology of the bovine viral diarrhea virus glycoprotein E2.

    Science.gov (United States)

    Radtke, Christina; Tews, Birke Andrea

    2017-10-01

    Pestiviruses are enveloped viruses that bud intracellularly. They have three envelope glycoproteins, E rns , E1, and E2. E2 is the receptor binding protein and the main target for neutralizing antibodies. Both E rns and E2 are retained intracellularly. Here, E2 of the bovine viral diarrhea virus (BVDV) strain CP7 was used to study the membrane topology and intracellular localization of the protein. E2 is localized in the ER and there was no difference between E2 expressed alone or in the context of the viral polyprotein. The mature E2 protein was found to possess a single span transmembrane anchor. For the mapping of a retention signal CD72-E2 fusion proteins, as well as E2 alone were analysed. This confirmed the importance of the transmembrane domain and arginine 355 for intracellular retention, but also revealed a modulating effect on retention through the cytoplasmic tail of the E2 protein, especially through glutamine 370. Mutants with a strong impact on retention were tested in the viral context and we were able to rescue BVDV with certain mutations that in E2 alone impaired intracellular retention and lead to export of E2 to the cells surface.

  17. Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas.

    Science.gov (United States)

    Allen, Cory; McDonald, Cari; Giannini, Caterina; Peng, Kah Whye; Rosales, Gabriela; Russell, Stephen J; Galanis, Evanthia

    2004-11-01

    Fusogenic membrane glycoproteins (FMG) such as the gibbon ape leukemia virus envelope (GALV) glycoprotein are potent therapeutic transgenes with potential utility in the gene therapy of gliomas. Transfection of glioma cell lines with FMG expression constructs results in fusion with massive syncytia formation followed by cytotoxic cell death. Nevertheless, ubiquitous expression of the GALV receptor, Pit-1, makes targeting desirable in order to increase the specificity of the observed cytopathic effect. Here we report on use of matrix metalloproteinase (MMP)-cleavable linkers to target the cytotoxicity of FMG-expressing adenoviral vectors against gliomas. Replication-defective adenoviruses (Ad) were constructed expressing the hyperfusogenic version of the GALV glycoprotein linked to a blocking ligand (C-terminal extracellular domain of CD40 ligand) through either an MMP-cleavable linker (AdM40) or a non-cleavable linker (AdN40). Both viruses also co-expressed the green fluorescent protein (GFP) via an internal ribosomal entry site. The glioma cell lines U87, U118, and U251 characterized by zymography and MMP-2 activity assay as high, medium and low MMP expressors, respectively, the MMP-poor cell lines TE671 and normal human astrocytes were infected with AdM40 and AdN40 at different multiplicities of infection (MOIs) from 1-30. Fusion was quantitated by counting both number and size of syncytia. Infection of these cell lines with AdN40 did not result in fusion or cytotoxic cell death, despite the presence of infection, as demonstrated by GFP positivity, therefore indicating that the displayed CD40 ligand blocked GALV-induced fusion. Fusion was restored after infection of glioma cells with AdM40 at an MOI as low as 1 to an extent dependent on MMP expression and coxsackie adenovirus receptor (CAR) expression in the specific cell line. Western immunoblotting demonstrated the presence of the cleaved CD40 ligand in the supernatant of fused glioma cells. Use of the MMP

  18. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus this a...

  19. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells

    International Nuclear Information System (INIS)

    Vale, R.D.; Ignatius, M.J.; Shooter, E.M.

    1985-01-01

    Triton X-100 solubilizes membranes of PC12 cells and leaves behind a nucleus and an array of cytoskeletal filaments. Nerve growth factor (NGF) receptors are associated with this Triton X-100-insoluble residue. Two classes of NGF receptors are found on PC12 cells which display rapid and slow dissociating kinetics. Although rapidly dissociating binding is predominant (greater than 75%) in intact cells, the majority of binding to the Triton X-100 cytoskeleton is slowly dissociating (greater than 75%). Rapidly dissociating NGF binding on intact cells can be converted to a slowly dissociating form by the plant lectin wheat germ agglutinin (WGA). This lectin also increases the number of receptors which associate with the Triton X-100 cytoskeleton by more than 10-fold. 125 I-NGF bound to receptors can be visualized by light microscopy autoradiography in Triton X-100-insoluble residues of cell bodies, as well as growth cones and neurites. The WGA-induced association with the cytoskeleton, however, is not specific for the NGF receptor. Concentrations of WGA which change the Triton X-100 solubility of membrane glycoproteins are similar to those required to alter the kinetic state of the NGF receptor. Both events may be related to the crossbridging of cell surface proteins induced by this multivalent lectin

  20. Molecular organization in bacterial cell membranes. Specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes

    Energy Technology Data Exchange (ETDEWEB)

    Larraga, V; Munoz, E [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Biologia Celular

    1975-05-01

    The paper reports about an investigation into the question of the specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes. The method of sample preparation is described: Tritium labelling of glycoproteins in protoplasts and membranes, iodination of proteins, trypsin treatment and polyacrylamide gel electrophoresis. The findings suggest an asymmetrical distribution of the glycoproteins in membranes and a weak accessibility to iodine label. A structural model of the plasma membranes of Streptomyces albus is proposed similar to the general 'fluid mosaic' model of Singer and Nicholson.

  1. Generating Isoform-Specific Antibodies : Lessons from Nucleocytoplasmic Glycoprotein Skp1

    NARCIS (Netherlands)

    West, Christopher M.; Van Der Wel, Hanke; Chinoy, Zoiesha; Boons, Geert Jan; Gauthier, Ted J.; Taylor, Carol M.; Xu, Yuechi

    2015-01-01

    Antibodies that discriminate protein isoforms differing by modifications at specific amino acids have revolutionized studies of their functions. Skp1 is a novel nucleocytoplasmic glycoprotein that is hydroxylated at proline-143 and then O-glycosylated by a pentasaccharide attached via a GlcNAcα1,

  2. Direct chemical modification and voltammetric detection of glycans in glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2014-01-01

    Roč. 48, NOV2014 (2014), s. 52-55 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Glycoproteins * Chemical modification * Os(VI)L complexes Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  3. Irradiation of rat brain reduces P-glycoprotein expression and function

    NARCIS (Netherlands)

    Bart, J.; Nagengast, W. B.; Coppes, R. P.; Wegman, T. D.; van der Graaf, W. T. A.; Groen, H. J. M.; Vaalburg, W.; de Vries, E. G. E.; Hendrikse, N. H.

    2007-01-01

    The blood - brain barrier ( BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P- glycoprotein ( P- gp), expressed on brain capillary endothelial cells, is part of the BBB. P- gp expression on capillary endothelium decreases 5 days after brain

  4. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    International Nuclear Information System (INIS)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  5. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vaibhav [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Darmani, Nissar A.; Thrush, Gerald R. [Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Shukla, Deepak, E-mail: dshukla@uic.edu [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  6. LC-MS/MS Peptide Mapping with Automated Data Processing for Routine Profiling of N-Glycans in Immunoglobulins

    Science.gov (United States)

    Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi

    2014-06-01

    Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.

  7. Contribution of the attachment G glycoprotein to pathogenicity and immunogenicity of avian metapneumovirus subgroup C.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Kim, Shin-Hee; Samal, Siba K

    2010-03-01

    Avian metapneumovirus (AMPV) causes an upper respiratory tract infection in turkeys leading to serious economic losses to the turkey industry. The G glycoprotein of AMPV is known to be associated with viral attachment and pathogenesis. In this study, we determined the role of the G glycoprotein in the pathogenicity and immunogenicity of AMPV strain Colorado (AMPV/CO). Recombinant AMPV/CO lacking the G protein (rAMPV/CO-deltaG) was generated using a reverse-genetics system. The recovered rAMPV/CO-deltaG replicated slightly better than did wild-type AMPV in Vero cells. However, deletion of the G gene in AMPV resulted in attenuation of the virus in turkeys. The mutant virus induced less-severe clinical signs and a weaker immune response in turkeys than did the wild-type AMPV. Our results suggest that the G glycoprotein is an important determinant for the pathogenicity and immunogenicity of AMPV.

  8. The urokinase receptor and its structural homologue C4.4A in human cancer

    DEFF Research Database (Denmark)

    Jacobsen, B; Ploug, M

    2008-01-01

    The urokinase-type plasminogen activator receptor (uPAR) and its structural homologue C4.4A are multidomain members of the Ly6/uPAR/alpha-neurotoxin protein domain family. Both are glycosylphosphatidylinositol-anchored membrane glycoproteins encoded by neighbouring genes located on chromosome 19q13...... that high protein expression in tumour cells of non-small cell pulmonary adenocarcinomas is associated with a particularly severe disease progression. This review will evaluate structural-functional and disease-related aspects of uPAR and C4.4A with a view to possible pharmacological targeting strategies...... in the human genome. The structural relationship between the two proteins is, however, not reflected at the functional level. Whereas uPAR has a well-established role in regulating and focalizing uPA-mediated plasminogen activation to the surface of those cells expressing the receptor, the biological function...

  9. Podoplanin - a small glycoprotein with many faces

    OpenAIRE

    Ugorski, Maciej; Dziegiel, Piotr; Suchanski, Jaroslaw

    2016-01-01

    Podoplanin is a small membrane glycoprotein with a large number of O-glycoside chains and therefore it belongs to mucin-type proteins. It can be found on the surface of many types of normal cells originating from various germ layers. It is present primarily on the endothelium of lymphatic vessels, type I pneumocytes and glomerular podocytes. Increased levels of podoplanin or its neo-expression have been found in numerous types of human carcinomas, but it is especially common in squamous cell ...

  10. [Research progress on ebola virus glycoprotein].

    Science.gov (United States)

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  11. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  12. Monoclonal Antibodies to the Thyrotropin Receptor

    Directory of Open Access Journals (Sweden)

    Takao Ando

    2005-01-01

    Full Text Available The thyrotropin receptor (TSHR is a seven transmembrane G-protein linked glycoprotein expressed on the thyroid cell surface and which, under the regulation of TSH, controls the production and secretion of thyroid hormone from the thyroid gland. This membrane protein is also a major target antigen in the autoimmune thyroid diseases. In Graves' disease, autoantibodies to the TSHR (TSHR-Abs stimulate the TSHR to produce thyroid hormone excessively. In autoimmune thyroid failure, some patients exhibit TSHR-Abs which block TSH action on the receptor. There have been many attempts to generate human stimulating TSHR-mAbs, but to date, only one pathologically relevant human stimulating TSHR-mAb has been isolated. Most mAbs to the TSHR have been derived from rodents immunized with TSHR antigen from bacteria or insect cells. These antigens lacked the native conformation of the TSHR and the resulting mAbs were exclusively blocking or neutral TSHR-mAbs. However, mAbs raised against intact native TSHR antigen have included stimulating mAbs. One such stimulating mAb has demonstrated a number of differences in its regulation of TSHR post-translational processing. These differences are likely to be reflective of TSHR-Abs seen in Graves' disease.

  13. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    International Nuclear Information System (INIS)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  14. Isolation of lymphocyte membrane complement receptor type two (the C3d receptor) and preparation of receptor-specific antibody.

    OpenAIRE

    Lambris, J D; Dobson, N J; Ross, G D

    1981-01-01

    A glycoprotein binding complement component C3d was isolated from media used for culture of Raji human lymphoblastoid cells. Analysis by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and gas/liquid chromatography indicated that the C3d-binding glycoprotein consisted of a single polypeptide chain with extensive intrachain disulfide bonds, a molecular weight of 72,000, and several different bound carbohydrates. Several lines of evidence indicated that this medium-derived C3d-binding...

  15. Urinary excretion of beta 2-glycoprotein-1 (apolipoprotein H) and other markers of tubular malfunction in "non-tubular" renal disease.

    Science.gov (United States)

    Flynn, F V; Lapsley, M; Sansom, P A; Cohen, S L

    1992-07-01

    To determine whether urinary beta 2-glycoprotein-1 assays can provide improved discrimination between chronic renal diseases which are primarily of tubular or glomerular origin. Urinary beta 2-glycoprotein-1, retinol-binding protein, alpha 1-microglobulin, beta 2-microglobulin, N-acetyl-beta-D-glucosa-minidase and albumin were measured in 51 patients with primary glomerular disease, 23 with obstructive nephropathy, and 15 with polycystic kidney disease, and expressed per mmol of creatinine. Plasma beta 2-glycoprotein-1 was assayed in 52 patients and plasma creatinine in all 89. The findings were compared between the diagnostic groups and with previously published data relating to primary tubular disorders. All 31 patients with plasma creatinine greater than 200 mumol/l excreted increased amounts of beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin, and 29 had increased N-acetyl-beta-D-glucosaminidase; the quantities were generally similar to those found in comparable patients with primary tubular pathology. Among 58 with plasma creatinine concentrations under 200 mumol/l, increases in beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin excretion were less common and much smaller, especially in those with obstructive nephropathy and polycystic disease. The ratios of the excretion of albumin to the other proteins provided the clearest discrimination between the patients with glomerular or tubular malfunction, but an area of overlap was present which embraced those with obstructive nephropathy and polycystic disease. Increased excretion of beta 2-glycoprotein-1 due to a raised plasma concentration or diminution of tubular reabsorption, or both, is common in all the forms of renal disease investigated, and both plasma creatinine and urinary albumin must be taken into account when interpreting results. Ratios of urinary albumin: beta 2-glycoprotein-1 greater than 1000 are highly suggestive of primary glomerular disease and

  16. Nitric oxide generated by ionizing radiation and EGF is implicated in EGF receptor phosphorylation in A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Park, In Chul; Lee, Hyung Chahn; Rhee, Chang Hun; Hong, Seok Il

    2004-01-01

    Although it has been demonstrated that ionizing radiation (IR) control various cell functions in a different cell types, the mechanisms of its action via NO are not well understood. NO may potentially affect every type of mammalian cells, owing to its ubiquitous production and participate in the control of cell proliferation in a great variety of cell types. The epidermal growth factor (EGF) receptor is a transmembrane glycoprotein of Mr 170,000. When EGF binds to its receptor, the receptor is dimerized and autophosphorylated at the carboxyl-terminal tyrosine 992, 1608, 1086, 1148 and 1173. This phosphorylated receptor initiates a series of signal tranduction events through interacting proteins of SH2 family including Shc, Grb2 and Sos, which in turn trigger ativation of MAPK cascades. Although the number of signaling events mediated by IR-induced NO is growing, it is still unclear how NO activate cellular signaling events. Thus, we examined the effect of NO on cellular phosphorylation and found that NO was produced by ionizing radiation in A549 lung adenocarcinoma cells and enhances the unique tyrosine phosphorylation on EGF receptor

  17. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor.

    Directory of Open Access Journals (Sweden)

    Vanessa Chantreau

    Full Text Available The thyrotropin receptor (TSHR is a G protein-coupled receptor (GPCR that is member of the leucine-rich repeat subfamily (LGR. In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.

  18. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S; Goossens, Vera

    2008-01-01

    monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...

  19. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    Science.gov (United States)

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  20. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  1. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact.

    Science.gov (United States)

    Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin

    2013-09-01

    The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Characterization of the interleukin 3 receptor

    International Nuclear Information System (INIS)

    Murthy, S.C.; Mui, A.L.; Krystal, G.

    1990-01-01

    A variety of homobifunctional crosslinking agents have been used to gain insight into the nature of the murine interleukin 3 (mIL-3) receptor. When [125I]mIL-3 was cross-linked to receptor sites on the surfaces of intact B6SUtA1 cells with disuccinimidyl suberate (DSS), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed the existence of two radiolabeled species with molecular weights of 140 (p140) and 70 (p70) kd (after subtraction of [125I]mIL-3). The relative intensities of the two bands did not change when the [125I]mIL-3 concentration was varied, confirming Scatchard results which suggested only one affinity class. However, when [125I]mIL-3 was crosslinked to intact cells and then incubated at 37 degrees C, the intensity of p140 decreased relative to p70, suggesting a conversion of p140 to p70. This conversion could be inhibited by sodium azide, methylamine, and bacitracin and could also be prevented by first boiling for 1 min in 2% SDS and 5% 2-mercaptoethanol. The putative protease that carried out this apparent conversion appeared to be associated both with plasma membranes prepared from these cells and also with solubilized receptors. Moreover, when p140, crosslinked with both dithiobis succinimidylpropionate and glutaraldehyde, was purified and reelectrophoresed under reducing conditions, p70 could be generated. N-glycanase digestion of p140 and p70 revealed a similar level of N-linked carbohydrate, which upon closer study appeared to consist of two chains, a 3-kd and an 8-kd moiety. Consistent with this data, we propose that the receptor is a 140-kd glycoprotein that is cleaved to a 70-kd surface protein upon mIL-3 binding and chemical crosslinking

  3. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  4. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

    Science.gov (United States)

    Strasser, Richard; Stadlmann, Johannes; Schähs, Matthias; Stiegler, Gabriela; Quendler, Heribert; Mach, Lukas; Glössl, Josef; Weterings, Koen; Pabst, Martin; Steinkellner, Herta

    2008-05-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

  5. An unusual dependence of human herpesvirus-8 Glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Science.gov (United States)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpes virus 8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: 1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; 2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, 3) coexpression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis. PMID:19747451

  6. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    Science.gov (United States)

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  7. Molecular cloning of S1 glycoprotein gene of infectious bronchitis ...

    African Journals Online (AJOL)

    In vitro protein expression is an important method of obtaining large amounts of viral proteins to investigate their biological properties. The S1 glycoprotein of infectious bronchitis virus, due to its effective immune-dominant role is an appropriate candidate for production of recombinant vaccine against infectious bronchitis ...

  8. The Lyssavirus glycoprotein: A key to cross-immunity

    International Nuclear Information System (INIS)

    Buthelezi, Sindisiwe G.; Dirr, Heini W.; Chakauya, Ereck; Chikwamba, Rachel; Martens, Lennart; Tsekoa, Tsepo L.; Stoychev, Stoyan H.; Vandermarliere, Elien

    2016-01-01

    Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members. -- Highlights: •The current PEP has raised safety and availability concerns. •Cocktails of mAbs have been proposed as alternative treatment. •Amino acid conservation amongst Lyssavirus G proteins was studied. •Possible cross-neutralizing B-cell epitopes were proposed.

  9. The Lyssavirus glycoprotein: A key to cross-immunity

    Energy Technology Data Exchange (ETDEWEB)

    Buthelezi, Sindisiwe G. [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg (South Africa); Dirr, Heini W. [Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg (South Africa); Chakauya, Ereck; Chikwamba, Rachel [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Martens, Lennart [Unit for Computational Omics and Systems Biology, Medical Biotechnology Center, VIB, Ghent (Belgium); Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent (Belgium); Tsekoa, Tsepo L. [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Stoychev, Stoyan H., E-mail: Sstoychev@csir.co.za [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Vandermarliere, Elien [Unit for Computational Omics and Systems Biology, Medical Biotechnology Center, VIB, Ghent (Belgium); Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent (Belgium); Bioinformatics Institute Gent, Ghent University, Ghent (Belgium)

    2016-11-15

    Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members. -- Highlights: •The current PEP has raised safety and availability concerns. •Cocktails of mAbs have been proposed as alternative treatment. •Amino acid conservation amongst Lyssavirus G proteins was studied. •Possible cross-neutralizing B-cell epitopes were proposed.

  10. Glycoprotein profiles of macrophages at different stages of activation as revealed by lectin binding after electrophoretic separation.

    Science.gov (United States)

    Irimura, T; North, S M; Nicolson, G L

    1987-01-01

    Glycoprotein profiles of rat macrophages (M phi) at different stages of activation were studied by examining the reactivity of various lectins to the glycoproteins separated by polyacrylamide gel electrophoresis. Ricinus communis agglutinin 1 (RCA1) revealed several components including glycoproteins of Mr 160 kDa and 65 kDa prominent in resident M phi. A pokeweed mitogen (PWM) isolectin, Pa-4, recognizes branched poly(N-acetyllactosamine)-type carbohydrate chains, and revealed a significant increase in glycoproteins of Mr ranging from 70 kDa to 150 kDa on thioglycolate-elicited M phi. Increased reactivity of PWM to thioglycolate-elicited M phi was observed by direct binding of 125I-labeled Pa-4 to intact or glutaraldehyde-fixed M phi. Histochemical staining of formaldehyde-fixed M phi in vitro with biotinylated Pa-4 was consistent with the gel analysis, that is, resident M phi had no reactivity while thioglycolate-elicited M phi showed slight reactivity. Alveolar and intratumoral M phi bound more Pa-4 than resident or thioglycolate-elicited M phi. The PWM isolectin may therefore serve as a marker for an early stage of M phi activation.

  11. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor

    International Nuclear Information System (INIS)

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María; Zanette, Juliano; Woodin, Bruce R.; Karchner, Sibel I.; Nacci, Diane E.; Champlin, Denise; Jayaraman, Saro; Hahn, Mark E.; Stegeman, John J.; Celander, Malin C.

    2015-01-01

    Highlights: • Basal levels of PXR and Pgp mRNA are lower in liver of fish from NBH than from SC. • Hepatic PXR, CYP3A and Pgp mRNA levels are induced by PCB in fish from NBH. • Both non-dioxin-like and dioxin-like PCBs induce PXR, CYP3A and Pgp in NBH fish. • Branchial PXR and CYP3A mRNA levels are induced by PCB 126 in fish from SC. • There is possible cross-talk between AhR and PXR signaling in killifish. - Abstract: Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of

  12. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor

    Energy Technology Data Exchange (ETDEWEB)

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María [Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg (Sweden); Zanette, Juliano; Woodin, Bruce R.; Karchner, Sibel I. [Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Nacci, Diane E.; Champlin, Denise; Jayaraman, Saro [Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882 (United States); Hahn, Mark E.; Stegeman, John J. [Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Celander, Malin C., E-mail: malin.celander@gu.se [Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg (Sweden)

    2015-02-15

    Highlights: • Basal levels of PXR and Pgp mRNA are lower in liver of fish from NBH than from SC. • Hepatic PXR, CYP3A and Pgp mRNA levels are induced by PCB in fish from NBH. • Both non-dioxin-like and dioxin-like PCBs induce PXR, CYP3A and Pgp in NBH fish. • Branchial PXR and CYP3A mRNA levels are induced by PCB 126 in fish from SC. • There is possible cross-talk between AhR and PXR signaling in killifish. - Abstract: Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of

  13. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  14. N-terminal sequence of human leukocyte glycoprotein Mo1: conservation across species and homology to platelet IIb/IIIa.

    Science.gov (United States)

    Pierce, M W; Remold-O'Donnell, E; Todd, R F; Arnaout, M A

    1986-12-12

    Mo1 and gp160-gp93 are two surface membrane glycoprotein heterodimers present on granulocytes and monocytes derived from humans and guinea pigs, respectively. We purified both antigens and found that their alpha subunits had identical N-termini which were significantly homologous to the alpha subunit of the human adhesion platelet glycoprotein IIb/IIIa.

  15. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  16. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    Science.gov (United States)

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  17. The hypobranchial mucin of the whelk Buccinum undatum L. Properties of the mucin and of the glycoprotein component.

    Science.gov (United States)

    Hunt, S; Jevons, F R

    1965-12-01

    1. The composition of the hypobranchial mucin from Buccinum undatum is reported. 2. The amino acid composition was determined; aspartic acid and glutamic acid contribute almost 24% of the total amino acids in the mucin. 3. Serine, threonine and alanine, in the proportions 2:1:1 respectively, were detected as N-terminal residues, implying the presence of at least four protein chains. 4. A glycoprotein component was isolated by phenol precipitation. 5. The glycoprotein contained 8% of neutral sugars comprising glucose, galactose, mannose and fucose, and 4.5% of hexosamine, comprising glucosamine and galactosamine in equal proportions. 6. A method is described for the preparation of glycopeptides from the glycoprotein. 7. The comparative biochemistry of the mucin is discussed.

  18. Co-assembly of viral envelope glycoproteins regulates their polarized sorting in neurons.

    Directory of Open Access Journals (Sweden)

    Rafael Mattera

    2014-05-01

    Full Text Available Newly synthesized envelope glycoproteins of neuroinvasive viruses can be sorted in a polarized manner to the somatodendritic and/or axonal domains of neurons. Although critical for transneuronal spread of viruses, the molecular determinants and interregulation of this process are largely unknown. We studied the polarized sorting of the attachment (NiV-G and fusion (NiV-F glycoproteins of Nipah virus (NiV, a paramyxovirus that causes fatal human encephalitis, in rat hippocampal neurons. When expressed individually, NiV-G exhibited a non-polarized distribution, whereas NiV-F was specifically sorted to the somatodendritic domain. Polarized sorting of NiV-F was dependent on interaction of tyrosine-based signals in its cytosolic tail with the clathrin adaptor complex AP-1. Co-expression of NiV-G with NiV-F abolished somatodendritic sorting of NiV-F due to incorporation of NiV-G•NiV-F complexes into axonal transport carriers. We propose that faster biosynthetic transport of unassembled NiV-F allows for its proteolytic activation in the somatodendritic domain prior to association with NiV-G and axonal delivery of NiV-G•NiV-F complexes. Our study reveals how interactions of viral glycoproteins with the host's transport machinery and between themselves regulate their polarized sorting in neurons.

  19. Use of a fragment of glycoprotein G-2 produced in the baculovirus expression system for detecting herpes simplex virus type 2-specific antibodies

    NARCIS (Netherlands)

    Ikoma, M; Liljeqvist, JA; Glazenburg, KL; The, TH; Welling-Wester, S; Groen, J.

    Fragments of glycoprotein G (gG-2(281-594His)), comprising residues 281 to 594 of herpes simplex virus type 2 (HSV-2), glycoprotein G of HSV-1 (gG-1(t26-189His)), and glycoprotein D of HSV-1 (gD-1(1-313)), were expressed in the baculovirus expression system to develop an assay for the detection of

  20. Synthesis of Structures Related to Antifreeze Glycoproteins

    OpenAIRE

    Fyrner, Timmy

    2005-01-01

    In this thesis, synthesis of structures related to antifreeze glycoproteins (AFGPs) are presented. Synthetic routes to a protected carbohydrate derivative, 2,3,4,6-tetra-O-benzyl-β-galactopyranosyl-(1→3)-2-deoxy-2-azido-4,6-di-O-benzyl-β-D-thio-1-galactopyranoside, and a tBu-Ala-Thr-Ala-Fmoc tripeptide, are described. These compounds are meant to be used in the assembly of AFGPs and analogues thereof. A Gal-GlcN disaccharide was synthesized via glycosylation between the donor, bromo-2-O-benzo...

  1. Affinity purification and partial characterization of the zonulin/zonula occludens toxin (Zot) receptor from human brain.

    Science.gov (United States)

    Lu, R; Wang, W; Uzzau, S; Vigorito, R; Zielke, H R; Fasano, A

    2000-01-01

    The intercellular tight junctions (TJs) of endothelial cells represent the limiting structure for the permeability of the blood-brain barrier (BBB). Although the BBB has been recognized as being the interface between the bloodstream and the brain, little is known about its regulation. Zonulin and its prokaryotic analogue, zonula occludens toxin (Zot) elaborated by Vibrio cholerae, both modulate intercellular TJs by binding to a specific surface receptor with subsequent activation of an intracellular signaling pathway involving phospholipase C and protein kinase C activation and actin polymerization. Affinity column purification revealed that human brain plasma membrane preparations contain two Zot binding proteins of approximately 55 and approximately 45 kDa. Structural and kinetic studies, including saturation and competitive assays, identified the 55-kDa protein as tubulin, whereas the 45-kDa protein represents the zonulin/Zot receptor. Biochemical characterization provided evidence that this receptor is a glycoprotein containing multiple sialic acid residues. Comparison of the N-terminal sequence of the zonulin/Zot receptor with other protein sequences by BLAST analysis revealed a striking similarity with MRP-8, a 14-kDa member of the S-100 family of calcium binding proteins. The discovery and characterization of this receptor from human brain may significantly contribute to our knowledge on the pathophysiological regulation of the BBB.

  2. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  3. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies

    Directory of Open Access Journals (Sweden)

    Laura Evgin

    2016-01-01

    Full Text Available The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody.

  4. Expression of the innate defense receptor S5D-SRCRB in the urogenital tract

    DEFF Research Database (Denmark)

    Miro-Julia, C.; Escoda-Ferran, C.; Carrasco, E.

    2014-01-01

    S5D-SRCRB is a novel mouse secretory glycoprotein belonging to the ancient and highly conserved scavenger receptor cysteine-rich superfamily of protein receptors. Available evidence indicates that S5D-SRCRB interacts with conserved microbial cell wall components, as well as with some endogenous...... proteins, and presents a restricted tissue expression pattern. This study further analyzes the expression of S5D-SRCRB along the mouse urogenital tract. Immunohistochemical staining for S5D-SRCRB was observed in spermatocytes from seminiferous tubules and in the epithelial surface from urethra and bladder......-SRCRB was observed in the apical border of terminally differentiated IC. Colocalization of S5D-SRCRB with galectin-3 (Gal-3) was also observed in kidney and bladder, but not in testis, supporting concurrent biochemical studies demonstrating the carbohydrate-dependent interaction of Gal-3 and S5D-SRCRB. Furthermore...

  5. Structural and functional analysis of bovine herpesvirus 1 minor glycoproteins

    NARCIS (Netherlands)

    Baranowski, E.; Keil, G.; Lyaku, J.; Rijsewijk, F.A.M.; Oirschot, van J.T.; Pastoret, P.P.; Thiry, E.

    1996-01-01

    This paper focuses on the structure and functions of bovine herpesvirus 1 minor glycoproteins gH, gE, gG and gp42. It reviews the progress which has been made in their identification and characterization, in the study of their temporal expression and processing in infected cells, and finally in the

  6. Raman optical activity of proteins and glycoproteins

    International Nuclear Information System (INIS)

    Smyth, E.

    2000-03-01

    Raman optical activity (ROA), measured in this project as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarised incident laser light, offers the potential to provide more information about the structure of biological molecules in aqueous solution than conventional spectroscopic techniques. Chapter one contains a general discussion of the relative merits of different spectroscopic techniques for structure determination of biomolecules, as well as a brief introduction to ROA. In Chapter two a theoretical analysis of ROA is developed, which extends the discussion in chapter one. The spectrometer setup and sample preparation is then discussed in chapter three. Instrument and sample conditions are monitored to ensure that the best results are obtained. As with any experimental project problems occur, which may result in a degradation of the spectra obtained. The cause of these problems was explored and remedied whenever possible. Chapter four introduces a brief account of protein, glycoprotein and carbohydrate structure and function, with a particular emphasis on the structure of proteins. In the remaining chapters experimental ROA results on proteins and glycoproteins, with some carbohydrate samples, from a wide range of sources are examined. For example, in chapter five some β-sheet proteins are examined. Structural features in these proteins are examined in the extended amide III region of their ROA spectra, revealing that ROA is sensitive to the rigidity or flexibility inherent in proteins. Chapter six concentrates on a group of proteins (usually glycoproteins) known as the serine proteinase inhibitors (serpins). Medically, the serpins are one of the most important groups of proteins of current interest, with wide-ranging implications in conditions such as Down's syndrome, Alzheimer's disease, and emphysema with associated cirrhosis of the liver. With favourable samples and conditions ROA may offer the

  7. The glycoprotein genes and gene junctions of the fish rhabdoviruses spring viremia of carp virus and hirame rhabdovirus: Analysis of relationships with other rhabdoviruses

    Science.gov (United States)

    Bjorklund, H.V.; Higman, K.H.; Kurath, G.

    1996-01-01

    The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2–33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.

  8. Macrophage colony stimulating factor (M-CSF) induces Fc receptor expression on macrophages

    International Nuclear Information System (INIS)

    Magee, D.M.; Wing, E.J.; Waheed, A.; Shadduck, R.K.

    1986-01-01

    M-CSF is a glycoprotein that stimulates bone marrow progenitor cells to proliferate and differentiate into macrophages (M theta). In addition, M-CSF can modulate the function of mature M theta. In this study, the authors determined the effect of M-CSF on expression of receptors for IgG (Fc receptors). Murine resident peritoneal M theta monolayers were incubated with either M-CSF, recombinant gamma interferon (IFN), or left untreated for 48 hrs. Expression of Fc receptors was assessed by microscopy using an antibody coated sheet erythrocytes (EA) rosette assay. The results indicated that M-CSF treated M theta had significantly higher numbers of bound EA (7.1 erythrocytes/M theta), than IFN M theta (4.4), or untreated M theta (2.5) (p 51 Cr labelled EA assay, CSF M theta (16,411 cpm), IFN M theta (10,887), untreated M theta (6897) (p < 0.001). Additionally, the maximal response was noted between 10 and 500 units M-CSF. Purified anti-M-CSF IgG, when included in the cultures, ablated the enhancement of EA binding, whereas normal rabbit IgG did not. These findings indicate that M-CSF is a potent inducer of Fc receptor expression on M theta and supports other data concerning the role of M-CSF as a biological response modifier

  9. P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments

    DEFF Research Database (Denmark)

    Ejsing, Thomas B.; Pedersen, Anne D.; Linnet, Kristian

    2005-01-01

    P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice......P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice...

  10. Tumor specific glycoproteins and method for detecting tumorigenic cancers

    International Nuclear Information System (INIS)

    Davidson, E.A.; Bolmer, S.D.

    1981-01-01

    The detection of tumour specific glycoproteins (TSGP) in human sera often indicates the presence of a malignant tumour in a patient. The distinguishing characteristics of TSGP isolated from the blood sera of cancer patients are described in detail together with methods of TSGP isolation and purification. Details are also given of radioimmunoassay techniques capable of detecting very low levels of serum TSGP with high specificity. (U.K.)

  11. Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Pompach, Petr; Ashline, David J.; Brnáková, Z.; Benicky, J.; Sanda, M.; Goldman, R.

    2014-01-01

    Roč. 13, č. 12 (2014), s. 5561-5569 ISSN 1535-3893 R&D Projects: GA MŠk LH13051; GA ČR GAP206/12/0503 Grant - others:Charles Univ.(CZ) UNCE_204025/2012 Institutional support: RVO:61388971 Keywords : fucose * glycoproteins * liver * site specificity Subject RIV: CE - Biochemistry Impact factor: 4.245, year: 2014

  12. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  13. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    DEFF Research Database (Denmark)

    Andersson, O.; Badisco, L.; Hansen, A. H.

    2014-01-01

    In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain b...... has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery.......In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain...

  14. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  15. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  16. P-glycoprotein in autoimmune rheumatic diseases.

    Science.gov (United States)

    García-Carrasco, M; Mendoza-Pinto, C; Macias Díaz, S; Vera-Recabarren, M; Vázquez de Lara, L; Méndez Martínez, S; Soto-Santillán, P; González-Ramírez, R; Ruiz-Arguelles, A

    2015-07-01

    P-glycoprotein (Pgp) is a transmembrane protein of 170 kD encoded by the multidrug resistance 1 (MDR-1) gene, localized on chromosome 7. More than 50 polymorphisms of the MDR-1 gene have been described; a subset of these has been shown to play a pathophysiological role in the development of inflammatory bowel disease, femoral head osteonecrosis induced by steroids, lung cancer and renal epithelial tumors. Polymorphisms that have a protective effect on the development of conditions such as Parkinson disease have also been identified. P-glycoprotein belongs to the adenosine triphosphate binding cassette transporter superfamily and its structure comprises a chain of approximately 1280 aminoacid residues with an N-C terminal structure, arranged as 2 homologous halves, each of which has 6 transmembrane segments, with a total of 12 segments with 2 cytoplasmic nucleotide binding domains. Many cytokines like interleukin 2 and tumor necrosis factor alpha increase Pgp expression and activity. Pgp functions as an efflux pump for a variety of toxins in order to protect particular organs and tissues as the central nervous system. Pgp transports a variety of substrates including glucocorticoids while other drugs such as tacrolimus and cyclosporine A act as modulators of this protein. The most widely used method to measure Pgp activity is flow cytometry using naturally fluorescent substrates such as anthracyclines or rhodamine 123. The study of drug resistance and its association to Pgp began with the study of resistance to chemotherapy in the treatment of cancer and antiretroviral therapy for human immunodeficiency virus; however, the role of Pgp in the treatment of systemic lupus erythematosus, rheumatoid arthritis and psoriatic arthritis has been a focus of study lately and has emerged as an important mechanism by which treatment failure occurs. The present review analyzes the role of Pgp in these autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of operator and institutional volume on clinical outcomes after percutaneous coronary interventions performed in Canada and the United States: a brief report from the Enhanced Suppression of the Platelet glycoprotein IIb/IIIa Receptor with Integrilin Therapy (ESPRIT) study.

    Science.gov (United States)

    Madan, Mina; Nikhil, Janarthan; Hellkamp, Anne S; Pieper, Karen S; Labinaz, Marino; Cohen, E A; Buller, Christopher E; Cantor, Warren J; Seidelin, Peter; Ducas, John; Carere, Ronald G; Natarajan, Madhu K; O'Shea, J Conor; Tcheng, James E

    2009-08-01

    The Enhanced Suppression of the Platelet glycoprotein IIb/IIIa Receptor with Integrilin Therapy (ESPRIT) trial compared the use of eptifibatide with placebo in 2064 coronary intervention patients. It was previously reported that Canadian patients had reduced rates of 30-day and one-year death, myocardial infarction (MI) or target vessel revascularization (TVR) compared with patients in the United States (US). To examine whether operator or institutional volume differences explain the regional variation in clinical outcome. Each site received an operator and institutional volume survey. Fifty-seven sites (62%) returned complete data on 1338 patients. In this smaller cohort, Canadian patients had reduced rates of 30-day and one-year death, MI or TVR compared with US patients (6.3% versus 10.3% and 14.9% versus 20.1%, respectively; PESPRIT study, institutional volume was associated with a modest reduction in risk of death, MI or TVR over short- and long-term follow-up periods. The Canadian and US investigators and institutions selected in ESPRIT had similar annual procedural volumes. Therefore, volume variables did not explain the differential risk of clinical events observed for patients enrolled in the two countries.

  18. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR...

  19. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein.

    Science.gov (United States)

    Sun, Junfeng; Han, Zongxi; Qi, Tianming; Zhao, Ran; Liu, Shengwang

    2017-12-08

    Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N -glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N -glycans on HN glycoprotein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Jonathan; Corbett, Kevin D.; Farzan, Michael; Choe, Hyeryun; Harrison, Stephen C. (Harvard-Med)

    2010-08-18

    New World hemorrhagic fever arenaviruses are rodent-borne agents that cause severe human disease. The GP1 subunit of the surface glycoprotein mediates cell attachment through transferrin receptor 1 (TfR1). We report the structure of Machupo virus (MACV) GP1 bound with human TfR1. Atomic details of the GP1-TfR1 interface clarify the importance of TfR1 residues implicated in New World arenavirus host specificity. Analysis of sequence variation among New World arenavirus GP1s and their host-species receptors, in light of the molecular structure, indicates determinants of viral zoonotic transmission. Infectivities of pseudoviruses in cells expressing mutated TfR1 confirm that contacts at the tip of the TfR1 apical domain determine the capacity of human TfR1 to mediate infection by particular New World arenaviruses. We propose that New World arenaviruses that are pathogenic to humans fortuitously acquired affinity for human TfR1 during adaptation to TfR1 of their natural hosts.

  1. Characterization of a family of gamma-ray-induced CHO mutants demonstrates that the ldlA locus is diploid and encodes the low-density lipoprotein receptor

    International Nuclear Information System (INIS)

    Sege, R.D.; Kozarsky, K.F.; Krieger, M.

    1986-01-01

    The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene

  2. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr1a P-glycoprotein

    NARCIS (Netherlands)

    Mayer, U; Wagenaar, E; Beijnen, J.H; Smit, J.W; Meijer, D.K F; van Asperen, J.; Borst, P; Schinkel, A.H

    1 We have used mice with a disrupted mdrla P-glycoprotein gene (mdrIa (-/-) mice) to study the role of P-glycoprotein in the pharmacokinetics of digoxin, a model P-glycoprotein substrate. 2 [K-3]-digoxin at a dose of 0.2 mg kg(-1) was administered as a single i.v. or oral bolus injection. We

  3. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2014-12-01

    Full Text Available The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  4. Analysing the Structural Effect of Point Mutations of Cytotoxic Necrotizing Factor 1 (CNF1 on Lu/BCAM Adhesion Glycoprotein Association

    Directory of Open Access Journals (Sweden)

    Alexandre G. de Brevern

    2018-03-01

    Full Text Available Cytotoxic Necrotizing Factor 1 (CNF1 was identified in 1983 as a protein toxin produced by certain pathogenic strains of Escherichia coli. Since then, numerous studies have investigated its particularities. For instance, it is associated with the single chain AB-toxin family, and can be divided into different functional and structural domains, e.g., catalytic and transmembrane domain and interaction sites. A few years ago, the identification of the Lutheran (Lu adhesion glycoprotein/basal cell adhesion molecule (BCAM as a cellular receptor for CNF1 provided new insights into the adhesion process of CNF1. Very recently, the Ig-like domain 2 of Lu/BCAM was confirmed as the main interaction site using protein-protein interaction and competition studies with various different mutants. Here, I present in silico approaches that precisely explain the impact of these mutations, leading to a better explanation of these experimental studies. These results can be used in the development of future antitoxin strategies.

  5. Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    OpenAIRE

    Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.

    2002-01-01

    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...

  6. Identification of structural and secretory lectin-binding glycoproteins of normal and cancerous human prostate.

    Science.gov (United States)

    Lad, P M; Cooper, J F; Learn, D B; Olson, C V

    1984-12-07

    We have utilized the technique of lectin-loading of SDS gels with iodinated concanavalin A and wheat germ agglutinin to identify glycoproteins in prostatic and seminal fluids as well as in prostate tissue fractions. The following subunits which bound both lectins were detected: (a) 50, 43 and 38 kDa subunits common to prostatic and seminal fluids, and an additional 55 kDa subunit which predominates only in prostatic fluid; (b) 78, 55, 50 and 43 kDa subunits in prostatic tissue cytosol and (c) 195, 170, 135, 116 and 95 kDa subunits present in the particulate fractions of prostatic tissue. Immunoblotting using specific rabbit antibodies revealed the 50 kDa band to be prostatic acid phosphatase and the 38 kDa band to be prostate-specific antigen. Interestingly, antibodies directed toward prostatic acid phosphatase were found to cross-react with the 43 kDa band. Fractionation on sucrose gradients showed that several of these particulate glycoproteins were associated with a vesicle fraction enriched in adenylate cyclase activity, implying that they are plasma membrane glycoproteins. Comparison of soluble and particulate fractions of normal and cancerous tissue homogenates was made by densitometric scanning of autoradiograms of lectin-loaded gels. Similar relative intensities of lectin-binding were obtained for corresponding proteins in normal and cancerous tissue fractions. Also, immunoblotting showed no differences in prostatic acid phosphatase or prostate-specific antigen between normal and cancerous soluble homogenate fractions. Our results suggest that major lectin-binding proteins are conserved in the transition from normal to cancerous tissue. These results may be useful in developing a multiple-marker profile of metastatic prostate cancer and for the design of imaging agents, such as monoclonal antibodies, to prominent soluble and particulate prostate glycoproteins.

  7. Protein and Glycoprotein Patterns Related to Morphogenesis in Mammillaria gracillis Pfeiff. Tissue Culture

    Directory of Open Access Journals (Sweden)

    Biljana Balen

    2002-01-01

    Full Text Available As plants with Crassulacean Acid Metabolism (CAM, cacti are highly affected by artificial environmental conditions in tissue culture. Plants of Mammillaria gracillis Pfeiff. (Cactaceae propagated in vitro produced callus spontaneously. This habituated callus regenerated normal and hyperhydric shoots without the addition of growth regulators. In order to compare habituated callus with the tumorous one, cactus cells were transformed with two strains of Agrobacterium tumefaciens: the wild strain B6S3 (tumour line TW and the rooty mutant GV3101 (tumour line TR. Gene expression in cactus plants, habituated callus, regenerated shoots and two tumour lines was analysed at the level of cellular and extracellular protein and glycoprotein profiles. Proteins were separated by SDS-polyacrylamide gel electrophoresis and 2-D PAGE electrophoresis and silver stained. Concavalin A-peroxidase staining detected glycoproteins with D-manose in their glycan component on protein blots. Developmentally specific protein patterns of Mammillaria gracillis tissue lines were detected. The 2-D PAGE electrophoresis revealed some tissue specific protein groups. The cellular glycoprotein of 42 kDa detected by ConA was highly expressed in undifferentiated tissues (habituated callus, TW and TR tumours and in hyperhydric regenerants. Tumours produced extracellular proteins of 33, 23 and 22 kDa. The N glycosylation of cellular and extracellular proteins was related to specific developmental stage of cactus tissue.

  8. Gamma-radiolysis of some glycoproteins in dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nagrani, S

    1981-01-01

    A study has been made of the radiation-induced damage of some glycoproteins in dilute aqueous solutions. By use of specific radical scavengers, the roles of the individual free radicals, formed by ..gamma..-radiolysis, in causing damage has been assessed. The most effective radical in causing damage to human and porcine glycopolypeptide is the OH radical. The structure of the different blood group glycopolypeptides determines the sensitivity towards the free radical attack. The glycopolypeptide shows depolymerization and a characteristic absorption at approximately 270 nm due to the formation of additional products on irradiation. Chemical changes of the irradiated glycopolypeptide solutions revealed significant damage to the oligosaccharide chain and the polypeptide core of the glycopolypeptide. The radiation-induced inactivation of another glycoprotein, external yeast invertase, due to different radical species at pH 7.0 decreases in the following order: ea-barq > OH radical > (SCN) radical/sub 2//sup -/ > Br radical/sub 2//sup -/. The structure of this enzyme, accounts for the mechanism of enzyme inactivation and the relative damage of carbohydrate and amino acid residues. The irradiated enzyme solutions show significant changes in their electrophoretic behaviour on cellogel electrophoresis due to the formation of radiolysis products, which also show characteristic absorption maxima at approximately 275 nm. (author).

  9. High-performance liquid chromatography of human glycoprotein hormones.

    Science.gov (United States)

    Chlenov, M A; Kandyba, E I; Nagornaya, L V; Orlova, I L; Volgin, Y V

    1993-02-12

    The chromatographic behavior of the glycoprotein hormones from human pituitary glands and of placental origin [thyroid-stimulating hormone, luteinizing hormone and chorionic gonadotropin (CG)] was studied. It was shown that hydrophobic interaction chromatography on a microparticulate packing and anion-exchange HPLC can be applied for the purification of these hormones. Reversed-phase HPLC on wide-pore C4-bonded silica at neutral pH can be applied for the determination of the above hormones and for the isolation of pure CG and its subunits.

  10. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    International Nuclear Information System (INIS)

    Korecka, Lucie; Jezova, Jana; Bilkova, Zuzana; Benes, Milan; Horak, Daniel; Hradcova, Olga; Slovakova, Marcela; Viovy, Jean-Louis

    2005-01-01

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized

  11. Monoclonal Antibodies Directed toward the Hepatitis C Virus Glycoprotein E2 Detect Antigenic Differences Modulated by the N-Terminal Hypervariable Region 1 (HVR1), HVR2, and Intergenotypic Variable Region.

    Science.gov (United States)

    Alhammad, Yousef; Gu, Jun; Boo, Irene; Harrison, David; McCaffrey, Kathleen; Vietheer, Patricia T; Edwards, Stirling; Quinn, Charles; Coulibaly, Fásseli; Poumbourios, Pantelis; Drummer, Heidi E

    2015-12-01

    Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a heterodimer and mediate receptor interactions and viral fusion. Both E1 and E2 are targets of the neutralizing antibody (NAb) response and are candidates for the production of vaccines that generate humoral immunity. Previous studies demonstrated that N-terminal hypervariable region 1 (HVR1) can modulate the neutralization potential of monoclonal antibodies (MAbs), but no information is available on the influence of HVR2 or the intergenotypic variable region (igVR) on antigenicity. In this study, we examined how the variable regions influence the antigenicity of the receptor binding domain of E2 spanning HCV polyprotein residues 384 to 661 (E2661) using a panel of MAbs raised against E2661 and E2661 lacking HVR1, HVR2, and the igVR (Δ123) and well-characterized MAbs isolated from infected humans. We show for a subset of both neutralizing and nonneutralizing MAbs that all three variable regions decrease the ability of MAbs to bind E2661 and reduce the ability of MAbs to inhibit E2-CD81 interactions. In addition, we describe a new MAb directed toward the region spanning residues 411 to 428 of E2 (MAb24) that demonstrates broad neutralization against all 7 genotypes of HCV. The ability of MAb24 to inhibit E2-CD81 interactions is strongly influenced by the three variable regions. Our data suggest that HVR1, HVR2, and the igVR modulate exposure of epitopes on the core domain of E2 and their ability to prevent E2-CD81 interactions. These studies suggest that the function of HVR2 and the igVR is to modulate antibody recognition of glycoprotein E2 and may contribute to immune evasion. This study reveals conformational and antigenic differences between the Δ123 and intact E2661 glycoproteins and provides new structural and functional data about the three variable regions and their role in occluding neutralizing and nonneutralizing epitopes on the E2 core domain. The variable regions may therefore function to

  12. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum

    International Nuclear Information System (INIS)

    Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing

    2015-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC

  13. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Dianyuan Zhao

    2016-03-01

    Full Text Available Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP is involved in this process through activating dendritic cells (DCs and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12 and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.

  14. A Simplified Model of Glycoprotein Production within Cell Culture

    OpenAIRE

    Lambert, A. B.; Smith, F. T.; Velayudhan, A.

    2017-01-01

    Complex biological products, such as those used to treat various forms of cancer, are typically produced by mammalian cells in bioreactors. The most important class of such biological medicines is proteins. These typically bind to sugars (glycans) in a process known as glycosylation, creating glycoproteins, which are more stable and effective medicines. The glycans are large polymers that are formed by a long sequence of enzyme catalysed reactions. This sequence is not always completed, thus ...

  15. Ca 125 and Ca 19-9: two cancer-associated sialylsaccharide antigens on a mucus glycoprotein from human milk.

    Science.gov (United States)

    Hanisch, F G; Uhlenbruck, G; Dienst, C; Stottrop, M; Hippauf, E

    1985-06-03

    The cancer-associated antigens Ca 125 and Ca 19-9 were demonstrated by radioimmunoassay to form structural units of a mucus glycoprotein in human milk taken from healthy women four days after parturition. The glycoprotein precipitated with the casein fraction at pH 4.6 and was completely absent in the whey as judged from Ca 19-9 assay. It could be effectively enriched by phenol-saline extraction from soluble milk proteins and further purified by gel filtration on Sephacryl S300 and Sephacryl S400. The active component with a bouyant density of 1.41 g/ml in isopycnic density gradient centrifugation (CsCl) shared common physico-chemical and chemical characteristics of mucus glycoproteins. Carbohydrates representing about 68% by weight were conjugated to protein by alkali-labile linkages, exclusively and were essentially free of D-mannose. Activities of Ca 125 and Ca 19-9 were both destroyed by treatment with periodate, mild alkali or neuraminidase suggesting the antigens are sialylated saccharides bound to protein by alkali-labile linkages. The fraction of monosialylated saccharide alditols isolated after reductive beta-elimination from the mucus glycoprotein was shown to inhibit monoclonal antibodies anti-(Ca 125) and anti-(Ca 19-9) in radioimmunoassay.

  16. Secretome analysis to elucidate metalloprotease-dependent ectodomain shedding of glycoproteins during neuronal differentiation.

    Science.gov (United States)

    Tsumagari, Kazuya; Shirakabe, Kyoko; Ogura, Mayu; Sato, Fuminori; Ishihama, Yasushi; Sehara-Fujisawa, Atsuko

    2017-02-01

    Many membrane proteins are subjected to limited proteolyses at their juxtamembrane regions, processes referred to as ectodomain shedding. Shedding ectodomains of membrane-bound ligands results in activation of downstream signaling pathways, whereas shedding those of cell adhesion molecules causes loss of cell-cell contacts. Secreted proteomics (secretomics) using high-resolution mass spectrometry would be strong tools for both comprehensive identification and quantitative measurement of membrane proteins that undergo ectodomain shedding. In this study, to elucidate the ectodomain shedding events that occur during neuronal differentiation, we establish a strategy for quantitative secretomics of glycoproteins released from differentiating neuroblastoma cells into culture medium with or without GM6001, a broad-spectrum metalloprotease inhibitor. Considering that most of transmembrane and secreted proteins are N-glycosylated, we include a process of N-glycosylated peptides enrichment as well as isotope tagging in our secretomics workflow. Our results show that differentiating N1E-115 neurons secrete numerous glycosylated polypeptides in metalloprotease-dependent manners. They are derived from cell adhesion molecules such as NCAM1, CADM1, L1CAM, various transporters and receptor proteins. These results show the landscape of ectodomain shedding and other secretory events in differentiating neurons and/or during axon elongation, which should help elucidate the mechanism of neurogenesis and the pathogenesis of neurological disorders. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Melancon, Jeffrey M.; Chouljenko, Vladimir N.; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2005-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. To delineate functional domains of the SARS-CoV S glycoprotein, single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl-terminal truncations were investigated in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or an adjacent but distinct region, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl-terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulated the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The 17 and 26 amino-acid deletions did not adversely affect S cell-surface expression, while the 39 amino-acid truncation inhibited S cell-surface expression suggesting that the membrane proximal cysteine-rich motif plays an essential role in S cell-surface expression. Mutagenesis of the acidic amino-acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino-acid motif may play a functional role in the retention of S at cell surfaces. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression, and cell fusion

  18. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene B; Halim, Adnan; Joshi, Hiren Jitendra

    2013-01-01

    The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man...... glycosylation underlie congenital muscular dystrophies and considerable efforts have been devoted to explore this O-glycoproteome without much success. Here, we used our SimpleCell strategy using nuclease-mediated gene editing of a human cell line (MDA-MB-231) to reduce the structural heterogeneity of O-Man...... glycans and to probe the O-Man glycoproteome. In this breast cancer cell line we found that O-Man glycosylation is primarily found on cadherins and plexins on β-strands in extracellular cadherin and Ig-like, plexin and transcription factor domains. The positions and evolutionary conservation of O-Man...

  19. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  20. Up-regulation of P-glycoprotein expression by catalase via JNK activation in HepG2 cells.

    Science.gov (United States)

    Li, Lin; Xu, Jianfeng; Min, Taishan; Huang, Weida

    2006-01-01

    Overexpression of the MDR1 gene is one of the reasons for multidrug resistance (MDR). Some studies suggested that antioxidants could down-regulate MDR1 expression as a possible cancer treatment. In this report, we try to determine the effects of antioxidants (catalase or N-acetylcysteine [NAC]) on the regulation of intrinsic MDR1 overexpression in HepG2 cells. Adding catalase or N-acetylcysteine to the HepG2 culture led to a significant increase of MDR1 mRNA and P-glycoprotein drug transporter activity. After catalase or NAC treatment, a reduced intracellular reactive oxygen species (ROS) was observed. The JNK inhibitor SP600125 abolished the positive effects of catalase on drug transporter activity in a dose-dependent manner. Furthermore, the up-regulation of P-glycoprotein functions by catalase was only observed in HepG2 cells but not in other cell lines tested (MCF-7, A549, A431). These data suggested that catalase can up-regulate P-glycoprotein expression in HepG2 cells via reducing intracellular ROS, and JNK may mediate this process.

  1. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor`s extracellular hinge region

    Directory of Open Access Journals (Sweden)

    Paul eGrzesik

    2015-09-01

    Full Text Available The human lutropin/choriogonadotropin receptor (LHCGR can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG - secreted by the placenta, and lutropin (LH - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich repeat domain (LRRD, as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting mutations. These helix preserving modifications showed no effect on hormone induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10 deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region s. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region

  2. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2007-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3 H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  3. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans.

    Science.gov (United States)

    Mercx, Sébastien; Smargiasso, Nicolas; Chaumont, François; De Pauw, Edwin; Boutry, Marc; Navarre, Catherine

    2017-01-01

    Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N -glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker ( bar ), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells.

  4. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    Science.gov (United States)

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were

  5. Physical stability comparisons of IgG1-Fc variants: effects of N-glycosylation site occupancy and Asp/Gln residues at site Asn 297.

    Science.gov (United States)

    Alsenaidy, Mohammad A; Okbazghi, Solomon Z; Kim, Jae Hyun; Joshi, Sangeeta B; Middaugh, C Russell; Tolbert, Thomas J; Volkin, David B

    2014-06-01

    The structural integrity and conformational stability of various IgG1-Fc proteins produced from the yeast Pichia pastoris with different glycosylation site occupancy (di-, mono-, and nonglycosylated) were determined. In addition, the physical stability profiles of three different forms of nonglycosylated Fc molecules (varying amino-acid residues at site 297 in the CH 2 domain due to the point mutations and enzymatic digestion of the Fc glycoforms) were also examined. The physical stability of these IgG1-Fc glycoproteins was examined as a function of pH and temperature by high-throughput biophysical analysis using multiple techniques combined with data visualization tools (three index empirical phase diagrams and radar charts). Across the pH range of 4.0-6.0, the di- and monoglycosylated forms of the IgG1-Fc showed the highest and lowest levels of physical stability, respectively, with the nonglycosylated forms showing intermediate stability depending on solution pH. In the aglycosylated Fc proteins, the introduction of Asp (D) residues at site 297 (QQ vs. DN vs. DD forms) resulted in more subtle changes in structural integrity and physical stability depending on solution pH. The utility of evaluating the conformational stability profile differences between the various IgG1-Fc glycoproteins is discussed in the context of analytical comparability studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Analysis of O-Glycopeptides by Acetone Enrichment and Capillary Electrophoresis-Mass Spectrometry.

    Science.gov (United States)

    Mancera-Arteu, Montserrat; Giménez, Estela; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victòria

    2017-11-03

    Acetone precipitation was evaluated as a rapid, simple, low-cost, and efficient method for the selective purification of O-glycopeptides from enzymatic digests of glycoproteins. Ovalbumin (OVA), human and bovine α 1 -acid glycoprotein (hAGP and bAGP), human apolipoprotein C-III (APO-C3), and recombinant human erythropoietin (rhEPO) were used to obtain enzymatic digests with a broad and varied set of peptides, N-glycopeptides, and O-glycopeptides. After digestion and before capillary electrophoresis mass spectrometry (CE-MS) analysis, the amount of ice-cold acetone added to the digests was optimized to maximize recoveries of O-glycopeptides. Furthermore, the different behavior of peptides, N- and O-glycopeptides was explained by studying with multivariate data analysis methods the influence of several physicochemical parameters and properties related to their composition and structure. Principal component analysis (PCA) and, afterward, partial least-squares discriminant analysis (PLS-DA) were used to identify the most significant variables and their importance to differentiate between peptides, N-glycopeptides and O-glycopeptides, or within these classes. This information was useful to understand precipitation of these compounds after addition of acetone and for the selection of the optimal conditions for purification of specific O-glycopeptide biomarkers. Special attention was paid to O 126 -glycopeptide glycoforms of rhEPO because of their applicability in biopharmaceutical quality control and doping analysis.

  7. Development of oligoclonal nanobodies for targeting the tumor-associated glycoprotein 72 antigen

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali

    2013-01-01

    The tumor-associated glycoprotein 72 (TAG-72) is a membrane mucin whose over-expression is correlated with advanced tumor stage and increased invasion and metastasis. In this study, we identified a panel of four nanobodies, single variable domains of dromedary heavy-chain antibodies that specific...

  8. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin F B Costantino

    2008-06-01

    Full Text Available The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.

  9. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor

    International Nuclear Information System (INIS)

    Schols, D.; Baba, M.; Pauwels, R.; Desmyter, J.; De Clercq, E.

    1989-01-01

    The triphenylmethane derivative aurintricarboxylic acid (ATA), but not aurin, selectively prevented the binding of OKT4A/Leu-3a monoclonal antibody (mAb) and, to a lesser extent, OKT4 mAb to the CD4 cell receptor for human immunodeficiency virus type 1 (HIV-1). The effect was seen within 1 min at an ATA concentration of 10 μM in various T4 + cells (MT-4, U-937, peripheral blood lymphocytes, and monocytes). It was dose-dependent and reversible. ATA prevented the attachment of radiolabeled HIV-1 particles to MT-4 cells, which could be expected as the result of its specific binding to the HIV/CD4 receptor. Other HIV inhibitors such as suramin, fuchsin acid, azidothymidine, dextran sulfate, heparin, and pentosan polysulfate did not affect OKT4A/Leu-3a mAb binding to the CD4 receptor, although the sulfated polysaccharides suppressed HIV-1 adsorption to the cells at concentrations required for complete protection against HIV-1 cytopathogenicity. Thus, ATA is a selective marker molecule for the CD4 receptor. ATA also interfered with the staining of membrane-associated HIV-1 glycoprotein gp120 by a mAb against it. These unusual properties of a small molecule of nonimmunological origin may have important implications for the study of CD4/HIV/AIDS pathogenesis and possibly treatment

  10. Antigiardial activity of glycoproteins and glycopeptides from Ziziphus honey.

    Science.gov (United States)

    Mohammed, Seif Eldin A; Kabashi, Ahmed S; Koko, Waleed S; Azim, M Kamran

    2015-01-01

    Natural honey contains an array of glycoproteins, proteoglycans and glycopeptides. Size-exclusion chromatography fractionated Ziziphus honey proteins into five peaks with molecular masses in the range from 10 to >200 kDa. The fractionated proteins exhibited in vitro activities against Giardia lamblia with IC50 values ≤ 25 μg/mL. Results indicated that honey proteins were more active as antiprotozoal agents than metronidazole. This study indicated the potential of honey proteins and peptides as novel antigiardial agents.

  11. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S.; Goossens, Vera

    2008-01-01

    The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human...... monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...... neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a...

  12. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    Science.gov (United States)

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  13. Investigation of the function of the putative self-association site of Epstein-Barr virus (EBV) glycoprotein 42 (gp42)

    International Nuclear Information System (INIS)

    Rowe, Cynthia L.; Matsuura, Hisae; Jardetzky, Theodore S.; Longnecker, Richard

    2011-01-01

    The Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a type II membrane protein essential for entry into B cells but inhibits entry into epithelial cells. X-ray crystallography suggests that gp42 may form dimers when bound to human leukocyte antigen (HLA) class II receptor (Mullen et al., 2002) or multimerize when not bound to HLA class II (Kirschner et al., 2009). We investigated this self-association of gp42 using several different approaches. We generated soluble mutants of gp42 containing mutations within the self-association site and found that these mutants have a defect in fusion. The gp42 mutants bound to gH/gL and HLA class II, but were unable to bind wild-type gp42 or a cleavage mutant of gp42. Using purified gp42, gH/gL, and HLA, we found these proteins associate 1:1:1 by gel filtration suggesting that gp42 dimerization or multimerization does not occur or is a transient event undetectable by our methods.

  14. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  15. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    OpenAIRE

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  16. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Directory of Open Access Journals (Sweden)

    Anna Maisa

    2009-06-01

    Full Text Available Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication.We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor.Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  17. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2016-12-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  18. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2017-02-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of pMHC formation or TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  19. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    Science.gov (United States)

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  20. Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015.

    Science.gov (United States)

    Kim, Dae-Won; Kim, You-Jin; Park, Sung Han; Yun, Mi-Ran; Yang, Jeong-Sun; Kang, Hae Ji; Han, Young Woo; Lee, Han Saem; Kim, Heui Man; Kim, Hak; Kim, A-Reum; Heo, Deok Rim; Kim, Su Jin; Jeon, Jun Ho; Park, Deokbum; Kim, Joo Ae; Cheong, Hyang-Min; Nam, Jeong-Gu; Kim, Kisoon; Kim, Sung Soon

    2016-01-01

    An outbreak of nosocomial infections with Middle East respiratory syndrome coronavirus occurred in South Korea in May 2015. Spike glycoprotein genes of virus strains from South Korea were closely related to those of strains from Riyadh, Saudi Arabia. However, virus strains from South Korea showed strain-specific variations.

  1. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard

    2007-01-01

    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  2. Interaction of a novel Tn (GalNAc alpha 1-->Ser/Thr) glycoprotein with Gal, GalNAc and GlcNAc specific lectins.

    Science.gov (United States)

    Wu, A M; Wu, J H; Shen, F

    1994-01-14

    A naturally occurring Tn glycoprotein (Native ASG-Tn) with GalNAc alpha 1-->Ser/Thr as the only carbohydrate side chains, has been prepared from armadillo submandibular glands. In a quantitative precipitin assay, this glycoprotein completely precipitated Maclura pomifera (MPA), Vicia villosa B4 (VVL-B4) and Artocarpus integrifolia (Jacalin, AIL). It also reacted well with Helix pomatia (HPL) and Wistaria floribunda (WFL) and precipitated over 75% of the lectin nitrogen added, but poorly with Ricinus communis agglutinin (RCA1), ricin, peanut (Arachis hypogaea, PNA), Abrus precatorius agglutinin (APA) and Triticum vulgaris (WGA). This finding suggests that this novel Tn-glycoprotein may serve as a useful reagent for differentiating Tn and T specific monoclonal antibodies and lectins.

  3. Carbohydrates of influenza virus. I. Glycopeptides derived from viral glycoproteins after labeling with radioactive sugars

    International Nuclear Information System (INIS)

    Schwarz, R.T.; Schmidt, M.F.G.; Anwer, U.; Klenk, H.D.

    1977-01-01

    The carbohydrate moiety of the influenza glycoproteins NA, HA 1 , and HA 2 were analyzed by labeling with radioactive sugars. Analysis of glycopeptides obtained after digestion with Pronase indicated that there are at least two different types of carbohydrate side chains. The side chain of type I is composed of glucosamine, mannose, galactose, and fucose. It is found on NA, HA 1 , and HA 2 . The side chain of type II contains a high amount of mannose and is found only on NA and HA 2 . The molecular weights of the corresponding glycopeptides obtained from virus grown in chicken ambryo cells are 2,600 for type I and 2,000 for type II. The glycoproteins of virus grown in MDBK cells have a higher molecular weight than those of virus grown in chicken embryo cells, and there is a corresponding difference in the molecular weights of the glycopeptides. Under conditions of partial inhibition of glycosylation, virus particles were isolated that contained hemagglutinin with reduced carbohydrate content. Glycopeptide analysis indicated that this reduction is due to the lack of whole carbohydrate side chains and not to the incorporation of incomplete ones. This observation suggests that glycosylation of the viral glycoproteins involves en bloc transfer of the core sugars to the polypeptide chains

  4. Proteolysis of platelet receptors in humans and other species.

    Science.gov (United States)

    Qiao, Jian L; Shen, Yang; Gardiner, Elizabeth E; Andrews, Robert K

    2010-08-01

    In the past 5 years, metalloproteinase-mediated ectodomain shedding of platelet receptors has emerged as a new mechanism for modulating platelet function. By regulating surface expression of the platelet-specific receptors, glycoprotein (GP)VI that binds collagen, and GPIbalpha (the major ligand-binding subunit of the GPIb-IX-V complex) that binds von Willebrand factor (VWF) and other procoagulant and proinflammatory ligands, shedding not only irreversibly downregulates GPVI/GPIbalpha function, but generates proteolytic fragments that might be unique biomarkers or modulators in plasma. This is potentially significant because GPVI and GPIbalpha are involved in initiating thrombotic diseases such as heart attack and stroke, as well as autoimmune diseases where anti-platelet antibodies result in thrombocytopenia. Altered expression levels of GPIbalpha/GPVI are associated with both thrombotic propensity and platelet aging, suggesting an additional role in platelet clearance. Although emerging data are elucidating molecular mechanisms underlying GPIbalpha/GPVI shedding, evidence for the functional consequences of shedding in vivo, either clinically or in animal models, is far more limited. Here we consider recent published evidence for GPVI or GPIbalpha shedding in humans, nonhuman primates and mice, and whether conservation of sheddase cleavage sites across species points to a functional role for metalloproteolytic shedding in vivo.

  5. Screening of extraction methods for glycoproteins from jellyfish ( Rhopilema esculentum) oral-arms by high performance liquid chromatography

    Science.gov (United States)

    Ren, Guoyan; Li, Bafang; Zhao, Xue; Zhuang, Yongliang; Yan, Mingyan; Hou, Hu; Zhang, Xiukun; Chen, Li

    2009-03-01

    In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish ( Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotein. The results showed that the calibration curves for peak area plotted against concentration for TGP were linear ( r = 0.9984, y = 4.5895 x+47.601) over concentrations ranging from 50 to 400 mgL-1. The mean extraction recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish ( R. esculentum) oral-arms by four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water extraction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophilized extract was dissolved in Milli-Q water and analyzed directly on a short TSK-GEL G4000PWXL (7.8 mm×300 mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.

  6. Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease.

    Science.gov (United States)

    Eltayeb, Sana; Sunnemark, Dan; Berg, Anna-Lena; Nordvall, Gunnar; Malmberg, Asa; Lassmann, Hans; Wallström, Erik; Olsson, Tomas; Ericsson-Dahlstrand, Anders

    2003-09-01

    We have studied the role of the chemokine receptor CCR1 during the effector stage of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in DA rats. In situ hybridization histochemistry revealed local production of the CCR1 ligands CCL3 (MIP-1 alpha) and CCL5 (RANTES), as well as large numbers of CCR1 and CCR5 expressing cells within inflammatory brain lesions. A low-molecular weight CCR1 selective antagonist potently abrogated both clinical and histopathological disease signs during a 5-day treatment period, without signs of peripheral immune compromise. Thus, we demonstrate therapeutic targeting of CCR1-dependent leukocyte recruitment to the central nervous system in a multiple sclerosis (MS)-like rat model.

  7. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects.

    Science.gov (United States)

    Branco, Luis M; Grove, Jessica N; Moses, Lina M; Goba, Augustine; Fullah, Mohammed; Momoh, Mambu; Schoepp, Randal J; Bausch, Daniel G; Garry, Robert F

    2010-11-09

    Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1, 2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90 percent fatality rates [3 - 5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole

  8. Surface (glyco-)proteins: primary structure and crystallization under microgravity conditions

    Science.gov (United States)

    Claus, H.; Akca, E.; Schultz, N.; Karbach, G.; Schlott, B.; Debaerdemaeker, T.; De Clercq, J.-P.; König, H.

    2001-08-01

    The Archaea comprise microorganisms that live under environmental extremes, like high temperature, low pH value or high salt concentration. Their cells are often covered by a single layer of (glyco)protein subunits (S-layer) in hexagonal arrangement. In order to get further hints about the molecular mechanisms of protein stabilization we compared the primary and secondary structures of archaeal S-layer (glyco)proteins. We found an increase of charged amino acids in the S-layer proteins of the extreme thermophilic species compared to their mesophilic counterparts. Our data and those of other authors suggest that ionic interactions, e.g., salt bridges seem to be played a major role in protein stabilization at high temperatures. Despite the differences in the growth optima and the predominance of some amino acids the primary structures of S-layers revealed also a significant degree of identity between phylogenetically related archaea. These obervations indicate that protein sequences of S-layers have been conserved during the evolution from extremely thermophilic to mesophilic life. To support these findings the three-dimensional structure of the S-layer proteins has to be elucidated. Recently, we described the first successful crystallization of an extreme thermophilic surface(glyco)protein under microgravity conditions.

  9. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...

  10. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    Science.gov (United States)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  11. Evolutionary conservation of the lipopolysaccharide binding site of β₂-glycoprotein I

    NARCIS (Netherlands)

    Ağar, Çetin; de Groot, Philip G.; Marquart, J. Arnoud; Meijers, Joost C. M.

    2011-01-01

    β₂-Glycoprotein I (β₂GPI) is a highly abundant plasma protein and the major antigen for autoantibodies in the antiphospholipid syndrome. Recently, we have described a novel function of β₂GPI as scavenger of lipopolysaccharide (LPS). With this in mind we investigated the conservation of β₂GPI in

  12. Do asparagine-linked carbohydrate chains in glycoproteins have a preference for beta-bends?

    NARCIS (Netherlands)

    Beintema, Jaap J.

    X-ray structures of the conformation of carbohydrate moieties and connected regions of glycoproteins are summarized. Evidence is presented that there is some preference for carbohydrate attachment at β-bends. Evolution may have favored glycosylation to occur at bends to ensure free mobility of the

  13. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  14. Acute Effects of Viral Exposure on P-Glycoprotein Function in the Mouse Fetal Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    2017-02-01

    Full Text Available Background/Aims: Viral infection during pregnancy is known to affect the fetal brain. The toll-like receptor (TLR-3 is a pattern recognition receptor activated by viruses known to elicit adverse fetal neurological outcomes. The P-glycoprotein (P-gp efflux transporter protects the developing fetus by limiting the transfer of substrates across both the placenta and the fetal blood-brain barrier (BBB. As such, inhibition of P-gp at these blood-barrier sites may result in increased exposure of the developing fetus to environmental toxins and xenobiotics present in the maternal circulation. We hypothesized that viral exposure during pregnancy would impair P-gp function in the placenta and in the developing BBB. Here we investigated whether the TLR-3 ligand, polyinosinic:polycytidylic acid (PolyI:C, increased accumulation of one P-gp substrate in the fetus and in the developing fetal brain. Methods: Pregnant C57BL/6 mice (GD15.5 were injected (i.p. with PolyI:C (5 mg/kg or 10 mg/kg or vehicle (saline. [3H]digoxin (P-gp substrate was injected (i.v. 3 or 23h post-treatment and animals were euthanized 1h later. Maternal plasma, ‘fetal-units’ (fetal membranes, amniotic fluid and whole fetus, and fetal brains were collected. Results: PolyI:C exposure (4h significantly elevated maternal plasma IL-6 (P<0.001 and increased [3H]digoxin accumulation in the fetal brain (P<0.05. In contrast, 24h after PolyI:C exposure, no effect on IL-6 or fetal brain accumulation of P-gp substrate was observed. Conclusion: Viral infection modeled by PolyI:C causes acute increases in fetal brain accumulation of P-gp substrates and by doing so, may increase fetal brain exposure to xenobiotics and environmental toxins present in the maternal circulation.

  15. Gemfibrozil, a lipid-lowering drug, increases myelin genes in human oligodendrocytes via peroxisome proliferator-activated receptor-β.

    Science.gov (United States)

    Jana, Malabendu; Mondal, Susanta; Gonzalez, Frank J; Pahan, Kalipada

    2012-10-05

    An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(-/-) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(-/-) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases.

  16. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia : A PET study with [C-11]verapamil as a probe for P-glycoprotein function

    NARCIS (Netherlands)

    de Klerk, Onno L.; Willemsen, Antoon T. M.; Bosker, Fokko J.; Bartels, Anna L.; Hendrikse, N. Harry; den Boer, Johan A.; Dierckx, Rudy A.

    2010-01-01

    P-glycoprotein (P-gp), a major efflux pump in the blood-brain barrier (BBB) has a profound effect on entry of drugs, peptides and other substances into the central nervous system (CNS). The brain's permeability can be negatively influenced by modulation of the transport function of P-gp.

  17. Analysis on effect of separation and purification of glycoprotein extracted from Camellia seeds and its functional activity as basis for the economic development of Camellia oleifera industry

    Directory of Open Access Journals (Sweden)

    Feng Aiguo

    2016-06-01

    Full Text Available Taking Camellia oleifera seeds as raw materials, this study explored extraction and purification of glycoprotein separated from Camellia seeds as well as its antitumor activity, aiming to provide a theoretical basis for the economic development of Camellia oleifera industry. Key impact factors of Camellia seed glycoprotein were extracted using buffer solution method and water extraction method and a regression model was set up. Methyl thiazolyl tetrazolium was used to evaluate the in vitro antitumor activity of glycoprotein extracted from Camellia seeds and Differential Scanning Calorimetry (DSC was used to measure its denaturation enthalpy value. Results indicated that protein and sugar yields were 8.96% and 17.05% respectively under optimal conditions when water extraction method was used. Crude glycoprotein extracted from Camellia oleifera had a certain inhibitory effect on human hepatoma cell HepG2, gastric cancer cell MGC-803 and breast cancer cell MCF-7 and crude glycoprotein extracted from Camellia oleifera by water-extraction and alcohol-precipitation method had a strong antitumor effect. Crude glycoprotein obtained in the two different ways was capable of scavenging DPPH, •OH and O2g- free radicals and also showed good reducing capacity. DSC measurement results revealed that specific rotation of COGP2a[α]n20${\\rm{COGP}}2{\\rm{a}}\\left[ \\alpha \\right]_n^{20} $ was - 32.5. Antitumor experiment in vitro showed that glycoprotein extracted from Camellia seeds in the two different ways had a certain inhibitory effect on HepG2, MGC-803 and MCF-7, which has important theoretical and realistic significances to promoting utilization value of camellia resources, strengthening Camellia oleifera’s comprehensive development and utilization of high added value as well as enriching types and functions of active glycoprotein.

  18. Characterization of glycoprotein C of HSZP strain of herpes simplex virus 1

    NARCIS (Netherlands)

    Oravcova, [No Value; Kudelova, M; Mlcuchova, J; Matis, J; Bystricka, M; Westra, DF; Welling-Wester, S; Rajcani, J

    Sequences of UL44 genes of strains HSZP, KOS and 17 of herpes simplex virus 1 (HSV-1) were determined and the amino acid sequences of corresponding glycoproteins (gC) were deduced. In comparison with the 17 strain, the HSZP strain showed specific changes in 3 nucleotides and in 2 amino acids (aa 139

  19. Use of radioactive glucosamine in the perfused rat liver to prepare α1-acid glycoprotein (orosomucoid) with 3H- or 14C-labelled sialic acid and N-acetylglucosamine residues

    International Nuclear Information System (INIS)

    Aronson, N.N. Jr.

    1982-01-01

    A method was developed whereby [1- 14 C]glucosamine was used in a perfused rat liver system to prepare over 2 mg of α 1 -acid glycoprotein with highly radioactive sialic acid and glucosamine residues. The liver secreted radioactive α 1 -acid glycoprotein over a 4-6 h period, and this glycoprotein was purified from the perfusate by chromatography on DEAE-cellulose at pH3.6. The sialic acid on the isolated glycoprotein had a specific radioactivity of 3.1 Ci/mol, whereas the glucosamine-specific radioactivity was 4.3 Ci/mole. The latter amino-sugar residues on the isolated protein were only 13-fold less radioactive than the initially added [1- 14 C]glucosamine. Orosomucoid with a specific radioactivity of 31.3 μCi/mg of protein was obtainable by using [6- 3 H]glucosamine. Many other radioactive glycoproteins were found to be secreted into the perfusate by the liver. Thus this experimental system should prove useful for obtaining other serum glycoproteins with highly radioactive sugar moieties. (author)

  20. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site