WorldWideScience

Sample records for glycolic acid

  1. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  2. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  3. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma. Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV) spectrophotometry was used ...

  4. Millimetre Wave Rotational Spectrum of Glycolic Acid

    Science.gov (United States)

    Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.

    2016-01-01

    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.

  5. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  6. Experimental study and phase equilibrium modeling of systems containing acid gas and glycol

    DEFF Research Database (Denmark)

    Afzal, Waheed; Breil, Martin P.; Tsivintzelis, Ioannis

    2012-01-01

    In this work, we study phase equilibria of systems containing acid gases and glycols. The acid gases include carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon dioxide (CO2) while glycols include monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG). A brief lit...

  7. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  8. Impact of scaling on the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  9. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu; Zhang, Jizhe; Liu, Xin

    2014-01-01

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids

  10. Retrospective Study: Glycolic Acid Peel in Photoaging Patient

    OpenAIRE

    Rachmantyo, Brama; Indramaya, Diah Mira

    2016-01-01

    Background: Photoaging is premature skin aging that is caused by sun exposure in long periode. Glycolic acid peel is one of photoaging treatment that improve skin at epidermal layer. Improper patient selection and irregular follow-up may become factors of unsuccessful treatment. Purpose: To evaluate gycolic acid peel treatment for photoaging for improvement of medical service in the future. Methods: A retrospective study to photoaging patiens that were managed with glicolyc acid peel in Medic...

  11. Electrospinnability of poly lactic-co-glycolic acid (PLGA)

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Baldursdottir, Stefania G.; Aho, Johanna

    2017-01-01

    PURPOSE: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers. METHOD: Various s...

  12. Glycolic acid peel therapy – a current review

    Directory of Open Access Journals (Sweden)

    Sharad J

    2013-11-01

    Full Text Available Jaishree Sharad Skinfiniti Aesthetic Skin and Laser Clinic, Mumbai, India Abstract: Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I–IV. All in all, it is a peel that is here to stay. Keywords: acne scar, melasma, photoaging, chemical peel, alpha-hydroxy peel

  13. Moessbauer investigation of maghemite-based glycolic acid nanocomposite

    International Nuclear Information System (INIS)

    Santos, J. G.; Silveira, L. B.; Oliveira, A. C.; Garg, V. K.; Lacava, B. M.; Tedesco, A. C.; Morais, P. C.

    2007-01-01

    Transmission electron microscopy, X-ray diffraction and Moessbauer spectroscopy were used in the characterization of a nanocomposite containing magnetic nanoparticles dispersed in a glycolic acid-based template. Maghemite nanoparticles were identified as the iron oxide phase dispersed in the polymeric template. From the low-temperature Moessbauer data the amount of the iron-based, non-magnetic material at the nanoparticle surface was estimated as roughly one monolayer in thickness.

  14. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe; Liu, Xin; Sun, Miao; Ma, Xiaohua; Han, Yu

    2012-01-01

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which

  15. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  16. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  17. The therapeutic value of glycolic acid peels in dermatology

    Directory of Open Access Journals (Sweden)

    Grover C

    2003-03-01

    Full Text Available Chemical peeling or chemexfoliation has become increasingly popular in recent years for treatment of a number of cosmetic skin problems. Topical glycolic acid in the concentration of 10-30% for 3-5 minutes at fortnightly intervals was investigated as a therapeutic peeling agent in 41 patients having acne (39%, melasma (36.5%, post inflammatory hyperpigmentation (12% and superficial scarring of varied etiology (12%. A final evaluation done at 16 weeks revealed that this modality is useful especially in superficial scarring and melasma, moderately successful in acne patients with no response in dermal pigmentation. No significant untoward effects were seen.

  18. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  19. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu

    2014-09-30

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.

  20. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Science.gov (United States)

    2010-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...

  1. Comparative study of 15% TCA peel versus 35% glycolic acid peel for the treatment of melasma.

    Science.gov (United States)

    Puri, Neerja

    2012-05-01

    Chemical peels are the mainstay of a cosmetic practitioner's armamentarium because they can be used to treat some skin disorders and can provide aesthetic benefit. To compare 15% TCA peel and 35% glycolic acid peel for the treatment of melasma. We selected 30 participants of melasma aged between 20 and 50 years from the dermatology outpatient department and treated equal numbers with 15% TCA and 35% glycolic acid. Subjective response as graded by the patient showed good or very good response in 70% participants in the glycolic acid group and 64% in the TCA group. There was statistically insignificant difference in the efficacy between the two groups for the treatment of melasma.

  2. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky...

  3. Synthesis of glycolic acid-1-14C of high specific activity

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Viswanathan, K.V.

    1987-01-01

    A simple procedure is described which efficiently converts traces of 14 C labelled cyanide present as a dilute solution into glycolic acid-1- 14 C with more than 85% radiochemical recovery and of high specific activity. (author)

  4. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  5. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  6. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  7. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    Science.gov (United States)

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  8. Comparative Effects of Retinoic Acid or Glycolic Acid Vehiculated in Different Topical Formulations

    Science.gov (United States)

    Maia Campos, Patrícia Maria Berardo Gonçalves; Gaspar, Lorena Rigo; Gonçalves, Gisele Mara Silva; Pereira, Lúcia Helena Terenciane Rodrigues; Semprini, Marisa; Lopes, Ruberval Armando

    2015-01-01

    Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA) and glycolic acid (GA) treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA) were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness. PMID:25632398

  9. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  10. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma.

    Science.gov (United States)

    Chaudhary, Savita; Dayal, Surabhi

    2013-10-01

    Various treatment modalities are available for management of melasma, ranging from topical and oral to chemical peeling, but none is promising alone. Very few studies are available regarding efficacy of combination of topical treatment with chemical peeling. Combination of chemical peeling and topical regimen can be a good treatment modality in the management of this recalcitrant disorder. To assess the efficacy of combination of topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling in the treatment of melasma in Indian patients. Forty Indian patients of moderate to severe epidermal variety melasma were divided into two groups of 20 each. One Group i.e. peel group received topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling and other group i.e. control group received topical regimen (2% hydroquinone, 1% hydrocortisone, 0.05% tretinoin). There was an overall decrease in MASI from baseline in 24 weeks of therapy in both the groups (P value peel with topical regimen showed early and greater improvement than the group which was receiving topical regimen only. This study concluded that combining topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling significantly enhances the therapeutic efficacy of glycolic acid peeling. The combination of glycolic acid peeling with the topical regimen is a highly effective, safe and promising therapeutic option in treatment of melasma.

  11. Biodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro ...

    African Journals Online (AJOL)

    ... drug encapsulation efficiency and release profile of PLGA mico/nanoparticles. The current knowledge of protein instability during preparation, storage and release from PLGA micro/nanoparticles and protein stabilization approaches has also been discussed in this review. Keywords: Poly(D, L-lactic-co-glycolic acid), ...

  12. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  13. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  14. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  15. Determination of thymine glycol residues in irradiated or oxidized DNA by formation of methylglyceric acid

    International Nuclear Information System (INIS)

    Schellenberg, K.A.; Shaeffer, J.

    1986-01-01

    Treatment of DNA solutions with X-irradiation various oxidants including hydrogen peroxide plus ferrous ion, hydrogen peroxide plus copper ion and ascorbate, permanganate, or sonication in the presence of dissolved oxygen all produced varying amounts of thymine glycol residues. After denaturing the DNA with heat, the glycol residues were reduced and labeled at the 6 position with tritium- labeled sodium borohydride. Subsequent reaction with anhydrous methanolic HCl gave a quantitative yield of the methyl ester of methylglyceric acid, which was determined by thin layer chromatography. The method, developed using thymidine as a model, was used to ascertain the requirements for glycol formation in DNA. It was shown that hydroxyl radical generating systems, permanganate, X-irradiation, or sonication in presence of oxygen were required, but hydrogen peroxide in the absence of iron or copper and ascorbate was inactive. Application to determination of DNA damage in vivo is being explored

  16. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa [Biogel Technology, Inc. (United States)], E-mail: lisabp@biogeltech.com

    2000-06-15

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  17. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    International Nuclear Information System (INIS)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-01-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying

  18. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    Science.gov (United States)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-06-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  19. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering

    Science.gov (United States)

    Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.

    2008-01-01

    Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927

  20. Biodegradable poly (lactic acid-co-glycolic acid scaffolds as carriers for genetically-modified fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tatjana Perisic

    Full Text Available Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid (PLGA scaffolds (Vicryl & Ethisorb as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP and vascular endothelial growth factor (VEGF165 and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.

  1. Longitudinal acoustic properties of poly(lactic acid) and poly(lactic-co-glycolic acid)

    International Nuclear Information System (INIS)

    Parker, N G; Povey, M J W; Mather, M L; Morgan, S P

    2010-01-01

    Acoustics offers rich possibilities for characterizing and monitoring the biopolymer structures being employed in the field of biomedical engineering. Here we explore the rudimentary acoustic properties of two common biodegradable polymers: poly(lactic acid) and poly(lactic-co-glycolic acid). A pulse-echo technique is developed to reveal the bulk speed of sound, acoustic impedance and acoustic attenuation of small samples of the polymer across a pertinent temperature range of 0-70 0 C. The glass transition appears markedly as both a discontinuity in the first derivative of the speed of sound and a sharp increase in the acoustic attenuation. We further extend our analysis to consider the role of ethanol, whose presence is observed to dramatically modify the acoustic properties and reduce the glass transition temperature of the polymers. Our results highlight the sensitivity of acoustic properties to a range of bulk properties, including visco-elasticity, molecular weight, co-polymer ratio, crystallinity and the presence of plasticizers.

  2. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  3. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.

    Science.gov (United States)

    Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M

    2011-12-27

    The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties.

  4. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview

    OpenAIRE

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Gra?a

    2017-01-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and ...

  5. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: Design, synthesis, and dissolving thrombus.

    Science.gov (United States)

    Zhang, Shao-Fei; Lü, Shaoyu; Gao, Chunmei; Yang, Jiandong; Yan, Xiang; Li, Tao; Wen, Na; Huang, Mengjie; Liu, Mingzhu

    2018-06-01

    Thrombotic events affect many individuals in a number of ways, all of which can cause significant morbidity and mortality. Nattokinase (NK), as a novel thrombolytic drug, has been used for thrombolytic therapy. It not only possesses plasminogen activator activity, but also directly digests fibrin through limited proteolysis. However, it may undergo inactivation and denaturation in the harsh external environment. In this study, a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer was fabricated and used as a carrier for NK protection and delivery. Different arm numbers of polyethylene glycol-polyglutamic acid peptide dendrimers (x-PEG(G 3 ) x , x = 2, 4, 6, 8) were designed, prepared, and characterized by 1 H NMR and FTIR. Then, x-PEG(G 3 ) x were loaded with NK to form nanocomposites. Their size and morphology were determined by dynamic light scattering and transmission electron microscopy. Enzyme activity was evaluated via UV-Vis absorbance spectra, fluorescence spectra, circular dichroism spectra, and zeta potential measurements. The study reveals that the obtained x-PEG(G 3 ) x /NK nanocomposites possess high enzyme activity. In addition, the nanocomposites show increased viability of rat macrophage cells, and excellent thrombolysis ability in vitro and in vivo. This work establishes a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer with potential application in NK carrier and thrombolytic therapy. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1687-1696, 2018. © 2018 Wiley Periodicals, Inc.

  6. Sugar-Responsive Pseudopolyrotaxane Composed of Phenylboronic Acid-Modified Polyethylene Glycol and γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Tomohiro Seki

    2015-03-01

    Full Text Available We have designed a sugar-responsive pseudopolyrotaxane (PPRX by combining phenylboronic acid-modified polyethylene glycol (PBA–PEG and γ-cyclodextrin. Phenylboronic acid (PBA was used as a sugar-recognition motif in the PPRX because PBA reacts with a diol portion of the sugar molecule and forms a cyclic ester. When D-fructose or D-glucose was added to a suspension of PPRX, PPRX disintegrated, depending on the concentration of the sugars. Interestingly, catechol does not show a response although catechol has a high affinity for PBA. We analyzed the response mechanism of PPRX by considering equilibria.

  7. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma.

    Science.gov (United States)

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups ( P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels ( P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  8. Solution of Azelaic Acid (20%, Resorcinol (10% and Phytic Acid (6% Versus Glycolic Acid (50% Peeling Agent in the Treatment of Female Patients with Facial Melasma

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2017-01-01

    Full Text Available Background: Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. Materials and Methods: This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI. Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Results: Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups (P > 0.05. However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels (P < 0.05 and there was the same duration in the beginning of the therapeutic response in both groups. Conclusion: Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  9. Growth of various cell types in the presence of lactic and glycolic acids: the adverse effect of glycolic acid released from PLAGA copolymer on keratinocyte proliferation.

    Science.gov (United States)

    Garric, Xavier; Molès, Jean-Pierre; Garreau, Henri; Braud, Christian; Guilhou, Jean-Jacques; Vert, Michel

    2002-01-01

    Poly(alpha-hydroxy-acid)s derived from lactic acid (LA) and glycolic acid (GA) are bioresorbable polymers that are currently used in human surgery and in pharmacology to make temporary therapeutic devices. Nowadays, increasing attention is paid to these polymers in the field of tissue engineering. However, the literature shows that a large number of factors can affect many of their properties and the responses of biological systems. As part of our investigation of the biocompatibility of degradable aliphatic polyesters, the effects of LA and GA on the proliferation of various cells under in vitro cell culture conditions were studied. The release of LA and GA from films made of a copolymer synthesized by the zinc lactate method and composed of 37.5% L-lactyl, 37.5% D-lactyl, and 25% glycolyl repeating units was first investigated over a period of 30 days under abiotic conditions in a cell culture medium in order to identify a range of acid concentrations consistent with releases to be expected in real cell cultures. Four cell lines, namely 3T3-J2, C3H10(1/2), A431, and HaCat, and three primary cell cultures, namely rat endothelial cells, rat smooth muscle cells, and human dermal fibroblasts, were then allowed to grow in the presence of LA and GA at various concentrations taken within the selected 10-1000 mg/cm3 range. Little or no effect was observed on the proliferation of all cells except human keratinocytes, whose growth was dramatically inhibited by GA at concentrations as low as 10 mg/cm3. The inhibiting effect of GA was confirmed by considering the growth of keratinocytes on films made of the same copolymer, in comparison with poly(DL-lactic acid) and polystyrene taken as references. This work shows that GA-releasing degradable matrices are not adapted to the culture of keratinocytes with the aim of making skin grafts.

  10. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Gao D

    2012-07-01

    Full Text Available Dawei Gao, Shengnan Tang, Qi TongApplied Chemical Key Laboratory of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, ChinaBackground: Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method.Methods: The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG coating. During the preparation process, the formulations described were investigated by designing 34 orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w, cholesterol (w/w, PEG-2000 (w/w, and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis.Results: The PEGylated liposomes dispersed individually and had diameters of around 110–200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay.Conclusion: These results suggest that PEGylated liposomes would serve as a potent delivery vehicle

  11. Poly(N-vinylimidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids

    Energy Technology Data Exchange (ETDEWEB)

    Schemeth, Dieter; Noël, Jean-Christophe [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Jakschitz, Thomas [Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria); Rainer, Matthias, E-mail: m.rainer@uibk.ac.at [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Tessadri, Richard [Institute of Mineralogy and Petrography, Leopold-Franzens University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Huck, Christian W. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Bonn, Günther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria)

    2015-07-23

    Highlights: • Free-radical polymerization of protonable vinylimidazole with EGMDA. • Polymer-optimization by maximum loading capacity of phenolic acids. • Performs better than SiO{sub 2} and Al{sub 2}O{sub 3} in normal phase mode using acetonitrile. • Performs equal or even better in anion-exchange mode compared to Oasis-MAX. • Efficient purification of phenolic compounds from crude extract. - Abstract: In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC–qTOF-MS.

  12. The Effect of Salicylic Acid and Polyetylene Glycol on Wheat Germination

    OpenAIRE

    Marin SOARE; Paula IANCU; Elena BONCIU; Ovidiu PĂNIȚĂ

    2018-01-01

    The present paper analyses the effect of pre-treatment with salicylic acid (SA) on germination and the growth of winter wheat seedlings in water stress conditions induced by polyetylene glycol (PEG). A two-factor experiment was conducted in a completely randomized projection. The first factor (A) included three levels: a1- distilled water - control; a2 - 0.25 mM SA; a3 - 0.75 mM SA and the second factor (B) included three levels: b1- distilled water; b2 - 15% PEG and b3 - 25% PEG. Biological ...

  13. Using microcantilever sensors to measure poly(lactic-co-glycolic acid) plasticization by moisture uptake

    DEFF Research Database (Denmark)

    Alves, Gustavo Marcati A.; Bose-Goswami, Sanjukta; Mansano, Ronaldo D.

    2018-01-01

    Polymeric materials absorb water when exposed to humidity or in contact with aqueous solutions. The polymer and water molecules interact, changing the physicochemical parameters of the material; the most noticeable effect is a decreased glass transition temperature (Tg), known as plasticization. We...... used microcantilever sensors to measure the Tg versus moisture content in poly(lactic-co-glycolic acid) (PLGA), a biodegradable polymer used in implants and as a drug carrier. We demonstrate a concomitant measurement of the mass absorption and Tg using nanograms of material and an inexpensive setup...

  14. Zonun’s regime (35% glycolic acid peel with microneedling followed by tretinoin 0.05% plus glycolic acid 12% application followed by salicylic acid 30% peeling for treatment of acne scars: a pilot study

    Directory of Open Access Journals (Sweden)

    Zonunsanga

    2015-01-01

    Full Text Available Introduction: Acne scars are the result of inflammation within the dermis brought on by acne. The scar is created by the wound trying to heal itself resulting in too much collagen in one spot. Current treatment available are not much satisfactory. Microneedling injure the dermis, thereby stimulating collagen formation. Glycolic acid acts as vehicle for delivery of drugs to dermis: in addition to that, it also has a role in collagen induction. Tretinoin helps in collagen formation. Salicylic acid remodel the superficial skin after the treatment. Material and Methods: A total of 4 patients in which 3 out of 4 patient, grade 3 acne scars and 1 out of 4 had grade 2 scar were treated with the regime. After taking consent 35% Glycolic acid peeling was done followed by microneedling. From the next day 12% Glycolic acid plus 0.05% Tretinoin is applied once a day for 2 months. After 2 months 30% Salicylic acid peeling is done. Photographs were taken before treatment, after 1 month and after 2 months of completion of the therapy and compared. Objective assessment was done according to Global Acne Scarring Classification. Result: subjectively 2 patients reported excellent response and 2 patients reported good response. Objectively, all patients showed good to excellent response. Conclusion: Zonun’s regime may be effective for treatment of acne scars.

  15. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials

    International Nuclear Information System (INIS)

    Alkan, Cemil; Günther, Eva; Hiebler, Stefan; Himpel, Michael

    2012-01-01

    Highlights: ► Complexing groups to PEGs in a polymer could stabilize PEG at different molecular weights. ► Shape stabilized PEGs for thermal energy storage are prepared using compounds with interacting groups. ► Phase change temperature of PEGs could be changed using a complexing copolymer with acid groups. - Abstract: Blends of poly(ethylene glycol) (PEG) at 1000, 6000, and 10,000 g/mole average molecular weights and poly(acrylic acid) (PAA) or poly(ethylene-co-acrylic acid) (EcoA) have been prepared by solution blending and accounted for thermal energy storage properties as shape stabilized polymer blends. The blends have been analyzed using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) techniques. Total thermal energy values of the complexes have been determined by the method of Mehling et al. As a result of the investigation it is found that polymers with acid groups form interpolymer complexes (IPCs) and miscible and immiscible IPC–PEG blends when blended with PEGs. PEGs formed IPCs with PAA and EcoA polymers in solutions and reach to saturation and turns to be blends of IPC and PEG polymer. PEGs in this work bleed out of the blends when its compositions reach to a degree of immiscibility. In the first range where blends are IPCs and in the third range where bleeding of PEG occurs, blends are not feasible for thermal energy storage applications. However, in the second range, the blends are potential materials for passive thermal energy storage applications.

  16. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Aho, Johanna; Baldursdottir, Stefania G.

    2017-01-01

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dis...

  17. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  18. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  19. Evaluation of efficacy of chemical peeling with glycolic acid in hyperpigmentation disorders of the skin

    Directory of Open Access Journals (Sweden)

    Supriya P Deshmukh

    2012-01-01

    Full Text Available Background : Chemical peeling entails application of chemical agents to the skin causing a controlled chemical burn, thereby achieving improved texture and quality of skin. Aim: To evaluate the efficacy of glycolic acid in melasma and other causes of hyperpigmentation. Materials and Methods: A total of 20 patients were included in the study. After adequate priming, application of glycolic acid in various concentrations in biweekly interval for a period of 16 weeks was done. Post-treatment photographs were taken and were subjected to analysis. Results: Melasma constituted 11 patients and hyperpigmentation, ie, post acne marks and freckles due to sun exposure accounted nine patients. Complete resolution of melasma was possible only in one (9% patient and good improvement in four (36.3%, whereas five (45.5% patients showed fair improvement. In cases of hyperpigmentation, three (33% patients showed excellent improvement, one (11% showed good improvement, and five (55.5% patients showed fair improvement. The patients of melasma took an average of 7.33 number of peels to show improvement and those of hyperpigmentation took 4.2 peels. Conclusions: Melasma shows fair to good improvement and requires more number of peels as compared to other causes of hyperpigmentation in skin. Postinflammatory pigmentation shows excellent improvement in the majority of patients.

  20. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma.

    Science.gov (United States)

    Kaffashi, Abbas; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Sarısözen, Can; Vural, İmran; Koşucu, Hüsnü; Demir, Taner; Buğdaycı, Kadir Emre; Söylemezoğlu, Figen; Karlı Oğuz, Kader; Mut, Melike

    2017-08-01

    We aimed to develop lipid-polyethylene glycol (PEG)-polymer hybrid nanoparticles, which have high affinity to tumour tissue with active ingredient, a new generation antineoplastic drug, farnesylthiosalicylic acid (FTA) for treatment of glioblastoma. Farnesylthiosalicylic acid-loaded poly(lactic-co-glycolic acid)-1,2 distearoyl-glycerol-3-phospho-ethanolamine-N [methoxy (PEG)-2000] ammonium salt (PLGA-DSPE-PEG) with or without 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) hybrid nanoparticles has been prepared and evaluated for in-vitro characterization. Cytotoxicity of FTA-loaded nanoparticles along with its efficacy on rat glioma-2 (RG2) cells was also evaluated both in vitro (in comparison with non-malignant cell line, L929) and in vivo. Scanning electron microscopy studies showed that all formulations prepared had smooth surface and spherical in shape. FTA and FTA-loaded nanoparticles have cytotoxic activity against RG2 glioma cell lines in cell culture studies, which further increases with addition of DOTAP. Magnetic resonance imaging and histopathologic evaluation on RG2 tumour cells in rat glioma model (49 female Wistar rats, 250-300 g) comparing intravenous and intratumoral injections of the drug have been performed and FTA-loaded nanoparticles reduced tumour size significantly in in-vivo studies, with higher efficiency of intratumoral administration than intravenous route. Farnesylthiosalicylic acid-loaded PLGA-DSPE-PEG-DOTAP hybrid nanoparticles are proven to be effective against glioblastoma in both in-vitro and in-vivo experiments. © 2017 Royal Pharmaceutical Society.

  1. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Ananta Raj, E-mail: aa8381@gmail.com [Department of Sciences, Wentworth Institute of Technology, Boston MA 02115 (United States); Geranpayeh, Tanya [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Chu, Wei Kan [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Physics, University of Houston, Houston, TX 77204 (United States); Otteson, Deborah C. [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Department of Basic and Vision Sciences, College of Optometry, University of Houston, Houston, TX 77204 (United States)

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10{sup 12} to 1 × 10{sup 14} ions/cm{sup 2}), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  2. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    International Nuclear Information System (INIS)

    Adhikari, Ananta Raj; Geranpayeh, Tanya; Chu, Wei Kan; Otteson, Deborah C.

    2016-01-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10 12 to 1 × 10 14 ions/cm 2 ), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  3. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  4. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  5. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  6. Glycolic acid synthesis during dark glucose U14C metabolism, in French Bean and Maize leaves

    International Nuclear Information System (INIS)

    Cailliau-Commanay, Lucienne; Calmes, Jean; Latche, J.-C.; Cavalie, Gerard

    1977-01-01

    Serine, glycerate and glycolate are among the first radioactive compounds when French Bean and Maize leaves are fed with glucose U 14 C. Failing to detect radioactive glycine suggests that glycolate so synthesized is unavailable for the photorespiration glycolate pool [fr

  7. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2016-10-01

    Full Text Available Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  8. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  9. Effect of biogenic fermentation impurities on lactic acid hydrogenation to propylene glycol.

    Science.gov (United States)

    Zhang, Zhigang; Jackson, James E; Miller, Dennis J

    2008-09-01

    The effect of residual impurities from glucose fermentation to lactic acid (LA) on subsequent ruthenium-catalyzed hydrogenation of LA to propylene glycol (PG) is examined. Whereas refined LA feed exhibits stable conversion to PG over carbon-supported ruthenium catalyst in a trickle bed reactor, partially refined LA from fermentation shows a steep decline in PG production over short (<40 h) reaction times followed by a further slow decay in performance. Addition of model impurities to refined LA has varying effects: organic acids, sugars, or inorganic salts have little effect on conversion; alanine, a model amino acid, results in a strong but reversible decline in conversion via competitive adsorption between alanine and LA on the Ru surface. The sulfur-containing amino acids cysteine and methionine irreversibly poison the catalyst for LA conversion. Addition of 0.1 wt% albumin as a model protein leads to slow decline in rate, consistent with pore plugging or combined pore plugging and poisoning of the Ru surface. This study points to the need for integrated design and operation of biological processes and chemical processes in the biorefinery in order to make efficient conversion schemes viable.

  10. Poly(Lactic-co-Glycolic Acid: Applications and Future Prospects for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyu Sun

    2017-06-01

    Full Text Available Periodontal tissue regeneration is the ultimate goal of the treatment for periodontitis-affected teeth. The success of regenerative modalities relies heavily on the utilization of appropriate biomaterials with specific properties. Poly (lactic-co-glycolic acid (PLGA, a synthetic aliphatic polyester, has been actively investigated for periodontal therapy due to its favorable mechanical properties, tunable degradation rates, and high biocompatibility. Despite the attractive characteristics, certain constraints associated with PLGA, in terms of its hydrophobicity and limited bioactivity, have led to the introduction of modification strategies that aimed to improve the biological performance of the polymer. Here, we summarize the features of the polymer and update views on progress of its applications as barrier membranes, bone grafts, and drug delivery carriers, which indicate that PLGA can be a good candidate material in the field of periodontal regenerative medicine.

  11. Femtosecond laser irradiation of the fluorescent molecules-loaded poly(lactic-co-glycolic acid)

    Science.gov (United States)

    Umemoto, Taiga; Shibata, Akimichi; Terakawa, Mitsuhiro

    2017-09-01

    Molecular release from scaffolds is desired for tailoring cell-compatible tissue engineering. Several methods have been proposed to control molecular release, such as annealing, plasma treatment, and laser processing. In this study, we describe the alteration of Rhodamine B (RhB)-loaded poly(lactic-co-glycolic acid) (PLGA) after femtosecond laser irradiation, which was evaluated on the basis of the water absorption and mass remaining. Fluorescence measurement of released RhB molecules revealed the acceleration of the molecular release upon 400-nm laser irradiation, whereas 800-nm laser irradiation did not induce a comparable degree of change compared with non-irradiated samples. The result of the water absorption measurement indicates that the large amount of water absorption of 400-nm laser-irradiated PLGA sample may accelerate the diffusion of the loaded molecules through absorbing water, which resulted in the faster molecular release.

  12. Fabrication of poly (lactic-co-glycolic acid) microcontainers using solvent evaporation with polydimethylsiloxane stencil

    Science.gov (United States)

    Kim, Chul Min; Byul Lee, Han; Kim, Jong Uk; Kim, Gyu Man

    2017-12-01

    We present a fabrication method using polydimethylsiloxane (PDMS) stencils and solvent evaporation to prepare microcontainers with a desired shape made from a biodegradable polymer. Poly(lactic-co-glycolic acid) (PLGA) was used for preparing microcontainers, but most polymers are applicable in the proposed method in which solvent evaporation is used to construct microstructures in confined spaces in the stencil. Microcontainers with various shapes were fabricated by controlling the stencil geometry. Furthermore, a porous structure could be prepared in a micromembrane using water porogen. The porous structure was observed using a field emission scanning electron microscope and mass transfer across the porous membrane was examined using a fluorescent dye. The flexibility of the PDMS stencil allowed the fabrication of microcontainers on a curved surface. Finally, it was demonstrated that microcontainers can be used to contain a localized cell culture. The viability and morphology of cultured cells were observed using confocal microscopy over a period of 3 weeks.

  13. Preparation and investigation of mefenamic acid - polyethylene glycol - sucrose ester solid dispersions.

    Science.gov (United States)

    Fülöp, Ibolya; Gyéresi, Árpád; Kiss, Lóránd; Deli, Mária A; Croitoru, Mircea Dumitru; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-12-01

    Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  14. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state

    DEFF Research Database (Denmark)

    Aduri, Nanda G.; Ernst, Heidi A.; Prabhala, Bala K.

    2018-01-01

    and purification of recombinant PCFT. Following detergent screening n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating...

  15. A histological comparison of 50% and 70% glycolic acid peels using solutions with various pHs

    NARCIS (Netherlands)

    Becker, F. F.; Langford, F. P.; Rubin, M. G.; Speelman, P.

    1996-01-01

    BACKGROUND: Seventy percent glycolic acid solutions are being commonly used as superficial chemical peeling agents. The pH of these solutions ranges from 0.08 to 2.75. The histologic effects of these various pH solutions on human skin have not been studied. OBJECTIVE: The histologic effects of

  16. Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles.

    Science.gov (United States)

    Saborano, Raquel; Wongpinyochit, Thidarat; Totten, John D; Johnston, Blair F; Seib, F Philipp; Duarte, Iola F

    2017-07-01

    Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1 H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1 H NMR metabolomics. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  18. Combination of microneedling and glycolic acid peels for the treatment of acne scars in dark skin.

    Science.gov (United States)

    Sharad, Jaishree

    2011-12-01

      Acne scars can cause emotional and psychosocial disturbance to the patient. Various modalities have been used for the treatment of acne scars like punch excision, subcision, peels, microdermabrasion, unfractionated and fractioned lasers. The latest in the treatment armamentarium is microneedling. Acne scars commonly coexist with postinflammatory hyperpigmentation. A combination of microneedling and glycolic acid (GA) peels was found to give excellent results in the treatment of such scars. The aim was to study the efficacy of a combination of microneedling with glycolic peel for the treatment of acne scars in pigmented skin.   Thirty patients in the age group of 20-40 years with atrophic box type or rolling scars with postinflammatory hyperpigmentation were chosen for the study. Two groups were made. The first group comprised of 30 patients in whom only microneedling was performed once in 6 weeks for five sessions. In the second group of 30 patients, a combination of microneedling and 35% GA peels was carried out. Patients from both groups were evaluated on the basis of Echelle d'Evaluation clinique des Cicatrices d'acné classification.   Based on the objective scoring and its statistical analysis, there was significant improvement in superficial and moderately deep scars (grade 1-3). There was also improvement in skin texture, reduction in postacne pigmentation in the second group.   Microneedling is a simple, inexpensive office procedure with no downtime. It is safe in Indian skin (skin types III-IV). The combined sequential treatment with GA peel caused a significant improvement in the acne scars without increasing morbidity. © 2011 Wiley Periodicals, Inc.

  19. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    Science.gov (United States)

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  20. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.

    Science.gov (United States)

    Li, Jian; Nemes, Peter; Guo, Ji

    2018-04-01

    There is widespread interest in using absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), as components in the design and manufacture of new-generation drug eluting stents (DES). PLGA undergoes hydrolysis to progressively degrade through intermediate chemical entities to simple organic acids that are ultimately absorbed by the human body. Understanding the composition and structure of these intermediate degradation products is critical not only to elucidate polymer degradation pathways accurately, but also to assess the safety and performance of absorbable cardiovascular implants. However, analytical approaches to determining the intermediate degradation products have yet to be established and evaluated in a standard or regulatory setting. Hence, we developed a methodology using electrospray ionization mass spectrometry to qualitatively and quantitatively describe intermediate degradation products generated in vitro from two PLGA formulations commonly used in DES. Furthermore, we assessed the temporal evolution of these degradation products using time-lapse experiments. Our data demonstrated that PLGA degradation products via heterogeneous cleavage of ester bonds are modulated by multiple intrinsic and environmental factors, including polymer chemical composition, degradants solubility in water, and polymer synthesis process. We anticipate the methodologies and outcomes presented in this work will elevate the mechanistic understanding of comprehensive degradation profiles of absorbable polymeric devices, and facilitate the design and regulation of cardiovascular implants by supporting the assessments of the associated biological response to degradation products. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1129-1137, 2018. © 2017 Wiley Periodicals, Inc.

  1. Preparation and evaluation of cosmetic patches containing lactic and glycolic acids

    Directory of Open Access Journals (Sweden)

    Mahdavi H

    2006-01-01

    Full Text Available Background: Alpha-hydroxy acids such as glycolic acid (GA and lactic acid (LA, are used in cosmetic patches. The important fact in cosmetic patches is its suitable adhesion and peel properties. Aim: The objective of this study was to prepare LA- and GA-containing cosmetic patches and evaluate in-vitro/in-vivo correlation of adhesion properties. Methods: Pressure-sensitive adhesives with different concentrations of GA and LA were cast on a polyethylene terephthalate film. The patches were evaluated for peel adhesive strength. On the basis of in vitro adhesion properties the patches were selected for wear performance tests and skin irritation potential. Results: The adhesion properties (adhesion to steel plate and skin and cohesive strength tests indicated the substantial influence of GA and LA concentrations. Based on in vitro adhesion studies the patches containing 3% (w/w GA were selected for in vivo studies. In vivo studies show that a formulation containing 3% GA displays good adhesion on the skin, but it leaves little residues on the skin. Skin Irritation studies on healthy human volunteers showed negligible erythema at the site of application after 48h. Conclusion: The noninvasive patch test model was found useful for detecting irritant skin reactions to the cosmetic patch containing GA. Our results demonstrated a strong correlation between the adhesion to steel plate and adhesion to skin. But a weak correlation between the degree of adhesive residue on the skin in in vitro and in vivo tests was observed for the formulation containing 3% (w/w GA.

  2. Development of Poly Lactic/Glycolic Acid (PLGA Microspheres for Controlled Release of Rho-Associated Kinase Inhibitor

    Directory of Open Access Journals (Sweden)

    Sho Koda

    2017-01-01

    Full Text Available Purpose. The purpose of this study was to investigate the feasibility of poly lactic/glycolic acid (PLGA as a drug delivery carrier of Rho kinase (ROCK inhibitor for the treatment of corneal endothelial disease. Method. ROCK inhibitor Y-27632 and PLGA were dissolved in water with or without gelatin (W1, and a double emulsion [(W1/O/W2] was formed with dichloromethane (O and polyvinyl alcohol (W2. Drug release curve was obtained by evaluating the released Y-27632 by using high performance liquid chromatography. PLGA was injected into the anterior chamber or subconjunctiva in rabbit eyes, and ocular complication was evaluated by slitlamp microscope and histological analysis. Results. Y-27632 incorporated PLGA microspheres with different molecular weights, and different composition ratios of lactic acid and glycolic acid were fabricated. A high molecular weight and low content of glycolic acid produced a slower and longer release. The Y-27632 released from PLGA microspheres significantly promoted the cell proliferation of cultured corneal endothelial cells. The injection of PLGA did not induce any evident eye complication. Conclusions. ROCK inhibitor-incorporated PLGA microspheres were fabricated, and the microspheres achieved the sustained release of ROCK inhibitor over 7–10 days in vitro. Our data should encourage researchers to use PLGA microspheres for treating corneal endothelial diseases.

  3. Ketamine nano-delivery based on poly-lactic-co-glycolic acid (PLGA) nanoparticles

    Science.gov (United States)

    Hirano, Sota; Bovi, Michele; Romeo, Alessandro; Guzzo, Flavia; Chiamulera, Cristiano; Perduca, Massimiliano

    2018-04-01

    This work describes a novel method for the generation of a ketamine nano-delivery, to improve brain blood barrier permeability and increase drug therapeutic window as anaesthetic, analgesic and potential antidepressant. The approach herein described is based on ketamine-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled to an apolipoprotein E (ApoE) peptide for delivery to the central nervous system. PLGA particles were synthesized with amount of drug, coupled with the ApoE peptide on the surface, and validated by physical characterization. The produced nanodevice showed a good colloidal stability in water, confirmed by zeta potential measurements, with a diameter in the range of 185-205 nm. The ketamine encapsulation was verified by liquid chromatography-mass spectrometry analyses obtaining an encapsulation efficiency up to 21.2 ± 3.54%. Once the occurrence of ApoE peptide functionalization was confirmed with fluorescence spectroscopy, the thermal stability and morphological information were obtained by differential scanning calorimetry and further dynamic light scattering measurements. The spherical shape and a rough nanoparticles surface were observed by atomic force microscopy. The reliability of this approach may be further developed as a protocol to be used to generate PLGA nanoparticles greater than 100 nm able to better penetrate blood brain barrier and release a neuroactive molecule at lower doses.

  4. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  5. Hyaluronic Acid (HA)-Polyethylene glycol (PEG) as injectable hydrogel for intervertebral disc degeneration patients therapy

    Science.gov (United States)

    Putri Kwarta, Cityta; Widiyanti, Prihartini; Siswanto

    2017-05-01

    Chronic Low Back Pain (CLBP) is one health problem that is often encountered in a community. Inject-able hydrogels are the newest way to restore the disc thickness and hydration caused by disc degeneration by means of minimally invasive surgery. Thus, polymers can be combined to improve the characteristic properties of inject-able hydrogels, leading to use of Hyaluronic Acid (a natural polymer) and Polyethylene glycol (PEG) with Horse Radish Peroxide (HRP) cross linker enzymes. The swelling test results, which approaches were the ideal disc values, were sampled with variation of enzyme concentrations of 0.25 µmol/min/mL. The enzyme concentrations were 33.95%. The degradation test proved that the sample degradation increased along with the decrease of the HRP enzyme concentration. The results of the cytotoxicity assay with MTT assay method showed that all samples resulted in the 90% of living cells are not toxic. In vitro injection, models demonstrated that higher concentration of the enzymes was less state of gel which would rupture when released from the agarose gel. The functional group characterization shows the cross linking bonding in sample with enzyme adding. The conclusion of this study is PEG-HA-HRP enzyme are safe polymer composites which have a potential to be applied as an injectable hydrogel for intervertebral disc degeneration.

  6. Food and pharmaceuticals. Lessons learned from global contaminations with melamine/cyanuric acid and diethylene glycol.

    Science.gov (United States)

    Brown, C A; Brown, S A

    2010-01-01

    Recently, contamination of pharmaceuticals with diethylene glycol (DEG) and food with melamine and cyanuric acid has demonstrated the impact of globalization on drug and food safety. By examining the details of these outbreaks, some important lessons can be learned. Toxicoses from contaminated food and drugs are often identified only when large numbers of people or animals are affected and numerous deaths result. Populations most at risk are those repeatedly exposed to a single product. Toxicoses may be complex, involving synergism among relatively nontoxic co-contaminants. Although some contamination may occur inadvertently, practices of deliberate contamination of food and drug ingredients may be widespread but escape detection in poorly regulated markets. If this deliberate contamination is motivated by personal financial gain, it is likely to recur and be concealed. The contaminated raw material produced in a poorly regulated market may cross national boundaries and be used in manufacturing processes for numerous products, sometimes in more well-regulated markets. Once in the production chain, contaminated raw materials may be widely disseminated. It is not clear that regulatory organizations have the capacity to identify significant contaminations despite their best efforts. The veterinary and medical communities, in cooperation with regulatory agencies, should develop cooperative programs designed to detect and limit these global outbreaks. Although addressing regional or national outbreaks remains an important role for regulatory agencies, the veterinary and medical communities must develop proactive global approaches to this global problem.

  7. Scanning electron microscopic study of the hydrolytic degradation of poly(glycolic acid) suture

    International Nuclear Information System (INIS)

    Chu, C.C.; Campbell, N.D.

    1982-01-01

    This article reports the morphological observations on the surface changes of poly-(glycolic acid) sutures which have been exposed to various dosages of gamma irradiation (0, 2.5, 5.0, 10, 20 and 40 Mrad) and duration of immersion (0, 7, 14, 28, 48, 60, and 90 days) in a physiological saline buffer. The most important gross morphological characteristics of PGA suture hydrolytic degradation is the formation of surface cracks on the filaments. The regularity of the surface cracks increased with an increase in the gamma irradiation and the duration of hydrolysis. Surface cracks were not observed in irradiated sutures that had not been subjected to hydrolytic degradation. The arrangement of the surface cracks, their orientation on the filaments, and the direction of crack propagation provide very useful information for depicting the mechanism of hydrolytic degradation in this class of fibrous material. The microfibrillar model of fiber structure has been used as the basis for the proposed degradation mechanism of PGA in vitro. It is believed that hydrolysis occurs initially in the amorphous regions sandwiched between two crystalline zones, as tie-chain segments, free chain ends, and chain folds in these regions degrade into fragments. As degradation proceeds, the size of the fragments reaches the stage at which they can be dissolved into the buffer medium. This dissolution removes the fragments from the amorphous regions, and surface cracks appeared

  8. Ureteral in situ biocompatibility of L-lactide-glycolic acid copolymer 80:20 stent

    International Nuclear Information System (INIS)

    Hou Yuchuan; Wang Chunxi; Zhang Baogang; Chen Xuesi

    2006-01-01

    Objective: To evaluate the in situ biocompatibility of a new biodegradable ureteral stent made of L-lactide-glycolic acid copolymer 80:20 (PLGA 80:20). Methods: 16 dogs served as experimental animals. Ureteral stents of PLGA 80:20 were inserted in situ into the left ureter after transection at the mid level, then the ureters were routinely anastomosed. Ureters surrounding the stent were taken out 2, 4, 8 and 12 weeks postoperatively. The ureters were dissected to find changes of stents and local ureters. Histological analysis was performed to investigate tissue reactions to the stent and evaluate the biocompatibility. Rods of UROVISION stent served as controls. Results: The PLGA stent was degraded completely within 12 weeks post implantation. In the early stage (2-4 weeks), both stents induced epithelial hyperplasia and inflammatory cell reaction at local ureter (P>0.05). In the later stage (8-12 weeks), the tissue reaction nearly subsided in PLGA stented ureters after degradation of the device. Whereas, the tissue reaction induced by UROVISION stent had lasted throughout the observation period, even deteriorated with time going (P<0.05). Conclusion: The tissue reaction induced by PLGA stent is retrievable. PLGA is regarded highly compatible and can serve as an ideal material for biodegradable ureteral stent. (authors)

  9. Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    International Nuclear Information System (INIS)

    Valletta, Alessio; Chronopoulou, Laura; Palocci, Cleofe; Baldan, Barbara; Donati, Livia; Pasqua, Gabriella

    2014-01-01

    Poly(lactic-co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine

  10. Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Valletta, Alessio [“Sapienza” University of Rome, Department of Environmental Biology (Italy); Chronopoulou, Laura; Palocci, Cleofe, E-mail: cleofe.palocci@uniroma1.it [“Sapienza” University of Rome, Department of Chemistry (Italy); Baldan, Barbara [University of Padua, Department of Biology (Italy); Donati, Livia; Pasqua, Gabriella [“Sapienza” University of Rome, Department of Environmental Biology (Italy)

    2014-12-15

    Poly(lactic-co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine.

  11. Poly(lactic-co-glycolic) Acid/Solutol HS15-Based Nanoparticles for Docetaxel Delivery.

    Science.gov (United States)

    Cho, Hyun-Jong; Park, Ju-Hwan; Kim, Dae-Duk; Yoon, In-Soo

    2016-02-01

    Docetaxel (DCT) is one of anti-mitotic chemotherapeutic agents and has been used for the treatment of gastric cancer as well as head and neck cancer, breast cancer and prostate cancer. Poly(lactic- co-glycolic) acid (PLGA) is one of representative biocompatible and biodegradable polymers, and polyoxyl 15 hydroxystearate (Solutol HS15) is a nonionic solubilizer and emulsifying agent. In this investigation, PLGA/Solutol HS15-based nanoparticles (NPs) for DCT delivery were fabricated by a modified emulsification-solvent evaporation method. PLGA/Solutol HS15/DCT NPs with about 169 nm of mean diameter, narrow size distribution, negative zeta potential, and spherical morphology were prepared. The results of solid-state studies revealed the successful dispersion of DCT in PLGA matrix and its amorphization during the preparation process of NPs. According to the result of in vitro release test, emulsifying property of Solutol HS15 seemed to contribute to the enhanced drug release from NPs at physiological pH. All these findings imply that developed PLGA/Solutol HS15-based NP can be a promising local anticancer drug delivery system for cancer therapy.

  12. Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic acid)/chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shekh M. [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Mahoney, Christopher [Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Sankar, Jagannathan [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Mechanical Engineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Marra, Kacey G. [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Department of Plastic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15250 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15250 (United States); Bhattarai, Narayan, E-mail: nbhattar@ncat.edu [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-01-15

    Graphical abstract: - Highlights: • Magnesium gluconate contained PLGA/chitosan microspheres were fabricated. • In vitro release of magnesium ions was performed using Xylidyl Blue assay. • Chitosan coated PLGA can significantly control the release of magnesium ions. • Cellular compatibility was tested using adipose-derived stem cells and PC12 cells. • The cells encounter acceptably low levels of damage in contact with microspheres. - Abstract: The goal of this study was to fabricate and investigate the chitosan coated poly(lactic-co-glycolic acid) (PLGA) microspheres for the development of controlled release magnesium delivery system. PLGA based microspheres are ideal vehicles for many controlled release drug delivery applications. Chitosan is a naturally occurring biodegradable and biocompatible polysaccharide, which can coat the surface of PLGA to alter the release of drugs. Magnesium gluconate (MgG) was encapsulated in the PLGA and PLGA/chitosan microspheres by utilizing the double emulsion solvent evaporation technique for controlled release study. The microspheres were tested with respect to several physicochemical and biological properties, including morphology, chemical structure, chitosan adsorption efficiency, magnesium encapsulation efficiency, in vitro release of magnesium ions, and cellular compatibility using both human adipose-derived stem cells (ASCs) and PC12 cells. Chitosan coated PLGA microspheres can significantly control the release of magnesium ions compared to uncoated PLGA microspheres. Both coated and uncoated microspheres showed good cellular compatibility.

  13. Bimodal Porous Scaffolds by Sequential Electro spinning of Poly(glycolic acid) with Sucrose Particles

    International Nuclear Information System (INIS)

    Wulkersdorfer, B.; Kao, K.K.; Agopian, V.G.; Ahn, A.; Dunn, J.C.; Wu, B.M.; Stelzner, M.; Kao, K.K.; Agopian, K.J.; Dunn, J.C.; Wu, B.M.; Stelzner, M.; Dunn, J.C.; Wu, B.M.

    2009-01-01

    Electro spinning is a method to produce fine, bio polymer mesh with a three-dimensional architecture that mimics native extra-cellular matrix. Due to the small fiber diameter created in this process, conventional electro spun scaffolds have pore sizes smaller than the diameter of most cells. These scaffolds have limited application in tissue engineering due to poor cell penetration. We developed a hybrid electro spinning/particulate leaching technique to create scaffolds with increased porosity and improved cellular ingrowth. Poly(glycolic acid) (PGA) and a sucrose-ethanol suspension were electro spun in equal, alternating sequences at intervals of one, two, and ten minutes each. The scaffolds revealed fiber mesh with micropores of 10 μm and uniformly distributed sucrose particles. Particulate leaching of sucrose from the one- or two-minute scaffolds revealed honeycomb structures with interconnected macro pores between 50 and 250 μm. Sucrose leaching from the ten-minute scaffolds resulted in laminated structures with isolated macro pores between 200 and 350 μm. Macro pore size was directly proportional to the duration of the sucrose spinning interval. After 24 hours of cell culture, conventionally spun scaffolds demonstrated no cellular penetration. Conversely, the PGA/sucrose scaffolds demonstrated deep cellular penetration. This hybrid technique represents a novel method of generating electro spun scaffolds with interconnected pores suitable for cellular ingrowth.

  14. Thermal property and assessment of biocompatibility of poly(lactic-co-glycolic) acid/graphene nanocomposites

    International Nuclear Information System (INIS)

    Adhikari, Ananta R.; Rusakova, Irene; Chu, Wei-Kan; Haleh, Ardebili; Luisi, Jonathan; Panova, Neli I.; Laezza, Fernanda

    2014-01-01

    Polymer-matrix nanocomposites based on Poly(lactic-co-glycolic) acid (PLGA) and Graphene platelets (GNPs) were studied. GNPs, nanomaterials with a 2D flat surface, were chosen with or without chemical modification in PLGA/GNP nanocomposites and their microstructure, thermal property, and their compatibility as scaffolds for cell growth were investigated. PLGA/GNP nanocomposites (0, 1, and 5 wt. % of GNPs) were prepared using a solution based technique. Transmission electron microscopy, X-ray diffraction, Differential scanning calorimeter, and Thermogravimetric analyzer were used to analyze morphology and thermal properties. This work demonstrated the role of GNPs flat surface to provide a favorable platform resulting in an enhanced PLGA crystallization. Functionalized GNPs suppress both the thermal stability and the crystallization of PLGA. Finally, to determine the potential usefulness of these scaffolds for biomedical applications, mammalian cells were cultured on various PLGA/GNP nanocomposites (0, 1, and 5 wt. % GNPs). 1 wt. % PLGA/GNP nanocomposites showed better biocompatibility for cell growth with/without graphenes functionalization compared to pure PLGA and 5 wt. % PLGA/GNP. The function of GNPs in PLGA/GNPs (1 wt. %) composites is to provide a stage for PLGA crystallization where cell growth is favored. These results provide strong evidence for a new class of materials that could be important for biomedical applications

  15. Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms.

    Science.gov (United States)

    Thomas, Nicky; Thorn, Chelsea; Richter, Katharina; Thierry, Benjamin; Prestidge, Clive

    2016-10-01

    Bacterial biofilms are associated with a number of recurring infectious diseases and are a major cause for antibiotic resistance. Despite the broad use of polymeric microparticles and nanoparticles in biomedical research, it is not clear which particle size is more effective against biofilms. The purpose of this study was to evaluate the efficacy of sustained release poly-lactic-co-glycolic acid (PLGA) micro- and nanoparticles containing ciprofloxacin against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The PLGA particles were prepared by the double emulsion solvent evaporation method. The resulting microparticles (12 μm) and nanoparticles (300 nm) contained drug loads of 7.3% and 4.5% (wt/wt) ciprofloxacin, respectively. Drug release was complete within 1 week following comparable release profiles for both particle sizes. Micro- and nanoparticles demonstrated a similar in vitro antibiofilm performance against mature P aeruginosa and S aureus with marked differences between the 2 strains. The sustained release of ciprofloxacin from micro- and nanoparticles over 6 days was equally effective as the continuous treatment with ciprofloxacin solution over the same period resulting in the eradication of culturable S aureus suggesting that reformulation of ciprofloxacin as sustained release PLGA micro- and nanoparticles might be valuable formulation approaches for the treatment of biofilms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Effects of diethylene glycol butyl ether and butoxyethoxyacetic acid on rat and human erythrocytes.

    Science.gov (United States)

    Udden, M M

    2005-03-28

    The toxicity of diethylene glycol butyl ether (DGBE), and its principal metabolite, butoxyethoxyacetic acid (BEAA), were assessed in vitro for rat and human red blood cells. Rat erythrocytes showed evidence of mild hemolysis when exposed to BEAA at concentrations of 5 or 10 mM for 4 h. BEAA treated rat red blood cells also showed evidence of sub-hemolytic damage: increased spherocytosis, a shift in distribution of cell size to larger cells, a significant increase in mean cellular volume, and a decrease in cellular deformability. However, DGBE had no effect on rat red blood cell morphology, cell size, hemolysis or deformability. There was no hemolysis when human red blood cells were exposed to DGBE or BEAA at the same concentrations. No changes in mean cellular volume, distribution of cell size, or morphologic appearance of human red blood cells were observed. No evidence for decreased deformability of human red blood cells exposed to DGBE or BEAA was found. In conclusion, BEAA has weak hemolytic activity and sub-hemolytic effects in vitro on rat erythrocytes, which is consistent with the finding of mild hemolysis when the parent compound DGBE is administered to rats by gavage. The absence of hemolysis or sub-hemolytic damage when human red blood cells were exposed to BEAA or DGBE in vitro indicates that it is unlikely that hemolysis will occur as a result of human exposure to DGBE.

  17. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.

    Science.gov (United States)

    Li, Xuanyu; Jiang, Xingyu

    2017-12-24

    Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production. Copyright © 2017. Published by Elsevier B.V.

  18. Preparation and investigation of mefenamic acid – polyethylene glycol – sucrose ester solid dispersions

    Directory of Open Access Journals (Sweden)

    Fülöp Ibolya

    2015-12-01

    Full Text Available Mefenamic acid (MA is a widely used non-steroidal antiinflammatory (NSAID drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670 and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  19. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    Science.gov (United States)

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  20. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  1. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  2. Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)

    Science.gov (United States)

    Septevani, Athanasia Amanda; Bhakri, Samsul

    2017-11-01

    Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.

  3. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    Directory of Open Access Journals (Sweden)

    Chu QC

    2016-01-01

    Full Text Available Qiuchen Chu,1,* Hong Xu,2,* Meng Gao,1 Xin Guan,1 Hongyan Liu,1 Sa Deng,1 Xiaokui Huo,1 Kexin Liu,1 Yan Tian,1 Xiaochi Ma1 1College of Pharmacy, 2College of Basic Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer remains a major problem around the world. Resibufogenin (RBG is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison, which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid (PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN, and RBG/coumarin-6-loaded PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS, and 5-fluorouracil solution (used as the negative controls, as assayed using flow cytometry. LD50 (median lethal dose values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in

  4. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2006-10-01

    A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.

  5. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    International Nuclear Information System (INIS)

    Tuyen Dao, Thi Phuong; Nguyen, To Hoai; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Dang, Mau Chien

    2014-01-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1 H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100–300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix. (paper)

  6. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine-poly(ethylene glycol copolymers complexed to oligonucleotides

    Directory of Open Access Journals (Sweden)

    Wheatley Margaret A

    2009-04-01

    Full Text Available Abstract Antisense oligonucleotides (AOs have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine (PEI and non-ionic poly(ethylene glycol (PEG form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

  7. Dynamics of electrocatalytic oxidation of ethylene glycol, methanol and formic acid at MWCNT platform electrochemically modified with Pt/Ru nanoparticles

    CSIR Research Space (South Africa)

    Maxakato, NW

    2010-03-01

    Full Text Available Comparative electrocatalytic behavior of functionalized multiwalled carbon nanotubes (fMWCNTs) electrodecorated with Pt/Ru nanoparticles towards the oxidation of methanol (MeOH), ethylene glycol (EG) and formic acid (FA) has been investigated...

  8. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    Science.gov (United States)

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  9. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast.

    Science.gov (United States)

    Hashim, Puziah

    2014-03-01

    Centella asiatica (Linn.) Urban is well known in promoting wound healing and provides significant benefits in skin care and therapeutic products formulation. Glycolic acid and vitamins also play a role in the enhancement of collagen and fibronectin synthesis. Here, we evaluate the specific effect of Centella asiatica (CA), vitamins, glycolic acid and their mixture preparations to stimulate collagen and fibronectin synthesis in cultured human fibroblast cells. The fibroblast cells are incubated with CA, glycolic acid, vitamins and their mixture preparations for 48 h. The cell lysates were analyzed for protein content and collagen synthesis by direct binding enzyme immunoassay. The fibronectin of the cultured supernatant was measured by sandwich enzyme immunoassay. The results showed that CA, glycolic acid, vitamins A, E and C significantly stimulate collagen and fibronectin synthesis in the fibroblast. Addition of glycolic acid and vitamins to CA further increased the levels of collagen and fibronectin synthesis to 8.55 and 23.75 μg/100 μg, respectively. CA, glycolic acid, vitamins A, E, and C, and their mixtures demonstrated stimulatory effect on both extra-cellular matrix synthesis of collagen and fibronectin in in vitro studies on human foreskin fibroblasts, which is beneficial to skin care and therapeutic products formulation.

  10. Evaluation of Hanford high level waste vitrification chemistry for an NCAW simulant -- FY 1994: Potential exothermic reactions in the presence of formic acid, glycolic acid, and oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sills, J.A.

    1995-07-01

    A potential for an uncontrollable exothermic reaction between nitrate and organic salts during preparation of a high level waste melter feed has been identified. In order to examine this potential more closely, the thermal behavior of simulated neutralized current acid waste (NCAW) treated with various organic reductants was studied. Differential scanning calorimetry (DSC) measurements were collected on simulated waste samples and their supernates treated with organics. Organic reductants used were formic acid, glycolic acid, and oxalic acid. For comparison, samples of untreated simulant and untreated simulant with added noble metals were tested. When heated, untreated simulant samples both with and without noble metals showed no exothermic behavior. All of the treated waste simulant samples showed exothermic behavior. Onset temperatures of exothermic reactions were 120 C to 210 C. Many onset temperatures, particularly those for formic acid treated samples, are well below 181 C, the estimated maximum steam coil temperature (considered to be a worst case maximum temperature for chemical process tank contents). The enthalpies of the reactions were {minus}180 {times} 10{sup {minus}3} J/Kg supernate ({minus}181 J/g) for the oxalic acid treated simulant supernate to {minus}1,150 {times} 10{sup {minus}3} J/Kg supernate ({minus}1,153 J/g) for the formic acid treated simulant supernate.

  11. Evaluation of Hanford high level waste vitrification chemistry for an NCAW simulant -- FY 1994: Potential exothermic reactions in the presence of formic acid, glycolic acid, and oxalic acid

    International Nuclear Information System (INIS)

    Sills, J.A.

    1995-07-01

    A potential for an uncontrollable exothermic reaction between nitrate and organic salts during preparation of a high level waste melter feed has been identified. In order to examine this potential more closely, the thermal behavior of simulated neutralized current acid waste (NCAW) treated with various organic reductants was studied. Differential scanning calorimetry (DSC) measurements were collected on simulated waste samples and their supernates treated with organics. Organic reductants used were formic acid, glycolic acid, and oxalic acid. For comparison, samples of untreated simulant and untreated simulant with added noble metals were tested. When heated, untreated simulant samples both with and without noble metals showed no exothermic behavior. All of the treated waste simulant samples showed exothermic behavior. Onset temperatures of exothermic reactions were 120 C to 210 C. Many onset temperatures, particularly those for formic acid treated samples, are well below 181 C, the estimated maximum steam coil temperature (considered to be a worst case maximum temperature for chemical process tank contents). The enthalpies of the reactions were -180 x 10 -3 J/Kg supernate (-181 J/g) for the oxalic acid treated simulant supernate to -1,150 x 10 -3 J/Kg supernate (-1,153 J/g) for the formic acid treated simulant supernate

  12. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

    Science.gov (United States)

    Jiang, Tao; Khan, Yusuf; Nair, Lakshmi S; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-06-01

    Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via heparin immobilization. Heparin was successfully immobilized on chitosan/PLAGA scaffolds with controllable loading efficiency. Mechanical testing showed that heparinization of chitosan/PLAGA scaffolds did not significantly alter the mechanical properties and porous structures. In addition, the heparinized chitosan/PLAGA scaffolds possessed a compressive modulus of 403.98 +/- 19.53 MPa and a compressive strength of 9.83 +/- 0.94 MPa, which are in the range of human trabecular bone. Furthermore, the heparinized chitosan/PLAGA scaffolds had an interconnected porous structure with a total pore volume of 30.93 +/- 0.90% and a median pore size of 172.33 +/- 5.89 mum. The effect of immobilized heparin on osteoblast-like MC3T3-E1 cell growth was investigated. MC3T3-E1 cells proliferated three dimensionally throughout the porous structure of the scaffolds. Heparinized chitosan/PLAGA scaffolds with low heparin loading (1.7 microg/scaffold) were shown to be capable of stimulating MC3T3-E1 cell proliferation by MTS assay and cell differentiation as evidenced by elevated osteocalcin expression when compared with nonheparinized chitosan/PLAGA scaffold and chitosan/PLAGA scaffold with high heparin loading (14.1 microg/scaffold). This study demonstrated the potential of functionalizing chitosan/PLAGA scaffolds via heparinization with improved cell functions for bone tissue engineering applications.

  13. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro

    International Nuclear Information System (INIS)

    Wang Ying; Lu Yu; Ding Liying; Liu Yaqing; Yu Shuqin; Guo Miao; Ron Wenting; Song Feifei

    2012-01-01

    Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work

  14. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid-polyethylene glycol nanoparticles improves ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Vasconcelos A

    2015-01-01

    Full Text Available Aimee Vasconcelos,1 Estefania Vega,2 Yolanda Pérez,3 María J Gómara,1 María Luisa García,2 Isabel Haro1 1Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC, 2Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, Faculty of Pharmacy, University of Barcelona, 3Nuclear Magnetic Resonance Unit, IQAC-CSIC, Barcelona, Spain Abstract: In this work, a peptide for ocular delivery (POD and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid (PGLA–polyethylene glycol (PEG-nanoparticles (NPs in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide; the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation

  15. Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycols and itaconic acid

    Directory of Open Access Journals (Sweden)

    Mićić Maja M.

    2007-01-01

    Full Text Available New types of hydrogels were prepared by the radical copolymerization of 2-hydroxyethyl methacrylate, itaconic acid and four different poly(alkylene glycol (methacrylate components (Bisomers in a water/ethanol mixture as solvent. The polymers swell in water at 25°C to yield homogeneous transparent hydrogels. All the hydrogels displayed pH sensitive behavior in buffers of the pH range from 2.20 to 7.40, under conditions similar to those of biological fluids. The presence of these two comonomers, which were added to HEMA, increased the swelling degree of the hydrogels and gave gels with better elasticity. The hydrogels were thermally stable in the vicinity of the physiological temperature (37°C. The copolymer containing pure poly(ethylene glycol acrylate units generally had the best properties. The tests performed on the hydrogels confirmed that they were neither hemolytic nor cytotoxic. The copolymer samples showed better cell viability and less hemolytic activity than the PHEMA sample, confirming the assumption that poly(alkylene glycols improve the biocompatibility of hydrogels. Due to their swelling and mechanical characteristics, as well as the very good biocompatibility and bioadhesive properties, poly(Bisomer/HEMA/IA hydrogels are promising for utilization in the field of biomedicals, especially for the controlled release of drugs.

  16. Effect of Aquo-glycolic Media and Added Anions on the Anodization of Zircaloy-4 in Sulphamic Acid

    Directory of Open Access Journals (Sweden)

    Viplav Duth Shukla

    2011-01-01

    Full Text Available Anodization of zircaloy-4 in 0.1 M sulphamic acid has been carried out. Kinetics of anodic oxidation of zircaloy-4 has been studied at a constant current density of 8 mA/cm2 and at room temperature. Thickness estimates were made from capacitance data. The plots of formation voltage vs. time, reciprocal capacitance vs. time, reciprocal capacitance vs. formation voltage and thickness vs. formation voltage were drawn and rate of formation, current efficiency and differential field were calculated. The addition of solvent (ethylene glycol showed better kinetic results. For 25%, 50% and 75% aquo-glycolic media, the dielectric constant values are low leading to a marked improvement in the kinetics. In 80% ethylene glycol, though the dielectric constant value of solution is less, the kinetics was slow which may be attributed to the fact that the electrolyte becomes highly non-polar. Improvement in the kinetics of oxide film formation was observed by the addition of millimolar concentration of anions (CO32-, SO42-, PO43-. The presence of phosphate ions improved the kinetics of anodization to better extent.

  17. Cytotoxicity detection of poly(lactic-co-glycolic acid/tricalcium phosphate

    Directory of Open Access Journals (Sweden)

    Meng SUN

    2011-12-01

    Full Text Available Objective To detecte the cytotoxicity of the PLGA/TCP(poly(lactic-co-glycolic acid/Tricalcium phosphate composite that based on the precedent experiments conducted in Tsinghua University.Methods Compared with the PLGA scaffold material,observated the surface and interior structure of the PLGA/TCP scaffold material by SEM(scanning electron microscope,the surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.And which selected rat L929 cell strain,and detected the cytotoxicity of the PLGA/TCP composite in vitro by MTT method.Results The surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.On rat L929 cell strain,used MTT Method to detect the cytotoxicity of the composite PLGA/ TCP in vitro,the result showed that the cytotoxicity of the PLGA/TCP composite was level I,according to the criterion,it can be considered as non cytotoxic.Conclusion This research has proved that the PLGA/TCP compound scaffold material has a more homogeneous structure,with the vesicular interior and the structure of PLGA/TCP composite is similar to natural bone trabecula,PLGA/TCP is non cytotoxicity,which satisfy the basic requirement of biological material application and provides a good experimental foundation for repairing autologous bone defect in the near future.

  18. Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration.

    Science.gov (United States)

    Harigae, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Taiki; Inoue, Nao; Kimura, Fumiko; Ikeda, Ikuo; Miyazawa, Teruo

    2016-01-01

    Curcumin (CUR), the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid)-based CUR nanoparticles (CUR-NP) have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG), the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability. Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells. Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with other organs. Thus, CUR-NP increased intestinal absorption of CUR rather than decreasing metabolic degradation and conversion to other metabolites. In vitro, CUR encapsulated in CUR-NP was solubilized in mixed micelles; however, whether the micelles contained CUR or CUR-NP had little influence on cellular uptake efficiency. Therefore, we suggest that the high solubilization capacity of CUR-NP in mixed micelles, rather than cellular uptake efficiency, explains the high intestinal absorption of CUR-NP in vivo. These findings provide a better understanding of the bioavailability of CUR and CUR-NP following oral administration. To improve the bioavailability of CUR, future

  19. Metabolic fate of poly-(lactic-co-glycolic acid-based curcumin nanoparticles following oral administration

    Directory of Open Access Journals (Sweden)

    Harigae T

    2016-06-01

    Full Text Available Takahiro Harigae,1 Kiyotaka Nakagawa,1 Taiki Miyazawa,2 Nao Inoue,3 Fumiko Kimura,1 Ikuo Ikeda,3 Teruo Miyazawa4,5 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; 2Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; 3Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, 4Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center, 5Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan Purpose: Curcumin (CUR, the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid-based CUR nanoparticles (CUR-NP have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG, the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability.Methods: Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells.Results: Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with

  20. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    International Nuclear Information System (INIS)

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Lijuan, Xu

    2013-01-01

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n

  1. Micelle-templated, poly(lactic-co-glycolic acid nanoparticles for hydrophobic drug delivery

    Directory of Open Access Journals (Sweden)

    Nabar GM

    2018-01-01

    Full Text Available Gauri M Nabar,1 Kalpesh D Mahajan,1 Mark A Calhoun,2 Anthony D Duong,1 Matthew S Souva,1 Jihong Xu,3,4 Catherine Czeisler,5 Vinay K Puduvalli,3,4 José Javier Otero,5 Barbara E Wyslouzil,1,6 Jessica O Winter1,2 1William G Lowrie Department of Chemical and Biomolecular Engineering, 2Department of Biomedical Engineering, 3Division of Neuro-oncology, College of Medicine, The Ohio State University Comprehensive Cancer Center, 4Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurosurgery, College of Medicine, The Ohio State University Comprehensive Cancer Center, 5Department of Pathology and the Neurological Research Institute, College of Medicine, 6Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA Purpose: Poly(lactic-co-glycolic acid (PLGA is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs, as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches.Methods: Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”, consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide (PS-b-PEO micelles.Results: PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30% and are greater than those obtained from PS-b-PEO micelles (ie, ~7%. Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant

  2. Structure-Processing-Property Relationship of Poly(Glycolic Acid for Drug Delivery Systems 1: Synthesis and Catalysis

    Directory of Open Access Journals (Sweden)

    Vineet Singh

    2010-01-01

    Full Text Available Till date, market is augmented with a huge number of improved drug delivery systems. The success in this area is basically due to biodegradable polymers. Although conventional systems of drug delivery utilizing the natural and semisynthetic polymers so long but synthetic polymer gains success in the controlled drug delivery area due to better degradation profile and controlled network and functionality. The polyesters are the most studied class group due the susceptible ester linkage in their backbone. The Poly(glycolic Acid (PGA, Poly(lactic acid (PLA, and Polylactide-co-glycolide (PLGA are the best profiled polyesters and are most widely used in marketed products. These polymers, however, still are having drawbacks which failed them to be used in platform technologies like matrix systems, microspheres, and nanospheres in some cases. The common problems arose with these polymers are entrapment inefficiency, inability to degrade and release drugs with required profile, and drug instability in the microenvironment of the polymers. These problems are forcing us to develop new polymers with improved physicochemical properties. The present review gave us an insight in the various structural elements of Poly(glycolic acid, polyester, with in depth study. The first part of the review focuses on the result of studies related to synthetic methodologies and catalysts being utilized to synthesize the polyesters. However the author will also focus on the effect of processing methodologies but due some constraints those are not included in the preview of this part of review.

  3. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    Science.gov (United States)

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  4. Novel Routes to Ethylene Glycol Synthesis via Acid-Catalyzed Carbonylation of Formaldehyde and Dimethoxymethane

    OpenAIRE

    Celik, Fuat Emin

    2010-01-01

    Carbon-carbon bond forming carbonylation reactions were investigated as candidates to replace ethene epoxidation as the major source of ethylene glycol production. This work was motivated by the potentially lower cost of carbon derived from synthesis gas as compared to ethylene. Synthesis gas can be produced from relatively abundant and cheap natural gas, coal, and biomass resources whereas ethylene is derived from increasingly scarce and expensive crude oil. From synthesis gas, a range of...

  5. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  6. Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of α-bilirubin

    International Nuclear Information System (INIS)

    Syu, M.-J.; Deng, J.-H.; Nian, Y.-M.

    2004-01-01

    With α-bilirubin as a molecular template, polymerization of methacrylic acid (MAA) was carried out with the aid of the initiator 2,2-azobisisobutyronitrile (AIBN) and the cross-linking agent ethylene glycol dimethylacrylate (EGDMA). Bulk polymerization was successfully carried out so that poly(methacrylic acid-co-ethylene glycol dimethylacrylate) (poly(MAA-EGDMA)) imprinted with α-bilirubin was first developed. UV irradiation polymerization and heated polymerization methods were compared. Effect of different ratios of monomer to EGDMA during the polymerization was also discussed. Proper solvent for better desorption of α-bilirubin from the imprinted poly(MAA-EGDMA) was investigated. In addition, SEM photos were provided for observing the differences between the surfaces of the imprinted poly(MAA-EGDMA) before and after extraction. The corresponding binding results of α-bilirubin imprinted poly(MAA-EGDMA) and non-imprinted poly(MAA-EGDMA) both after extraction were compared. How the pH values during extraction stage affected the binding capacities of the imprinted polymer as well as non-imprinted polymer were also discussed. Similar study and comparison were made for different binding pH values. Different compounds of similar molecular weight were used to show the specific binding of the imprinted polymer for bilirubin. The results further confirmed the successful binding as well as specificity of the imprinted poly(MAA-EGDMA) for α-bilirubin

  7. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments.

    Science.gov (United States)

    Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew

    2013-10-24

    Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.

  8. Analysis of Poly(Lactic-co-Glycolic Acid/Poly(Isoprene Polymeric Blend for application as biomaterial

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Marques

    2013-01-01

    Full Text Available The application of renewable raw materials encourages research in the biopolymers area. The Poly(Lactic-co-Glycolic Acid/Poly(Isoprene (PLGA/IR blend combines biocompatibility for application in the health field with excellent mechanical properties. The blend was obtained by solubilization of polymers in organic solvents. To investigate the polymer thermochemical properties, FTIR and DSC were applied. To investigate the composition's influence over polymer mechanical properties, tensile and hardness test were applied. To analyze the blends response in the cell environment, a stent was produced by injection molding process, and Cell Viability Test and Previous Implantability were used. The Infrared spectra show that chemical composition is related only with polymers proportion in the blend. The calorimetry shows a partial miscibility in the blend. The tensile test shows that adding Poly(Isoprene to Poly(Lactic-co-Glycolic Acid induced a relevant reduction in the Young modulus, tensile stress and tenacity of the material, which was altered from the fragile raw PLGA to a ductile material. The composition did not affect the blend hardness. The cell viability test shows that the blend has potential application as biomaterial, while the first results of implantability indicate that the polymeric stent kept its original position and caused low fibrosis.

  9. Synthesis and Characterization of Quantum Dot-Loaded Poly(lactic-co-glycolic) Acid Nanocomposite Fibers by an Electrospinning Process.

    Science.gov (United States)

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2017-04-01

    Poly(lactic-co-glycolic) acid (PLGA) is one of the most successfully developed biodegradable polymers. PLGA is a copolymer of polylactic and glycolic acid. In this work, quantum dot (QD)-loaded PLGA nanofibers were fabricated via a simple one-step electrospinning process. The surface morphology of the fibers was characterized by scanning electron microscopy (SEM). It was shown that the PLGA nanofibers had both smooth and rough surfaces with an average fiber diameter of 150 ± 25 nm and 350 ± 60 nm for the PLGA and QD-loaded PLGA nanofibers, respectively. The needle size, applied voltage, and solvent flow rate in the syringe were maintained at 23 G, 20 kV, and 1.5 mL/h, respectively. The SEM analysis showed that nanofibers with a very thin and uniform size were formed and the InP/ZnS QDs were homogeneously loaded into the PLGA nanofiber matrix. The thermal properties of the PLGA-QD nanofibers were explored by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The surface chemical structure and functionalities were characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray powder diffraction (XRPD).

  10. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  11. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe

    2014-01-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reac......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  12. Investigation of Localized Delivery of Diclofenac Sodium from Poly(D,L-Lactic Acid-co-Glycolic Acid)/Poly(Ethylene Glycol) Scaffolds Using an In Vitro Osteoblast Inflammation Model

    Science.gov (United States)

    Sidney, Laura E.; Heathman, Thomas R.J.; Britchford, Emily R.; Abed, Arif; Rahman, Cheryl V.

    2015-01-01

    Nonunion fractures and large bone defects are significant targets for osteochondral tissue engineering strategies. A major hurdle in the use of these therapies is the foreign body response of the host. Herein, we report the development of a bone tissue engineering scaffold with the ability to release anti-inflammatory drugs, in the hope of evading this response. Porous, sintered scaffolds composed of poly(D,L-lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) were prepared with and without the anti-inflammatory drug diclofenac sodium. Analysis of drug release over time demonstrated a profile suitable for the treatment of acute inflammation with ∼80% of drug released over the first 4 days and a subsequent release of around 0.2% per day. Effect of drug release was monitored using an in vitro osteoblast inflammation model, comprised of mouse primary calvarial osteoblasts stimulated with proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Levels of inflammation were monitored by cell viability and cellular production of nitric oxide (NO) and prostaglandin E2 (PGE2). The osteoblast inflammation model revealed that proinflammatory cytokine addition to the medium reduced cell viability to 33%, but the release of diclofenac sodium from scaffolds inhibited this effect with a final cell viability of ∼70%. However, releasing diclofenac sodium at high concentrations had a toxic effect on the cells. Proinflammatory cytokine addition led to increased NO and PGE2 production; diclofenac-sodium-releasing scaffolds inhibited NO release by ∼64% and PGE2 production by ∼52%, when the scaffold was loaded with the optimal concentration of drug. These observations demonstrate the potential use of PLGA/PEG scaffolds for localized delivery of anti-inflammatory drugs in bone tissue engineering applications. PMID:25104438

  13. The Profile of Anti-inflammatory Activity of Syzigium Aromaticum Volatile Oil in Lotion with Variation Composition of Oleic Acid and Propylene Glycol as Enhancer

    Directory of Open Access Journals (Sweden)

    Fitriah Ardiawijianti Iriani

    2017-08-01

    Full Text Available Essential oil of clove (Syzygium aromaticum containing eugenol has an anti-inflammatory activity. The study was aimed to develop the formulation of lotion by adding of oleic acid and propylene glycol as penetration enhancer. The effect of enhancer composition was also studied. Lotion was prepared with the composition of oleic acid (AO and propylene glycol (PG as follow: 1:0 (FI, 0,5:0,5 (FII, 0:1 (FIII. Capacity an anti-inflammatory of formulation based on parameters of the amount of cells with COX-2 expression, the number of inflammatory cells and the epidermis thickness was evaluated using male mouse strain BALb/C induced by crotton oil as inflammatory agents. The results showed that the increasing composition propylene glycol caused the decreasing of the amount of cells with COX-2 expression (p <0.05, the inflammatory cells (P <0.05 and the epidermis thickness (p <0.05

  14. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    International Nuclear Information System (INIS)

    Park, S.-E.; Nho, Y.-C.; Kim, H.-I.

    2004-01-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2

  15. The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment

    Science.gov (United States)

    Yaşayan, Gökçen; Xue, Xuan; Collier, Pamela; Clarke, Philip; Alexander, Morgan R.; Marlow, Maria

    2016-06-01

    In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanotextured PLGA films were prepared with PS particles of diameter of 57, 99, 210, and 280 nm that produced domes of the same dimension in the PLGA surface. The effect of the particulate monolayer templating method was investigated to enable preparation of the films with uniformly ordered surface nanodomes. Cell attachment of a human ovarian cancer cell line (OVCAR3) alone and co-cultured with mesenchymal stem cells (MSCs) was evaluated on flat and topographically nano-patterned surfaces. Cell numbers were observed to increase on the nanotextured surfaces compared to non-textured surfaces both with OVCAR3 cultures and OVCAR3-MSC co-cultures at 24 and 48 h time points.

  16. Investigation on hemolytic effect of poly(lactic co-glycolic) acid nanoparticles synthesized using continuous flow and batch processes

    Energy Technology Data Exchange (ETDEWEB)

    Libi, Sumit; Calenic, Bogdan; Astete, Carlos E.; Kumar, Challa; Sabliov, Cristina M.

    2017-01-01

    Abstract

    With the increasing interest in polymeric nanoparticles for biomedical applications, there is a need for continuous flow methodologies that allow for the precise control of nanoparticle synthesis. Poly(lactide-co-glycolic) acid (PLGA) nanoparticles with diameters of 220–250 nm were synthesized using a lab-on-a-chip, exploiting the precise flow control offered by a millifluidic platform. The association and the effect of PLGA nanoparticles on red blood cells (RBCs) were compared for fluorescent PLGA nanoparticles made by this novel continuous flow process using a millifluidic chip and smaller PLGA nanoparticles made by a batch method. Results indicated that all PLGA nanoparticles studied, independent of the synthesis method and size, adhered to the surface of RBCs but had no significant hemolytic effect at concentrations lower than 10 mg/ml.

  17. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  18. Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids

    DEFF Research Database (Denmark)

    Garcia Diaz, Maria; Foged, Camilla; Nielsen, Hanne Mørck

    2015-01-01

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading...... of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique...... efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid–insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer...

  19. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

    Science.gov (United States)

    Conrad, Taylor; Landry, Greg M; Aw, Tak Yee; Nichols, Royce; McMartin, Kenneth E

    2016-07-01

    Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to

  20. Effect of Zinc Oxide Addition on Antibacterial Behavior of Hydroxyapatite-Poly lactic-co-glycolic acid Scaffold for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Narges Abotalebi

    2018-03-01

    Full Text Available Introduction: Infection after the surgery is one of the problems of bone scaffolds implants which is normally treated by systemic administration of antibiotics. But due to the poor blood circulation in bone tissue, large antibiotic doses are needed which lead to further drawbacks to renal and hepatic systems. Material and method: In this study, the effect of zinc oxide addition on antibacterial behavior of hydroxyapatite- Poly lactic-co-glycolic acid scaffold was evaluated. The synthesized composite was characterized by X-ray diffraction, scanning electron microscopy equipped with elemental analysis and Fourier transform infrared spectra. In order to determine the antibacterial activity of the fabricated scaffold, Staphylococcus aureus (ATTC 25922 and Escherichia coli (ATTC 25923 were used as test microorganisms. Results: The results showed that Hydroxyapatite- Poly lactic-co-glycolic acid scaffold did not make inhibition zone in culture medium but the modification of Hydroxyapatite- Poly lactic-co-glycolic acid scaffold’s surface by zinc oxide particles caused Hydroxyapatite- Poly lactic-co-glycolic acid- zinc oxide scaffold to have antibacterial inhibition zone of 12 and 20 mm for Escherichia coli and Staphylococcus aureus, respectively. Discussion and conclusion: This study revealed that the addition of antibacterial agent to applicable bone tissue engineering scaffolds could be considered as an appropriate way to prevent the growth of infection at the scaffold site.

  1. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state.

    Science.gov (United States)

    Aduri, Nanda G; Ernst, Heidi A; Prabhala, Bala K; Bhatt, Shweta; Boesen, Thomas; Gajhede, Michael; Mirza, Osman

    2018-01-08

    The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.

    Science.gov (United States)

    Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark

    2016-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Thermodynamic studies of hydriodic acid in ethylene glycol-water mixtures from electromotive force measurements

    International Nuclear Information System (INIS)

    Elsemongy, M.M.; Abdel-Khalek, A.A.

    1983-01-01

    The standard potentials of the Ag-AgI electrode in twenty ethylene glycol-water mixtures covering the whole range of solvent composition have been determined from the e.m.f. measurements of the cell Pt|H 2 (g, 1atm)| HOAc(m 1 ), NaOAc(m 2 ), KI(m 3 ), solvent|AgI|Ag at nine different temperatures ranging from 15 to 55 0 C. The temperature variation of the standard e.m.f. has been utilized to compute the standard thermodynamic functions for the cell reaction, the primary medium effects of various solvents upon HI, and the standard thermodynamic quantities for the transfer of HI, from the standard state in water to the standard states in the respective solvent media. The chemical effects of solvents on the transfer process have been obtained by subtracting the electrostatic contributions from the total transfer quantities. The results have been discussed in the light of ion-solvent interactions as well as the structural changes of the solvents. (Author)

  4. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.

    Science.gov (United States)

    Saarani, Nur Najiha; Jamuna-Thevi, Kalitheerta; Shahab, Neelam; Hermawan, Hendra; Saidin, Syafiqah

    2017-05-31

    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.

  5. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive.

    Science.gov (United States)

    Ge, Xiangyu; Li, Jinjin; Zhang, Chenhui; Luo, Jianbin

    2018-03-27

    Boric acid is a weak acid and has been used as a lubrication additive because of its special structure. In this study, we report that boric acid could achieve a robust superlubricity (μ friction coefficient of approximately 0.004-0.006 could be achieved with boric acid under neutral conditions (pH of approximately 6.4), which is different from the acidic conditions leading to superlubricity. The influence of various factors, including boric acid concentration, sliding speed, applied load, PEG molecular weight, and the volume of lubricant on the superlubricity, were investigated. The results reveal that the PEG aqueous solution with the boric acid additive could achieve superlubricity under a wide range of conditions. The surface composition analysis shows that the synergy effect between boric acid and PEG provides sufficient H + ions to realize the running-in process. Moreover, a composite tribochemical film composed of silica and ammonia-containing compounds were formed on the ball surface, contributing to the superlubricity. The film thickness calculation shows that superlubricity was achieved in a mixed lubrication region, and therefore, the superlubricity state was dominated by both the composite tribochemical film formed via the tribochemical reaction on the contact surfaces and the hydrodynamic lubricating film between the contact surfaces. Such a liquid superlubricity achieved under neutral conditions is of importance for both scientific understanding and engineering applications.

  6. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB Stabilized Poly(Lactic-co-Glycolic Acid (PLGA Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rebecca Gossmann

    Full Text Available Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid (PLGA is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB, in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA and polyethylene glycol (PEG modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to

  7. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    Directory of Open Access Journals (Sweden)

    Wang X

    2015-01-01

    Full Text Available Xiaojie Wang,1,2,* Lei Shi,2,* Qingfeng Tu,2 Hongwei Wang,3 Haiyan Zhang,2 Peiru Wang,2 Linglin Zhang,2 Zheng Huang,4 Feng Zhao,5 Hansen Luan,5 Xiuli Wang2 1Shanghai Skin Diseases Clinical College of Anhui Medical University, 2Shanghai Skin Disease Hospital, 3Huadong Hospital, Fudan University, Shanghai, 4MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University, Fuzhou, 5National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, People’s Republic of China *These authors contributed equally to this study Background: Squamous cell carcinoma (SCC is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP-assisted 5-aminolevulinic acid (ALA delivery for topical photodynamic therapy (PDT of cutaneous SCC.Materials and methods: Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined.Results: PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC.Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. Keywords: 5-aminolevulinic acid (ALA, polylactic-co-glycolic acid (PLGA, nanoparticles (NPs, cutaneous squamous cell carcinoma (SCC, photodynamic therapy (PDT, microneedling

  8. Polyethylene glycol-functionalized poly (Lactic Acid-co-Glycolic Acid and graphene oxide nanoparticles induce pro-inflammatory and apoptotic responses in Candida albicans-infected vaginal epithelial cells.

    Directory of Open Access Journals (Sweden)

    R Doug Wagner

    Full Text Available Mucous-penetrating nanoparticles consisting of poly lactic acid-co-glycolic acid (PLGA-polyethylene glycol (PEG could improve targeting of microbicidal drugs for sexually transmitted diseases by intravaginal inoculation. Nanoparticles can induce inflammatory responses, which may exacerbate the inflammation that occurs in the vaginal tracts of women with yeast infections. This study evaluated the effects of these drug-delivery nanoparticles on VK2(E6/E7 vaginal epithelial cell proinflammatory responses to Candida albicans yeast infections. Vaginal epithelial cell monolayers were infected with C. albicans and exposed to 100 μg/ml 49.5 nm PLGA-PEG nanospheres or 20 μg/ml 1.1 x 500 nm PEG-functionalized graphene oxide (GO-PEG sheets. The cells were assessed for changes in mRNA and protein expression of inflammation-related genes by RT-qPCR and physiological markers of cell stress using high content analysis and flow cytometry. C. albicans exposure suppressed apoptotic gene expression, but induced oxidative stress in the cells. The nanomaterials induced cytotoxicity and programmed cell death responses alone and with C. albicans. PLGA-PEG nanoparticles induced mRNA expression of apoptosis-related genes and induced poly (ADP-ribose polymerase (PARP cleavage, increased BAX/BCL2 ratios, and chromatin condensation indicative of apoptosis. They also induced autophagy, endoplasmic reticulum stress, and DNA damage. They caused the cells to excrete inflammatory recruitment molecules chemokine (C-X-C motif ligand 1 (CXCL1, interleukin-1α (IL1A, interleukin-1β (IL1B, calprotectin (S100A8, and tumor necrosis factor α (TNF. GO-PEG nanoparticles induced expression of necrosis-related genes and cytotoxicity. They reduced autophagy and endoplasmic reticulum stress, and apoptotic gene expression responses. The results show that stealth nanoparticle drug-delivery vehicles may cause intracellular damage to vaginal epithelial cells by several mechanisms and that

  9. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats.

    Science.gov (United States)

    Liu, X; Aho, J; Baldursdottir, S; Bohr, A; Qu, H; Christensen, L P; Rantanen, J; Yang, M

    2017-08-30

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dissolved in binary mixtures of N,N-dimethylformamide (DMF) and tetrahydrofuran (THF). The intrinsic viscosity and rheological properties of polymer solutions were investigated prior to electrospinning. The morphology and mechanical properties of the resulting EFMs were characterized by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). Sufficiently high inter-molecular interactions were found to be a prerequisite to ensure the formation of fibers in the electrospinning process, regardless the polymer composition. The higher the amount of GA in the polymer composition, the more ordered and entangled molecules were formed after electrospinning from the solution in THF-DMF, which resulted in higher Young's modulus and tensile strength of the EFMs. In conclusion, this study shows that the mechanical properties of EFMs, which depend on the polymer molecule-solvent affinity, can be predicted by the inter-molecular interactions in the starting polymer solutions and over the drying process of electrospinning. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Khil, Myung-Seob [Chonbuk National University, Jeonju (Korea, Republic of); Lee, Deok-Won [Maxillofacial Surgery Dental Hospital, Seoul (Korea, Republic of); Ahn, Sung-Jun [JADAM Co., LTD., Seogwipo (Korea, Republic of)

    2015-01-15

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  11. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.

    Science.gov (United States)

    Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt

    2017-10-01

    Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro.

    Science.gov (United States)

    Landry, Greg M; Martin, Sarah; McMartin, Kenneth E

    2011-11-01

    Diethylene glycol (DEG), a solvent and chemical intermediate, can produce an acute toxic syndrome, the hallmark of which is acute renal failure due to cortical tubular degeneration and proximal tubular necrosis. DEG is metabolized to two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA), which are believed to be the proximate toxicants. The precise mechanism of toxicity has yet to be elucidated, so these studies were designed to determine which metabolite was responsible for the proximal tubule cell death. Human proximal tubule (HPT) cells in culture, obtained from normal cortical tissue and passaged 3-6 times, were incubated with increasing concentrations of DEG, 2-HEAA, or DGA separately and in combination for 48 h at pH 6 or 7.4, and various parameters of necrotic and apoptotic cell death were measured. DEG and 2-HEAA did not produce any cell death. DGA produced dose-dependent necrosis at concentrations above 25 mmol/l. DGA did not affect caspase-3 activity and increased annexin V staining only in propidium iodide-stained cells. Hence, DGA induced necrosis, not apoptosis, as corroborated by severe depletion of cellular adenosine triphosphate levels. DGA is structurally similar to citric acid cycle intermediates that are taken up by specific transporters in kidney cells. HPT cells, incubated with N-(p-amylcinnamoyl)anthranilic acid, a sodium dicarboxylate-1 transporter inhibitor showed significantly decreased cell death compared with DGA alone. These studies demonstrate that DGA is the toxic metabolite responsible for DEG-induced proximal tubular necrosis and suggest a possible transporter-mediated uptake of DGA leading to toxic accumulation and cellular dysfunction.

  13. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    Science.gov (United States)

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  14. Modeling of hyaluronic acid containing anti-cancer drugs-loaded polylactic-co-glycolic acid bioconjugates for targeted delivery to cancer cells

    Science.gov (United States)

    Gul-e-Saba, Adulphakdee, A.; Madthing, A.; Zafar, M. N.; Abdullah, M. A.

    2012-09-01

    Molecular modeling of hyaluronan (HA), polylactic-co-glycolic acid (PLGA), polyethylene glycol-bis-amine (PEG-bis-amine), Curcumin, Cisplatin and the conjugate HA-PEG-PLGA containing Curcumin/Cisplatin were performed using Discovery Studio 2.5 to better understand issues and constraints related to targeted delivery of potent anticancer drugs to cancer cells. HA, a versatile biopolymer is a ligand of cancer cell receptor, CD44 that can be particularly useful in a receptor-mediated cellular uptake of drug-incorporated nanoparticles. Biocompatible and biodegradable polymers, PLGA and PEG, serve as polymeric micelles for controlled-release of drug. Curcumin as a natural anticancer agent has poor solubility that limits its use in drug therapeutics, while platinum-based Cisplatin exhibits systemic cytotoxicity. These can be overcome via drug delivery in polymeric biocompatible vehicles. The PLGA-PEG-HA conjugate shows the total measurement of 105 bond length with average bond length of 1.274163 Å. The conjugation between PEG and HA occurs at C8-O1 atoms and can be manipulated to improve properties.

  15. Development of methodology for the synthesis of poly(lactic acid-co-glycolic acid) for use in the production of radioactive sources

    International Nuclear Information System (INIS)

    Peleias Junior, Fernando dos Santos; Zeituni, Carlos Alberto; Rostelato, Maria Elisa Chuery Martins; Souza, Carla Daruich de; Mattos, Fabio Rodrigues de; Moura, Eduardo Santana de; Moura, Joao Augusto; Benega, Marcos Antonio Gimenes; Feher, Anselmo; Costa, Osvaldo Luiz da; Rodrigues, Bruna Teiga; Fechine, Guilhermino Jose

    2015-01-01

    According to the World Health Organization, cancer is a leading cause of death worldwide. A radiotherapy method extensively used in prostate cancer is brachytherapy, where the area requiring treatment receives radioactive seeds. Iodine-125 seeds can be inserted loose or stranded in bioabsorbable polymers produced from poly(lactic-co-glycolic acid) (PLGA). We developed the synthesis methodology for PLGA and the results obtained show that it was possible to determine the optimal reaction parameters (time and temperature) for PLGA in 80/20 (lactide/glycolide) ratio. The yield was higher than 90% using a temperature of 110 °C and reaction time of 72 hours; however, the molecular weight values obtained are very low compared to those obtained by other authors. New tests using previously synthesized dimers and nitrogen atmosphere are being performed. These conditions could potentially increase the molar mass of PLGA. All techniques used confirmed the expected structure of the polymer. (author)

  16. The use of fillers and botulinum toxin type A in combination with superficial glycolic acid (alpha-hydroxy acid) peels: optimizing injection therapy with the skin-smoothing properties of peels.

    Science.gov (United States)

    Rendon, Marta I; Effron, Cheryl; Edison, Brenda L

    2007-01-01

    There are many procedures that a physician may utilize to improve the appearance and quality of the skin. Combining procedures can enhance the overall result and lead to increased patient satisfaction. Thus, it is important to choose procedures that will complement each other. Fillers or botulinum toxin type A (BTX-A) can plump the skin and smooth lines and wrinkles but will do little for uneven tone, skin laxity, or radiance and clarity. These signs of aging can be addressed with superficial glycolic acid peels. Methods of combining injectable compounds with superficial glycolic acid peels were discussed at a dermatologist roundtable event and are summarized in this article.

  17. Modified method for zirconium or hafnium gravimetric determination with glycolic acid derivatives

    International Nuclear Information System (INIS)

    Barbieri, R.S.; Rocha, J.C.; Terra, V.R.; Marques Neto, A.

    1989-01-01

    The conditions for gravimetric determination of zirconium or hafnium by glicolic acid derivatives were studied by thermogravimetric analysis. The method utilized shown that after precipitation, washing and drying of precipitates at 150 0 C, the resulting solid was weighed in the form of [M{RCH(OH)COO} 4 ] (M = Zr,Hf;R = C 6 H 5 , β-C 10 H 7 ,p-BrC 6 H 4 ). (author) [pt

  18. An Overview of Poly(lactic-co-glycolic Acid (PLGA-Based Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Piergiorgio Gentile

    2014-02-01

    Full Text Available Poly(lactic-co-glycolic acid (PLGA has attracted considerable interest as a base material for biomedical applications due to its: (i biocompatibility; (ii tailored biodegradation rate (depending on the molecular weight and copolymer ratio; (iii approval for clinical use in humans by the U.S. Food and Drug Administration (FDA; (iv potential to modify surface properties to provide better interaction with biological materials; and (v suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

  19. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin.

    Science.gov (United States)

    Atef, Eman; Altuwaijri, Njoud

    2018-01-01

    The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin.

  20. Bioceramic/Poly (glycolic-poly (lactic acid composite induces mineralized barrier after direct capping of rat tooth pulp tissue

    Directory of Open Access Journals (Sweden)

    Alfonso Gala-Garcia

    2010-03-01

    Full Text Available The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC and poly (glycolic-poly (lactic acid (PLGA material or a calcium hydroxide [Ca(OH2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  1. Examination of the pharmacodynamics and pharmacokinetics of a diclofenac poly(lactic-co-glycolic) acid nanoparticle formulation in the rat.

    Science.gov (United States)

    Harirforoosh, S; West, K O; Murrell, D E; Denham, J W; Panus, P C; Hanley, G A

    2016-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are assembled into two categories; cyclooxygenase (COX-1) sparing inhibitors of COX-2 and non-selective NSAIDs. Diclofenac (DICLO) is a non-selective NSAID that has been linked to serious side effects including gastric ulcers and renal injury. In this study, we examine the effect of poly(lactic-co-glycolic) acid nanoformulation on DICLO-associated adverse events and pharmacokinetics using a nanoparticle (NP) formulation previously developed in our laboratory. Rats were administered a single dose of methylcellulose (VEH), blank NP, DICLO (10 mg/kg), or a DICLO-NP suspension equivalent to the DICLO dose. Urinary and blood parameters were measured at baseline and following treatment. Duodenal and gastric prostaglandin E2 (PGE2) and duodenal myeloperoxidase (MPO) were collected to assess inflammation at 24 hrs post-treatment. The mean percent change from baseline in sodium excretion rate (µmol/min/100 g body weight) differed significantly from VEH in the NP (p < 0.0001), DICLO (p < 0.0001), and DICLO-NP (p = 0.0001) groups. The differences among groups did not reach significance for plasma sodium or potassium concentrations, potassium excretion rate, gastric PGE2, or intestinal biomarker concentrations. Regarding renal histopathology, DICLO produced considerably more necrosis compared to VEH; while DICLO-NP did not elicit notable differences from VEH. Our results suggest that over the duration and dosage examined, DICLO-NP may reduce renal necrosis without influencing other side effects or drug characteristics.

  2. Development of (acrylic acid/ polyethylene glycol)-zinc oxide mucoadhesive nanocomposites for buccal administration of propranolol HCl

    Science.gov (United States)

    Mahmoud, Ghada A.; Ali, Amr El-Hag; Raafat, Amany I.; Badawy, Nagwa A.; Elshahawy, Mai. F.

    2018-06-01

    A series of mucoadhesive nanocomposites with self disinfection properties composed of acrylic acid, polyethylene glycol and ZnO nanoparticles (AAc/PEG)-ZnO were developed for localized buccal Propranolol HCl delivery. γ-irradiation as a clean tool for graft copolymerization process was used for the preparation of (AAc/PEG) hydrogels. In suite precipitation technique was used for ZnO nanoparticles immobilization within (AAc/PEG) hydrogels. The developed (AAc/PEG)-ZnO nanocomposites were characterized by X-ray diffraction (XRD), UV-Vis spectrophotometer, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) to confirm the success of ZnO nanoparticles formation within the (AAc/PEG) matrices. The presence of ZnO nanoparticles improves the thermal stability as indicated using thermogravimetric analysis (TGA). The mucoadhesion characteristics such as hydration degree, surface pH, and mucoadhesive strength were evaluated in artificial saliva solution. The self disinfection property of the developed (AAc/PEG)-ZnO nanocomposites was investigated by examining their resistance to pathogenic microorganisms such as Staphylococcus aureus, Bacillus subtilis, and Escherichia coli using disc diffusion method. The release of Propranolol -HCl drug in artificial saliva was found to obey a non-Fickian diffusion mechanism. The obtained results suggests that (AAc/PEG)-ZnO nanocomposites could be used as mucoadhesive carrier for buccal drug delivery with efficient antibacterial properties.

  3. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  4. Coating of ß-tricalcium phosphate scaffolds—a comparison between graphene oxide and poly-lactic-co-glycolic acid

    International Nuclear Information System (INIS)

    Ardjomandi, N; Henrich, A; Huth, J; Reinert, S; Alexander, D; Klein, C; Schweizer, E; Scheideler, L; Rupp, F

    2015-01-01

    Bone regeneration in critical size defects is a major challenge in oral and maxillofacial surgery, and the gold standard for bone reconstruction still requires the use of autologous tissue. To overcome the need for a second intervention and to minimize morbidity, the development of new biomaterials with osteoinductive features is the focus of current research. As a scaffolding material, ß-tricalcium phosphate (ß-TCP) is suitable for bone regeneration purposes, although it does not carry any functional groups for the covalent immobilization of molecules. The aim of the present study was to establish effective coating variants for ß-TCP constructs to enable the biofunctionalization of anorganic blocks with different osteogenic molecules in future studies. We established working protocols for thin surface coatings consisting of polylactic-co-glycolic acid (PLGA) and graphene oxide (GO) by varying parameters. Surface properties such as the angularity and topography of the developed scaffolds were analyzed. To examine biological functionality, the adhesion and proliferation behavior of jaw periosteal cells (JPCs) were tested on the coated constructs. Our results suggest that PLGA is the superior material for surface coating of ß-TCP matrices, leading to higher JPC proliferation rates and providing a more suitable basis for further biofunctionalization in the field of bone tissue engineering. (paper)

  5. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    International Nuclear Information System (INIS)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-01-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro

  6. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  8. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold.

    Directory of Open Access Journals (Sweden)

    Koshiro Sonomoto

    Full Text Available Mesenchymal stem cells (MSCs have immunosuppressive activity and can differentiate into bone and cartilage; and thus seem ideal for treatment of rheumatoid arthritis (RA. Here, we investigated the osteogenesis and chondrogenesis potentials of MSCs seeded onto nano-fiber scaffolds (NFs in vitro and possible use for the repair of RA-affected joints.MSCs derived from healthy donors and patients with RA or osteoarthritis (OA were seeded on poly-lactic-glycolic acid (PLGA electrospun NFs and cultured in vitro.Healthy donor-derived MSCs seeded onto NFs stained positive with von Kossa at Day 14 post-stimulation for osteoblast differentiation. Similarly, MSCs stained positive with Safranin O at Day 14 post-stimulation for chondrocyte differentiation. Surprisingly, even cultured without any stimulation, MSCs expressed RUNX2 and SOX9 (master regulators of bone and cartilage differentiation at Day 7. Moreover, MSCs stained positive for osteocalcin, a bone marker, and simultaneously also with Safranin O at Day 14. On Day 28, the cell morphology changed from a spindle-like to an osteocyte-like appearance with processes, along with the expression of dentin matrix protein-1 (DMP-1 and matrix extracellular phosphoglycoprotein (MEPE, suggesting possible differentiation of MSCs into osteocytes. Calcification was observed on Day 56. Expression of osteoblast and chondrocyte differentiation markers was also noted in MSCs derived from RA or OA patients seeded on NFs. Lactic acid present in NFs potentially induced MSC differentiation into osteoblasts.Our PLGA scaffold NFs induced MSC differentiation into bone and cartilage. NFs induction process resembled the procedure of endochondral ossification. This finding indicates that the combination of MSCs and NFs is a promising therapeutic technique for the repair of RA or OA joints affected by bone and cartilage destruction.

  10. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery.

    Science.gov (United States)

    Imani, Rana; Prakash, Satya; Vali, Hojatollah; Faghihi, Shahab

    2018-05-29

    The successful application of nucleic acid-based therapy for the treatment of various cancers is largely dependent on a safe and efficient delivery system. A dual-functionalized graphene oxide (GO)-based nanocarrier with the conjugation of aminated-polyethylene glycol (PEG-diamine) and octa-arginine (R8) for the intracellular delivery of nucleic acids is proposed. The functionalized sites are covalently co-conjugated and the PEG : R8 molar ratio is optimized at 10 : 1 to achieve a hydrocolloidally stable size of 252 ± 2.0 nm with an effective charge of +40.97 ± 1.05 and an amine-rich content of 10.87 ± 0.4 μmol g-1. The uptake of the nanocarrier in breast cancer cell lines, MCF-7 and MDA-MB 231, is investigated. The siRNA and pDNA condensation ability in the presence and absence of enzymes and the endosomal buffering capacity, as well as the intracellular localization of the gene/nanocarrier complex are also evaluated. Furthermore, the delivery of functional genes associated with the nanocarrier is assessed using c-Myc protein knockdown and EGFP gene expression. The effective uptake of the nanocarrier by the cells shows superior cytocompatibility, and protects the siRNA and pDNA against enzyme degradation while inhibiting their migration with N : P ratios of 10 and 5, respectively. The co-conjugation of PEG-diamine and the cationic cell-penetrating peptide (CPP) into the GO nanocarrier also provides a superior internalization efficacy of 85% in comparison with a commercially available transfection reagent. The c-Myc protein knockdown and EGFP expression, which are induced by the nanocarrier, confirm that the optimized PEG-diamine/R8-functionalized GO could effectively deliver pDNA and siRNA into the cells and interfere with gene expression.

  11. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid).

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Jiang, Tao; Krogman, Nicholas R; Singh, Anurima; Allcock, Harry R; Laurencin, Cato T

    2008-01-01

    Previously we demonstrated the ability of ethyl glycinato substituted polyphosphazenes to neutralize the acidic degradation products and control the degradation rate of poly(lactic acid-glycolic acid) (PLAGA) by blending. In this study, blends of high strength poly[(50% ethyl alanato) (50% p-phenyl phenoxy) phosphazene] (PNEA(50)PhPh(50)) and 85:15 PLAGA were prepared using a mutual solvent approach. Three different solvents, methylene chloride (MC), chloroform (CF) and tetrahydrofuran (THF) were studied to investigate solvent effects on blend miscibility. Three different blends were then fabricated at various weight ratios namely 25:75 (BLEND25), 50:50 (BLEND50), and 75:25 (BLEND75) using THF as the mutual solvent. The miscibility of the blends was evaluated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Among these, BLEND25 was miscible while BLEND50 and BLEND75 were partially miscible. Furthermore, BLEND25 formed apatite layers on its surface as evidenced in a biomimetic study performed. These novel blends showed cell adhesion and proliferation comparable to PLAGA. However, the PNEA(50)PhPh(50) component in the blends was able to increase the phenotypic expression and mineralized matrix synthesis of the primary rat osteoblasts (PRO) in vitro. Blends of high strength PNEA(50)PhPh(50) and 85:15 PLAGA are promising biomaterials for a variety of musculoskeletal applications.

  12. Reduction of Inflammatory Responses and Enhancement of Extracellular Matrix Formation by Vanillin-Incorporated Poly(Lactic-co-Glycolic Acid) Scaffolds

    OpenAIRE

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-01-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting i...

  13. Transplantation of Nogo-66 receptor gene-silenced cells in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord injury★

    Science.gov (United States)

    Wang, Dong; Fan, Yuhong; Zhang, Jianjun

    2013-01-01

    Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced cells plus the poly(D,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury. PMID:25206713

  14. Removal of Heavy Metal Ions by Using Composite of Cement Kiln Dust/Ethylene Glycol co Acrylic Acid Prepared by y-Irradiation

    International Nuclear Information System (INIS)

    Sokker, H.H.; Abdel-Rahman, H.A.; Khattab, M.M.; Ismail, M.R.

    2010-01-01

    Various composites of cement kiln dust (CKD) and poly(ethylene glycol co acrylic acid) using y-irradiation was investigated. The samples were prepared using three percentages of cement kiln dust namely, 20, 50 and 75 by wt % and mixed with an equimolar ratio (1:1) of ethylene glycol and acrylic acid then irradiated at doses; 10,20 and 30 kGy of gamma-irradiation. The results showed that (CKD) and poly(ethylene glycol co acrylic acid) composites were formed only at 30 kGy. In addition, CKD alone has the lowest degree of removal of heavy metal ions compared with the prepared composites. A composite containing 75% cement kiln dust by weight percentage, showed the highest degree of removal of cobalt ions, whereas, a composite of 20% CKD showed the highest degree for cadmium ion removal. While the composite of 75% CKD showed a higher selectivity of cobalt ion than cadmium ion in their mixed solution.

  15. Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, M., E-mail: msakthi81986@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu (India); Department of Chemistry, Ganadipathy Tulsi' s Jain Engineering College, Kaniyambadi, Vellore 632 102, Tamilnadu (India); Franklin, D.S., E-mail: loyolafrank@yahoo.co.in [Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam 632509, Tamilnadu (India); Sudarsan, S., E-mail: srsudarsan29@gmail.com [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Chitra, G., E-mail: chitramuralikrishnan@gmail.com [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Guhanathan, S., E-mail: sai_gugan@yahoo.com [PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore 632 002, Tamilnadu (India)

    2017-06-01

    The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.

  16. Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels

    International Nuclear Information System (INIS)

    Sakthivel, M.; Franklin, D.S.; Sudarsan, S.; Chitra, G.; Guhanathan, S.

    2017-01-01

    The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.

  17. Thermo-mechanical properties of poly ε-caprolactone/poly L-lactic acid blends: addition of nalidixic acid and polyethylene glycol additives.

    Science.gov (United States)

    Douglas, P; Albadarin, Ahmad B; Al-Muhtaseb, Ala'a H; Mangwandi, Chirangano; Walker, G M

    2015-05-01

    The search for ideal biomaterials is still on-going for tissue regeneration. In this study, blends of poly ε-caprolactone (PCL) with poly l-lactic acid (PLLA), nalidixic acid (NA) and polyethylene glycol (PEG) were prepared. Mechanical and thermal properties of the blends were investigated by tensile and flexural analysis, DSC, TGA, WXRD, MFI, BET, SEM and hot stage optical microscopy. Results showed that the loading of PLLA caused a significant decrease in tensile strength and almost total eradication of the elongation at break of PCL matrix, especially after PEG and NA addition. Increased stiffness was also noted with additional NA, PEG and PLLA, resulting in an increase in the flexural modulus of the blends. Isothermal degradation indicated that bulk PCL, PLLA and the blends were thermally stable at 200°C for the duration of 2h making extrusion of the blends at this temperature viable. Morphological study showed that increasing the PLLA content and addition of the very low viscosity PEG and powder NA decreased the Melt Flow Indexer and increased the viscosity. At the higher temperature, the PLLA begins to soften and eventually melts allowing for increased flow and, coupling this with, the natural increase in MFI caused by temperature is enhanced further. The PEG and NA addition increased dramatically the pore volume which is important for cell growth and flow transport of nutrients and metabolic waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) nanoparticles.

    Science.gov (United States)

    Pradhan, Roshan; Poudel, Bijay Kumar; Choi, Ju Yeon; Choi, Im Soon; Shin, Beom Soo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-01-01

    In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate and poloxamer 407 as the anionic and non-ionic surfactant for stabilization. The PLGA NPs were prepared by emulsification/solvent evaporation method. Both the drug/polymer ratio and phase ratio were 1:10 (w/w). The optimized formulation of 17-AAG-loaded PLGA NPs had a particle size and polydispersity index of 151.6 ± 2.0 and 0.152 ± 0.010 nm, respectively, which was further supported by TEM image. The encapsulation efficiency and drug loading capacity were 69.9 and 7.0%, respectively. In vitro release study showed sustained release. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.468, which suggested that the drug was released by anomalous or non-Fickian diffusion. In addition, 17-AAG-loaded PLGA NPs in 72 h, displayed approximately 60% cell viability reduction at 10 µg/ml 17-AAG concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of 17-AAG into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.

  19. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds.

    Science.gov (United States)

    Lee, Eun Ji; Lee, Jong Ho; Jin, Linhua; Jin, Oh Seong; Shin, Yong Cheol; Sang, Jin Oh; Lee, Jaebeom; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-11-01

    In this study, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) for application to tissue engineering scaffolds for skin regeneration were prepared via coaxial electrospinning. Physicochemical properties of HA/PLGA-E core/shell fiber meshes were characterized by SEM, Raman spectroscopy, contact angle, EGCG release profiling and in vitro degradation. Biomechanical properties of HA/PLGA-E meshes were also investigated by a tensile strength test. SEM images showed that HA/PLGA-E fiber meshes had a three-dimensional interconnected pore structure with an average fiber diameter of about 1270 nm. Raman spectra revealed that EGCG was uniformly dispersed in the PLGA shell of meshes. HA/PLGA-E meshes showed sustained EGCG release patterns by controlled diffusion and PLGA degradation over 4 weeks. EGCG loading did not adversely affect the tensile strength and elastic modulus of HA/PLGA meshes, while increased their hydrophilicity and surface energy. Attachment of human dermal fibroblasts on HA/PLGA-E meshes was appreciably increased and their proliferation was steadily retained during the culture period. These results suggest that HA/PLGA-E core/shell fiber meshes can be potentially used as scaffolds supporting skin regeneration.

  20. Polyethylene glycol plus ascorbic acid is as effective as sodium picosulfate with magnesium citrate for bowel preparation: A randomized trial.

    Science.gov (United States)

    Choi, Hyun-Seok; Chung, Jun-Won; Lee, Ji Won; Lim, Min Young; Park, Dong Kyun; Kim, Yoon Jae; Kwon, Kwang Ahn; Kim, Jung Ho

    2016-04-01

    This study was aimed to evaluate the efficacy and safety of two low-volume agents, polyethylene glycol (PEG)-3350 plus ascorbic acid (PEG + Asc) and sodium picosulfate with magnesium citrate (SPMC), for bowel preparation. We performed a prospective, endoscopist-blinded, single-center, randomized controlled trial comparing PEG + Asc with SPMC to evaluate the bowel cleansing efficacy of the two regimens using the modified Ottawa bowel preparation scale (OBPS) and the Aronchick scale. Patients' taste and overall tolerance were assessed with a questionnaire. In total, 200 patients were randomized to receive either PEG + Asc (n = 98) or SPMC (n = 102). Both treatments were similarly efficacious in bowel cleansing, based on the modified OBSP (PEG + Asc 4.01 ± 2.29 vs SPMC 3.86 ± 2.47, P = 0.62) and Aronchick scale (PEG + Asc 1.96 ± 0.70 vs SPMC 1.89 ± 0.70, P = 0.42). Patient-reported taste and tolerance of each regimen, as reported by the questionnaire, were significantly greater in the PEG + Asc group than in the SPMC group (P = 0.01). In terms of adverse events, dizziness was more frequently observed in the PEG + Asc group (P = 0.03), whereas nausea was more common in the SPMC group (P = 0.02). PEG + Asc and SPMC show similar efficacy for bowel preparation. However, patient's overall tolerance is higher in the PEG + Asc group. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  1. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Science.gov (United States)

    Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe

    2015-01-01

    Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID

  2. Assessment of celecoxib poly(lactic-co-glycolic) acid nanoformulation on drug pharmacodynamics and pharmacokinetics in rats.

    Science.gov (United States)

    Harirforoosh, S; West, K O; Murrell, D E; Denham, J W; Panus, P C; Hanley, G A

    2016-11-01

    Celecoxib (CEL) is a nonsteroidal anti-inflammatory drug (NSAID) showing selective cycloxygenase-2 inhibition. While effective as a pain reducer, CEL exerts some negative influence on renal and gastrointestinal parameters. This study examined CEL pharmacodynamics and pharmacokinetics following drug reformulation as a poly(lactic-co-glycolic) acid nanoparticle (NP). Rats were administered either vehicle (VEH) (methylcellulose solution), blank NP, 40 mg/kg CEL in methylcellulose, or an equivalent NP dose (CEL-NP). Plasma and urine (over 12 hrs) samples were collected prior to and post-treatment. The mean percent change from baseline of urine flow rate along with electrolyte concentrations in plasma and urine were assessed based on 100 g body weight. Using tissues collected 24 hrs post-treatment, gastrointestinal inflammation was estimated through duodenal and gastric prostaglandin E2 (PGE2) and duodenal myeloperoxidase (MPO) levels; while kidney tissue was examined for dilatation and necrosis. CEL concentration was assayed in renal tissue and plasma utilizing high-performance liquid chromatography. Although there were significant changes when comparing CEL and CEL-NP to VEH in plasma sodium concentration and potassium excretion rate, there was no significant variation between CEL and CEL-NP. There was a significant reduction of protective duodenal PGE2 in CEL compared to VEH (p = 0.0088) and CEL-NP (p = 0.02). In the CEL-NP formulation, t1/2, Cmax, AUC0-∞, and Vd/F increased significantly when compared to CEL. At the observed dosage and duration, CEL-NP may not affect CEL-associated electrolyte parameters in either plasma or urine; however, it does provide increased systemic exposure while potentially alleviating some gastrointestinal outcomes related to inflammation.

  3. Noncovalent interaction of polyethylene glycol with copper complex of ethylenediaminetetraacetic acid and its application in constructing inorganic nanomaterials.

    Science.gov (United States)

    Pan, Shu Zhen; Song, Le Xin; Chen, Jie; Du, Fang Yun; Yang, Jing; Xia, Juan

    2011-10-21

    In this study, we try to answer a fundamental question: what is the consequence of the noncovalent interaction between a polymer and a coordination compound? Here, polyethylene glycol (PEG-4000, PEG-b) and copper complex of ethylenediaminetetraacetic acid (H(2)CuY) were employed to solve this problem. A novel adduct (CEP) between H(2)CuY and PEG-b was prepared. Our results indicated several interesting findings. First, the introduction of H(2)CuY had no effect on the stacking structure of PEG-b but led to a large change in surface structure of the polymer. Second, there was a significant difference (117 K) in the maximum degradation temperature between the PEG and the CEP, suggesting that the noncovalent interaction can drastically improve the thermal stability of the PEG. Third, sintering experiments showed that H(2)CuY and CEP produced completely different decomposition products. The former formed Cu crystals in nitrogen and CuO in air, but the latter generated Cu and CuCl crystals with good crystallinity, respectively. Finally, three independent measurements: viscosity, conductivity and nuclear magnetic resonance in solution, provided useful information and insights from both sides of the noncovalent interaction. Probable interaction mechanisms and interaction sites were proposed. We consider that the current research could create the foundation for a new understanding of how the noncovalent adduct interaction between a metallic complex and a polymer relates to the change in physical and chemical properties of the adducted components. This journal is © The Royal Society of Chemistry 2011

  4. Optimization of micropatterned poly(lactic-co-glycolic acid films for enhancing dorsal root ganglion cell orientation and extension

    Directory of Open Access Journals (Sweden)

    Ching-Wen Li

    2018-01-01

    Full Text Available Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffective in large gap injuries. Ridge/groove surface micropatterning has been shown to promote neural cell orientation and guide growth. However, optimization of the ratio of ridge/groove parameters to promote orientation and extension for dorsal root ganglion (DRG cells on poly(lactic-co-glycolic acid (PLGA films has not been previously conducted. Photolithography and micro-molding were used to define various combinations of ridge/groove dimensions on PLGA films. The DRG cells obtained from chicken embryos were cultured on micropatterned PLGA films for cell orientation and migration evaluation. Biodegradation of the films occurred during the test period, however, this did not cause deformation or distortion of the micropatterns. Results from the DRG cell orientation test suggest that when the ridge/groove ratio equals 1 (ridge/groove width parameters are equal, i.e., 10 μm/10 μm (even, the degree of alignment depends on the size of the ridges and grooves, when the ratio is smaller than 1 (groove controlled the alignment increases as the ridge size decreases, and when the ratio is larger than 1 (ridge controlled, the alignment is reduced as the width of the grooves decreases. The migration rate and neurite extension of DRG neurons were greatest on 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films. Based on the data, the 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films are the optimized ridge/groove surface patterns for the construction of nerve repair devices.

  5. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.

    Science.gov (United States)

    Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G

    2018-04-01

    Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.

  6. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro.

    Science.gov (United States)

    Shabani, Ronak; Ashjari, Mohsen; Ashtari, Khadijeh; Izadyar, Fariborz; Behnam, Babak; Khoei, Samideh; Asghari-Jafarabadi, Mohamad; Koruji, Morteza

    2018-01-01

    Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.

  7. Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications.

    Science.gov (United States)

    Chu, Chih-Hang; Wang, Yu-Chao; Huang, Hsin-Ying; Wu, Li-Chen; Yang, Chung-Shi

    2011-05-06

    A novel method was developed for the one-pot synthesis of ultrafine poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), using an emulsion solvent evaporation formulation method. Using either cetyltrimethylammonium bromide (CTAB) or poly(ethylene glycol)-distearyl phosphoethanolamine (PEGPE) as an oily emulsifier during the emulsion process, produced PLGA particle sizes of less than 50 nm, constituting a breakthrough in emulsion formulation methods. The yield of ultrafine PLGA NPs increased with PEGPE/PLGA ratio, reaching a plateau at around 85%, when the PEGPE/PLGA ratio reached 3:1. The PEGPE-PLGA NPs exhibited high drug loading content, reduced burst release, good serum stability, and enhanced cell uptake rate compared with traditional PLGA NPs. Sub-50 nm diameter PEG-coated ultrafine PLGA NPs show great potential for in vivo drug delivery systems.

  8. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  9. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    Directory of Open Access Journals (Sweden)

    Lee HY

    2011-11-01

    Full Text Available Hye-Young Lee1,*, Young-IL Jeong2,*, Ki-Choon Choi31Anyang Science University, Anyang, Gyeonggi, South Korea; 2Chonnam National University Hwasun Hospital, Jeonnam, South Korea; 3Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration, Chungnam, South Korea*These authors contributed equally to this work.Background: p-Phenylenediamine (PDA or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic.Methods: PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid (PGA. To reinforce PDA/PGA ion complexes, glycol chitosan (GC was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier-transform infrared (FT-IR spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD.Results: Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm, and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was

  10. A meta-analysis of randomized controlled trials of low-volume polyethylene glycol plus ascorbic acid versus standard-volume polyethylene glycol solution as bowel preparations for colonoscopy.

    Directory of Open Access Journals (Sweden)

    Qingsong Xie

    Full Text Available BACKGROUND: Standard-volume polyethylene glycol (PEG gut lavage solutions are safe and effective, but they require the consumption of large volumes of fluid. A new lower-volume solution of PEG plus ascorbic acid has been used recently as a preparation for colonoscopy. AIM: A meta-analysis was performed to compare the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. STUDY: Electronic and manual searches were performed to identify randomized controlled trials (RCTs that compared the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. After a methodological quality assessment and data extraction, the pooled estimates of bowel preparation efficacy during bowel cleansing, compliance with preparation, willingness to repeat the same preparation, and the side effects were calculated. We calculated pooled estimates of odds ratios (OR by fixed- and/or random-effects models. We also assessed heterogeneity among studies and the publication bias. RESULTS: Eleven RCTs were identified for analysis. The pooled OR for preparation efficacy during bowel cleansing and for compliance with preparation for low-volume PEG plus ascorbic acid were 1.08 (95% CI = 0.98-1.28, P = 0.34 and 2.23 (95% CI = 1.67-2.98, P<0.00001, respectively, compared with those for standard-volume PEG. The side effects of vomiting and nausea for low-volume PEG plus ascorbic acid were reduced relative to standard-volume PEG. There was no significant publication bias, according to a funnel plot. CONCLUSIONS: Low-volume PEG plus ascorbic acid gut lavage achieved non-inferior efficacy for bowel cleansing, is more acceptable to patients, and has fewer side effects than standard-volume PEG as a bowel preparation method for colonoscopy.

  11. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    International Nuclear Information System (INIS)

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-01-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated

  12. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Elli, E-mail: elli.kapyla@tut.fi [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Sedlačík, Tomáš [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Aydogan, Dogu Baran [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Viitanen, Jouko [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Rypáček, František [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Kellomäki, Minna [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland)

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated.

  13. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid electrospun fibrous scaffold for bone regeneration

    Directory of Open Access Journals (Sweden)

    Chen SJ

    2015-06-01

    Full Text Available Shijie Chen,1,* Zhiyuan Jian,2,* Linsheng Huang,2,* Wei Xu,3,* Shaohua Liu,4 Dajiang Song,3 Zongmiao Wan,3 Amanda Vaughn,5 Ruisen Zhan,1 Chaoyue Zhang,1 Song Wu,1 Minghua Hu,6 Jinsong Li1 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People’s Republic of China; 3Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People’s Republic of China; 4Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 5Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; 6Department of Anthropotomy, Changsha Medical College, Changsha, Hunan, People’s Republic of China *These authors contributed equally to this work Abstract: A mesoporous bioactive glass (MBG surface modified with poly(lactic-co-glycolic acid (PLGA electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds

  14. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study.

    Science.gov (United States)

    Sha'ban, Munirah; Kim, Soon Hee; Idrus, Ruszymah Bh; Khang, Gilson

    2008-04-25

    Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 x 10(6) cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM). Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for

  15. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  16. 5-aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol-chitosan copolymer for photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Chung CW

    2013-02-01

    Full Text Available Chung-Wook Chung,1,* Kyu-Don Chung,2,* Young-Il Jeong,1 Dae Hwan Kang,1 1National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea; 2Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University, Seoul, Republic of Korea*These authors contributed equally to this workPurpose: The aim of this study was to make 5-aminolevulinic acid (5-ALA-incorporated nanoparticles using methoxy polyethylene glycol/chitosan (PEG-Chito copolymer for application in photodynamic therapy for colon cancer cells.Methods: 5-ALA-incorporated (PEG-Chito-5-ALA nanoparticles were prepared by ion complex formation between 5-ALA and chitosan. Protoporphyrin IX accumulation in the tumor cells and phototoxicity induced by PEG-Chito-5-ALA nanoparticles were assessed using CT26 cells in vitro.Results: PEG-Chito-5-ALA nanoparticles have spherical shapes with sizes diameters 200 nm. More specifically, microscopic observation revealed a core-shell structure of PEG-Chito-5-ALA nanoparticles. 1H NMR spectra showed that 5-ALA was incorporated in the core of the nanoparticles. In the absence of light irradiation, all components such as 5-ALA, empty nanoparticles, and PEG-Chito-5-ALA nanoparticles did not affect the viability of cells. However, 5-ALA or PEG-Chito-5-ALA nanoparticles induced tumor cell death under light irradiation, and the viability of tumor cells was dose-dependently decreased according to the increase in irradiation time. In particular, PEG-Chito-5-ALA nanoparticles induced increased phototoxicity and higher protoporphyrin IX accumulation into the tumor cells than did 5-ALA alone. Furthermore, PEG-Chito-5-ALA nanoparticles accelerated apoptosis/necrosis of tumor cells, compared to 5-ALA alone.Conclusion: PEG-Chito-5-ALA nanoparticles showed superior delivery capacity of 5-ALA and phototoxicity against tumor cells. These results show that PEG-Chito-5-ALA

  17. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections

    International Nuclear Information System (INIS)

    Flores, Claudia; Degoutin, Stephanie; Chai, Feng; Raoul, Gwenael; Hornez, Jean-Chritophe; Martel, Bernard; Siepmann, Juergen; Ferri, Joel; Blanchemain, Nicolas

    2016-01-01

    Trauma and orthopedic surgery can cause infections as any open surgical procedures. Such complications occur in only1 to 5% of the cases, but the treatment is rather complicated due to bacterial biofilm formation and limited drug access to the site of infection upon systemic administration. An interesting strategy to overcome this type of complications is to prevent bacterial proliferation and biofilm formation via the local and controlled release of antibiotic drugs from the implant itself. Obviously, the incorporation of the drug into the implant should not affect the latter's biological and mechanical properties. In this context, we optimized the preparation process for gentamicin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles, which can be incorporated in the macropores of calcium phosphate-based bone substitutes. Microparticles were prepared using a double emulsion solvent extraction/evaporation technique. The processing parameters were optimized in order to provide an average microparticle size of about 60 μm, allowing for incorporation inside the macropores (100 μm) of the hydroxyapatite scaffold. Gentamicin-loaded PLGA microparticles showed a sustained release for 25–30 days and a rapid antibacterial activity due to a burst effect, the extent of which was controlled by the initial loading of the microparticles. SEM pictures revealed a highly porous microparticle structure, which can help to reduce the micro environmental pH drop and autocatalytic effects. The biological evaluation showed the cytocompatibility and non-hemolytic property of the microparticles, and the antibacterial activity against Staphylococcus aureus under the given conditions. - Highlights: • The optimization of microparticle preparation parameters allows to obtain a size compatible with the bone substitute porosity • PDL% has a direct impact on the burst effect, a control release of gentamicin was obtained • The incorporation of microparticles into the macroporosity

  18. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Claudia [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Degoutin, Stephanie [Univ. Lille, 59000 Lille (France); UMET, Ingénierie des Systèmes Polymères, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Chai, Feng [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Raoul, Gwenael [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Service Chirurgie Maxillo-Faciale, CHRU de Lille, 59000 Lille (France); Hornez, Jean-Chritophe [Laboratoire des Matériaux Céramiques et Procédés Associés (LMCPA), Université de Valenciennes, 59300 Valenciennes (France); Martel, Bernard [Univ. Lille, 59000 Lille (France); UMET, Ingénierie des Systèmes Polymères, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Siepmann, Juergen [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Ferri, Joel [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Service Chirurgie Maxillo-Faciale, CHRU de Lille, 59000 Lille (France); Blanchemain, Nicolas, E-mail: nicolas.blanchemain@univ-lille2.fr [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France)

    2016-07-01

    Trauma and orthopedic surgery can cause infections as any open surgical procedures. Such complications occur in only1 to 5% of the cases, but the treatment is rather complicated due to bacterial biofilm formation and limited drug access to the site of infection upon systemic administration. An interesting strategy to overcome this type of complications is to prevent bacterial proliferation and biofilm formation via the local and controlled release of antibiotic drugs from the implant itself. Obviously, the incorporation of the drug into the implant should not affect the latter's biological and mechanical properties. In this context, we optimized the preparation process for gentamicin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles, which can be incorporated in the macropores of calcium phosphate-based bone substitutes. Microparticles were prepared using a double emulsion solvent extraction/evaporation technique. The processing parameters were optimized in order to provide an average microparticle size of about 60 μm, allowing for incorporation inside the macropores (100 μm) of the hydroxyapatite scaffold. Gentamicin-loaded PLGA microparticles showed a sustained release for 25–30 days and a rapid antibacterial activity due to a burst effect, the extent of which was controlled by the initial loading of the microparticles. SEM pictures revealed a highly porous microparticle structure, which can help to reduce the micro environmental pH drop and autocatalytic effects. The biological evaluation showed the cytocompatibility and non-hemolytic property of the microparticles, and the antibacterial activity against Staphylococcus aureus under the given conditions. - Highlights: • The optimization of microparticle preparation parameters allows to obtain a size compatible with the bone substitute porosity • PDL% has a direct impact on the burst effect, a control release of gentamicin was obtained • The incorporation of microparticles into the

  19. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    Science.gov (United States)

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  20. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    Science.gov (United States)

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P  .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  1. Biosynthetic mechanism of glycolate in Chromatium, 4

    International Nuclear Information System (INIS)

    Asami, Sumio; Takabe, Tetsuo; Akazawa, Takashi

    1977-01-01

    The metabolic transformation of glycolate to glycine occurring in photosynthesizing cells of Chromatium was investigated by the radioisotopic technique and by amino acid analysis. By analyzing the distribution of radiocarbon upon feeding (1- 14 C) glycolate, (2- 14 C) glyoxylate and (1- 14 C) glycine to bacterial cells, it was demonstrated that glycolate is converted to glycine via glyoxylate, and both glycolate and glycine are excreted extracellularly. Although the formation of serine was barely detected by the above two techniques in both N 2 and O 2 atmospheres, it was found that 14 CO 2 is evolved quite markedly from both (1- 14 C) glycolate and (1- 14 C) glycine fed to the Chromatium cells. Analytical results of transient changes in amino acid compositions under atmospheric changes of N 2 →O 2 and by the addition of exogenous glycolate in N 2 confirm the notion that glycolate is converted to glycine. Acidic amino acids (glutamic acid and aspartic acid) appear to take part in glycine formation as amino donors. The formation of glycine from glycolate in a N 2 atmosphere suggests that an unknown glycolate dehydrogenation reaction may operate in the overall process. (auth.)

  2. [An experimental study on a slow-release complex with rifampicin-polylactic-co-glycolic acid-calcium 
phosphate cement].

    Science.gov (United States)

    Wu, Jianhuang; Ding, Zhou; Lei, Qing; Li, Miao; Liang, Yan; Lu, Tao

    2016-09-28

    To prepare the slow-release complex with rifampicin (RFP)-polylactic-co-glycolic acid (PLGA)-calcium phosphate cement (CPC) (RFP-PLGA-CPC complex), and to study its physical and chemical properties and drug release properties in vitro.
 The emulsification-solvent evaporation method was adopted to prepare rifampicin polylactic acid-glycolic acid (RFP-PLGA) slow-release microspheres, which were divided into 3 groups: a calcium phosphate bone cement group (CPC group), a CPC embedded with RFP group (RFP-CPC group), and a PLGA slow-release microspheres carrying RFP and the self-curing CPC group (RFP- PLGA-CPC complex group). The solidification time and porosity of materials were determined. The drug release experiments in vitro were carried out to observe the compressive strength, the change of section morphology before and after drug release. 
 The CPC group showed the shortest solidification time, while the RFP-PLGA-CPC complex group had the longest one. There was statistical difference in the porosity between the CPC group and the RFP-CPC group (Pbehavior of the complex, which was in accordance with zero order kinetics equation F=0.168×t.
 The porosity of RFP-PLGA-CPC complex is significantly higher than that of CPC, and it can keep slow release of the effective anti-tuberculosis drugs and maintain a certain mechanical strength for a long time.

  3. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    Science.gov (United States)

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  4. Literature review of the potential impact of glycolic acid on the technetium chemistry of srs tank waste

    International Nuclear Information System (INIS)

    Nash, Charles A.; McCabe, Daniel J.

    2017-01-01

    This document presents a literature study of the impact of glycolate on technetium chemistry in the Savannah River Site (SRS) waste system and specifically Saltstone. A predominant portion of the Tc at SRS will be sent to the Saltstone Facility where it will be immobilized. The Tc in the tank waste is in the highly soluble chemical form of pertechnetate ion (TcO 4 - ) which is reduced by blast furnace slag (BFS) in Saltstone, rendering it highly insoluble and resistant to leaching.

  5. Development of methodology for the synthesis of poly(lactic acid-co-glycolic acid) for use in the production of radioactive sources

    International Nuclear Information System (INIS)

    Peleias Junior, Fernando dos Santos

    2013-01-01

    According to World Health Organization (WHO), cancer is a leading cause of death worldwide. Prostate cancer is the second most common cancer in men. A method of radiotherapy which has been extensively used is brachytherapy, where radioactive seeds are placed inside the area requiring treatment. Iodine-125 seeds can be placed loose or stranded in bioabsorbable polymers. Stranded seeds show some advantages, since they reduce the rate of seed migration, an event that could affect the dosimetry of the prostate and cause unnecessary damage to healthy tissues or organs. For Iodine-125 stranded seeds, polyglactin 910 (poly(lactic-co-glycolic acid)) (PLGA), with a coverage of polyglactin 370 (Vicryl ®) is used. It was purposed in this dissertation, the study and development of the synthesis methodology for PLGA via ring-opening polymerization, as well as its characterization, with the objective of using the synthesized material to manufacture a material similar to RAPID Strand ® . The results obtained show that it was possible to determine the optimal reaction parameters (time and temperature) for PLGA in 80/20 (lactide/glycolide) ratio. Using a temperature of 110 ° C and reaction time of 24h, a yield of 86% was obtained, and increasing the reaction time to 72 hours, the yield was higher than 90%. The molecular mass values obtained from the samples are still very low compared to those obtained by other authors in the literature (about 20%). Failures in the sealing of vials, leaving them vulnerable to moisture and oxygen, or lack of an efficient stirring system might be possible explanations for these results. A suitable chemical reactor could solve the problem. Regarding polymer characterization, all techniques used not only confirmed the expected structure of the polymer, but also showed the highest proportion of lactide units compared to to glycolide units. (author)

  6. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    Science.gov (United States)

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant

  7. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    International Nuclear Information System (INIS)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-01-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  8. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA Nanoparticles in Rat Plasma

    Directory of Open Access Journals (Sweden)

    Hua-Shi Guan

    2013-04-01

    Full Text Available This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD at 250 nm (excitation and 435 nm (emission using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA nanoparticles (PSS-NP in rat plasma after a single intravenous (PSS only and oral administration (PSS and PSS-NP. Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability.

  9. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Ding, Bin [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600 (China)

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  10. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    Science.gov (United States)

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  11. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    Science.gov (United States)

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  12. Ethylene glycol blood test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  13. Literature review of the potential impact of glycolic acid on the technetium chemistry of srs tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-09

    This document presents a literature study of the impact of glycolate on technetium chemistry in the Savannah River Site (SRS) waste system and specifically Saltstone. A predominant portion of the Tc at SRS will be sent to the Saltstone Facility where it will be immobilized. The Tc in the tank waste is in the highly soluble chemical form of pertechnetate ion (TcO4 -) which is reduced by blast furnace slag (BFS) in Saltstone, rendering it highly insoluble and resistant to leaching.

  14. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    Science.gov (United States)

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  15. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    Science.gov (United States)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  16. [Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction].

    Science.gov (United States)

    Li, S Y; Zhou, M; Lai, Y X; Geng, Y M; Cao, S S; Chen, X M

    2016-11-09

    Objective: To biologically evaluate the three-dimensional(3D) printed co-poly lactic acid/glycolic acid/tri-calcium phosphate(PLGA/TCP) scaffold which could be used for repairing oral and maxillofacial bone defects, and to provide experimental evidence for its further research and clinical application. Methods: PLGA/TCP scaffolds were fabricated using low temperature rapid prototyping technique. Micro-CT and scanning electron microscope(SEM) were used to characterize the surface morphology. MC3T3-E1 cells were seeded onto the scaffold and stained with the rhodamine phalloidin and calcein acetomethoxy. After that, confocal laser scanning microscope was exploited to observe the features and viability of the cells. Moreover, the cells were co-cultured with the extract of PLGA/TCP and complete medium, respectively. The proliferation capability of the cells was assessed by the cell counting kit-8 (CCK-8) on the 1st, 2nd, and 3rd day. The PLGA/TCP scaffolds incorporated with recombinant human bone morphogenetic protein-2(rhBMP-2) of 0, 30, 60 μg(i.e. blank control group, low-dose group and high-dose group) were implanted into the latissimus dorsi muscle of the rats, and 6 weeks later, the samples were harvested to estimate the volume and pattern of new bone. Results: The 3D printed PLGA/TCP scaffold possessed a regular and well-defined porous stereo-structure with porosity of (73±3)%. Micro-CT and SEM showed that pore size were (379±32) and (453±29) μm respectively, and distance between layers were (452± 24) and (415±25) μm, and cylinder diameter were (342±24) and (350±28) μm. It also exhibited excellent cell adhesion and growth ability on the exterior and inner surface through rhodamine phalloidin and calcein acetomethoxy staining. The CCK-8 test demonstrated that the absorbance value of extract group on the 1st and 2nd day(0.51±0.08 and 0.63±0.09) were significantly higher than those in the blank control group(0.39± 0.05 and 0.53±0.05)( P 0.05) on the 3

  17. Extended Solution Gate OFET-based Biosensor for Label-free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycol-Containing Bioreceptor Layer.

    Science.gov (United States)

    Song, Jian; Dailey, Jennifer; Li, Hui; Jang, Hyun-June; Zhang, Pengfei; Wang, Jeff Tza-Huei; Everett, Allen D; Katz, Howard E

    2017-05-25

    A novel organic field effect transistor (OFET) -based biosensor is described for label-free glial fibrillary acidic protein (GFAP) detection. We report the first use of an extended solution gate structure where the sensing area and the organic semiconductor are separated, and a reference electrode is not needed. Different molecular weight polyethylene glycols (PEGs) are mixed into the bio-receptor layer to help extend the Debye screening length. The drain current change was significantly increased with the help of higher molecular weight PEGs, as they are known to reduce the dielectric constant. We also investigated the sensing performance under different gate voltage (V g ). The sensitivity increased after we decreased V g from -5 V to -2 V, because the lower V g is much closer to the OFET threshold voltage and the influence of attached negatively charged proteins become more apparent. Finally, the selectivity experiments toward different interferents were performed. The stability and selectivity are promising for clinical applications.

  18. Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion.

    Science.gov (United States)

    Fu, Shao Zhi; Li, Zhi; Fan, Jun Ming; Meng, Xiao Hang; Shi, Kun; Qu, Ying; Yang, Ling Lin; Wu, Jing Bo; Fan, Juan; Luot, Feng; Qian, Zhi Yong

    2014-03-01

    Post-operative peritoneal adhesions are serious consequences of abdominal or pelvic surgery and cause severe bowel obstruction, chronic pelvic pain and infertility. In this study, a novel nano-hydrogel system based on a monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) di-block copolymer was studied for its ability to prevent abdominal adhesion in rats. The MPEG-PLA hydrogel at a concentration of 40% (w/v) was injected and was able to adhere to defect sites at body temperature. The ability of the hydrogel to inhibit adhesion of post-operative tissues was evaluated by utilizing a rat model of abdominal sidewall-cecum abrasion. It was possible to heal wounded tissue through regeneration of neo-peritoneal tissues ten days after surgery. Our data showed that this hydrogel system is equally as effective as current commercialized anti-adhesive products.

  19. Surgical suture braided with a diclofenac-loaded strand of poly(lactic-co-glycolic acid) for local, sustained pain mitigation.

    Science.gov (United States)

    Huh, Beom Kang; Kim, Byung Hwi; Kim, Se-Na; Park, Chun Gwon; Lee, Seung Ho; Kim, Ka Ryeong; Heo, Chan Yeong; Choy, Young Bin

    2017-10-01

    In this work, we propose a surgical suture that can sustainably release diclofenac (DF) for the local pain relief of surgical wounds. We separately fabricated a DF-loaded strand composed of a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), which was then braided with a surgical suture already in clinical use, i.e., VICRYL™. In this way, the drug-delivery suture presented herein could release DF in a sustained manner for 10days while maintaining the mechanical strength needed for wound closure. According to the in vivo results of an induced-pain animal model, the drug-delivery suture mitigated pain throughout the period of persistent pain. The histological analysis of tissue around the sutures showed that the drug-delivery suture exhibited biocompatibility comparable to that of the VICRYL™ suture in clinical use. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enhancement of human mesenchymal stem cell infiltration into the electrospun poly(lactic-co-glycolic acid) scaffold by fluid shear stress.

    Science.gov (United States)

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    The infiltration of the cells into the scaffolds is important phenomenon to give them good biocompatibility and even biodegradability. Fluid shear stress is one of the candidates for the infiltration of cells into scaffolds. Here we investigated the directional migration of human mesenchymal stem cells and infiltration into PLGA scaffold by fluid shear stress. The human mesenchymal stem cells showed directional migrations following the direction of the flow (8, 16 dyne/cm(2)). In the scaffold models, the fluid shear stress (8 dyne/cm(2)) enhanced the infiltration of cells but did not influence on the infiltration of Poly(lactic-co-glycolic acid) particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effects of polyethylene glycol 2 L alone or with ascorbic acid compared with polyethylene glycol 4 L alone for bowel preparation before colonoscopy: protocol for a systematic review and network meta-analysis.

    Science.gov (United States)

    Tian, Xu; Chen, Wei-Qing; Huang, Jie-Li; He, Lan-Ying; Liu, Bang-Lun; Liu, Xi; Zhou, Hang; Liu, Bing-Rong

    2017-10-16

    Colonoscopy has been regarded as a standard method of detecting and removing gastrointestinal lesions early, while adequate bowel preparation is the prerequisite of determining the diagnostic accuracy and treatment safety of this process. Polyethylene glycol (PEG) based bowel preparation regimens remain the first recommendation, but the optimal option is still uncertain. The aim of this systematic review and network meta-analysis of randomised controlled trials (RCTs) is to determine the optimal PEG based bowel preparation regimen before colonoscopy. We will assign two investigators to independently search all potential citations, screen records, abstract essential information and appraise the risk of bias accordingly. Then, random effects pairwise and network meta-analyses of RCTs comparing PEG 2 L alone or with ascorbic acid with PEG 4 L alone will be performed using RevMan 5.3 (Copenhagen, Denmark: The Nordic Cochrane Centre, The Cochrane Collaboration, 2013), Stata 14 (StataCorp, Texas, USA) and WinBUGS 1.4 (Imperial College School of Medicine, St Mary's, London, UK) from January 2000 to April 2017. The surface under the cumulative ranking curve will also be calculated in order to rank the regimens. Ethics approval and patient written informed consent will not be required because all of the analyses in the present study will be performed based on data from published studies. We will submit our systematic review and network meta-analysis to a peer reviewed scientific journal for publication. PROSPERO: CRD42017068957. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Application of rotatable central composite design in the preparation and optimization of poly(lactic-co-glycolic acid) nanoparticles for controlled delivery of paclitaxel.

    Science.gov (United States)

    Kollipara, Sivacharan; Bende, Girish; Movva, Snehalatha; Saha, Ranendra

    2010-11-01

    Polymeric carrier systems of paclitaxel (PCT) offer advantages over only available formulation Taxol® in terms of enhancing therapeutic efficacy and eliminating adverse effects. The objective of the present study was to prepare poly (lactic-co-glycolic acid) nanoparticles containing PCT using emulsion solvent evaporation technique. Critical factors involved in the processing method were identified and optimized by scientific, efficient rotatable central composite design aiming at low mean particle size and high entrapment efficiency. Twenty different experiments were designed and each formulation was evaluated for mean particle size and entrapment efficiency. The optimized formulation was evaluated for in vitro drug release, and absorption characteristics were studied using in situ rat intestinal permeability study. Amount of polymer and duration of ultrasonication were found to have significant effect on mean particle size and entrapment efficiency. First-order interactions of amount of miglyol with amount of polymer were significant in case of mean particle size, whereas second-order interactions of polymer were significant in mean particle size and entrapment efficiency. The developed quadratic model showed high correlation (R(2) > 0.85) between predicted response and studied factors. The optimized formulation had low mean particle size (231.68 nm) and high entrapment efficiency (95.18%) with 4.88% drug content. The optimized formulation showed controlled release of PCT for more than 72 hours. In situ absorption study showed faster and enhanced extent of absorption of PCT from nanoparticles compared to pure drug. The poly (lactic-co-glycolic acid) nanoparticles containing PCT may be of clinical importance in enhancing its oral bioavailability.

  3. Gold nanorod–based poly(lactic-co-glycolic acid with manganese dioxide core–shell structured multifunctional nanoplatform for cancer theranostic applications

    Directory of Open Access Journals (Sweden)

    Wang L

    2017-04-01

    Full Text Available Lei Wang,1–3 Dong Li,1,2 Yongwei Hao,1,2 Mengya Niu,1,2 Yujie Hu,1,2 Hongjuan Zhao,1,2 Junbiao Chang,2,3 Zhenzhong Zhang,1,2 Yun Zhang1,2 1School of Pharmaceutical Sciences, Zhengzhou University, 2Key Laboratory of Targeting Therapy and Diagnosis for Critical Disease, Henan Province, 3School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Recently, photothermal therapy has become a promising strategy in tumor treatment. However, the therapeutic effect was seriously hampered by the low tissue penetration of laser. Therefore, in this study, radiofrequency (RF with better tissue penetration was used for tumor hyperthermia. First, one type of gold nanorods (AuNRs suitable for RF hyperthermia was selected. Then, poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs loaded with AuNRs and docetaxel (DTX (PLGA/AuNR/DTX NPs were constructed. Finally, manganese dioxide (MnO2 ultrathin nanofilms were coated on the surfaces of PLGA/AuNR/DTX NPs by the reduction of KMnO4 to construct the PLGA/AuNR/DTX@MnO2 drug delivery system. This drug delivery system can not only be used for the combined therapy of chemotherapy and RF hyperthermia but can also produce Mn2+ to enable magnetic resonance imaging. Furthermore, the RF hyperthermia and the degradation of MnO2 can significantly promote the controlled drug release in a tumor region. The in vitro and in vivo results suggested that the PLGA/AuNR/DTX@MnO2 multifunctional drug delivery system is a promising nanoplatform for effective cancer theranostic applications. Keywords: poly(lactic-co-glycolic acid, gold nanorod, manganese dioxide, radiofrequency, hyperthermia, dual-mode imaging, controlled release

  4. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Islas, Luisa [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico); Ruiz, Juan-Carlos [División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 México D.F. (Mexico); Muñoz-Muñoz, Franklin [Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, B.C. C.P 22860 (Mexico); Isoshima, Takashi [Nano Medical Engineering Laboratory, RIKEN, 2-1Hirosawa, Wako, Saitama 351-0198 (Japan); Burillo, Guillermina, E-mail: burillo@nucleares.unam.mx [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2016-10-30

    Highlights: • Polymer grafting using gamma-radiation allowed for acrylic acid and poly(ethylene glycol) methacrylate to graft on the inner and outer surface of poly(vinyl chloride) urinary catheters. • HR-XPS revealed the different compositional percentages of the compounds present on the surface of the catheter. • Catheters that were grafted with PEGMA had the roughest surface as observed using scanning electron microscopy (SEM) and confocal laser microscopy (CLM). - Abstract: Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from {sup 60}Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C{sub 1s} and O{sub 1s} content at the catheter’s surface, revealed that the catheter’s surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC’s Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  5. Ethylene Glycol, Hazardous Substance in the Household

    Directory of Open Access Journals (Sweden)

    Jiří Patočka

    2010-01-01

    Full Text Available Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment.

  6. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model.

    Science.gov (United States)

    Bao, Hanmei; Lv, Feng; Liu, Tianjun

    2017-12-01

    Site-specific controlled release of exogenous angiogenic growth factors, such as recombinant human basic fibroblast growth factor (rhbFGF), has become a promising approach to improve peripheral vascular disease. Here, we have developed an implant composed of spiral magnesium (Mg) and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The encapsulated protein could release continually for 4weeks with well preserved bioactivity. We compared the angiogenic effect produced by Mg-PLGA-rhbFGF with that of a PLGA implant loaded with rhbFGF (PLGA-rhbFGF). The incorporation of Mg in the implant raised the microclimate pH in the polymer, which preserved the stability of rhbFGF. Mg-PLGA-rhbFGF exhibited advantages over PLGA-rhbFGF implant in terms of a cytocompatibility evaluation. An in vivo angiogenesis test further confirmed the efficacy of released rhbFGF. HE, CD31 and α-SMA staining revealed that the controlled release of rhbFGF from the Mg-PLGA-rhbFGF implant was superior in promoting angiogenesis compared with that of the PLGA-rhbFGF implant. Four weeks post-implantation, the capillary density of the Mg-PLGA-rhbFGF group was significantly higher than that of the PLGA-rhbFGF, control and the normal group (pspiral magnesium and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The preparation method does not involve any complex processes and results in a high encapsulation efficiency (approximately 100%). The degradation of metal Mg raise the microclimate pH in the PLGA polymer, which could well preserve the bioactivity of rhbFGF incorporated in the implant. Mg-PLGA-based, sustained local delivery of rhbFGF promotes post-ischemic angiogenesis and blood flow recovery in rat limb ischemic model. This work marks the first report for controlled release of rhbFGF in combination with metal Mg, and suggests potential therapeutic usefulness of Mg-PLGA-rhbFGF for tissue ischemia

  7. Dual tumor-targeted poly(lactic-co-glycolic acid–polyethylene glycol–folic acid nanoparticles: a novel biodegradable nanocarrier for secure and efficient antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Chen J

    2017-08-01

    Full Text Available Jia Chen,1,2,* Qi Wu,1,* Li Luo,1 Yi Wang,1 Yuan Zhong,1 Han-Bin Dai,1 Da Sun,1,3 Mao-Ling Luo,4 Wei Wu,1 Gui-Xue Wang1 1Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, 2Institute of Laboratory Animals, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu, 3Institute of Life Sciences, Wenzhou University, Wenzhou, 4School of Medicine, Wuhan University, Wuhan, China *These authors contributed equally to this work Abstract: Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid (PLGA–polyethylene glycol (PEG–folic acid (FA copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei. In addition, all hemolysis, 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, and zebrafish-development experiments demonstrated that PLGA-PEG-FA nanoparticles were biocompatible and secure for biomedical applications, even at high polymer concentration (0.1 mg/mL, both in vitro and in vivo. Therefore, PLGA-PEG-FA nanoparticles provide a feasible controlled-release platform for secure and efficient antitumor drug

  8. Comparative efficacy of combination of 1 L polyethylene glycol, castor oil and ascorbic acid versus 2 L polyethylene glycol plus castor oil versus 3 L polyethylene glycol for colon cleansing before colonoscopy: Study protocol of a randomized, double-blind, single-center study.

    Science.gov (United States)

    Tian, Xu; Chen, Wei-Qing; Liu, Xiao-Ling; Chen, Hui; Liu, Bang-Lun; Pi, Yuan-Ping

    2018-04-01

    Colonoscopy has been regarded as an important method of early diagnosing and treating gastrointestinal lesions; however adequate bowel preparation is critical one of many factors needed for successful colonoscopy. Although several modified or novel regimes have been developed, desired quality of bowel preparation has not yet been generated. Scattered evidences revealed that castor oil may have potential of effectively cleansing colon. It is noted that, however, prospective trial of exploring the value of castor oil in preparing bowel before colonoscopy is lacking. The aims of this study are to test the hypotheses that low dose castor oil (30 mL) may enhance potential of polyethylene glycol (PEG) and combination of low castor oil and ascorbic acid may halve the volume of PEG.This is a randomized, double-blind (endoscopist and assessor), single center trial with three-arm design. We will randomly assign 282 adult patients (≥18 years but castor oil or combination of 1 L PEG, 30 mL castor oil and 5 g ascorbic acid. The bowel preparation quality based on Boston Bowel Preparation Scale (BBPS) is the primary outcome. The secondary outcomes include the first defecation time, total number of defecation, time of cecal intubation, detection rate of polyp and adenoma, willing to repeat the same regime, tolerance to regime, and adverse events.The study protocol has been approved by the Clinical Research Ethics Committees of Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital & Chongqing Cancer Center (2017[107]). The results from this trial will be submitted for publication in peer-reviewed journals, and will be presented at national and international conferences.

  9. Tantalum oxide and barium sulfate as radiopacifiers in injectable calcium phosphate-poly(lactic-co-glycolic acid) cements for monitoring in vivo degradation.

    Science.gov (United States)

    Hoekstra, Jan Willem M; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Bronkhorst, Ewald M; Meijer, Gert J; Jansen, John A

    2014-01-01

    Monitoring the degradation of calcium phosphate-based bone substitute materials in vivo by means of noninvasive techniques (e.g., radiography) is often a problem due to the chemical resemblance of those substitutes with the mineral phase of bone. In the view of that, the present study aimed at enhancing the radiopacity of calcium phosphate cement enriched with poly(lactic-co-glycolic acid) (CPC-PLGA) microspheres, by adding tantalum oxide (Ta2O5) or the more traditional radiopacifier barium sulfate (BaSO4). The radiopacifying capacity of these radiopacifiers was first evaluated in vitro by microcomputed tomography (μCT). Thereafter, both radiopacifiers were tested in vivo using a distal femoral condyle model in rabbits, with subsequent ex vivo μCT analysis in parallel with histomorphometry. Addition of either one of the radiopacifiers proved to enhance radiopacity of CPC-PLGA in vitro. The in vivo experiment showed that both radiopacifiers did not induce alterations in biological performance compared to plain CPC-PLGA, hence both radiopacifiers can be considered safe and biocompatible. The histomorphometrical assessment of cement degradation and bone formation showed similar values for the three experimental groups. Interestingly, μCT analysis showed that monitoring cement degradation becomes feasible upon incorporation of either type of radiopacifier, albeit that BaSO4 showed more accuracy compared to Ta2O5. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  10. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model

    International Nuclear Information System (INIS)

    Ge Zigang; Tian Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo Jinfei; Cao Tong

    2009-01-01

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. (communication)

  11. The use of fibrin and poly(lactic-co-glycolic acid hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis

    Directory of Open Access Journals (Sweden)

    S Munirah

    2008-02-01

    Full Text Available Our preliminary results indicated that fibrin and poly(lactic-co-glycolic acid (PLGA hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaffolds. PLGA scaffolds were soaked carefully, in chondrocyte-fibrin suspension, and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes were used as a control. Resulting constructs were implanted subcutaneously, at the dorsum of nude mice, for 4 weeks. Macroscopic observation, histological evaluation, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 4 weeks post-implantation. Cartilaginous tissue formation in fibrin/PLGA hybrid construct was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs was confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrices. Chondrogenic properties were further demonstrated by the expression of gene encoded cartilage-specific markers, collagen type II and aggrecan core protein. The sGAG production in fibrin/PLGA hybrid constructs was higher than in the PLGA group. In conclusion, fibrin/PLGA hybrid scaffold promotes cartilaginous tissue formation in vivo and may serve as a potential cell delivery vehicle and a structural basis for articular cartilage tissue-engineering.

  12. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-10-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications.

  13. Reduction of Inflammatory Responses and Enhancement of Extracellular Matrix Formation by Vanillin-Incorporated Poly(Lactic-co-Glycolic Acid) Scaffolds

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson

    2012-01-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications. PMID:22551555

  14. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(lactic-co-glycolic acid) Biodegradable Polymer-Based Microparticles as a Platform.

    Science.gov (United States)

    Tanetsugu, Yusuke; Tagami, Tatsuaki; Terukina, Takayuki; Ogawa, Takaya; Ohta, Masato; Ozeki, Tetsuya

    2017-01-01

    Ranibizumab is a humanized monoclonal antibody fragment against vascular endothelial growth factor (VEGF)-A and is widely used to treat age-related macular degeneration (AMD) caused by angiogenesis. Ranibizumab has a short half-life in the eye due to its low molecular weight and susceptibility to proteolysis. Monthly intravitreal injection of a large amount of ranibizumab formulation is a burden for both patients and medical staff. We therefore sought to develop a sustainable release system for treating the eye with ranibizumab using a drug carrier. A ranibizumab biosimilar (RB) was incorporated into microparticles of poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer. Ranibizumab was sustainably released from PLGA microparticles (80+% after 3 weeks). Assay of tube formation by endothelial cells indicated that RB released from PLGA microparticles inhibited VEGF-induced tube formation and this tendency was confirmed by a cell proliferation assay. These results indicate that RB-loaded PLGA microparticles are useful for sustainable RB release and suggest the utility of intraocular sustainable release systems for delivering RB site-specifically to AMD patients.

  15. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    Science.gov (United States)

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  16. DACHPt-Loaded Nanoparticles Self-assembled from Biodegradable Dendritic Copolymer Polyglutamic Acid-b-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate for Multidrug Resistant Lung Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hsiang-I Tsai

    2018-02-01

    Full Text Available The clinical applications of platinum-based antitumor agents are still largely limited by severe side effects as well as multidrug resistance (MDR. To solve these problems, we developed an 1,2-diaminocyclohexane-platinum(II (DACHPt-loaded nanoparticle (NP-TPGS-Pt by self-assembly of poly(amidoamine-polyglutamic acid-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PGlu-b-TPGS and DACHPt. NP-TPGS-Pt showed robust stability and pH-responsive DACHPt release profile in vitro similar to the PEG-containing nanoparticle (NP-PEG-Pt. Meanwhile, in contrast with NP-PEG-Pt, NP-TPGS-Pt exhibited efficient nanoparticle-based cellular uptake by the Pt-resistant A549/DDP human lung cancer cells and caused much more cytotoxicity than free Oxaliplatin and NP-PEG-Pt. Finally, this NP-TPGS-Pt was proved to perform outstanding inhibition of Pt-resistant tumor growth, much superior than free Oxaliplatin and NP-PEG-Pt. Thus, this NP-TPGS-Pt provides a novel powerful nanomedicine platform for combatting multidrug resistant cancer.

  17. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    Science.gov (United States)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  18. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles.

    Science.gov (United States)

    Adomako, M; St-Hilaire, S; Zheng, Y; Eley, J; Marcum, R D; Sealey, W; Donahower, B C; Lapatra, S; Sheridan, P P

    2012-03-01

    A DNA vaccine against infectious haematopoietic necrosis virus (IHNV) is effective at protecting rainbow trout, Oncorhynchus mykiss, against disease, but intramuscular injection is required and makes the vaccine impractical for use in the freshwater rainbow trout farming industry. Poly (D,L-lactic-co-glycolic acid) (PLGA) is a U.S. Food and Drug Administration (FDA) approved polymer that can be used to deliver DNA vaccines. We evaluated the in vivo absorption of PLGA nanoparticles containing coumarin-6 when added to a fish food pellet. We demonstrated that rainbow trout will eat PLGA nanoparticle coated feed and that these nanoparticles can be detected in the epithelial cells of the lower intestine within 96 h after feeding. We also detected low levels of gene expression and anti-IHNV neutralizing antibodies when fish were fed or intubated with PLGA nanoparticles containing IHNV G gene plasmid. A virus challenge evaluation suggested a slight increase in survival at 6 weeks post-vaccination in fish that received a high dose of the oral vaccine, but there was no difference when additional fish were challenged at 10 weeks post-vaccination. The results of this study suggest that it is possible to induce an immune response using an orally delivered DNA vaccine, but the current system needs improvement. © 2012 Blackwell Publishing Ltd.

  19. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Ge Zigang; Tian Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo Jinfei; Cao Tong, E-mail: omscaot@nus.edu.s [Stem Cell Laboratory, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074 (Singapore)

    2009-04-15

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. (communication)

  20. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    Science.gov (United States)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  1. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    Energy Technology Data Exchange (ETDEWEB)

    Rădulescu, Dragoş [Bucharest University Hospital, Department of Orthopedics and Traumatology, Bucharest (Romania); Grumezescu, Valentina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, Magurele, Bucharest (Romania); Andronescu, Ecaterina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Holban, Alina Maria [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206 Bucharest (Romania); Research Institute of the University of Bucharest –ICUB, 91-95 Splaiul Independentei, 050095 Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Socol, Gabriel [Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, Magurele, Bucharest (Romania); Oprea, Alexandra Elena [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Rădulescu, Marius [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); and others

    2016-06-30

    Graphical abstract: - Highlights: • HAp/PLGA thin coatings by Matrix Assisted Pulsed Laser Evaporation. • Anti-adherent coating on medical surfaces against S. aureus and P. aeruginosa colonization. • Coatings with potential applications in implant osseointegration. - Abstract: In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  2. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mengchao Shi

    2014-01-01

    Full Text Available It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  3. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.

    Science.gov (United States)

    Boukari, Yamina; Qutachi, Omar; Scurr, David J; Morris, Andrew P; Doughty, Stephen W; Billa, Nashiru

    2017-11-01

    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p < 0.05). The formulation also sintered at 37 °C following injection through a needle, demonstrating its injectable potential. The scaffolds demonstrated cytocompatibility, with increased cell numbers observed over an 8-day study period. Von Kossa and immunostaining of the hMSC-scaffolds confirmed their osteogenic potential with the ability to sinter at 37 °C in situ.

  4. Clinical use of the resorbable bioscaffold poly lactic co-glycolic acid (PLGA) in post-extraction socket for maintaining the alveolar height: A prospective study.

    Science.gov (United States)

    Hoda, Nadeemul; Saifi, Aamir Malick; Giraddi, Girish B

    2016-01-01

    A common sequel of tooth extraction is alveolar bone resorption. It makes the placement of dental implants difficult and creates an esthetic problem for the fabrication of conventional prostheses. Therefore, alveolar bone following tooth extraction should be preserved. The present prospective study was conducted to evaluate the efficacy of the resorbable bioscaffold poly lactic co-glycolic acid (PLGA) in maintaining the alveolar height in post-extraction socket. 20 patients were selected based on inclusion and exclusion criteria and were randomly divided into two groups: cases and control comprising of 10 patients each. Atraumatic tooth extraction was done in all patients. PLGA bioscaffold was placed in cases and socket was closed with 3-0 vicryl. In control group, socket was directly closed with 3-0 vicryl. The patients were kept on follow-up and complications such as dry socket, pain, and swelling were recorded. IOPA were taken at 1st, 4th, 12th, and 24th week to record changes in the height of alveolar bone. The radiographic measurements were compared and the differences were statistically analyzed. Reduction in alveolar bone height after placement of PLGA bioscaffold was significantly less in cases as compared to controls at 4th, 12th, and 24th week following extraction. No complications were observed throughout the follow-up period. PLGA scaffold significantly reduces bone resorption. Application is very simple and can be easily performed in a dental setup. However, PLGA scaffold adds significantly to the cost of treatment.

  5. A novel method to measure conspicuous facial pores using computer analysis of digital-camera-captured images: the effect of glycolic acid chemical peeling.

    Science.gov (United States)

    Kakudo, Natsuko; Kushida, Satoshi; Tanaka, Nobuko; Minakata, Tatsuya; Suzuki, Kenji; Kusumoto, Kenji

    2011-11-01

    Chemical peeling is becoming increasingly popular for skin rejuvenation in dermatological esthetic surgery. Conspicuous facial pores are one of the most frequently encountered skin problems in women of all ages. This study was performed to analyze the effectiveness of reducing conspicuous facial pores using glycolic acid chemical peeling (GACP) based on a novel computer analysis of digital-camera-captured images. GACP was performed a total of five times at 2-week intervals in 22 healthy women. Computerized image analysis of conspicuous, open, and darkened facial pores was performed using the Robo Skin Analyzer CS 50. The number of conspicuous facial pores decreased significantly in 19 (86%) of the 22 subjects, with a mean improvement rate of 34.6%. The number of open pores decreased significantly in 16 (72%) of the subjects, with a mean improvement rate of 11.0%. The number of darkened pores decreased significantly in 18 (81%) of the subjects, with a mean improvement rate of 34.3%. GACP significantly reduces the number of conspicuous facial pores. The Robo Skin Analyzer CS 50 is useful for the quantification and analysis of 'pore enlargement', a subtle finding in dermatological esthetic surgery. © 2011 John Wiley & Sons A/S.

  6. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent.

    Science.gov (United States)

    Ko, Jae Eok; Ko, Young-Gwang; Kim, Won Il; Kwon, Oh Kyoung; Kwon, Oh Hyeong

    2017-10-01

    Postoperative tissue adhesion causes serious complications and suffering in 90% of patients after peritoneum surgery, while commercial anti-adhesion agents cannot completely prevent postoperative peritoneal adhesions. This study demonstrates electrospining of a blended solution of chitosan, poly(d,l-lactic-co-glycolic acid) (PLGA), and poly(ethylene oxide) (PEO) to fabricate a chitosan-based nanofibrous mat as a postoperative anti-adhesion agent. Rheological studies combined with scanning electron microscopy reveal that the spinnability of the chitosan-PLGA solution could be controlled by adjusting the blend ratio and concentration with average fiber diameter from 634 to 913 nm. Biodegradation of the nanofiber specimens showed accelerated hydrolysis by chitosan. Proliferation of fibroblasts and antimicrobial activity of nanofibers containing chitosan was analyzed. Abdominal defects with cecum adhesion in rats demonstrated that the blend nanofiber mats were effective in preventing tissue adhesion as a barrier (4 weeks after abdominal surgery) by coverage of exfoliated peritoneum and insufficient wound sites at the beginning of the wound healing process. Chitosan-PLGA-PEO blend nanofiber mats will provide a promising key as a postoperative anti-adhesion agent. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1906-1915, 2017. © 2016 Wiley Periodicals, Inc.

  7. In vitro test and application for guided bone regeneration of {beta}-tricalcium phosphate / poly-(lactide-glycolic acid-{epsilon}-caprolactone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M.; Tanaka, J. [National Inst. for Research in Inorganic Materials, Tsukuba (Japan); Koyama, Y.; Takakuda, K.; Miyairi, H. [Tokyo Medical and Dental Univ. (Japan). Inst. of Biomaterials and Bioengineering

    2001-07-01

    In order to realize easy handling films, novel composites of {beta}-tricalcium phosphate (TCP) and poly-(lactide-glycolic acid-{epsilon}-caprolactone) (PLGC) having a softening temperature of about 40 C were prepared by a heat-kneading method. The composite prepared could be easily formed into a cylindrical membrane at 40 C, and its tensile strength was greater than that of a pure PLGC. From Fourier-transformed infrared spectroscopy, it was shown that the chemical interaction formed between TCP and PLGC. Physiological saline soaking test indicated that TCP inhibited hydrolysis of PLGC by auto-controlling saline pH, resulting in almost constant tensile strength. Mandibular 2-wall bone defects 2 x 1 x 1 cm{sup 3} in size and tibia fully defects 2 cm in length of beagles were filled with new bone 12 weeks after guided bone regeneration (GBR) operation using the composite membrane, although a pure PLGC membrane could not repair such defects. The composite membrane was useful for the GBR membrane. (orig.)

  8. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications.

    Science.gov (United States)

    Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli

    2017-01-01

    Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.

  9. Sorption of different phenol derivatives on functionalized macroporous nanocomposite of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate and acid modified bentonite

    Directory of Open Access Journals (Sweden)

    Marinović Sanja R.

    2014-01-01

    Full Text Available Macroporous nanocomposite of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate and acid modified bentonite was prepared by radical suspension copolymerization. Nanocomposite was functionalized with diethylene triamine (deta, by ring-opening reaction of the pendant epoxy groups. Functionalization was performed in order to enable phenol derivatives sorption. This new, not sufficiently investigated material, with developed porous structure was denoted CP-SA-deta. In this study, the influence of temperature on 4-nitrophenol (4NP sorption on CP-SA-deta was investigated. The chemisorption was estimated as dominant process since activation energy of sorption of 4NP of 54.8 kJ mol-1 was obtained. After determining the optimal sorption conditions for 4NP, the sorption of 2-nitrophenol (2NP and 2-chloro 4-nitrophenol (2Cl4NP on CP-SA-deta was investigated with respect to pH, initial concentration and contact time. The 2NP sorption was seldom tested, while according to our knowledge, the 2Cl4NP sorption was not investigated. The isotherm data were best fitted with Langmuir model, while the sorption dynamics obeyed the pseudo-second-order kinetic model for all derivatives. [Projekat Ministarstva nauke Republike Srbije, br. III 45001 i br. III 43009

  10. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats

    International Nuclear Information System (INIS)

    Liao, Longfei; Zhang, Mengtian; Liu, Huan; Zhang, Xuanmiao; Xie, Zhaolu; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2014-01-01

    Although monomethoxy(polyethyleneglycol)-poly (D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) nanoparticles have been widely studied as a drug delivery system, little is known about their toxicity in vivo. Here we examined the subchronic toxicity and immunotoxicity of different doses of PELGE nanoparticles with diameters of 50 and 200 nm (PELGE50 and PELGE200) in rats. Neither size of PELGE nanoparticles showed obvious subchronic toxic effects during 28 d of continuous intravenous administration based on clinical observation, body weight, hematology parameters and histopathology analysis. PELGE200 nanoparticles showed no overt signs of immunotoxicity based on organ coefficients, histopathology analysis, immunoglobulin levels, blood lymphocyte subpopulations and splenocyte cytokines. Conversely, PELGE50 nanoparticles were associated with an increased organ coefficient and histopathological changes in the spleen, increased serum IgM and IgG levels, alterations in blood lymphocyte subpopulations and enhanced expression of spleen interferon-γ. Taken together, these results suggest that PELGE nanoparticles show low subchronic toxicity but substantial immunotoxicity, which depends strongly on particle size. These findings will be useful for safe application of PELGE nanoparticles in drug delivery systems. (papers)

  11. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats

    Science.gov (United States)

    Liao, Longfei; Zhang, Mengtian; Liu, Huan; Zhang, Xuanmiao; Xie, Zhaolu; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2014-06-01

    Although monomethoxy(polyethyleneglycol)-poly (D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) nanoparticles have been widely studied as a drug delivery system, little is known about their toxicity in vivo. Here we examined the subchronic toxicity and immunotoxicity of different doses of PELGE nanoparticles with diameters of 50 and 200 nm (PELGE50 and PELGE200) in rats. Neither size of PELGE nanoparticles showed obvious subchronic toxic effects during 28 d of continuous intravenous administration based on clinical observation, body weight, hematology parameters and histopathology analysis. PELGE200 nanoparticles showed no overt signs of immunotoxicity based on organ coefficients, histopathology analysis, immunoglobulin levels, blood lymphocyte subpopulations and splenocyte cytokines. Conversely, PELGE50 nanoparticles were associated with an increased organ coefficient and histopathological changes in the spleen, increased serum IgM and IgG levels, alterations in blood lymphocyte subpopulations and enhanced expression of spleen interferon-γ. Taken together, these results suggest that PELGE nanoparticles show low subchronic toxicity but substantial immunotoxicity, which depends strongly on particle size. These findings will be useful for safe application of PELGE nanoparticles in drug delivery systems.

  12. Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate-co-itaconic acid-co-oligo(ethylene glycol) acrylate) copolymeric hydrogels

    International Nuclear Information System (INIS)

    Micic, M.; Suljovrujic, E.

    2011-01-01

    Complete text of publication follows. Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers it is possible to prepare P(HEMA-co-IA-co-OEGA) hydrogels with duel (pH and thermo) responsiveness, the main purpose of this paper is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of obtained hydrogels. For that reason, a series of copolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesized by gamma radiation. The obtained hydrogels were characterized by swelling studies in the wide pH (2.2-9.0) and temperature range (25-70 deg C), confirming dual (pH and thermo) responsiveness and a large variation in swelling capability. It was observed that the equilibrium swelling of P(HEMA-co-IA-co-OEGA) hydrogels, for a constant amount of IA, increases progressively with increasing in OEGA share. On the other hand, the dissociation of carboxyl (-COOH) groups from IA occurs at pH > 4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterization of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of the P(HEMA-co-IA-co-OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained copolymeric hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, nucleic acids, peptides, and proteins.

  13. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models.

    Science.gov (United States)

    Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G

    1998-03-01

    To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.

  14. Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying-ying; QI Min; ZHANG Meng; LIU Hong-ze; YANG Da-zhi

    2006-01-01

    To understand their degradation mechanisms,PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change,mass loss,water uptake,etc. The results show that in dynamic system,significant mass loss begins until 10 d while mass loss does not begin until 30 d later,while weight-average molecular weight decreases observably at the beginning,and the appeasable mass loss happens in 20 d in static system,which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections,which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium,which make the hydrolytic cleavage of ester bonds inside specimen delayed.

  15. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    Science.gov (United States)

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  16. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.

    Science.gov (United States)

    Sha'ban, Munirah; Yoon, Sun Jung; Ko, Youn Kyung; Ha, Hyun Jung; Kim, Soon Hee; So, Jung Won; Idrus, Ruszymah Bt Hj; Khang, Gilson

    2008-01-01

    Previously, we have proven that fibrin and poly(lactic-co-glycolic acid) (PLGA) scaffolds facilitate cell proliferation, matrix production and early chondrogenesis of rabbit articular chondrocytes in in vitro and in vivo experiments. In this study, we evaluated the potential of fibrin/PLGA scaffold for intervertebral disc (IVD) tissue engineering using annulus fibrosus (AF) and nucleus pulposus (NP) cells in relation to potential clinical application. PLGA scaffolds were soaked in cells-fibrin suspension and polymerized by dropping thrombin-sodium chloride (CaCl(2)) solution. A PLGA-cell complex without fibrin was used as control. Higher cellular proliferation activity was observed in fibrin/PLGA-seeded AF and NP cells at each time point of 3, 7, 14 and 7 days using the MTT assay. After 3 weeks in vitro incubation, fibrin/PLGA exhibited a firmer gross morphology than PLGA groups. A significant cartilaginous tissue formation was observed in fibrin/PLGA, as proven by the development of cells cluster of various sizes and three-dimensional (3D) cartilaginous histoarchitecture and the presence of proteoglycan-rich matrix and glycosaminoglycan (GAG). The sGAG production measured by 1,9-dimethylmethylene blue (DMMB) assay revealed greater sGAG production in fibrin/PLGA than PLGA group. Immunohistochemical analyses showed expressions of collagen type II, aggrecan core protein and collagen type I genes throughout in vitro culture in both fibrin/PLGA and PLGA. In conclusion, fibrin promotes cell proliferation, stable in vitro tissue morphology, superior cartilaginous tissue formation and sGAG production of AF and NP cells cultured in PLGA scaffold. The 3D porous PLGA scaffold-cell complexes using fibrin can provide a vehicle for delivery of cells to regenerate tissue-engineered IVD tissue.

  17. Collagen-coated polylactic-glycolic acid (PLGA) seeded with neural-differentiated human mesenchymal stem cells as a potential nerve conduit.

    Science.gov (United States)

    Sulong, Ahmad Fadzli; Hassan, Nur Hidayah; Hwei, Ng Min; Lokanathan, Yogeswaran; Naicker, Amaramalar Selvi; Abdullah, Shalimar; Yusof, Mohd Reusmaazran; Htwe, Ohnmar; Idrus, Ruszymah Bt Hj; Haflah, Nor Hazla Mohamed

    2014-01-01

    Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative. To develop an artificial nerve conduit using collagen-coated polylactic-glycolic acid (PLGA) and to analyse the survivability and propagating ability of the neuro-differentiated human mesenchymal stem cells in this conduit. The PLGA conduit was constructed by dip-molding method and coated with collagen by immersing the conduit in collagen bath. The ultra structure of the conduits were examined before they were seeded with neural-differentiated human mesenchymal stem cells (nMSC) and implanted sub-muscularly on nude mice thighs. The non-collagen-coated PLGA conduit seeded with nMSC and non-seeded non-collagen-coated PLGA conduit were also implanted for comparison purposes. The survivability and propagation ability of nMSC was studied by histological and immunohistochemical analysis. The collagen-coated conduits had a smooth inner wall and a highly porous outer wall. Conduits coated with collagen and seeded with nMSCs produced the most number of cells after 3 weeks. The best conduit based on the number of cells contained within it after 3 weeks was the collagen-coated PLGA conduit seeded with neuro-transdifferentiated cells. The collagen-coated PLGA conduit found to be suitable for attachment, survival and proliferation of the nMSC. Minimal cell infiltration was found in the implanted conduits where nearly all of the cells found in the cell seeded conduits are non-mouse origin and have neural cell markers, which exhibit the biocompatibility of the conduits. The collagen-coated PLGA conduit is biocompatible, non-cytotoxic and suitable for use as artificial nerve conduits.

  18. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Bingjian [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); College of chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014 (China); Zhu, Qingzeng, E-mail: qzzhu@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); Yao, Linli [Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, 250012 Jinan (China); Hao, Jingcheng [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10{sup 3}:3.0 × 10{sup 4}. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  19. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.

    Science.gov (United States)

    Clark, Amanda; Milbrandt, Todd A; Hilt, J Zach; Puleo, David A

    2014-05-01

    Polymeric scaffolds that are biocompatible and biodegradable are widely used for tissue engineering applications. Scaffolds can be further enhanced by enabling the release of one or more drugs to stimulate regeneration or for the treatment of a specific disease or condition. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres were mixed with poly(β-amino ester) (PBAE) particles to create novel hybrid scaffolds capable of dual release of drug and growth factor. Fast-degrading PBAE particles loaded with the drug ketoprofen acted as porogens that provided a rapid 12h release. The PLGA microspheres were loaded with a growth factor, bone morphogenetic protein 2, and fused together around the porogens to create a slow-degrading matrix that provided sustained release lasting 70days. Drug release was further tailored by varying the amount of porogen added to the scaffold. Bioactivity measurements demonstrated that the scaffold fabrication technique did not damage the drug or protein. The compressive modulus was affected by the amount of porogen added, extending from 50 to 111MPa for loadings from 60 to 40% PBAE, and after 5days of degradation, it decreased to 0.6 to 1.1kPa when the porogen was gone. PLGA containing a quick-degrading porogen can be used to release two drugs while developing a porous microarchitecture for cell ingrowth with in a matrix capable of maintaining a compressive modulus applicable for soft tissue implants. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration.

    Science.gov (United States)

    Sun, Changling; Wang, Xueling; Zheng, Zhaozhu; Chen, Dongye; Wang, Xiaoqin; Shi, Fuxin; Yu, Dehong; Wu, Hao

    2015-01-01

    This study aimed to investigate the sustained drug release properties and hearing protection effect of polyethylene glycol-coated polylactic acid (PEG-PLA) stealth nanoparticles loaded with dexamethasone (DEX). DEX was fabricated into PEG-PLA nanoparticles using an emulsion and evaporation technique, as previously reported. The DEX-loaded PEG-PLA nanoparticles (DEX-NPs) had a hydrodynamic diameter of 130±4.78 nm, and a zeta potential of -26.13±3.28 mV. The in vitro release of DEX from DEX-NPs lasted 24 days in phosphate buffered saline (pH 7.4), 5 days in artificial perilymph (pH 7.4), and 1 day in rat plasma. Coumarin 6-labeled NPs placed onto the round window membrane (RWM) of guinea pigs penetrated RWM quickly and accumulated to the organs of Corti, stria vascularis, and spiral ganglion cells after 1 hour of administration. The DEX-NPs locally applied onto the RWM of guinea pigs by a single-dose administration continuously released DEX in 48 hours, which was significantly longer than the free DEX that was cleared out within 12 hours after administration at the same dose. Further functional studies showed that locally administrated single-dose DEX-NPs effectively preserved outer hair cells in guinea pigs after cisplatin insult and thus significantly attenuated hearing loss at 4 kHz and 8 kHz frequencies when compared to the control of free DEX formulation. Histological analyses indicated that the administration of DEX-NPs did not induce local inflammatory responses. Therefore, prolonged delivery of DEX by PEG-PLA nanoparticles through local RWM diffusion (administration) significantly protected the hair cells and auditory function in guinea pigs from cisplatin toxicity, as determined at both histological and functional levels, suggesting the potential therapeutic benefits in clinical applications.

  1. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid nanoparticles for delivery across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Chaturvedi M

    2014-01-01

    Full Text Available Mayank Chaturvedi,1 Yves Molino,2 Bojja Sreedhar,3 Michel Khrestchatisky,4 Leszek Kaczmarek1 1Laboratory of Neurobiology, Nencki Institute, Warsaw, Poland; 2Vect-Horus, Marseille, France; 3Indian Institute of Chemical Technology, Hyderabad, India; 4Aix-Marseille Université, CNRS, NICN, UMR7259, Marseille, France Aim: The aim of this study was to develop poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1 – across the blood–brain barrier (BBB to inhibit deleterious matrix metalloproteinases (MMPs. Materials and methods: The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80. We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results: Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion: The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo. Keywords: PLGA nanoparticles, drug delivery, protein delivery, sustained release, brain delivery, BBB penetration, RBCEC culture

  2. Evaluation of poly(lactic-co-glycolic acid) and poly(DL-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection

    Energy Technology Data Exchange (ETDEWEB)

    Aniagyei, Stella E.; Sims, Lee B. [Department of Bioengineering, University of Louisville, Louisville, KY 40202 (United States); Malik, Danial A. [Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202 (United States); Tyo, Kevin M. [Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202 (United States); Center for Predictive Medicine, University of Louisville, Louisville, KY 40202 (United States); Curry, Keegan C. [Department of Bioengineering, University of Louisville, Louisville, KY 40202 (United States); Kim, Woihwan [Department of Medicine, University of Louisville, Louisville, KY 40202 (United States); Hodge, Daniel A. [Department of Bioengineering, University of Louisville, Louisville, KY 40202 (United States); Duan, Jinghua [Department of Bioengineering, University of Louisville, Louisville, KY 40202 (United States); Center for Predictive Medicine, University of Louisville, Louisville, KY 40202 (United States); Steinbach-Rankins, Jill M., E-mail: jill.steinbach@louisville.edu [Department of Bioengineering, University of Louisville, Louisville, KY 40202 (United States); Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202 (United States); Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202 (United States); Center for Predictive Medicine, University of Louisville, Louisville, KY 40202 (United States)

    2017-03-01

    More diverse multipurpose prevention technologies are urgently needed to provide localized, topical pre-exposure prophylaxis against sexually transmitted infections (STIs). In this work, we established the foundation for a multipurpose platform, in the form of polymeric electrospun fibers (EFs), to physicochemically treat herpes simplex virus 2 (HSV-2) infection. To initiate this study, we fabricated different formulations of poly(lactic-co-glycolic acid) (PLGA) and poly(DL-lactide-co-ε-caprolactone) (PLCL) EFs that encapsulate Acyclovir (ACV), to treat HSV-2 infection in vitro. Our goals were to assess the release and efficacy differences provided by these two different biodegradable polymers, and to determine how differing concentrations of ACV affected fiber efficacy against HSV-2 infection and the safety of each platform in vitro. Each formulation of PLGA and PLCL EFs exhibited high encapsulation efficiency of ACV, sustained-delivery of ACV through one month, and in vitro biocompatibility at the highest doses of EFs tested. Additionally, all EF formulations provided complete and efficacious protection against HSV-2 infection in vitro, regardless of the timeframe of collected fiber eluates tested. This work demonstrates the potential for PLGA and PLCL EFs as delivery platforms against HSV-2, and indicates that these delivery vehicles may be expanded upon to provide protection against other sexually transmitted infections. - Highlights: • PLGA and PLCL EFs exhibit sustained-delivery of ACV through one month. • EFs exhibit high ACV encapsulation efficiency and in vitro biocompatibility. • EFs serve as both physical and chemical barriers to HSV-2 infection. • Potent in vitro efficacy is provided against HSV-2 infection for all formulations. • HSV-2 protection is independent of administration times within one month.

  3. Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin

    Science.gov (United States)

    Guo, Miao; Rong, Wen-Ting; Hou, Jie; Wang, Dong-Fang; Lu, Yu; Wang, Ying; Yu, Shu-Qin; Xu, Qian

    2013-06-01

    Chitosan-modified poly(lactic-co-glycolic acid) nanoparticles (CHI/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), named CHI/PLGA/SN-38 NPs, were successfully prepared using an oil-in-water (O/W) solvent evaporation method. The physicochemical properties of the novel NPs were characterized by DLS, Zeta potential, SEM, DSC, XRD, and FTIR. The encapsulation efficiency and drug loading content were 71.83 (±2.77)% and 6.79 (±0.26)%, respectively. In vitro drug release in the simulated gastric juice was lower than that in the intestinal juice. In situ single-pass intestinal perfusion (SPIP) studies indicated a dramatic improvement of drug absorption as a result of the synergistic effect between CHI and PLGA on P-glycoprotein (Pgp) inhibition. CHI/PLGA NPs showed high cellular uptake and low efflux for drugs in Caco-2 cells. The cytotoxicity studies revealed that CHI/PLGA NPs had a transient effect on the membrane integrity, but did not have an influence on cell viability. Based on the in vitro release studies, SPIP, and intracellular drug accumulation and transport investigations, we speculate rationally that CHI/PLGA NPs were mainly internalized in the form of intact NPs, thus escaping the recognition of enterocyte Pgp and avoiding efflux into the apical part of the enterocytes. After partial release of drugs inside the enterocytes, CHI/PLGA interfered with the microenvironment of Pgp and further weakened the Pgp-mediated efflux. Then, the drug-loaded NPs exited via the exocytose effect from the basal part of the enterocytes and entered the blood circulation. These results showed that CHI/PLGA NPs would be smart oral delivery carriers for antineoplastic agents that are also Pgp substrates.

  4. Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing.

    Science.gov (United States)

    Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A; Krebs, Melissa D; Clark, Heather A

    2016-10-01

    This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.

  5. Synthesis and evaluation of tetracycline encapsulated in poly (lactic-co-glycolic acid) on porous titania formed by using plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Moon, Seung-Kyun; Kang, Min-Kyung; Im, Su-Yeon; Kim, Kyoung-Nam; Kwon, Jae-Sung

    2012-01-01

    Despite a relatively high success rate in treating bacterial infection, it is still the major complication following dental implant surgery. Many attempts have been carried out to produce antibacterial effects on implant metals, and there have included coating of antibiotics encapsulated in polymers by using the electro-spray deposition (ESD) method. However, remnant polymer following full release of the medication, resulting in delamination between the surface layers of the implant and newly formed bone, has been a major problem. Hence, different organic polymer of poly (lactic-co-glycolic acid) (PLGA) were used in this study. Commercially pure titanium was used in this experiment and was anodized to improve biocompatibility. The PLGA was dissolved in dichloromethane along with tetracycline, and the fabricated tetracycline encapsulated in PLGA was then coated on a porous oxide layer of titanium by using the ESD method. The surface characteristics were analyzed, and the antibacterial effects of the specimen were assessed using bacteria of Staphylococcus aereus. Finally, the cytotoxicity and cell proliferation on the surface was evaluated. The results indicated that such titanium formed by a coating of tetracycline encapsulated in PLGA on a porous titania structure exhibited antibacterial effects and was both non-cytotoxic and biocompatible. Also, PLGA seemed to be an ideal candidate as the medium to encapsulate antibiotics or other medications such as growth factors due to its rapid degradation compared to other organic polymer. From this experiment, we conclude that porous titania coated by tetracycline encapsulated in PLGA by using ESD method is appropriate for use in dental or medical implants to prevent the major complication of surgery, infection.

  6. Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes.

    Science.gov (United States)

    Gonnissen, Dominik; Qu, Ying; Langer, Klaus; Öztürk, Cengiz; Zhao, Yuliang; Chen, Chunying; Seebohm, Guiscard; Düfer, Martina; Fuchs, Harald; Galla, Hans-Joachim; Riehemann, Kristina

    Within the last years, progress has been made in the knowledge of the properties of medically used nanoparticles and their toxic effects, but still, little is known about their influence on cellular processes of immune cells. The aim of our comparative study was to present the influence of two different nanoparticle types on subcellular processes of primary monocytes and the leukemic monocyte cell line MM6. We used core-shell starch-coated superparamagnetic iron oxide nanoparticles (SPIONs) and matrix poly(lactic-co-glycolic acid) (PLGA) nanoparticles for our experiments. In addition to typical biocompatibility testing like the detection of necrosis or secretion of interleukins (ILs), we investigated the impact of these nanoparticles on the actin cytoskeleton and the two voltage-gated potassium channels Kv1.3 and Kv7.1. Induction of necrosis was not seen for PLGA nanoparticles and SPIONs in primary monocytes and MM6 cells. Likewise, no alteration in secretion of IL-1β and IL-10 was detected under the same experimental conditions. In contrast, IL-6 secretion was exclusively downregulated in primary monocytes after contact with both nanoparticles. Two-electrode voltage clamp experiments revealed that both nanoparticles reduce currents of the aforementioned potassium channels. The two nanoparticles differed significantly in their impact on the actin cytoskeleton, demonstrated via atomic force microscopy elasticity measurement and phalloidin staining. While SPIONs led to the disruption of the respective cytoskeleton, PLGA did not show any influence in both experimental setups. The difference in the effects on ion channels and the actin cytoskeleton suggests that nanoparticles affect these subcellular components via different pathways. Our data indicate that the alteration of the cytoskeleton and the effect on ion channels are new parameters that describe the influence of nanoparticles on cells. The results are highly relevant for medical application and further

  7. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing.

    LENUS (Irish Health Repository)

    Lawlor, Ciaran

    2016-01-01

    The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such "added value" could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.

  8. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration.

    Science.gov (United States)

    Mattioli-Belmonte, M; De Maria, C; Vitale-Brovarone, C; Baino, F; Dicarlo, M; Vozzi, G

    2017-07-01

    The aim of this work was the fabrication and characterization of bioactive glass-poly(lactic-co-glycolic acid) (PLGA) composite scaffolds mimicking the topological features of cancellous bone. Porous multilayer PLGA-CEL2 composite scaffolds were innovatively produced by a pressure-activated microsyringe (PAM) method, a CAD/CAM processing technique originally developed at the University of Pisa. In order to select the optimal formulations to be extruded by PAM, CEL2-PLGA composite films (CEL2 is an experimental bioactive SiO 2 -P 2 O 5 -CaO-MgO-Na 2 O-K 2 O glass developed at Politecnico di Torino) were produced and mechanically tested. The elastic modulus of the films increased from 30 to > 400 MPa, increasing the CEL2 amount (10-50 wt%) in the composite. The mixture containing 20 wt% CEL2 was used to fabricate 2D and 3D bone-like scaffolds composed by layers with different topologies (square, hexagonal and octagonal pores). It was observed that the increase of complexity of 2D topological structures led to an increment of the elastic modulus from 3 to 9 MPa in the composite porous monolayer. The elastic modulus of 3D multilayer scaffolds was intermediate (about 6.5 MPa) between the values of the monolayers with square and octagonal pores (corresponding to the lowest and highest complexity, respectively). MG63 osteoblast-like cells and periosteal-derived precursor cells (PDPCs) were used to assess the biocompatibility of the 3D bone-like scaffolds. A significant increase in cell proliferation between 48 h and 7 days of culture was observed for both cell phenotypes. Moreover, qRT-PCR analysis evidenced an induction of early genes of osteogenesis in PDPCs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Synthesis and evaluation of tetracycline encapsulated in poly (lactic-co-glycolic acid) on porous titania formed by using plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Seung-Kyun; Kang, Min-Kyung; Im, Su-Yeon; Kim, Kyoung-Nam; Kwon, Jae-Sung [Yonsei University, Seoul (Korea, Republic of)

    2012-03-15

    Despite a relatively high success rate in treating bacterial infection, it is still the major complication following dental implant surgery. Many attempts have been carried out to produce antibacterial effects on implant metals, and there have included coating of antibiotics encapsulated in polymers by using the electro-spray deposition (ESD) method. However, remnant polymer following full release of the medication, resulting in delamination between the surface layers of the implant and newly formed bone, has been a major problem. Hence, different organic polymer of poly (lactic-co-glycolic acid) (PLGA) were used in this study. Commercially pure titanium was used in this experiment and was anodized to improve biocompatibility. The PLGA was dissolved in dichloromethane along with tetracycline, and the fabricated tetracycline encapsulated in PLGA was then coated on a porous oxide layer of titanium by using the ESD method. The surface characteristics were analyzed, and the antibacterial effects of the specimen were assessed using bacteria of Staphylococcus aereus. Finally, the cytotoxicity and cell proliferation on the surface was evaluated. The results indicated that such titanium formed by a coating of tetracycline encapsulated in PLGA on a porous titania structure exhibited antibacterial effects and was both non-cytotoxic and biocompatible. Also, PLGA seemed to be an ideal candidate as the medium to encapsulate antibiotics or other medications such as growth factors due to its rapid degradation compared to other organic polymer. From this experiment, we conclude that porous titania coated by tetracycline encapsulated in PLGA by using ESD method is appropriate for use in dental or medical implants to prevent the major complication of surgery, infection.

  10. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'.

    Science.gov (United States)

    Castillo-Dalí, Gabriel; Castillo-Oyagüe, Raquel; Terriza, Antonia; Saffar, Jean-Louis; Batista-Cruzado, Antonio; Lynch, Christopher D; Sloan, Alastair J; Gutiérrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2016-04-01

    Guided bone regeneration (GBR) processes are frequently necessary to achieve appropriate substrates before the restoration of edentulous areas. This study aimed to evaluate the bone regeneration reliability of a new poly-lactic-co-glycolic acid (PLGA) membrane after treatment with oxygen plasma (PO2) and titanium dioxide (TiO2) composite nanoparticles. Circumferential bone defects (diameter: 10mm; depth: 3mm) were created on the parietal bones of eight experimentation rabbits and were randomly covered with control membranes (Group 1: PLGA) or experimental membranes (Group 2: PLGA/PO2/TiO2). The animals were euthanized two months afterwards, and a morphologic study was then performed under microscope using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone formed in the grown defects, concentration of osteoclasts, and intensity of osteosynthetic activity were assessed. Comparisons among the groups and with the original bone tissue were made using the Kruskal-Wallis test. The level of significance was set in advance at a=0.05. The experimental group recorded higher values for new bone formation, mineralised bone length, and osteoclast concentration; this group also registered the highest osteosynthetic activity. Bone layers in advanced formation stages and low proportions of immature tissue were observed in the study group. The functionalised membranes showed the best efficacy for bone regeneration. The addition of TiO2 nanoparticles onto PLGA/PO2 membranes for GBR processes may be a promising technique to restore bone dimensions and anatomic contours as a prerequisite to well-supported and natural-appearing prosthetic rehabilitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds

    Directory of Open Access Journals (Sweden)

    C Zong

    2010-09-01

    Full Text Available Human mesenchymal stem cells (hMSCs can be used for xenogenic transplantation due to their low immunogenicity, high proliferation rate, and multi-differentiation potentials. Therefore, hMSCs are an ideal seeding source for tissue engineering. The present study evaluates the reconstruction effects of hMSCs and osteoblast-like cells differentiated from hMSCs in poly-lactic-co-glycolic acid (PLGA scaffolds on the calvarial defect of rats. Two bilateral full-thickness defects (5mm in diameter were created in the calvarium of nonimmunosuppressed Sprague-Dawley rats. The defects were filled by PLGA scaffolds with hMSCs (hMSC Construct or with osteoblast-like cells differentiated from hMSCs (Osteoblast Construct. The defects without any graft (Blank Defect or filled with PLGA scaffold without any cells (Blank Scaffold were used as controls. Evaluation was performed using macroscopic view, histology and immunohistochemical analysis respectively at 10 and 20 weeks after transplantation. In addition, fluorescent carbocyanine CM-Dil was used to track the implanted cells in vivo during transplantation. The results showed that while both hMSC Construct and Osteoblast Construct led to an effective reconstruction of critical-size calvarial defects, the bone reconstruction potential of hMSC Construct was superior to that of Osteoblast Construct in non-autogenous applications. Our findings verify the feasibility of the use of xenogenic MSCs for tissue engineering and demonstrate that undifferentiated hMSCs are more suitable for bone reconstruction in xenotransplantation models.

  12. Evaluation of poly(lactic-co-glycolic acid) and poly(DL-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection

    International Nuclear Information System (INIS)

    Aniagyei, Stella E.; Sims, Lee B.; Malik, Danial A.; Tyo, Kevin M.; Curry, Keegan C.; Kim, Woihwan; Hodge, Daniel A.; Duan, Jinghua; Steinbach-Rankins, Jill M.

    2017-01-01

    More diverse multipurpose prevention technologies are urgently needed to provide localized, topical pre-exposure prophylaxis against sexually transmitted infections (STIs). In this work, we established the foundation for a multipurpose platform, in the form of polymeric electrospun fibers (EFs), to physicochemically treat herpes simplex virus 2 (HSV-2) infection. To initiate this study, we fabricated different formulations of poly(lactic-co-glycolic acid) (PLGA) and poly(DL-lactide-co-ε-caprolactone) (PLCL) EFs that encapsulate Acyclovir (ACV), to treat HSV-2 infection in vitro. Our goals were to assess the release and efficacy differences provided by these two different biodegradable polymers, and to determine how differing concentrations of ACV affected fiber efficacy against HSV-2 infection and the safety of each platform in vitro. Each formulation of PLGA and PLCL EFs exhibited high encapsulation efficiency of ACV, sustained-delivery of ACV through one month, and in vitro biocompatibility at the highest doses of EFs tested. Additionally, all EF formulations provided complete and efficacious protection against HSV-2 infection in vitro, regardless of the timeframe of collected fiber eluates tested. This work demonstrates the potential for PLGA and PLCL EFs as delivery platforms against HSV-2, and indicates that these delivery vehicles may be expanded upon to provide protection against other sexually transmitted infections. - Highlights: • PLGA and PLCL EFs exhibit sustained-delivery of ACV through one month. • EFs exhibit high ACV encapsulation efficiency and in vitro biocompatibility. • EFs serve as both physical and chemical barriers to HSV-2 infection. • Potent in vitro efficacy is provided against HSV-2 infection for all formulations. • HSV-2 protection is independent of administration times within one month.

  13. Bony defect repair in rabbit using hybrid rapid prototyping polylactic co glycolic acid/β tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Long Pang

    2013-01-01

    Full Text Available Background: In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP scaffolds comprising polylactic-co-glycolic acid (PLGA, β-tricalciumphosphate (β-TCP, collagen I and apatite (PLGA/β-TCP-collagen I/apatite on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs. Materials and Methods: BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. Results: Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. Conclusion: Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.

  14. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus.

    Science.gov (United States)

    Liman, Martin; Peiser, Lieselotte; Zimmer, Gert; Pröpsting, Marcus; Naim, Hassan Y; Rautenschlein, Silke

    2007-11-14

    In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.

  15. Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations

    Science.gov (United States)

    Bonelli, Patrizia; Tuccillo, Franca M; Federico, Antonella; Napolitano, Maria; Borrelli, Antonella; Melisi, Daniela; Rimoli, Maria G; Palaia, Raffaele; Arra, Claudio; Carinci, Francesco

    2012-01-01

    Purpose Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro. The present research compared the antiproliferative effects of ibuprofen delivered freely and released by poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in MKN-45 cells. Methods MKN-45 human gastric adenocarcinoma cells were treated with ibuprofen-loaded PLGA NPs. The proliferation of MKN-45 cells was then assessed by cell counting. The uptake of NPs was imaged by fluorescence microscopy and flow cytometry. The release of ibuprofen from ibuprofen-loaded PLGA NPs in the cells was evaluated by gas chromatography–mass spectrometry. Results Dramatic inhibition of cellular proliferation was observed in cells treated with ibuprofen-loaded PLGA NPs versus those treated with free ibuprofen at the same concentration. The localization of NPs was cytoplasmic. The initiation of ibuprofen release was rapid, commencing within 2 hours, and then increased slowly over time, reaching a maximum concentration at 24 hours. The inhibition of proliferation was confirmed to be due to the intracellular release of ibuprofen from the NPs. Using PLGA NPs as carriers, ibuprofen exerted an antiproliferative activity at concentrations > 100 times less than free ibuprofen, suggesting greater efficiency and less cellular toxicity. In addition, when carried by PLGA NPs, ibuprofen more quickly induced the expression of transcripts involved in proliferation and invasiveness processes. Conclusion Ibuprofen exerted an antiproliferative effect on MKN-45 cells at low concentrations. This effect was achieved using PLGA NPs as carriers of low doses of ibuprofen. PMID:23180963

  16. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    International Nuclear Information System (INIS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-01-01

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10 3 :3.0 × 10 4 . The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth

  17. In vitro evaluation of the genotoxicity of a family of novel MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer and PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    He Lili; Yang Likai; Zhang Zhirong; Gong Tao; Deng Li; Sun Xun [Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Gu Zhongwei, E-mail: xunsun22@gmail.co [National Engineering Research Center for Biomaterials, Engineering Research Center of Biomaterials, Sichuan University, Chengdu 610064 (China)

    2009-11-11

    Despite the booming development of nanoparticle materials for pharmaceutical applications, studies on their genotoxicity are few. In our previous efforts to develop an intravenous nanoparticle material, a family of novel monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) polymers was synthesized. The cytotoxicity and genotoxicity of nine kinds of selected blank PELGE and PLGA (poly(D,L-lactic and glycolic acid)) nanoparticles were evaluated using methyl thiazolyl tetrazolium (MTT), micronucleus (MN) and sister chromatid exchange (SCE) assays with or without the addition of a metabolic activation system (S9 mix), using Chinese hamster ovary (CHO) cells. The cytotoxicity of nanoparticles exhibited a dose-dependent response, with a concentration of 5 mg ml{sup -1} being the turning point. The frequencies of MN observed in samples treated with various nanoparticles were not statistically different from those seen in the negative controls in the presence or absence of the S9 mix. Also, no cell cycle delay was observed. The numbers of SCE per cell observed in samples treated with five kinds of PELGE nanoparticles were significantly greater than those found in the negative controls with or without the S9 mix. The discrepancies found in the two assays suggest that the five kinds of nanoparticles may produce only a weakly clastogenic response.

  18. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO_2 transport applications

    International Nuclear Information System (INIS)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    Highlights: • CPA EoS was applied to predict the phase behaviour of multicomponent mixtures containing CO_2, glycols, water and alkanes. • Mixtures relevant to oil and gas, CO_2 capture and liquid or supercritical CO_2 transport applications were investigated. • Results are presented using various modelling approaches/association schemes. • The predicting ability of the model was evaluated against experimental data. • Conclusions for the best modelling approach are drawn. - Abstract: In this work the Cubic Plus Association (CPA) equation of state is applied to multicomponent mixtures containing CO_2 with alkanes, water, and glycols. Various modelling approaches are used i.e. different association schemes for pure CO_2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling mixtures of CO_2 with other hydrogen bonding fluids (only use of one interaction parameter k_i_j or assuming cross association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross association energy). Initially, new binary interaction parameters were estimated for (CO_2 + glycol) binary mixtures. Having the binary parameters from the binary systems, the model was applied in a predictive way (i.e. no parameters were adjusted to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO_2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed. This work is the last part of a series of studies, which aim to arrive in a single “engineering approach” for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis

  19. Chitosan-coated poly(lactic-co-glycolic acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine

    Directory of Open Access Journals (Sweden)

    Zhao K

    2014-09-01

    Full Text Available Kai Zhao,1,* Yang Zhang,1,2,* Xiaoyan Zhang,1,* Ci Shi,1,2 Xin Wang,1 Xiaohua Wang,1 Zheng Jin,3 Shangjin Cui2 1Laboratory of Microbiology, School of Life Science, Heilongjiang University, 2Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, 3Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, Heilongjiang University, Harbin, People’s Republic of China *These authors contributed equally to this work Abstract: We determined the efficacy and safety of chitosan (CS-coated poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs as a delivery system for a vaccine to protect chickens against Newcastle disease virus (NDV. The newly constructed vaccine contained DNA (the F gene of NDV. The Newcastle disease virus (NDV F gene deoxyribonucleic acid (DNA plasmid (pFDNA-CS/PLGA-NPs were spherical (diameter =699.1±5.21 nm [mean ± ­standard deviation] and smooth, with an encapsulation efficiency of 98.1% and a Zeta potential of +6.35 mV. An in vitro release assay indicated that CS controlled the burst release of plasmid DNA, such that up to 67.4% of the entire quantity of plasmid DNA was steadily released from the pFDNA-CS/PLGA-NPs. An in vitro expression assay indicated that the expression of nanoparticles (NPs was maintained in the NPs. In an immunization test with specific pathogen-free chickens, the pFDNA-CS/PLGA-NPs induced stronger cellular, humoral, and mucosal immune responses than the plasmid DNA vaccine alone. The pFDNA-CS/PLGA-NPs did not harm 293T cells in an in vitro assay and did not harm chickens in an in vivo assay. Overall, the results indicated that CS-coated PLGA NPs can serve as an efficient and safe mucosal immune delivery system for NDV DNA vaccine.Keywords: mucosal immune delivery system, immune effect

  20. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    Science.gov (United States)

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with

  1. Plasma surface modification of poly (L-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion

    International Nuclear Information System (INIS)

    Khorasani, M.T.; Mirzadeh, H.; Irani, S.

    2008-01-01

    Radio frequency (RF) plasma treatment in O 2 was applied to modify the surface of poly (L-lactic acid) (PLLA) and poly (D,L-lactic acid-coglycolic acid) (PLGA) as biodegradable polymers. The surface structure, morphology, wettability and surface chemistry of treated films were characterized by water drop contact angle measurement, scanning electron microscope (SEM), optical invert microscope, differential scanning calorimetry (DSC) and ATIR-FTIR spectroscopy. The cell affinity of the oxygen plasma treated film was evaluated by nervous tissue B65 cell culture in stationary conditions. The results showed that the hydrophilicity increased greatly after O 2 plasma treatment. The results showed that improved cell adhesion was attributed to the combination of surface chemistry and surface wettability during plasma treatment. Cell culture results showed that B65 nervous cell attachment and growth on the plasma treated PLLA was much higher than an unmodified sample and PLGA. Surface hydrophilicity and chemical functional groups with high polar component play an important role in enhancing cell attachment and growth

  2. Ibuprofen delivered by poly(lactic-co-glycolic acid (PLGA nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations

    Directory of Open Access Journals (Sweden)

    Bonelli P

    2012-11-01

    Full Text Available Patrizia Bonelli,1 Franca M Tuccillo,1 Antonella Federico,5 Maria Napolitano,2 Antonella Borrelli,1 Daniela Melisi,6 Maria G Rimoli,6 Raffaele Palaia,3 Claudio Arra,4 Francesco Carinci71Laboratory of Molecular Biology and Viral Oncogenesis; 2Department of Clinical Immunology; 3Department of Gastrointestinal-Hepatobiliary-Pancreatic Cancer Oncology Surgery; 4Animal Facility, National Cancer Institute G Pascale, Naples, Italy; 5Microtech Laboratory, Naples, Italy; 6Pharmaceutical and Toxicological Chemistry Department, School of Pharmacy, University "Federico II", Naples, Italy; 7Department of Maxillofacial Surgery, University of Ferrara, Ferrara, ItalyPurpose: Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro. The present research compared the antiproliferative effects of ibuprofen delivered freely and released by poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs in MKN-45 cells.Methods: MKN-45 human gastric adenocarcinoma cells were treated with ibuprofen-loaded PLGA NPs. The proliferation of MKN-45 cells was then assessed by cell counting. The uptake of NPs was imaged by fluorescence microscopy and flow cytometry. The release of ibuprofen from ibuprofen-loaded PLGA NPs in the cells was evaluated by gas chromatography–mass spectrometry.Results: Dramatic inhibition of cellular proliferation was observed in cells treated with ibuprofen-loaded PLGA NPs versus those treated with free ibuprofen at the same concentration. The localization of NPs was cytoplasmic. The initiation of ibuprofen release was rapid, commencing within 2 hours, and then increased slowly over time, reaching a maximum

  3. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Directory of Open Access Journals (Sweden)

    Betbeder D

    2015-08-01

    Full Text Available Didier Betbeder,1–4 Emmanuelle Lipka,1,2,5 Mike Howsam,6 Rodolphe Carpentier1–3 1U995-LIRIC, Inserm (Institut National de la Recherche Médicale, Lille, France; 2U995-LIRIC, CHRU de Lille, Lille, France; 3U995-LIRIC, Faculté de Médecine, Université de Lille, Lille, France; 4Faculté des Sciences du Sport, Université d’Artois, Arras, France; 5Faculté de Pharmacie, Université de Lille, Lille, France; 6Faculté de Pharmacie, Université de Lille, Centre Universitaire de Mesures et d’Analyses, Lille, France Purpose: Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin.Method: We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C.Results: In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching

  4. Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate/itaconic acid/oligo (ethylene glycol) acrylate) terpolymeric hydrogels

    International Nuclear Information System (INIS)

    Micic, M.; Stamenic, D.; Suljovrujic, E.

    2012-01-01

    Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers, it is possible to prepare P(HEMA/IA/OEGA) hydrogels with dual (pH and thermo) responsiveness, the main purpose of our study is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of the obtained hydrogels. For that reason, a series of terpolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesised by gamma radiation. The obtained hydrogels were characterised by swelling studies in the wide pH (2.2–9.0) and temperature range (20–70 °C), confirming dual (pH and thermo) responsiveness and a large variation in the swelling capability. It was observed that the equilibrium swelling of P(HEMA/IA/OEGA) hydrogels, for a constant amount of IA, increased progressively with an increase in OEGA share. On the other hand, the dissociation of carboxyl groups from IA occurs at pH>4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterisation of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of P(HEMA/IA/OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, peptides, proteins, etc. - Highlights: ► pH- and thermo-sensitive P(HEMA/IA/OEGA) hydrogels were synthesised by γ radiation. ► OEGA units have a large hydrophilic potential. ► Swelling capacity increases with the OEGA content. ► Variation in composition of hydrogels can give

  5. Viability and Biomechanics of Diced Cartilage Blended With Platelet-Rich Plasma and Wrapped With Poly (Lactic-Co-Glycolic) Acid Membrane.

    Science.gov (United States)

    Liao, Jun-Lin; Chen, Jia; He, Bin; Chen, Yong; Xu, Jia-Qun; Xie, Hong-Ju; Hu, Feng; Wang, Ai-Jun; Luo, ChengQun; Li, Qing-Feng; Zhou, Jian-Da

    2017-09-01

    The objective of this study was to investigate the viability and biomechanics of diced cartilage blended with platelet-rich plasma (PRP) and wrapped with poly (lactic-co-glycolic) acid (PLGA) membrane in a rabbit model. A total of 10 New Zealand rabbits were used for the study. Cartilage grafts were harvested from 1 side ear. The grafts were divided into 3 groups for comparison: bare diced cartilage, diced cartilage wrapped with PLGA membrane, and diced cartilage blended with PRP and wrapped with PLGA membrane. Platelet-rich plasma was prepared using 8 mL of auricular blood. Three subcutaneous pockets were made in the backs of the rabbits, and the grafts were placed in these pockets. The subcutaneous implant tests were conducted for safety assessment of the PLGA membrane in vivo. All of the rabbits were sacrificed at the end of 3 months, and the specimens were collected. The sections were stained with hematoxylin and eosin, toluidin blue, and collagen II immunohistochemical. Simultaneously, biomechanical properties of grafts were assessed. This sample of PLGA membrane was conformed to the current standard of biological evaluation of medical devices. Moderate resorption was seen at the end of 3 months in the gross assessment in diced cartilage wrapped with PLGA membrane, while diced cartilage blended with PRP had no apparent resorption macroscopically and favorable viability in vivo after 3 months, and the histological parameters supported this. Stress-strain curves for the compression test indicated that the modulus of elasticity of bare diced cartilage was 7.65 ± 0.59 MPa; diced cartilage wrapped with PLGA membrane was 5.98 ± 0.45 MPa; and diced cartilage blended with PRP and wrapped with PLGA membrane was 7.48 ± 0.55 MPa, respectively. Diced cartilage wrapped with PLGA membrane had moderate resorption macroscopically after 3 months. However, blending with PRP has beneficial effects in improving the viability of diced cartilages. Additionally, the

  6. Enhancing the bioactivity of Poly(lactic-co-glycolic acid scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model

    Directory of Open Access Journals (Sweden)

    Wang DX

    2013-05-01

    Full Text Available De-Xin Wang,1,* Yao He,2,* Long Bi1,* Ze-Hua Qu,2 Ji-Wei Zou,1 Zhen Pan,2 Jun-Jun Fan,1 Liang Chen,2 Xin Dong,1 Xiang-Nan Liu,2 Guo-Xian Pei,1 Jian-Dong Ding,21Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China; 2State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workPurpose: Poly(lactic-co-glycolic acid (PLGA is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds.Methods: PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed.Results: In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in

  7. Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid

    Directory of Open Access Journals (Sweden)

    Gómez-Sequeda N

    2017-05-01

    Full Text Available Nicolás Gómez-Sequeda,1 Rodrigo Torres,2 Claudia Ortiz3 1School of Biology, 2School of Chemistry, Faculty of Sciences, 3School of Microbiology, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia Abstract: In this study, nanoparticles (NPs of poly(lactic-co-glycolic acid (PLGA loaded with fluconazole (FLZ and FLZ-NPs coated with the cationic polymer polyethylenimine (PEI (FLZ-NP-PEI were synthetized in order to improve antimycotic activity against four strains of Candida spp. of clinical relevance. FLZ-NPs and FLZ-NP-PEI were synthesized by double emulsion solvent-diffusion (DES-D and characterized. Minimum inhibitory concentration (MIC50 and minimum fungicide concentration (MFC were determined in vitro by culturing Candida strains in the presence of these nanocompounds. FLZ-NPs were spherical in shape with hydrodynamic sizes of ~222 nm and surface charge of -11.6 mV. The surface charges of these NPs were successfully modified using PEI (FLZ-NP-PEI with mean hydrodynamic sizes of 281 nm and surface charge of 23.5 mV. The efficiency of encapsulation (~53% and a quick release of FLZ (≥90% after 3 h were obtained. Cytotoxicity assay showed a good cell viability for FLZ-NPs (≥86%, and PEI-modified NPs presented a decrease in cell viability (~38%. FLZ-NPs showed an increasing antifungal activity of FLZ for sensitive (Candida parapsilosis ATCC22019 and Candida albicans ATCC10231, MIC50 =0.5 and 0.1 µg/mL, respectively and resistant strains (Candida glabrata EMLM14 and Candida krusei ATCC6258, MIC50 =0.1 and 0.5 µg/mL, respectively. FLZ-NP-PEI showed fungicidal activity even against C. glabrata and C. krusei (MFC =4 and 8 µg/mL, respectively. MIC50 values showed best results for FLZ-NPs and FLZ-NP-PEI. Nevertheless, only FLZ-NP-PEI displayed fungicidal activity against the studied strains. Keywords: drug delivery systems, double emulsion diffusion, nanoparticles, minimal inhibitory concentration

  8. Polyethylene Glycol-3350 (Miralax®)+1.9-L sports drink (Gatorade®)+2 tablets of bisacodyl results in inferior bowel preparation for colonoscopy compared with Polyethylene Glycol-Ascorbic Acid (MoviPrep®).

    Science.gov (United States)

    Khan, Maqsood Ahmed; Patel, Kevin B; Nooruddin, Mohammed; Swanson, Garth; Fogg, Louis; Keshavarzian, Ali; Brown, Michael

    2018-01-01

    Polyethylene glycol (PEG)-3350, approved by Food and Drug Administration (FDA) only for constipation, combined with 1.9 L of sports drink (SD) (GatoradeR) and bisacodyl (B) is commonly used in outpatient practice for bowel preparation due to cited patient satisfaction and tolerability of this specific regimen. We aim to compare PEG-3350 (MiralaxR) with PEG-AA-based (MoviPrepR) in terms of efficacy, patient satisfaction, and the effects of these two regimen on serum electrolytes. This study is a prospective, single-blinded, block randomized trial comparing single-dose PEG-3350+SD+B to split-dose 2-L PEG-AA in the outpatient endoscopy unit in patients undergoing colonoscopy. Basic metabolic profiles were checked on the day of randomization and on the day of procedure. Patients completed a survey on the day of procedure. Bowel preparation quality was assessed using the Boston Bowel Preparation Scale (BBPS) by two endoscopists and a nurse present during the procedure. We randomized 150 patients (74 PEG-3350+SD+B and 76 PEG-AA). The PEG-AA group had significantly higher BBPS scores in the right colon by Endoscopist 1, Nurse, and Endoscopist 2 (p 0.005, PEG-3350+SD+B results in inferior bowel preparation for colonoscopy compared with split-dose PEGAA and does not provide any advantage in regards to patient satisfaction. We therefore recommend discontinuing the use of PEG 3350 for bowel preparation.

  9. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed....... This work is the last part of a series of studies, which aim to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis et al., 2010, 2011...

  10. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  11. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-12

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.

  12. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-20

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.

  13. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and 20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  14. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit.

    Science.gov (United States)

    Wu, Xiaowei; Zheng, Shang; Ye, Yuanzhou; Wu, Yuchen; Lin, Kaili; Su, Jiansheng

    2018-05-01

    The reconstruction of bone defects by guiding autologous bone tissue regeneration with artificial biomaterials is a potential strategy in the area of bone tissue engineering. The development of new polymers with good biocompatibility, favorable mechanical properties, and osteoinductivity is of vital importance. Graphene and its derivatives have attracted extensive interests due to the exceptional physiochemical and biological properties of graphene. In this study, poly(lactic-co-glycolic acid) (PLGA) films incorporated by graphene nanoplates were fabricated. The results indicated that the incorporation of proper graphene nanoplates into poly(lactic-co-glycolic acid) film could enhance the adhesion and proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). The augmentation of alkaline phosphatase activity, calcium mineral deposition, and the expression level of osteogenic-related genes of rBMSCs on the composite films were observed. Moreover, the incorporation of graphene might activate the PI3K/Akt/GSK-3β/β-catenin signaling pathway, which appeared to be the mechanism behind the osteoinductive properties of graphene. Moreover, the in vivo furcation defect implantation results revealed better guiding bone regeneration properties in the graphene-incorporated group. Thus, we highlight this graphene-incorporated film as a promising platform for the growth and osteogenic differentiation of BMSCs that can achieve application in bone regeneration.

  15. Optimization and validation of liquid chromatography and headspace-gas chromatography based methods for the quantitative determination of capsaicinoids, salicylic acid, glycol monosalicylate, methyl salicylate, ethyl salicylate, camphor and l-menthol in a topical formulation.

    Science.gov (United States)

    Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2012-02-23

    Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration

    Directory of Open Access Journals (Sweden)

    Sun CL

    2015-05-01

    Full Text Available Changling Sun,1,3,* Xueling Wang,1,* Zhaozhu Zheng,2 Dongye Chen,1 Xiaoqin Wang,2 Fuxin Shi,1 Dehong Yu,1 Hao Wu11Department of Otolaryngology–Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 2National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 3Department of Otolaryngology–Head and Neck Surgery, Affiliated Hospital of Jiangnan University, The Fourth People’s Hospital of Wuxi City, Wuxi, People’s Republic of China*These authors have contributed equally to this workAbstract: This study aimed to investigate the sustained drug release properties and hearing protection effect of polyethylene glycol-coated polylactic acid (PEG-PLA stealth nanoparticles loaded with dexamethasone (DEX. DEX was fabricated into PEG-PLA nanoparticles using an emulsion and evaporation technique, as previously reported. The DEX-loaded PEG-PLA nanoparticles (DEX-NPs had a hydrodynamic diameter of 130±4.78 nm, and a zeta potential of -26.13±3.28 mV. The in vitro release of DEX from DEX-NPs lasted 24 days in phosphate buffered saline (pH 7.4, 5 days in artificial perilymph (pH 7.4, and 1 day in rat plasma. Coumarin 6-labeled NPs placed onto the round window membrane (RWM of guinea pigs penetrated RWM quickly and accumulated to the organs of Corti, stria vascularis, and spiral ganglion cells after 1 hour of administration. The DEX-NPs locally applied onto the RWM of guinea pigs by a single-dose administration continuously released DEX in 48 hours, which was significantly longer than the free DEX that was cleared out within 12 hours after administration at the same dose. Further functional studies showed that locally administrated single-dose DEX-NPs effectively preserved outer hair cells in guinea pigs after cisplatin insult and thus significantly attenuated hearing loss at 4 kHz and 8

  17. Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid matrix nanoparticles on human monocytes

    Directory of Open Access Journals (Sweden)

    Gonnissen D

    2016-10-01

    Full Text Available Dominik Gonnissen,1 Ying Qu,1,2 Klaus Langer,3 Cengiz Öztürk,4 Yuliang Zhao,2 Chunying Chen,2 Guiscard Seebohm,5 Martina Düfer,6 Harald Fuchs,1 Hans-Joachim Galla,7 Kristina Riehemann11Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany; 2National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People’s Republic of China; 3Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, 4chemicell GmbH, Berlin, 5Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, 6Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, 7Department of Cell Biology/Biophysics, Institute of Biochemistry, University of Münster, Münster, GermanyAbstract: Within the last years, progress has been made in the knowledge of the properties of medically used nanoparticles and their toxic effects, but still, little is known about their influence on cellular processes of immune cells. The aim of our comparative study was to present the influence of two different nanoparticle types on subcellular processes of primary monocytes and the leukemic monocyte cell line MM6. We used core-shell starch-coated superparamagnetic iron oxide nanoparticles (SPIONs and matrix poly(lactic-co-glycolic acid (PLGA nanoparticles for our experiments. In addition to typical biocompatibility testing like the detection of necrosis or secretion of interleukins (ILs, we investigated the impact of these nanoparticles on the actin cytoskeleton and the two voltage-gated potassium channels Kv1.3 and Kv7.1. Induction of necrosis was not seen for PLGA nanoparticles and SPIONs in primary monocytes and MM6 cells. Likewise, no alteration in secretion of IL-1β and IL-10 was detected under the same experimental conditions. In contrast, IL-6 secretion was exclusively downregulated in primary monocytes after contact with both

  18. In Vitro Evaluation of Essential Mechanical Properties and Cell Behaviors of a Novel Polylactic-co-Glycolic Acid (PLGA-Based Tubular Scaffold for Small-Diameter Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nuoxin Wang

    2017-07-01

    Full Text Available In this paper, we investigate essential mechanical properties and cell behaviors of the scaffolds fabricated by rolling polylactic-co-glycolic acid (PLGA electrospinning (ES films for small-diameter vascular grafts (inner diameter < 6 mm. The newly developed strategy can be used to fabricate small diameter vascular grafts with or without pre-seeded cells, which are two main branches for small diameter vascular engineering. We demonstrate that the mechanical properties of our rolling-based scaffolds can be tuned flexibly by the number of layers. For cell-free scaffolds, with the increase of layer number, burst pressure and suture retention increase, elastic tensile modulus maintains unchanged statistically, but compliance and liquid leakage decrease. For cell-containing scaffolds, seeding cells will significantly decrease the liquid leakage, but there are no statistical differences for other mechanical properties; moreover, cells live and proliferate well in the scaffold after a 6-day culture.

  19. Inhibition of β-bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    International Nuclear Information System (INIS)

    Schmidt, R.R.; Betz, H.; Rehm, H.

    1988-01-01

    The presynaptically active snake venom neurotoxin β-bungarotoxin (β-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K + channels. Here the authors show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of 125 I-labeled β-Butx to chick and rat brain membranes with apparent K/sub i/ values of 180 nM and 1100 nM, respectively. The mechanisms of inhibition of MCD peptide is noncompetitive, as is inhibition of 125 I-β-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. β-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca 2+ by ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of 125 I-β-Butx by lowering its affinity to brain membranes

  20. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    Science.gov (United States)

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.

  1. Ethylene glycol poisoning

    African Journals Online (AJOL)

    Ethylene glycol poisoning. A 22-year-old male presented to the emergency centre after drinking 300 ml of antifreeze. Clinical examination was unremarkable except for a respiratory rate of 28 bpm, GCS of 9 and slight nystagmus. Arterial blood gas revealed: pH 7.167, pCO2. 3.01 kPa, pO2 13.0 kPa (on room air), HCO3-.

  2. Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) graft copolymer templated synthesis of mesoporous TiO{sub 2} thin films for quasi-solid-state dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Jung, Ye Eun; Kim, Dong Jun; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr

    2014-02-03

    An amphiphilic graft copolymer, poly(ethylene-co-acrylic acid)-graft-poly(ethylene glycol) (PEAA-g-PEG), consisting of a PEAA backbone and PEG side chains was synthesized via an esterification reaction. {sup 1}H nuclear magnetic resonance and Fourier-transformed infrared analysis demonstrated esterification between carboxylic acid of PEAA and hydroxyl group of PEG. Small angle X-ray scattering results revealed that the crystalline domain spacing of PEAA increased from 11.3 to 12.8 nm upon using a more polar solvent with a higher affinity for poly(acrylic acid), while the crystalline domain spacing of PEAA disappeared with PEG grafting, indicating structural change to an amorphous state. Mesoporous TiO{sub 2} thin films were synthesized via a sol–gel reaction using PEAA-g-PEG graft copolymer as a structure-directing agent. The hydrophilically-preformed TiO{sub 2} nanoparticles were selectively confined in the hydrophilic PEG domains of the graft copolymer, and mesoporous TiO{sub 2} thin films were formed, as confirmed by scanning electron microscopy. The morphology of TiO{sub 2} films was tunable by varying the concentrations of polymer solutions and the amount of preformed TiO{sub 2}. A quasi-solid-state dye-sensitized solar cell fabricated with PEAA-g-PEG templated TiO{sub 2} film exhibited an energy conversion efficiency of 3.8% at 100 mW/cm{sup 2}, which was greater than that of commercially-available paste (2.6%) at a similar film thickness (3 μm). The improved performance was due to the larger surface area for high dye loading and organized structure with good interconnectivity. - Highlights: • Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) (PEAA-g-PEG) graft copolymer is synthesized. • Amphiphilic PEAA-g-PEG acts as a structure directing agent. • Mesoporous TiO{sub 2} thin films are prepared by sol–gel reaction using PEAA-g-PEG template. • Efficiency of DSSC with templated TiO{sub 2} is greater than with commercial TiO{sub 2} paste.

  3. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    International Nuclear Information System (INIS)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta; Basumallick, I.

    2009-01-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  4. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Basumallick, I., E-mail: ibasumallick@yahoo.co.u [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2009-12-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  5. Redox-Initiated Poly(methyl methacrylate) Emulsion Polymerizations Stabilized with Block Copolymers Based on Methoxy-Poly(ethylene glycol), epsilon-Caprolactone, and Linoleic Acid

    NARCIS (Netherlands)

    Tan, Boonhua; Nabuurs, Tijs; Feijen, Jan; Grijpma, Dirk W.

    2009-01-01

    A redox initiating system, consisting of t-butyl hydroperoxide (tBHPO), isoascorbic acid (iAA), and ethylenediaminetetraacetic acid ferric-sodium salt (FeEDTA) was employed in emulsion polymerizations of methyl methacrylate (MMA) at high solids contents of 30 wt % in water. The system was stabilized

  6. Complex formation in the system uranium(VI) - alpha-substituted carboxylic acids studied by TRLFS. Pt. I. Glycolic and alpha-hydroxyisobutyric acid at pH 2

    International Nuclear Information System (INIS)

    Moll, H.; Geipel, G.; Bernhard, G.; Fanghaenel, Th.; Grenthe, I.

    2002-01-01

    We observed a very strong quenching of the U(VI) fluorescence in these systems that can be quantitatively described by the Stern-Volmer equation. The following stability constants were determined: a) for the glycolate system log β 1:1 = 2.52±0.20, b) for the α-hydroxyisobutyrate system log β 1:1 = 3.40±0.21. (orig.)

  7. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption.

    Science.gov (United States)

    Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr

    2018-06-01

    Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process.

    Science.gov (United States)

    Deng, Yao; Zhang, Mengjiao; Chen, Xianchun; Pu, Ximing; Liao, Xiaoming; Huang, Zhongbing; Yin, Guangfu

    2017-08-01

    Desirable scaffolds for tissue engineering should be biodegradable carriers to supply suitable microenvironments mimicked the extracellular matrices for desired cellular interactions and to provide supports for the formation of new tissues. In this work, a kind of slightly soluble bioactive ceramic akermanite (AKT) powders were aboratively selected and introduced in the PLGA matrix, a novel l-lactide modified AKT/poly (lactic- co -glycolic acid) (m-AKT/PLGA) composite scaffold was fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. The effects of m-AKT contents on properties of composite scaffolds and on MC3T3-E1 cellular behaviors in vitro have been primarily investigated. The fabricated scaffolds exhibited three-dimensional porous networks, in which homogenously distributed cavities in size of 300-400 μm were interconnected by some smaller holes in a size of 100-200 μm. Meanwhile, the mechanical structure of scaffolds was reinforced by the introduction of m-AKT. Moreover, alkaline ionic products released by m-AKT could neutralize the acidic degradation products of PLGA, and the apatite-mineralization ability of scaffolds could be largely improved. More valuably, significant promotions on adhesion, proliferation, and differentiation of MC3T3-E1 have been observed, which implied the calcium, magnesium and especially silidous ions released sustainably from composite scaffolds could regulate the behaviors of osteogenesis-related cells.

  9. Blend membrane of succinic acid-crosslinked chitosan grafted with heparin/PVA-PEG (polyvinyl alcohol-polyethylene glycol) and its characterization

    Science.gov (United States)

    Sangkota, V. D. A.; Lusiana, R. A.; Astuti, Y.

    2018-04-01

    Crosslinking and grafting reactions are required to modify the functional groups on chitosan to increase the number of its active groups. In this study, crosslinking reaction of succinic acid and grafting reaction of heparin on chitosan were conducted to produce a membrane as a candidate of a hemodialysis membrane. The mole ratio between chitosan and succinate acids was varied to obtain the best composition of modified materials. By blending all the material composition with PVA-PEG, the blend was transformed into a membrane. The resulted membrane was then characterized by various test methods such as tests of thickness, weight, water uptake, pH resistance, tensile strength and membrane hydrophilicity. The results showed that the best composition of the membrane reached in the addition of 0.011 gram of succinic acid proved by its highest mechanical strength compared to the other membranes.

  10. Ethylene- and diethylene glycol metabolism, toxicity and treatment

    International Nuclear Information System (INIS)

    Wiener, H.L.

    1986-01-01

    Each year numerous men and domestic animals suffer from ethylene glycol (EG) poisoning. The present approach to treating EG poisoning by administering ethanol is aimed at preventing the oxidation of EG to glycolate, the toxic mediator. When treatment is delayed or the amount of EG consumed is large, successful treatment is rarely obtained, since the concentration of glycolate becomes excessive. In an effort to develop a better approach to treating EG poisoning, studies were conducted to determine the feasibility of using pig liver glycolic acid oxidase (GAO) as a means of enzyme therapy in male rats receiving EG. Pig liver GAO was active in vitro in rat blood, oxidizing glycolate to glyoxylate. When injected intravenously into male rats, GAO had an approximate half-life of twenty five minutes and its elimination followed first order kinetics. Despite activity in vitro, native pig liver GAO did not display detectable activity in vivo. Diethylene glycol (DEG) when ingested also results in toxicity. The metabolism and toxicity of DEG was investigated in male Wistar rats using [ 14 C]-DEG synthesized from [U- 14 C]-EG and ethylene oxide and purified by high performance liquid chromatography. (2-Hydroxyethoxy)acetic acid (HEAA) was identified as the major product of DEG oxidation. These results suggest that the treatment of DEG poisoning should follow the same regimen as treatment for EG poisoning

  11. Synthesis of nano-sized stereoselective imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol dimethacrylate in the presence of racemic propranolol and copper ion

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Bagherzadeh, Azam; Shamkhali, Amir Nasser [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-06-01

    A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was obtained by reaction of (L)-alanine with acryloyl chloride. The resulting monomer was characterized by FT-IR and HNMR and then utilized for the preparation of chiral imprinted polymer (CIP). This was carried out by copolymerization of (L)-alanine-derived chiral monomer and ethylene glycol dimethacrylate, in the presence of racemic propranolol and copper nitrate, via precipitation polymerization technique, resulting in nano-sized networked polymer particles. The polymer obtained was characterized by scanning electron microscopy and FT-IR. The non-imprinted polymer was also synthesized and used as blank polymer. Density functional theory (DFT) was also employed to optimize the structures of two diasterometric ternary complexes, suspected to be created in the pre-polymerization step, by reaction of optically active isomers of propranolol, copper ion and (S)-2-(acrylamido) propanoic acid. Relative energies and other characteristics of the described complexes, calculated by the DFT, predicted the higher stability of (S)-propranolol involved complex, compared to (R)-propranolol participated complex. Practical batch extraction test which employed CIP as solid phase adsorbent, indicated that the CIP recognized selectively (S)-propranolol in the racemic mixture of propranolol; whereas, the non-imprinted polymer (NIP) showed no differentiation capability between two optically active isomers of propranolol. - Highlights: • A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was synthesized. • (S)-propranolol-selective imprinted polymer was synthesized using the chiral monomer. • Racemic propranolol mixed with Cu(II) was used as template in the imprinting. • Density functional theory was employed to clarify the imprinting mechanism. • (S)-propranolol-Cu(II) complex was shown to conduct the imprinting process.

  12. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  13. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  14. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.

    Science.gov (United States)

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah

    2015-08-01

    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (ptissue engineered cartilage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management.

    Science.gov (United States)

    Yang, Hu; Leffler, Christopher T

    2013-03-01

    Glaucoma therapy typically begins with topical medications, of which there are 4 major classes in common use in the United States: beta-adrenergic antagonists, alpha-agonists, carbonic anhydrase inhibitors, and prostaglandin analogs. Unfortunately, all 4 classes require at least daily dosing, and 3 of the 4 classes are approved to be administered 2 or 3 times daily. This need for frequent dosing with multiple medications makes compliance difficult. Longer-acting formulations and combinations that require less frequent administration might improve compliance and therefore medication effectiveness. Recently, we developed an ocular drug delivery system, a hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform for delivering glaucoma therapeutics topically. This platform is designed to deliver glaucoma drugs to the eye efficiently and release the drug in a slow fashion. Furthermore, this delivery platform is designed to be compatible with many of the glaucoma drugs that are currently approved for use. In this article, we review this new delivery system with in-depth discussion of its structural features, properties, and preclinical application in glaucoma treatment. In addition, future directions and translational efforts for marketing this technology are elaborated.

  16. Bone regeneration: in vitro evaluation of the behaviour of osteoblast-like MG63 cells placed in contact with polylactic-co-glycolic acid, deproteinized bovine bone and demineralized freeze-dried bone allograft.

    Science.gov (United States)

    Pappalardo, S; Mastrangelo, F; Reale Marroccia, D; Cappello, V; Ciampoli, C; Carlino, V; Tanteri, L; Costanzo, M; Sinatra, F; Tetè, S

    2008-01-01

    Insufficient bone density of the alveolar crests, caused by loss of the dental elements, sometimes impedes the primary stability of an integrated bone implant. The techniques of bone regeneration allow to obtain a sufficient quantity of alveolar bone to permit the implant rehabilitation of the edentulous crests. Today several grafting materials are available and they have different characteristics, according to their structure, which influence the different behaviour of the grafting materials to the bone and the implant surface. The aim of this study is to evaluate the interaction between a human osteosarcoma MG63 cell line and three different biomaterials: polylactic-co-glycolic acid (PLAGA), deproteinized bovine bone and demineralised freeze-dried bone allograft (DFDBA). From this study a different behaviour emerges of the osteoblast-like MG63 cells in relation to the sublayer on which these cells were placed in culture. The results of the study, in fact, demonstrate that the most osteoconductive material of the three analysed is the DFDBA, followed by DPBB. On the contrary, the PLGA, because of its roughness, does not seem to represent a valid support for cell growth, and does not encourage any morphologic modification in tumor cells. Furthermore, deproteinized bovine bone shows a differentiating effect which could lead to hypothesise an osteoconductive capacity of this biomaterial. Further studies should be carried out with the aim of explaining the results obtained.

  17. Combination therapy of surgical tumor resection with implantation of a hydrogel containing camptothecin-loaded poly(lactic-co-glycolic acid) microspheres in a C6 rat glioma model.

    Science.gov (United States)

    Ozeki, Tetsuya; Kaneko, Daiki; Hashizawa, Kosuke; Imai, Yoshihiro; Tagami, Tatsuaki; Okada, Hiroaki

    2012-01-01

    We have developed a drug-loaded poly(lactic-co-glycolic acid) (PLGA) microsphere-containing thermoreversible gelation polymer (TGP) (drug/PLGA/TGP) formulation as a novel device for implantation after surgical glioma resection. TGP is a thermosensitive polymer that is a gel at body temperature and a sol at room temperature. When a drug/PLGA/TGP formulation is injected into a target site, PLGA microspheres in TGP gel localize at the injection site and do not diffuse across the entire brain tissue, and thus, sustained drug release from the PLGA microspheres at the target site is expected. Using in vivo imaging, we confirmed that the implantation of indocyanine green (ICG)/PLGA/TGP formulation exhibited a stronger localization of ICG at the injection site 28 d after injection compared with that of ICG/PLGA formulation. The therapeutic effect (mean survival) was evaluated in a C6 rat glioma model. Surgical tumor resection alone showed almost no effect on survival (controls, 18 d; surgical resection; 18.5 d). Survival was prolonged after the treatment with a camptothecin (CPT; 10 µg)/PLGA/TGP formulation (24 d). The combination treatment of surgical tumor resection and CPT/PLGA/TGP showed almost the same therapeutic effect (24 d) compared with CPT/PLGA/TGP alone, while the combination treatment produced long term survivors (>60 d). Therefore, the CPT/PLGA/TGP formulation can be an effective candidate for localized and sustained long-term glioma therapy.

  18. Inhibition of. beta. -bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis(. beta. -aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.R.; Betz, H.; Rehm, H.

    1988-02-09

    The presynaptically active snake venom neurotoxin ..beta..-bungarotoxin (..beta..-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K/sup +/ channels. Here the authors show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of /sup 125/I-labeled ..beta..-Butx to chick and rat brain membranes with apparent K/sub i/ values of 180 nM and 1100 nM, respectively. The mechanisms of inhibition of MCD peptide is noncompetitive, as is inhibition of /sup 125/I-..beta..-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. ..beta..-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca/sup 2 +/ by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of /sup 125/I-..beta..-Butx by lowering its affinity to brain membranes.

  19. Quantitation of the immunological adjuvants, monophosphoryl lipid A and Quil A in poly (lactic-co-glycolic acid) nanoparticles using high performance liquid chromatography with evaporative light scattering detection.

    Science.gov (United States)

    Bobbala, Sharan; McDowell, Arlene; Hook, Sarah

    2015-01-15

    Monophosphoryl lipid A (MPL) and Quil A are two immunological adjuvants commonly used in vaccines. At present no simple, validated methods for the quantification of Quil A and MPL have been previously reported therefore the aim of the current study was to develop a simple, fast and validated method to quantify MPL and Quil A using high performance liquid chromatography evaporative light scattering detection (HPLC-ELSD). The HPLC-ELSD technique was carried out using a ZORBAX Eclipse XDB-C8 column (2.1×50 mm; particle size, 3.5 μm) in an isocratic elution mode at 25 °C. MPL was eluted at a retention time of 1.8 min with methanol-water as the mobile phase and a detector temperature of 75 °C. Quil A was resolved as three peaks with retention times of 4.1, 5.5 and 6.4 min with a detector temperature of 30 °C and with water-acetonitrile and 0.01% formic acid as the mobile phase. The nebulizer pressure and gain were set at 3.5 bar and 10, respectively. Calibration curves plotted for both the adjuvants had an R(2)>0.997. Accuracy, intra- and inter-day precision were within the accepted limits. The limit of detection for MPL and Quil A were calculated as 1.343 and 2.06 μg/mL, respectively. The limit of quantification was 2.445 for MPL and 8.97 μg/mL for Quil A. This analytical method was used to quantify the entrapment and in vitro release of MPL and Quil A in a poly lactic-co-glycolic acid (PLGA) nanoparticle vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    Science.gov (United States)

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  1. Evaluation of effectiveness of hyaluronic acid in combination with bioresorbable membrane (poly lactic acid-poly glycolic acid for the treatment of infrabony defects in humans: A clinical and radiographic study

    Directory of Open Access Journals (Sweden)

    Bhumika Sehdev

    2016-01-01

    Full Text Available Background: The combination of biomaterials, bone graft substitutes along with guided tissue regeneration (GTR has been shown to be an effective modality of periodontal regenerative therapy for infrabony defects. Therefore, the present randomized controlled clinical study was undertaken to evaluate the effectiveness of hyaluronic acid (HA in combination with bioresorbable membrane for the treatment of human infrabony defects. Materials and Methods: Twenty four infrabony defects in 20 systemically healthy patients were randomly assigned to test (HA in combination with bioresorbable membrane and control (bioresorbable membrane alone treatment groups. Probing pocket depth (PPD, relative attachment level, and relative gingival margin level were measured with a computerized Florida disc probe at baseline and at 6 months follow-up. Radiographic measurements were also evaluated at baseline and at 6 months of postsurgery. Results: At 6 months, the mean reduction in PPD in test group and control group was 4.52 mm and 2.97 mm, respectively. Significantly higher clinical attachment level with a gain of 2.20 mm was found in the test group as compared to control group. In addition, statistically significant greater reduction of radiographic defect depth was observed in the test group. Conclusion: Regenerative approach using hyaloss in combination with GTR for the treatment of human infrabony defects resulted in a significant added benefit in terms of CAL gains, PPD reductions and radiographic defect fill, as well as LBG, compared to the GTR alone.

  2. Exposure to glycols and their renal effects in motor servicing workers.

    Science.gov (United States)

    Laitinen, J; Liesivuori, J; Savolainen, H

    1995-10-01

    Ten car mechanics frequently exposed to glycol-based cooling liquids were followed during a workshift. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were measured. The car mechanics gave urine samples after the workshift and their excretion of ethylene glycol, propylene glycol, oxalic acid, calcium and ammonia was analysed and compared to that of unexposed office workers. Urinary succinate dehydrogenase activity and glycosaminoglycans were also measured in both groups. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were negligible. Urinary ethylene glycol excretion in exposed workers was significantly higher than that in unexposed workers, but propylene glycol excretion was at the same levels as in controls. In the exposed group, the excretion of the end metabolite of ethylene glycol, oxalic acid (47 +/- 11 mmol/mol creatinine, mean +/- SD, n = 10) differed slightly from that of controls (36 +/- 14 mmol/mol creatinine, mean +/- SD, n = 10). Urinary excretion of ammonia was higher among exposed workers than office workers. The excretion of calcium did not differ from that of controls. A marginally decreased urinary succinate dehydrogenase activity was found in the exposed men. The excretion of glycosaminoglycans was significantly lower in exposed workers. Therefore, it seems that ethylene glycol is absorbed by skin contact. The internal body burden is associated with oxaluria and increased ammoniagenesis typical of chronic acidosis.

  3. Acute oxalate nephropathy caused by ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    Jung Woong Seo

    2012-12-01

    Full Text Available Ethylene glycol (EG is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

  4. Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhesive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall.

    Science.gov (United States)

    Salem, Salah Abood; Hwei, Ng Min; Bin Saim, Aminuddin; Ho, Christopher C K; Sagap, Ismail; Singh, Rajesh; Yusof, Mohd Reusmaazran; Md Zainuddin, Zulkifili; Idrus, Ruszymah Bt Hj

    2013-08-01

    The chief obstacle for reconstructing the bladder is the absence of a biomaterial, either permanent or biodegradable, that will function as a suitable scaffold for the natural process of regeneration. In this study, polylactic-co-glycolic acid (PLGA) plus collagen or fibrin was evaluated for its suitability as a scaffold for urinary bladder construct. Human adipose-derived stem cells (HADSCs) were cultured, followed by incubation in smooth muscle cells differentiation media. Differentiated HADSCs were then seeded onto PLGA mesh supported with collagen or fibrin. Evaluation of cell-seeded PLGA composite immersed in culture medium was performed under a light and scanning microscope. To determine if the composite is compatible with the urodynamic properties of urinary bladder, porosity and leaking test was performed. The PLGA samples were subjected to tensile testing was pulled until PLGA fibers break. The results showed that the PLGA composite is biocompatible to differentiated HADSCs. PLGA-collagen mesh appeared to be optimal as a cell carrier while the three-layered PLGA-fibrin composite is better in relation to its leaking/ porosity property. A biomechanical test was also performed for three-layered PLGA with biological adhesive and three-layered PLGA alone. The tensile stress at failure was 30.82 ± 3.80 (MPa) and 34.36 ± 2.57 (MPa), respectively. Maximum tensile strain at failure was 19.42 ± 2.24 (mm) and 23.06 ± 2.47 (mm), respectively. Young's modulus was 0.035 ± 0.0083 and 0.043 ± 0.012, respectively. The maximum load at break was 58.55 ± 7.90 (N) and 65.29 ± 4.89 (N), respectively. In conclusion, PLGA-Fibrin fulfils the criteria as a scaffold for urinary bladder reconstruction. Copyright © 2013 Wiley Periodicals, Inc.

  5. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  6. Development of methodology for the synthesis of poly(lactic acid-co-glycolic acid) for use in the production of radioactive sources; Desenvolvimento da metodologia para sintese do poli(acido latico-co-acido glicolico) para utilizacao na producao de fontes radioativas

    Energy Technology Data Exchange (ETDEWEB)

    Peleias Junior, Fernando dos Santos; Zeituni, Carlos Alberto; Rostelato, Maria Elisa Chuery Martins; Souza, Carla Daruich de; Mattos, Fabio Rodrigues de; Moura, Eduardo Santana de; Moura, Joao Augusto; Benega, Marcos Antonio Gimenes; Feher, Anselmo; Costa, Osvaldo Luiz da; Rodrigues, Bruna Teiga, E-mail: fernandopeleias@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP/CTR), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Fechine, Guilhermino Jose [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Escola de Engenharia

    2015-05-15

    According to the World Health Organization, cancer is a leading cause of death worldwide. A radiotherapy method extensively used in prostate cancer is brachytherapy, where the area requiring treatment receives radioactive seeds. Iodine-125 seeds can be inserted loose or stranded in bioabsorbable polymers produced from poly(lactic-co-glycolic acid) (PLGA). We developed the synthesis methodology for PLGA and the results obtained show that it was possible to determine the optimal reaction parameters (time and temperature) for PLGA in 80/20 (lactide/glycolide) ratio. The yield was higher than 90% using a temperature of 110 °C and reaction time of 72 hours; however, the molecular weight values obtained are very low compared to those obtained by other authors. New tests using previously synthesized dimers and nitrogen atmosphere are being performed. These conditions could potentially increase the molar mass of PLGA. All techniques used confirmed the expected structure of the polymer. (author)

  7. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate

    Directory of Open Access Journals (Sweden)

    Abbad S

    2015-01-01

    Full Text Available Sarra Abbad,1,2 Cheng Wang,1 Ayman Yahia Waddad,1 Huixia Lv,1 Jianping Zhou11Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 2Department of Pharmacy, Abou Bekr Belkaid University, Tlemcen, AlgeriaAbstract: Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH, based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate (HA-PBCA block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice

  8. The extraction of plutonium with triethylene glycol dichloride

    International Nuclear Information System (INIS)

    Aikin, A.M.; Moss, M.; Bruce, T.

    1951-03-01

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  9. The extraction of plutonium with triethylene glycol dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, A M; Moss, M; Bruce, T

    1951-03-15

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  10. Determination of the impact of glycolate on ARP and MCU operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-17

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal, phase separation, or coalescer performance at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU).

  11. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    International Nuclear Information System (INIS)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel; Rodes, Antonio

    2010-01-01

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  12. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration.

    Science.gov (United States)

    Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin

    2017-05-12

    Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track.  In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible

  13. Desenvolvimento e validação de metodologia analítica para a determinação do teor de ácido glicólico na matéria-prima e em formulações dermocosméticas Development and validation of an analytical methodology for determination of glycolic acid acid in raw material and dermocosmetic formulations

    Directory of Open Access Journals (Sweden)

    Bianca Gonzalez Henriques

    2007-03-01

    Full Text Available O ácido glicólico é amplamente utilizado na terapêutica para se obter um peeling suave, levando ao afinamento do estrato córneo útil na renovação da epiderme e na redução das linhas faciais. Porém, em concentrações elevadas pode estar associado a um alto potencial de irritação da pele. O peeling químico tem diversas aplicações clínicas dentre elas o tratamento da pele facial lesada por problemas como acne, ictiose, melasma, verrugas e outros problemas. O presente trabalho objetivou estabelecer e validar a metodologia analítica para a determinação do teor de ácido glicólico na matéria-prima e em formulações dermocosméticas, tendo empregado o método titulométrico de neutralização ácido-base, determinando-se o ponto de equivalência com indicador e/ou indicação potenciométrica. A análise do teor de ácido glicólico na matéria-prima e, particularmente, no produto acabado, é importante para o controle de qualidade, principalmente, para a segurança dos consumidores. Portanto, a matéria-prima e os produtos, contendo ácido glicólico, foram analisados em dois dias, quanto ao teor de ácido glicólico livre e total utilizando soluções de hidróxido de sódio 0,1 N e o ácido clorídrico 0,1 N. A metodologia desenvolvida baseou-se na reação com a substância ativa e com as características próprias destas formulações, demonstrando ser prática e eficaz na quantificação do ácido glicólico.Glycolic acid is widely used in therapeutical care as a soft peeling, leading to the thickness of the horny layer, which is useful in the renewal of the epidermis and the reduction of the face lines. However, in high concentrations it can be associated to a potential of irritation of the skin. A chemical peeling has diverse clinical applications, among them the treatment of injured skin face like: acne, ichthyose, melasma, warts and other else. The present work had the goal to establish and to validate an analytical

  14. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  15. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/D-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment

    Directory of Open Access Journals (Sweden)

    Wu H

    2016-11-01

    Full Text Available Hao Wu,1–3 Qingxiang Zhong,1,2 Rongling Zhong,4 Houcai Huang,4 Zhi Xia,4 Zhongcheng Ke,1,5 Zhenhai Zhang,1 Jie Song,1,2 Xiaobin Jia1–3 1Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 2Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu, 3College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 4Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu, 5College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, People’s Republic of China Abstract: Oleanolic acid (OA is a triterpenoid found in various fruits and vegetables and used in traditional Chinese medicine. OA plays a crucial role in the treatment of several cancers, but poor water solubility, low permeability, and significant efflux have limited its widespread clinical use. Vitamin E-D-α-tocopheryl polyethylene glycol succinate (vitamin E-TPGS and Pluronic P105 were used to improve the solubility and permeability and to decrease the efflux of OA. OA-loaded mixed micelles were prepared by ethanol thin-film hydration. The physicochemical properties of the micelles, including zeta potential, morphology, particle size, solubility, drug loading, and drug entrapment efficiency were characterized. OA release from micelles was slower than that from the free drug system. OA uptake by A549 non-small-cell lung cancer (NSCLC cells was enhanced by the micelles. A tumor model was established by injecting A549 cells into nude mice. In vivo imaging showed that OA-micelles could accumulate in the tumors of nude mice. Additionally, smaller tumor size and increased expression of pro-apoptotic proteins were observed in OA-micelle-treated mice, indicating that OA-micelles are more effective than free OA in treating cancer. In vitro experiments were performed using two NSCLC cell

  16. Literature Review On Impact Of Glycolate On The 2H Evaporator And The Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Adu-Wusu, K.

    2012-01-01

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations (le) 33 mg/L or 0.44 mM. The ETF unit operations that will have

  17. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  18. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  19. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  20. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    International Nuclear Information System (INIS)

    Nicolay, K.; Kruijff, B. de; Smaal, E.B.

    1986-01-01

    2 H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2 H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2 H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  1. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    Directory of Open Access Journals (Sweden)

    Courtney A. Cunningham MD

    2015-09-01

    Full Text Available In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  2. Development of methodology for the synthesis of poly(lactic acid-co-glycolic acid) for use in the production of radioactive sources; Desenvolvimento da metodologia para sintese do poli(acido latico-co-acido glicolico) para utilizacao na producao de fontes radioativas

    Energy Technology Data Exchange (ETDEWEB)

    Peleias Junior, Fernando dos Santos

    2013-07-01

    According to World Health Organization (WHO), cancer is a leading cause of death worldwide. Prostate cancer is the second most common cancer in men. A method of radiotherapy which has been extensively used is brachytherapy, where radioactive seeds are placed inside the area requiring treatment. Iodine-125 seeds can be placed loose or stranded in bioabsorbable polymers. Stranded seeds show some advantages, since they reduce the rate of seed migration, an event that could affect the dosimetry of the prostate and cause unnecessary damage to healthy tissues or organs. For Iodine-125 stranded seeds, polyglactin 910 (poly(lactic-co-glycolic acid)) (PLGA), with a coverage of polyglactin 370 (Vicryl Registered-Sign ) is used. It was purposed in this dissertation, the study and development of the synthesis methodology for PLGA via ring-opening polymerization, as well as its characterization, with the objective of using the synthesized material to manufacture a material similar to RAPID Strand{sub Registered-Sign }. The results obtained show that it was possible to determine the optimal reaction parameters (time and temperature) for PLGA in 80/20 (lactide/glycolide) ratio. Using a temperature of 110 Degree-Sign C and reaction time of 24h, a yield of 86% was obtained, and increasing the reaction time to 72 hours, the yield was higher than 90%. The molecular mass values obtained from the samples are still very low compared to those obtained by other authors in the literature (about 20%). Failures in the sealing of vials, leaving them vulnerable to moisture and oxygen, or lack of an efficient stirring system might be possible explanations for these results. A suitable chemical reactor could solve the problem. Regarding polymer characterization, all techniques used not only confirmed the expected structure of the polymer, but also showed the highest proportion of lactide units compared to to glycolide units. (author)

  3. Determination of the Impact of Glycolate on ARP and MCU Operations

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.; Peters, T.; Shehee, T.

    2012-01-01

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU). Sorption testing was performed using both MST and modified MST (mMST) in the presence of 5,000 and 10,000 ppm (mass basis) glycolate. 10,000 ppm is the estimated bounding concentration expected in the DWPF recycle stream based on DWPF melter flammable gas model results. The presence of glycolate was found to slow the removal of Sr and Pu by MST, while increasing the removal rate of Np. Results indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. There was no measurable effect on U removal at either glycolate concentration. The slower removal rates for Sr and Pu at 5,000 and 10,000 ppm glycolate could result in lower DF values for these sorbates in ARP based on the current (12 hours) and proposed (8 hours) contact times. For the highest glycolate concentration used in this study, the percentage of Sr removed at 6 hours of contact decreased by 1% and the percentage of Pu removed decreased by nearly 7%. The impact may prove insignificant if the concentration of glycolate that is returned to the tank farm is well below the concentrations tested in this study. The presence of glycolate also decreased the removal rates for all three sorbates (Sr, Pu, and Np) by mMST. Similarly to MST, the results for mMST indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. The presence of glycolate did not change the lack

  4. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  5. Preoperative bowel preparation in children: Polyethylene glycol ...

    African Journals Online (AJOL)

    Preoperative bowel preparation in children: Polyethylene glycol versus normal saline. ... In children, (is this standard of care?: this method is mostly followed) this is usually ... Patients and Methods: Thirty patients, admitted in the Department of ...

  6. Inert Reassessment Document for Ethylene Glycol

    Science.gov (United States)

    Ethylene Glycol has many uses and are also used as antifreeze and deicers, as solvents, humectants, as chemical intermediates in the synthesis of other chemicals, and as components of many products such as brake fluids, lubricants, inks,and lacquers.

  7. Intensification of ethylene glycol production process

    DEFF Research Database (Denmark)

    Wisutwattanaa, Apiwit; Frauzem, Rebecca; Suriyapraphadilok, Uthaiporn

    2017-01-01

    This study aims to generate an alternative design for ethylene glycol production process focusing on a reduction of operating cost and emissions. To achieve this, the phenomena-based method for process intensification was applied. 3 stages of process intensification were performed. First, the base......-case design was obtained, resulting in the production of ethylene glycol via two steps: ethylene oxidation synthesis followed by ethylene oxide hydration to produce ethylene glycol. Feasibility of the design was verified and the process was rigorously designed using a computer process simulation program...... solutions. As the result of intensification method, membrane separation was suggested and applied to the design. With the operation of the new equipment, the ethylene glycol production process was improved for 54.51 percent in terms of energy consumption....

  8. Immediate-type hypersensitivity to polyethylene glycols

    DEFF Research Database (Denmark)

    Wenande, E; Garvey, L H

    2016-01-01

    Polyethylene glycols (PEGs) or macrogols are polyether compounds widely used in medical and household products. Although generally considered biologically inert, cases of mild to life-threatening immediate-type PEG hypersensitivity are reported with increasing frequency. Nevertheless, awareness...

  9. [Effect of the compound of poly lactic-co-glycolic acid and bone marrow stromal cells modified by osteoprotegerin gene on the periodontal regeneration in Beagle dog periodontal defects].

    Science.gov (United States)

    Zhou, Wei; Zhao, Chun-Hui; Mei, Ling-Xuan

    2010-06-01

    To evaluate the effect of the osteoprotegerin (OPG) gene-modified autologous bone marrow stromal cells (BMSCs) on regeneration of periodontal defects, and to provide new experimental evidence to explore the gene therapy for periodontal disease. pSecTag2/B-opg was transduced into BMSCs by lipofectamine 2000. The expression of OPG protein in the BMSCs was detected by immunocytochemistry and Western blot. Inverted phase contrast microscope and scanning electron microscopy (SEM) were used to observe the morphology and proliferation of the BMSCs(OPG) on on the surface of the poly lactic-co-glycolic (PLGA). Horizontal alveolar bone defect (4 mmx4 mmx 3 mm) were surgically created in the buccal aspect of the mandibular premolar, and were randomly assigned to receive BMSCs(OPG)-PLGA (cells/material/OPG), BMSCs-PLGA (cells/material), PLGA (material), or root planning only (blank control). The animals were euthanized at 6 weeks post surgery for histological analysis. The height of new alveolar bone and cementum and the formation of new connective tissue were analyzed and compared. All data were statistically analyzed using the q test. The BMSCs transfected by human OPG gene can highly express OPG protein. SEM observations demonstrated that BMSCs(OPG) were able to proliferate and massively colonize on the scaffolds structure. After 6 weeks, the height of new alveolar bone and cementum and the formation of new connective tissue were significantly greater in the experimental group than in the control groups (P < 0.05). BMSCs(OPG)-PLGA can significantly promote the regeneration of dog's periodontal bone defects. Gene therapy utilizing OPG may offer the potential for periodontal tissue engineering applications.

  10. Aqueous phase reforming of ethylene glycol - Role of intermediates in catalyst performance

    NARCIS (Netherlands)

    de Vlieger, Dennis; Mojet, Barbara; Lefferts, Leonardus; Seshan, Kulathuiyer

    2012-01-01

    Liquid product formation during the aqueous catalytic reforming of ethylene glycol (EG) was studied up to 450 °C and 250 bar pressure. Methanol, ethanol, and acetic acid were the main liquid by-products during EG reforming in the presence of alumina-supported Pt and Pt–Ni catalysts. The effect of

  11. Distribution coefficients of amino acid, peptide and enzyme in respect to aqueous two phase system composed of dextran, polyethylene glycol and water; Dekisutoran+poriechiren gurikoru+mizu karanaru suiseinisokei ni taisuru aminosan, pepuchido oyobi koso no bunpai keisu

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yoshio [Kyushu University, Fukuoka (Japan); Kakizaka, Keijiro; Shindo, Takashi; Ishida, Otetsu; Arai, Yasuhiko

    1999-01-05

    Distribution coefficients of five kinds of amino acids (aspartic acid, asparagines, methionine, cysteine and cytidine) and two kinds of peptides (glycylglycine and hexane glycine) were measured. These distribution coefficients are in good correlation with the osmosis viral expression. The interaction parameter in the osmosis viral expression can be estimated by hydrophilic group parameter. The distribution coefficient of {alpha}-amylase was estimated by the osmosis viral expression using the above-mentioned hydrophilic group parameter, and the estimated value showed substantially good correspondence with the actually measured value, but for the distribution coefficient of {beta}-amylase, no coincidence was found. (translated by NEDO)

  12. Biosynthetic mechanism of glycolate in Chromatium, (3)

    International Nuclear Information System (INIS)

    Asami, Sumio; Akazawa, Takashi

    1976-01-01

    The effects of α-hydroxy-2-pyridinemethanesulfonate (α-HPMS), 2,3-epoxypropionate(glycidate), and cyanide on the photosynthetic activity of Chromatium were investigated. The α-HPMS stimulated the photosynthetic CO 2 fixation in the bacterial cells in both N 2 and O 2 environments. The formation and subsequent excretion of both glycolate and glycine in the O 2 atmosphere were markedly enhanced by the HPMS. In contrast to the recent report that glycidate especially inhibits the glycolate formation in tabacco leaf disks, the authors found that it had no influence on the CO 2 fixation by Chromatium in either N 2 or O 2 atmosphere, and that the synthesis and extracellular excretion of glycolate were markedly stimulated by glycidate treatment. The cyanide (0.01 - 1mM) exerted some marked inhibitory effect on the photosynthetic CO 2 fixation in N 2 . In O 2 atmosphere, the photosynthesis was stimulated by the 0.01 mM cyanide, and inhibited by it above this level. Both the incorporation of 14 CO 2 into glycolate and the total synthesis of glycolate in light were also enhanced by the 0.01 mM cyanide, and strongly inhibited above that concentration. (J.P.N.)

  13. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  14. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. III. Research on ethylene glycol and diethylene glycol for carcinogenic effects].

    Science.gov (United States)

    Dunkelberg, H

    1987-03-01

    Ethylene glycol and diethylene glycol were each administered once weekly subcutaneously to groups of 100 female NMRI mice at 3 dosages (30; 10 und 3 mg single dose per mouse). Tricaprylin was used as solvent. The mean total dosage per mouse was 2110.5; 707.0 and 196.2 mg for ethylene glycol and 2029.8; 671.7 and 213.3 mg for diethylene glycol. Neither ethylene glycol nor diethylene glycol induced tumors at the injection site or away from the point of administration.

  15. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1996-01-01

    Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase

  16. Monoclonal antibody to DNA containing thymine glycol

    Energy Technology Data Exchange (ETDEWEB)

    Leadon, S A; Hanawalt, P C [Stanford Univ., CA (USA). Dept. of Biological Sciences

    1983-08-01

    Exposure of DNA to ionizing or near ultraviolet radiation modifies thymine to form ring-saturated products. One of the major products formed is 5,6-dihydroxy-5.6-dihydrothymine (thymine glycol). Thymine glycol can also be selectively formed by oxidizing DNA with OsO/sub 4/. We have isolated hybrids that produce monoclonal antibodies against thymine glycol by fusing mouse myeloma cells (P3X63-Ag8-6.5.3) with spleen cells from BALB/c mice immunized with OsO/sub 4/-oxidized poly(dT) complexed with methylated bovine serum albumin. This report describes the characterization of the antibody from one hybridoma using a competitive enzyme-linked immunosorbent assay (ELISA). The antibody reacted with both single- and double-stranded DNA treated with OsO/sub 4/, and with OsO/sub 4/-treated poly(dA-dT) and poly(dT); it did not crossreact with unmodified or apurinic DNA. It also reacted with DNA treated with H/sub 2/O/sub 2/ or with ..gamma..-rays at doses as low as 250 rad. We were able to detect 2 fmoles of thymine glycol in OsO/sub 4/-treated DNA and could quantitate 1 thymine glycol per 220000 thymines. Using the antibody and the ELISA, the formation and removal of thymine glycol was examined in cultures of African green monkey cells irradiated with 25 krad of ..gamma..-rays. The antibody reactive sites produced by irradiation (8.5 per 10/sup 6/ thymines) were efficiently removed from the cellular DNA.

  17. The proton dynamics of ethylene glycol

    CERN Document Server

    Novikov, A G; Sobolev, O V

    2002-01-01

    The results of inelastic neutron scattering experiments on ethylene glycol at T=300 K, T=348 K and T=393 K by using the 'direct-geometry' double time-of-flight neutron-scattering spectrometer DIN-2PI (Frank Laboratory of Neutron Physics, JINR, Dubna) are presented. The quasi-elastic and inelastic components of the neutron scattering have been considered. The diffusion characteristics and generalized frequency distributions for protons of ethylene glycol molecules were obtained from the neutron-scattering spectra. (orig.)

  18. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  19. Stabilization of Polyethylene Glycol in Archaeological Wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig

    Projektet har fokuseret på polythylen glycol (PEG) stabilitet og nedbrydning i træ fra konserverede skibsvrag som Vasa (Stockholm) og Skuldelev skibene. En række avancerede analyseteknikker er anvendt til at undersøge indtrængningsdybden for forskellige molekylstørrelser PEG i ikke-nedbrudt træ f...

  20. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...

  1. Enthalpy of phase transition and prediction of phase Equilibria in systems of glycols and glycol ethers

    OpenAIRE

    Esina, Zoya; Miroshnikov, Aleksandr; Korchuganova, Margarita

    2014-01-01

    The PCEAS model was used to study the liquid-solid and liquid-vapor phase transitions at constant pressure in systems containing glycols and glycol ethers. This method is based on minimizing the excess Gibbs energy over the solvation parameter, which takes into account the processes of association of molecules in various phases. To compute the diagrams, the data on enthalpy and phase transition temperatures of pure components are required, while the information about the interactions in the b...

  2. Sync-measurement experimental study of (fluoroethane + dimethylether tetraethylene glycol), (fluoroethane + dimethylether triethylene glycol) and (fluoroethane + dimethylether diethylene glycol) systems

    International Nuclear Information System (INIS)

    Feng, Lejun; Zheng, Danxing; Huang, Weijia

    2016-01-01

    Highlights: • Three new working pairs are proposed for absorption power cycle. • Sync-measured the solubility and absorption enthalpy data at 303.15 K. • Thermokinetic experiment is consistent with the previous thermodynamics study. - Abstract: In this work, three new working pairs, {fluoroethane (HFC161) + dimethylether tetraethylene glycol (DMETEG)}, {HFC161 + dimethylether triethylene glycol (DMETrEG)} and {HFC161 + dimethylether diethylene glycol (DMEDEG)}, are proposed for absorption power cycle. The working pairs are assessed from both thermodynamics and thermokinetic perspective. By combining the microcalorimetry and isothermal synthesis methods, an experimental apparatus was developed to simultaneously obtain the microcalorimetry and vapour–liquid equilibrium data. Then, the solubility and absorption enthalpy data of the three new working pairs were sync-measured at 303.15 K by this sync-measurement experimental apparatus. The thermodynamics data indicated that the affinities of the three working pairs increased from strong to weak in the following order: HFC161 + DMETEG > HFC161 + DMETrEG > HFC161 + DMEDEG. Then the thermokinetic parameters of the absorption rate constant and activation energy were analysed based on the thermokinetic experiment at (303.15, 313.15, 323.15, and 333.15) K. As a result, the affinities of the three working pairs are consistent with the previous thermodynamics study. In addition, the intermolecular interactions within the three systems were analysed according to the intermolecular hydrogen bonds; overall, the (HFC161 + DMETEG) system is considered to be the potential option for applications.

  3. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  4. Penetration enhancer: monoethylether of diethylene glycol

    International Nuclear Information System (INIS)

    Koprda, V.; Kassai, Z.; Bohacik, L.; Bezek, S.; Hadcrafft, J.; Falson-Rieg, F.

    1999-01-01

    The monoethylether of diethylene glycol (Transcutol), an excellent solubilising agent, has been suggested as a penetration enhancer compatible with trans-dermal drug delivery systems. Using the abdominal skin of 5 day old rats and Franz-type diffusion cells the following topics were studied in this contribution: (1) Flux of Transcutol, labelled with [Ethyl- 14 C]-ether, across an intact skin model, (2) Changes in properties of the skin barrier after stripping with adhesive tape, and (3) Changes in flux of Transcutol when mixed with different co-solvents. The flux from pure solvent in donor compartment reached around 50 μg cm -2 hr -1 across the intact skin horny layer, whilst after 12 strips the flux increased about 200 times. In the presence of propylene glycol dipelargonate, the flux over 2 mg cm -2 hr -1 across non stripped skin was achieved. (authors)

  5. Characterization of tetraethylene glycol passivated iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  6. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  7. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-01-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe 3 O 4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe 3 O 4 ) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g −1 and 131 emu g −1 , respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  8. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  9. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    OpenAIRE

    Zehra Durmus

    2014-01-01

    Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG) solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol) on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffractio...

  10. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  11. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  12. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  13. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  14. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    and apoptosis via mitochondrial pathway due to decrease in membrane potential and release of cytochrome C, as ... triggering of apoptosis as determined by DNA fragmentation ... used to transfer proteins onto a PVDF membrane which was ...

  15. Effect of activated charcoal, abscisic acid and polyethylene glycol on ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Generation of horse chestnut somatic embryos is commonly achieved by transferring embryo- genic tissue onto an ABA, PEG and manitol-containing maturation media (Capuana and Deberg, 1997). Activated charcoal is commonly used in tissue culture media to darken the immediate media surroundings ...

  16. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  17. Bipallidal haemorrhage after ethylene glycol intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M. [CHU Pointe a Pitre, Service de Neurologie, Lille (France); Sengler, C. [CHU Pointe a Pitre, Laboratoire de Pharmaco-Toxicologie, Guadeloupe (France); Benabdallah, E. [CHU Pointe a Pitre, Service de Radiologie, Guadeloupe (France); Colombani, S. [Centre d' Imagerie medicale, Martinique (France)

    2005-02-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  18. Bipallidal haemorrhage after ethylene glycol intoxication

    International Nuclear Information System (INIS)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M.; Sengler, C.; Benabdallah, E.; Colombani, S.

    2005-01-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  19. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  20. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bekkali, Noor L. H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E. J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G. P.; Voropaiev, Maksym; Benninga, Marc A.

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes

  1. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange

    Science.gov (United States)

    Ullah, Ikram; Ali, Farman; Ali, Zarshad; Humayun, Muhammad; wahab, Zain Ul

    2018-05-01

    In this work, we have successfully prepared ZnFe2O4 magnetic nanoparticles as photocatalysts via co-precipitation method using triethylene glycol as a stabilizing agent. The resultant nanoparticles were annealed at 400 °C and then acid etched and surface functionalized with 3-(triethoxysilyl) propyl amine (APTES). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) analysis were used to characterize these magnetic photocatalysts. XRD patterns revealed that the size of annealed and functionalized ZnFe2O4 nanoparticles falls in the range of 23.3 and 13.9 nm, respectively. The optical band gaps of the magnetic photocatalysts were calculated from UV–Visible absorption spectra using Tauc plots. The band gap of the ZnFe2O4 photocatalyst in acidic and basic medium was 2.47 and 2.7 eV, respectively. The performance of the magnetic photocatalysts was evaluated for xylenol orange (XO) degradation. The degradation rates of XO dye for the blank, annealed and functionalized photocatalysts at pH = 4 were 76%, 85%, and 90%, respectively. In addition, the influence of important parameters such as contact time, pH, catalyst, and dye dose were also investigated for all the three photocatalysts. The applied kinetics models demonstrated that the degradation followed pseudo 1st order.

  2. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.

    Science.gov (United States)

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania ( L .) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4 + T H1 and CD8 + T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic- co -glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4 + and CD8 + T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8 + T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that

  3. Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester.

    Science.gov (United States)

    Agrawal, Gaurav; Oh, Jungmin; Sreedhar, Balamurali; Tie, Shan; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2014-09-19

    In this article, we extend the simulated moving bed reactor (SMBR) mode of operation to the production of propylene glycol methyl ether acetate (DOWANOL™ PMA glycol ether) through the esterification of 1-methoxy-2-propanol (DOWANOL™ PM glycol ether) and acetic acid using AMBERLYST™ 15 as a catalyst and adsorbent. In addition, for the first time, we integrate the concept of modulation of the feed concentration (ModiCon) to SMBR operation. The performance of the conventional (constant feed) and ModiCon operation modes of SMBR are analyzed and compared. The SMBR processes are designed using a model based on a multi-objective optimization approach, where a transport dispersive model with a linear driving force for the adsorption rate has been used for modeling the SMBR system. The adsorption equilibrium and kinetics parameters are estimated from the batch and single column injection experiments by the inverse method. The multiple objectives are to maximize the production rate of DOWANOL™ PMA glycol ether, maximize the conversion of the esterification reaction and minimize the consumption of DOWANOL™ PM glycol ether which also acts as the desorbent in the chromatographic separation. It is shown that ModiCon achieves a higher productivity by 12-36% over the conventional operation with higher product purity and recovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    International Nuclear Information System (INIS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Dang, Mau Chien

    2015-01-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, "1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable. (paper)

  5. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  6. 21 CFR 172.712 - 1,3-Butylene glycol.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.712 1,3-Butylene glycol. The food additive 1,3-butylene glycol (CAS...

  7. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  8. Application of simplified PC-SAFT to glycol ethers

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2...

  9. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  10. Polyethylene glycol: a game-changer laxative for children.

    Science.gov (United States)

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol.

  11. Role of polyethylene glycol in childhood constipation.

    Science.gov (United States)

    Phatak, Uma Padhye; Pashankar, Dinesh S

    2014-09-01

    Constipation is a common and chronic problem in children worldwide. Long-term use of laxatives is necessary for successful treatment of chronic constipation. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol (PEG). Recent studies report the efficacy and safety of PEG for the long-term treatment of constipation in children. Because of its excellent patient acceptance, PEG is being used widely in children for constipation. In this commentary, we review the recently published pediatric literature on the efficacy, safety, and patient acceptance of PEG. We also assess the role of PEG in childhood constipation by comparing it with other laxatives in terms of efficacy, safety, patient acceptance, and cost. © The Author(s) 2013.

  12. Validation of an analytical methodology for the determination of diethylene glycol and ethylene glycol as impurities in glycerin and propylene glycol

    International Nuclear Information System (INIS)

    Rosabal Cordovi, Ursula M; Fonseca Gola, Antonio; Cordovi Velazquez, Juan M; Morales Torres, Galina

    2014-01-01

    A methodology for the quantification of diethylene glycol (DEG) and the ethylene glycol (EG) impurities by gas Chromatography with flame ionization detector in glycerol and propylene glycol samples was developed and validated. It was selected dimethyl sulphoxide as internal standard. It was used hydrogen as carrier and auxiliary gas. The temperature program was 100°C holding one minute, then ramp to rate of 7.5°C/ min up to 200 °C. A Restek 624 column was used, with a flow in column of 4.20 ml/ min. Temperatures of the injector and detector were set at 220°C and 250 °C, respectively. The linearity was determined at 25-75 ?μg/ml as interval of concentrations for both impurities with correlation coefficients larger than 0.999. Detection Limits were settled down in 0.0350 μ?g/ml to the diethylene glycol, and 0.0572 μg/ml to ethylene glycol, while the quantitation limits were 0.1160 μ?g/ml to DEG and 0.1897 μg/ml to the EG. The recoveries were 99.98 % and 100.00 %, respectively; with RSD % 1.18 % to DEG, and 0.60 % to the EG. The obtained results demonstrated that the methodology was linear, accurate, robustness, sensitive and selective to be used in the determination of both impurities in the quality control of the glycerol and propylene glycol as raw materials

  13. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    OpenAIRE

    Bekkali, Noor L.H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E.J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G.P.; Voropaiev, Maksym; Benninga, Marc A.

    2017-01-01

    ABSTRACT Objective: The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). Methods: In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of

  14. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653 ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  15. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    Science.gov (United States)

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Preparation and Separation of Telechelic Carborane-Containing Poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Uchman, M.; Lepšík, Martin; Srnec, Martin; Zedník, J.; Kozlík, P.; Kalíková, K.

    2013-01-01

    Roč. 78, č. 6 (2013), s. 528-535 ISSN 2192-6506 R&D Projects: GA AV ČR IAAX00320901 Grant - others:GA ČR(CZ) GPP208/12/P236 Institutional support: RVO:61388963 Keywords : carboranes * click chemistry * poly(ethylene glycol) * quantum chemistry * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013

  17. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  18. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  19. Tetraethylene glycol thermooxidation and the influence of certain compounds relevant to conserved archaeological wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig; Egsgaard, Helge; Hvilsted, Søren

    2012-01-01

    The degradation of tetraethylene glycol (TEG) was studied at 70 °C under dry air and nitrogen. Degradation products were detected using gas chromatography-mass spectrometry (GC–MS). They were mono-, di- and tri-ethylene glycol, mono- and di-formates of mono-, di-, tri- and tetra-ethylene glycol...... and formic acid. The rate of TEG degradation was significantly decreased by approximately 10 mmol/l KI, FeCl3, Cu(CH3COO)2, MnO2 and CuSO4, small amounts of fresh oak wood sawdust and gypsum-containing scrapings from the wood surface of the Vasa ship in Stockholm. Thus certain salts and natural components...... of archaeological wood are able to inhibit oxidative degradation of TEG. NaFe3(SO4)2(OH)6 (Natrojarosite), FeS2 (pyrite), FeSO4, Fe2(SO4)3, NiCl2, NiSO4, Fe, Cu, Fe2O3, CuO, NaHSO4 and natrojarosite-containing scrapings from the Vasa had no major effect on the rate of oxidation....

  20. Efficacy of the biomaterials 3 wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study

    International Nuclear Information System (INIS)

    Masaeli, Reza; Jafarzadeh Kashi, Tahereh Sadat; Dinarvand, Rassoul; Rakhshan, Vahid; Shahoon, Hossein; Hooshmand, Behzad; Mashhadi Abbas, Fatemeh; Raz, Majid; Rajabnejad, Alireza; Eslami, Hossein; Khoshroo, Kimia

    2016-01-01

    Aims: The purpose of this multi-phase explorative in vivo animal/surgical and in vitro multi-test experimental study was to (1) create a 3 wt%-nanostrontium hydroxyapatite-enhanced calcium phosphate cement (Sr-HA/CPC) for increasing bone formation and (2) creating a simvastatin-loaded poly(lactic-co-glycolic acid) (SIM-loaded PLGA) microspheres plus CPC composite (SIM-loaded PLGA + nanostrontium-CPC). The third goal was the extensive assessment of multiple in vitro and in vivo characteristics of the above experimental explorative products in vitro and in vivo (animal and surgical studies). Methods and results pertaining to Sr-HA/CPC: Physical and chemical properties of the prepared Sr-HA/CPC were evaluated. MTT assay and alkaline phosphatase activities, and radiological and histological examinations of Sr-HA/CPC, CPC and negative control were compared. X-ray diffraction (XRD) indicated that crystallinity of the prepared cement increased by increasing the powder-to-liquid ratio. Incorporation of Sr-HA into CPC increased MTT assay (biocompatibility) and ALP activity (P < 0.05). Histomorphometry showed greater bone formation after 4 weeks, after implantation of Sr-HA/CPC in 10 rats compared to implantations of CPC or empty defects in the same rats (n = 30, ANOVA P < 0.05). Methods and results pertaining to SIM-loaded PLGA microspheres + nanostrontium-CPC composite: After SEM assessment, the produced composite of microspheres and enhanced CPC were implanted for 8 weeks in 10 rabbits, along with positive and negative controls, enhanced CPC, and enhanced CPC plus SIM (n = 50). In the control group, only a small amount of bone had been regenerated (localized at the boundary of the defect); whereas, other groups showed new bone formation within and around the materials. A significant difference was found in the osteogenesis induced by the groups sham control (16.96 ± 1.01), bone materials (32.28 ± 4.03), nanostrontium-CPC (24.84 ± 2.6), nanostrontium-CPC-simvastatin (40

  1. Efficacy of the biomaterials 3 wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Masaeli, Reza [Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Jafarzadeh Kashi, Tahereh Sadat, E-mail: jafarzat@sina.tums.ac.ir [Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rakhshan, Vahid [Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahoon, Hossein [Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahed University, Tehran (Iran, Islamic Republic of); Hooshmand, Behzad [Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mashhadi Abbas, Fatemeh [Department of Oral and Maxillofacial Pathology, School of Dentistry, Shahid Beheshti Medical Science University, Tehran (Iran, Islamic Republic of); Raz, Majid; Rajabnejad, Alireza; Eslami, Hossein [Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khoshroo, Kimia [Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Developmental Sciences, School of Dentistry, Marquette University, Milwaukee, WI (United States); and others

    2016-12-01

    Aims: The purpose of this multi-phase explorative in vivo animal/surgical and in vitro multi-test experimental study was to (1) create a 3 wt%-nanostrontium hydroxyapatite-enhanced calcium phosphate cement (Sr-HA/CPC) for increasing bone formation and (2) creating a simvastatin-loaded poly(lactic-co-glycolic acid) (SIM-loaded PLGA) microspheres plus CPC composite (SIM-loaded PLGA + nanostrontium-CPC). The third goal was the extensive assessment of multiple in vitro and in vivo characteristics of the above experimental explorative products in vitro and in vivo (animal and surgical studies). Methods and results pertaining to Sr-HA/CPC: Physical and chemical properties of the prepared Sr-HA/CPC were evaluated. MTT assay and alkaline phosphatase activities, and radiological and histological examinations of Sr-HA/CPC, CPC and negative control were compared. X-ray diffraction (XRD) indicated that crystallinity of the prepared cement increased by increasing the powder-to-liquid ratio. Incorporation of Sr-HA into CPC increased MTT assay (biocompatibility) and ALP activity (P < 0.05). Histomorphometry showed greater bone formation after 4 weeks, after implantation of Sr-HA/CPC in 10 rats compared to implantations of CPC or empty defects in the same rats (n = 30, ANOVA P < 0.05). Methods and results pertaining to SIM-loaded PLGA microspheres + nanostrontium-CPC composite: After SEM assessment, the produced composite of microspheres and enhanced CPC were implanted for 8 weeks in 10 rabbits, along with positive and negative controls, enhanced CPC, and enhanced CPC plus SIM (n = 50). In the control group, only a small amount of bone had been regenerated (localized at the boundary of the defect); whereas, other groups showed new bone formation within and around the materials. A significant difference was found in the osteogenesis induced by the groups sham control (16.96 ± 1.01), bone materials (32.28 ± 4.03), nanostrontium-CPC (24.84 ± 2.6), nanostrontium-CPC-simvastatin (40

  2. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose

    International Nuclear Information System (INIS)

    Li, Yuping; Liao, Yuhe; Cao, Xiaofeng; Wang, Tiejun; Ma, Longlong; Long, Jinxing; Liu, Qiying; Xua, Ying

    2015-01-01

    In this review, recent advances in the one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose to value-added polyols, including hexitols (sorbitol, mannitol, and isosorbide) and 1,2-alkanediols (ethylene glycol and 1,2-propylene glycol), are summarized. Methods for the generation of H + in the first step of cellulose hydrolysis to form intermediate sugars, such as the use of soluble acids (mineral acids and heteropoly acids) and H + produced in situ from functional supports and H 2 dissociation, are classified and analyzed, considering its combination with active metals for the subsequent hydrogenation or hydrogenolysis of sugars to polyols. The interaction of non-noble metals such as nickel, bimetals, and tungsten with support materials in the catalytic conversion of intermediate sugars to hexitols and ethylene glycol is reviewed. The corresponding reaction pathways and mechanisms are discussed, including the conversion process using basic supports and solution conditions. Major challenges and promising routes are also suggested for the future development of the chemocatalytic conversion of cellulose. - Highlights: • Advances in the one-pot hydrolytic hydrogenation/hydrogenolysis of cellulose are summarized. • The interaction of non-noble metals with support materials for cellulose conversion is reviewed. • Method for the generation of in situ H + and effects of the acidic groups on supports are discussed. • Incomplete identification of intermediates/products causes mechanism complications. • Efficient conversion, separation and purification are other concerns for cellulose degrading

  3. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli.

    Science.gov (United States)

    Deng, Yu; Ma, Ning; Zhu, Kangjia; Mao, Yin; Wei, Xuetuan; Zhao, Yunying

    2018-03-01

    The glyoxylate shunt is a branch of the tricarboxylic acid (TCA) cycle which directly determines the synthesis of glycolate, and the balance between the glyoxylate shunt and TCA cycle is very important for the growth of Escherichia coli. In order to accumulate glycolate at high yield and titer, strategies for over-expressing glycolate pathway enzymes including isocitrate lyase (AceA), isocitrate dehydrogenase kinase/phosphatase (AceK) and glyoxylate reductase (YcdW) were analyzed. The genes encoding these three enzymes were transcribed under the control of promoter pTrc on pTrc99A, to form pJNU-3, which was harbored by strain Mgly1, resulting in strain Mgly13. Strain Mgly13 produced glycolate with 0.385 g/g-glucose yield (45.2% of the theoretical yield). Citrate synthase (GltA) converted excess acetyl-CoA and oxaloacetate to citrate and was over-expressed by pJNU-4 (pCDFDuet-1 backbone). Thus, the resulting strain Mgly134 produced glycolate with a 0.504 g/g-glucose yield (59.3% of the theoretical yield). We then eliminated the pathways involved in the degradation of glycolate, resulting in strain Mgly434, which produced glycolate with 92.9% of the theoretical yield. Following optimization of fermentation, the maximum glycolate titer from strain Mgly434 was 65.5 g/L. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Effect of propylene glycol on adipose tissue mobilization in postpartum over-conditioned Holstein cows

    DEFF Research Database (Denmark)

    Bjerre-Harpøth, Vibeke; Storm, Adam Christian; Eslamizad, M

    2015-01-01

    Our objective was to investigate the quantitative and qualitative effects of propylene glycol (PG) allocation on postpartum adipose tissue mobilization in over-conditioned Holstein cows. Nine ruminally cannulated and arterially catheterized cows were, at parturition, randomly assigned to a ruminal...... from –7 to 7 DIM. Postpartum feed intake and milk yield was not affected by PG allocation. The body content of lipid was not affected by treatment, but tended to decrease from 4 to 29 DIM with both treatments. Except for the first week postpartum, no difference in plasma nonesterified fatty acids...

  5. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  6. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  7. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  8. Magnetic fluids stabilized by polypropylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.V., E-mail: lav@icmm.r [Institute of Continuous Media Mechanics, UB RAS, Academic Korolev Str. 1, Perm 614013 (Russian Federation); Lysenko, S.N. [Institute of Technical Chemistry, UB RAS, Academic Korolev Str. 3, Perm 614013 (Russian Federation)

    2011-05-15

    A series of samples of magnetic fluids stabilized with low-molecular weight polypropylene glycol (PPG) of different molecular masses were synthesized. The use of PPG allowed the maximum extension of the carrier fluid range to include ethyl- and butyl-acetate, ethanol, butanol, acetone, carbon tetrachloride, toluene, kerosene and PPG itself. Magnetic and rheological properties of the samples were investigated. Based on the results of investigation it has been concluded that magnetic nanoparticles are covered by a monolayer of surfactant molecules. At low temperatures the propanol-based sample preserves fluidity up to -115 {sup o}C. Measurement of critical temperatures of other base fluids showed that alcohols are the best carrier medium. Coagulation stability of the ethanol-based ferrocolloid with respect to water and kerosene was explored. It has been found that kerosene, whose fraction by weight exceeds 22.5%, does not mix with the colloid. This effect can be used to produce magneto-controllable extractors of ethyl alcohol. Under the action of water the colloid coagulates, which allows one to substitute the carrier fluid and to separate the colloid into fractions. - Research highlights: PPG stabilizes the magnetic particles in the polar and non-polar media. The minimum operating temperature reaches -115 {sup o}C. Alcohols are the best environment for PPG-stabilized particles. PPG magnetic fluids can be used as magnetic extractors of alcohol. PPG MF can be divided into fractions by partial coagulation with water.

  9. Storage stability of biodegradable polyethylene glycol microspheres

    Science.gov (United States)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  10. Selected polyethylene glycols as DOP substitutes. Addendum 1

    International Nuclear Information System (INIS)

    Gerber, B.V.

    1981-01-01

    The recommendation is made that Polyethylene glycol (PEG) 400 be considered as a substitute for DOP in aerosol generators producing a polydisperse distribution for testing the integrity of filters and for testing respirator fit. Further, the recommendation is made that pentaethylene glycol (PTAEG) and possibly hexaethylene glycol be considered as a substitute for DOP in aerosol generators thermally producing monodisperse aerosol for quality acceptance tests according tu US federal specifications and standards. The toxicology data base available on the polyethylene glycol family of chemical compounds is discussed and the conclusion is drawn that the probability of approval and acceptance as a non-hazardous substance in the filter and filter media test role is high. Data and analysis supporting PTAEG performance equivalent to DOP in the filter and filter media test role are given or referenced. Cost and availability of the substitute materials is discussed. Conclusions based on the present data and information are given and recommendations for further work are made

  11. The effectiveness of polyethylene glycol (PEG) and polyvinyl ...

    African Journals Online (AJOL)

    mahlos

    2012-05-29

    May 29, 2012 ... Key words: Acetone, tannin, polyethylene glycol (PEG), polyvinyl polypyrrolidone (PVPP). ... hydrolysable tannins may occur in the same plant. ..... Rev. Food Sci. Nutr., 38: 421-464. Cornell. (2000). Tannins: Chemical analysis.

  12. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P encopresis.

  13. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  14. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.

    Science.gov (United States)

    Schink, B; Stieb, M

    1983-06-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycol-fermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEG-containing nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.

  15. Oxygen-18 as a tool for studying photorespiration. Oxygen uptake and incorporation into glycolate, glycine and serine

    International Nuclear Information System (INIS)

    Gerster, R.; Dimon, B.; Tournier, P.; Peybernes, A.

    1977-01-01

    The intensity of photosynthesis and photorespiration has been determined by measuring 16 O 2 evolvement and 18 O 2 uptake on algae and leaves. In the case of algae, there is still an important oxygen uptake even when ribulose diphosphate oxygenase is inhibited by 10 -3 M cyanide. Oxygen-18 incorporation into glycolate, glycine and serine of photorespiring algae and leaves exposed to atmospheres containing 18 O 2 has also been measured. Only one of the two atoms present in molecular oxygen was incorporated into the carboxyl group of the glycolate excreted from algae; the rate of 18 O incorporation was important (65 to 80% according to experimental conditions), even in the presence of 10 -3 M cyanide. Thus, oxidation of ribulose diphosphate is not the sole reaction leading to 18 O glycolate synthesis. In the case of maize, there was a rapid and important 18 O incorporation into the carboxyl group of glycine and serine, the kinetics of which was determined as a function of CO 2 presence in the atmosphere. These results suggest that photorespiration is also operating in C 4 species. Furthermore, in vitro experiments showed that phosphorylated ceto-acids of the Calvin cycle were very sensitive to H 2 O 2 ; the corresponding reaction can explain O 2 uptake and 18 O labelling of glycolate. (author)

  16. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  17. Overnight efficacy of polyethylene glycol laxative.

    Science.gov (United States)

    Di Palma, Jack A; Smith, Julie R; Cleveland, Mark vB

    2002-07-01

    Clinical studies in constipated adult patients have shown that a 17- or 34-g daily dose of polyethylene glycol (PEG) 3350 (MiraLax) is safe and effective for the treatment of constipation, with the best efficacy seen in wk 2 of treatment. The purpose of this study was to determine an optimal dose of PEG to provide satisfactory relief of constipation within 24 h. A total of 24 adult study subjects who met Rome II criteria for constipation were randomized in a double-blind, parallel pilot study to receive a single dose of placebo or PEG laxative at doses of 51, 68, or 85 g in 500 ml of flavored water. Over a 72-h period, subjects rated bowel movements (BM), completeness of evacuation, and satisfaction. The 68-g dose seemed to be most satisfactory. Five of six subjects had a BM within 24 h. The time to first BM was 14.8 h for 68 g versus 27.3 h for placebo (p = NS). The time to second BM was 19.2 h versus 47.2 h for 68 g and placebo, respectively (p = 0.003). Of the subjects receiving 68 g of PEG, 50% and 100% reported complete evacuation for the first and second BM, respectively. The average number of BMs in 24 h for placebo, 51 g, 68 g, and 84 g were 0.5, 2.2, 2.2, and 4.2, respectively (p = 0.004). There were no adverse reactions, and no patient reported incontinence or complained of cramps or diarrhea at any dose. There were no changes in measured electrolytes, calcium, glucose, BUN, creatinine, or serum osmolality. A 68-g dose of PEG laxative seems to provide safe and effective relief in constipated adults within a 24-h period.

  18. Mutagenicity testing of diethylene glycol monobutyl ether.

    Science.gov (United States)

    Thompson, E D; Coppinger, W J; Valencia, R; Iavicoli, J

    1984-01-01

    The mutagenic potential of diethylene glycol monobutyl ether (diEGBE) was examined with a Tier I battery of in vitro assays followed by a Tier II in vivo Drosophila sex-linked recessive lethal assay. The in vitro battery consisted of: the Salmonella mutagenicity test, the L5178Y mouse lymphoma test, a cytogenetics assay using Chinese hamster ovary cells and the unscheduled DNA synthesis (UDS) assay in rat hepatocytes. Results of the Salmonella mutagenicity test, the cytogenetics test, and the rat hepatocyte assay were negative at concentrations up to 20 microL/plate, 7.92 microL/mL, and 4.4 microL/mL, respectively. Toxicity was clearly demonstrated at all high doses. A weak, but dose-related increase in the mutation frequency (4-fold increase over the solvent control at 5.6 microL/mL with 12% survival) was obtained in the L5178Y lymphoma test in the absence of metabolic activation. Results of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay results were assessed by performing the Tier II sex-linked recessive lethal assay in Drosophila in which the target tissue is maturing germinal cells. Both feeding (11,000 ppm for 3 days) and injection (0.3 microL of approximately 14,000 ppm solution) routes of administration were employed in the Drosophila assay. Approximately 11,000 individual crosses with an equal number of negative controls were performed for each route of administration. diEGBE produced no increase in recessive lethals under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6389113

  19. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  20. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis.

    Science.gov (United States)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-05-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ethylene glycol intercalation in smectites. molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Szczerba, Marek; Klapyta, Zenon; Kalinichev, Andrey

    2012-01-01

    Document available in extended abstract form only. Intercalation of ethylene glycol in smectites (glycolation) is widely used to discriminate smectites and vermiculites from other clays and among themselves. During this process, ethylene glycol molecules enter into the interlayer spaces of the swelling clays, leading to the formation of two-layer structure (∼17 A) in the case of smectites, or one-layer structure (∼14 A) in the case of vermiculites. In spite of the relatively broad literature on the understanding/characterization of ethylene glycol/water-clays complexes, the simplified structure of this complex presented by Reynolds (1965) is still used in the contemporary X-ray diffraction computer programs, which simulate structures of smectite and illite-smectite. The monolayer structure is only approximated using the assumption of the interlayer cation and ethylene glycol molecules lying in the middle of interlayer spaces. This study was therefore undertaken to investigate the structure of ethylene glycol/water-clays complex in more detail using molecular dynamics simulation. The structural models of smectites were built on the basis of pyrophyllite crystal structure (Lee and Guggenheim, 1981), with substitution of particular atoms. In most of simulations, the structural model assumed the following composition, considered as the most common in the mixed layer illite-smectites: EXCH 0.4 (Si 3.96 Al 0.04 )(Al 1.46 Fe 0.17 Mg 0.37 )O 10 (OH) 2 Atoms of the smectites were described with CLAYFF force field (Cygan et al., 2004), while atoms of water and ethylene glycol with flexible SPC and OPLS force fields, respectively. Ewald summation was used to calculate long range Coulombic interactions and the cutoff was set at 8.5 A. Results of the simulations show that in the two-layer glycolate the content of water is relatively small: up to 0.8 H 2 O per half of the smectite unit cell. Clear thermodynamic preference of mono- or two-layer structure of the complex is

  2. Deriving Biomonitoring Equivalents for selected E- and P-series glycol ethers for public health risk assessment.

    Science.gov (United States)

    Poet, Torka; Ball, Nicholas; Hays, Sean M

    2016-01-01

    Glycol ethers are a widely used class of solvents that may lead to both workplace and general population exposures. Biomonitoring studies are available that have quantified glycol ethers or their metabolites in blood and/or urine amongst exposed populations. These biomonitoring levels indicate exposures to the glycol ethers, but do not by themselves indicate a health hazard risk. Biomonitoring Equivalents (BEs) have been created to provide the ability to interpret human biomonitoring data in a public health risk context. The BE is defined as the concentration of a chemical or metabolite in a biological fluid (blood or urine) that is consistent with exposures at a regulatory derived safe exposure limit, such as a tolerable daily intake (TDI). In this exercise, we derived BEs for general population exposures for selected E- and P-series glycol ethers based on their respective derived no effect levels (DNELs). Selected DNELs have been derived as part of respective Registration, Evaluation, Authorisation and Regulation of Chemicals (REACh) regulation dossiers in the EU. The BEs derived here are unique in the sense that they are the first BEs derived for urinary excretion of compounds following inhalation exposures. The urinary mass excretion fractions (Fue) of the acetic acid metabolites for the E-series GEs range from approximately 0.2 to 0.7. The Fues for the excretion of the parent P-series GEs range from approximately 0.1 to 0.2, with the exception of propylene glycol methyl ether and its acetate (Fue = 0.004). Despite the narrow range of Fues, the BEs exhibit a larger range, resulting from the larger range in DNELs across GEs. The BEs derived here can be used to interpret human biomonitoring data for inhalation exposures to GEs amongst the general population. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  4. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  5. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  6. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    Directory of Open Access Journals (Sweden)

    Hyunok Choi

    2010-12-01

    Full Text Available Propylene glycol and glycol ether (PGE in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs and semi-VOCs (SVOCs, including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP, and di(2-ethylhexylphthalate (DEHP. Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3 additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  7. Specific radioactivity of glycolate and photorespiration during 14CO2 assimilation at four different CO2 concentrations by sunflower and bean leaves

    International Nuclear Information System (INIS)

    Fock, H.; Klug, K.; Krampitz, M.J.

    1979-01-01

    Using an open gas-exchange system, the rates of apparent CO 2 uptake (APS), true CO 2 uptake (TIPS), CO 2 evolution in light (PR), and the relative specific radioactivity of photorespiration (RSA) by sunflower and bean leaves were measured at four different CO 2 concentrations. At the end of the 14 CO 2 assimilation period the leaves were killed and extract for the analysis of glycolic acid. The rate of PR was CO 2 independent at low and normal CO 2 concentrations but inreased at CO 2 concentrations above normal. The ratio of PR/TPS which declined with an increase in CO 2 was compatible with the ratio of vo/2vo of the RuBP-Carboxylase/Oxygenase reaction. At low and normal concentrations of CO 2 the concentration as well as the specific radioactivity of glycolic acid increased with an increase in CO 2 and the relative specific activity (RSA) of glycolic acid resembled the RSA of photorespiration. It was concluded that these results support the concept of RuBP-carboxylase/oxygenase regulating the fluxes of carbon via the photosynthetic carbon reduction and the glycolate pathway. (orig.) [de

  8. Characterization of a monoclonal antibody to thymidine glycol monophosphate

    International Nuclear Information System (INIS)

    Chen, B.X.; Hubbard, K.; Ide, H.; Wallace, S.S.; Erlanger, B.F.

    1990-01-01

    A monoclonal antibody specific for thymine glycol (TG) in irradiated or OsO4-treated DNA was obtained by immunizing with thymidine glycol monophosphate (TMP-glycol) conjugated to bovine serum albumin by a carbodiimide procedure. Screening by dot-immunobinding and enzyme-linked immunosorbant assay (ELISA) procedures gave eight clones that bound OsO4- treated DNA. One of them, 2.6F.6B.6C, an IgG2a kappa, was characterized further. Hapten inhibition studies with OsO4-treated DNA showed that the antibody was specific for TMP-glycol. Among the various inhibitors tested, inhibition was in the order TMP-glycol greater than 5,6-dihydrothymidine phosphate greater than TMP greater than thymidine glycol greater than TG. Inhibition by 5,6-dihydrothymidine, thymidine, thymine, AMP, and CMP was negligible. In OsO4-treated DNA, as few as 0.5 TG per 10,000 bp were detectable by direct ELISA. Inhibition assays could detect as few as 1.5 TG per 10,000 bp. The antibody was equally reactive with native or denatured DNA containing TG. Among the X-irradiated homopolymers dC, dA, dG, and dT, only dT reacted with the antibody. Using an ELISA, the antibody could detect damage in irradiated DNA at the level of 20 Gy. Thus the antibody is of potential use in assays for DNA damage caused by X rays or other agents that damage DNA by free radical interactions

  9. Simultaneous determination of glycols based on fluorescence anisotropy

    International Nuclear Information System (INIS)

    Garcia Sanchez, F.; Navas Diaz, A.; Lopez Guerrero, M.M.

    2007-01-01

    Simultaneous determination of non-fluorescent glycols in mixtures without separation or chemical transformation steps is described. Two methods based in the measure of fluorescence anisotropy of a probe such as fluorescein dissolved in the analyte or analyte mixtures are described. In the first method, the anisotropy spectra of pure and mixtures of analytes are used to quantitative determination (if the fluorophor concentration is in a range where fluorescence intensity is proportional to concentration). In the second method, a calibration curve anisotropy-concentration based on the application of the Perrin equation is established. The methods presented here are capable of directly resolving binary mixtures of non-fluorescent glycols on the basis of differences on the fluorescence anisotropy of a fluorescence tracer. Best analytical performances were obtained by application of the method based on Perrin equation. This method is simple, rapid and allows the determination of mixtures of glycols with reasonable accuracy and precision. Detection limits are limited by the quantum yield and anisotropy values of the tracer in the solvents. Recovery values are related to the differences in anisotropy values of the tracer in the pure solvents. Mixtures of glycerine/ethylene glycol (GL/EG), ethylene glycol/1,2-propane diol (EG/1,2-PPD) and polyethylene glycol 400/1,2-propane diol (PEG 400/1,2-PPD) were analysed and recovery values are within 95-120% in the Perrin method. Relative standard deviation are in the range 1.3-2.9% and detection limits in the range 3.9-8.9%

  10. Use of polyethylene glycol in functional constipation and fecal impaction.

    Science.gov (United States)

    Mínguez, Miguel; López Higueras, Antonio; Júdez, Javier

    2016-12-01

    The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG), with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely) NOT colonoscopy. Critical reading of selected articles (English or Spanish), sorting their description according to group age (adult/pediatric age) and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis). Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two), psyllium (one), tegaserod (one), prucalopride (one), paraffin oil (one), fiber combinations (one) and Descurainia sophia (one). Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short and long-term. They are as efficacious as enemas in fecal

  11. Use of polyethylene glycol in functional constipation and fecal impaction

    Directory of Open Access Journals (Sweden)

    Miguel Mínguez

    Full Text Available Objective: The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG, with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Methodology: Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely NOT colonoscopy. Critical reading of selected articles (English or Spanish, sorting their description according to group age (adult/pediatric age and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis. Results: Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two, psyllium (one, tegaserod (one, prucalopride (one, paraffin oil (one, fiber combinations (one and Descurainia sophia (one. Conclusions: Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose and are the first-line treatment for functional constipation in the short and long

  12. A new potent fusidic acid analogue

    DEFF Research Database (Denmark)

    Søtofte, Inger; Duvold, Tore

    2001-01-01

    The crystal structure of the compound, 17S,20S-dihydrofusidic acid diethylene glycol hydrate, C31H50O6.C4H10O3.H2O, consists of 17S,20S-dihydrofusidic acid, diethylene glycol and water. The fusidic acid moiety contains three six-membered rings and one five-membered ring. The fused-ring system...... adopts a chair, a twist boat, a chair and an envelope conformation. The crystal packing is influenced by hydrogen bonds....

  13. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  14. Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Kontogeorgis, Georgios

    2009-01-01

    A thorough investigation of triethylene glycol (TEG) containing systems has been performed. The introduction of a new six-site association scheme for the TEG molecule has shown to be advantageous. Glycols are often modeled using a four-site scheme (abbreviated as 4C) hence ignoring the internal...... lone pairs of oxygen. The new association scheme also takes these sites into account. The new parameters of TEG are based on the vapor pressure data, liquid density data, and liquid-liquid equilibria (LLE) data (n-heptane), and they are tested for binary systems (methane, n-octane, n-nonane, n...

  15. GLYCOL METHACRYLATE EMBEDDING OF ALGINATE-POLYLYSINE MICROENCAPSULATED PANCREATIC-ISLETS

    NARCIS (Netherlands)

    FRITSCHY, WM; GERRITS, PO; WOLTERS, GHJ; PASMA, A; VANSCHILFGAARDE, R

    A method for processing and embedding alginate-polylysine microencapsulated pancreatic tissue in glycol methacrylate resin (GMA) is described. Fixation in 4% phosphate buffered formaldehyde, processing in ascending concentrations of glycol methacrylate monomer and embedding in Technovit 7100 results

  16. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  17. The chemotherapeutic potential of glycol alkyl ethers: structure-activity studies of nine compounds in a Fischer-rat leukemia transplant model.

    Science.gov (United States)

    Dieter, M P; Jameson, C W; Maronpot, R R; Langenbach, R; Braun, A G

    1990-01-01

    Structure-activity studies with nine glycol alkyl ethers were conducted with a cellular leukemia transplant model in male Fischer rats. This in vivo assay measures the effects of chemical treatment on neoplastic progression in transplant recipients. Chemicals were given ad libitum in the drinking water simultaneously with the transplants and continued throughout the study. In all, 20 million leukemic cells were injected s.c. into syngeneic rats, which after 60 days resulted in a 10-fold increase in relative spleen weights, a 100-fold increase in white blood cell counts, and a 50% reduction in red blood cell (RBC) indices and platelet counts. At this interval, ethylene glycol monomethyl ether (2-ME) given at a dose of 2.5 mg/ml in the drinking water completely eliminated all clinical, morphological, and histopathological evidence of leukemia, whereas the same dose of ethylene glycol monoethyl ether (2-EE) reduced these responses by about 50%. Seven of the glycol ethers were ineffective as anti-leukemic agents, including ethylene glycol, the monopropyl, monobutyl, and monophenyl ethylene glycol ethers, diethylene glycol, and the monomethyl and monoethyl diethylene glycol ethers. 2-ME more than doubled the latency period of leukemia expression and extended survival for at least 210 days. A minimal effective dose for a 50% reduction in the leukemic responses was 0.25 mg/ml 2-ME in the drinking water (15 mg/kg body weight), whereas a 10-fold higher dose of 2-EE was required for equivalent antileukemic activity. In addition, the in vitro exposure of a leukemic spleen mononuclear cell culture to 2-ME caused a dose- and time-dependent reduction in the number of leukemia cells after a single exposure to 1-100 microM concentrations, whereas the 2-ME metabolite, 2-methoxyacetic acid, was only half as effective. The two glycol alkyl ethers with demonstrable anti-leukemic activity, 2-ME and 2-EE, also exhibited a favorable efficacy-to-toxicity ratio and should be considered for

  18. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    OpenAIRE

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette; Chae, Pil Seok

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  19. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation.

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K; Loland, Claus J; Byrne, Bernadette; Chae, Pil Seok

    2016-10-04

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  20. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette

    2017-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research. PMID:27711401

  1. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation

    DEFF Research Database (Denmark)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared...

  2. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  3. Efficacy of polyethylene glycol 4000 on constipation of

    Directory of Open Access Journals (Sweden)

    ZHANG Lian-yang

    2010-06-01

    Full Text Available Constipation is one of themost common chronic gastrointestinal problems. The estimated incidence of constipation in the United States is3% to 19% in general population.1,2 Patientswith head injuries, spinal cord injuries, pelvic fractures, lower extremity fractures ormultiple traumas require a long-term bed rest, during which the incidence of constipation reached as high as 50%.3,4 Constipation always brings inconvenience and tremendous suffering to patientsand strongly influences the recovery from primary disease. Irritants or lubricants can relieve the symptoms, but long-term application of them may lead to side effects like melanosis coli5 and cathartic colon6. The absorption of fat soluble vitamins is also affected.7 Polyethylene glycol 4000 (trade name: Forlax®, a long chain polymer with a high molecular weight, can conjugate withwater molecule through hydrogen bond to increase the water content and volume of stools, thereby, facilitate bowelmovement and defecation.8,9 It is neither absorbed nor metabolized in the digestive tract, hence it is highly safe and well tolerable. Thus, long-term medication of polyethylene glycol 4000 is conducive to the reconstruction of normal defecation pattern. Therefore, polyethylene glycol 4000 is now being widely used as the mainstay adult chronic functional constipation management.10,11 The aim of this study was to verify the efficacy and safety of polyethylene glycol 4000 on adult functional constipation of posttraumatic bedridden patients.

  4. Upstream petroleum industry glycol dehydrator benzene emissions status report

    International Nuclear Information System (INIS)

    1999-07-01

    The population of dehydrators referred to are located in the Western Sedimentary Basin in northeast British Columbia, Alberta and Saskatchewan, and includes units installed at wellsites, compressor stations, gas plants, central crude oil treating facilities, and reservoir or salt cavern gas storage facilities. Benzene emissions from the still column vent on glycol dehydrators occur as a result of glycol's strong affinity for aromatic hydrocarbons, including benzene. A study was carried out to: 1) develop a list of oil and gas companies operating in Canada, 2) develop an equipment and benzene emissions inventory of glycol dehydrators, 3) develop a database in Microsoft Access format to gather and maintain inventory and emission data, 4) evaluate and validate at least 10% of the reported data, 5) develop a list of companies that manufacture dehydrators and incinerators to determine how many new dehydrators were sold for use in Canada in 1998, and 6) prepare a report summarizing findings and recommendations. The companies included in the survey were the oil and gas companies identified by the Nickels' Oil and Gas Index and others provided by CAPP, CGA, and SEPAC. The project was carried out to gather glycol dehydrator equipment and still column vent benzene emissions information. 8 refs

  5. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    Science.gov (United States)

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  6. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  7. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  8. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  9. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409 of...

  10. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    Science.gov (United States)

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  11. Síntese e caracterização de dispersões aquosas de poliuretanos à base de copolímeros em bloco de poli(glicol etilênico e poli(glicol propilênico Synthesis and characterization of polyurethane aquous dispersions based on poly(ethylene glycol and poly(propylene glycol block copolymers

    Directory of Open Access Journals (Sweden)

    Fernanda M. B. Coutinho

    2008-01-01

    Full Text Available Non-polluting polyurethane aqueous dispersions, with 40% of solids content, were synthesized based on block copolymers of poly(ethylene glycol and poly(propylene glycol (PEG-b-PPG, with PEG hydrophilic segments content of 7 and 25%, poly(propylene glycol (PPG, dimethylolpropionic acid (DMPA, isophorone diisocyanate (IPDI, and hydrazine. Different formulations were synthesized by varying the equivalent-grams ratios between isocyanate and hydroxyl groups (NCO/OH and PPG and (PEG-b-PPG. The presence of high amounts of PEG in the formulations provoked the formation of gels. Average particle size and viscosity of the dispersions were determined. Mechanical properties and water absorption resistance of cast films were evaluated.

  12. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    Science.gov (United States)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  13. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  14. Permeabilization of ultraviolet-irradiated chinese hamster cells with polyethylene glycol and introduction of ultraviolet endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Yarosh, D.B.; Setlow, R.B.

    1981-01-01

    Chinese hamster V-79 cells were made permeable by treatment with polyethylene glycol and then incubated with a Micrococcus luteus extract containing ultraviolet-specific endonuclease activity. This treatment introduced nicks in irradiated, but not in unirradiated, deoxyribonucleic acid. The nicks remained open for at least 3 h; there was no loss of endonuclease-sensitive sites, and no excision of dimers as measured by chromatography was detected. In addition, there was no increase in ultraviolet resistance in treated cells. This suggests that the absence of a significant amount of excision repair in rodent cells is due to the lack of both incision and excision capacity

  15. Polyethylene glycol and polyvinylpirrolidone effect on bacterial rRNA extraction and hybridization from cells exposed to tannins.

    OpenAIRE

    ARCURI, P.B.; THONNEY, M.L.; SCHOFIELD, P.; PELL, A.N.

    2003-01-01

    In order to detect fluctuations in ruminal microbial populations due to forage tannins using 16S ribosomal RNA (rRNA) probes, recovery of intact rRNA is required. The objective of this work was to evaluate the effect of polyethylene glycol (PEG) and polyvinylpirrolidone (PVP) on extraction of bacterial rRNA, in the presence of tannins from tropical legume forages and other sources, that hybridize with oligonucleotide probes. Ruminococcus albus 8 cells were exposed to 8 g/L tannic acid or 1 g/...

  16. A polyethylene glycol radioimmunoprecipitation assay for human immunoglobulin G

    International Nuclear Information System (INIS)

    Waller, S.J.; Taylor, R.P.; Andrews, B.S.

    1979-01-01

    A polyethylene glycol (PEG) radioimmunoprecipitation assay for human IgG is described that is sufficiently sensitive to detect 0.5 ng of IgG. This model antibody-antigen system was also used to study the stoichiometries of PEG-precipitation complexes. The results suggest that the presence of PEG may affect the stoichiometry of the complexes which precipitate from solution. (Auth.)

  17. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  18. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial.

    Science.gov (United States)

    Bekkali, Noor L H; Hoekman, Daniël R; Liem, Olivia; Bongers, Marloes E J; van Wijk, Michiel P; Zegers, Bas; Pelleboer, Rolf A; Verwijs, Wim; Koot, Bart G P; Voropaiev, Maksym; Benninga, Marc A

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of PEG3350 + E or PEG4000. Primary outcomes were change in total sum score (TSS) at week 52 compared to baseline, and dose range determination. TSS was the sum of the severity of 5 constipation symptoms rated on a 4-point scale (0-3). Noninferiority margin was a difference in TSS of ≤1.5 based on a 95%-confidence interval [CI]. Treatment success was defined as a defecation frequency of ≥3 per week with PEG3350 + E and PEG4000, respectively. Noninferiority criteria were not met (maximum difference between groups: -1.81 to 1.68). Daily sachet use was: 0 to 2 years: 0.4 to 2.3 and 0.9 to 2.1; 2 to 4 years: 0.1 to 3.5 and 1.2 to 3.2; 4 to 8 years: 1.1 to 2.8 and 0.7 to 3.8; 8 to 16 years 0.6 to 3.7 and 1.0 to 3.7, in PEG3350 + E and PEG4000, respectively. Treatment success after 52 weeks was achieved in 50% and 45% of children, respectively (P = 0.69). Rates of adverse events were similar between groups, and no drug-related serious adverse events occurred. Noninferiority regarding long-term constipation-related symptoms of PEG3350 + E compared to PEG4000 was not demonstrated. However, analysis of secondary outcomes suggests similar efficacy and safety of these agents.

  19. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  20. Polyethylene Glycol (PEG-400: An Efficient and Recyclable Reaction Medium for the Synthesis of Pyrazolo[3,4-b]pyridin-6(7H-one Derivatives

    Directory of Open Access Journals (Sweden)

    Deming Wang

    2013-10-01

    Full Text Available A mild and efficient synthesis of pyrazolo[3,4-b]pyridine-6(7H-one derivatives via a three-component reaction of an aldehyde, Meldrum’s acid and 3-methyl-1H-pyrazol-5-amine using recyclable polyethylene glycol (PEG-400 as a reaction medium is described. This method has the advantages of accessible starting materials, good yields, mild reaction conditions and begin environmentally friendly.

  1. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean

    International Nuclear Information System (INIS)

    Hamayun, M.; Khan, A.L.; Ahmad, N.; Lee, In-Jung; Khan, S.A.; Shinwari, Z.K.

    2010-01-01

    Drought stress is a major abiotic constraint limiting crop production world wide. In current study, we investigated the adverse effects of drought stress on growth, yield and endogenous phytohormones of soybean. Polyethylene glycol (PEG) solutions of elevated strength (8% and 16%) were used for drought stress induction. Drought stress period span for two weeks each at pre and post flowering growth stage. It was observed that soybean growth and yield attributes significantly reduced under drought stress at both pre and post flowering period, while maximum reduction was caused by PEG (16%) applied at pre flowering time. The endogenous bioactive GA/sub 1/ and GA/sub 4/ content decreased under elevated drought stress. On the other hand, jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) content increased under drought stress. On the basis of current study, we concluded that application of earlier drought stress severely reduced growth and yield attributes of soybean when compared to its later application. Furthermore, increases in the endogenous contents of JA, SA and ABA in response to drought stress demonstrate the involvement of these hormones in drought stress resistance. (author)

  2. Textural properties of poly(glycidyl methacrylate) : acid-modified bentonite nanocomposites

    NARCIS (Netherlands)

    Zunic, M.; Milutinovic-Nikolic, A.; Nastasovic, A.; Vukovic, Z.; Loncarevic, D.; Vukovic, I.; Loos, K.; ten Brinke, G.; Jovanovic, D.; Sharma, Bhaskar; Ubaghs, Luc; Keul, Helmut; Höcker, Hartwig; Lo