WorldWideScience

Sample records for glycol interpenetrating network

  1. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN) / polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. Adsorption analyses were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K. Adsorption time was increased from zero to 48 hours. Adsorption capacities of uranyl ions by PEG/AN IPNS were determined by gamma spectrometer. The results indicate that adsorption capacity increases linearly with increasing temperature. The max adsorption capacity was found as 602 mgu/g IPN at 308K. Adsorption rate was evaluated from the curve plotted of adsorption capacity versus time, for each temperature. Rate constants for uranyl ions adsorption on amidoximated ipns were calculated for 290K, 298K, 308K and 318K at the solution concentration of 1x10 -2 M . The results showed that as the temperature increases the rate constant increases exponentially too. The mean activation energy of uranyl ions adsorption was found as 34.6 kJ/mole by using arrhenius equation. (author)

  2. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN)/polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    Full text: The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. The IPNs were prepared by irradiation initiated gamma polymerisation using Co-60 gamma source. Adsorption capacities were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K by gamma spectrometer. Adsorption time was increased from zero to 48 hours. The results indicate that adsorption capacity increases linearly with increasing temperature. Temperature and agitation hardly influence equilibrium and kinetics and decreasing of temperature results in a slightly greater time to reach equilibrium. The adsorption of uranyl ions has been studied in a multi step mechanism processes thus comparing chemical sorption and diffusion sorption processes. The experimental data was analysed using various kinetic models to determine the best-fit equation for the adsorption mechanisms. However, it was shown that all models, in general according to the reaction time and uranyl ion concentration in the solution, could describe the adsorption of uranyl ion onto amidoximated IPN, the adsorption kinetics was best described by zeroth order and intraparticle diffusion model whereas that of in increasing time by pseudo first and pseudo second order response respectively. External-intraparticle diffusion and zeroth order process in the IPN structure is proposed as a mass transfer mechanism and the results indicate a diffusion-controlled process. The Mean Activation Energy Of Uranyl Ions Adsorption Was Found As 4,1 Kj/Mole By Using Arrhenius Equation. The Rate Constant, The Equilibrium Adsorption Capacity And The Initial Adsorption Rate Were Calculated For All Models At Each Temperature. Kinetic Parameters Of All Models And The Normalized Standard Deviations Between The Measured And Predicted

  3. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    International Nuclear Information System (INIS)

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-01-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing

  4. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.

    Science.gov (United States)

    Madaghiele, Marta; Marotta, Francesco; Demitri, Christian; Montagna, Francesco; Maffezzoli, Alfonso; Sannino, Alessandro

    2014-12-30

    The objective of this work was to develop composite hydrogels based on poly(ethylene glycol) diacrylate (PEGDA) and collagen (Coll), potentially useful for biomedical applications. Semi-interpenetrating polymer networks (semi-IPNs) were obtained by photo-stabilizing aqueous solutions of PEGDA and acrylic acid (AA), in the presence of collagen. Further grafting of the collagen macromolecules to the PEGDA/poly(AA) network was achieved by means of a carbodiimide-mediated crosslinking reaction. The resulting hydrogels were characterized in terms of swelling capability, collagen content and mechanical properties. The grafting procedure was found to significantly improve the mechanical stability of the IPN hydrogels, due to the establishment of covalent bonding between the PEGDA/poly(AA) and the collagen networks. The suitability of the composite hydrogels to be processed by means of stereolithography (SLA) was also investigated, toward creating biomimetic constructs with complex shapes, which might be useful either as platforms for tissue engineering applications or as tissue mimicking phantoms.

  5. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S

    2013-11-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. © 2013 Elsevier Ltd. All rights reserved.

  6. Influence of Ethylene Glycol Methacrylate to the Hydration and Transition Behaviors of Thermo-Responsive Interpenetrating Polymeric Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Bing Li

    2018-01-01

    Full Text Available The influence of ethylene glycol methacrylate (EGMA to the hydration and transition behaviors of thermo-responsive interpenetrating polymeric network (IPN hydrogels containing sodium alginate, N-isopropylacrylamide (NIPAAm, and EGMA were investigated. The molar ratios of NIPAAm and EGMA were varied from 20:0 to 19.5:0.5 and 18.5:1.5 in the thermo-responsive alginate-Ca2+/P(NIPAAm-co-EGMA IPN hydrogels. Due to the more hydrophilicity and high flexibility of EGMA, the IPN hydrogels exhibited higher lower critical solution temperature (LCST and lower glass transition temperature (Tg when the ratio of EGMA increases. The swelling/deswelling kinetics of the IPN hydrogels could be controlled by adjusting the NIPAAm/EGMA molar ratio. A faster water uptake rate and a slower water loss rate could be realized by increase the amount of EGMA in the IPN hydrogel (the shrinking rate constant was decreased from 0.01207 to 0.01195 and 0.01055 with the changing of NIPAAm/EGMA ratio from 20:0, 19.5:0.5 to 18.5:1.5. By using 2-Isopropylthioxanthone (ITX as a photo initiator, the obtained alginate-Ca2+/P(NIPAAm-co-EGMA360 IPN hydrogels were successfully immobilized on cotton fabrics. The surface and cross section of the hydrogel were probed by scanning electron microscopy (SEM. They all exhibited a porous structure, and the pore size was increased with the amount of EGMA. Moreover, the LCST values of the fabric-grafted hydrogels were close to those of the pure IPN hydrogels. Their thermal sensitivity remained unchanged. The cotton fabrics grafted with hydrogel turned out to be much softer with the continuous increase of EGMA amount. Therefore, compared with alginate-Ca2+/PNIPAAm hydrogel, alginate-Ca2+/P(NIPAAm-co-EGMA360 hydrogel is a more promising candidate for wound dressing in the field of biomedical textile.

  7. SANS from interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Markotsis, M.G.; Burford, R.P.; Knott, R.B.; Australian Nuclear Science and Technology Organisation, Menai, NSW; Hanley, T.L.; CRC for Polymers,; Australian Nuclear Science and Technology Organisation, Menai, NSW; Papamanuel, N.

    2003-01-01

    Full text: Interpenetrating polymer networks (IPNs) have been formed by combining two polymeric systems in order to gain enhanced material properties. IPNs are a combination of two or more polymers in network form with one network polymerised and/or crosslinked in the immediate presence of the other(s).1 IPNs allow better blending of two or more crosslinked networks. In this study two sets of IPNs were produced and their microstructure studied using a variety of techniques including small angle neutron scattering (SANS). The first system combined a glassy polymer (polystyrene) with an elastomeric polymer (SBS) with the glassy polymer predominating, to give a high impact plastic. The second set of IPNs contained epichlorohydrin (CO) and nitrile rubber (NBR), and was formed in order to produce novel materials with enhanced chemical and gas barrier properties. In both cases if the phase mixing is optimised the probability of controlled morphologies and synergistic behaviour is increased. The PS/SBS IPNs were prepared using sequential polymerisation. The primary SBS network was thermally crosslinked, then the polystyrene network was polymerised and crosslinked using gamma irradiation to avoid possible thermal degradation of the butadiene segment of the SBS. Tough transparent systems were produced with no apparent thermal degradation of the polybutadiene segments. The epichlorohydrin/nitrile rubber IPNs were formed by simultaneous thermal crosslinking reactions. The epichlorohydrin network was formed using lead based crosslinker, while the nitrile rubber was crosslinked by peroxide methods. The use of two different crosslinking systems was employed in order to achieve independent crosslinking thus resulting in an IPN with minimal grafting between the component networks. SANS, Transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to examine the size and shape of the phase domains and investigate any variation with crosslinking level and

  8. Radiation preparation of interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Sheikh, N.; Ahmadi, M.; Afshar Taromi, F.

    2002-01-01

    Sequential interpenetrating polymer netwoks were prepared using gamma radiation. Styrene-butadiene rubber (SBR) and polymethyl methacrylate (PMMA) were used as elastomer and plastomer components respectively. Dicumyl peroxide (DCP) and ethylene glycol dimethacrylate (EGDMA) were also used as the curing agent of SBR and crosslinker for MMA monomer. The resulting IPNs were characterized by evaluating their mechanical properties. The effect of the amount of DCP on the final properties of product was examined. It was found that amount of curing agent had an important role on the properties of obtained IPNS. The results of the mechanical properties of IPNs showed very good synergistic behavior. (Author)

  9. Interpenetrating networks of two conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; West, Keld

    2005-01-01

    Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings, and beca......Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings......, and because its reaction products can be removed efficiently after the formation of the composite. Several combinations of polymers are demonstrated, and the versatility of the proposed method allows extensions to a wide range of conjugated polymers. The IPNs show optical and electrochemical characteristics......, which are sums of the characteristics from the participating conducting polymers....

  10. Interpenetrating polymer networks based on polyol modified castor ...

    Indian Academy of Sciences (India)

    Interpenetrating polymer networks (IPNs) of glycerol modified castor oil polyurethane (GC–PU) and poly[2-hydroxyethylmethacrylate] (PHEMA) were synthesized using benzoyl peroxide as initiator and N,N-methylene bis acrylamide as crosslinker. GC–PU/PHEMA interpenetrating polymer networks were obtained by ...

  11. Interpenetrating polymer networks from acetylene terminated materials

    Science.gov (United States)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  12. Soft silicone based interpenetrating networks as materials for actuators

    DEFF Research Database (Denmark)

    Yu, Liyun; Gonzalez, Lidia; Hvilsted, Søren

    2014-01-01

    A new approach based on silicone interpenetrating networks with orthogonal chemistries has been investigated with focus on developing soft and flexible elastomers with high energy densities and small viscous losses. The interpenetrating networks are made as simple two pot mixtures...... as for the commercial available silylation based elastomers such as Elastosil RT625. The resulting interpenetrating networks are formulated to be softer than RT625 to increase the actuation caused when applying a voltage due to their softness combined with the significantly higher permittivity than the pure silicone...

  13. Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Dajiang Kuang

    2018-02-01

    Full Text Available Silk fibroin hydrogel is an ideal model as biomaterial matrix due to its excellent biocompatibility and used in the field of medical polymer materials. Nevertheless, native fibroin hydrogels show poor transparency and resilience. To settle these drawbacks, an interpenetrating network (IPN of hydrogels are synthesized with changing ratios of silk fibroin/N-Vinyl-2-pyrrolidonemixtures that crosslink by H2O2 and horseradish peroxidase. Interpenetrating polymer network structure can shorten the gel time and the pure fibroin solution gel time for more than a week. This is mainly due to conformation from the random coil to the β-sheet structure changes of fibroin. Moreover, the light transmittance of IPN hydrogel can be as high as more than 97% and maintain a level of 90% within a week. The hydrogel, which mainly consists of random coil, the apertures inside can be up to 200 μm. Elastic modulus increases during the process of gelation. The gel has nearly 95% resilience under the compression of 70% eventually, which is much higher than native fibroin gel. The results suggest that the present IPN hydrogels have excellent mechanical properties and excellent transparency.

  14. Interpenetrating network ceramic-resin composite dental restorative materials.

    Science.gov (United States)

    Swain, M V; Coldea, A; Bilkhair, A; Guess, P C

    2016-01-01

    This paper investigates the structure and some properties of resin infiltrated ceramic network structure materials suitable for CAD/CAM dental restorative applications. Initially the basis of interpenetrating network materials is defined along with placing them into a materials science perspective. This involves identifying potential advantages of such structures beyond that of the individual materials or simple mixing of the components. Observations from a number of recently published papers on this class of materials are summarized. These include the strength, fracture toughness, hardness and damage tolerance, namely to pointed and blunt (spherical) indentation as well as to burr adjustment. In addition a summary of recent results of crowns subjected to simulated clinical conditions using a chewing simulator are presented. These results are rationalized on the basis of existing theoretical considerations. The currently available ceramic-resin IPN material for clinical application is softer, exhibits comparable strength and fracture toughness but with substantial R-curve behavior, has lower E modulus and is more damage tolerant than existing glass-ceramic materials. Chewing simulation observations with crowns of this material indicate that it appears to be more resistant to sliding/impact induced cracking although its overall contact induced breakage load is modest. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  16. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space.

    Science.gov (United States)

    Mahou, Redouan; Zhang, David K Y; Vlahos, Alexander E; Sefton, Michael V

    2017-07-01

    Injectable hydrogels are suitable for local cell delivery to the subcutaneous space, but the lack of vasculature remains a limiting factor. Previously we demonstrated that biomaterials containing methacrylic acid promoted vascularization. Here we report the preparation of a semi-interpenetrating polymer network (SIPN), and its evaluation as an injectable carrier to deliver cells and generate blood vessels in a subcutaneous implantation site. The SIPN was prepared by reacting a blend of vinyl sulfone-terminated polyethylene glycol (PEG-VS) and sodium polymethacrylate (PMAA-Na) with dithiothreitol. The swelling of SIPN was sensitive to the PMAA-Na content but only small differences in gelation time, permeability and stiffness were noted. SIPN containing 20 mol% PMAA-Na generated a vascular network in the surrounding tissues, with 2-3 times as many vessels as was obtained with 10 mol% PMAA-Na or PEG alone. Perfusion studies showed that the generated vessels were perfused and connected to the host vasculature as early as seven days after transplantation. Islets embedded in SIPN were viable and responsive to glucose stimulation in vitro. In a proof of concept study in a streptozotocin-induced diabetic mouse model, a progressive return to normoglycemia was observed and the presence of insulin positive islets was confirmed when islets were embedded in SIPN prior to delivery. Our approach proposes a biomaterial-mediated strategy to deliver cells while enhancing vascularization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal

    International Nuclear Information System (INIS)

    Wang, Jingjing; Liu, Fang

    2012-01-01

    Highlights: ► Simultaneous IPN hydrogels were prepared by hybrid photopolymerization of AM and DVE-3. ► The synergistic complexation was found in the adsorption studies. ► The simultaneous IPN hydrogels could be used as fast-responsive and renewable sorbent materials. - Abstract: Simultaneous interpenetrating polymer network (IPN) hydrogels have been prepared by UV-initiated polymerization of a mixture of acrylamide (AM) and triethylene glycol divinyl ether (DVE-3). The consumption of each monomer upon UV-irradiation was monitored in situ by real-time infrared (RTIR) spectroscopy. The acrylamide monomer AM was shown to polymerize faster and more extensively than the vinyl ether monomer DVE-3, which was further consumed upon storage of the sample in the dark, due to the living character of the cationic polymerization. The IPN hydrogels were used to remove heavy metal ions from aqueous solution under the non-competitive condition. The effects of pH values of the feed solution and the DVE-3 content in the formulation on the adsorption capacity were investigated. The results indicated that the adsorption capacity of the IPN hydrogels increased with the pH values and DVE-3 content in the formulation. Furthermore, the synergistic complexation of metal ions with two polymer networks in the IPN was found in the adsorption studies. Adsorption kinetics and regeneration studies suggested that the IPN hydrogels could be used as fast-responsive and renewable sorbent materials in heavy metal removing processes.

  18. Self-assembled interpenetrating networks by orthogonal self assembly of surfactants and hydrogelators

    NARCIS (Netherlands)

    Brizard, Aurelie M.; Stuart, Marc C. A.; van Esch, Jan H.

    2009-01-01

    Interpenetrating networks (IPN) consist of two or more networks of different components which are entangled on a molecular scale and cannot be separated without breaking at least one of the networks. They are of great technological interest because they allow the blending of two or more otherwise

  19. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    Science.gov (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  20. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

    Science.gov (United States)

    Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L

    2017-12-20

    An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.

  1. Soft hydrogels interpenetrating silicone – a polymer network for drug releasing medical devices

    DEFF Research Database (Denmark)

    Steffensen, Søren Langer; Merete H., Vestergaard,; Møller, Eva Horn

    2016-01-01

    such a sophisticated material by forming an interpenetrating polymer network (IPN) material through modification of silicone elastomers with a poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogel. IPN materials with a PHEMA content in the range of 13%–38% (w/w) were synthesized by using carbon dioxide...

  2. Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks

    Czech Academy of Sciences Publication Activity Database

    Hanyková, L.; Spěváček, Jiří; Radecki, M.; Zhigunov, Alexander; Šťastná, J.; Valentová, H.; Sedláková, Zdeňka

    2015-01-01

    Roč. 293, č. 3 (2015), s. 709-720 ISSN 0303-402X R&D Projects: GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : temperature-induced volume phase transition * interpenetrating network * 1H NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2015

  3. Processing and Dynamic Failure Characterization of Novel Impact Absorbing Transparent Interpenetrating Polymer Networks (t-IPN)

    Science.gov (United States)

    2014-02-01

    samples were placed into the oven for the same curing treatment as before. The scanning electron microscope (SEM) photo in Figure 19 shows a typical...Interpenetrating Polymer Networks with Polyurethane and Methacrylate-based Polymers,’ S. A . Bird , PhD Dissertation, Department of Polymer and Fiber Engineering...Jajam, H. V. Tippur, S. A . Bird , and M. L. Auad, Proceedings of the 50th SES Annual Technical Meeting and ASME-AMD Summer Meeting, Providence, RI

  4. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    permittivity and the Young's modulus of the elastomer. One system that potentially achieves this involves interpenetrating polymer networks (IPNs), based on commercial silicone elastomers and ionic networks from amino- and carboxylic acid-functional silicones. The applicability of these materials as DEs...... are obtained while dielectric breakdown strength and Young's modulus are not compromised. These good overall properties stem from the softening effect and very high permittivity of ionic networks – as high as ε′ = 7500 at 0.1 Hz – while the silicone elastomer part of the IPN provides mechanical integrity...

  5. Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD)

    International Nuclear Information System (INIS)

    Baburin, I.A.; Blatov, V.A.; Carlucci, L.; Ciani, G.; Proserpio, D.M.

    2005-01-01

    Interpenetration in metal-organic and inorganic networks has been investigated by a systematic analysis of the crystallographic structural databases. We have used a version of TOPOS (a package for multipurpose crystallochemical analysis) adapted for searching for interpenetration and based on the concept of Voronoi-Dirichlet polyhedra and on the representation of a crystal structure as a reduced finite graph. In this paper, we report comprehensive lists of interpenetrating inorganic 3D structures from the Inorganic Crystal Structure Database (ICSD), inclusive of 144 Collection Codes for equivalent interpenetrating nets, analyzed on the basis of their topologies. Distinct Classes, corresponding to the different modes in which individual identical motifs can interpenetrate, have been attributed to the entangled structures. Interpenetrating nets of different nature as well as interpenetrating H-bonded nets were also examined

  6. Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Eltjani-Eltahir Hago

    2013-01-01

    Full Text Available In this work, a new approach was introduced to prepare interpenetrating polymer network PVA/GE hydrogels by cross-linking of various concentration gelatin in the presence of transglutaminase enzyme by using the freezing-thawing cycles technique. The effects of freezing-thawing cycles on the properties of morphological characterization, gel fraction, swelling, mechanical, and MTT assay were investigated. The IPN PVA/GE hydrogels showed excellent physical and mechanical Properties. MTT assay data and the fibroblasts culture also showed excellent biocompatibility and good proliferation. This indicates that the IPN hydrogels are stable enough for various biomedical applications.

  7. Synthesis and characterization of p and n dopable interpenetrating polymer networks for organic photovoltaic devices

    International Nuclear Information System (INIS)

    Lav, T.X.; Tran-Van, F.; Vidal, F.; Peralta, S.; Chevrot, C.; Teyssie, D.; Grazulevicius, J.V.; Getautis, V.; Derbal, H.; Nunzi, J.-M.

    2008-01-01

    Interpenetrating polymer networks (IPN) based on carbazole derivatives and diacrylate perylene are synthesized in two steps via an in-situ process. From a spin-coated thin film of a mixture of the two precursors, the diacrylate perylene is first photopolymerized to form a network in the presence of the carbazole derivative which is then electropolymerized to elaborate the IPN. Electrochemical characterizations show that the carbazole and perylene are electroactive inside the film which confirm the p and n dopable properties of the IPN. AFM images of the IPNs show a homogenous and smooth surface, compared to single network, which indicate a high quality of association of each network which should allow an efficient p/n bulk heterojunction

  8. Synthesis and characterization of p and n dopable interpenetrating polymer networks for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Lav, T.X. [Laboratoire de Physicochimie des Polymeres et des Interfaces, EA 2528 Universite de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise Cedex (France); Tran-Van, F. [Laboratoire de Physicochimie des Polymeres et des Interfaces, EA 2528 Universite de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise Cedex (France)], E-mail: francois.tran-van@u-cergy.fr; Vidal, F.; Peralta, S.; Chevrot, C.; Teyssie, D. [Laboratoire de Physicochimie des Polymeres et des Interfaces, EA 2528 Universite de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise Cedex (France); Grazulevicius, J.V.; Getautis, V. [Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT 50254 (Lithuania); Derbal, H.; Nunzi, J.-M. [PPF Cellules Solaires Photovoltaiques Plastiques - Laboratoire POMA, UMR-CNRS 6136, Universite d' Angers, 2 bd Lavoisier, 49045 Angers (France)

    2008-08-30

    Interpenetrating polymer networks (IPN) based on carbazole derivatives and diacrylate perylene are synthesized in two steps via an in-situ process. From a spin-coated thin film of a mixture of the two precursors, the diacrylate perylene is first photopolymerized to form a network in the presence of the carbazole derivative which is then electropolymerized to elaborate the IPN. Electrochemical characterizations show that the carbazole and perylene are electroactive inside the film which confirm the p and n dopable properties of the IPN. AFM images of the IPNs show a homogenous and smooth surface, compared to single network, which indicate a high quality of association of each network which should allow an efficient p/n bulk heterojunction.

  9. The Reverse Thermal Effect in Epoxy Resins and Moisture Absorption in Semi-Interpenetrating Polymer Networks.

    Science.gov (United States)

    El-Sa'Ad, Leila

    1989-12-01

    Available from UMI in association with The British Library. Requires signed TDF. Epoxy resins exhibit many desirable properties which make them ideal subjects for use as matrices of composite materials in many commercial, military and space applications. However, due to their high cross-link density they are often brittle. Epoxy resin networks have been modified by incorporating tough, ductile thermoplastics. Such systems are referred to as Semi-Interpenetrating Polymer Networks (Semi-IPN). Systematic modification to the thermoplastics backbone allowed the morphology of the blend to be controlled from a homogeneous one-phase structure to fully separated structures. The moisture absorption by composites in humid environments has been found to lead to a deterioration in the physical and mechanical properties of the matrix. Therefore, in order to utilize composites to their full potential, their response to hot/wet environments must be known. The aims of this investigation were two-fold. Firstly, to study the effect of varying the temperature of exposure at different stages in the absorption process on the water absorption behaviour of a TGDDM/DDS epoxy resin system. Secondly, to study water absorption characteristics, under isothermal conditions, of Semi-Interpenetrating Polymer Networks possessing different morphologies, and develop a theoretical model to evaluate the diffusion coefficients of the two-phase structures. The mathematical treatment used in this analysis was based on Fick's second law of diffusion. Tests were performed on specimens immersed in water at 10 ^circ, 40^circ and 70^circC, their absorption behaviour and swelling behaviour, as a consequence of water absorption, were investigated. The absorption results of the variable temperature absorption tests indicated a saturation dependence on the absorption behaviour. Specimens saturated at a high temperature will undergo further absorption when transferred to a lower temperature. This behaviour was

  10. Morphology and damping behavior of polyurethane/PMMA simultaneous interpenetrating networks

    Directory of Open Access Journals (Sweden)

    Wang S.H.

    2001-01-01

    Full Text Available A series of polyurethane/PMMA simultaneous interpenetrating networks (SINs with various hard segment contents (X in the polyurethane phase (X = 15.5 to 36.5% in polyurethane and wide range of polyurethane (PU to polyacrylate (PA ratio (PU/PA = 20:80 to 80:20 were prepared, and the damping and mechanical properties of these materials were studied. The damping of polyurethane soft phase was increased and shifted to lower temperature with increased content of PA vitreous phase. The mechanical properties were improved with increasing PA contents. The results show that PA and the polyurethane hard segment interaction play a special role in chain interpenetration density and its magnitude is revealed by the decreased dispersed domain size observed by scanning electron microscopy (SEM and increased loss area as measured by dynamic mechanical thermal analysis (DMTA. When the weight ratio of PU/PA was 40:60, the resulting SIN materials possessed better damping properties, independent of X concentration.

  11. Study of SiO2/PMMA/CE tri-component interpenetrating polymer network composites

    International Nuclear Information System (INIS)

    Wang Junlong; Wang Chuang; Jiao Gengsheng; Wang Qiuya

    2010-01-01

    A technology of conjugated tri-component interpenetrating polymer networks was applied to synthesize a nano-SiO 2 /polymethylmethacrylate (PMMA)/cyanate (CE) composite through an asynchronous synthesis way. The microstructure of the composite was characterized using infrared spectroscopy (IR) and transmission electron microscopy (TEM). The mechanical properties were measured in German-made DL-1000B and XCL-40 universal material test machines, respectively. Results showed that both the impact strength and the flexural strength were in the optimum status when 3% SiO 2 /PMMA/CE was chosen as a sample with the PMMA/CE ratio of 20/80. Compared with the strengths of pure cyanate, those of the composite were raised by 137.28% and 31.29%, respectively. When 3% nano-SiO 2 was added, the impact strength was increased by 29.96% and the flexural strength by 20.05%, compared with the strengths of polymers without SiO 2 . Analysis and measurements by IR and TEM indicated that no chemical reactions took place among components in the composite. The interpenetration of the conjugated tri-component improved the loading capacity of the polymer, hence the toughness enhancement of cyanate.

  12. Structure and properties of semi-interpenetrating network hydrogel based on starch.

    Science.gov (United States)

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang

    2015-11-20

    Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide)

    Czech Academy of Sciences Publication Activity Database

    Šťastná, J.; Hanyková, L.; Sedláková, Zdeňka; Valentová, H.; Spěváček, Jiří

    2013-01-01

    Roč. 291, č. 10 (2013), s. 2409-2417 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1281 Institutional support: RVO:61389013 Keywords : temperature-induced volume phase transition * poly (N-isopropylmethacrylamide) poly (Nisopropylacrylamide) interpenetrating network * 1H NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.410, year: 2013

  14. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  15. Interpenetrated polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

    DEFF Research Database (Denmark)

    Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard

    the applicability. One method used to avoid this limitation is to increase the dielectric permittivity of the material in order to improve the actuation response at a given field. Recently, interpenetrating polymer networks (IPNs) based on covalently cross-linked commercial silicone elastomers and ionic networks...... from amino- and carboxylic acid- functional silicones have been designed[2] (Figure 1). This novel system provides both the mechanical stability and the high breakdown strength given by the silicone part of the IPNs and the high permittivity and the softening effect of the ionic network. Thus......,1 Hz), and the commercial elastomers RT625 and LR3043/30 provide thebest viscoelastic properties to the systems, since they maintain low viscous losses upon addition of ionic network. The values ofthe breakdown strength in all cases remain higher than that of the reference pure PDMS network (ranging...

  16. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  17. Preparation and wear behavior of polymer matrix composites with an interpenetrating network structure derived from natural sponge

    International Nuclear Information System (INIS)

    Wang Tianchi; Zhou Tianle; Xiong Dangsheng

    2010-01-01

    Natural sponge was used as a template to produce carbon/epoxy resin and (carbon+silicon carbide)/epoxy resin composites with interpenetrating network structures. Carbon with a network structure was first obtained by pyrolysis of the natural sponge. The composites were then obtained by injecting epoxy resin and silicone resin into the carbon. Their microstructures and wear properties were analyzed. The results show that the natural structure of sponge controlled the interpenetrating network structures of the composites. The netlike carbon in the composites reduced the wear rate of the epoxy resin. Compared with the carbon/epoxy resin composite, the (carbon+silicon carbide)/epoxy resin composite shows better wear resistance.

  18. Semi-Interpenetrating Polymer Networks with Predefined Architecture for Metal Ion Fluorescence Monitoring

    Directory of Open Access Journals (Sweden)

    Kyriakos Christodoulou

    2016-11-01

    Full Text Available The development of new synthetic approaches for the preparation of efficient 3D luminescent chemosensors for transition metal ions receives considerable attention nowadays, owing to the key role of the latter as elements in biological systems and their harmful environmental effects when present in aquatic media. In this work, we describe an easy and versatile synthetic methodology that leads to the generation of nonconjugated 3D luminescent semi-interpenetrating amphiphilic networks (semi-IPN with structure-defined characteristics. More precisely, the synthesis involves the encapsulation of well-defined poly(9-anthrylmethyl methacrylate (pAnMMA (hydrophobic, luminescent linear polymer chains within a covalent poly(2-(dimethylaminoethyl methacrylate (pDMAEMA hydrophilic polymer network, derived via the 1,2-bis-(2-iodoethoxyethane (BIEE-induced crosslinking process of well-defined pDMAEMA linear chains. Characterization of their fluorescence properties demonstrated that these materials act as strong blue emitters when exposed to UV irradiation. This, combined with the presence of the metal-binding tertiary amino functionalities of the pDMAEMA segments, allowed for their applicability as sorbents and fluorescence chemosensors for transition metal ions (Fe3+, Cu2+ in solution via a chelation-enhanced fluorescence-quenching effect promoted within the semi-IPN network architecture. Ethylenediaminetetraacetic acid (EDTA-induced metal ion desorption and thus material recyclability has been also demonstrated.

  19. Semi-interpenetrating networks based on POLY(N-isopropyl acrilamide and POLY(N-vinylpyrrolidone

    Directory of Open Access Journals (Sweden)

    Žugić Dragana

    2007-01-01

    Full Text Available Three series of semi-interpenetrating polymer networks based on cross-linked poly(N-isopropylacrylamide, PNIPA, and 1, 2 and 3 wt% of linear poly(N-vinylpyrrolidone, PVP, were synthesized in order to improve the mechanical properties of PNIPA gels. The effect of the incorporation of the linear PVP polymer into the temperature responsive networks on the phase transition temperature, swelling behavior and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25/1 to 100/1 of the monomer (N-isopropylacrylamide to the cross linker (N,N'-methylene-bisacrylamide. The hydrogels were characterized by determination of the equilibrium degree of swelling at 25 °C, the dynamic shear modulus and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. The inclusion of the linear hydrophilic PVP in the PNIPA networks increased the equilibrium degree of swelling, the highest values of which were obtained for samples with 2 and 3 wt% of PVP and the NIPA/MBA molar ratio of 75/1 and 100/1. The highest reinforcement effect, evaluated from the ratio of G'red(semi-IPN to G'red(PNIPA, was obtained by incorporation of 2 wt% PVP. The tensile strength of the semi-IPNs reinforced with linear PVP was higher than that of the PNIPA networks. The elongation at break of these semi-IPNs varied between 22 and 55%, which are 22^11% larger than those for single PNIPA networks. The tensile measurements confirmed that the presence of 2 wt% of the linear polymer significantly reinforced the PNIPA network.

  20. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Olfat Gsib

    2017-12-01

    Full Text Available Interpenetrating polymer networks (IPNs have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO. First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%. The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues and migration (skin, intestine than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  1. Preparation and characterization of shape memory composite foams with interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Yao, Yongtao; Zhou, Tianyang; Yang, Cheng; Leng, Jinsong; Liu, Yanju

    2016-01-01

    The present study reports a feasible approach of fabricating shape memory composite foams with an interpenetrating polymer network (IPN) based on polyurethane (PU) and shape memory epoxy resin (SMER) via a simultaneous polymerization technique. The PU component is capable of constructing a foam structure and the SMER is grafted on the PU network to offer its shape memory property in the final IPN foams. A series of IPN foams without phase separation were produced due to good compatibility and a tight chemical interaction between PU and SMER components. The relationships of the geometry of the foam cell were investigated via varying compositions of PU and SMER. The physical property and shape memory property were also evaluated. The stimulus temperature of IPN shape memory composite foams, glass temperature (T g ), could be tunable by varying the constituents and T g of PU and SMER. The mechanism of the shape memory effect of IPN foams has been proposed. The shape memory composite foam with IPN developed in this study has the potential to extend its application field. (paper)

  2. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  3. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    Science.gov (United States)

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Exploration of the biomacromolecular interactions of an interpenetrating proteo-saccharide hydrogel network at the mucosal interface

    CSIR Research Space (South Africa)

    Mashingaidze, F

    2013-09-01

    Full Text Available EXPLORATION OF THE BIOMACROMOLECULAR INTERACTIONS OF AN INTERPENETRATING PROTEO-SACCHARIDE HYDROGEL NETWORK AT THE MUCOSAL INTERFACE 1Felix Mashingaidze, 1Yahya E. Choonara, 1Pradeep Kumar, 1Lisa C. du Toit, 2Vinesh Maharaj, 3Eckhart Buchmann, 4Valence M..., Department of Biosciences, Meiring Naud_e Road, Brummeria, Pretoria, South Africa 3University of the Witwatersrand, Faculty of Health Sciences, Department of Obstetrics and Gynecology, 7 York Road, Parktown, 2193, Johannesburg, South Africa 4St. John’s...

  5. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Directory of Open Access Journals (Sweden)

    Saruchi

    2016-03-01

    Full Text Available A novel interpenetrating polymer network (IPN has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial method. This was confirmed by Fourier transform Infrared spectroscopy (FTIR and Scanning electron microscopy (SEM techniques. Synthesized interpenetrating polymer network hydrogel was used as a device for controlled release of urea and also act as water releasing device. Their impact on soil fertility and plant growth was also studied. The initial diffusion coefficient has a greater value than the later diffusion coefficient indicating a higher fertilizer release rate during the early stage. Fertilizer release kinetic was also studied which showed Non-Fickian diffusion behavior, as the rate of fertilizer release was comparable to the relaxation time of the synthesized matrix. Synthesized IPN enhance the water uptake capacity up to 6.2% and 7.2% in sandy loam and clay soil, respectively.

  6. Interpenetrating polymer networks based on cyanate ester and fluorinated ethynyl-terminated imide oligomers

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2017-12-01

    Full Text Available Highly soluble fluorinated ethynyl-terminated imide (FETI oligomers were prepared via a conventional one-step method in m-cresol, using 4, 4′-(hexafluoroisopropylidene diphthalic anhydride and 2, 2′-bis(trifluoromethyl benzidine as the monomers, and ethynylphthalic anhydride as the end-capper; then interpenetrating polymer networks (IPN were formulated from FETI oligomers and bisphenol A dicyanate ester (BADCy through a solvent-free procedure, and their thermal, mechanical, and dielectric properties were fully characterized. The curing mechanism was studied by model reactions using nitrogen nuclear magnetic resonance. As evidenced by differential scanning calorimetry analysis and rheological measurements, the FETI/BADCy blends exhibited lower curing temperature and shorter gelation time in comparison with pure BADCy due to the catalytic effects of ethynyl and residue amic acid groups. The properties of IPNs were fully compared with those of polycyanurate, and the results revealed that the incorporation of FETI into cyanate ester resins could significantly improve the toughness, glass transition temperatures, mechanical and dielectric properties of the resultant IPNs.

  7. Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery

    International Nuclear Information System (INIS)

    Jaiswal, Maneesh; Koul, Veena; Dinda, Amit K; Gupta, Asheesh

    2010-01-01

    A biodegradable semi-interpenetrating hydrogel network (semi-IPN) of polyacrylamide and gelatin was prepared using polycaprolactone diacrylate (mol. wt ∼ 640) as a crosslinker. The drug-polymer interaction and IPN formation were investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and thermal gravimetric analysis (TGA). Scanning electron micrographs of lyophilized matrices revealed porous internal structure with varying pore sizes under equilibrium hydrated conditions, depending upon formulation composition. pH-dependent swelling and degradation was enhanced with increasing gelatin content and decreasing crosslinker concentration (Cs). Compression modulus (CM) (at 20% strain) increased significantly from 23 ± 1.4 to 75 ± 2.7 kPa (p 0 C). Fitting of drug release data in the Korsmeyer-Peppas model suggested sustained release behavior up to 10 days with a combination of diffusion and erosion mechanism (0.5 t /M ∞ ≤ 0.6). The newly developed porous, biodegradable and elastic semi-IPNs may serve as an ideal matrix for controlled drug release and wound healing applications. The possibilities can be explored for pharmaceutical and tissue engineering applications.

  8. Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.

    Science.gov (United States)

    Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin

    2017-02-01

    Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    Science.gov (United States)

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Printing continuously graded interpenetrating polymer networks of acrylate/epoxy by manipulating cationic network formation during stereolithography

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-12-01

    Full Text Available Ultra-violet (UV laser assisted stereolithography is used to print graded interpenetrating polymer networks (IPNs by controlling network formation. Unlike the traditional process where structural change in IPNs is achieved by varying the feeding ratio of monomers or polymer precursors, in this demonstration property is changed by controlled termination of network formation. A photo-initiated process is used to construct IPNs by a combination of radical and cationic network formation in an acrylate/epoxy system. The extent of the cationic network formation is used to control the final properties of the system. Rapid-Scan Fourier Transformation Infrared Spectroscopy (RS-FTIR is used to track the curing kinetics of the two networks and identify key parameters to control the final properties. Atomic force microscopy (AFM and differential scanning calorimetry (DSC confirm the formation of homogenous IPNs, whereas nano-indentation indicates that properties vary with the extent of cationic network formation. The curing characteristics are used to design and demonstrate printing of graded IPNs that show two orders of magnitude variation in mechanical properties in the millimeter scale.

  11. Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity

    Science.gov (United States)

    Chevrot, C.; Teyssié, D.; Verge, P.; Goujon, L.; Tran-Van, F.; Vidal, F.; Aubert, P. H.; Peralta, S.; Sauques, L.

    2011-04-01

    A promising alternative of multi-layered devices showing electrochromic properties results from the design of a self-supported semi-interpenetrating polymer network (semi-IPN) including an electronic conductive polymer (ECP) formed within. The formation of the ECP in the network has already been described by oxidative polymerization using iron trichloride as an oxidant and leading to conducting semi-IPN with mixed electronic and ionic conductivities as well as convenient mechanical properties. This presentation relates to the elaboration of such semi-IPN using polyethyleneoxide (PEO) network or a PEO/NBR (Nitrile Butadiene Rubber) IPN in which a linear poly (3,4-ethylenedioxythiophene) (PEDOT) is formed symmetrically and selectively as very thin layers very next to the two main faces of the film matrix. PEO/PEDOT semi-IPNs lead to interesting optical reflective properties in the IR between 0.8 and 25 μm. Reflectance contrasts up to 35 % is observed when, after swelling in an ionic liquid, a low voltage is applied between the two main faces of the film. However the low flexibility and brittleness of the film and a slow degradation in air at temperature up from 60°C prompted to replace the PEO matrix by a flexible PEO/NBR IPN one. Indeed, the combination of NBR and PEO in an IPN leads to materials possessing flexible properties, good ionic conductivity at 25°C as well as a better resistance to thermal ageing. Finally, NBR/PEO/PEDOT semi-IPNs allow observing comparable reflectance contrast in the IR range than those shown by PEO/PEDOT semi-IPNs.

  12. Grafting of Interpenetrating Networks of Two Stimuli-responsive Polymers onto PP

    International Nuclear Information System (INIS)

    Ruiz, J. C.

    2006-01-01

    In this work a new strategy was used to prepare interpenetrating polymer networks (IPNs) of two 'stimuli-responsive' polymers: a thermosensitive poly N-isopropylacrylamide (PNIPAAm) and pH sensitive poly acrylic acid (PAAc), the last grafted onto PP films. IPNs are a combination of two or more polymers in network form, which are mixed together (not chemically but physically), with al least one such polymer polymerized and/or crosslinked in the immediate presence of the other(s). The 'stimuli-responsive' polymers, also called 'smart' polymers, exhibit relatively large and sharp physical or chemical changes in response to small physical or chemical stimuli. These polymers are being used as hydrogels or copolymers for technical applications in chemical and mechanical engineering systems such as mass separation, chemical valves, temperature or pH indicators, biomedical and drug delivery systems. For these applications a rapid response and good mechanical properties are necessary. Formerly when PNIPAAm and PAAc were chemically combined their sensitivity was often altered or eliminated and their copolymer had poor mechanical properties. Attempts to solve this problem by creating IPN's with a reduced gel size or by using a macro-porous structure were successful in preserving sensitivity but failed to produce adequate mechanical properties. The object of this paper is to improve the past results of using a binary graft of PNIPAAm and PAAc onto poly(tetrafluoroethylene) PTFE. Poly acrylic acid was grafted onto polypropylene films (with good mechanical properties) by gamma radiation in air (pre-irradiation method), then these grafts were crosslinked using any of the next two methods: The first one, the grafted film in water and argon atmosphere by gamma radiation; and the second one, in the same conditions, but adding a crosslinking agent N, N'-methylenebisacrylamide (MBAAm). The second network was carried out in situ, in the cross-linked PAAc grafted onto PP films, by

  13. Taste masking of ofloxacin and formation of interpenetrating polymer network beads for sustained release

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2017-08-01

    Full Text Available The objective of this study was to carry out taste masking of ofloxacin (Ofl by ion exchange resins (IERs followed by sustained release of Ofl by forming interpenetrating polymer network (IPN beads. Drug-resin complexes (DRCs with three different ratios of Ofl to IERs (1:1, 1:2, 1:4 were prepared by batch method and investigated for in vivo and in vitro taste masking. DRC of methacrylic acid-divinyl benzene (MD resin and Ofl prepared at a ratio of 1:4 was used to form IPN beads. IPN beads of MD 1:4 were prepared by following the ionic cross-linking method using sodium carboxymethyl xanthan gum (SCMXG and SCMXG-sodium carboxymethyl cellulose (SCMXG-SCMC. IPN beads were characterized with FT-IR and further studied on sustained release of Ofl at different pH. In vivo taste masking carried out by human volunteers showed that MD 1:4 significantly reduced the bitterness of Ofl. Characterization studies such as FT-IR, DSC, P-XRD and taste masking showed that complex formation took place between drug and resin. In vitro study at gastric pH showed complete release of drug from MD 1:4 within 30 min whereas IPN beads took 5 h at gastric pH and 10 h at salivary pH for the complete release of drug. As the crosslinking increased the release kinetics changed into non-Fickian diffusion to zero-order release mechanism. MD 1:4 showed better performance for the taste masking of Ofl and IPNs beads prepared from it were found useful for the sustained release of Ofl at both the pH, indicating a versatile drug delivery system.

  14. Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Maneesh; Koul, Veena [Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Dinda, Amit K [Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029 (India); Gupta, Asheesh, E-mail: veenak_iitd@yahoo.co [Department of Biochemical Pharmacology, Defense Institute of Physiology and Allied Sciences, Ministry of Defense, New Delhi 110059 (India)

    2010-12-15

    A biodegradable semi-interpenetrating hydrogel network (semi-IPN) of polyacrylamide and gelatin was prepared using polycaprolactone diacrylate (mol. wt {approx} 640) as a crosslinker. The drug-polymer interaction and IPN formation were investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and thermal gravimetric analysis (TGA). Scanning electron micrographs of lyophilized matrices revealed porous internal structure with varying pore sizes under equilibrium hydrated conditions, depending upon formulation composition. pH-dependent swelling and degradation was enhanced with increasing gelatin content and decreasing crosslinker concentration (Cs). Compression modulus (CM) (at 20% strain) increased significantly from 23 {+-} 1.4 to 75 {+-} 2.7 kPa (p < 0.02) with increasing Cs (from 0.5 to 2.0 mol%), while it decreased from 162 {+-} 6.4 to 23 {+-} 1.4 kPa (p < 0.05) with decreasing PAm/G ratio. Cell viability studies by MTT assay showed excellent cytocompatibility of matrices with fibroblast L929 cells. Curcumin, a hydrophobic phytochemical, was loaded by a diffusion method and its release profile was investigated in 4% w/v aqueous BSA solution at 75 rpm (at 37 {+-} 0.2 {sup 0}C). Fitting of drug release data in the Korsmeyer-Peppas model suggested sustained release behavior up to 10 days with a combination of diffusion and erosion mechanism (0.5 < n < 1.0; M{sub t}/M{sub {infinity} {<=}} 0.6). The newly developed porous, biodegradable and elastic semi-IPNs may serve as an ideal matrix for controlled drug release and wound healing applications. The possibilities can be explored for pharmaceutical and tissue engineering applications.

  15. Development and optimization of locust bean gum and sodium alginate interpenetrating polymeric network of capecitabine.

    Science.gov (United States)

    Upadhyay, Mansi; Adena, Sandeep Kumar Reddy; Vardhan, Harsh; Pandey, Sureshwar; Mishra, Brahmeshwar

    2018-03-01

    The objective of the study was to develop interpenetrating polymeric network (IPN) of capecitabine (CAP) using natural polymers locust bean gum (LBG) and sodium alginate (NaAlg). The IPN microbeads were optimized by Box-Behnken Design (BBD) to provide anticipated particle size with good drug entrapment efficiency. The comparative dissolution profile of IPN microbeads of CAP with the marketed preparation proved an excellent sustained drug delivery vehicle. Ionotropic gelation method utilizing metal ion calcium (Ca 2+ ) as a cross-linker was used to prepare IPN microbeads. The optimization study was done by response surface methodology based Box-Behnken Design. The effect of the factors on the responses of optimized batch was exhibited through response surface and contour plots. The optimized batch was analyzed for particle size, % drug entrapment, pharmacokinetic study, in vitro drug release study and further characterized by FTIR, XRD, and SEM. To study the water uptake capacity and hydrodynamic activity of the polymers, swelling studies and viscosity measurement were performed, respectively. The particle size and % drug entrapment of the optimized batch was 494.37 ± 1.4 µm and 81.39 ± 2.9%, respectively, closer to the value predicted by Minitab 17 software. The in vitro drug release study showed sustained release of 92% for 12 h and followed anomalous drug release pattern. The derived pharmacokinetic parameters of optimized batch showed improved results than pure CAP. Thus, the formed IPN microbeads of CAP proved to be an effective extended drug delivery vehicle for the water soluble antineoplastic drug.

  16. Some experiments to study diffusive transport through a semi interpenetrating polymeric network in the absence and presence of aqueous electrolytes

    Science.gov (United States)

    Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti

    2018-05-01

    The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.

  17. Interpenetrating Polymer Network (IPN with Epoxidized and Acrylated Bioresins and their Composites with Glass and Jute Fibres

    Directory of Open Access Journals (Sweden)

    Francisco Cardona

    2016-02-01

    Full Text Available Epoxidized (EHO and acrylated (AEHO bio-resins from hemp oil were synthesized, and their interpenetrating networks (IPNs were investigated in reinforced bio-composites with natural jute fibres and glass fibres. The mechanical properties (tensile, flexural, Charpy impact, and inter-laminar shear and viscoelastic properties (glass transition temperature, storage modulus, and crosslink density of the bio-resins and their hybrid IPNs EHO/AEHO system were investigated as a function of the level of bio-resin hybridization. The hybrid bio-resins exhibited interpenetrating network (IPN behaviour. Composites prepared with the synthetic vinyl ester (VE and epoxy resins showed superior mechanical and viscoelastic properties compared with their bio-resins and IPNs-based counterparts. With glass fibre (GF reinforcement, increases in the EHO content of the IPNs resulted in increased stiffness of the composites, while the strength, inter-laminar shear strength (ILSS, and impact resistance decreased. However, in the jute fibre reinforced bio-composites, increases in AEHO content generated increased tensile modulus, ILSS, and mechanical strength of the bio-materials. Crosslink density and glass transition temperature (Tg were also higher for the synthetic resins than for the bio-resins. Increased AEHO content of the IPNs resulted in improved viscoelastic properties.

  18. Glass transition temperatures of microphase separated semi-interpenetrating polymer networks of polystyrene-inter-poly(cross)-2-ethylhexyl-methacrylate

    NARCIS (Netherlands)

    de Graaf, L.A.; de Graaf, Leontine A.; Möller, Martin; Moller, M.

    1995-01-01

    The glass transition temperature of semi-interpenetrating polymer networks (semi-IPNs) of atactic polystyrene (PS) in crosslinked methacrylates was studied by systematic variation of the morphology, that is domain size, continuity and concentration in the domains. Semi-IPNs were prepared from

  19. Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior

    Czech Academy of Sciences Publication Activity Database

    Sadakbayeva, Zhansaya; Dušková-Smrčková, Miroslava; Šturcová, Adriana; Pfleger, Jiří; Dušek, Karel

    2018-01-01

    Roč. 101, April (2018), s. 304-313 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA17-08531S Institutional support: RVO:61389013 Keywords : hydrogels * interpenetrating polymer networks * kinetics Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  20. Understanding interpenetrating-polymer-network-like porous nitrile butadiene rubber hybrids by their long-period miscibility

    International Nuclear Information System (INIS)

    Zhang, Jihua; Wang, Lifeng; Zhao, Yunfeng

    2013-01-01

    Highlights: • Hydrogen bonds are introduced into NBR to develop its IPN-like porous hybrids. • NBR is partly miscible with AO-60. • AO-60 possesses the viscoelastic behavior resembling that of polymers. • Phase separation aggravates and AO-60 crystallizes in the durations. • The porous hybrids may have potential damping applications. - Abstract: In this article, tetrakis [methylene-3-(3, 5-di-tert-butyl-4-hydroxy phenyl) propionyloxy] methane (AO-60) with hydrogen bonds was designed to interpenetrate into the chemical crosslinking bonds of nitrile butadiene rubber (NBR) and then porous materials were prepared. Scanning electron microscopy (SEM), atomic force microscopy (AFM) images and dynamic mechanical analyses (DMA) demonstrate that NBR is partly miscible with AO-60 which induces the micro-pores and interpenetrating-polymer-network (IPN)-like phase morphology in the hybrids. The wide double tan δ peak in DMA curve displays that AO-60 possesses similar viscoelastic behaviors to polymers which come from supramolecular interactions between polar groups of NBR chains and hydroxyl (OH) groups of AO-60. To further understand the supramolecular abilities of AO-60 in the rubber, the long-period observations for their miscibility are conducted. With the increase of durations, the hydrogen bond network from AO-60 is weakened. The phase separation between AO-60 and NBR is aggravated and even extremely few AO-60 crystallizes which develops multi-scale porous morphology in the hybrids. It is believed that these findings can serve as a guide for the designs of the IPN-like hybrids with small molecule substances and their applications of damping materials

  1. A 12-Fold ThSi2 Interpenetrated Network Utilizing a Glycine-Based Pseudopeptidic Ligand

    Directory of Open Access Journals (Sweden)

    Edward Loukopoulos

    2018-01-01

    Full Text Available We report the synthesis and characterization of a 3D Cu(II coordination polymer, [Cu3(L12(H2O8]·8H2O (1, with the use of a glycine-based tripodal pseudopeptidic ligand (H3L1 = N,N′,N″-tris(carboxymethyl-1,3,5-benzenetricarboxamide or trimesoyl-tris-glycine. This compound presents the first example of a 12-fold interpenetrated ThSi2 (ths net. We attempt to justify the unique topology of 1 through a systematic comparison of the synthetic parameters in all reported structures with H3L1 and similar tripodal pseudopeptidic ligands. We additionally explore the catalytic potential of 1 in the A3 coupling reaction for the synthesis of propargylamines. The compound acts as a very good heterogeneous catalyst with yields up to 99% and loadings as low as 3 mol %.

  2. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2015-07-01

    Full Text Available The aim of the study was to taste mask ciprofloxacin (CP by using ion-exchange resins (IERs followed by sustain release of CP by forming interpenetrating polymer network (IPN. IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised. Drug-resin complexes (DRCs with three different ratios of drug to IERs (1:1, 1:2, 1:4 were prepared & evaluated for taste masking by following in vivo and in vitro methods. Human volunteers graded ADC 1:4, acrylic acid-divinyl benzene (ADC-3 resin as tasteless. Characterization studies such as FTIR, SEM, DSC, P-XRD differentiated ADC 1:4, from physical mixture (PM 1:4 and confirmed the formation of complex. In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid (SGF i.e. pH 1.2. IPN beads were prepared with ADC 1:4 by using sodium alginate (AL and sodium alginate-chitosan (AL-CS for sustain release of CP at SGF pH and followed by simulated intestinal fluid (SIF i.e. pH 7.4. FTIR spectra confirmed the formation of IPN beads. The release of CP was sustain at SGF pH (75%. The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.

  3. Simulation on the Performance of a Driven Fan Made by Polyester/Epoxy interpenetrate polymer network (IPN)

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd

    2017-08-01

    The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.

  4. Semi-interpenetrating network of acrylamide-grafted-sodium alginate microspheres for controlled release of diclofenac sodium, preparation and characterization.

    Science.gov (United States)

    Al-Kahtani, Ahmed A; Sherigara, B S

    2014-03-01

    The semi-interpenetrating networks (semi-IPNs) of acrylamide grafted sodium alginate (AAm-g-NaAlg) microspheres (MPs) were prepared by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinking agent. The grafting of acrylamide onto sodium alginate was prepared by free-radical graft polymerization using ceric ammonium nitrate (CAN) as initiator at three acrylamide concentrations with monomer to polymer ratio of 1:1, 2:1 and 3:1, respectively. The grafting efficiency was found to be 91%. The produced MPs are almost spherical in nature with smooth surfaces. Diclofenac sodium (DS), an anti-inflammatory drug was successfully encapsulated into the MPs. The encapsulation efficiency was found to vary between 83% and 95%. The MPs were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The diffusion coefficient (D) was dependent upon the amount of crosslinking agent (GA) and amount of grafting ratio in the matrix. The rate of release was found to be dependent on the amount of GA, AAm:NaAlg grafting ratio and % drug loading in the MPs. The release data have been fitted to an empirical equation to investigate the diffusional exponent (n), which indicated that the release mechanism from MPs follows the super Case II transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  6. Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin.

    Science.gov (United States)

    Kulkarni, Raghavendra V; Sreedhar, V; Mutalik, Srinivas; Setty, C Mallikarjun; Sa, Biswanath

    2010-11-01

    Interpenetrating network (IPN) hydrogel membranes of sodium alginate (SA) and poly(vinyl alcohol) (PVA) were prepared by solvent casting method for transdermal delivery of an anti-hypertensive drug, prazosin hydrochloride. The prepared membranes were thin, flexible and smooth. The X-ray diffraction studies indicated the amorphous dispersion of drug in the membranes. Differential scanning calorimetric analysis confirmed the IPN formation and suggests that the membrane stiffness increases with increased concentration of glutaraldehyde (GA) in the membranes. All the membranes were permeable to water vapors depending upon the extent of cross-linking. The in vitro drug release study was performed through excised rat abdominal skin; drug release depends on the concentrations of GA in membranes. The IPN membranes extended drug release up to 24 h, while SA and PVA membranes discharged the drug quickly. The primary skin irritation and skin histopathology study indicated that the prepared IPN membranes were less irritant and safe for skin application. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Segmental dynamics in poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks: structural relaxation experiments

    International Nuclear Information System (INIS)

    Ribelles, J L Gomez; Duenas, J M Meseguer; Cabanilles, C Torregrosa; Pradas, M Monleon

    2003-01-01

    The miscibility of poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks (IPNs) has been studied by probing the conformational mobility of the component polymer chains. These IPNs exhibit the phenomenon of forced compatibilization. In a conventional heating differential scanning calorimetry (DSC) thermogram, the highly cross-linked IPN shows a single glass transition which covers a temperature interval of around 100 d eg C; in contrast, loosely cross-linked IPNs show two glass transitions. The conformational mobility in these IPNs is studied by subjecting them to isothermal annealings at temperatures in the region of the glass transition and below it. The DSC scans measured after these treatments allow one to determine the temperature interval in which the sample is out of thermodynamic equilibrium but keeps enough conformational mobility to relax during the isothermal annealing in such a way that the enthalpy loss is measurable with the sensitivity of a conventional DSC. The results allow one to reach some conclusions about the compositional distribution of the IPN on the nanometre scale

  8. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization.

    Science.gov (United States)

    Anwar, Hina; Ahmad, Mahmood; Minhas, Muhammad Usman; Rehmani, Sahrish

    2017-06-15

    A new natural and synthetic polymeric blend to form interpenetrating polymer network (IPN) hydrogels was synthesized utilizing sodium alginate and PVA as polymers by free radical polymerization employing 2-Acylamido-2-methylpropane-sulfonic acid as monomer (AMPS) and tramadol HCl as model drug through 3 2 level full factorial design to evaluate the impact of selected independent factors i.e. polymer (sodium alginate) and monomer (AMPS) contents on swelling index at 18th hour, percent drug release at 18th hour, time required for 80% drug release and drug entrapment efficiency as dependent variables. FTIR, SEM, sol-gel analysis, equilibrium swelling studies and in-vitro release kinetics were performedfor in-vitro characterization of formulated IPN hydrogels. In-vitro studies carried out at pH 1.2 and pH 7.4 revealed pH independent swelling and drug release from polymeric IPN, providing controlled drug release for an extended period of time with improved entrapment efficiency, thereby concluding that this polymeric blend may be a promising system for the prolonged drug delivery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks

    International Nuclear Information System (INIS)

    Engberg, Kristin; Frank, Curtis W

    2011-01-01

    In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D gel = 0.16 ± 0.02 x 10 -8 cm 2 s -1 ) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D gel = 11.05 ± 0.43 x 10 -8 cm 2 s -1 ). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion.

  11. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.

    Science.gov (United States)

    Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K

    2018-02-01

    This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (Pprepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Wang, H.X. [ZHENGHE electronics Co., Ltd, Jining 272023 (China)

    2014-04-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis.

  13. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    International Nuclear Information System (INIS)

    Wang, X.Y.; Ma, J.X.; Li, C.G.; Wang, H.X.

    2014-01-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis

  14. Chemical and phase structure of poly cyanurate-polyurethane grafted semi interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Fainleib, A.M.; Gomza, Yu.P.; Privalko, V.P.; Bershtein, V.A.; Carini, G.

    2001-01-01

    In this research the phase morphology and properties of dicyanate ester of bisphenol A (DCEBA) based poly cyanurate network (PCN) modified with linear polyurethane (LPU) were successfully studied by the combination of infra-red spectroscopy, small-angle X-ray scattering (SAXS), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry and laser-interferometric creep rate spectroscopy

  15. Microstructure and Mechanical Properties of Heterogeneous Ceramic-Polymer Composite Using Interpenetrating Network

    OpenAIRE

    Kim, Eun-Hee; Jung, Yeon-Gil; Jo, Chang-Yong

    2012-01-01

    Prepolymer, which can be polymerized by a photo, has been infiltrated into a porous ceramic to improve the addition effect of polymer into the ceramic, as a function of the functionality of prepolymer. It induces the increase in the mechanical properties of the ceramic. The porous alumina (Al2O3) and the polyurethane acrylate (PUA) with a network structure by photo-polymerization were used as the matrix and infiltration materials, respectively. The porous Al2O3 matrix without t...

  16. Microstructure and Mechanical Properties of Heterogeneous Ceramic-Polymer Composite Using Interpenetrating Network

    International Nuclear Information System (INIS)

    Eun-Hee, K.; Yeon-Gil, J.; Chang-Yong, J.

    2012-01-01

    Prepolymer, which can be polymerized by a photo, has been infiltrated into a porous ceramic to improve the addition effect of polymer into the ceramic, as a function of the functionality of prepolymer. It induces the increase in the mechanical properties of the ceramic. The porous alumina (Al 2 O 3 ) and the polyurethane acrylate (PUA) with a network structure by photo-polymerization were used as the matrix and infiltration materials, respectively. The porous Al 2 O 3 matrix without the polymer shows lower values in fracture strength than the composites, since the stress is transmitted more quickly via propagation of cracks from intrinsic defects in the porous matrix. However, in the case of composites, the distribution of stress between hetero phases results in the improved mechanical properties. In addition, the mechanical properties of composites, such as elastic modulus and fracture strength, are enhanced with increasing the functionality of prepolymer attributed to the crosslinking density of polymer.

  17. Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl methacrylate) latex interpenetrating polymer networks by radiation-induced seeded emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    A series of latex interpenetrating polymer networks (LIPNs) were prepared via a two-stage emulsion polymerization of methyl methacrylate (MMA) or mixture of MMA and n-butyl acrylate (n-BA) on crosslinked poly(n-butyl acrylate)(PBA) seed latex using {sup 60}Co {gamma}-ray radiation. The particles of resultant latex were produced with diameters between 150 and 250 nm. FTIR spectra identified the formation of crosslinked copolymers of PMMA or P(MMA-co-BA). Dynamic light scattering (DLS) showed that with increasing n-BA concentration in second-stage monomers, the particle size of LIPN increased. Transmission electron microscope(TEM) photographs showed that the morphology of resultant acrylate interpenetrating polymer network (IPN) latex varied from the distinct core-shell structure to homogenous particle structure with the increase of n-BA concentration, and the morphology was mainly controlled by the miscibility between crosslinked PBA seed and second-stage copolymers and polarity of P(MMA-co-BA)copolymers. In addition, differential scanning calorimeter (DSC) measurements indicated the existence of reinforced miscibility between PBA seed and P(MMA-co-BA)copolymer in prepared LIPNs.

  18. Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites

    Science.gov (United States)

    Chen, Shoubing; Wang, Qihua; Wang, Tingmei

    2011-06-01

    A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature ( Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.

  19. Adsorption of ammonium and phosphate by feather protein based semi-interpenetrating polymer networks hydrogel as a controlled-release fertilizer.

    Science.gov (United States)

    Su, Yuan; Liu, Jia; Yue, Qinyan; Li, Qian; Gao, Baoyu

    2014-01-01

    A new feather protein-grafted poly(potassium acrylate)/polyvinyl alcohol (FP-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was produced through graft copolymerization with FP as a basic macromolecular skeletal material, acrylic acid as a monomer and PVA as a semi-IPNs polymer. The adsorption of ammonium and phosphate ions from aqueous solution using the new hydrogel as N and P controlled-release fertilizer with water-retention capacity was studied. The effects of pH value, concentration, contact time and ion strength on NH4+ and PO3-4 removal by FP-g-PKA/PVA semi-IPNs hydrogel were investigated using batch adsorption experiments. The results indicated that the hydrogel had high adsorption capacities and fast adsorption rates for NH4+ and PO3-4 in wide pH levels ranging from 4.0 to 9.0. Kinetic analysis presented that both NH4+ and PO3-4 removal were closely fitted with the pseudo-second-order model. Furthermore, the adsorption isotherms of hydrogel were best represented by the Freundlich model. The adsorption-desorption experimental results showed the sustainable stability of FP-g-PKA/PVA semi-IPNs hydrogel for NH4+ and PO3-4 removal. Overall, FP-g-PKA/PVA could be considered as an efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer.

  20. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  1. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    Science.gov (United States)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  2. Enhancement of Lactobacillus reuteri KUB-AC5 survival in broiler gastrointestinal tract by microencapsulation with alginate-chitosan semi-interpenetrating polymer networks.

    Science.gov (United States)

    Rodklongtan, A; La-ongkham, O; Nitisinprasert, S; Chitprasert, P

    2014-07-01

    To evaluate an alginate-chitosan microcapsule for an intestinal probiotic delivery system for broilers. Lactobacillus reuteri KUB-AC5 was successfully microencapsulated with alginate and chitosan mixtures using an emulsion cross-linking method with high microencapsulation efficiency. Scanning electron microscopy revealed a large number of the bacteria entrapped in the semi-interpenetrating network. The microcapsule effectively protected the cells against strong acids. The in vitro study showed that the 8 log CFU g(-1) was released at the jejunum and ileum. For the in vivo study, the number of probiotics was detected by a polymerase chain reaction-based random amplified polymorphic DNA technique. From provision of 10 log CFU, cell numbers of 5-8 log CFU were observed in the intestine. The alginate-chitosan microcapsule can serve as a potential intestine-targeted probiotic delivery system. To the best of our knowledge, this is the first comparison study of the in vitro and in vivo gastrointestinal profiles of microencapsulated probiotics used as feed additives for broilers. This study reveals the similarities and differences of the in vitro and in vivo probiotic profiles and provides convincing evidence of the potential use of the alginate-chitosan microcapsule as a probiotic delivery system. © 2014 The Society for Applied Microbiology.

  3. Synthesis of PVA Hydrogel for Prosthetic Discus Nucleus Pulposus: Formation of Interpenetrating Polymer Network (IPN) PVA Hydrogel by Gamma Rays

    International Nuclear Information System (INIS)

    Darwis, Darmawan; Erizal; Lely Hardiningsih; Razzak, Mirzan T.

    2004-01-01

    Research on synthesis of IPN PVA hydrogel for using as prosthetic discus nucleus has been carried out. Base hydrogel network (network I) was made by reacting the solution of polyvinyl alcohol (PVA) 10 - 15 % w/w with formaldehyde at 80 o C for several hours. Hydrogel network II (as IPN network) was then made by immersion of base hydrogel into polymer solution (PVP or PVA) until hydrogel swell to equilibrium volume. The hydrogel then irradiated using gamma rays at various doses. The results show that IPN PVA-PVP and IPN PVA-PVP hydrogels have higher compression strength compared to base hydrogel. IPN PVA-PVA hydrogel made by irradiating base hydrogel (immersed into polymer solution) with 25, 50 and 100 kGy have compression strength at 5 mm displacement 2.72; 2.83; and 3.25 kg/cm 2 respectively, While base hydrogel has compression strength of 1.75 kg/cm 2 . IPN PVA-PVP and PVA-PVA hydrogels made by irradiating base hydrogel with 100 kGy still retain high water content i.e. 72 and 74 % respectively. Beside that they show good re-absorption property after compression treatment that is hydrogel can return to the original shape after compressed to 12 mm displacement (80% of initial height on hydrogel) at relatively short time, less than 15 minutes. (author)

  4. Synthesis and characterization of sulfonic acid membranes based on interpenetrating polymer networks for application in fuel cells; Sintese e caracterizacao de membranas sulfonadas baseadas em redes polimericas interpenetrantes para aplicacao em celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Lyzed Toloza; Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, the synthesis and characterization of sulfonic membranes based on interpenetrating polymer networks (IPN). In order to obtain such systems, the diglycidyl ether of bisphenol A (DGEBA) was polymerized in presence of polyethyleneimine (PEI). These membranes were submitted to sulfonation reactions, originating IPN-SO{sub 3}H membranes. The characterization by FTIR evidenced the formation of a Semi-IPN structure, while sulfonation reactions resulted in systems containing -SO{sub 3}H groups covalently bonded to the chains. The membranes exhibited water retention up to 200 degree C, in a temperature range sufficient for application in PEMFC under hydration. (author)

  5. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

    Science.gov (United States)

    Yu, Feng; Cao, Xiaodong; Zeng, Lei; Zhang, Qing; Chen, Xiaofeng

    2013-08-14

    In order to mimic the natural cartilage extracellular matrix, a novel biological degradable interpenetrating network hydrogel was synthesized from the gelatin (G), hyaluronic acid (HA) and chondroitin sulfate (CS) by Diels-Alder "click" chemistry. HA was modified with furylamine and G was modified with furancarboxylic acid respectively. (1)H NMR spectra and elemental analysis showed that the substitution degrees of HA-furan and G-furan were 71.5% and 44.5%. Then the hydrogels were finally synthesized by cross-linking furan-modified HA and G derivatives with dimaleimide poly(ethylene glycol) (MAL-PEG-MAL). The mechanical and degradation properties of the hydrogels could be tuned simply through varying the molar ratio between furan and maleimide. Rheological, mechanical and degradation studies demonstrated that the Diels-Alder "click" chemistry is an efficient method for preparing high performance biological interpenetrating hydrogels. This biomimic hydrogel with improved mechanical properties could have great potential applications in cartilage tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  7. Detection and diagnosis of a natural gas dehydration plant by absorption with triethylene glycol, employing a artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The natural gas dehydration is a great importance operation in the gas and petroleum industry, It avoids operational problems associated with the water content, which appear frequently in the industrial facilities that use the natural gas as raw material or as work tool. Due to the presence of undesirable pollutants which may enter the plant with the wet natural gas current (lubricating, corrosion inhibitors, salts, and others), the equipment that constitutes the dehydration plants are capable to suffering operational faults as the heat exchangers fouling, foam formation in the absorber, glycol losses for dragging; trays, packings, valves and filters fouling; glycol degradation, inadequate temperatures of regeneration and others. The above mentioned faults often cannot be detected by the operators and engineers but up to the moment when a catastrophic damage occurs or when products are obtained out of specification, which causes big economic and time losses. By means of the application of artificial neural networks, there was achieved the detection and the effective diagnosis of faults, still in incipient state, in a gas dehydration plant. (author)

  8. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    Science.gov (United States)

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  10. Interpenetrated Uranyl-Organic Frameworks with bor and pts Topology: Structure, Spectroscopy, and Computation.

    Science.gov (United States)

    Liu, Chao; Chen, Fang-Yuan; Tian, Hong-Rui; Ai, Jing; Yang, Weiting; Pan, Qing-Jiang; Sun, Zhong-Ming

    2017-11-20

    Two novel three-dimensional interpenetrated uranyl-organic frameworks, (NH 4 ) 4 [(UO 2 ) 4 (L 1 ) 3 ]·6H 2 O (1) and [(UO 2 ) 2 (H 2 O) 2 L 2 ]·2H 2 O (2), where L 1 = tetrakis(3-carboxyphenyl)silicon and L 2 = tetrakis(4-carboxyphenyl)silicon, were synthesized by a combination of two isomeric tetrahedral silicon-centered ligands with 3-connected triangular [(UO 2 )(COO) 3 ] - and 4-connected dinuclear [(UO 2 ) 2 (COO) 4 ] units, respectively. Structural analyses indicate that 1 possesses a 2-fold interpenetrating anion bor network, while 2 exhibits a 3-fold interpenetrated 4,4-connected neutral network with pts topology. Both compounds were characterized by thermogravimetric analysis and IR, UV-vis, and photoluminescence spectroscopy. A relativistic density functional theory (DFT) investigation on 10 model compounds of 1 and 2 shows good agreement of the structural parameters, stretching vibrational frequencies, and absorption with experimental results; the time-dependent DFT calculations unravel that low-energy absorption bands originate from ligand-to-uranium charge transfer.

  11. Ion conducting interpenetrated lattices for lithium generators; Reseaux interpenetres conducteurs ioniques pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Grosz, M.; Boileau, S. [College de France, 75 - Paris (France); Guegan, P.; Cheradame, H. [Centre National de la Recherche Scientifique (CNRS), 94 - Thiais (France). LPCB; Deshayes, A. [CNET, 92 - Issy-les-Moulineaux (France)

    1996-12-31

    Interpenetrated lattices (IPL) are combinations of reticulated polymers linked together by permanent crisscross. This structure is well-adapted to combined highly incompatible pairs of polymers. The in-situ sequential method has been applied successfully to the synthesis of ethylene poly-oxides / poly-siloxanes IPLs. The results concerning the preparation of such lattices and their behaviour as solid polymer electrolytes are presented in this paper. (J.S.) 24 refs.

  12. Ion conducting interpenetrated lattices for lithium generators; Reseaux interpenetres conducteurs ioniques pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Grosz, M; Boileau, S [College de France, 75 - Paris (France); Guegan, P; Cheradame, H [Centre National de la Recherche Scientifique (CNRS), 94 - Thiais (France). LPCB; Deshayes, A [CNET, 92 - Issy-les-Moulineaux (France)

    1997-12-31

    Interpenetrated lattices (IPL) are combinations of reticulated polymers linked together by permanent crisscross. This structure is well-adapted to combined highly incompatible pairs of polymers. The in-situ sequential method has been applied successfully to the synthesis of ethylene poly-oxides / poly-siloxanes IPLs. The results concerning the preparation of such lattices and their behaviour as solid polymer electrolytes are presented in this paper. (J.S.) 24 refs.

  13. Effects of polyethylene glycol 2 L alone or with ascorbic acid compared with polyethylene glycol 4 L alone for bowel preparation before colonoscopy: protocol for a systematic review and network meta-analysis.

    Science.gov (United States)

    Tian, Xu; Chen, Wei-Qing; Huang, Jie-Li; He, Lan-Ying; Liu, Bang-Lun; Liu, Xi; Zhou, Hang; Liu, Bing-Rong

    2017-10-16

    Colonoscopy has been regarded as a standard method of detecting and removing gastrointestinal lesions early, while adequate bowel preparation is the prerequisite of determining the diagnostic accuracy and treatment safety of this process. Polyethylene glycol (PEG) based bowel preparation regimens remain the first recommendation, but the optimal option is still uncertain. The aim of this systematic review and network meta-analysis of randomised controlled trials (RCTs) is to determine the optimal PEG based bowel preparation regimen before colonoscopy. We will assign two investigators to independently search all potential citations, screen records, abstract essential information and appraise the risk of bias accordingly. Then, random effects pairwise and network meta-analyses of RCTs comparing PEG 2 L alone or with ascorbic acid with PEG 4 L alone will be performed using RevMan 5.3 (Copenhagen, Denmark: The Nordic Cochrane Centre, The Cochrane Collaboration, 2013), Stata 14 (StataCorp, Texas, USA) and WinBUGS 1.4 (Imperial College School of Medicine, St Mary's, London, UK) from January 2000 to April 2017. The surface under the cumulative ranking curve will also be calculated in order to rank the regimens. Ethics approval and patient written informed consent will not be required because all of the analyses in the present study will be performed based on data from published studies. We will submit our systematic review and network meta-analysis to a peer reviewed scientific journal for publication. PROSPERO: CRD42017068957. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Ion deceleration in interpenetrating plasma jets

    International Nuclear Information System (INIS)

    Renner, O.; Krousky, E.; Larroche, O.; Liska, R.

    2010-01-01

    Complete text of publication follows. Inertial and magnetic confinement fusion schemes involve collisions of high-temperature plasma jets and their interaction with solid surfaces (the so-called plasma-wall interaction, PWI). A fundamental understanding of the PWI effects requires a detailed characterization of the transient collisional phenomena occurring in the interaction region. In this paper we discuss a PWI experiment with double-foil Al/Mg targets fielded at the PALS laser system. An energetic plasma jet was created at the rear (non-irradiated) side of the 0.8-μm-thick Al foil exploded by the main laser beam (50-200 J, 0.44/1.315 μm, 0.25-0.3 ns, 16 W/cm 2 ). This plasma jet streamed towards the 2-μm-thick Mg foil, where the secondary plasma was created either by an auxiliary 5 J laser beam or by the main laser radiation transmitted through the Al foil, together with radiation and particles emitted from the Al foil. The environmental conditions in the plasma were diagnosed by means of high-resolution x-ray spectroscopy and temporally-resolved x-ray imaging. For the first time, the deceleration of the incident Al ions in the near-wall region was directly observed and quantitatively characterized from the Doppler shift of the J-satellite from the Al Lyα spectral group. The interaction scenario was numerically modeled by two concerted codes, namely, i) the Prague Arbitrary Lagrangian Eulerian 2-D code PALE, which solves the Lagrangian mesh distortions by smoothing and conservative remapping of conserved quantities, and ii) the multispecies 1.5-D code MULTIF which models the hydrodynamics of an arbitrary number of interpenetrating ion species in a single space dimension while assuming self-similar plasma expansion in the other directions, and taking into account detailed Coulombian collisional processes. PALE was used to model two counter-streaming Al/Mg plasma plumes until the beginning of their interaction, and the resulting plasma state was then used as

  15. Ethylene glycol blood test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  16. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruixue, E-mail: qdruinyan@hotmail.com [Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Zhang, Nan; Wu, Wentao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Wang, Kemin, E-mail: kemin-wang@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. - Highlights: • Cyclic acetals contained EHD/mPEGA networks were fabricated by photopolymerization. • It can be degraded under simulated physiological condition without acidic products. • Surface hydrophilicity was increased without swelling in water.

  17. Formation of network during radiation three-dimentional copolymerization of α, ω-dibutyl-bis-maleatetriethylene glycol with styrene

    International Nuclear Information System (INIS)

    Bol'bit, N.M.; Bol'shakova, T.A.; Fajzi, N.Kh.; Chikin, Yu.A.

    1983-01-01

    The radiation-induced copolymerization of α,ω-dibutyl-bis-maleatetriethylene glycol (dimaleate) with styrene in bulk has been studied for the ratio of initial molar concentrations of styrene to dimaleate being equal to 1.9. Initiation has been carried out using 60 Co gamma radiation with intensity 650 rad/s. Radiation doses are 3.5-16 Mrad. Up to approximately 18% conversion only soluble copolymer is formed. Per approximately 3.5 units of styrene in this copolymer 1 unit of dimaleate with one unreacted double bond is detected. Then in the narrow range of conversion the transformation of the main part soluble copolymer into macrogel proceeds. This fact is apparently the result of the change of physical state of the system alike the microphase separation resulting in essential increase of the probability of reaction between propagating radicals of neigh-- boring molecules and maleate bonds

  18. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng; Lin, Wenbin (UC); (Xiamen)

    2016-12-02

    A series of porous twofold interpenetrated In-CoIII(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII(porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

  19. Pros and Cons of the Interpenetrating Panel Design

    Science.gov (United States)

    Paul C. Van Deusen

    2000-01-01

    The interpenetrating sample design has been selected for the USDA Forest Service's Annual Forest Inventory System. The advantages and disadvantages of this design are discussed by considering alternatives such as the formerly used periodic design, a concentrated grid design, and disturbance based sampling. Factors considered for each design include fulfilling 1998...

  20. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yapei; Pitet, Louis M.; Finlay, John A.; Brewer, Lenora H.; Cone, Gemma; Betts, Douglas E.; Callow, Maureen E.; Callow, James A.; Wendt, Dean E.; Hillmyer, Marc A.; DeSimone, Joseph M. (Birmingham UK); (NCSU); (UNC); (Cal. Polytech.); (UMM)

    2013-03-07

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M{sub w} = 1500 g mol{sup -1}) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M{sub w} = 300, 475, 1100 g mol{sup -1}), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  1. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.

    Science.gov (United States)

    Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M

    2011-01-01

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  2. Three new 5-fold interpenetrating diamondoid frameworks constructed by rigid diimidazole and dicarboxylate ligands

    Science.gov (United States)

    Huo, Jianqiang; Yan, Shuai; Li, Haiqiang; Yu, Donghui; Arulsamy, Navamoney

    2018-03-01

    A series of three-dimensional coordination polymers, namely, [Cd(BIMB)(SCA)]n (1), [M(BIMB)(trans-CHDC)]n (2, M = Cd2+; 3, M = Co2+), where BIMB = 1,4-di(1H-imidazol-1-yl)benzene, SCA2- = succinate dianion, CHDC2- = cyclohexane-1,4-dicarboxylate dianion) are synthesized hydro/solvatothermal methods. The products are characterized by elemental analysis and single-crystal X-ray diffraction data. Both the dianion and BIMB bridge different pairs of the metal ions, the three complexes are polymeric and their three-dimensional topology feature a diamond-like metal-organic framework (MOF). Owing to the length of the two bridging ligands, moderate size voids are formed in the diamondoid networks. However, the voids are filled by mutual interpenetration of four independent equivalent frameworks in a 5-fold interpenetrating architecture, and there is no sufficient void volume available for any guest molecules. The phase purity and thermal stability of the compounds are verified by powder X-ray diffraction (PXRD) and thermogravimetric (TG) data. The solid-state fluorescence spectra for the 3d10 Cd2+ MOF's 1 and 2 reveal significant enhancement in their emission intensities in comparison to the non-metallated BIMB. The enhanced emission is attributed to perturbation of intra-ligand emission states due to Cd2+ coordination.

  3. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    Science.gov (United States)

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  4. Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin

    2017-10-01

    Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.

  5. Implicit multi-fluid simulation of interpenetrating plasmas

    International Nuclear Information System (INIS)

    Rambo, P.W.; Denavit, J.

    1992-01-01

    A one dimensional simulation code for interpenetrating multi-component plasmas is presented. Separate fluid equations for multiple species and the Poisson equation for the electric field are solved implicitly to allow stable accurate solutions over a wide range of the time scale parameters ω p Δt and ν c Δt (ω p is the plasma frequency, ν c a typical collision frequency and Δt the time step). In regions where ω p Δt c Δt p Δt >>1 and/or ν c Δt>>1, the ambipolar and/or diffusion models are recovered. In regions of low collisionality, particles may be created and deleted which are followed using particle and cell techniques combined with scatter and drag due to collisions with the fluids. Applications of this code to interpenetrating laser generated plasmas are presented

  6. Static semicoercive normal compliance contact problem with limited interpenetration

    Czech Academy of Sciences Publication Activity Database

    Jarušek, Jiří

    2015-01-01

    Roč. 66, č. 5 (2015), s. 2161-2172 ISSN 0044-2275 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : contact * limited interpenetration * friction Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007%2Fs00033-015-0539-5

  7. Aliphatic amine cured PDMS–epoxy interpenetrating network ...

    Indian Academy of Sciences (India)

    Unknown

    Tg, heat-distortion temperature and reduced the percentage weight loss with ... The siliconized epoxy IPN, with better impact and thermal resistance, ... However, these materials also deteriorate ... the method of compounding remains the state of the art. ... geneity and to ascertain any chemical change during storage.

  8. Interpenetrating polymer networks based on polyol modified castor ...

    Indian Academy of Sciences (India)

    Unknown

    glycerol modification of castor oil results in more crosslinked and stiffer IPNs possessing better mechanical properties over that of unmodified castor oil polyurethane/. PHEMA IPNs. 3.5 Chemical resistance. The percentage weight loss of IPNs were determined in. H2SO4, CH3COOH, HCl, HNO3, NaCl and NaOH etc and.

  9. Optimal use of polyethylene glycol for preparation of small bowel video capsule endoscopy: a network meta-analysis.

    Science.gov (United States)

    Wu, Shan; Gao, Yun-Jie; Ge, Zhi-Zheng

    2017-06-01

    Standardized strategy of bowel preparation before video capsule endoscopy (VCE) remains controversial. This study aimed to assess the ideal dose of PEG, based on small bowel visualization quality (SBVQ), diagnostic yield (DY), and complete rate (CR) of VCE using a network meta-analysis (NMA) of randomized controlled trials (RCTs). This NMA included RCTs comparing any of the following bowel preparation interventions for VCE: fasting overnight ("Fast"), 1 liter PEG ("PEG 1L"), 2-liter PEG ("PEG 2L"), or 4-liter PEG ("PEG 4L"). The authors searched papers in PubMed, Cochrane Library, and Embase as of June 2016. The cumulative ranking (SUCRA) probabilities to rank different doses of PEG and Fast were used. The search engine provided 102 studies. Nine RCTs including 982 patients were incorporated into this analysis. All studies showed low risk of bias of blinding. SUCRA provided an initial ranking among these strategies, in which PEG 2 L showed the best score in SBVQ (PEG 2 L, 89.4%; PEG 1 L, 62.5%; PEG 4 L, 44.0%; Fast, 4.1%) and DY (PEG 2 L, 74.6%; PEG 1 L 28.1%; PEG 4 L 65.9%; Fast 31.4%) of VCE. No significant difference was shown in the analysis of CR. This study recommends PEG 2 L as the ideal dose, which may improve the SBVQ of VCE and, therefore, diagnostic accuracy. Multi-center randomized controlled trials are required to verify these findings.

  10. Stagnation and interpenetration of laser-created colliding plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pollaine, S.M.; Albritton, J.R.; Kauffman, R.; Keane, C.J. (Lawrence Livermore National Lab., CA (USA)); Berger, R.L.; Bosch, R.; Delameter, N.D.; Failor, B.H. (KMS Fusion, Inc., Ann Arbor, MI (USA))

    1990-11-05

    A KMS laser experiment collides Aluminum (A1) and Magnesium (Mg) plasmas. The measurements include electron density, time and space resolved Ly-alpha and He-alpha lines of Al and Mg, and x-ray images. These measurements were analyzed with a hydrodynamic code, LASNEX, and a special two-fluid code OFIS. The results strongly suggest that at early times, the Al interpenetrates the counterstreaming Mg and deposits in the dense Mg region. At late times, the Al plasma stagnates against the Mg plasma.

  11. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  12. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  13. Life test of DMFC using poly(ethylene glycol)bis(carboxymethyl)ether plasticized PVA/PAMPS proton-conducting semi-IPNs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jinli [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan); New Energy Technology Research Center, Tongji University, Shanghai 201804 (China); Ikesaka, Shinya; Saito, Morihiro; Kuwano, Jun [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826 (Japan); Okada, Tatsuhiro [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan)

    2007-08-15

    A novel, low-cost proton-conducting semi-IPN (semi-interpenetrating polymer network) has been successfully prepared from PVA/PAMPS (poly(vinyl alcohol) and poly(2-acrylamindo-2-methyl-1-propanesulfonic acid))blends by incorporating poly(ethylene glycol)bis(carboxymethyl)ether (PEGBCME) as a novel plasticizer. Although, the polymer is based on a relatively low content of PAMPS as a component of ion conducting sites, the resulting semi-IPN exhibited high proton conductivity (0.1 S cm{sup -1}) at 25 C, which afforded a higher power density of 51 mW cm{sup -2} at 80 C. A striking feature is that a long-term initial performance is achieved with a 130 h of stable fuel cell operation in DMFC mode due to effectively suppressed methanol crossover. This is a new record for a fully hydrocarbon membrane in DMFC, seeing that the PVA-PAMPS proton-conducting semi-IPNs are made simply of aliphatic skeletons. (author)

  14. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  15. Ethylene glycol poisoning

    African Journals Online (AJOL)

    Ethylene glycol poisoning. A 22-year-old male presented to the emergency centre after drinking 300 ml of antifreeze. Clinical examination was unremarkable except for a respiratory rate of 28 bpm, GCS of 9 and slight nystagmus. Arterial blood gas revealed: pH 7.167, pCO2. 3.01 kPa, pO2 13.0 kPa (on room air), HCO3-.

  16. Synthesis and characterization of interpenetrating phase ceramic metal composites

    International Nuclear Information System (INIS)

    Kanwal, T.

    2011-01-01

    Alumina powder was sintered in MW furnace under vacuum, without vacuum and conventional sintering furnace at different temperatures followed by characterization to observe the effect of sintering mode. Zirconia-Nickel and Alumina-Nickel systems were selected to study the effect of metallic phase interconnectivity on the electrical and thermal behavior in interpenetrating phase composites (IPCs). In order to obtain the homogenous mixture of Alumina and Nick powders, a detailed investigation was performed on the de-agglomeration and prop mixing of powders. Sintering parameters were optimized for the homogenization o Alumina with Nickel in planetary ball mill without sticking of powders with jar.- Homogenization of Zirconia-Nickel and Alumina-Nickel powders was perform using planetary ball mill as well as pestle mortar. Compaction of composites was performed uniaxially and sintering was carried in microwave furnace, tubular furnace with Argon environment and in vacuum sintering furnace. Electrical and thermal behavior of microwave as well as conventionally sintered ZrO/sub 2/-Ni and Al/sub 2/O/sub 3/-Ni IPCs was also observed. Electrical behavior of Composites was characterized b determining the impedance of the composites. To find the percolation limit for both Alumina-Nickel and Zirconia-Nickel composite systems the real part of impedance was used. On the basis of electrical characterization, samples were selected for SEM, BET surface area and CTE analysis. SEM of selected samples was performed t observe the connectivity of Nickel in composites. Finally, the effect of percolation limit on thermal behavior of IPCs was investigated with the help of CTE. (author)

  17. Synergistic stiffening in double-fiber networks

    NARCIS (Netherlands)

    Rombouts, W.H.; Giesbers, M.; Lent, van J.W.M.; Wolf, de F.A.; Gucht, van der J.

    2014-01-01

    Many biological materials are composite structures, interpenetrating networks of different types of fibers. The composite nature of such networks leads to superior mechanical properties, but the origin of this mechanical synergism is still poorly understood. Here we study soft composite networks,

  18. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  19. 2D parallel interpenetration of [M2(bpp)4X4] [M, Fe(II)/Co(II); bpp, 4,4'-trimethylenedipyridine; X, SCN-, SeCN- and N3-] complexes: Pseudohalide-dependent conformation of bpp

    International Nuclear Information System (INIS)

    Manna, Subal Chandra; Jana, Atish Dipankar; Rosair, Georgina M.; Drew, Michael G.B.; Mostafa, Golam; Ray Chaudhuri, Nirmalendu

    2008-01-01

    Three coordination complexes of Co(II)/Fe(II) with 4,4'-trimethylenedipyridine (bpp) and pseudohalides (SCN - , SeCN - and N 3 - ) have been synthesized. The complexes have been characterized by X-ray single crystal structure determination. They are isomorphous having 2D layers in which two independent wavy nets display parallel interwoven structures. Pseudohalide binds metal centers through N terminal and occupies the trans axial positions of the octahedral metal coordination environment. Pseudohalide remains pendant on both sides of the polymeric layer and help the stacking through hydrogen bonding. The conformation of bpp in the interpenetrated nets is observed to be dependent on the choice of pseudohalide. - Graphical abstract: Complexes of [M 2 (bpp) 4 X 4 ] [M, Fe(II)/Co(II); bpp, 4,4'-trimethylenedipyridine; X, SCN - , SeCN - and N3 - ] have been synthesized. The structural analysis reveals undulated 2D network with (4,4) net topology adopting two different conformations of bpp alternately. Two such networks undergo parallel interpenetration. Pseudohalides are observed to help in stacking the interpenetrated nets through hydrogen bonding

  20. Cytotoxicity detection of poly(lactic-co-glycolic acid/tricalcium phosphate

    Directory of Open Access Journals (Sweden)

    Meng SUN

    2011-12-01

    Full Text Available Objective To detecte the cytotoxicity of the PLGA/TCP(poly(lactic-co-glycolic acid/Tricalcium phosphate composite that based on the precedent experiments conducted in Tsinghua University.Methods Compared with the PLGA scaffold material,observated the surface and interior structure of the PLGA/TCP scaffold material by SEM(scanning electron microscope,the surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.And which selected rat L929 cell strain,and detected the cytotoxicity of the PLGA/TCP composite in vitro by MTT method.Results The surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.On rat L929 cell strain,used MTT Method to detect the cytotoxicity of the composite PLGA/ TCP in vitro,the result showed that the cytotoxicity of the PLGA/TCP composite was level I,according to the criterion,it can be considered as non cytotoxic.Conclusion This research has proved that the PLGA/TCP compound scaffold material has a more homogeneous structure,with the vesicular interior and the structure of PLGA/TCP composite is similar to natural bone trabecula,PLGA/TCP is non cytotoxicity,which satisfy the basic requirement of biological material application and provides a good experimental foundation for repairing autologous bone defect in the near future.

  1. Semi-interpenetrating hybrid membranes containing ADOGEN{sup ®} 364 for Cd(II) transport from HCl media

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Tamez, Lucía; Rodríguez de San Miguel, Eduardo; Briones-Guerash, Ulrich; Munguía-Acevedo, Nadia M.; Gyves, Josefina de, E-mail: degyves@unam.mx

    2014-09-15

    Graphical abstract: - Highlights: • Semi-interpenetrating hybrid membranes are used for quantitative cadmium(II) recovery. • Optimization of membrane and solutions compositions is performed. • Membranes present increased stability respect to polymer inclusion membranes. • Models for cadmium (II) extraction and transport are proposed. • Excellent selectivity for Cd(II) over Ni(II), Cu(II) and Pb(II) was achieved. - Abstract: Cd(II) transport from 1 mol dm{sup −3} HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN{sup ®} 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10{sup −2} mol dm{sup −3} ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N′,N′-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H{sub 3}PO{sub 4} was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid–liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN{sup ®} 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g{sup −1}. The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs.

  2. Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kota, Arun K; Cipriano, Bani H; Powell, Dan; Raghavan, Srinivasa R; Bruck, Hugh A

    2007-01-01

    For the first time, an interpenetrating phase polymer nanocomposite formed by the percolation of multiwalled carbon nanotubes (MWCNTs) in polystyrene (PS) has been quantitatively characterized through electrical conductivity measurements and melt rheology. Both sets of measurements, in conjunction with scanning electron microscopy (SEM) images, indicate the presence of a continuous phase of percolated MWCNTs appearing at particle concentrations exceeding 2 vol% MWCNTs in PS. To quantify the amount of this continuous phase present in the PS/MWCNT composite, electrical conductivity data at various MWCNT concentrations, β, are correlated with a proposed degree of percolation, C-bar(β), developed using a conventional power-law formula with and without a percolation threshold. To quantify the properties of the interpenetrating phase polymer nanocomposite, the PS/MWCNT composite is treated as a combination of two phases: a continuous phase consisting of a pseudo-solid-like network of percolated MWCNTs, and a continuous PS phase reinforced by non-interacting MWCNTs. The proposed degree of percolation is used to quantify the distribution of MWCNTs among the phases, and is then used in a rule-of-mixtures formulation for the storage modulus, G'(β, C-bar(β), ω), and the loss modulus, G''(β, C-bar(β), ω), to quantify the properties of the continuous phase consisting of percolated MWCNTs and the continuous PS phase reinforced by non-interacting MWCNTs from the experimental melt rheology data. The properties of the continuous phase of percolated MWCNTs are indicative of a scaffold-like microstructure exhibiting an elastic behavior with a complex modulus of 360 kPa at lower frequencies and viscoplastic behavior with a complex viscosity of 6 kPa s rad -1 at higher frequencies, most likely due to a stick-slip friction mechanism at the interface of the percolated MWCNTs. Additional evidence of this microstructure was obtained via scanning electron microscopy. This research

  3. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jacquelin N.; Posada, James J. [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Rezende, Rodrigo A. [Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil); Sabino, Marcos A., E-mail: msabino@usb.ve [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil)

    2014-04-01

    Thermosensitive interpenetrating gels were prepared by physically blending poly(N-isopropylacrylamide) (PNIPA) as the matrix and the following polysaccharides as interpenetrating phases: chitosan oligosaccharides (identified as QNAD and QNED) and soluble starch (STARCH). The molecular weight of the dispersed phase, the free water/bound water ratio and the thermosensitivity (transition temperature: LCST) of the gels were determined. It was found that these gels are pseudoplastic and that their viscosity depends on the molecular weight of the dispersed phase. LCST transition occurred around 35–37 °C. The morphology of the porosity of the freeze-dried samples was studied by Scanning Electron Microscopy (SEM). An in vitro test of cell hemolysis on blood agar showed that these gels are noncytotoxic. According to the results obtained, these interpenetrating gels show characteristics of an injectable material, and have a transition LCST at body temperature, which reinforces their potential to be used in the surgical field and as scaffolds for tissue engineering. - Highlights: • Physical blends were prepared to obtain thermosensitive gels PNIPA/polysaccharides. • Rheological test allowed verifying the injectability of the gels. • Gels showed a LCST ∼ 37 °C, which makes them interesting for biomedical applications. • Porosity is a function of hydrophobicity/hydrophilicity/molecular weight of phases. • The PNIPA/starch gel showed better morphology as scaffold for tissue engineering.

  4. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    Science.gov (United States)

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  5. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    Science.gov (United States)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  6. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  7. An unprecedented extended architecture constructed from a 2-D interpenetrating cationic coordination framework templated by SiW12O404- anion

    International Nuclear Information System (INIS)

    Wang Xiuli; Lin Hongyan; Bi Yanfeng; Chen Baokuan; Liu Guocheng

    2008-01-01

    A novel inorganic-organic hybrid compound based on polyoxometalates (POMs) and organic ligand formulated as [Cu 2 (bpp) 4 (H 2 O) 2 ](SiW 12 O 40 )∼6H 2 O (1) [bpp=1,3-bis(4-pyridyl)propane], was hydrothermally synthesized and structurally characterized by elemental analysis, single-crystal X-ray diffraction analysis, IR, TG, and cyclic voltammetry. Crystal data for 1: Orthorhombic, Pbcn, a=23.0085(19) A, b=14.6379(12) A, c=23.6226(19) A, V=7956.0(11) A 3 , Z=4, Dc=3.315 g cm -3 , and R(final)=0.0826. X-ray diffraction study reveals that compound 1 was the first interpenetrating network of 2-D metal-organic cationic coordination framework [Cu 2 (bpp) 4 (H 2 O) 2 ] n 4n+ , in which Keggin-type anions SiW 12 O 40 4- has been used as a non-coordinating anionic template. The electrochemical property of 1-bulk modified carbon paste electrode (1-CPE) has been studied, and the results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. - Graphical abstract: Compound [Cu 2 (bpp) 4 (H 2 O) 2 ](SiW 12 O 40 )∼6H 2 O (1) represents the first 2-D interpenetrating cationic metal-organic frameworks (MOFs) templated by Keggin-type anions. These MOF layers are stacked together along the crystallographic c axis exactly to construct large cubic-like channels (with dimensions of 12.3x13.6 A) occupied by SiW 12 O 40 4- clusters

  8. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  9. Biosynthetic mechanism of glycolate in Chromatium, 4

    International Nuclear Information System (INIS)

    Asami, Sumio; Takabe, Tetsuo; Akazawa, Takashi

    1977-01-01

    The metabolic transformation of glycolate to glycine occurring in photosynthesizing cells of Chromatium was investigated by the radioisotopic technique and by amino acid analysis. By analyzing the distribution of radiocarbon upon feeding (1- 14 C) glycolate, (2- 14 C) glyoxylate and (1- 14 C) glycine to bacterial cells, it was demonstrated that glycolate is converted to glycine via glyoxylate, and both glycolate and glycine are excreted extracellularly. Although the formation of serine was barely detected by the above two techniques in both N 2 and O 2 atmospheres, it was found that 14 CO 2 is evolved quite markedly from both (1- 14 C) glycolate and (1- 14 C) glycine fed to the Chromatium cells. Analytical results of transient changes in amino acid compositions under atmospheric changes of N 2 →O 2 and by the addition of exogenous glycolate in N 2 confirm the notion that glycolate is converted to glycine. Acidic amino acids (glutamic acid and aspartic acid) appear to take part in glycine formation as amino donors. The formation of glycine from glycolate in a N 2 atmosphere suggests that an unknown glycolate dehydrogenation reaction may operate in the overall process. (auth.)

  10. Ethylene Glycol, Hazardous Substance in the Household

    Directory of Open Access Journals (Sweden)

    Jiří Patočka

    2010-01-01

    Full Text Available Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment.

  11. Theoretical Investigations of CO 2 and H 2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; McLaughlin, Keith; Tudor, Brant; Nugent, Patrick; Hogan, Adam; Mullen, Ashley; Cioce, Christian R.; Zaworotko, Michael J.; Space, Brian

    2013-01-01

    Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal-organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF6 2

  12. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  13. Unique Chiral Interpenetrating d-f Heterometallic MOFs as Luminescent Sensors.

    Science.gov (United States)

    Wu, Zhi-Lei; Dong, Jie; Ni, Wei-Yan; Zhang, Bo-Wen; Cui, Jian-Zhong; Zhao, Bin

    2015-06-01

    One novel three-dimensional (3D) 3d-4f metal-organic framework (MOF), [TbZn(L)(CO3)2(H2O)]n (1) [HL = 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine], has been successfully synthesized and structurally characterized. Structural analysis shows that compound 1 features a unique chiral interpenetrating 3D framework for the first time. The resulting crystals of 1 are composed of enantiomers 1a (P41) and 1b (P43), as was clearly confirmed by the crystal structure and the corresponding circular dichroism (CD) analyses of eight randomly selected crystals. The investigations on CD spectra based on every single crystal clearly assigned the Cotton effect signals. The powder X-ray diffraction measurement of 1 after being immersed in common solvents reveals that 1 possess excellent solvent stability. Furthermore, luminescent studies imply that 1 displays highly selective luminescent sensing of aldehydes, such as formol, acetaldehyde, and propanal.

  14. Series of chiral interpenetrating 3d-4f heterometallic MOFs: Luminescent sensors and magnetic properties

    Science.gov (United States)

    Zhang, Xiaolei; Chen, Chen; Liu, Xiaoli; Gao, Peng; Hu, Ming

    2017-09-01

    Series of chiral 3d-4f heterometallic MOFs based on a multidentate terpyridyl carboxylic acid ligand have been synthesized under the solvothermal conditions, namely, [LnZnL(CO3)2(H2O)]n (Ln = Eu (1), Gd (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8)) (HL = 4‧-(4-carboxyphenyl)-2,2‧:6‧,2″-terpyridine). Compounds 1-8 were structurally characterized by the elemental analyses, infrared spectra, and single crystal X-ray diffractions. Compounds 1-8 exhibit the chiral interpenetrating 3D frameworks. Interestingly, 1 can serve as the luminescent sensor to detect nitrobenzene molecules with high sensitivity. The investigations on CD spectra of single crystals clearly assigned the Cotton effect, indicating that there exist two chiral enantiomers of 1-8 in the course of crystallization. The magnetic properties of 2 and 7 were exploited, respectively.

  15. Interpenetrated Binary Supramolecular Nanofibers for Sensitive Fluorescence Detection of Six Classes of Explosives.

    Science.gov (United States)

    Xiong, Wei; Zhu, Qijian; Gong, Yanjun; Wang, Chen; Che, Yanke; Zhao, Jincai

    2018-04-03

    In this work, we develop a sequential self-assembly approach to fabricate interpenetrated binary supramolecular nanofibers consisting of carbazole oligomer 1-cobalt(II) (1-Co 2+ ) coordination nanofibers and oligomer 2 nanofibers for the sensitive detection of six classes of explosives. When exposed to peroxide explosives (e.g., H 2 O 2 ), Co 2+ in 1-Co 2+ coordination nanofibers can be reduced to Co + that can transfer an electron to the excited 2 nanofibers and thereby quench their fluorescence. On the other hand, when exposed to the other five classes of explosives, the excited 2 nanofibers can transfer an electron to explosives to quench their fluorescence. On the basis of the distinct fluorescence quenching mechanisms, six classes of explosives can be sensitively detected. Herein, we provide a new strategy to design broad-band fluorescence sensors for a rich identification of threats.

  16. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  17. Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode

    International Nuclear Information System (INIS)

    Cui, Min; Xu, Bing; Hu, Chuangang; Shao, Hui Bo; Qu, Liangti

    2013-01-01

    Direct electrochemistry of glucose oxidase (GOD) on three-dimensional (3D) interpenetrating porous graphene electrodes has been reported, which have been fabricated by one-step electrochemical reduction of graphene oxide (GO) from its aqueous suspension. The electrochemically reduced GO (ERGO) modified electrodes exhibited excellent electron transfer properties for GOD and enhanced the enzyme activity and stability by the assistance of chitosan. The immobilized GOD shows a fast electron transfer with the rate constant (k s ) of 6.05 s −1 . It is worth mentioning that in the air-saturated phosphate buffer solution without any mediator, the resultant modified electrodes exhibited low detection limit of 1.7 μM with wide linear range of 0.02–3.2 mM and high sensitivity and high selectivity for measuring glucose. It would also be extended to various enzymes and bioactive molecules to develop the biosensor or other bio-electrochemical devices

  18. CFA-7: an interpenetrated metal-organic framework of the MFU-4 family.

    Science.gov (United States)

    Schmieder, Phillip; Grzywa, Maciej; Denysenko, Dmytro; Hambach, Manuel; Volkmer, Dirk

    2015-08-07

    The novel interpenetrated metal-organic framework CFA-7 (Coordination Framework Augsburg University-7), [Zn5Cl4(tqpt)3], has been synthesized containing the organic linker {H2-tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquinoxalino[2,3-b]phenazinebistriazole}. Reaction of H2-tqpt and anhydrous ZnCl2 in N,N-dimethylformamide (DMF) yields CFA-7 as pseudo-cubic crystals. CFA-7 serves as precursor for the synthesis of isostructural frameworks with redox-active metal centers, which is demonstrated by postsynthetic metal exchange of Zn(2+) by different M(2+) (M = Co, Ni, Cu) ions. The novel framework is robust upon solvent removal and has been structurally characterized by single-crystal X-ray diffraction, TGA and IR spectroscopy, as well as gas sorption (Ar, CO2 and H2).

  19. High quality junctions by interpenetration of vapor liquid solid grown nanostructures for microchip integration

    Energy Technology Data Exchange (ETDEWEB)

    Jebril, Seid; Kuhlmann, Hanna; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany); Mueller, Sven [Nanowires and Thin Films, II. Physikalisches Institut, Goettingen (Germany); Ronning, Carsten [Institute for Solid State Physics, Universitaet Jena (Germany); Kienle, Lorenz [Synthese und Realstruktur, CAU Kiel (Germany); Duppel, Viola [MPI fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The usability of nanostructures in electrical devices like gas sensors depends critically on the ability to form high quality contacts and junctions. For the fabrication of various nanostructures, vapor-liquid-solid (VLS) growth is a wide spread and very efficient technique. However, forming contacts with the VLS grown structures to utilize them in a device is still tedious, because either the substrate has to be epitaxial to the VLS material or a manual alignment is necessary. Here we demonstrate the contact formation by simply using the ability of individual crystals to interpenetrate each other during the straight forward VLS growth. This allows growing VLS structures directly on two neighboring gold circuit paths of a microchip; bridges over predefined gaps will be formed. Moreover, TEM investigations confirm the high quality of the crystalline junctions that allow demonstrations as UV and hydrogen-sensor. The VLS devices are compared with conventional produced.

  20. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    Directory of Open Access Journals (Sweden)

    Courtney A. Cunningham MD

    2015-09-01

    Full Text Available In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  1. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  2. Preoperative bowel preparation in children: Polyethylene glycol ...

    African Journals Online (AJOL)

    Preoperative bowel preparation in children: Polyethylene glycol versus normal saline. ... In children, (is this standard of care?: this method is mostly followed) this is usually ... Patients and Methods: Thirty patients, admitted in the Department of ...

  3. Inert Reassessment Document for Ethylene Glycol

    Science.gov (United States)

    Ethylene Glycol has many uses and are also used as antifreeze and deicers, as solvents, humectants, as chemical intermediates in the synthesis of other chemicals, and as components of many products such as brake fluids, lubricants, inks,and lacquers.

  4. Intensification of ethylene glycol production process

    DEFF Research Database (Denmark)

    Wisutwattanaa, Apiwit; Frauzem, Rebecca; Suriyapraphadilok, Uthaiporn

    2017-01-01

    This study aims to generate an alternative design for ethylene glycol production process focusing on a reduction of operating cost and emissions. To achieve this, the phenomena-based method for process intensification was applied. 3 stages of process intensification were performed. First, the base......-case design was obtained, resulting in the production of ethylene glycol via two steps: ethylene oxidation synthesis followed by ethylene oxide hydration to produce ethylene glycol. Feasibility of the design was verified and the process was rigorously designed using a computer process simulation program...... solutions. As the result of intensification method, membrane separation was suggested and applied to the design. With the operation of the new equipment, the ethylene glycol production process was improved for 54.51 percent in terms of energy consumption....

  5. Immediate-type hypersensitivity to polyethylene glycols

    DEFF Research Database (Denmark)

    Wenande, E; Garvey, L H

    2016-01-01

    Polyethylene glycols (PEGs) or macrogols are polyether compounds widely used in medical and household products. Although generally considered biologically inert, cases of mild to life-threatening immediate-type PEG hypersensitivity are reported with increasing frequency. Nevertheless, awareness...

  6. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  7. Process optimization in Nd:YAG laser microdrilling of alumina–aluminium interpenetrating phase composite

    Directory of Open Access Journals (Sweden)

    Ranjib Biswas

    2015-07-01

    Full Text Available In laser beam micromachining process, the quality of the drilled hole is of great importance. The quality of the microdrilled hole mainly depends on appropriate selection of process parameters. Predefined diameter of hole with minimum taper is of today's demand. The composite used for microdrilling operation is alumina–aluminium (Al2O3–Al interpenetrating phase composite (IPC, which is widely used in aircraft and space stations. Until date, no experimental study has been done to obtain microdrilled hole of desired diameter. In the present paper three hole qualities such as hole diameter at entry, at exit and hole taper have been optimized individually as well as simultaneously using a central composite design (CCD based on response surface methodology (RSM during pulsed Nd:YAG laser microdrilling operation on alumina–aluminium IPC sheet of 1.14 mm thickness. The analysis of variance (ANOVA test has also been done to identify the process parameters that contributed the most to get desired hole quality.

  8. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    Science.gov (United States)

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    Science.gov (United States)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  10. Biosynthetic mechanism of glycolate in Chromatium, (3)

    International Nuclear Information System (INIS)

    Asami, Sumio; Akazawa, Takashi

    1976-01-01

    The effects of α-hydroxy-2-pyridinemethanesulfonate (α-HPMS), 2,3-epoxypropionate(glycidate), and cyanide on the photosynthetic activity of Chromatium were investigated. The α-HPMS stimulated the photosynthetic CO 2 fixation in the bacterial cells in both N 2 and O 2 environments. The formation and subsequent excretion of both glycolate and glycine in the O 2 atmosphere were markedly enhanced by the HPMS. In contrast to the recent report that glycidate especially inhibits the glycolate formation in tabacco leaf disks, the authors found that it had no influence on the CO 2 fixation by Chromatium in either N 2 or O 2 atmosphere, and that the synthesis and extracellular excretion of glycolate were markedly stimulated by glycidate treatment. The cyanide (0.01 - 1mM) exerted some marked inhibitory effect on the photosynthetic CO 2 fixation in N 2 . In O 2 atmosphere, the photosynthesis was stimulated by the 0.01 mM cyanide, and inhibited by it above this level. Both the incorporation of 14 CO 2 into glycolate and the total synthesis of glycolate in light were also enhanced by the 0.01 mM cyanide, and strongly inhibited above that concentration. (J.P.N.)

  11. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  12. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. III. Research on ethylene glycol and diethylene glycol for carcinogenic effects].

    Science.gov (United States)

    Dunkelberg, H

    1987-03-01

    Ethylene glycol and diethylene glycol were each administered once weekly subcutaneously to groups of 100 female NMRI mice at 3 dosages (30; 10 und 3 mg single dose per mouse). Tricaprylin was used as solvent. The mean total dosage per mouse was 2110.5; 707.0 and 196.2 mg for ethylene glycol and 2029.8; 671.7 and 213.3 mg for diethylene glycol. Neither ethylene glycol nor diethylene glycol induced tumors at the injection site or away from the point of administration.

  13. Monoclonal antibody to DNA containing thymine glycol

    Energy Technology Data Exchange (ETDEWEB)

    Leadon, S A; Hanawalt, P C [Stanford Univ., CA (USA). Dept. of Biological Sciences

    1983-08-01

    Exposure of DNA to ionizing or near ultraviolet radiation modifies thymine to form ring-saturated products. One of the major products formed is 5,6-dihydroxy-5.6-dihydrothymine (thymine glycol). Thymine glycol can also be selectively formed by oxidizing DNA with OsO/sub 4/. We have isolated hybrids that produce monoclonal antibodies against thymine glycol by fusing mouse myeloma cells (P3X63-Ag8-6.5.3) with spleen cells from BALB/c mice immunized with OsO/sub 4/-oxidized poly(dT) complexed with methylated bovine serum albumin. This report describes the characterization of the antibody from one hybridoma using a competitive enzyme-linked immunosorbent assay (ELISA). The antibody reacted with both single- and double-stranded DNA treated with OsO/sub 4/, and with OsO/sub 4/-treated poly(dA-dT) and poly(dT); it did not crossreact with unmodified or apurinic DNA. It also reacted with DNA treated with H/sub 2/O/sub 2/ or with ..gamma..-rays at doses as low as 250 rad. We were able to detect 2 fmoles of thymine glycol in OsO/sub 4/-treated DNA and could quantitate 1 thymine glycol per 220000 thymines. Using the antibody and the ELISA, the formation and removal of thymine glycol was examined in cultures of African green monkey cells irradiated with 25 krad of ..gamma..-rays. The antibody reactive sites produced by irradiation (8.5 per 10/sup 6/ thymines) were efficiently removed from the cellular DNA.

  14. The proton dynamics of ethylene glycol

    CERN Document Server

    Novikov, A G; Sobolev, O V

    2002-01-01

    The results of inelastic neutron scattering experiments on ethylene glycol at T=300 K, T=348 K and T=393 K by using the 'direct-geometry' double time-of-flight neutron-scattering spectrometer DIN-2PI (Frank Laboratory of Neutron Physics, JINR, Dubna) are presented. The quasi-elastic and inelastic components of the neutron scattering have been considered. The diffusion characteristics and generalized frequency distributions for protons of ethylene glycol molecules were obtained from the neutron-scattering spectra. (orig.)

  15. Stabilization of Polyethylene Glycol in Archaeological Wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig

    Projektet har fokuseret på polythylen glycol (PEG) stabilitet og nedbrydning i træ fra konserverede skibsvrag som Vasa (Stockholm) og Skuldelev skibene. En række avancerede analyseteknikker er anvendt til at undersøge indtrængningsdybden for forskellige molekylstørrelser PEG i ikke-nedbrudt træ f...

  16. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...

  17. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes.

    Science.gov (United States)

    Do, Yu Seong; Lee, Won Hee; Seong, Jong Geun; Kim, Ju Sung; Wang, Ho Hyun; Doherty, Cara M; Hill, Anita J; Lee, Young Moo

    2016-11-15

    Highly permeable, thermally rearranged polymer membranes based on bismaleimide derivatives that exhibit excellent CO 2 permeability up to 5440 Barrer with a high BET surface area (1130 m 2 g -1 ) are reported for the first time. In addition, the membranes can be easily used to form semi-interpenetrating networks with other polymers endowing them with superior gas transport properties.

  18. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  19. Theoretical investigations of CO₂ and CH₄ sorption in an interpenetrated diamondoid metal-organic material.

    KAUST Repository

    Pham, Tony; Forrest, Katherine A; Tudor, Brant; Elsaidi, Sameh K; Mohamed, Mona H; McLaughlin, Keith; Cioce, Christian R; Zaworotko, Michael J; Space, Brian

    2014-01-01

    Grand canonical Monte Carlo (GCMC) simulations of CO2 and CH4 sorption and separation were performed in dia-7i-1-Co, a metal-organic material (MOM) consisting of a 7-fold interpenetrated net of Co(2+) ions coordinated to 4-(2-(4-pyridyl)ethenyl)benzoate linkers. This MOM shows high affinity toward CH4 at low loading due to the presence of narrow, close fitting, one-dimensional hydrophobic channels-this makes the MOM relevant for applications in low-pressure methane storage. The calculated CO2 and CH4 sorption isotherms and isosteric heat of adsorption, Qst, values in dia-7i-1-Co are in good agreement with the corresponding experimental results for all state points considered. The experimental initial Qst value for CH4 in dia-7i-1-Co is currently the highest of reported MOM materials, and this was further validated by the simulations performed herein. The simulations predict relatively constant Qst values for CO2 and CH4 sorption across all loadings in dia-7i-1-Co, consistent with the one type of binding site identified for the respective sorbate molecules in this MOM. Examination of the three-dimensional histogram showing the sites of CO2 and CH4 sorption in dia-7i-1-Co confirmed this finding. Inspection of the modeled structure revealed that the sorbate molecules form a strong interaction with the organic linkers within the constricted hydrophobic channels. Ideal adsorbed solution theory (IAST) calculations and GCMC binary mixture simulations predict that the selectivity of CO2 over CH4 in dia-7i-1-Co is quite low, which is a direct consequence of the MOM's high affinity toward both CO2 and CH4 as well as the nonspecific mechanism shown here. This study provides theoretical insights into the effects of pore size on CO2 and CH4 sorption in porous MOMs and its effect upon selectivity, including postulating design strategies to distinguish between sorbates of similar size and hydrophobicity.

  20. Theoretical investigations of CO₂ and CH₄ sorption in an interpenetrated diamondoid metal-organic material.

    KAUST Repository

    Pham, Tony

    2014-05-29

    Grand canonical Monte Carlo (GCMC) simulations of CO2 and CH4 sorption and separation were performed in dia-7i-1-Co, a metal-organic material (MOM) consisting of a 7-fold interpenetrated net of Co(2+) ions coordinated to 4-(2-(4-pyridyl)ethenyl)benzoate linkers. This MOM shows high affinity toward CH4 at low loading due to the presence of narrow, close fitting, one-dimensional hydrophobic channels-this makes the MOM relevant for applications in low-pressure methane storage. The calculated CO2 and CH4 sorption isotherms and isosteric heat of adsorption, Qst, values in dia-7i-1-Co are in good agreement with the corresponding experimental results for all state points considered. The experimental initial Qst value for CH4 in dia-7i-1-Co is currently the highest of reported MOM materials, and this was further validated by the simulations performed herein. The simulations predict relatively constant Qst values for CO2 and CH4 sorption across all loadings in dia-7i-1-Co, consistent with the one type of binding site identified for the respective sorbate molecules in this MOM. Examination of the three-dimensional histogram showing the sites of CO2 and CH4 sorption in dia-7i-1-Co confirmed this finding. Inspection of the modeled structure revealed that the sorbate molecules form a strong interaction with the organic linkers within the constricted hydrophobic channels. Ideal adsorbed solution theory (IAST) calculations and GCMC binary mixture simulations predict that the selectivity of CO2 over CH4 in dia-7i-1-Co is quite low, which is a direct consequence of the MOM\\'s high affinity toward both CO2 and CH4 as well as the nonspecific mechanism shown here. This study provides theoretical insights into the effects of pore size on CO2 and CH4 sorption in porous MOMs and its effect upon selectivity, including postulating design strategies to distinguish between sorbates of similar size and hydrophobicity.

  1. Enthalpy of phase transition and prediction of phase Equilibria in systems of glycols and glycol ethers

    OpenAIRE

    Esina, Zoya; Miroshnikov, Aleksandr; Korchuganova, Margarita

    2014-01-01

    The PCEAS model was used to study the liquid-solid and liquid-vapor phase transitions at constant pressure in systems containing glycols and glycol ethers. This method is based on minimizing the excess Gibbs energy over the solvation parameter, which takes into account the processes of association of molecules in various phases. To compute the diagrams, the data on enthalpy and phase transition temperatures of pure components are required, while the information about the interactions in the b...

  2. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  3. A compact 100 kV high voltage glycol capacitor.

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Feng, Jiahuai

    2015-01-01

    A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.

  4. Sync-measurement experimental study of (fluoroethane + dimethylether tetraethylene glycol), (fluoroethane + dimethylether triethylene glycol) and (fluoroethane + dimethylether diethylene glycol) systems

    International Nuclear Information System (INIS)

    Feng, Lejun; Zheng, Danxing; Huang, Weijia

    2016-01-01

    Highlights: • Three new working pairs are proposed for absorption power cycle. • Sync-measured the solubility and absorption enthalpy data at 303.15 K. • Thermokinetic experiment is consistent with the previous thermodynamics study. - Abstract: In this work, three new working pairs, {fluoroethane (HFC161) + dimethylether tetraethylene glycol (DMETEG)}, {HFC161 + dimethylether triethylene glycol (DMETrEG)} and {HFC161 + dimethylether diethylene glycol (DMEDEG)}, are proposed for absorption power cycle. The working pairs are assessed from both thermodynamics and thermokinetic perspective. By combining the microcalorimetry and isothermal synthesis methods, an experimental apparatus was developed to simultaneously obtain the microcalorimetry and vapour–liquid equilibrium data. Then, the solubility and absorption enthalpy data of the three new working pairs were sync-measured at 303.15 K by this sync-measurement experimental apparatus. The thermodynamics data indicated that the affinities of the three working pairs increased from strong to weak in the following order: HFC161 + DMETEG > HFC161 + DMETrEG > HFC161 + DMEDEG. Then the thermokinetic parameters of the absorption rate constant and activation energy were analysed based on the thermokinetic experiment at (303.15, 313.15, 323.15, and 333.15) K. As a result, the affinities of the three working pairs are consistent with the previous thermodynamics study. In addition, the intermolecular interactions within the three systems were analysed according to the intermolecular hydrogen bonds; overall, the (HFC161 + DMETEG) system is considered to be the potential option for applications.

  5. Penetration enhancer: monoethylether of diethylene glycol

    International Nuclear Information System (INIS)

    Koprda, V.; Kassai, Z.; Bohacik, L.; Bezek, S.; Hadcrafft, J.; Falson-Rieg, F.

    1999-01-01

    The monoethylether of diethylene glycol (Transcutol), an excellent solubilising agent, has been suggested as a penetration enhancer compatible with trans-dermal drug delivery systems. Using the abdominal skin of 5 day old rats and Franz-type diffusion cells the following topics were studied in this contribution: (1) Flux of Transcutol, labelled with [Ethyl- 14 C]-ether, across an intact skin model, (2) Changes in properties of the skin barrier after stripping with adhesive tape, and (3) Changes in flux of Transcutol when mixed with different co-solvents. The flux from pure solvent in donor compartment reached around 50 μg cm -2 hr -1 across the intact skin horny layer, whilst after 12 strips the flux increased about 200 times. In the presence of propylene glycol dipelargonate, the flux over 2 mg cm -2 hr -1 across non stripped skin was achieved. (authors)

  6. Characterization of tetraethylene glycol passivated iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  7. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  8. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-01-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe 3 O 4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe 3 O 4 ) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g −1 and 131 emu g −1 , respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  9. Mathematical and numerical analysis of a multi-velocity multi-fluid model for interpenetration of miscible fluids; Analyse mathematique et numerique d'un modele multifluide multivitesse pour l'interpenetration de fluides miscibles

    Energy Technology Data Exchange (ETDEWEB)

    Enaux, C

    2007-11-15

    The simulation of indirect laser implosion requires an accurate knowledge of the inter-penetration of the laser target materials turned into plasma. This work is devoted to the study of a multi-velocity multi-fluid model recently proposed by Scannapieco and Cheng (SC) to describe the inter-penetration of miscible fluids. In this document, we begin with presenting the SC model in the context of miscible fluids flow modelling. Afterwards, the mathematical analysis of the model is carried out (study of the hyperbolicity, existence of a strictly convex mathematical entropy, asymptotic analysis and diffusion limit). As a conclusion the problem is well set. Then, we focus on the problem of numerical resolution of systems of conservation laws with a relaxation source term, because SC model belongs to this class. The main difficulty of this task is to capture on a coarse grid the asymptotic behaviour of the system when the source term is stiff. The main contribution of this work lies in the proposition of a new technique, allowing us to construct a Lagrangian numerical flux taking into account the presence of the source term. This technique is applied first on the model-problem of a one-dimensional Euler system with friction, and then on the multi-fluid SC model. In both cases, we prove that the new scheme is asymptotic-preserving and entropic under a CFL-like condition. The two-dimensional extension of the scheme is done by using a standard alternate directions method. Some numerical results highlight the contribution of the new flux, compared with a standard Lagrange plus Remap scheme where the source term is processed using an operator splitting. (author)

  10. Mathematical and numerical analysis of a multi-velocity multi-fluid model for interpenetration of miscible fluids

    International Nuclear Information System (INIS)

    Enaux, C.

    2007-11-01

    The simulation of indirect laser implosion requires an accurate knowledge of the inter-penetration of the laser target materials turned into plasma. This work is devoted to the study of a multi-velocity multi-fluid model recently proposed by Scannapieco and Cheng (SC) to describe the inter-penetration of miscible fluids. In this document, we begin with presenting the SC model in the context of miscible fluids flow modelling. Afterwards, the mathematical analysis of the model is carried out (study of the hyperbolicity, existence of a strictly convex mathematical entropy, asymptotic analysis and diffusion limit). As a conclusion the problem is well set. Then, we focus on the problem of numerical resolution of systems of conservation laws with a relaxation source term, because SC model belongs to this class. The main difficulty of this task is to capture on a coarse grid the asymptotic behaviour of the system when the source term is stiff. The main contribution of this work lies in the proposition of a new technique, allowing us to construct a Lagrangian numerical flux taking into account the presence of the source term. This technique is applied first on the model-problem of a one-dimensional Euler system with friction, and then on the multi-fluid SC model. In both cases, we prove that the new scheme is asymptotic-preserving and entropic under a CFL-like condition. The two-dimensional extension of the scheme is done by using a standard alternate directions method. Some numerical results highlight the contribution of the new flux, compared with a standard Lagrange plus Remap scheme where the source term is processed using an operator splitting. (author)

  11. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  12. Interpenetrating polymer network hydrogels based on poly(2-hydroxyethyl methacrylate): morphology effects on formation, swelling, optical, and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Dušková-Smrčková, Miroslava; Sadakbayeva, Zhansaya; Steinhart, Miloš; Šturcová, Adriana; Pfleger, Jiří; Dušek, Karel

    2017-01-01

    Roč. 254, 20 August (2017), s. 40 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : IPN * poly(2-hydroxyethyl methacrylate) * hydrogel Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  13. Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels : mechanical swelling and controlled drug release properties

    Science.gov (United States)

    Ahmet M. Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2010-01-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the...

  14. Microwave-assisted synthesis of sucrose polyurethanes and their semi-interpenetrating polymer networks with polycaprolactane and soybean oil

    Science.gov (United States)

    Because of the current interest in sustainability, environmental stewardship, and green chemistry, there has been a lot of interest in using agrobased raw materials for the design of polymeric materials. One of the promising biorenewable materials is sucrose, which is inexpensive and widely availabl...

  15. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  16. Dual Salt- and Thermo-Responsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures.

    Science.gov (United States)

    Xiao, Shengwei; Zhang, Mingzhen; He, Xiaomin; Huang, Lei; Zhang, Yanxian; Ren, Baiping; Zhong, Mingqiang; Chang, Yung; Yang, Jintao; Zheng, Jie

    2018-06-07

    Development of smart soft actuators is highly important for fundamental research and industrial applications, but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermos-responsive poly(N-isopropyl acrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonat) (polyVBIPS) layer. Both polyNIPAM and polyVBIPs layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative, swelling-shrinking properties from both layers. Based on their fast, reversible, bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two or multi-step methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow to program different stimulus for soft and intelligent materials applications.

  17. Bipallidal haemorrhage after ethylene glycol intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M. [CHU Pointe a Pitre, Service de Neurologie, Lille (France); Sengler, C. [CHU Pointe a Pitre, Laboratoire de Pharmaco-Toxicologie, Guadeloupe (France); Benabdallah, E. [CHU Pointe a Pitre, Service de Radiologie, Guadeloupe (France); Colombani, S. [Centre d' Imagerie medicale, Martinique (France)

    2005-02-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  18. Bipallidal haemorrhage after ethylene glycol intoxication

    International Nuclear Information System (INIS)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M.; Sengler, C.; Benabdallah, E.; Colombani, S.

    2005-01-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  19. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  20. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bekkali, Noor L. H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E. J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G. P.; Voropaiev, Maksym; Benninga, Marc A.

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes

  1. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  2. Experimental study and phase equilibrium modeling of systems containing acid gas and glycol

    DEFF Research Database (Denmark)

    Afzal, Waheed; Breil, Martin P.; Tsivintzelis, Ioannis

    2012-01-01

    In this work, we study phase equilibria of systems containing acid gases and glycols. The acid gases include carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon dioxide (CO2) while glycols include monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG). A brief lit...

  3. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  4. 21 CFR 172.712 - 1,3-Butylene glycol.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.712 1,3-Butylene glycol. The food additive 1,3-butylene glycol (CAS...

  5. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  6. Application of simplified PC-SAFT to glycol ethers

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2...

  7. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  8. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma. Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV) spectrophotometry was used ...

  9. Vapor-phase deposition of regioregular and oriented poly(3-hexylthiophene) structures and novel nanostructured composites of interpenetrating poly(3-hexylthiophene) and polyaniline exhibiting full-color wavelength (400-1000 nm) photoluminescence

    Science.gov (United States)

    Biswas, A.; Bayer, I. S.; Karulkar, P. C.; Tripathi, A.; Avasthi, D. K.

    2007-10-01

    A promising solvent-free technique of electron-beam-assisted vapor-phase codeposition method is presented which allows uniform blending of different conjugated and nonconjugated polymers at the nanoscale. The technique allows direct incorporation of regioregular poly(3-hexylthiophene) (P3HT) polymer with different structural orientations into conventional and semiconducting polymers without fractionation or degradation of P3HT while maintaining the nanoscale morphology of deposited organic films. The results of fabricated novel nanostructured organic composites (˜100-200nm) comprising regioregular and oriented P3HT and different conjugated and nonconjugated polymers including selective assembly of P3HT nanonodules into a copolymer template are presented. We show a typical example of blending of P3HT and polyaniline (PANI) that formed a unique nanoscale morphology comprising interpenetrating networks of different shapes and sizes of nanospherulites (˜100nm) of P3HT in PANI. The so fabricated nanocomposites (˜200nm) exhibited remarkable broadband photoluminescence features covering the entire blue, green, and red wavelength regions between 400 and 1000nm. Such organic nanocomposites might be useful for flexible full-color screen flat panel displays and organic white-light solid-state lighting applications.

  10. Polyethylene glycol: a game-changer laxative for children.

    Science.gov (United States)

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol.

  11. Role of polyethylene glycol in childhood constipation.

    Science.gov (United States)

    Phatak, Uma Padhye; Pashankar, Dinesh S

    2014-09-01

    Constipation is a common and chronic problem in children worldwide. Long-term use of laxatives is necessary for successful treatment of chronic constipation. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol (PEG). Recent studies report the efficacy and safety of PEG for the long-term treatment of constipation in children. Because of its excellent patient acceptance, PEG is being used widely in children for constipation. In this commentary, we review the recently published pediatric literature on the efficacy, safety, and patient acceptance of PEG. We also assess the role of PEG in childhood constipation by comparing it with other laxatives in terms of efficacy, safety, patient acceptance, and cost. © The Author(s) 2013.

  12. Millimetre Wave Rotational Spectrum of Glycolic Acid

    Science.gov (United States)

    Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.

    2016-01-01

    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.

  13. IR Spectroscopy of Ethylene Glycol Solutions of Dimethylsulfoxide

    Science.gov (United States)

    Kononova, E. G.; Rodnikova, M. N.; Solonina, I. A.; Sirotkin, D. A.

    2018-07-01

    Features of ethylene glycol (EG) solutions of dimethylsulfoxide (DMSO) with low and moderate concentrations (from 2 to 50 mol % of DMSO) are studied by IR spectroscopy on a Bruker Tensor 37 FT-IR spectrometer in the wavenumber range of 400 to 4000 cm-1. The main monitored bands are the S=O stretching vibration band of DMSO (1057 cm-1) and the C-O (1086 and 1041 cm-1) and O-H (3350 cm-1) stretching vibration bands of EG. The obtained data show complex DMSO · 2EG to be present in all solutions with the studied concentrations due to formation of H-bonds between the S=O group of DMSO and the OH group of EG. In the concentration range of 6 to 25 mol % DMSO, the OH stretching vibration of EG is found to be broadened (by up to 70 cm-1), suggesting the strengthening of hydrogen bonds in the spatial network of the system due to the solvophobic effect of DMSO molecules and the formation of DMSO · 2EG. Starting from 25 mol % DMSO, narrowing of the OH stretching vibration is noted, and the bands of free DMSO appear along with the DMSO · 2EG complex, suggesting microseparation in the investigated system. At 50 mol % DMSO, the amounts of free and bound species in the system became comparable.

  14. Validation of an analytical methodology for the determination of diethylene glycol and ethylene glycol as impurities in glycerin and propylene glycol

    International Nuclear Information System (INIS)

    Rosabal Cordovi, Ursula M; Fonseca Gola, Antonio; Cordovi Velazquez, Juan M; Morales Torres, Galina

    2014-01-01

    A methodology for the quantification of diethylene glycol (DEG) and the ethylene glycol (EG) impurities by gas Chromatography with flame ionization detector in glycerol and propylene glycol samples was developed and validated. It was selected dimethyl sulphoxide as internal standard. It was used hydrogen as carrier and auxiliary gas. The temperature program was 100°C holding one minute, then ramp to rate of 7.5°C/ min up to 200 °C. A Restek 624 column was used, with a flow in column of 4.20 ml/ min. Temperatures of the injector and detector were set at 220°C and 250 °C, respectively. The linearity was determined at 25-75 ?μg/ml as interval of concentrations for both impurities with correlation coefficients larger than 0.999. Detection Limits were settled down in 0.0350 μ?g/ml to the diethylene glycol, and 0.0572 μg/ml to ethylene glycol, while the quantitation limits were 0.1160 μ?g/ml to DEG and 0.1897 μg/ml to the EG. The recoveries were 99.98 % and 100.00 %, respectively; with RSD % 1.18 % to DEG, and 0.60 % to the EG. The obtained results demonstrated that the methodology was linear, accurate, robustness, sensitive and selective to be used in the determination of both impurities in the quality control of the glycerol and propylene glycol as raw materials

  15. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    OpenAIRE

    Bekkali, Noor L.H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E.J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G.P.; Voropaiev, Maksym; Benninga, Marc A.

    2017-01-01

    ABSTRACT Objective: The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). Methods: In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of

  16. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653 ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  17. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    Science.gov (United States)

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Preparation and Separation of Telechelic Carborane-Containing Poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Uchman, M.; Lepšík, Martin; Srnec, Martin; Zedník, J.; Kozlík, P.; Kalíková, K.

    2013-01-01

    Roč. 78, č. 6 (2013), s. 528-535 ISSN 2192-6506 R&D Projects: GA AV ČR IAAX00320901 Grant - others:GA ČR(CZ) GPP208/12/P236 Institutional support: RVO:61388963 Keywords : carboranes * click chemistry * poly(ethylene glycol) * quantum chemistry * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013

  19. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  20. Microstructure, mechanical property and corrosion behavior of interpenetrating (HA + β-TCP)/MgCa composite fabricated by suction casting

    International Nuclear Information System (INIS)

    Wang, X.; Dong, L.H.; Li, J.T.; Li, X.L.; Ma, X.L.; Zheng, Y.F.

    2013-01-01

    The novel interpenetrating (HA + β-TCP)/MgCa composites were fabricated by infiltrating MgCa alloy into porous HA + β-TCP using suction casting technique. The microstructure, mechanical properties and corrosion behaviors of the composites have been evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion tests. It was shown that the composites had compact structure and the interfacial bonding between MgCa alloy and HA + β-TCP scaffolds was very well. The ultimate compressive strength of the composites was about 500–1000 fold higher than that of the original porous scaffolds, and it still retained quarter-half of the strength of the bulk MgCa alloy. The electrochemical and immersion tests indicated that the corrosion resistance of the composites was better than that of the MgCa matrix alloy, and the corrosion products of the composite surface were mainly Mg(OH) 2 , HA and Ca 3 (PO 4 ) 2 . Meanwhile, the mechanical and corrosive properties of the (HA + β-TCP)/MgCa composites were adjustable by the choice of HA content. - Highlights: • The composites were fabricated by infiltrating MgCa alloy into porous HA + β-TCP. • The microstructure, mechanical and corrosion properties were investigated. • It showed composites had compact structures and good interfacial bonding. • The mechanical and corrosive properties can be adjustable by the HA content. • The corrosion mechanism of the composite has been explained

  1. Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts

    Science.gov (United States)

    Dhavale, Vishal M.; Gaikwad, Sachin S.; George, Leena; Devi, R. Nandini; Kurungot, Sreekumar

    2014-10-01

    Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N, and C, the overall integrity of the structure and its intra-molecular connectivity within the framework help in achieving better oxygen evolution characteristics at a significantly reduced overpotential. The engineered Ni-NGr nanocage displays a substantially low overpotential of ~290 mV at a practical current density of 20 mA cm-2 in 0.1 M KOH. In comparison, NGr and Ni-particles as separate entities give overpotentials of ~570 and ~370 mV under similar conditions. Moreover, the long term stability of Ni-NGr was investigated by anodic potential cycling for 500 cycles and an 8.5% increment in the overpotential at 20 mA cm-2 was observed. Additionally, a chronoamperometric test was performed for 15 h at 20 mA cm-2, which highlights the better sustainability of Ni-NGr under the actual operating conditions. Finally, the quantitative estimation of evolved oxygen was monitored by gas chromatography and was found to be 70 mmol h-1 g-1 of oxygen, which is constant in the second cycle as well.Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N

  2. Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate.

    Science.gov (United States)

    Nakayama, Y; Matsuda, T

    1999-01-01

    This article presents a novel photochemically driven surgical tissue adhesive technology using photoreactive gelatins and a water-soluble difunctional macromer (poly(ethylene glycol) diacrylate: PEGDA).The gelatins were partially derivatized with photoreactive groups, such as ultraviolet light (UV)-reactive benzophenone and visible light-reactive xanthene dye (e.g., fluorescein sodium salt, eosin Y, and rose bengal). A series of the prepared photocurable tissue adhesive glues, consisting of the photoreactive gelatin, PEGDA, and a saline solution with or without ascorbic acid as a reducing agent, were viscous solutions under warming, and their effectiveness was evaluated as hemostasis- and anastomosis-aid in cardiovascular surgery. Regardless of the type of photoreactive groups, the irradiation of the photocurable tissue adhesive glues by UV or visible light within 1 min produced water-swollen gels, which had a high adhesive strength to wet collagen film. These were due to the synergistic action of photoreactive group-initiated photo-cross-linking and photograft polymerization. An increase in the irradiation time resulted in increased gel yield and reduced water swellability. A decrease in the molecular weight of PEGDA and an increase in concentration of both gelatin and PEGDA resulted in reduced water swellability and increased tensile and burst strengths of the resultant gels. In rats whose livers were injured with a trephine in laparotomy, the bleeding spots were coated with the photocurable adhesive glue and irradiated through an optical fiber. The coated solution was immediately converted to a swollen gel. The gel was tightly adhered to the liver tissue presumably by interpenetration, and concomitantly hemostasis was completed. The anastomosis treatment with the photocurable glue in the canine abdominal or thoracic aortas incised with a knife resulted in little bleeding under pulsatile flow after declamping. Histological examination showed that the glues

  3. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  4. Magnetic fluids stabilized by polypropylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.V., E-mail: lav@icmm.r [Institute of Continuous Media Mechanics, UB RAS, Academic Korolev Str. 1, Perm 614013 (Russian Federation); Lysenko, S.N. [Institute of Technical Chemistry, UB RAS, Academic Korolev Str. 3, Perm 614013 (Russian Federation)

    2011-05-15

    A series of samples of magnetic fluids stabilized with low-molecular weight polypropylene glycol (PPG) of different molecular masses were synthesized. The use of PPG allowed the maximum extension of the carrier fluid range to include ethyl- and butyl-acetate, ethanol, butanol, acetone, carbon tetrachloride, toluene, kerosene and PPG itself. Magnetic and rheological properties of the samples were investigated. Based on the results of investigation it has been concluded that magnetic nanoparticles are covered by a monolayer of surfactant molecules. At low temperatures the propanol-based sample preserves fluidity up to -115 {sup o}C. Measurement of critical temperatures of other base fluids showed that alcohols are the best carrier medium. Coagulation stability of the ethanol-based ferrocolloid with respect to water and kerosene was explored. It has been found that kerosene, whose fraction by weight exceeds 22.5%, does not mix with the colloid. This effect can be used to produce magneto-controllable extractors of ethyl alcohol. Under the action of water the colloid coagulates, which allows one to substitute the carrier fluid and to separate the colloid into fractions. - Research highlights: PPG stabilizes the magnetic particles in the polar and non-polar media. The minimum operating temperature reaches -115 {sup o}C. Alcohols are the best environment for PPG-stabilized particles. PPG magnetic fluids can be used as magnetic extractors of alcohol. PPG MF can be divided into fractions by partial coagulation with water.

  5. Storage stability of biodegradable polyethylene glycol microspheres

    Science.gov (United States)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  6. Selected polyethylene glycols as DOP substitutes. Addendum 1

    International Nuclear Information System (INIS)

    Gerber, B.V.

    1981-01-01

    The recommendation is made that Polyethylene glycol (PEG) 400 be considered as a substitute for DOP in aerosol generators producing a polydisperse distribution for testing the integrity of filters and for testing respirator fit. Further, the recommendation is made that pentaethylene glycol (PTAEG) and possibly hexaethylene glycol be considered as a substitute for DOP in aerosol generators thermally producing monodisperse aerosol for quality acceptance tests according tu US federal specifications and standards. The toxicology data base available on the polyethylene glycol family of chemical compounds is discussed and the conclusion is drawn that the probability of approval and acceptance as a non-hazardous substance in the filter and filter media test role is high. Data and analysis supporting PTAEG performance equivalent to DOP in the filter and filter media test role are given or referenced. Cost and availability of the substitute materials is discussed. Conclusions based on the present data and information are given and recommendations for further work are made

  7. The effectiveness of polyethylene glycol (PEG) and polyvinyl ...

    African Journals Online (AJOL)

    mahlos

    2012-05-29

    May 29, 2012 ... Key words: Acetone, tannin, polyethylene glycol (PEG), polyvinyl polypyrrolidone (PVPP). ... hydrolysable tannins may occur in the same plant. ..... Rev. Food Sci. Nutr., 38: 421-464. Cornell. (2000). Tannins: Chemical analysis.

  8. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P encopresis.

  9. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); and others

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  10. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  11. Ethylene- and diethylene glycol metabolism, toxicity and treatment

    International Nuclear Information System (INIS)

    Wiener, H.L.

    1986-01-01

    Each year numerous men and domestic animals suffer from ethylene glycol (EG) poisoning. The present approach to treating EG poisoning by administering ethanol is aimed at preventing the oxidation of EG to glycolate, the toxic mediator. When treatment is delayed or the amount of EG consumed is large, successful treatment is rarely obtained, since the concentration of glycolate becomes excessive. In an effort to develop a better approach to treating EG poisoning, studies were conducted to determine the feasibility of using pig liver glycolic acid oxidase (GAO) as a means of enzyme therapy in male rats receiving EG. Pig liver GAO was active in vitro in rat blood, oxidizing glycolate to glyoxylate. When injected intravenously into male rats, GAO had an approximate half-life of twenty five minutes and its elimination followed first order kinetics. Despite activity in vitro, native pig liver GAO did not display detectable activity in vivo. Diethylene glycol (DEG) when ingested also results in toxicity. The metabolism and toxicity of DEG was investigated in male Wistar rats using [ 14 C]-DEG synthesized from [U- 14 C]-EG and ethylene oxide and purified by high performance liquid chromatography. (2-Hydroxyethoxy)acetic acid (HEAA) was identified as the major product of DEG oxidation. These results suggest that the treatment of DEG poisoning should follow the same regimen as treatment for EG poisoning

  12. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  13. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  14. Overnight efficacy of polyethylene glycol laxative.

    Science.gov (United States)

    Di Palma, Jack A; Smith, Julie R; Cleveland, Mark vB

    2002-07-01

    Clinical studies in constipated adult patients have shown that a 17- or 34-g daily dose of polyethylene glycol (PEG) 3350 (MiraLax) is safe and effective for the treatment of constipation, with the best efficacy seen in wk 2 of treatment. The purpose of this study was to determine an optimal dose of PEG to provide satisfactory relief of constipation within 24 h. A total of 24 adult study subjects who met Rome II criteria for constipation were randomized in a double-blind, parallel pilot study to receive a single dose of placebo or PEG laxative at doses of 51, 68, or 85 g in 500 ml of flavored water. Over a 72-h period, subjects rated bowel movements (BM), completeness of evacuation, and satisfaction. The 68-g dose seemed to be most satisfactory. Five of six subjects had a BM within 24 h. The time to first BM was 14.8 h for 68 g versus 27.3 h for placebo (p = NS). The time to second BM was 19.2 h versus 47.2 h for 68 g and placebo, respectively (p = 0.003). Of the subjects receiving 68 g of PEG, 50% and 100% reported complete evacuation for the first and second BM, respectively. The average number of BMs in 24 h for placebo, 51 g, 68 g, and 84 g were 0.5, 2.2, 2.2, and 4.2, respectively (p = 0.004). There were no adverse reactions, and no patient reported incontinence or complained of cramps or diarrhea at any dose. There were no changes in measured electrolytes, calcium, glucose, BUN, creatinine, or serum osmolality. A 68-g dose of PEG laxative seems to provide safe and effective relief in constipated adults within a 24-h period.

  15. Mutagenicity testing of diethylene glycol monobutyl ether.

    Science.gov (United States)

    Thompson, E D; Coppinger, W J; Valencia, R; Iavicoli, J

    1984-01-01

    The mutagenic potential of diethylene glycol monobutyl ether (diEGBE) was examined with a Tier I battery of in vitro assays followed by a Tier II in vivo Drosophila sex-linked recessive lethal assay. The in vitro battery consisted of: the Salmonella mutagenicity test, the L5178Y mouse lymphoma test, a cytogenetics assay using Chinese hamster ovary cells and the unscheduled DNA synthesis (UDS) assay in rat hepatocytes. Results of the Salmonella mutagenicity test, the cytogenetics test, and the rat hepatocyte assay were negative at concentrations up to 20 microL/plate, 7.92 microL/mL, and 4.4 microL/mL, respectively. Toxicity was clearly demonstrated at all high doses. A weak, but dose-related increase in the mutation frequency (4-fold increase over the solvent control at 5.6 microL/mL with 12% survival) was obtained in the L5178Y lymphoma test in the absence of metabolic activation. Results of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay results were assessed by performing the Tier II sex-linked recessive lethal assay in Drosophila in which the target tissue is maturing germinal cells. Both feeding (11,000 ppm for 3 days) and injection (0.3 microL of approximately 14,000 ppm solution) routes of administration were employed in the Drosophila assay. Approximately 11,000 individual crosses with an equal number of negative controls were performed for each route of administration. diEGBE produced no increase in recessive lethals under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6389113

  16. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.

    Science.gov (United States)

    Krishna, Lekshmi; Jayabalan, Muthu

    2009-12-01

    Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.

  17. Theoretical Investigations of CO 2 and H 2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

    KAUST Repository

    Pham, Tony

    2013-05-16

    Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal-organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF6 2- ions. This class of water stable MOMs shows great promise in practical gas sorption/separation with especially high selectivity for CO2 and variable selectivity for other energy related gases. Simulated CO2 sorption isotherms and isosteric heats of adsorption, Qst, at ambient temperatures were in excellent agreement with the experimental measurements at all pressures considered. Further, it was observed that the Qst for CO2 increases as a function of uptake in [Cu(dpa)2SiF6-i]. This suggests that nascently sorbed CO2 molecules within a channel contribute to a more energetically favorable site for additional CO2 molecules, i.e., in stark contrast to typical behavior, sorbate intermolecular interactions enhance sorption energetics with increased loading. The simulated structure at CO2 saturation shows a loading with tight packing of 8 CO2 molecules per unit cell. The CO2 molecules can be seen alternating between a vertical and horizontal alignment within a channel, with each CO2 molecule coordinating to an equatorial fluorine MOM atom. Calculated H 2 sorption isotherms and Qst values were also in good agreement with the experimental measurements in [Cu(dpa)2SiF 6-i]. H2 saturation corresponds to 10 H2 molecules per unit cell for the studied structure. Moreover, there were two observed binding sites for hydrogen sorption in [Cu(dpa)2SiF 6-i]. Simulations of a 30:70 CO2/H2 mixture, typical of syngas, in [Cu(dpa)2SiF6-i] showed that the MOM exhibited a high uptake and selectivity for CO2. In addition, it was observed that the presence of H2O had a negligible effect on the CO2 uptake and selectivity in [Cu(dpa)2SiF6-i], as simulations of a mixture containing CO2, H2, and small amounts of CO, N2, and H2O produced comparable

  18. Ethylene glycol intercalation in smectites. molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Szczerba, Marek; Klapyta, Zenon; Kalinichev, Andrey

    2012-01-01

    Document available in extended abstract form only. Intercalation of ethylene glycol in smectites (glycolation) is widely used to discriminate smectites and vermiculites from other clays and among themselves. During this process, ethylene glycol molecules enter into the interlayer spaces of the swelling clays, leading to the formation of two-layer structure (∼17 A) in the case of smectites, or one-layer structure (∼14 A) in the case of vermiculites. In spite of the relatively broad literature on the understanding/characterization of ethylene glycol/water-clays complexes, the simplified structure of this complex presented by Reynolds (1965) is still used in the contemporary X-ray diffraction computer programs, which simulate structures of smectite and illite-smectite. The monolayer structure is only approximated using the assumption of the interlayer cation and ethylene glycol molecules lying in the middle of interlayer spaces. This study was therefore undertaken to investigate the structure of ethylene glycol/water-clays complex in more detail using molecular dynamics simulation. The structural models of smectites were built on the basis of pyrophyllite crystal structure (Lee and Guggenheim, 1981), with substitution of particular atoms. In most of simulations, the structural model assumed the following composition, considered as the most common in the mixed layer illite-smectites: EXCH 0.4 (Si 3.96 Al 0.04 )(Al 1.46 Fe 0.17 Mg 0.37 )O 10 (OH) 2 Atoms of the smectites were described with CLAYFF force field (Cygan et al., 2004), while atoms of water and ethylene glycol with flexible SPC and OPLS force fields, respectively. Ewald summation was used to calculate long range Coulombic interactions and the cutoff was set at 8.5 A. Results of the simulations show that in the two-layer glycolate the content of water is relatively small: up to 0.8 H 2 O per half of the smectite unit cell. Clear thermodynamic preference of mono- or two-layer structure of the complex is

  19. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  20. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    Directory of Open Access Journals (Sweden)

    Hyunok Choi

    2010-12-01

    Full Text Available Propylene glycol and glycol ether (PGE in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs and semi-VOCs (SVOCs, including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP, and di(2-ethylhexylphthalate (DEHP. Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3 additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  1. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  2. Characterization of a monoclonal antibody to thymidine glycol monophosphate

    International Nuclear Information System (INIS)

    Chen, B.X.; Hubbard, K.; Ide, H.; Wallace, S.S.; Erlanger, B.F.

    1990-01-01

    A monoclonal antibody specific for thymine glycol (TG) in irradiated or OsO4-treated DNA was obtained by immunizing with thymidine glycol monophosphate (TMP-glycol) conjugated to bovine serum albumin by a carbodiimide procedure. Screening by dot-immunobinding and enzyme-linked immunosorbant assay (ELISA) procedures gave eight clones that bound OsO4- treated DNA. One of them, 2.6F.6B.6C, an IgG2a kappa, was characterized further. Hapten inhibition studies with OsO4-treated DNA showed that the antibody was specific for TMP-glycol. Among the various inhibitors tested, inhibition was in the order TMP-glycol greater than 5,6-dihydrothymidine phosphate greater than TMP greater than thymidine glycol greater than TG. Inhibition by 5,6-dihydrothymidine, thymidine, thymine, AMP, and CMP was negligible. In OsO4-treated DNA, as few as 0.5 TG per 10,000 bp were detectable by direct ELISA. Inhibition assays could detect as few as 1.5 TG per 10,000 bp. The antibody was equally reactive with native or denatured DNA containing TG. Among the X-irradiated homopolymers dC, dA, dG, and dT, only dT reacted with the antibody. Using an ELISA, the antibody could detect damage in irradiated DNA at the level of 20 Gy. Thus the antibody is of potential use in assays for DNA damage caused by X rays or other agents that damage DNA by free radical interactions

  3. Simultaneous determination of glycols based on fluorescence anisotropy

    International Nuclear Information System (INIS)

    Garcia Sanchez, F.; Navas Diaz, A.; Lopez Guerrero, M.M.

    2007-01-01

    Simultaneous determination of non-fluorescent glycols in mixtures without separation or chemical transformation steps is described. Two methods based in the measure of fluorescence anisotropy of a probe such as fluorescein dissolved in the analyte or analyte mixtures are described. In the first method, the anisotropy spectra of pure and mixtures of analytes are used to quantitative determination (if the fluorophor concentration is in a range where fluorescence intensity is proportional to concentration). In the second method, a calibration curve anisotropy-concentration based on the application of the Perrin equation is established. The methods presented here are capable of directly resolving binary mixtures of non-fluorescent glycols on the basis of differences on the fluorescence anisotropy of a fluorescence tracer. Best analytical performances were obtained by application of the method based on Perrin equation. This method is simple, rapid and allows the determination of mixtures of glycols with reasonable accuracy and precision. Detection limits are limited by the quantum yield and anisotropy values of the tracer in the solvents. Recovery values are related to the differences in anisotropy values of the tracer in the pure solvents. Mixtures of glycerine/ethylene glycol (GL/EG), ethylene glycol/1,2-propane diol (EG/1,2-PPD) and polyethylene glycol 400/1,2-propane diol (PEG 400/1,2-PPD) were analysed and recovery values are within 95-120% in the Perrin method. Relative standard deviation are in the range 1.3-2.9% and detection limits in the range 3.9-8.9%

  4. Use of polyethylene glycol in functional constipation and fecal impaction.

    Science.gov (United States)

    Mínguez, Miguel; López Higueras, Antonio; Júdez, Javier

    2016-12-01

    The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG), with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely) NOT colonoscopy. Critical reading of selected articles (English or Spanish), sorting their description according to group age (adult/pediatric age) and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis). Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two), psyllium (one), tegaserod (one), prucalopride (one), paraffin oil (one), fiber combinations (one) and Descurainia sophia (one). Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short and long-term. They are as efficacious as enemas in fecal

  5. Use of polyethylene glycol in functional constipation and fecal impaction

    Directory of Open Access Journals (Sweden)

    Miguel Mínguez

    Full Text Available Objective: The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG, with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Methodology: Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely NOT colonoscopy. Critical reading of selected articles (English or Spanish, sorting their description according to group age (adult/pediatric age and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis. Results: Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two, psyllium (one, tegaserod (one, prucalopride (one, paraffin oil (one, fiber combinations (one and Descurainia sophia (one. Conclusions: Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose and are the first-line treatment for functional constipation in the short and long

  6. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  7. Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Kontogeorgis, Georgios

    2009-01-01

    A thorough investigation of triethylene glycol (TEG) containing systems has been performed. The introduction of a new six-site association scheme for the TEG molecule has shown to be advantageous. Glycols are often modeled using a four-site scheme (abbreviated as 4C) hence ignoring the internal...... lone pairs of oxygen. The new association scheme also takes these sites into account. The new parameters of TEG are based on the vapor pressure data, liquid density data, and liquid-liquid equilibria (LLE) data (n-heptane), and they are tested for binary systems (methane, n-octane, n-nonane, n...

  8. 2D→3D polycatenated and 3D→3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    Energy Technology Data Exchange (ETDEWEB)

    Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2014-02-15

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D→3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of

  9. GLYCOL METHACRYLATE EMBEDDING OF ALGINATE-POLYLYSINE MICROENCAPSULATED PANCREATIC-ISLETS

    NARCIS (Netherlands)

    FRITSCHY, WM; GERRITS, PO; WOLTERS, GHJ; PASMA, A; VANSCHILFGAARDE, R

    A method for processing and embedding alginate-polylysine microencapsulated pancreatic tissue in glycol methacrylate resin (GMA) is described. Fixation in 4% phosphate buffered formaldehyde, processing in ascending concentrations of glycol methacrylate monomer and embedding in Technovit 7100 results

  10. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  11. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    OpenAIRE

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette; Chae, Pil Seok

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  12. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation.

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K; Loland, Claus J; Byrne, Bernadette; Chae, Pil Seok

    2016-10-04

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  13. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette

    2017-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research. PMID:27711401

  14. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation

    DEFF Research Database (Denmark)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared...

  15. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  16. Efficacy of polyethylene glycol 4000 on constipation of

    Directory of Open Access Journals (Sweden)

    ZHANG Lian-yang

    2010-06-01

    Full Text Available Constipation is one of themost common chronic gastrointestinal problems. The estimated incidence of constipation in the United States is3% to 19% in general population.1,2 Patientswith head injuries, spinal cord injuries, pelvic fractures, lower extremity fractures ormultiple traumas require a long-term bed rest, during which the incidence of constipation reached as high as 50%.3,4 Constipation always brings inconvenience and tremendous suffering to patientsand strongly influences the recovery from primary disease. Irritants or lubricants can relieve the symptoms, but long-term application of them may lead to side effects like melanosis coli5 and cathartic colon6. The absorption of fat soluble vitamins is also affected.7 Polyethylene glycol 4000 (trade name: Forlax®, a long chain polymer with a high molecular weight, can conjugate withwater molecule through hydrogen bond to increase the water content and volume of stools, thereby, facilitate bowelmovement and defecation.8,9 It is neither absorbed nor metabolized in the digestive tract, hence it is highly safe and well tolerable. Thus, long-term medication of polyethylene glycol 4000 is conducive to the reconstruction of normal defecation pattern. Therefore, polyethylene glycol 4000 is now being widely used as the mainstay adult chronic functional constipation management.10,11 The aim of this study was to verify the efficacy and safety of polyethylene glycol 4000 on adult functional constipation of posttraumatic bedridden patients.

  17. Upstream petroleum industry glycol dehydrator benzene emissions status report

    International Nuclear Information System (INIS)

    1999-07-01

    The population of dehydrators referred to are located in the Western Sedimentary Basin in northeast British Columbia, Alberta and Saskatchewan, and includes units installed at wellsites, compressor stations, gas plants, central crude oil treating facilities, and reservoir or salt cavern gas storage facilities. Benzene emissions from the still column vent on glycol dehydrators occur as a result of glycol's strong affinity for aromatic hydrocarbons, including benzene. A study was carried out to: 1) develop a list of oil and gas companies operating in Canada, 2) develop an equipment and benzene emissions inventory of glycol dehydrators, 3) develop a database in Microsoft Access format to gather and maintain inventory and emission data, 4) evaluate and validate at least 10% of the reported data, 5) develop a list of companies that manufacture dehydrators and incinerators to determine how many new dehydrators were sold for use in Canada in 1998, and 6) prepare a report summarizing findings and recommendations. The companies included in the survey were the oil and gas companies identified by the Nickels' Oil and Gas Index and others provided by CAPP, CGA, and SEPAC. The project was carried out to gather glycol dehydrator equipment and still column vent benzene emissions information. 8 refs

  18. Electrospinnability of poly lactic-co-glycolic acid (PLGA)

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Baldursdottir, Stefania G.; Aho, Johanna

    2017-01-01

    PURPOSE: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers. METHOD: Various s...

  19. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    Science.gov (United States)

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  20. Glycolic acid synthesis during dark glucose U14C metabolism, in French Bean and Maize leaves

    International Nuclear Information System (INIS)

    Cailliau-Commanay, Lucienne; Calmes, Jean; Latche, J.-C.; Cavalie, Gerard

    1977-01-01

    Serine, glycerate and glycolate are among the first radioactive compounds when French Bean and Maize leaves are fed with glucose U 14 C. Failing to detect radioactive glycine suggests that glycolate so synthesized is unavailable for the photorespiration glycolate pool [fr

  1. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  2. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  3. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  4. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409 of...

  5. Impact of scaling on the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  6. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Directory of Open Access Journals (Sweden)

    Tetsuro Hori

    2010-11-01

    Full Text Available Organic thin-film solar cells with a conducting polymer (CP/fullerene (C60 interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene (PAT6/Au have been improved by the insertion of molybdenum trioxide (VI (MoO3 and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  7. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Science.gov (United States)

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360

  8. Synthesis and characterization of castor oil based polyurethane ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A series of interpenetrating polymer networks (IPNs) of castor oil based polyurethane/polyacrylo- nitrile (PU/PAN: 80/20, 60/40, 50/50, 40/60 and 20/80) were synthesized by condensation reaction of castor oil with methylene diisocyanate and acrylonitrile, employing benzoyl peroxide (BPO) and ethylene glycol ...

  9. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    Science.gov (United States)

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  10. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  11. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-12

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.

  12. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-20

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.

  13. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  14. Acute oxalate nephropathy caused by ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    Jung Woong Seo

    2012-12-01

    Full Text Available Ethylene glycol (EG is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

  15. A polyethylene glycol radioimmunoprecipitation assay for human immunoglobulin G

    International Nuclear Information System (INIS)

    Waller, S.J.; Taylor, R.P.; Andrews, B.S.

    1979-01-01

    A polyethylene glycol (PEG) radioimmunoprecipitation assay for human IgG is described that is sufficiently sensitive to detect 0.5 ng of IgG. This model antibody-antigen system was also used to study the stoichiometries of PEG-precipitation complexes. The results suggest that the presence of PEG may affect the stoichiometry of the complexes which precipitate from solution. (Auth.)

  16. The extraction of plutonium with triethylene glycol dichloride

    International Nuclear Information System (INIS)

    Aikin, A.M.; Moss, M.; Bruce, T.

    1951-03-01

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  17. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  18. Retrospective Study: Glycolic Acid Peel in Photoaging Patient

    OpenAIRE

    Rachmantyo, Brama; Indramaya, Diah Mira

    2016-01-01

    Background: Photoaging is premature skin aging that is caused by sun exposure in long periode. Glycolic acid peel is one of photoaging treatment that improve skin at epidermal layer. Improper patient selection and irregular follow-up may become factors of unsuccessful treatment. Purpose: To evaluate gycolic acid peel treatment for photoaging for improvement of medical service in the future. Methods: A retrospective study to photoaging patiens that were managed with glicolyc acid peel in Medic...

  19. The extraction of plutonium with triethylene glycol dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, A M; Moss, M; Bruce, T

    1951-03-15

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  20. Moessbauer investigation of maghemite-based glycolic acid nanocomposite

    International Nuclear Information System (INIS)

    Santos, J. G.; Silveira, L. B.; Oliveira, A. C.; Garg, V. K.; Lacava, B. M.; Tedesco, A. C.; Morais, P. C.

    2007-01-01

    Transmission electron microscopy, X-ray diffraction and Moessbauer spectroscopy were used in the characterization of a nanocomposite containing magnetic nanoparticles dispersed in a glycolic acid-based template. Maghemite nanoparticles were identified as the iron oxide phase dispersed in the polymeric template. From the low-temperature Moessbauer data the amount of the iron-based, non-magnetic material at the nanoparticle surface was estimated as roughly one monolayer in thickness.

  1. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial.

    Science.gov (United States)

    Bekkali, Noor L H; Hoekman, Daniël R; Liem, Olivia; Bongers, Marloes E J; van Wijk, Michiel P; Zegers, Bas; Pelleboer, Rolf A; Verwijs, Wim; Koot, Bart G P; Voropaiev, Maksym; Benninga, Marc A

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of PEG3350 + E or PEG4000. Primary outcomes were change in total sum score (TSS) at week 52 compared to baseline, and dose range determination. TSS was the sum of the severity of 5 constipation symptoms rated on a 4-point scale (0-3). Noninferiority margin was a difference in TSS of ≤1.5 based on a 95%-confidence interval [CI]. Treatment success was defined as a defecation frequency of ≥3 per week with PEG3350 + E and PEG4000, respectively. Noninferiority criteria were not met (maximum difference between groups: -1.81 to 1.68). Daily sachet use was: 0 to 2 years: 0.4 to 2.3 and 0.9 to 2.1; 2 to 4 years: 0.1 to 3.5 and 1.2 to 3.2; 4 to 8 years: 1.1 to 2.8 and 0.7 to 3.8; 8 to 16 years 0.6 to 3.7 and 1.0 to 3.7, in PEG3350 + E and PEG4000, respectively. Treatment success after 52 weeks was achieved in 50% and 45% of children, respectively (P = 0.69). Rates of adverse events were similar between groups, and no drug-related serious adverse events occurred. Noninferiority regarding long-term constipation-related symptoms of PEG3350 + E compared to PEG4000 was not demonstrated. However, analysis of secondary outcomes suggests similar efficacy and safety of these agents.

  2. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  3. Glycolic acid peel therapy – a current review

    Directory of Open Access Journals (Sweden)

    Sharad J

    2013-11-01

    Full Text Available Jaishree Sharad Skinfiniti Aesthetic Skin and Laser Clinic, Mumbai, India Abstract: Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I–IV. All in all, it is a peel that is here to stay. Keywords: acne scar, melasma, photoaging, chemical peel, alpha-hydroxy peel

  4. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo

    2016-01-01

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method

  5. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-04-15

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

  6. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingjian; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Li, Weiwei; Han, Xu; Zhang, Xingxiang, E-mail: zhangpolyu@gmail.com

    2013-10-20

    Graphical abstract: The maximum 50 wt% Brij58 is loaded into the porous MCM-41 networks, and a new peak at 18.8° in XRD patterns confirmed the changes of crystallization behavior of Brij58 against the bulk one. - Highlights: • Poly(ethylene glycol) hexadecyl ether and poly(ethylene glycol) octadecyl ether have the good thermal storage ability. • New peak at 18.8° proved the coexisted confined crystallization and nucleation-induced crystallization. • Poly(ethylene glycol) alkyl ether/MCM-41 PCMs exhibits the good thermal stability. - Abstract: A series of shape-stabilized phase change materials (PCMs), composed of poly(ethylene glycol) hexadecyl ether (Brij58) or poly(ethylene glycol) octadecyl ether (Brij76) and porous silica (MCM-41), were prepared by the physical mixing method. The structure, thermal stability, energy storage ability and crystallization behavior of these composites are deeply investigated and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). Obvious phase transition behavior and energy storage capability are observed for these Brij/MCM-41 composites, and the heat storage efficiency increased with the weight of Brij component. New peak at 18.8° demonstrated that the pore size and the surface adsorption ability of MCM-41 affect the crystallization behavior of Brij molecule. The crystalline structure and energy storage ability of these Brij/MCM-41 composites are discussed based on the crystallization process.

  7. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  8. Outcome of patients in acute poisoning with ethylene glycol - factors which may have influence on evolution

    OpenAIRE

    Tanasescu, A; Macovei, RA; Tudosie, MS

    2014-01-01

    Introduction. Intoxication with ethylene glycol occurs as a result of intentional ingestion in suicide attempts or accidentally. Clinical ethylene glycol poisoning is not specific and occurs in many poisoning cases therefore the diagnosis is difficult. Early diagnostic and establishment of therapy are very important for a favorable evolution. The mortality rate of ethylene glycol intoxication ranges between 1 and 22% depending on the amount of alcohol ingestion and the time period between alc...

  9. Investigations into the use of water glycol as the hydraulic fluid in a servo system

    International Nuclear Information System (INIS)

    Cole, G.V.

    1984-07-01

    The effects of water glycol on the performance of a hydraulic system and on the life of the system components have been investigated and a guide to the design of systems using water glycol is given. The dynamic performance of the system using water-glycol was compared with that using mineral oil, then the system was endurance tested to determine its service life. (author)

  10. Study of castor oil polyurethane - poly(methyl methacrylate semi-interpenetrating polymer network (SIPN reaction parameters using a 2³ factorial experimental design

    Directory of Open Access Journals (Sweden)

    Fernanda Oliveira Vieira da Cunha

    2004-12-01

    Full Text Available In this work was employed a 2³ factorial experiment design to evaluate the castor oil polyurethane-poly(methyl methacrylate semi-IPN synthesis. The reaction parameters used as independent variables were NCO/OH molar ratio, polyurethane polymerization time and methyl methacrylate (MMA content. The semi-IPNs were cured over 28 h using two thermal treatments. The polymers were characterized by infrared and Raman spectroscopy, thermal analysis and swelling profiles in n-hexane. The glass transition temperature (Tg and the swelling were more affect by the NCO/OH molar ratio variation. The semi-IPNs showed Tg from - 27 to - 6 °C and the swelling range was from 3 to 22%, according to the crosslink density. The IPN mechanical properties were dependent on the cure temperature and MMA content in it. Lower elastic modulus values were observed in IPNs cured at room temperature.

  11. Interpenetrating polymer network membranes for fuel cells: infrared vibrational spectroscopy; Membranes baseadas dm redes polimericas interpenetrantes para celulas a combustivel: estudo por espectroscopia vibracional no infravermelho

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro, RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, proton conductive membranes based on IPN matrices doped with H{sub 3}PO{sub 4} were developed. The characterization by infrared vibrational spectroscopy evidenced the polymerization of DGEBA and the immobilization of PEI chains, originating a structure containing basic sites suitable for proton coordination and conduction. The FTIR characterization evidenced the polymerization of DGEBA in the presence of PEI thus forming Semi-IPN membranes which, after doped with H{sub 3}PO{sub 4}, exhibited conductivity values of 10{sup -4} W{sup -1}cm{sup -1} at room temperature and 10{sup -3} {omega}{sup -1}cm{sup -1} at 80 degree C, as well as a dependency of conductivity with temperature following the Arrhenius model. The activation energy values (14,33 and 12,96 kJ.mol{sup -1}) indicated a proton conduction mechanism predominantly vehicular in the matrices studied under 100% relative humidity. (author)

  12. Polyethylene glycol enhances lipoplex-cell association and lipofection.

    Science.gov (United States)

    Ross, P C; Hui, S W

    1999-10-15

    The association between liposome-DNA complexes (lipoplexes) and targeted cell membranes is a limiting step of cationic liposome-mediated transfection. A novel technique was developed where lipoplex-cell membrane association is enhanced by the addition of 2-6% polyethylene glycol (PEG) to the transfection media. Lipoplex-cell association was found to increase up to 100 times in the presence of PEG. Transfection increased correspondingly in the presence of PEG. This increase was found in several cell lines. These results show that lipoplex adsorption to cell membranes is a critical step in liposome-mediated transfection. This step can be facilitated by PEG-induced particle aggregation.

  13. Dipropylene glycol allergy: A hidden cause of perfume contact dermatitis

    DEFF Research Database (Denmark)

    Johansen, Jeanne Duus; Rastogi, Suresh Chandra; Ernst Jemec, Gregor Borut

    1994-01-01

    A case of allergic contact dermatitis caused by a hand lotion is presented. A positive patch test reaction to the perfume formulation from the lotion was found, establishing a case of perfume allergy. However, when all 16 ingredients of the perfume were tested, the patient reacted not only...... to a fragrance material but also to the solvent used in the perfume, dipropylene glycol. The diagnosis of perfume allergy is common. However, the substances in the responsible perfume are rarely obtained for testing, and significant allergies to the solvent of the perfume may be overlooked....

  14. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  15. The therapeutic value of glycolic acid peels in dermatology

    Directory of Open Access Journals (Sweden)

    Grover C

    2003-03-01

    Full Text Available Chemical peeling or chemexfoliation has become increasingly popular in recent years for treatment of a number of cosmetic skin problems. Topical glycolic acid in the concentration of 10-30% for 3-5 minutes at fortnightly intervals was investigated as a therapeutic peeling agent in 41 patients having acne (39%, melasma (36.5%, post inflammatory hyperpigmentation (12% and superficial scarring of varied etiology (12%. A final evaluation done at 16 weeks revealed that this modality is useful especially in superficial scarring and melasma, moderately successful in acne patients with no response in dermal pigmentation. No significant untoward effects were seen.

  16. Exposure to glycols and their renal effects in motor servicing workers.

    Science.gov (United States)

    Laitinen, J; Liesivuori, J; Savolainen, H

    1995-10-01

    Ten car mechanics frequently exposed to glycol-based cooling liquids were followed during a workshift. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were measured. The car mechanics gave urine samples after the workshift and their excretion of ethylene glycol, propylene glycol, oxalic acid, calcium and ammonia was analysed and compared to that of unexposed office workers. Urinary succinate dehydrogenase activity and glycosaminoglycans were also measured in both groups. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were negligible. Urinary ethylene glycol excretion in exposed workers was significantly higher than that in unexposed workers, but propylene glycol excretion was at the same levels as in controls. In the exposed group, the excretion of the end metabolite of ethylene glycol, oxalic acid (47 +/- 11 mmol/mol creatinine, mean +/- SD, n = 10) differed slightly from that of controls (36 +/- 14 mmol/mol creatinine, mean +/- SD, n = 10). Urinary excretion of ammonia was higher among exposed workers than office workers. The excretion of calcium did not differ from that of controls. A marginally decreased urinary succinate dehydrogenase activity was found in the exposed men. The excretion of glycosaminoglycans was significantly lower in exposed workers. Therefore, it seems that ethylene glycol is absorbed by skin contact. The internal body burden is associated with oxaluria and increased ammoniagenesis typical of chronic acidosis.

  17. Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

    Science.gov (United States)

    Morariu, Simona; Bercea, Maria

    2012-01-12

    The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.

  18. Formation of Underbrushes on thiolated Poly (ethylene glycol) PEG monolayers by Oligoethylene glycol (OEG) terminated Alkane Thiols on Gold

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    Adding underbrushes of oligoethylene glycol (OEG) to monolayers of long chain PEG molecules on a surface is one of the strategies [1] in designing a suitable platform for antifouling purpose, where it is possible to have high graft density and molecular conformational freedom[4] simultaneously......, there by maximal retention of activity of covalently immobilised antifouling enzyme [2] on PEG surfaces along with resistance to protein adsorption[3]. Here we present some our studies on the addition of OEG thiol molecules over a self assembled monolayer of PEG thiol on gold. The kinetics of addition of OEG thiol...

  19. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  20. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  1. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta, E-mail: zavisova@saske.s [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Koneracka, Martina [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Muckova, Marta; Lazova, Jana [Hameln, rds a.s., Horna 36, Modra (Slovakia); Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Vavra, Ivo [IEE SAS, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Fabian, Martin [IGT SAS, Watsonova 45, Kosice 040 01 (Slovakia); Feoktystov, Artem V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); KNU, Academician Glushkov Ave. 2/1, 03187 Kyiv (Ukraine); Garamus, Vasil M. [GKSS research center, Max-Planck-Str.1, 21502 Geesthacht (Germany); Avdeev, Mikhail V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); Kopcansky, Peter [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia)

    2011-05-15

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe{sub 3}O{sub 4}) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe{sub 3}O{sub 4} in MFPEG). - Research Highlights: A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. Structuralization effects of magnetite particles depend on PEG concentration. Large fractals of magnetite nanoparticles in MF were observed (SANS indication). MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  2. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    International Nuclear Information System (INIS)

    Zavisova, Vlasta; Koneracka, Martina; Muckova, Marta; Lazova, Jana; Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef; Vavra, Ivo; Fabian, Martin; Feoktystov, Artem V.; Garamus, Vasil M.; Avdeev, Mikhail V.; Kopcansky, Peter

    2011-01-01

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe 3 O 4 ) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe 3 O 4 in MFPEG). - Research Highlights: → A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. → Structuralization effects of magnetite particles depend on PEG concentration. → Large fractals of magnetite nanoparticles in MF were observed (SANS indication). → MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  3. Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks

    Directory of Open Access Journals (Sweden)

    X. P. Wang

    2012-07-01

    Full Text Available Novel blends of acrylonitrile butadiene rubber (NBR and polyurethane-silica (PU-SiO2 hybrid networks have been prepared by melt blending. The PU-SiO2 hybrid networks were formed via the reaction of NCO groups of NCO-terminated PU prepolymer and OH groups of SiO2 in the absence of an external crosslinking agent (i.e. alcohols and amines during the curing process of NBR. Both in the neat PU-SiO2 system and the NBR/(PU-SiO2 system, the NCO-terminated PU prepolymer could be crosslinked by SiO2 to form PU-SiO2 hybrid networks. The effects of PU-SiO2 introduction into the NBR, on the properties of the resulting blends were studied. It was found that the vulcanization was activated by the incorporation of PU-SiO2. Transmission electronic microscopy (TEM studies indicated that the interpenetration and entanglement structures between NBR and PU-SiO2 increased with increasing PU-SiO2 content and the quasi-interpenetrating polymer networks (quasi-IPN structures were formed when the PU-SiO2 was 50 wt% in the NBR/(PU-SiO2 systems. The microstructures formed in the blends led to good compatibility between NBR and PU-SiO2 and significantly improved the mechanical properties, abrasion resistance and flex-fatigue life of the blends.

  4. End-group characterisation of poly(propylene glycol)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS).

    Science.gov (United States)

    Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H

    2008-10-01

    The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).

  5. Noncovalent pegylation by dansyl-poly(ethylene glycol)s as a new means against aggregation of salmon calcitonin.

    Science.gov (United States)

    Mueller, Claudia; Capelle, Martinus A H; Arvinte, Tudor; Seyrek, Emek; Borchard, Gerrit

    2011-05-01

    During all stages of protein drug development, aggregation is one of the most often encountered problems. Covalent conjugation of poly(ethylene glycol) (PEG), also called PEGylation, to proteins has been shown to reduce aggregation of proteins. In this paper, new excipients based on PEG are presented that are able to reduce aggregation of salmon calcitonin (sCT). Several PEG polymers consisting of a hydrophobic dansyl-headgroup attached to PEGs of different molecular weights have been synthesized and characterized physicochemically. After addition of dansyl-methoxypoly(ethylene glycol) (mPEG) 2 kDa to a 40 times molar excess of sCT resulted in an increase in dansyl-fluorescence and a decrease in 90° light scatter suggesting possible interactions. The aggregation of sCT in different buffer systems in presence or absence of the different dansyl-PEGs was measured by changes in Nile red fluorescence and turbidity. Dansyl-mPEG 2 kDa in a 1:1 molar ratio to sCT strongly reduced aggregation. Reduction of sCT aggregation was also measured for the bivalent dansyl-PEG 3 kDa in a 1:1 molar ratio. Dansyl-mPEG 5 kDa deteriorated sCT aggregation. Potential cytotoxicity and hemolysis were investigated. This paper shows that dansyl-PEGs are efficacious in reducing aggregation of sCT. Copyright © 2010 Wiley-Liss, Inc.

  6. Activity coefficients at infinite dilution of organic solutes in diethylene glycol and triethylene glycol from gas–liquid chromatography

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Letcher, Trevor M.; Naidoo, Paramespri; Ramjugernath, Deresh

    2013-01-01

    Highlights: • γ 13 ∞ values reported for 25 organic solutes in the solvents DEG and TEG. • Measurements undertaken using the glc technique at T = (333.2, 348.2, and 363.2) K. • Measurements at elevated temperature possible by pre-saturation of carrier gas. • Comparison of DEG and TEG performance with a number of solvents. -- Abstract: The infinite dilution activity coefficients for 25 hydrocarbon solutes in diethylene glycol (DEG) and triethylene glycol (TEG) were measured using the gas–liquid chromatography technique with pre-saturation of the carrier gas. The hydrocarbon solutes included n-alkanes, alk-1-enes, alk-1-ynes, cycloalkanes, alkylbenzenes and alkanols. At the temperatures at which measurements were conducted, the solvents were volatile, and pre-saturation was considered necessary. The measurements were made at T = (333.2, 348.2 and 363.2) K. Values of the selectivity and capacity relating to DEG and TEG, for two sets of mixtures, which are usually difficult to separate by distillation or solvent extraction, were calculated from the experimental results. The two sets of mixtures were: cyclohexane and benzene; and benzene and methanol. The results obtained in this work were then compared to values for other solvents, at similar temperatures, which were obtained or calculated from literature data

  7. A subchronic dermal exposure study of diethylene glycol monomethyl ether and ethylene glycol monomethyl ether in the male guinea pig.

    Science.gov (United States)

    Hobson, D W; D'Addario, A P; Bruner, R H; Uddin, D E

    1986-02-01

    Diethylene glycol monomethyl ether (DEGME) has been selected as a replacement anti-icing additive for ethylene glycol monomethyl ether (EGME) in Navy jet aircraft fuel. This experiment was performed to determine whether DEGME produced similar toxicity to EGME following dermal exposure. Male guinea pigs were dermally exposed to 1.00, 0.20, 0.04, or 0 (control) g/kg/day DEGME for 13 weeks, 5 days/week, 6 hr/day. Another group of animals was similarly exposed to 1.00 g/kg/day EGME. Body weights as well as testicular and splenic weights were reduced as a result of exposure to EGME, DEGME-exposed animals exhibited decreased splenic weight in the high- and medium-dose (1.00 and 0.20 g/kg/day) exposure groups only. Hematologic changes in EGME-exposed animals included mild anemia with increased erythrocytic mean corpuscular volumes and a lymphopenia with increased neutrophils. Similar hematological changes were not observed in any animals exposed to DEGME. Serum creatine kinase activity was increased in animals exposed to EGME, and serum lactate dehydrogenase activity was increased in EGME and 1.00 g/kg/day DEGME-exposed animals. In general, DEGME produced minimal toxicological changes following dermal exposure, whereas the toxicological changes observed following similar exposure to EGME were much more profound.

  8. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R

    2010-01-01

    proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile...

  9. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  10. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    International Nuclear Information System (INIS)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel; Rodes, Antonio

    2010-01-01

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  11. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 589.1001... or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat... on cat food causes the feed to be adulterated and in violation of the Federal Food, Drug, and...

  12. Polyalkylene glycols, base fluids for special lubricants and hydraulic fluids; Polyalkylenglykole, Basisoele fuer Spezialschmierstoffe und Hydraulikfluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Poellmann, K. [Clariant GmbH (Germany)

    2004-08-01

    For many years polyalkylene glycols have been used as base fluids for special lubricants. In this matter they compete with polyol esters and polyalphaolefines. Synthesis of polyalkylen glycols is founded upon the anionic polymerisation of ethyleneoxid, propyleneoxid and if necessary of other oxigen-containing monomeres. The flexibility of this synthesis is the reason that polyalkylene glycole is a collective term, including a broad group of base fluids with partly extreme different properties. Typical for polyalkylene glycols is a high viscosity-index, watersolubility and adsorbing power for water, low friction numbers, but also the incompatibility with current mineral-oil-soluble additive systems. Because of this quality profile there has been developped specific niche-applications in the lubricant-area for polyalkylene glycols in the last 30 years, where each of the specific benefits has been used. Among them are watercontaining HFC hydraulicfluids, refrigerator oils, and oils for ethylene-compressors. HFC fluids are formulated with high-viscous, water-soluble polyalkylene glycols. For refrigerator oils in motor-car conditioning the R 134A compatibility of water-insoluble polyalkylene glycols is essential. For the use in ethylene-compressors the crucial point is the insolubility of polyalkylene glycol in ethylene. (orig.)

  13. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  14. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-23

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  15. (Liquid + liquid) equilibrium data for the system (propylene glycol + water + tetraoctyl ammonium 2-methyl-1-naphthoate)

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Shazad, Maryam; Schuur, B.; Haan, de A.B.

    2012-01-01

    Propylene glycol (PG) is an important low toxic glycol, widely used in the food, cosmetics, pharmaceutical and the chemical industries. The recovery of PG from aqueous streams using conventional unit operations such as evaporation is highly energy demanding because of the large amounts of water that

  16. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2017-01-01

    Full Text Available Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225–250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose. Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol.

  17. Structure-Processing-Property Relationship of Poly(Glycolic Acid for Drug Delivery Systems 1: Synthesis and Catalysis

    Directory of Open Access Journals (Sweden)

    Vineet Singh

    2010-01-01

    Full Text Available Till date, market is augmented with a huge number of improved drug delivery systems. The success in this area is basically due to biodegradable polymers. Although conventional systems of drug delivery utilizing the natural and semisynthetic polymers so long but synthetic polymer gains success in the controlled drug delivery area due to better degradation profile and controlled network and functionality. The polyesters are the most studied class group due the susceptible ester linkage in their backbone. The Poly(glycolic Acid (PGA, Poly(lactic acid (PLA, and Polylactide-co-glycolide (PLGA are the best profiled polyesters and are most widely used in marketed products. These polymers, however, still are having drawbacks which failed them to be used in platform technologies like matrix systems, microspheres, and nanospheres in some cases. The common problems arose with these polymers are entrapment inefficiency, inability to degrade and release drugs with required profile, and drug instability in the microenvironment of the polymers. These problems are forcing us to develop new polymers with improved physicochemical properties. The present review gave us an insight in the various structural elements of Poly(glycolic acid, polyester, with in depth study. The first part of the review focuses on the result of studies related to synthetic methodologies and catalysts being utilized to synthesize the polyesters. However the author will also focus on the effect of processing methodologies but due some constraints those are not included in the preview of this part of review.

  18. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  19. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  20. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  1. Quasielastic neutron scattering and microscopic dynamics of liquid ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, O. [Laboratoire de Geophysique Interne et Tectonophysique, BP 53, Maison des Geosciences - Domaine Universitaire, 38041 Grenoble, Cedex 9 (France)], E-mail: Oleg.Sobolev@ujf-grenoble.fr; Novikov, A. [Institute for Physics and Power Engineering, Bondarenko Sq. 1, Obninsk, Kaluga Reg. 249033 (Russian Federation); Pieper, J. [Technische Universitaet Berlin, Strasse des 17, Juni 135, D-10623 Berlin (Germany)

    2007-04-20

    Quasielastic neutron scattering (QENS) by liquid ethylene glycol was analyzed using different model approaches. It was found that approximation of the QENS spectra by a set of Lorentzian functions corresponding to the translational and rotational motions produce physically unrealistic results. At the same time, the Fourier transform of the stretched-exponential function exp(-(t/{tau}){sup {beta}}) fits the experimental data well, and results of the fit are in good agreement with those obtained earlier for other systems. The stretching parameter {beta} was found Q independent and shows weak temperature dependence. The mean relaxation time as a function of Q departs strongly from the simple diffusion low and can be approximated by a power law <{tau}{sub w}> = {tau}{sub 0}Q{sup -{gamma}} with the exponent parameter {gamma} = 2.4.

  2. Phase Diagram of the Ethylene Glycol-Dimethylsulfoxide System

    Science.gov (United States)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.; Shirokova, E. V.

    2018-05-01

    The phase diagram of ethylene glycol (EG)-dimethylsulfoxide (DMSO) system is studied in the temperature range of +25 to -140°C via differential scanning calorimetry. It is established that the EG-DMSO system is characterized by strong overcooling of the liquid phase, a glass transition at -125°C, and the formation of a compound with the composition of DMSO · 2EG. This composition has a melting temperature of -60°C, which is close to those of neighboring eutectics (-75 and -70°C). A drop in the baseline was observed in the temperature range of 8 to -5°C at DMSO concentrations of 5-50 mol %, indicating the existence of a phase separation area in the investigated system. The obtained data is compared to the literature data on the H2O-DMSO phase diagram.

  3. Definitive characterization of human thymine glycol N-glycosylase activity

    International Nuclear Information System (INIS)

    Higgins, S.A.; Frenkel, K.; Cummings, A.; Teebor, G.W.

    1987-01-01

    An N-glycosylase activity that released cis-[ 3 H]-5,6-dihydroxy-5,6-dihydrothymine (thymine glycol, TG) from chemically oxidized poly(dA-[ 3 H]dT) was unambiguously characterized both in extracts of HeLa cells and in purified Escherichia coli endonuclease III. This was accomplished by use of a microderivatization procedure that quantitatively converted cis-TG to 5-hydroxy-5-methylhydantoin (HMH). The reaction products were analyzed by high-pressure liquid chromatography before and after derivation by using cis-[ 14 C]TG and [ 14 C]HMH, which had been independently synthesized, as reference compounds. This technique facilitated construction of a v/[E]/sub t/ plot for the enzyme activity in HeLa cells, permitting estimation of its specific activity. The results obtained prove the existence of both human and bacterial N-glycosylase activities that effect removal of TG from DNA

  4. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  5. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    International Nuclear Information System (INIS)

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-01-01

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca 2+ by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca 2+ -lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca 2+ and PEG on membrane fusion

  6. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    Science.gov (United States)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛnetwork). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  7. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  8. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Abednejad, Atiye Sadat, E-mail: atiyeabednejad@gmail.com [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Amoabediny, Ghasem [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 63894-14179, Tehran (Iran, Islamic Republic of); Ghaee, Azadeh [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H{sub 2} and O{sub 2} plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37 °C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. - Highlights: • H{sub 2} and O{sub 2} plasma graft polymerization of PEG on polypropylene membrane was carried out. • Changes in surface properties were investigated by FTIR, XPS, SEM, and AFM. • Surface wettability enhanced as a result of poly ethylene glycol grafting. • PEG grafting degree increase causes reduction of fouling and adhesion.

  9. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    Science.gov (United States)

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  10. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol...

  11. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. I: TECHNICAL REPORT

    Science.gov (United States)

    The report gives results of the collection of emissions tests data at two triethylene glycol units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural gas indu...

  12. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. II: APPENDICES

    Science.gov (United States)

    The report gives results of the collection of emissions test data st two triethylene glycol units to provide data for the comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. [NOTE: Glycol dehydrators are used in the natural gas i...

  13. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky...

  14. Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery.

    Science.gov (United States)

    Soliman, Mahmoud E; Elmowafy, Enas; Casettari, Luca; Alexander, Cameron

    2018-05-30

    The aim of this work was to obtain an intranasal delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the delivery of risedronate (RS). For this, novel in situ forming gels comprising thermo-responsive star-shaped polymers, utilizing either polyethylene glycol methyl ether (PEGMA-ME 188, Mn 188) or polyethylene glycol ethyl ether (PEGMA-EE 246, Mn 246), with polyethylene glycol methyl ether (PEGMA-ME 475, Mn 475), were synthesized and characterized. RS was trapped in the selected gel-forming solutions at a concentration of 0.2% w/v. The pH, rheological properties, in vitro drug release, ex vivo permeation as well as mucoadhesion were also examined. MTT assays were conducted to verify nasal tolerability of the developed formulations. Initial in vivo studies were carried out to evaluate anti-osteoporotic activity in a glucocorticoid induced osteoporosis model in rats. The results showed successful development of thermo-sensitive formulations with favorable mechanical properties at 37 °C, which formed non-irritant, mucoadhesive porous networks, facilitating nasal RS delivery. Moreover, sustained release of RS, augmented permeability and marked anti-osteoporotic efficacy as compared to intranasal (IN) and intravenous (IV) RS solutions were realized. The combined results show that the in situ gels should have promising application as nasal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Literature Review On Impact Of Glycolate On The 2H Evaporator And The Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Adu-Wusu, K.

    2012-01-01

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations (le) 33 mg/L or 0.44 mM. The ETF unit operations that will have

  16. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  17. Solid-state poly(ethylene glycol)-polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties

    International Nuclear Information System (INIS)

    Chilaka, Naresh; Ghosh, Sutapa

    2012-01-01

    Highlights: ► Semi IPN composite of PEG-PU/PMMA with different wt% of rutile TiO 2 is synthesized. ► Formation of nanocomposite is confirmed by SEM, XRD and IR spectroscopic analysis. ► DSC and TGA confirmed the enhanced thermal stability of the composite. ► Composite with 18 wt% rutile TiO 2 is found to be the best conducting material. - Abstract: A series of lithium electrolyte materials based on hybrid of semi Inter penetrating Polymer Network of [poly(ethylene glycol)-polyurethane-polymethylmethacrylate] [60:40] and TiO 2 nanofibers is described. TiO 2 nanofibers are made by simple solvothermal procedure. Rutile phase of TiO 2 and its fibrous morphology are confirmed by X-ray diffraction pattern and scanning electron microscopy image respectively. Semi Inter penetrating Polymer Network of polyethylene glycol-polyurethane/polymethylmethacrylate with LiClO 4 and its nanocomposite with different weight percent of TiO 2 nano fibers have been synthesized. The formation of Inter penetrating Polymer Network and its amorphous nature are confirmed by Fourier transform infrared spectra, X-ray diffraction pattern and differential scanning calorimetry results. Thermo gravimetric analysis shows enhanced thermal stability of the composite compared to the semi Inter penetrating Polymer Network system. The electrical characterizations of the nanocomposites are done by current–voltage (I–V) measurements and impedance spectroscopy. These results confirm that incorporation of TiO 2 nanofibers by 18% enhances the conductivity of the Inter penetrating Polymer Network system by ten times . The nanoscale structure of the inorganic material is found to be responsible for the bulk properties of the system, especially those that differ from the properties of similar, pure salt-in-polymer electrolytes. Further differential scanning calorimetry, scanning electron microscopy and impedance data confirm the presence of two polymeric phases in the semi Inter penetrating Polymer

  18. The effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic gamma-glutamyl transpeptidase.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Arashidani, K; Yoshikawa, M; Kodama, Y

    1992-11-22

    In this paper, we determined whether ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethyl ether (diEGME) induce hepatic gamma-glutamyl transpeptidase activity. Male adult Wistar rats weighing 220 g were used as experimental animals. EGME (100, 300 mg/kg per day) and diEGME (500, 1000, 2000 mg/kg per day) were administered by gavage for 1, 2 or 5 days or 4 weeks. In the 4-week study, experimental animals were administered EGME or diEGME once a day orally, 5 days/week. EGME treatment increased the serum gamma-glutamyl transpeptidase (GGT) level significantly, however, diEGME did not. The activities of three other enzymes (SGOT, SGPT and ALP) in serum were not altered by EGME or diEGME treatment and thus there was no biochemical indices of hepatic damage by EGME or diEGME. EGME treatment increased the GGT activities in the liver and lungs. Of the organs examined, the induction of GGT was the greatest in the liver. The inducibility in the liver was 216% for the 5-day treatment and 460% for the 4-week treatment. A dose-dependent increase of hepatic microsomal GGT activity by EGME was observed. On the other hand, renal GGT activities were declined to 72% and 60% of control by the 5-day and 4-week EGME treatments, respectively. DiEGME did not affect the GGT activities in any of the tissues except those of the brain. In the histochemical study, most hepatocytes at the periportal zones were stained with GGT staining after the 4-week treatment. However, the hepatocytes at the central zones were negative.

  19. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  20. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  1. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  2. Ineffectiveness of a fluorometric method for identifying irradiated food base on thymine glycol

    International Nuclear Information System (INIS)

    Ewing, D.D.; Stepanik, T.M.

    1992-01-01

    At dosages used for food irradiation, some of the thymine present in the DNA of irradiated food may be converted to thymine glycol. A fluorometric assay for thymine glycol was investigated as a possible method of detecting irradiated foods based on this effect. Experiments were performed on homogenates of irradiated chicken breast meat and on DNA isolated from irradiated chicken breast meat. In both cases the assay was subject to interference from one of the reagents, o-aminobenzaldehyde, and lacked the necessary sensitivity to detect the thymine glycol produced by radiolysis of the DNA at relevant dosages

  3. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  4. Comparative study of 15% TCA peel versus 35% glycolic acid peel for the treatment of melasma.

    Science.gov (United States)

    Puri, Neerja

    2012-05-01

    Chemical peels are the mainstay of a cosmetic practitioner's armamentarium because they can be used to treat some skin disorders and can provide aesthetic benefit. To compare 15% TCA peel and 35% glycolic acid peel for the treatment of melasma. We selected 30 participants of melasma aged between 20 and 50 years from the dermatology outpatient department and treated equal numbers with 15% TCA and 35% glycolic acid. Subjective response as graded by the patient showed good or very good response in 70% participants in the glycolic acid group and 64% in the TCA group. There was statistically insignificant difference in the efficacy between the two groups for the treatment of melasma.

  5. Determination of the impact of glycolate on ARP and MCU operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-17

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal, phase separation, or coalescer performance at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU).

  6. A Case of Chronic Ethylene Glycol Intoxication Presenting without Classic Metabolic Derangements

    Directory of Open Access Journals (Sweden)

    Stephanie M. Toth-Manikowski

    2014-01-01

    Full Text Available Acute ethylene glycol ingestion classically presents with high anion gap acidosis, elevated osmolar gap, altered mental status, and acute renal failure. However, chronic ingestion of ethylene glycol is a challenging diagnosis that can present as acute kidney injury with subtle physical findings and without the classic metabolic derangements. We present a case of chronic ethylene glycol ingestion in a patient who presented with acute kidney injury and repeated denials of an exposure history. Kidney biopsy was critical to the elucidation of the cause of his worsening renal function.

  7. Molecular Mobility of n-Ethylene Glycol Dimethacrylate Glass Formers Upon Free Radical Polymerization

    Science.gov (United States)

    Plaza, Maria Teresa Viciosa

    When a liquid upon cooling avoids crystallization, it enters the supercooled state. If the temperature continues to decrease, the consequent increase of viscosity is reflected in the molecular mobility in such a way that the characteristic relaxation times of cooperative motions become of the same order of the experimentally accessible timescales. Further cooling finally transforms the highly viscous liquid into a glass, in which only local motions are allowed. The monomers n-ethylene glycol dimethacrylate (n-EGDMA) for n =1 to 4, that constitutes the object of this study, easily circumvent crystallization, being good candidates to study the molecular mobility in both supercooled and glassy states. Dielectric Relaxation Spectroscopy (DRS) was the technique chosen to obtain detailed information about their molecular mobility (Chapters 1 and 2). The first part of this work consisted in the dielectric characterization of the relaxation processes present above and below the glass transition temperature (Tg), which shifts to higher values with the molecular weight ( Mw), result confirmed by Differential Scanning Calorimetry (DSC). While the cooperative alpha-process associated to the glass transition, and the secondary beta process, depend on Mw, the other found secondary process, gamma, seems to be independent from this factor (Chapter 3). In the next Chapters different strategies were carried out in order to clarify the mechanisms in the origin of these two secondary relaxations (beta and gamma), and to learn about its respective relation with the main a relaxation. Monitoring the real time isothermal free radical polymerization of TrEGDMA by Temperature Modulated Differential Scanning Calorimetry (TMDSC), carried out at temperatures below the gamma T of the final polymer network, we shown among others two important features: i) the vitrification of the polymer in formation leads to relatively low degrees of conversion, and ii) the unreacted monomer is expelled from

  8. Determination of the Impact of Glycolate on ARP and MCU Operations

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.; Peters, T.; Shehee, T.

    2012-01-01

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU). Sorption testing was performed using both MST and modified MST (mMST) in the presence of 5,000 and 10,000 ppm (mass basis) glycolate. 10,000 ppm is the estimated bounding concentration expected in the DWPF recycle stream based on DWPF melter flammable gas model results. The presence of glycolate was found to slow the removal of Sr and Pu by MST, while increasing the removal rate of Np. Results indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. There was no measurable effect on U removal at either glycolate concentration. The slower removal rates for Sr and Pu at 5,000 and 10,000 ppm glycolate could result in lower DF values for these sorbates in ARP based on the current (12 hours) and proposed (8 hours) contact times. For the highest glycolate concentration used in this study, the percentage of Sr removed at 6 hours of contact decreased by 1% and the percentage of Pu removed decreased by nearly 7%. The impact may prove insignificant if the concentration of glycolate that is returned to the tank farm is well below the concentrations tested in this study. The presence of glycolate also decreased the removal rates for all three sorbates (Sr, Pu, and Np) by mMST. Similarly to MST, the results for mMST indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. The presence of glycolate did not change the lack

  9. Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol).

    Science.gov (United States)

    Teng, Jian; Yang, Biao; Zhang, Liang-Qing; Lin, Sheng-Qiang; Xu, Ling; Zhong, Gan-Ji; Tang, Jian-Hua; Li, Zhong-Ming

    2018-01-01

    The ultra-high mechanical, biocompatible and biodegradable porous regenerated cellulose/poly(ethylene glycol) (RC/PEG) composites with double network structure were fabricated via an simple method to dissolve cellulose followed by UV irradiation. The porous structure of RC/PEG was sensitively altered by PEG contents, which led to the porous structure morphology transition from 3D fibrillar network to close-grained sheet-like-network with the loading of cross-linked PEG. The porous RC/PEG showed excellent mechanical properties, i.e., the compressive strength can reach 33 times higher than that of neat RC (0.07MPa) at the compressive strain of 30%. Porous RC/PEG also displayed outstanding properties with openly porous structure and structural stabilization. Besides, porous RC/PEG exhibited good water absorbency, which the water absorbency ratio at equilibrium state was 83% higher than that of porous RC. This work provides an environmentally friendly and simple pathway to prepare non-toxic and biocompatible porous regenerated cellulose-based composites with high strength, structural stabilization and good water absorbency, which could be useful for packaging, biomedical applications, sewage purification, etc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks.

    Science.gov (United States)

    Wan, Haixiao; Shen, Jianxiang; Gao, Naishen; Liu, Jun; Gao, Yangyang; Zhang, Liqun

    2018-03-28

    Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.

  11. Pediatric constipation therapy using guidelines and polyethylene glycol 3350.

    Science.gov (United States)

    Bell, Edward A; Wall, Geoffrey C

    2004-04-01

    To review current guidelines on the treatment of functional constipation in pediatric patients, with an emphasis on the role of polyethylene glycol 3350 (PEG 3350). Primary medical literature published in English was identified by MEDLINE search (1980-May 2003). Recently published treatment guidelines relating to pediatric functional constipation and its pharmacotherapy are assessed and compared. Published trials evaluating PEG 3350 in pediatric subjects are discussed and their results applied to the clinical role and use of this new agent. Constipation is a common disorder among children. A number of factors may play a role. A variety of medications are commonly used for this disorder, although few treatments have undergone evaluation by controlled clinical trials. Consensus guidelines recommend either osmotic laxatives, mineral oil, or their combination for maintenance treatment in concert with patient and parental education and behavioral training. PEG 3350 solution (MiraLax) has been shown in recent clinical studies to be an effective maintenance treatment for pediatric constipation. PEG 3350 is an effective and well-tolerated treatment choice for pediatric constipation, especially as an adjunct to education and behavioral training. PEG 3350 is an option for children with constipation who have failed or are intolerant of other pharmacotherapies.

  12. Urinary excretion of polyethylene glycol 3350 during colonoscopy preparation.

    Science.gov (United States)

    Rothfuss, K S; Bode, J C; Stange, E F; Parlesak, A

    2006-02-01

    Whole gut lavage with a polyethylene glycol electrolyte solution (PEG) is a common bowel cleansing method for diagnostic and therapeutic colon interventions. Absorption of orally administered PEG from the gastrointestinal tract in healthy human beings is generally considered to be poor. In patients with inflammatory bowel disease (IBD), intestinal permeability and PEG absorption were previously reported to be higher than in normal subjects. In the current study, we investigated the absorption of PEG 3350 in patients undergoing routine gut lavage. Urine specimens were collected for 8 hours in 24 patients undergoing bowel cleansing with PEG 3350 for colonoscopy. The urinary excretion of PEG 3350, measured by size exclusion chromatography, ranged between 0.01 and 0.51 % of the ingested amount, corresponding to 5.8 and 896 mg in absolute amounts, respectively. Mean PEG excretion in patients with impaired mucosa such as inflammation or ulceration of the intestine (0.24 % +/- 0.19, n = 11) was not significantly higher (p = 0.173) compared to that in subjects with macroscopically normal intestinal mucosa (0.13 % +/- 0.13, n = 13). The results indicate that intestinal absorption of PEG 3350 is higher than previously assumed and underlies a strong inter-individual variation. Inflammatory changes of the intestine do not necessarily lead to a significantly higher permeability of PEG.

  13. Differences in taste between two polyethylene glycol preparations.

    Science.gov (United States)

    Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F

    2007-12-01

    Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (pPEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (pPEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.

  14. OTC polyethylene glycol 3350 and pharmacists' role in managing constipation.

    Science.gov (United States)

    Horn, John R; Mantione, Maria Marzella; Johanson, John F

    2012-01-01

    To define constipation, assess the pharmacist's role in identifying and treating constipation, and review clinical evidence for the efficacy, safety, and tolerability of polyethylene glycol (PEG) 3350 (MiraLAX-Merck Consumer Care), an osmotic laxative now available over the counter (OTC), across a variety of patient populations routinely encountered in pharmacy settings. Systematic PubMed search of the primary literature for constipation treatment guidelines and clinical trial results for PEG 3350. Pharmacists have a unique role in assisting patients with identifying and managing constipation. Multiple controlled clinical trials have established the efficacy, safety, and tolerability of PEG 3350 at its recommended dose of 17 g once daily. On the basis of this evidence, various professional groups have recommended PEG 3350 for use in improving stool frequency and consistency in patients with constipation. PEG 3350 is approved for short-term use, including treatment of constipation caused by medications. Pharmacists can play an important role in managing constipation with OTC agents. Compared with other available OTC agents, PEG 3350 can be recommended to patients suffering from constipation on the basis of a large body of clinical evidence supporting its efficacy and safety, as well as the high patient acceptance shown for its palatability and once-daily dosing.

  15. Influence of polyethylene glycol on percolation dynamics of reverse microemulsions

    Science.gov (United States)

    Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.

    2018-04-01

    We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.

  16. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu

    2017-03-31

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  17. Detecting Sonolysis of Polyethylene Glycol Upon Functionalizing Carbon Nanotubes.

    Science.gov (United States)

    Wang, Ruhung; Murali, Vasanth S; Draper, Rockford

    2017-01-01

    Polyethylene glycol (PEG) and related polymers are often used in the solubilization and noncovalent functionalization of carbon nanomaterials by sonication. For example, carbon nanotubes are frequently sonicated with PEG-containing surfactants of the Pluronic ® series or phospholipid-PEG polymers to noncovalently functionalize the nanotubes. However, PEG is very sensitive to degradation upon sonication and the degradation products can be toxic to mammalian cells and to organisms such as zebrafish embryos. It is therefore useful to have a simple and inexpensive method to determine the extent of potential PEG sonolysis, as described in this chapter. Intact PEG polymers and degraded fragments are resolved on sodium dodecyl sulfate polyacrylamide gels by electrophoresis and visualized by staining with barium iodine (BaI 2 ). Digitized images of gels are acquired using a flatbed photo scanner and the intensities of BaI 2 -stained PEG bands are quantified using ImageJ software. Degradation of PEG polymers after sonication is readily detected by the reduction of band intensities in gels compared to those of non-sonicated, intact PEG polymers. In addition, the approach can be used to rapidly screen various sonication conditions to identify those that might minimize PEG degradation to acceptable levels.

  18. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange

    Science.gov (United States)

    Ullah, Ikram; Ali, Farman; Ali, Zarshad; Humayun, Muhammad; wahab, Zain Ul

    2018-05-01

    In this work, we have successfully prepared ZnFe2O4 magnetic nanoparticles as photocatalysts via co-precipitation method using triethylene glycol as a stabilizing agent. The resultant nanoparticles were annealed at 400 °C and then acid etched and surface functionalized with 3-(triethoxysilyl) propyl amine (APTES). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) analysis were used to characterize these magnetic photocatalysts. XRD patterns revealed that the size of annealed and functionalized ZnFe2O4 nanoparticles falls in the range of 23.3 and 13.9 nm, respectively. The optical band gaps of the magnetic photocatalysts were calculated from UV–Visible absorption spectra using Tauc plots. The band gap of the ZnFe2O4 photocatalyst in acidic and basic medium was 2.47 and 2.7 eV, respectively. The performance of the magnetic photocatalysts was evaluated for xylenol orange (XO) degradation. The degradation rates of XO dye for the blank, annealed and functionalized photocatalysts at pH = 4 were 76%, 85%, and 90%, respectively. In addition, the influence of important parameters such as contact time, pH, catalyst, and dye dose were also investigated for all the three photocatalysts. The applied kinetics models demonstrated that the degradation followed pseudo 1st order.

  19. MODIFICATION OF ERYTHROCYTE MEMBRANE PROTEINS WITH POLYETHYLENE GLYCOL 1500

    Directory of Open Access Journals (Sweden)

    N. G. Zemlianskykh

    2016-10-01

    Full Text Available The aim of the work was to study the effect of polyethylene glycol PEG-1500 on the Ca2+-ATPase activity and changes in CD44 surface marker expression in human erythrocyte membranes. Determination of the Ca2+-ATPase activity was carried out in sealed erythrocyte ghosts by the level of accumulation of inorganic phosphorus. Changes in the expression of CD44 and amount of CD44+-erythrocytes were evaluated by flow cytometry. The inhibition of Ca2+-ATPase activity and a reduction in the level of CD44 expression and also the decrease in the amount CD44+-cells were found, reflecting a fairly complex restructuring in the membrane-cytoskeleton complex of erythrocytes under the influence of PEG-1500. Effect of PEG-1500 on the surface CD44 marker could be mediated by modification of proteins of membrane-cytoskeleton complex, as indicated by accelerated loss of CD44 in erythrocyte membranes after application of protein cross-linking reagent diamide. Reduced activity of Ca2+-ATPase activity may contribute to the increase in intracellular Ca2+ level and thus leads to a modification of interactions of integral proteins with cytoskeletal components that eventually could result in membrane vesiculation and decreasing in expression of the CD44 marker, which is dynamically linked to the cytoskeleton.

  20. Prediction of scale potential in ethylene glycol containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sandengen, Kristian; Oestvold, Terje

    2006-03-15

    This work presents a method for scale prediction in MEG (Mono Ethylene Glycol / 1,2-ethane-diol) containing solutions. It is based on an existing PVT scale model using a Pitzer ion interaction model for the aqueous phase. The model is well suited for scale prediction in saline solutions, where the PVT part is necessary for calculating CO{sub 2} phase equilibria being critical for carbonate scale. MEG influences the equilibria contained in the model, and its effect has been added empirically. Thus the accuracy of the model is limited by the amount of available experimental data. The model is applicable in the range 0-99wt% MEG and includes a wide variety of salts. In addition to the aspects of scale modelling in MEG+water solutions, this work presents new experimental data on CaSO4 solubility (0-95wt% MEG and 22-80 deg.C). CaSO4 solubility is greatly reduced by MEG to an extent that ''Salting-out'' is possible. (author) (tk)

  1. On the Structure of Holographic Polymer-dispersed Polyethylene Glycol

    International Nuclear Information System (INIS)

    Birnkrant, M.; McWilliams, H.; Li, C.; Natarajan, L.; Tondiglia, V.; Sutherland, R.; Lloyd, P.; Bunning, T.

    2006-01-01

    Holographic polymerization (H-P) has been used to fabricate polymer-dispersed liquid crystals and pattern inert nanoparticles. In this article, one-dimensional grating structures of Norland resin and polyethylene glycol (PEG) were achieved using the H-P technique. Both reflection and transmission grating structures were fabricated. The optical properties of the reflection grating structures (also known as Bragg reflectors, BRs) are thermosensitive, which is attributed to the formation and crystallization of PEG crystals. The thermal switching temperature of the BR can be tuned by using different molecular weight PEG samples. The hierarchical structure and morphology of the BR were studied using synchrotron X-ray, polarized light microscopy and transmission electron microscopy. PEG crystals were found to be confined in ∼60 nm thick layers in the BR. Upon crystallization, the PEG lamellae were parallel to the BR surfaces and PEG chains were parallel to the BR normal, resembling the confined crystallization behavior of polyethylene oxide (PEO) in PEO-block-polystyrene (PEO-b-PS) block copolymers. This observation suggests that the tethering effect in the block copolymer systems does not play a major role in PEG chain orientation in the confined nanoenvironment

  2. Preparation and Characterization of Modified Soda Lignin with Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Fangda Zhang

    2016-10-01

    Full Text Available Soda lignin does not have thermal flowing characteristics and it is impossible for it to be further thermally molded. To achieve the fusibility of soda lignin for fiber preparation by melt-spinning, an effective method for soda lignin modification was conducted by cooking it with polyethylene glycol (PEG 400 at various ratios. The higher the ratio of PEG that was used, the more PEG molecular chains were grafted at the alpha carbon of the soda lignin through ether bonds, resulting in lower thermal transition temperatures and more excellent fusibility. The modified soda lignin with a weight ratio of lignin to PEG of 1:4 exhibited a relative thermal stability of molten viscosity at selected temperatures. Thereafter, the resultant fusible soda lignin was successfully melt-spun into filaments with an average diameter of 33 ± 5 μm, which is smaller than that of some industrial lignins. Accordingly, it is possible to utilize soda lignin to produce fibrous carbonaceous materials.

  3. A research on polyether glycol replaced APCP rocket propellant

    Science.gov (United States)

    Lou, Tianyou; Bao, Chun Jia; Wang, Yiyang

    2017-08-01

    Ammonium perchlorate composite propellant (APCP) is a modern solid rocket propellant used in rocket vehicles. It differs from many traditional solid rocket propellants by the nature of how it is processed. APCP is cast into shape, as opposed to powder pressing it with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry. For traditional APCP, ingredients normally used are ammonium peroxide, aluminum, Hydroxyl-terminated polybutadiene(HTPB), curing agency and other additives, the greatest disadvantage is that the fuel is too expensive. According to the price we collected in our country, a single kilogram of this fuel will cost 200 Yuan, which is about 35 dollars, for a fan who may use tons of the fuel in a single year, it definitely is a great deal of money. For this reason, we invented a new kind of APCP fuel. Changing adhesive agency from cross-linked htpb to cross linked polyether glycol gives a similar specific thrust, density and mechanical property while costs a lower price.

  4. Electrodeposition of amine-terminatedpoly(ethylene glycol) to titanium surface

    International Nuclear Information System (INIS)

    Tanaka, Yuta; Doi, Hisashi; Iwasaki, Yasuhiko; Hiromoto, Sachiko; Yoneyama, Takayuki; Asami, Katsuhiko; Imai, Hachiro; Hanawa, Takao

    2007-01-01

    The immobilization of poly(ethylene glycol), PEG, to a solid surface is useful to functionalize the surface, e.g., to prevent the adsorption of proteins. No successful one-stage technique for the immobilization of PEG to base metals has ever been developed. In this study, PEG in which both terminals or one terminal had been modified with amine bases was immobilized onto a titanium surface using electrodeposition. PEG was dissolved in a NaCl solution, and electrodeposition was carried out at 310 K with - 5 V for 300 min. The thickness of the deposited PEG layer was evaluated using ellipsometry, and the bonding manner of PEG to the titanium surface was characterized using X-ray photoelectron spectroscopy after electrodeposition. The results indicated that a certain amount of PEG was adsorbed on titanium through both electrodeposition and immersion when PEG was terminated by amine. However, terminated amines existed at the surface of titanium and were combined with titanium oxide as N-HO by electrodeposition, while amines randomly existed in the molecule and showed an ionic bond with titanium oxide by immersion. The electrodeposition of PEG was effective for the inhibition of albumin adsorption. This process is useful for materials that have electroconductivity and a complex morphology

  5. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2017-01-01

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  6. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)

    Science.gov (United States)

    EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.

  7. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  8. Synthesis of glycolic acid-1-14C of high specific activity

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Viswanathan, K.V.

    1987-01-01

    A simple procedure is described which efficiently converts traces of 14 C labelled cyanide present as a dilute solution into glycolic acid-1- 14 C with more than 85% radiochemical recovery and of high specific activity. (author)

  9. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu; Zhang, Jizhe; Liu, Xin

    2014-01-01

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids

  10. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe; Liu, Xin; Sun, Miao; Ma, Xiaohua; Han, Yu

    2012-01-01

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which

  11. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  12. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  13. An effective medium model versus a network model for nano-structured solar cells

    International Nuclear Information System (INIS)

    Minnaert, B.; Grasso, C.; Burgelman, M.

    2006-01-01

    In this paper, two methods are compared to model the I-V curves of nano-structured solar cells. These cells consist of an interpenetrating network of an n-type transparent semiconductor oxide (e.g. TiO 2 ) and a p-type semiconductor absorber (e.g. CdTe, CuInS 2 ), deposited on TCO covered glass. The methods are also applicable when a dye and an electrolyte replace the p-semiconductor, and even to organic bulk heterojunction cells. A network model (NM) with resistors and diodes has been published by us before. Another method which has been proposed in the literature is an effective medium model (EMM). In this model, the whole p-n nano-structure is represented by one single effective semiconductor layer, which then is fed into a standard solar cell device simulator, e.g. SCAPS. In this work, it is shown that the NM and the EMM can describe the same physical structure, when they are set up properly. As an illustration, some problems are described both by EMM and NM, and the results are compared. The EMM in this work confirms the results obtained earlier with a simplified NM (constant R n , R p ): when illuminating the n-side, the structure is tolerant to R n but not to R p ; the interpenetrating geometry is disadvantageous for V oc . (authors)

  14. Synthesis, characterization and properties of a glycol-coordinated ε-Keggin-type Al13 chloride

    KAUST Repository

    Gu, Bin; Sun, Chenglin; Fettinger, James C.; Casey, William H.; Dikhtiarenko, Alla; Gascon, Jorge; Koichumanova, Kamila; Babu Sai Sankar Gupta, Karthick; Jan Heeres, Hero; He, Songbo

    2018-01-01

    Herein we present the first example of a glycol-coordinated ε-Keggin Al13 chloride (gl-ε-Al13), which is the first chelated version since discovery of Al13 in 1960. The molecular structure consists of [AlO4Al12(OH)12(OC2H4OH)12]Cl7·H2O units with chelating mono-anionic ethylene glycol units replacing one bridging and one terminal oxygen site.

  15. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    OpenAIRE

    Gil, I. D.; García, L. C.; Rodríguez, G.

    2014-01-01

    Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFr...

  16. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  17. Synthesis, characterization and properties of a glycol-coordinated ε-Keggin-type Al13 chloride

    KAUST Repository

    Gu, Bin

    2018-03-29

    Herein we present the first example of a glycol-coordinated ε-Keggin Al13 chloride (gl-ε-Al13), which is the first chelated version since discovery of Al13 in 1960. The molecular structure consists of [AlO4Al12(OH)12(OC2H4OH)12]Cl7·H2O units with chelating mono-anionic ethylene glycol units replacing one bridging and one terminal oxygen site.

  18. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    OpenAIRE

    Laher, A.E.; Goldstein, L.N.; Wells, M.D.; Dufourq, N.; Moodley, P.

    2013-01-01

    Introduction: Delayed treatment of ethylene glycol poisoning can have catastrophic consequences that may result in death. Case report: Three young men presented to the Emergency Centre (EC) with a main complaint of feeling unwell after consuming “homemade alcohol”. A fourth person had died at home an hour earlier. Blood analysis revealed a raised anion gap metabolic acidosis as well as a raised osmolar gap in all three patients. Discussion: The clinical presentation of ethylene glycol a...

  19. Runinal and Intermediary Metabolism of Propylene Glycol in Lactating Holstein Cows

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Raun, Birgitte Marie Løvendahl

    2007-01-01

    Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG).......Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG)....

  20. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  1. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    Science.gov (United States)

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  2. The beneficial effect of cynodon dactylon fractions on ethylene glycol-induced kidney calculi in rats.

    Science.gov (United States)

    Khajavi Rad, Abolfazl; Hadjzadeh, Mousa-Al-Reza; Rajaei, Ziba; Mohammadian, Nema; Valiollahi, Saleh; Sonei, Mehdi

    2011-01-01

    To assess the beneficial effect of different fractions of Cynodon dactylon (C. dactylon) on ethylene glycol-induced kidney calculi in rats. Male Wistar rats were randomly divided into control, ethylene glycol, curative, and preventive groups. The control group received tap drinking water for 35 days. Ethylene glycol, curative, and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation. Preventive and curative subjects also received different fractions of C. dactylon extract in drinking water at 12.8 mg/kg, since day 0 and day 14, respectively. After 35 days, the kidneys were removed and examined for histopathological findings and counting the CaOx deposits in 50 microscopic fields. In curative protocol, treatment of rats with C. dactylon N-butanol fraction and N-butanol phase remnant significantly reduced the number of the kidney CaOx deposits compared to ethylene glycol group. In preventive protocol, treatment of rats with C. dactylon ethyl acetate fraction significantly decreased the number of CaOx deposits compared to ethylene glycol group. Fractions of C. dactylon showed a beneficial effect on preventing and eliminating CaOx deposition in the rat kidney. These results provide a scientific rational for preventive and treatment roles of C. dactylon in human kidney stone disease.

  3. Identification of Poly(ethylene glycol) and Poly(ethylene glycol)-Based Detergents Using Peptide Search Engines.

    Science.gov (United States)

    Ahmadi, Shiva; Winter, Dominic

    2018-06-05

    Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.

  4. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    Science.gov (United States)

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A New Flexible Soy-Based Adhesive Enhanced with Neopentyl Glycol Diglycidyl Ether: Properties and Application

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2016-09-01

    Full Text Available Soy-based adhesives inherently possess low water resistance and brittleness, which limit their application on plywood fabrication. This investigation involves using a long chain cross-linker, neopentyl glycol diglycidyl ether (NGDE, to produce an intrinsic toughening effect to reduce the brittleness and improve the water resistance of a soybean meal–based adhesive. The solids content, viscosity, functional groups, fracture surface micrographs, and thermal stability of the adhesives were measured. Three-layer plywood was fabricated using the resultant adhesive, and the tensile shear strength of the plywood was measured. All adhesive properties were compared with a soybean meal/polyamidoamine-epichlorohydrin (PAE adhesive and commercial melamine urea formaldehyde resin. The results showed that adding 6 g NGDE improved the water resistance of the soybean meal-based adhesive by 12.5%. This improvement is attributed to the following reasons: (1 a dense cross-linked network is formed by the chemical reaction between NGDE and protein molecules; (2 the toughness of the adhesive increases and a smooth and homogeneous fracture surface is created, which effectively prevents moisture intrusion; (3 the addition of NGDE increases the thermostability of the cured adhesive. The tensile shear strength of the plywood bonded with the soybean meal-based adhesive with 6 g NGDE was 286.2% higher than that without NGDE and attained 1.12 MPa, which was attributed to the reduction in the adhesive’s viscosity, and the improvement in the water resistance and toughness of the adhesive. The tensile shear strength of the plywood bonded with 6 g NGDE was 19.1% higher than that with 6 g PAE and was similar to the MUF resin, which validated the novel adhesive being suitable for use as an industrial plywood adhesive.

  6. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery

    International Nuclear Information System (INIS)

    Allen Zennifer, M.; Manikandan, S.; Suganthi, K.S.; Leela Vinodhan, V.; Rajan, K.S.

    2015-01-01

    Highlights: • CuO–ethylene glycol nanofluids prepared and characterized. • Maximum thermal conductivity enhancement of 14.1% at 50 °C for 1 vol% nanofluid. • Heat transfer performance in correspondence with improved transport properties. • 11.8% enhancement in heat transfer rate for 1 vol% nanofluid. - Abstract: Ethylene glycol (EG) plays an important role as coolant in sub-artic and artic regions owing to its low freezing point. However one of the limitations of ethylene glycol for energy management is its low thermal conductivity, which can be improved by addition of nanoparticles. In the present work, cupric oxide nanoparticles have been synthesized followed by dispersion in ethylene glycol through extended probe ultrasonication without addition of chemical dispersing agent. Temperature dependency of thermal conductivity of 1 vol% CuO–ethylene glycol nanofluid exhibited a minimum at a critical temperature corresponding to lower thickness of interfacial layers and negligible Brownian motion. The influence of liquid layering on thermal conductivity was predominant at temperatures below critical temperature leading to higher thermal conductivity at lower temperature. Brownian motion-induced microconvection resulted in thermal conductivity increase with temperature above the critical temperature. About 14.1% enhancement in thermal conductivity was obtained at 50 °C for 1 vol% CuO–ethylene glycol nanofluid. The viscosity of CuO–ethylene glycol nanofluid was lower than the viscosity of ethylene glycol at temperatures below 50 °C and 120 °C for 1 vol% and 0.5 vol% CuO–ethylene glycol nanofluids. Our data reveal that the CuO–ethylene glycol nanofluids are better coolants than ethylene glycol for transient cooling under constant heat flux conditions with 11.8% enhancement in heat transfer rate for 1 vol% CuO–ethylene glycol nanofluid. Hence the use of ethylene glycol-based nanofluids is a promising approach for energy management.

  7. Distraction induced enterogenesis: a unique mouse model using polyethylene glycol.

    Science.gov (United States)

    Okawada, Manabu; Maria, Haytham Mustafa; Teitelbaum, Daniel H

    2011-09-01

    Recent studies have demonstrated that the small intestine can be lengthened by applying mechanical forces to the bowel lumen-distraction-induced enterogenesis. However, the mechanisms which account for this growth are unknown, and might be best examined using a mouse model. The purpose of this study is to establish the feasibility of developing distractive-induced small bowel growth in mouse. Twelve-week old C57BL/6J mice had a jejunal segment taken out of continuity, and distended with polyethylene glycol (PEG: 3350 KDa); this group was compared with a control group without stretching. Segment length and diameter were measured intra-operatively and after 5 d. Villus height, crypt depth, and muscle thickness in the isolated segment were assessed. Rate of epithelial cell proliferation (5-bromo-2-deoxyuridine: BrdU incorporation) in crypts were also examined. The mucosal mRNA expression of targeted factors was performed to investigate potential mechanisms which might lead to distraction-induced enterogenesis. At harvest, the PEG-stretched group showed a significant increase in length and diameter versus controls. Villus height, crypt depth, and muscular layer thickness increased in the PEG group. The PEG group also showed significantly increased rates of epithelial cell proliferation versus controls. Real-time PCR showed a trend toward higher β-catenin and c-myc mRNA expression in the PEG-stretched group; however, this difference was not statistically significant. Radial distraction-induced enterogenesis with PEG is a viable method for increasing small intestinal length and diameter. This model may provide a new method for studying the mechanisms leading to distraction-induced enterogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Cryopreservation of mouse embryos by ethylene glycol-based vitrification.

    Science.gov (United States)

    Mochida, Keiji; Hasegawa, Ayumi; Taguma, Kyuichi; Yoshiki, Atsushi; Ogura, Atsuo

    2011-11-18

    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s(1), then followed by vitrification methods developed in the late 1980s(2). Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained(3), and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature(4). Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos(5). It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and

  9. Hydroxynortriptyline of Empty Fruit Bunches Fibre using Polyethylene glycol (PEG)

    International Nuclear Information System (INIS)

    Noreen, F.M.Z.; Sarani Zakaria

    2013-01-01

    The aim of this study was to investigate the reaction of oil palm empty fruit bunches fibre (EFBF) via chemical modification and hydroxynortriptyline method using polyethylene glycol (PEG). The first stage was the modification of EFB fibre using NaOH and isopropanol. The next stage was the preparation of hydroxypropylated-empty fruit bunches fibre (HP-EFBF), using different molecular weight of PEG (6,000, 8,000 and 10,000). The characterisation involved in this study were conducted by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), determination of kinetic activation energy (E a ), X-ray diffraction (XRD), cellulose crystallinity index (CrI) and weight increment of the HP-EFB fibre. SEM results showed the surface of HP-EFBF swelled and craters formed along the surface of the fibre. IR spectrum also showed OH stretching band in EFB without treatment is 3402 cm -1 , but after hydroxynortriptyline process, the OH stretching band in HP-EFBF (10000, 8000 and 6000) slightly shifted to 3392, 3384 and 3370 cm -1 , respectively. TGA showed the thermal stability of HP-EFBF 6,000 was lower than HP-EFBF 8,000 and 10,000. After chemical modification, the activation energy, E a increased from 32.4 to 51.9 kJ/ mol more than EFB without treatment, 12.5 kJ/ mol. XRD showed that diffraction peak (002) shifted to the smaller 2θ angle and the peaks (101, 10I) disappeared after hydroxynortriptyline process. Crystallinity index, of EFB without treatment decreased from 27 % to 25 % after chemical modification. The higher the molecular weight of the PEG, the greater the weight increment of the HP-EFBF. (author)

  10. Polyethylene glycol restores axonal conduction after corpus callosum transection

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2017-01-01

    Full Text Available Polyethylene glycol (PEG has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA were used to measure mean firing rate (MFR and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05. These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  11. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  12. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  13. Colonoscopy preparation: polyethylene glycol with Gatorade is as safe and efficacious as four liters of polyethylene glycol with balanced electrolytes.

    Science.gov (United States)

    McKenna, Thomas; Macgill, Alice; Porat, Gail; Friedenberg, Frank K

    2012-12-01

    Four liters of polyethylene glycol 3350 (PEG) with balanced electrolytes for colonoscopy preparation has had poor acceptance. Another approach is the use of electrolyte-free PEG combined with 1.9 L of Gatorade. Despite its widespread use, there are no data on metabolic safety and minimal data on efficacy. Our aim was to assess the efficacy and electrolyte safety of these two PEG-based preparations. This was a prospective, randomized, single-blind, non-inferiority trial. Patients were randomized to 238 g PEG + 1.9 L Gatorade or 4 L of PEG-ELS containing 236 g PEG. Split dosing was not performed. On procedure day blood was drawn for basic chemistries. The primary outcome was preparation quality from procedure photos using the Boston Bowel Preparation Scale. We randomized 136 patients (66 PEG + Gatorade, 70 PEG-ELS). There were no differences in preparation scores between the two agents in the ITT analysis (7.2 ± 1.9 for PEG-ELS and 7.0 ± 2.1 for PEG + Gatorade; p = 0.45). BBPS scores were identical for those who completed the preparation and dietary instructions as directed (7.4 ± 1.7 for PEG-ELS, and 7.4 ± 1.8 for PEG + Gatorade; p = 0.98). There were no statistical differences in serum electrolytes between the two preparations. Patients who received PEG + Gatorade gave higher overall satisfaction scores for the preparation experience (p = 0.001), and had fewer adverse effects. Use of 238 g PEG + 1.9 L Gatorade appears to be safe, better tolerated, and non-inferior to 4 L PEG-ELS. This preparation may be especially useful for patients who previously tolerated PEG-ELS poorly.

  14. Colonoscopy Preparation: Polyethylene Glycol with Gatorade is as Safe and Efficacious as 4 Liters of Polyethylene Glycol with Balanced Electrolytes

    Science.gov (United States)

    McKenna, Thomas; Macgill, Alice; Porat, Gail; Friedenberg, Frank K.

    2013-01-01

    Background Four liters of polyethylene glycol 3350 with balanced electrolytes for colonoscopy preparation has had poor acceptance. Another approach is the use of electrolyte-free PEG combined with 1.9L of Gatorade. Despite its widespread use, there are no data on metabolic safety and minimal data on efficacy. Our aim was to assess the efficacy and electrolyte safety of these two PEG-based preparations. Methods This was a prospective, randomized, single-blind, non-inferiority trial. Patients were randomized to 238g PEG + 1.9L Gatorade or 4L of PEG-ELS containing 236g PEG. Split dosing was not performed. On procedure day blood was drawn for basic chemistries. The primary outcome was preparation quality from procedure photos using the Boston Bowel Preparation Scale. Results We randomized 136 patients (66 PEG + Gatorade, 70 PEG-ELS). There were no differences in preparation scores between the two agents in the ITT analysis (7.2 ± 1.9 for PEG-ELS and 7.0 ± 2.1 for PEG + Gatorade; p = 0.45). BBPS scores were identical for those who completed the preparation and dietary instructions as directed (7.4 ± 1.7 for PEG-ELS, and 7.4 ± 1.8 for PEG + Gatorade; p = 0.98). There were no statistical differences in serum electrolytes between the two preparations. Patients who received PEG + Gatorade gave higher overall satisfaction scores for the preparation experience (p = 0.001), and had fewer adverse effects. Conclusions Use of 238g PEG + 1.9L Gatorade appears to be safe, better tolerated, and non-inferior to 4L PEG-ELS. This preparation may be especially useful for patients who previously tolerated PEG-ELS poorly. PMID:22711499

  15. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  16. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    Science.gov (United States)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the

  17. Toxicokinetics of diethylene glycol (DEG) in the rat.

    Science.gov (United States)

    Heilmair, R; Lenk, W; Löhr, D

    1993-01-01

    Oral doses of 1 and 5 ml/kg 14C-diethylene glycol (DEG) given to rats were rapidly and almost completely absorbed, the invasion constants being 2.95 h-1 and 4.24 h-1. The kinetics of invasion were determined with the method of residuals (Rowland and Tozer 1989) and by reconstruction of the invasion curves according to Kübler (1970). 14C-DEG was rapidly distributed from the blood into the organs and tissues in the order kidneys > brain > spleen > liver > muscle > fat, i.e. the same order as the blood flow. The relative volume of distribution, app. VD, was determined at 298 ml, indicating distribution over the whole body. After oral doses of 1, 5, and 10 ml 14C-DEG/kg 64, 87, and 91% of 14C activity in rat blood disappeared in 12-16 h with a half-life of 3.4 h and the remaining 9, 5, and 4% with half-lives of 39 h, 45 h, and 49 h. A total of 73-96% of 14C activity in blood was excreted with the urine and 0.7-2.2% with the faeces. From the cumulative urinary excretion kinetics half-lives of 6 h were determined for doses of 1 and 5 ml/kg and 10 h for the dose of 10 ml/kg. After doses of 5 ml/kg and 10 ml/kg 14C-DEG semi-logarithmic plots of elimination rate versus time were constant for 5 and 9 h, respectively, indicating that DEG accelerated its renal elimination by inducing osmotic diuresis. Thereafter urinary excretion followed first order kinetics with elimination half-lives of 3.6 h. After oral doses of 5 ml/kg 14C-DEG given to rats of 336 g body weight with an app. VD of 297 ml, the total clearance of 14C activity was determined at 63 ml/h, and the renal clearance of unmetabolized DEG was 66 ml/h. The ratio of ClDEG to Cl(inulin) = 0.64 indicated that DEG and its metabolite 2-hydroxyethoxyacetate (2-HEAA) were reabsorbed from the tubuli into the blood capillaries. DEG produced metabolic acidosis, which was completely balanced after doses of 1 and 5 ml/kg, but doses greater than 10 ml/kg produced non-compensated metabolic acidosis, hydropic degeneration of the

  18. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates

    Science.gov (United States)

    Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut

    2018-04-01

    Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.

  19. Prediction and validation of the duration of hemodialysis sessions for the treatment of acute ethylene glycol poisoning.

    Science.gov (United States)

    Iliuta, Ioan-Andrei; Lachance, Philippe; Ghannoum, Marc; Bégin, Yannick; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Agharazii, Mohsen

    2017-08-01

    The duration of hemodialysis (HD) sessions for the treatment of acute ethylene glycol poisoning is dependent on concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. Ethylene glycol assays are not readily available, potentially leading to undue extension or premature termination of HD. We report a prediction model for the duration of high-efficiency HD sessions based retrospectively on a cohort study of 26 cases of acute ethylene glycol poisoning in 24 individuals treated by alcohol dehydrogenase competitive inhibitors, cofactors and HD. Two patients required HD for more than 14 days, and two died. In 19 cases, the mean ethylene glycol elimination half-life during high-efficiency HD was 165 minutes (95% confidence interval of 151-180 minutes). In a training set of 12 patients with acute ethylene glycol poisoning, using the 90th percentile half-life (195 minutes) and a target ethylene glycol concentration of 2 mmol/l (12.4 mg/dl) allowed all cases to reach a safe ethylene glycol under 3 mmol/l (18.6 mg/dl). The prediction model was then validated in a set of seven acute ethylene glycol poisonings. Thus, the HD session time in hours can be estimated using 4.7 x (Ln [the initial ethylene glycol concentration (mmol/l)/2]), provided that metabolic acidosis is corrected. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Hyperosmolar metabolic acidosis in burn patients exposed to glycol based topical antimicrobials-A systematic review.

    Science.gov (United States)

    Leibson, Tom; Davies, Paige; Nickel, Cheri; Koren, Gideon

    2018-06-01

    The well documented susceptibility of burn patients to acquired infections via damaged skin mandates application of antimicrobial agents. These agents are dissolved in various vehicles that augment skin absorption thus allowing greater efficacy. Polyethylene glycol (PEG) and Propylene glycol (PropG) are among the most commonly used vehicles, and both have been used in numerous medications and cosmetic products over the past few decades. Rarely, burn patients treated with agents containing these glycols present with a life threatening systemic toxidrome of hyperosmolar metabolic acidosis. We present a systematic review of outcomes in burn patients treated with similar agents. Relevant studies were identified through systematic searches conducted in MEDLINE (Ovid), Embase (Ovid), CENTRAL (Ovid), and Web of Science (Thomson Reuters), from database inception to August 4th, 2016. All publications of clinical burn patient studies included at least one arm receiving a glycol based topical therapy. A total of 61 studies involving 10,282 patients and 4 different antimicrobial medications fulfilled the inclusion criteria. Nine burn patients (0.09%) were documented to present with hyperosmolar metabolic acidosis during topical silver sulfadiazine treatment. Propylene glycol isolated from their blood accounted for the high osmole gap. This first systematic review found very few cases of documented hyperosmolar metabolic acidosis, all within one study that had set to specifically explore this toxidrome. High index of suspicion with frequent osmolar gap monitoring may help identify future toxicities in a timely manner. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  1. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  2. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2014-03-01

    Full Text Available Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFrac module for distillation columns, to investigate the effect on the separation of the ethylene glycol-glycerol mixture composition, the separating agent feed stages, the separating agent split stream feed, and the azeotropic feed temperature. The NRTL model was used to calculate the phase equilibrium of these strongly polar mixtures. A rigorous simulation of the extractive distillation column finally established was also performed, including a secondary recovery column for the mixture of solvents and a recycle loop, to simulate an industrially relevant situation. This simulation allowed establishing the complete parameters to dehydrate ethanol: the optimal stage for separating agent feed is stage 4; the most adequate composition for the glycols mixture is 60 mol% ethylene glycol and 40 mol% glycerol. Finally, energetically efficient operating conditions for each one of the columns were established through a preliminary pinch analysis.

  3. First report of suspected ethylene glycol poisoning in 2 dogs in South Africa : clinical communication

    Directory of Open Access Journals (Sweden)

    N. Keller

    2005-06-01

    Full Text Available Ethylene glycol (anti-freeze toxicity is a serious emergency in both veterinary and human medicine. Ethylene glycol (E/G is the active anti-freeze principle in radiator water additives. It is odourless, colourless and has a sweet taste. As little as 5 mℓ or 20 mℓ is sufficient to kill a cat or a dog, respectively. Ethylene glycol is rapidly absorbed and metabolised in the liver to oxalate, which is deposited as calcium oxalate in the kidneys causing irreversible damage. This report describes 2 dogs that were suspected to have ingested ethylene glycol. The report contains a description of the 3 stages of ethylene glycol toxicity as well as a short discussion of the treatment. Public awareness about the dangers of anti-freeze will help in limiting exposure of pets and humans to this potentially fatal toxin. Veterinarians need to be aware of anti-freeze toxicity as delayed recognition and treatment will lead to the death of the patient.

  4. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma.

    Science.gov (United States)

    Chaudhary, Savita; Dayal, Surabhi

    2013-10-01

    Various treatment modalities are available for management of melasma, ranging from topical and oral to chemical peeling, but none is promising alone. Very few studies are available regarding efficacy of combination of topical treatment with chemical peeling. Combination of chemical peeling and topical regimen can be a good treatment modality in the management of this recalcitrant disorder. To assess the efficacy of combination of topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling in the treatment of melasma in Indian patients. Forty Indian patients of moderate to severe epidermal variety melasma were divided into two groups of 20 each. One Group i.e. peel group received topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling and other group i.e. control group received topical regimen (2% hydroquinone, 1% hydrocortisone, 0.05% tretinoin). There was an overall decrease in MASI from baseline in 24 weeks of therapy in both the groups (P value peel with topical regimen showed early and greater improvement than the group which was receiving topical regimen only. This study concluded that combining topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling significantly enhances the therapeutic efficacy of glycolic acid peeling. The combination of glycolic acid peeling with the topical regimen is a highly effective, safe and promising therapeutic option in treatment of melasma.

  5. An equal force theory for network models of soft materials with arbitrary molecular weight distribution

    Science.gov (United States)

    Verron, E.; Gros, A.

    2017-09-01

    Most network models for soft materials, e.g. elastomers and gels, are dedicated to idealized materials: all chains admit the same number of Kuhn segments. Nevertheless, such standard models are not appropriate for materials involving multiple networks, and some specific constitutive equations devoted to these materials have been derived in the last few years. In nearly all cases, idealized networks of different chain lengths are assembled following an equal strain assumption; only few papers adopt an equal stress assumption, although some authors argue that such hypothesis would reflect the equilibrium of the different networks in contact. In this work, a full-network model with an arbitrary chain length distribution is derived by considering that chains of different lengths satisfy the equal force assumption in each direction of the unit sphere. The derivation is restricted to non-Gaussian freely jointed chains and to affine deformation of the sphere. Firstly, after a proper definition of the undeformed configuration of the network, we demonstrate that the equal force assumption leads to the equality of a normalized stretch in chains of different lengths. Secondly, we establish that the network with chain length distribution behaves as an idealized full-network of which both chain length and density of are provided by the chain length distribution. This approach is finally illustrated with two examples: the derivation of a new expression for the Young modulus of bimodal interpenetrated polymer networks, and the prediction of the change in fluorescence during deformation of mechanochemically responsive elastomers.

  6. Simple synthesis of nitrogen-rich polymer network and its further amination with PEI for CO2 adsorption

    Science.gov (United States)

    Yin, Fengqin; Zhuang, Linzhou; Luo, Xianyong; Chen, Shuixia

    2018-03-01

    The nitrogen-rich polymer network (MF/PAM) was synthesized through interpenetration between the molecular chains of melamine-formaldehyde resin(MF) and polyacrylamide (PAM), to which the polyethylene imine (PEI) was grafted to obtain solid amine adsorbent (MF/PAM-g-PEI). Compared with MF, the swelling capacity of MF/PAM was greatly enhanced, it could swell rapidly and directly in water. Although the interpenetration of PAM into MF may reduce the porosity of MF/PAM, the CO2 capture capacity of the solid amine adsorbents (MF/PAM-g-PEI) could still reach 2.8 mmol/g at 273 K. The adsorbents also exhibited promising adsorption kinetics and regeneration performances. The kinetics observation showed that the Avrami model could better descript the CO2 adsorption process compared with the pseudo-first-order model and pseudo-second-order model. Meanwhile, the Avrami kinetic orders (na) range from 1.21 to 1.56, displaying that the both physisorption and chemisorption exist in the adsorption process and the PEI have successfully grafted onto the polymer network, which also can be confirmed by the adsorption activation energy value. After 18 adsorption-desorption recycles, the MF/PAM-g-PEI could preserve its initial capacity without any decrease. Our work provides a new method to achieve promising solid amine adsorbents with higher adsorption capacity and better regeneration performance.

  7. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    Science.gov (United States)

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  8. Assessment of Palmitoyl and Sulphate Conjugated Glycol Chitosan for Development of Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Ikram Ullah Khan

    2013-06-01

    Full Text Available Introduction: Amphiphilic copolymers are capable of forming core shell-like structures at the critical micellar concentration (CMC; hence, they can serve as drug carriers. Thus, in the present work, polymeric micelles based on novel chitosan derivative were synthesized. Methods: Block copolymer of palmitoyl glycol chitosan sulfate (PGCS was prepared by grafting palmitoyl and sulfate groups serving as hydrophobic and hydrophilic fractions, respectively. Then, fourier transform infrared spectra (FTIR and spectral changes in iodine/iodide mixture were carried out. Results: FTIR studies confirmed the formation of palmitoyl glycol chitosan sulfate (PGCS and spectral changes in iodine/iodide mixture indicated CMC which lies in the range of 0.003-0.2 mg/ml. Conclusion: Therefore, our study indicated that polymeric micelles based on palmitoyl glycol chitosan sulphate could be used as a prospective carrier for water insoluble drugs.

  9. Determination of thymine glycol residues in irradiated or oxidized DNA by formation of methylglyceric acid

    International Nuclear Information System (INIS)

    Schellenberg, K.A.; Shaeffer, J.

    1986-01-01

    Treatment of DNA solutions with X-irradiation various oxidants including hydrogen peroxide plus ferrous ion, hydrogen peroxide plus copper ion and ascorbate, permanganate, or sonication in the presence of dissolved oxygen all produced varying amounts of thymine glycol residues. After denaturing the DNA with heat, the glycol residues were reduced and labeled at the 6 position with tritium- labeled sodium borohydride. Subsequent reaction with anhydrous methanolic HCl gave a quantitative yield of the methyl ester of methylglyceric acid, which was determined by thin layer chromatography. The method, developed using thymidine as a model, was used to ascertain the requirements for glycol formation in DNA. It was shown that hydroxyl radical generating systems, permanganate, X-irradiation, or sonication in presence of oxygen were required, but hydrogen peroxide in the absence of iron or copper and ascorbate was inactive. Application to determination of DNA damage in vivo is being explored

  10. Synthesis of Silver Particle onto Bamboo Charcoal by Tripropylene Glycol and the Composites Characterization

    Directory of Open Access Journals (Sweden)

    Tzu Hsuan Chiang

    2014-01-01

    Full Text Available In this study, tripropylene glycol was used as a reducting agent in the polyol process to reduce silver nitrate to the form of silver particles deposited onto the surface of bamboo charcoal (BC. The reduction temperature and time were critical parameters as they control the size of the silver particles formed as well as their distribution onto the surface of the BC. The reduction of silver nitrate by the tripropylene glycol occurred at a temperature of 120 °C for 3 h, and the silver particles, which had a face-centered cubic lattice structure, were distributed onto the surface of the BC. These synthesis conditions should work well with tripropylene glycol as reducing agent that can be helpful in the convenient preparation of Ag/BC particles. When Ag/BC powders were manufactured using 3 g of silver nitrate content, the prepared composites had the largest thermal conductivity at 0.2490 W/(m·K.

  11. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  12. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  13. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  14. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Zeyneb Aslan

    2015-10-01

    Full Text Available ABSTRACT Objective: In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. Materials and Methods: The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1% in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1% in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. Results: At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-α, IL-1β and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. Conclusion: The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  15. Final report on the safety assessment of Triethylene Glycol and PEG-4.

    Science.gov (United States)

    2006-01-01

    Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other

  16. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2012-01-01

    Glycol chitosan was linked to vitamin D2 hemisuccinate (ergocalciferol hemisuccinate) for controlled release through water-soluble carbodiimide activation. The resulting conjugate formed self-assembled nanoparticles in aqueous solution with particle size of 279 nm and ergocalciferol hemisuccinate...... content of 8.4% (w/w). Almost spherical 50–90 nm nanoparticles were observed by scanning and transmission electron microscopy upon drying. Drug linking to glycol chitosan was confirmed by FTIR spectroscopy and proton NMR. Particles were also characterized by differential scanning calorimetry and wide...

  17. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    A.E. Laher

    2013-06-01

    Discussion: The clinical presentation of ethylene glycol and methanol poisoning is non-specific and can be difficult to differentiate from ethanol intoxication. Homemade alcohol preparations are commonly adulterated with ethylene glycol and methanol to improve their taste and sting. Toxic alcohol analysis is not routinely carried out by most laboratory services in South Africa, and when carried out, results are only made available a few days later. A high index of suspicion coupled with early blood gas analysis and a need for prompt and effective treatment whilst awaiting toxicology analysis may limit the associated high morbidity and mortality.

  18. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  19. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins.

    Science.gov (United States)

    Mascitti, Andrea; Lupacchini, Massimiliano; Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d'Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean; Colacino, Evelina

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.

  20. Cyanobacterial lactate oxidases serve as essential partners in N2-fixation and evolved into photorespiratory glycolate oxidases in plants.

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  1. Cyanobacterial lactate oxidases serve as essential partners of N2-fixation and evolved to photorespiratory glycolate oxidases in plants

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J.; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  2. The Determination of Polyethylene Glycol in Untreated Urine Samples by High Performance Liquid Chromatography for Intestinal Permeability Studies

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Pedersen, Walther Batsberg; Philipsen, E.

    1985-01-01

    Polyethylene glycol in urine samples has been investigated by high performance liquid chromatography. The molecular weights ranged from 634 to 1338. The urine samples were applied to the chromatographic system without any pre-treatment. For samples with a concentration of 0.2% polyethylene glycol...

  3. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  4. Hemodiafiltration efficacy in treatment of methanol and ethylene glycol poisoning in a 2-year-old girl.

    Science.gov (United States)

    Szmigielska, Agnieszka; Szymanik-Grzelak, Hanna; Kuźma-Mroczkowska, Elżbieta; Roszkowska-Blaim, Maria

    2015-01-01

    Every year about 2.4 million people in USA are exposed to toxic substances. Many of them are children below 6 years of age. Majority of poisonings in children are incidental and related to household products including for example drugs, cleaning products or antifreeze products. Antifreeze solutions contain ethylene glycol and methanol. Treatment of these toxic substances involves ethanol administration, fomepizole, hemodialysis and correction of metabolic acidosis. The aim of the study was to check the efficacy of continuous venovenous hemodiagiltration in intoxication with ethylene glycol and methanol. One year and 7 months old girl after intoxication with ethylene glycol and methanol was treated with continuous venovenous hemodiafiltration instead of hemodialysis because of technical problems (circulatory instability). Intravenous ethanol infusion with hemodialtration resulted in rapid elimination of methanol from the body and significantly reduced blood ethylene glycol level. Continuous venovenous hemodiafiltration can be helpful in treatment of ethylene glycol and methanol intoxication.

  5. Thermodynamic activity of saturated solutions of CsClO4 in ethylene glycol and its analogs of the HOCH2(CH2CH2O)nCH2OH series

    International Nuclear Information System (INIS)

    Krasnoperova, A.P.; Ivanova, E.F.; Kijko, S.M.; Yukhno, G.D.

    1997-01-01

    Solubility of CsClO 4 in ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycols with molar mass 300 and 400 in the temperature range of 273.15-318.15 K has been ascertained by the method of radioactive indicators. Dependence of saturated solutions activity on temperature, dielectric permittivity and the number of (CH 2 CH 2 O) ether groups in glycols is discussed

  6. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    Science.gov (United States)

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  7. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul

    2015-01-01

    characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n...

  8. Modelling of phase equilibria of glycol ethers mixtures using an association model

    DEFF Research Database (Denmark)

    Garrido, Nuno M.; Folas, Georgios; Kontogeorgis, Georgios

    2008-01-01

    Vapor-liquid and liquid-liquid equilibria of glycol ethers (surfactant) mixtures with hydrocarbons, polar compounds and water are calculated using an association model, the Cubic-Plus-Association Equation of State. Parameters are estimated for several non-ionic surfactants of the polyoxyethylene ...

  9. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Science.gov (United States)

    2010-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...

  10. New association schemes for mono-ethylene glycol: Cubic-Plus-Association parameterization and uncertainty analysis

    DEFF Research Database (Denmark)

    Kruger, Francois; Kontogeorgis, Georgios M.; von Solms, Nicolas

    2018-01-01

    Accurate thermodynamic predictions for systems containing glycols are essential for the design and commissioning of novel subsea natural gas dehydration units. Previously it has been shown that the Cubic-Plus-Association (CPA) equation of state can be used to model VLE, SLE and LLE for mixtures...

  11. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Science.gov (United States)

    2010-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new uses...

  12. Design, Synthesis and Hydrolytic Behavior of Mutual Prodrugs of NSAIDs with Gabapentin Using Glycol Spacers

    Directory of Open Access Journals (Sweden)

    Hiba Najeh Alsaad

    2012-10-01

    Full Text Available The free –COOH present in NSAIDs is thought to be responsible for the GI irritation associated with all traditional NSAIDs. Exploitation of mutual prodrugs is an approach wherein the NSAID is covalently bounded to a second pharmacologically active carrier/drug with the ultimate aim of reducing the gastric irritation. In this study some NSAIDs were conjugated with gabapentin via ester bonds using glycol spacers with the expectation of reducing gastric adverse effects and obtaining synergistic analgesic effects. The kinetics of ester hydrolysis were studied in two different non enzymatic buffer solutions at pH 1.2 and 7.4, as well as in 80% human plasma using HPLC with chloroform -methanol as mobile phase. Compounds 9a–c with ethylene glycol spacers showed significant stability at buffer solutions with half lives ranging from about 8–25 h, while the underwent a reasonable plasma hydrolysis (49%–88% in 2 h. Compound 9d with a propylene glycol spacer shows a higher rate of enzymatic hydrolysis than the corresponding ethylene glycol compound 9c. The result of compounds 9a-c indicate that these compounds may be stable during their passage through the GIT until reaching the blood circulation.

  13. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  14. Force-field dependence of the conformational properties of ,-dimethoxypolyethylene glycol

    NARCIS (Netherlands)

    Winger, Moritz; de Vries, Alex H.; van Gunsteren, Wilfred F.

    2009-01-01

    A molecular dynamics (MD) study of ,-dimethoxypolyethylene glycol has been carried out under various conditions with respect to solvent composition, ionic strength, chain length, force field and temperature. A previous MD study on a 15-mer of polyethyleneglycol (PEG) suggested a helical equilibrium

  15. IRIS Toxicological Review of Ethylene Glycol Mono Butyl Ether (Egbe) (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  16. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  17. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (Interagency Science Discussion Draft)

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from ot...

  18. Designer solvents for the extraction of glycols and alcohols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.

    2013-01-01

    The separation of polar compounds from aqueous streams is one of the most energy intensive operations within the chemical industry, because of the formation of hydrogen bonds that should be broken and the high heat of vaporization of water. Important bulk chemicals like glycols and alcohols produced

  19. Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos.

    Science.gov (United States)

    Varago, F C; Moutacas, V S; Carvalho, B C; Serapião, R V; Vieira, F; Chiarini-Garcia, H; Brandão, F Z; Camargo, L S; Henry, M; Lagares, M A

    2014-10-01

    The aim of this work was to evaluate the efficiency of the cryoprotectants dimethylformamide and ethylene glycol for cryopreservation of ovine embryos using vitrification and conventional freezing. The recovered embryos were distributed randomly in three treatment groups: Gr. 1: conventional freezing (n = 44), Gr. 2: vitrification with ethylene glycol (n = 39) and Gr. 3: vitrification with dimethylformamide (n = 38). Quality of fresh embryos in control group as well as of frozen and vitrified embryos was examined by three methodologies: staining with propidium iodide and Hoechst 33258 and evaluation under fluorescent microscopy, evaluation of re-expansion and hatching rates after culture, and determination of apoptotic index with TUNEL technique. It was established that re-expansion rate in all treatment groups was similar. In the same time, hatching rates were higher in Gr. 1 (40.5%) and Gr. 2 (35.3%) in comparison with Gr. 3 (15.5%, p conventional freezing, 10.1 ± 8.5, p conventional freezing) and fresh embryos. In conclusion, the dimethylformamide and ethylene glycol used as cryoprotectant to vitrify ovine embryos, in the concentrations and exposition time tested in this work, were not as efficient as the conventional freezing for cryopreservation of ovine embryos Thus, the conventional freezing with ethylene glycol was the most efficient method to cryopreserve ovine embryos in comparison with vitrification. © 2014 Blackwell Verlag GmbH.

  20. Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; Feijen, Jan; van Blitterswijk, Clemens

    2000-01-01

    Protein release from a series of biodegradable poly(ether ester) multiblock copolymers, based on poly(ethylene glycol) (PEG) and poly(butylene terephthalate) (PBT) was investigated. Lysozyme-containing PEG/PBT films and microspheres were prepared using an emulsion technique. Proteins were

  1. LC determination of propylene glycol in human plasma after pre-column derivatization with benzoyl chloride

    NARCIS (Netherlands)

    Sinjewel, A.; Swart, E.L.; Lingeman, H.; Wilhelm, A.J.

    2007-01-01

    A simple high-performance liquid chromatographic method, using photodiode array detection was developed for the determination of propylene glycol in human plasma and in the fluid retreived after continuous veno-venous hemofiltration. The method entailed alkaline derivatization with benzoyl chloride

  2. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis

    NARCIS (Netherlands)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-01-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene

  3. Hydrodynamic radii of polyethylene glycols in different solvents determined from viscosity measurements

    NARCIS (Netherlands)

    Dohmen-Speelmans, M.P.J.; Pereira, A.M.; Timmer, J.M.K.; Benes, N.E.; Keurentjes, J.T.F.

    2008-01-01

    The hydrodynamic radius, rh, of low molar mass polyethylene glycol, MPEG = (200 to 1000) g·mol-1, in a homologous series of primary alcohols, acetone, and toluene has been determined from viscosity measurements. The viscosity data have been collected using a fast one-point method as well as a more

  4. A polyether glycol derived from cashew nutshell as a kinetic inhibitor for methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Jorge Cesar; Esteves, Pierre M., E-mail: pesteves@iq.ufrj.br [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Teixeira, Adriana [Centro de Pesquisa e Desenvolvimento Leopoldo Americo Miguez de Mello, PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The polyether glycol derived from cashew nutshell liquid inhibited the formation of methane hydrate. The polymer proved to be more efficient than the polyvinyl pyrrolidone-poly(N-vinyl) caprolactam (PVP-PVCap) co-polymer under tested conditions (CH{sub 4}, 1470 psi and 4 degree C), being the latter one of the best commercially available hydrate inhibitors. (author)

  5. Aqueous phase reforming of ethylene glycol - Role of intermediates in catalyst performance

    NARCIS (Netherlands)

    de Vlieger, Dennis; Mojet, Barbara; Lefferts, Leonardus; Seshan, Kulathuiyer

    2012-01-01

    Liquid product formation during the aqueous catalytic reforming of ethylene glycol (EG) was studied up to 450 °C and 250 bar pressure. Methanol, ethanol, and acetic acid were the main liquid by-products during EG reforming in the presence of alumina-supported Pt and Pt–Ni catalysts. The effect of

  6. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on

  7. Ethylene glycol or methanol intoxication : Which antidote should be used, fomepizole or ethanol?

    NARCIS (Netherlands)

    Rietjens, S. J.; de Lange, D. W.; Meulenbelt, J.

    2014-01-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol

  8. Macrogol (polyethylene glycol) laxatives in children with functional constipation and faecal impaction: a systematic review

    OpenAIRE

    Candy, D; Belsey, J

    2008-01-01

    As the evidence base supporting the use of laxatives in children is very limited, we undertook an updated systematic review to clarify the issue. A comprehensive literature search was carried out to identify randomised controlled trials of polyethylene glycol (PEG) versus either placebo or active comparator, in patients aged

  9. Polyethylene glycol (PEG-400: An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Mekala

    2015-12-01

    Full Text Available Polyethylene glycol (PEG-400 was found to be an inexpensive, non-toxic, and effective medium for the one-pot synthesis of 1,2-disubstituted benzimidazoles in excellent yields. Eco-friendliness, low cost, high yields, and recyclability of the PEG-400 are the important features of this protocol.

  10. Biodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro ...

    African Journals Online (AJOL)

    ... drug encapsulation efficiency and release profile of PLGA mico/nanoparticles. The current knowledge of protein instability during preparation, storage and release from PLGA micro/nanoparticles and protein stabilization approaches has also been discussed in this review. Keywords: Poly(D, L-lactic-co-glycolic acid), ...

  11. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang

    2018-08-30

    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synthesis of Highly Effective Novel Graphene Oxide-Polyethylene Glycol-Polyvinyl Alcohol Nanocomposite Hydrogel For Copper Removal

    Directory of Open Access Journals (Sweden)

    Eman Serag

    2017-10-01

    Full Text Available A novel Graphene oxide-polyethylene glycol and polyvinyl alcohol (GO-PEG-PVA triple network hydrogel were prepared to remove Copper(II ion from its aqueous solution. The structures, morphologies, and properties of graphene oxide (GO, the composite GO-PEG-PVA and PEG-PVA were characterized using FTIR, X-ray diffraction, Scanning Electronic Microscope and Thermal Gravimetric analysis. A series of systematic batch adsorption experiments were conducted to study the adsorption property of GO, GO-PEG-PVA hydrogel and PEG-PVA hydrogel under different conditions (e.g. pH, contact time and Cu2+ ions concentration. The high adsorption capacity, easy regeneration, and effective adsorption–desorption results proved that the prepared GO-PEG-PVA composite hydrogel could be an effective adsorbent in removing Cu2+ ion from its aqueous solution. The maximum adsorption capacities were found to be 917, 900 and 423 mg g–1 for GO-PEG-PVA hydrogel, GO and PEG-PVA hydrogel, respectively at pH 5, 25 °C and Cu2+ ions’ concentration 500 mg l–1. The removal efficiency of the recycled GO-PEG-PVA hydrogel were 83, 81, 80 and 79% for the first four times, which proved efficient reusability.

  13. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane

    2015-03-01

    The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Transparent Low Molecular Weight Poly(Ethylene Glycol Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs

    Directory of Open Access Journals (Sweden)

    Théophile Pelras

    2017-11-01

    Full Text Available Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs.

  15. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  16. Reaction mechanism of ethylene glycol decomposition on Pt model catalysts: A density functional theory study

    International Nuclear Information System (INIS)

    Lv, Cun-Qin; Yang, Bo; Pang, Xian-Yong; Wang, Gui-Chang

    2016-01-01

    Highlights: • DFT calculations were performed to study the ethylene glycol decomposition on Pt. • The final products are CO and H_2 on Pt(111), (100) and (211). • Ethylene glycol decomposition on Pt(111) undergoes via initial O−H bond scission and followed by C−H bond cleavage. • Ethylene glycol decomposition proceeds via initial O−H bond scission and followed by O−H bond cleavage on Pt(100)/(211). - Abstract: Understanding and controlling bond beak sequence is important in catalytic processes. The DFT-GGA method combined with slab model was performed to study the ethylene glycol decomposition on various Pt model catalysts such as close-packed Pt(111), stepped Pt(211) and a more open one, Pt(100). Calculation results show that the adsorption energies of ethylene glycol and other decomposition species depend on the coordination number of surface atom, that is, low coordination number correspond to high adsorption energy. Moreover, it was found that final products of ethylene glycol decomposition are CO and H_2 on all model catalysts, but the reaction mechanism varies: On Pt(111), the first step is O−H bond scission, followed by C−H bond cleavage, namely C_2H_6O_2 → HOCH_2CH_2O + H → HOCH_2CHO + 2H→ HOCH_2CO +3H → OCH_2CO + 4H → OCHCO + 5H → CO + HCO + 5H → 2CO + 6H→ 2CO + 3H_2; On Pt(211) and Pt(100), however, it is a second O−H bond cleavage that follows the initial O−H bond scission, that is, C_2H_6O_2 → HOCH_2CH_2O + H → OCH_2CH_2O + 2H → OCHCH_2O + 3H → OCHCHO + 4H → 2HCO + 4H → 2CO + 6H → 2CO + 3H_2  on Pt(211), and C_2H_6O_2 →HOCH_2CH_2O+ H → OCH_2CH_2O + 2H→OCHCH_2O+3H→OCCH_2O+4H→CO+H_2CO+4H→CO+HCO+5H→2CO+6H→2CO+3H_2 on Pt(100) For the catalytic order of ethylene glycol to form H_2, it may be determined based on the rate-controlling step, and it is Pt(111) > Pt(211) > Pt(100).

  17. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  18. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  19. Characterisation of UV-cured acrylate networks by means of hydrolysis followed by aqueous size-exclusion combined with reversed-phase chromatography

    NARCIS (Netherlands)

    Peters, R.; Litvinov, V. M.; Steeman, P.; Dias, A. A.; Mengerink, Y.; van Benthem, R.; de Koster, C. G.; van der Wal, S. J.; Schoenmakers, P.

    2007-01-01

    UV-cured networks prepared from mixtures of di-functional (polyethylene-glycol di-acrylate) and mono-functional (2-ethylhexyl acrylate) acrylates were analysed after hydrolysis, by aqueous size-exclusion chromatography coupled to on-line reversed-phase liquid-chromatography. The mean network density

  20. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    Imani, A.; Modarress, H.; Eliassi, A.; Abdous, M.

    2009-01-01

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 ) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  1. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  2. Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: in-vitro/in-vivo evaluation and histopathological examination.

    Science.gov (United States)

    Kamel, Rabab; Abbas, Haidy; El-Naa, Mona

    2018-06-01

    Citalopram HCl (CH) is one of the few drugs which can be used safely in childhood psychiatric disorders. This study was focused on the preparation of interpenetrating polyelectrolytes nano-complexes (IPNC) to transform the hydrophilic carbohydrate polymers into an insoluble form. The IPNCs were loaded with CH to sustain its effect. The IPNC2 (composed of chitosan:pectin in a 3:1 ratio) showed the most extended drug release pattern (P < 0.05) and followed a Higuchi-order kinetics model. It was characterized using SEM, X-rays diffractometry, and FTIR. In-vivo studies were performed using immature rats with induced depression, and were based on the investigation of behavioral, biochemical, and histopathological changes at different time intervals up to 24 h. Rats treated with IPNC2 showed a significant more rapid onset of action and more extended effect in the behavioral tests, in addition to a significantly higher serotonin brain level up to 24 h, compared to rats treated with the market product (P < 0.05). The histopathological examination showed a profound amelioration of the cerebral cortex features of the depressed rats after IPNC2 administration. This study proves the higher efficacy and more extended effect of the new polyelectrolytes nano-complexes compared to the market product.

  3. The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium.

    Science.gov (United States)

    Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad

    2017-01-01

    In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks ( M c ), crosslink density ( M r ), volume interaction parameter ( v 2, s ), Flory Huggins water interaction parameter and diffusion coefficient ( Q ) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.

  4. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    Science.gov (United States)

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  5. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    Science.gov (United States)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  6. Comparison of polyethylene glycol 3350 and lactulose for treatment of chronic constipation in children.

    Science.gov (United States)

    Gremse, David A; Hixon, Jamie; Crutchfield, Alysia

    2002-05-01

    Polyethylene glycol (PEG) 3350 and lactulose were compared in an unblinded, randomized, crossover design for treatment of constipation in 37 children aged 2 to 16 years. Subjects received lactulose (1.3 g/kg/d divided twice daily up to 20 g) or PEG 3350 (10 g/m2/day) for 2 weeks. PEG 3350 significantly decreased the total colonic transit time compared to lactulose (47.6+/-2.7 vs 55.3+/-2.4 hours, mean +/- SE, PEG 3350 vs lactulose, respectively, p = 0.038). The stool frequency, form, and the ease of passage were similar for each laxative. Polyethylene glycol 3350 is an effective laxative for the treatment of chronic constipation in children.

  7. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  8. Studies on polyethylene glycol coating on NiFe2O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Phadatare, M.R.; Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Pawar, S.H.

    2012-01-01

    The NiFe 2 O 4 nanoparticles were prepared by the combustion method and these nanoparticles were successfully coated with polyethylene glycol (PEG) for the possible biomedical applications such as magnetic resonance imaging, drug delivery, tissue repair, magnetic fluid hyperthermia etc. The structural and magnetic characterizations of NiFe 2 O 4 nanoparticles were carried out by x-ray diffraction and vibrating sample magnetometry techniques, respectively. The morphology of the uncoated and coated nanoparticles was studied by scanning electron microscopy. The existence of PEG layer on NiFe 2 O 4 nanoparticles was confirmed by fourier transform infrared spectroscopy technique. - Highlights: ► Synthesis of nanocrystalline NiFe 2 O 4 by the combustion method. ► Magnetic properties of the NiFe 2 O 4 nanoparticles at room temperature. ► Coating of NiFe 2 O 4 nanoparticles by Polyethylene glycol (PEG).

  9. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    Science.gov (United States)

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    International Nuclear Information System (INIS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Dang, Mau Chien

    2015-01-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, "1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable. (paper)

  11. Delayed autonomic neuropathy in a patient with diethylene glycol poisoning: a case report.

    Science.gov (United States)

    Kamada, Hiroki; Suzuki, Hideaki; Yamamoto, Saori; Nomura, Ryosuke; Kushimoto, Shigeki

    2017-07-01

    A 72-year-old man presented to our hospital after ingesting insecticide containing approximately 2 mL/kg diethylene glycol, which exceeded the lethal dose of 1 mL/kg. The patient recovered from critical symptoms on acute phase until day 3, but received artificial ventilation for muscle weakness secondary to sensorimotor neuropathy on days 11-54. Even after marked improvement from sensorimotor neuropathy, the patient continued to complain of orthostatic hypotension. Autonomic neuropathy was identified by positive result of a head-up tilt test, and reduction in coefficient of variation of R-R intervals and cardiac iodine-123-metaiodobenzylguanidine uptake for the assessment of cardiac sympathetic activity. The patient's symptoms fully recovered 2 years after the exposure to diethylene glycol. This case shows the first report of delayed autonomic neuropathy after recovery from severe sensorimotor neuropathy, and suggests the importance of continuous monitoring for late-onset neurological complications.

  12. Additional of polyethylene glycol on the preparation of LaPO4:Eu3+ phosphor

    Science.gov (United States)

    Panatarani, Camellia; Joni, I. Made

    2013-09-01

    Solution phase method was used to synthesis nanocrystal LaPO4:Eu3+. Polyethylene glycol with vary molecular weight (MW) was added to allow an exothermic reaction to get a high crystalinity of LaPO4:Eu3+. The x-ray pattern of as prepared LaPO4 was obtained by using an X'pert PANalytical diffractometer with CuKα radiation (λ = 1.5406 Å) and the photoluminescent measurement spectra is obtained by using Fluorescence Spectrometer LS55, Perkin Elmer. The additional of various MW of polyethylene glycol into the precursor solution of LaPO4:Eu3+ affected the crystal structure and luminescent properties. Higher MW of PEG depressing the luminescent spectra. The emission origin from 5D0-7F4 transition vanished by additional 500,000 and 2,000,000 MW of PEG.

  13. Characterization of Physical and Thermal Properties of Biofield Treated Neopentyl Glycol

    OpenAIRE

    Trivedi , Mahendra Kumar; Tallapragada , Rama Mohan; Branton , Alice; Trivedi , Dahryn; Nayak , Gopal; Mishra , Rakesh; Jana , Snehasis

    2015-01-01

    International audience; Neopentyl glycol (NPG) has been extensively used as solid-solid phase change materials (PCMs) for thermal energy storage applications. The objective of the present study was to evaluate the impact of biofield treatment on physical, spectral and thermal properties of NPG. The study was performed in two groups (control and treated). The control group remained as untreated, and treatment group was subjected to Mr. Trivedi’s biofield treatment. The control and treated NPG ...

  14. Characterization of Physical and Thermal Properties of Biofield Treated Neopentyl Glycol

    OpenAIRE

    Trivedi, Dahryn; Trivedi, Mahendra Kumar; Branton, Alice; Nayak, Gopal

    2015-01-01

    Neopentyl glycol (NPG) has been extensively used as solid-solid phase change materials (PCMs) for thermal energy storage applications. The objective of the present study was to evaluate the impact of biofield treatment on physical, spectral and thermal properties of NPG. The study was performed in two groups (control and treated). The control group remained as untreated, and treatment group was subjected to Mr. Trivedi’s biofield treatment. The control and treated NPG were characterized by X-...

  15. Maltose Neopentyl Glycol-3 (MNG-3) Analogues for Membrane Protein Study

    OpenAIRE

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul; Gotfryd, Kamil; Lee, Ho Jin; Go, Juyeon; Kim, Jin Woong; Loland, Claus J.; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2015-01-01

    Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayer and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, development of novel agents with enhanced stabilization characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here we prepared MNG-3 analogues and characte...

  16. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    OpenAIRE

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-01-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the ...

  17. Safety of polyethylene glycol 3350 solution in chronic constipation: randomized, placebo-controlled trial

    OpenAIRE

    McGraw, Thomas

    2016-01-01

    Thomas McGraw Global Medical Affairs, Merck & Co., Inc., Kenilworth, NJ, USA Purpose: To evaluate the safety and tolerability of aqueous solution concentrate (ASC) of polyethylene glycol (PEG) 3350 in patients with functional constipation.Patients and methods: The patients who met Rome III diagnostic criteria for functional constipation were randomized in this multicenter, randomized, placebo-controlled, single-blind study to receive once daily dose of PEG 3350 (17 g) ASC or ...

  18. Comparison of a low dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation

    OpenAIRE

    Attar, A; Lemann, M; Ferguson, A; Halphen, M; Boutron, M; Flourie, B; Alix, E; Salmeron, M; Guillemot, F; Chaussade, S; Menard, A; Moreau, J; Naudin, G; Barthet, M

    1999-01-01

    Background—Polyethylene glycol (PEG) 3350 is a non-absorbable, non-metabolised osmotic agent used in lavage solutions for gut cleansing. 
Aims—To compare the efficacy of PEG and lactulose in chronic constipation. 
Methods—A total of 115 patients with chronic constipation entered a multicentre, randomised, comparative trial. They initially received two sachets containing either PEG (13 g/sachet) or lactulose (10 g/sachet) and were given an option to change the dose to one ...

  19. Experimental Study of CO2 Solubility in Ionic Liquids and Polyethylene Glycols

    OpenAIRE

    Huang, Huang

    2015-01-01

    The parameter of density, viscosity are tested and fitted with the result of solubility measurement. With series of experiments, this chemical blend is considered with a good effect. The mixture of 50% tetrabutylphosphonium glycine with 50% polyethylene glycol (molecular weight: 400) is the suggested blend, and the most suitable temperature is absorption in 120C and desorption in 60C. But the solubility reduced rapidly from the second cycle of experiment, thus recycled use is not recommended.

  20. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview

    OpenAIRE

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Gra?a

    2017-01-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and ...

  1. Novel Routes to Ethylene Glycol Synthesis via Acid-Catalyzed Carbonylation of Formaldehyde and Dimethoxymethane

    OpenAIRE

    Celik, Fuat Emin

    2010-01-01

    Carbon-carbon bond forming carbonylation reactions were investigated as candidates to replace ethene epoxidation as the major source of ethylene glycol production. This work was motivated by the potentially lower cost of carbon derived from synthesis gas as compared to ethylene. Synthesis gas can be produced from relatively abundant and cheap natural gas, coal, and biomass resources whereas ethylene is derived from increasingly scarce and expensive crude oil. From synthesis gas, a range of...

  2. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu

    2014-09-30

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.

  3. Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-10-09

    The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapes and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.

  4. Effects of Zinc Deuteroporphyrin Bis Glycol on Newborn Mice After Heme-Loading

    OpenAIRE

    He, Cynthia X.; Campbell, Claire M.; Zhao, Hui; Kalish, Flora S.; Schulz, Stephanie; Vreman, Hendrik J.; Wong, Ronald J.; Stevenson, David K.

    2011-01-01

    Infants with hemolytic diseases frequently develop hyperbilirubinemia, but standard phototherapy only eliminates bilirubin after its production. A better strategy might be to directly inhibit heme oxygenase (HO), the rate-limiting enzyme in bilirubin production. Metalloporphyrins (Mps) are heme analogs that competitively inhibit HO activity in vitro and in vivo and suppress plasma bilirubin levels in vivo. A promising Mp, zinc deuteroporphyrin bis glycol (ZnBG), is orally absorbed and effecti...

  5. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    OpenAIRE

    Zehra Durmus

    2014-01-01

    Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG) solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol) on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffractio...

  6. Randomized cross-over trial of polyethylene glycol electrolyte solution and water for colostomy irrigation.

    Science.gov (United States)

    O'Bichere, Austin; Green, Colin; Phillips, Robin K S

    2004-09-01

    Water for colostomy irrigation is largely absorbed by the colon, which may result in less efficient expulsion of stool. This study compared the outcome of colonic cleansing with water and polyethylene glycol solution. In a cross-over study, 41 colostomy irrigators were randomly assigned to water or polyethylene glycol solution irrigation first and then the other regimen, each for one week. Patients recorded fluid inflow time, total washout time, cramps, leakage episodes, number of stoma pouches used, and satisfaction scores (Visual Analog Scale, 1-10: 1 = poor, and 10 = excellent). The median and interquartile range for each variable was calculated, and the two treatments were compared (Wilcoxon's test). Eight patients failed to complete the study. Thirty-three patients (20 females; mean age, 55 (range, 39-73) years) provided 352 irrigation sessions: water (n = 176), and polyethylene glycol solution (n = 176). Irrigation was performed every 24, 48, and 72 hours by 17, 9, and 7 patients respectively, using 500 ml (n = 1), 750 ml (n = 2), 1,000 ml (n = 16), 1,500 ml (n = 11), 2,000 ml (n = 2), and 3,500 ml (n = 1) of fluid. The median and interquartile range for water vs. polyethylene glycol solution were: fluid inflow time (6 (range, 4.4-10.8) vs. 6.3 (range, 4.1-11) minutes; P = 0.48), total washout time (53 (range, 33-69) vs. 38 (range, 28-55) minutes; P = 0.01), leakage episodes (2.3 (range, 1.7-3.8) vs. 0.7 (range, 0.2-1); P colostomy irrigation.

  7. Efficacy of polyethylene glycol 4000 on constipation of posttraumatic bedridden patients.

    Science.gov (United States)

    Zhang, Lian-yang; Yao, Yuan-zhang; Wang, Tao; Fei, Jun; Shen, Yue; Chen, Yong-hua; Zong, Zhao-wen

    2010-06-01

    To investigate the efficacy and safety of polyethylene glycol 4000 on adult patients with functional constipation due to posttraumatic confinement to bed. A total of 201 posttraumatic bedridden patients were studied in this prospective, open-labeled, single-group study. Polyethylene glycol 4000 was administered orally for 14 days and the dosage was adjusted according to the Bristol stool types. Demographic characteristics, disease status, treatment period and factors affecting clinical outcome, especially the concomitant medications, were recorded. After administration of polyethylene glycol 4000, 194 cases (96.52%) showed remission of constipation, including 153 (76.12%) persistent remission. The average defecation frequency increased significantly after treatment and the percentage of patients with stools of normal types (Bristol types 3-5) increased as well. Genders, ages and concomitant medications showed no significant influence on the persistent remission rate. After consecutive treatment for two weeks, patients with slight movement showed a significantly higher remission rate than those without movement (95% vs 80%). At the end of treatment, most accompanying symptoms were relieved obviously. Patients with a medical history of constipation or ever taking laxatives showed a lower remission rate. Sixty cases (29.85%) developed diarrhea during the observational period, among whom 6 (10%) withdrew from the clinical observation voluntarily at the first onset of diarrhea. Two cases suffered from abdominal pain. Polyethylene glycol 4000 has efficacy on functional constipation in posttraumatic bedridden patients. Furthermore, patients with milder symptoms, more movement in bed, and longer duration of treatment but without accompanying symptoms can achieve a higher remission rate.

  8. Glycol porphyrin derivatives and temoporfin elicit resistance to photodynamic therapy by different mechanisms

    Czech Academy of Sciences Publication Activity Database

    Králová, Jarmila; Kolář, Michal; Kahle, Michal; Truksa, Jaroslav; Lettlová, Sandra; Balusiková, K.; Bartůněk, Petr

    2017-01-01

    Roč. 7, Mar 15 (2017), č. článku 44497. ISSN 2045-2322 R&D Projects: GA MŠk LO1220 Institutional support: RVO:68378050 ; RVO:86652036 Keywords : Glycol porphyrin derivates * chemotherapy * cancer * multidrug resistance Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (BTO-N) OBOR OECD: Biochemistry and molecular biology; Biochemistry and molecular biology (BTO-N) Impact factor: 4.259, year: 2016

  9. Towards benchmarking of multivariable controllers in chemical/biochemical industries: Plantwide control for ethylene glycol production

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Bialas, Dawid Jan; Jørgensen, John Bagterp

    2011-01-01

    In this paper we discuss a simple yet realistic benchmark plant for evaluation and comparison of advanced multivariable control for chemical and biochemical processes. The benchmark plant is based on recycle-separator-recycle systems for ethylene glycol production and implemented in Matlab...... for education purposes (operator training, student education, etc) as well as scientific research into chemical process control where it enables rapid evaluation and comparison of advanced multivariable controllers as demonstrated in this study....

  10. Efficacy and Complications of Polyethylene Glycols for Treatment of Constipation in Children

    OpenAIRE

    Chen, Si-Le; Cai, Shi-Rong; Deng, Liang; Zhang, Xin-Hua; Luo, Te-Dong; Peng, Jian-Jun; Xu, Jian-Bo; Li, Wen-Feng; Chen, Chuang-Qi; Ma, Jin-Ping; He, Yu-Long

    2014-01-01

    Abstract Constipation is a common childhood complaint. In 90% to 95% of children, constipation is functional, which means that there is no objective evidence of an underlying pathological condition. Polyethylene glycol (PEG or macrogol) solution is an osmotic laxative agent that is absorbed in only trace amounts from the gastrointestinal tract and routinely used to treat chronic constipation in adults. Here, we report the results of a meta-analysis of PEG-based laxatives compared with lactulo...

  11. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  12. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  13. Interomolecular interactions in diluted solutions of potassium iodocuprates (1) in dimethyl ether of diethylene glycol

    International Nuclear Information System (INIS)

    Gorodinskaya, Eh.Ya.; Mel'nikova, N.B.; Yurin, K.V.

    1991-01-01

    The role of donor solvent in the formation of potassium mononuclear iodocuprates (1) in the system CuI-KI-dimethyl ether of diethylene glycol has been considerd. The calculated values of enthalpy, free energy and entropy of viscous flow activation in the range of temperatures 298-318 K for the solutions testify to decomposition of the solvent structure. Negative deviations of mole volumes from the additivity rule characterized strong molecular interaction

  14. Delayed autonomic neuropathy in a patient with diethylene glycol poisoning: a case report

    OpenAIRE

    Kamada, Hiroki; Suzuki, Hideaki; Yamamoto, Saori; Nomura, Ryosuke; Kushimoto, Shigeki

    2017-01-01

    Case A 72‐year‐old man presented to our hospital after ingesting insecticide containing approximately 2 mL/kg diethylene glycol, which exceeded the lethal dose of 1 mL/kg. The patient recovered from critical symptoms on acute phase until day 3, but received artificial ventilation for muscle weakness secondary to sensorimotor neuropathy on days 11–54. Outcome Even after marked improvement from sensorimotor neuropathy, the patient continued to complain of orthostatic hypotension. Autonomic neur...

  15. Ethylene glycol, but not DMSO, could replace glycerol inclusion in soybean lecithin-based extenders in ram sperm cryopreservation.

    Science.gov (United States)

    Najafi, Abouzar; Daghigh-Kia, Hossein; Dodaran, Hossein Vaseghi; Mehdipour, Mahdieh; Alvarez-Rodriguez, Manuel

    2017-02-01

    The aim of this study was to evaluate the effects of glycerol, ethylene glycol or DMSO in a soybean lecithin extender for freezing ram semen. In this study, 20 ejaculates were collected from four Ghezel rams and diluted with soybean lecithin extender with glycerol (7%), ethylene glycol (3%, 5% and 7%) or DMSO (3%, 5% and 7%). Sperm motility (CASA), membrane integrity (HOS test), viability, total abnormality, mitochondrial activity (Rhodamine 123) and apoptotic features (Annexin V/Propidium iodide) were assessed after thawing. There was no significant difference between glycerol and ethylene glycol at different concentrations (3% and 5%) regarding sperm total and progressive motility, viability, and membrane integrity. The least percentages of mitochondrial functionality were observed in samples frozen with all different DMSO concentrations tested (Plecithin extender. We propose that glycerol in a soybean lecithin based extender could be replaced by ethylene glycol at 3% or 5% concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ciprofloxacin in polyethylene glycol-coated liposomes: efficacy in rat models of acute or chronic Pseudomonas aeruginosa infection

    NARCIS (Netherlands)

    I.A.J.M. Bakker-Woudenberg (Irma); M.T. ten Kate (Marian); L. Guo; P. Working; J.W. Mouton (Johan)

    2002-01-01

    textabstractIn a previous study in experimental Klebsiella pneumoniae pneumonia, the therapeutic potential of ciprofloxacin was significantly improved by encapsulation in polyethylene glycol-coated ("pegylated") long-circulating (STEALTH) liposomes. Pegylated liposomal

  17. Thermodynamic and optical studies of some ethylene glycol ethers in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Parwate, Dilip V.

    2009-01-01

    Experimental results of density (ρ), speed of sound (u), and refractive index (n D ) have been obtained for aqueous solutions of ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE) over the entire concentration range at T = 298.15 K. From these measurements, the derived parameters, apparent molar volume of solute (φ V ), excess molar volume (V E ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (φ KS ), deviation in isentropic compressibility (Δβ S ), molar refraction [R] 1,2 and deviation in refractive index of solution (Δn D ) have been calculated. The Redlich-Kister equation has been fitted to the calculated values of V E , Δβ S and Δn D for the solution. The results obtained are interpreted in terms of hydrogen bonding and various interactions among solute and solvent molecules

  18. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  19. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  20. Tetraethylene glycol thermooxidation and the influence of certain compounds relevant to conserved archaeological wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig; Egsgaard, Helge; Hvilsted, Søren

    2012-01-01

    The degradation of tetraethylene glycol (TEG) was studied at 70 °C under dry air and nitrogen. Degradation products were detected using gas chromatography-mass spectrometry (GC–MS). They were mono-, di- and tri-ethylene glycol, mono- and di-formates of mono-, di-, tri- and tetra-ethylene glycol...... and formic acid. The rate of TEG degradation was significantly decreased by approximately 10 mmol/l KI, FeCl3, Cu(CH3COO)2, MnO2 and CuSO4, small amounts of fresh oak wood sawdust and gypsum-containing scrapings from the wood surface of the Vasa ship in Stockholm. Thus certain salts and natural components...... of archaeological wood are able to inhibit oxidative degradation of TEG. NaFe3(SO4)2(OH)6 (Natrojarosite), FeS2 (pyrite), FeSO4, Fe2(SO4)3, NiCl2, NiSO4, Fe, Cu, Fe2O3, CuO, NaHSO4 and natrojarosite-containing scrapings from the Vasa had no major effect on the rate of oxidation....

  1. Triethylene glycol, an active component of Ashwagandha (Withania somnifera leaves, is responsible for sleep induction.

    Directory of Open Access Journals (Sweden)

    Mahesh K Kaushik

    Full Text Available Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  2. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  3. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    Science.gov (United States)

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  4. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  5. Extraction of strontium and barium by nitrobenzene solution of dicarbolide in the presence of polyethylene glycols

    International Nuclear Information System (INIS)

    Vanura, P.; Makrlik, E.; Rais, J.; Kyrs, M.

    1982-01-01

    Extraction of microamounts of Sr 2+ and Ba 2+ from 0.2 to 1.0 M-HClO 4 by nitrobenzene solutions of dicarbolide H + [Co(C 2 B 9 H 11 ) 2 ] - in the presence of polyethylene glycols (PEG) (average Msub(r)=200,300,400) was investigated. It was found that the extraction of the protonized polyethylene glycol molecule ((H + )sub(org)+L reversible (HL + )sub(org), where the subscript denotes species present in the organic phase) and the extraction of the complex between the extracted ion and polyethylene glycol, i.e., M 2+ +L+2(H + )sub(org) reversible (ML 2+ )sub(org)+2H + , are the predominant reactions in this system. The respective equilibrium constants were determined. The hydration numbers of HL + and ML 2+ ions in the organic phase were obtained from the determination of water content by the Karl Fischer titration method. The extraction constants and stability constants in the organic phase increase in the sequence H + 2+ 2+ and PEG 200< PEG 300< PEG 400 while the hydration numbers decrease in the same sequence. Correlations between the hydration numbers and the extraction constants for these cations were found. (author)

  6. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction.

    Science.gov (United States)

    Kaushik, Mahesh K; Kaul, Sunil C; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  7. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  8. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  9. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  10. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  11. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: Design, synthesis, and dissolving thrombus.

    Science.gov (United States)

    Zhang, Shao-Fei; Lü, Shaoyu; Gao, Chunmei; Yang, Jiandong; Yan, Xiang; Li, Tao; Wen, Na; Huang, Mengjie; Liu, Mingzhu

    2018-06-01

    Thrombotic events affect many individuals in a number of ways, all of which can cause significant morbidity and mortality. Nattokinase (NK), as a novel thrombolytic drug, has been used for thrombolytic therapy. It not only possesses plasminogen activator activity, but also directly digests fibrin through limited proteolysis. However, it may undergo inactivation and denaturation in the harsh external environment. In this study, a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer was fabricated and used as a carrier for NK protection and delivery. Different arm numbers of polyethylene glycol-polyglutamic acid peptide dendrimers (x-PEG(G 3 ) x , x = 2, 4, 6, 8) were designed, prepared, and characterized by 1 H NMR and FTIR. Then, x-PEG(G 3 ) x were loaded with NK to form nanocomposites. Their size and morphology were determined by dynamic light scattering and transmission electron microscopy. Enzyme activity was evaluated via UV-Vis absorbance spectra, fluorescence spectra, circular dichroism spectra, and zeta potential measurements. The study reveals that the obtained x-PEG(G 3 ) x /NK nanocomposites possess high enzyme activity. In addition, the nanocomposites show increased viability of rat macrophage cells, and excellent thrombolysis ability in vitro and in vivo. This work establishes a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer with potential application in NK carrier and thrombolytic therapy. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1687-1696, 2018. © 2018 Wiley Periodicals, Inc.

  12. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  13. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    International Nuclear Information System (INIS)

    Nicolay, K.; Kruijff, B. de; Smaal, E.B.

    1986-01-01

    2 H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2 H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2 H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  14. Fermentation of glycolate by a pure culture of a strictly anaerobic gram-positive bacterium belonging to the family Lachnospiraceae.

    Science.gov (United States)

    Janssen, Peter H; Hugenholtz, Philip

    2003-05-01

    The component bacteria of a three-membered mixed culture able to ferment glycolate to acetate, propionate and CO(2) were isolated in pure culture. All three strains were strict anaerobes that, on the basis of comparative 16S rRNA gene sequence analysis, belonged to the order Clostridiales in the phylum Firmicutes (low G+C gram-positive bacteria). Two of the strains were not involved in glycolate metabolism. The third, the glycolate-fermenting strain 19gly4 (DSM 11261), was related to members of the family Lachnospiraceae. The cells of strain 19gly4 were oval- to lemon-shaped, 0.85 microm long and 0.65 microm in diameter, occurring singly, in pairs, or in chains of up to 30 cells. Strain 19gly4 fermented glycolate or fumarate to acetate, succinate, and CO(2). Hydrogen was not formed, and strain 19gly4 was able to grow on glycolate in pure culture without any syntrophic hydrogen transfer and without the use of an external electron acceptor. There was no evidence for homoacetogenic metabolism. This bacterium therefore differs in metabolism from previously reported glycolate-utilising anaerobes.

  15. Declarative Networking

    CERN Document Server

    Loo, Boon Thau

    2012-01-01

    Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, decla

  16. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    Directory of Open Access Journals (Sweden)

    Chu QC

    2016-01-01

    Full Text Available Qiuchen Chu,1,* Hong Xu,2,* Meng Gao,1 Xin Guan,1 Hongyan Liu,1 Sa Deng,1 Xiaokui Huo,1 Kexin Liu,1 Yan Tian,1 Xiaochi Ma1 1College of Pharmacy, 2College of Basic Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer remains a major problem around the world. Resibufogenin (RBG is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison, which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid (PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN, and RBG/coumarin-6-loaded PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS, and 5-fluorouracil solution (used as the negative controls, as assayed using flow cytometry. LD50 (median lethal dose values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in

  17. Volumetric and viscometric study of aqueous binary mixtures of some glycol ethers at T = (275.15 and 283.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Sheikh, Shaziya; Deshmukh, Dinesh W.

    2011-01-01

    Graphical abstract: Highlights: → Study of aqueous solutions of glycol ethers at low temperatures is presented. → Glycol ethers are industrially important liquids. → Reduction in the volume was observed upon addition of all glycol ethers to water. → Glycol ethers act as structure makers in aqueous medium. - Abstract: The experimental data for the density (ρ) and viscosity (η) are reported for aqueous binary mixtures of different glycol ethers, namely ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE), at different temperatures (T = 275.15 K and 283.15 K) within the concentration range 0 mol . kg -1 to 0.1 mol . kg -1 . The values of density (ρ) and viscosity (η) of the solutions were used to compute different derived parameters, such as apparent molar volume (φ V ) of the solute, excess molar volume (V E ) of the solution, viscosity B and D coefficients of solution and temperature coefficient of viscosity B-coefficient (dB/dT) of solution. The limiting apparent molar volume of the solutes (φ V 0 ) have been obtained for aqueous binary mixtures of these glycol ethers by smooth extrapolation of φ V -m curves to zero concentration. By using the values of φ V 0 , the limiting excess partial molar volumes (V-bar 2 0E ) have also been calculated. The results are interpreted in term of various interactions such as solute-solvent interactions and hydrogen bonding.

  18. Preparation of shape-stabilized co-crystallized poly (ethylene glycol) composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Qian, Yong; Wei, Ping; Jiang, Pingkai; Li, Zhi; Yan, Yonggang; Ji, Kejian; Deng, Weihua

    2013-01-01

    Highlights: • Shape-stabilized PEG composites were prepared by sol–gel process. • The increased energy storage ability of composite was from cocrystallization effect. • Diammonium phosphate improved flame retardancy properties of PEG composite. • PEG composites had potential to be used as thermal energy storage materials. - Abstract: Shape-stabilized co-crystallized poly (ethylene glycol) (PEG) composites were prepared by sol–gel process. Tetraethoxysilane was utilized as supporting matrix precursor. The crystallization property as well as thermal energy storage properties of PEG was influenced by silica network. The combination of PEG 2k and PEG 10k with suitable ratio (3:1 by weight) led to synergistically increased fusion enthalpy attributed to cocrystallization effect. Furthermore, halogen-free flame retarded PEG composites were obtained using diammonium phosphate as flame retardant. With suitable composition, the latent heat value of flame retarded PEG composite was 96.7 kJ/kg accompanied with good thermal stability and improved flame retardancy properties. Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), polarized optical microscope (POM) and scanning electron microscope (SEM) were used to characterize the structure of PEG composites. Thermal stability properties of PEG composites were investigated by thermogravimetric analyzer (TGA). Char residue obtained from muffle furnace of PEG composites was analyzed by SEM and FT-IR. Flame retardancy properties of PEG composites were estimated by pyrolysis combustion flow calorimeter. Results showed that it was potential for shape-stabilized halogen-free flame retarded PEG composite to be applied in thermal energy storage field

  19. Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Frost, Michael; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2013-01-01

    for critical temperature, pressure and acentric factor.This work presents new phase equilibrium data for binary MEG/reservoir fluid and ternary MEG/water/reservoir fluid systems, where two reservoir fluids from Statoil operated fields are used. The solubility data are reported over a range of temperatures......The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become more and more important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates, containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  20. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    International Nuclear Information System (INIS)

    Tuyen Dao, Thi Phuong; Nguyen, To Hoai; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Dang, Mau Chien

    2014-01-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1 H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100–300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix. (paper)