WorldWideScience

Sample records for glycol based aqueous

  1. Conceptual process design and economic analysis of a process based on liquid-liquid extraction for the recovery of glycols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, Boelo; de Haan, A.B.

    2013-01-01

    The recovery of monoethylene glycol (MEG) and 1,2-propylene glycol (PG) from aqueous streams via liquid–liquid extraction (LLE) using a tailor-made ionic liquid [TOA MNaph] is evaluated as an alternative technology to conventional triple effect evaporation of water. In this paper, the conceptual

  2. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  3. Volumetric and viscometric study of aqueous binary mixtures of some glycol ethers at T = (275.15 and 283.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Sheikh, Shaziya; Deshmukh, Dinesh W.

    2011-01-01

    Graphical abstract: Highlights: → Study of aqueous solutions of glycol ethers at low temperatures is presented. → Glycol ethers are industrially important liquids. → Reduction in the volume was observed upon addition of all glycol ethers to water. → Glycol ethers act as structure makers in aqueous medium. - Abstract: The experimental data for the density (ρ) and viscosity (η) are reported for aqueous binary mixtures of different glycol ethers, namely ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE), at different temperatures (T = 275.15 K and 283.15 K) within the concentration range 0 mol . kg -1 to 0.1 mol . kg -1 . The values of density (ρ) and viscosity (η) of the solutions were used to compute different derived parameters, such as apparent molar volume (φ V ) of the solute, excess molar volume (V E ) of the solution, viscosity B and D coefficients of solution and temperature coefficient of viscosity B-coefficient (dB/dT) of solution. The limiting apparent molar volume of the solutes (φ V 0 ) have been obtained for aqueous binary mixtures of these glycol ethers by smooth extrapolation of φ V -m curves to zero concentration. By using the values of φ V 0 , the limiting excess partial molar volumes (V-bar 2 0E ) have also been calculated. The results are interpreted in term of various interactions such as solute-solvent interactions and hydrogen bonding.

  4. New technetium-99m generator technologies utilizing polyethylene glycol-based aqueous piphasic systems

    International Nuclear Information System (INIS)

    Rogers, R.D.; Bond, A.H.; Zhang, Jianhua

    1995-01-01

    Two new schemes for TcO 4 - /MoO 4 2- separations from OH - and MoO 4 2- media using polyethylene glycol (PEG)-based aqueous biphasic systems (ABS) have been developed. The two most important salt solutions in current 99m Tc-generator technologies, OH - and MoO 4 2- , also salt out PEG to form ABS. In liquid/liquid PEG- ABS, pertechnetate can be separated from molybdate with separation factors as high as 10,000. Stripping is accomplished by reduction of the TcO 4 - and back extraction into a salt solution. the strip solution can be the salt of an imaging agent (e.g., Na 4 HEDPA) and thus may, under the appropriate conditions, be injected directly into the human body. 99m TcO 4 - can also be concentrated from a dilute load solution of 99 MoO 4 2- in NaOH using an aqueous biphasic extraction chromatographic technique (ABEC). A rinse with K 2 CO 3 assures that all 99 MoO 4 2- is removed from the column and this is confirmed by a rapid drop in 99 Mo activity by the fourth free column volume (fcv) of rinse. The 99m TcO 4 - is then eluted with water. This chromatographic separation affords 94% of the 99m TcO 4 - activity in 5 fcv, with the y spectrum showing less than 2 x 10 -4 of the original 99 Mo activity

  5. Designer solvents for the extraction of glycols and alcohols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.

    2013-01-01

    The separation of polar compounds from aqueous streams is one of the most energy intensive operations within the chemical industry, because of the formation of hydrogen bonds that should be broken and the high heat of vaporization of water. Important bulk chemicals like glycols and alcohols produced

  6. Aqueous phase reforming of ethylene glycol - Role of intermediates in catalyst performance

    NARCIS (Netherlands)

    de Vlieger, Dennis; Mojet, Barbara; Lefferts, Leonardus; Seshan, Kulathuiyer

    2012-01-01

    Liquid product formation during the aqueous catalytic reforming of ethylene glycol (EG) was studied up to 450 °C and 250 bar pressure. Methanol, ethanol, and acetic acid were the main liquid by-products during EG reforming in the presence of alumina-supported Pt and Pt–Ni catalysts. The effect of

  7. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Weizhong; Chen, Cong; Zuo, Jianguo; Weng, Lindong

    2013-01-01

    Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions

  8. Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Mumtaz, Fatima; Zuber, Mohammad; Zia, Khalid Mahmood [Government College University, Faisalabad (Pakistan); Jamil, Tahir [University of the Punjab, Lahore (Pakistan); Hussain, Rizwan [National Engineering and Scientific Commission (NESCOM), Islamabad (Pakistan)

    2013-12-15

    Aqueous polyurethane dispersions (PUDs) have recently emerged as important alternatives to their solvent-based counterparts for various applications due to increasing health and environmental awareness. A series of aqueous polyurethane dispersions containing carboxylate anion as hydrophilic pendant groups were synthesized through step growth polymerization reaction using hexamethylene diisocyanate (HDI), 1,4-butanediol (1,4-BDO), dimethylol propionic acid (DMPA) and polyethylene glycol (PEG) of different molecular weight. Effect of PEG molecular weight was investigated on molecular structure, contact angle measurement, and physical and adhesive properties of PU emulsions. Fourier transform infrared spectroscopy (FT-IR) was used to check the completion of polymerization reaction. Contact angle measurement indicated that the hydrophilicity of polymer increases by increasing molecular weight of PEG with a corresponding decrease in contact angle. Results of T-peel test showed a decrease in peel strength by increasing molecular weight of PEG. Moreover, solid contents%, drying time and storage stability suggested fast drying properties and greater stability of aqueous PU dispersions.

  9. Evaluation of anti-urolithiatic effect of aqueous extract of Bryophyllum pinnatum (Lam. leaves using ethylene glycol-induced renal calculi

    Directory of Open Access Journals (Sweden)

    Apexa Bhanuprasad Shukla

    2014-05-01

    Full Text Available Objective: To investigate the anti-urolithiatic effect of aqueous extract of leaves of Bryophyllum pinnatum (B. pinnatum on ethylene glycol-induced renal calculi. Materials and Methods: Thirty-six Wistar male rats were randomly divided into six equal groups. group A animals received distilled water for 28 days. Group B to group F animals received 1% v/v ethylene glycol in distilled water for 28 days and group B served as ethylene glycol control. Groups C and D (preventive groups received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively for 28 days. Groups E and F (treatment groups received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively from 15th to 28th day. On days 0 and 28, 24 hrs urine samples were collected for urinary volume and urinary oxalate measurement. On day 28, blood was collected for serum creatinine and blood urea level monitoring. All animals were sacrificed and kidneys were removed, weighed, and histopathologically evaluated for calcium oxalate crystals deposition. Results: Administration of aqueous extract of leaves of B. pinnatum reduced urine oxalate level significantly, as compared with Group B (p

  10. New technetium-99m generator technologies utilizing polyethylene glycol-based aqueous biphasic systems

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; Bond, A.H.; Zhang, Jianhua [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Horwitz, P. [Argonne National Lab., IL (United States)

    1995-12-31

    Two new schemes for TcO{sub 4}{sup {minus}}/MoO{sub 4}{sup 2{minus}} separations from OH{sup {minus}} and MoO{sub 4}{sup 2{minus}} media using polyethylene glycol (PEG)-based aqueous biphasic systems (ABS) have been developed. The two most important salt solutions in current {sup 99m}Tc-generator technologies, OH{sup {minus}} and MoO{sub 4}{sup 2{minus}}, also salt out PEG to form ABS. In liquid/liquid PEG- ABS, pertechnetate can be separated from molybdate with separation factors as high as 10,000. Stripping is accomplished by reduction of the TcO{sub 4}{sup {minus}} and back extraction into a salt solution. the strip solution can be the salt of an imaging agent (e.g., Na{sub 4}HEDPA) and thus may, under the appropriate conditions, be injected directly into the human body. {sup 99m}TcO{sub 4}{sup {minus}} can also be concentrated from a dilute load solution of {sup 99}MoO{sub 4}{sup 2{minus}} in NaOH using an aqueous biphasic extraction chromatographic technique (ABEC). A rinse with K{sub 2}CO{sub 3} assures that all {sup 99}MoO{sub 4}{sup 2{minus}} is removed from the column and this is confirmed by a rapid drop in {sup 99}Mo activity by the fourth free column volume (fcv) of rinse. The {sup 99m}TcO{sub 4}{sup {minus}} is then eluted with water. This chromatographic separation affords 94% of the {sup 99m}TcO{sub 4}{sup {minus}} activity in 5 fcv, with the y spectrum showing less than 2 {times} 10{sup {minus}4} of the original {sup 99}Mo activity.

  11. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    Science.gov (United States)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  12. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  13. Thermodynamic and optical studies of some ethylene glycol ethers in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Parwate, Dilip V.

    2009-01-01

    Experimental results of density (ρ), speed of sound (u), and refractive index (n D ) have been obtained for aqueous solutions of ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE) over the entire concentration range at T = 298.15 K. From these measurements, the derived parameters, apparent molar volume of solute (φ V ), excess molar volume (V E ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (φ KS ), deviation in isentropic compressibility (Δβ S ), molar refraction [R] 1,2 and deviation in refractive index of solution (Δn D ) have been calculated. The Redlich-Kister equation has been fitted to the calculated values of V E , Δβ S and Δn D for the solution. The results obtained are interpreted in terms of hydrogen bonding and various interactions among solute and solvent molecules

  14. Electrochemical corrosion study of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol containing chloride ions

    Directory of Open Access Journals (Sweden)

    Harish Medhashree

    2017-01-01

    Full Text Available Nowadays most of the automobiles use magnesium alloys in the components of the engine coolant systems. These engine coolants used are mainly composed of aqueous ethylene glycol along with some inhibitors. Generally the engine coolants are contaminated by environmental anions like chlorides, which would enhance the rate of corrosion of the alloys used in the coolant system. In the present study, the corrosion behavior of Mg–Al–Zn–Mn alloy in 30% (v/v aqueous ethylene glycol containing chloride anions at neutral pH was investigated. Electrochemical techniques, such as potentiodynamic polarization method, cyclic polarization and electrochemical impedance spectroscopy (EIS were used to study the corrosion behavior of Mg–Al–Zn–Mn alloy. The surface morphology, microstructure and surface composition of the alloy were studied by using the scanning electron microscopy (SEM, optical microscopy and energy dispersion X-ray (EDX analysis, respectively. Electrochemical investigations show that the rate of corrosion increases with the increase in chloride ion concentration and also with the increase in medium temperature.

  15. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth

    2012-01-01

    Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.

  16. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  17. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  18. Partition of proteins in aqueous two-phase systems based on Cashew-nut tree gum and poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Leonie Asfora Sarubbo

    2004-09-01

    Full Text Available The partitioning of two proteins, bovine serum albumin (BSA and trypsin was studied in an aqueous poly(ethylene glycol(PEG- Cashew-nut tree gum system. The phase diagram was provided for Cashew-nut tree gum and PEG molecular weight of 1500 at two different temperatures. The influence of several parameters including concentrations of polymers, pH, salt addition and temperature on the partitioning of these proteins were investigated.. The results of this research demonstrated the importance of the protein characteristics for partitioning in aqueous biphasic system.A partição de duas proteínas, albumina de soro bovino (BSA e tripsina foi estudada no sistema bifásico aquoso Polietileno glicol(PEG - Goma do cajueiro. O diagrama de fases foi estabelecido para a Goma do Cajueiro e para PEG de peso molecular 1500 em duas diferentes temperaturas. A influência de vários parâmetros na partição destas proteínas, incluindo concentração dos polímeros, pH, adição de sal e temperatura foi investigada. Os resultados desta pesquisa demonstraram a importância das características da proteína na partição em sistemas bifásicos aquosos.

  19. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  20. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    Science.gov (United States)

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    Science.gov (United States)

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  2. Síntese e caracterização de dispersões aquosas de poliuretanos à base de copolímeros em bloco de poli(glicol etilênico e poli(glicol propilênico Synthesis and characterization of polyurethane aquous dispersions based on poly(ethylene glycol and poly(propylene glycol block copolymers

    Directory of Open Access Journals (Sweden)

    Fernanda M. B. Coutinho

    2008-01-01

    Full Text Available Non-polluting polyurethane aqueous dispersions, with 40% of solids content, were synthesized based on block copolymers of poly(ethylene glycol and poly(propylene glycol (PEG-b-PPG, with PEG hydrophilic segments content of 7 and 25%, poly(propylene glycol (PPG, dimethylolpropionic acid (DMPA, isophorone diisocyanate (IPDI, and hydrazine. Different formulations were synthesized by varying the equivalent-grams ratios between isocyanate and hydroxyl groups (NCO/OH and PPG and (PEG-b-PPG. The presence of high amounts of PEG in the formulations provoked the formation of gels. Average particle size and viscosity of the dispersions were determined. Mechanical properties and water absorption resistance of cast films were evaluated.

  3. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  4. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-12

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.

  5. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-20

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.

  6. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, Daniel [Univ. of California, Berkeley, CA (United States)

    1999-06-01

    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  7. Self-assembly behavior of well-defined polymethylene-block-poly(ethylene glycol) copolymers in aqueous solution

    KAUST Repository

    Alkayal, Nazeeha

    2016-09-22

    A series of well-defined amphiphilic polymethylene-b-poly(ethylene glycol) (PM-b-PEG) diblock copolymers, with different hydrophobic chain length, were synthesized by combining Diels-Alder reaction with polyhomologation. The successful synthetic procedure was confirmed by size-exclusion chromatography (SEC) and 1H NMR spectroscopy. These block copolymers self-assembled into spherical micelles in aqueous solutions and exhibit low critical micelle concentration (CMC) of 2–4 mg/mL, as determined by fluorescence spectroscopy using pyrene as a probe. Measurements of the micelle hydrodynamic diameters, performed by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM), revealed a direct dependence of the micelle size from the polymethylene block length.

  8. Simultaneous determination of glycols based on fluorescence anisotropy

    International Nuclear Information System (INIS)

    Garcia Sanchez, F.; Navas Diaz, A.; Lopez Guerrero, M.M.

    2007-01-01

    Simultaneous determination of non-fluorescent glycols in mixtures without separation or chemical transformation steps is described. Two methods based in the measure of fluorescence anisotropy of a probe such as fluorescein dissolved in the analyte or analyte mixtures are described. In the first method, the anisotropy spectra of pure and mixtures of analytes are used to quantitative determination (if the fluorophor concentration is in a range where fluorescence intensity is proportional to concentration). In the second method, a calibration curve anisotropy-concentration based on the application of the Perrin equation is established. The methods presented here are capable of directly resolving binary mixtures of non-fluorescent glycols on the basis of differences on the fluorescence anisotropy of a fluorescence tracer. Best analytical performances were obtained by application of the method based on Perrin equation. This method is simple, rapid and allows the determination of mixtures of glycols with reasonable accuracy and precision. Detection limits are limited by the quantum yield and anisotropy values of the tracer in the solvents. Recovery values are related to the differences in anisotropy values of the tracer in the pure solvents. Mixtures of glycerine/ethylene glycol (GL/EG), ethylene glycol/1,2-propane diol (EG/1,2-PPD) and polyethylene glycol 400/1,2-propane diol (PEG 400/1,2-PPD) were analysed and recovery values are within 95-120% in the Perrin method. Relative standard deviation are in the range 1.3-2.9% and detection limits in the range 3.9-8.9%

  9. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    KAUST Repository

    Giovannitti, Alexander

    2018-04-24

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  10. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    KAUST Repository

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; Donahue, Mary J.; Bryant, Daniel; Barth, Katrina J.; Makdah, Beatrice E.; Savva, Achilleas; Moia, Davide; Zetek, Matyá š; Barnes, Piers R.F.; Reid, Obadiah G.; Inal, Sahika; Rumbles, Garry; Malliaras, George G.; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain

    2018-01-01

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  11. Aqueous two-phase (polyethylene glycol + sodium sulfate) system for caffeine extraction: Equilibrium diagrams and partitioning study

    International Nuclear Information System (INIS)

    Araujo Sampaio, Daniela de; Mafra, Luciana Igarashi; Yamamoto, Carlos Itsuo; Forville de Andrade, Eriel; Oberson de Souza, Michèle; Mafra, Marcos Rogério; Castilhos, Fernanda de

    2016-01-01

    Highlights: • Binodal curves of PEG (400, 4000 and 6000) + Na_2SO_4 ATPS were determined. • Tie-lines were experimentally determined for aqueous (PEG 400 + Na_2SO_4) system. • Influence of caffeine on LLE of aqueous (PEG 400 + Na_2SO_4) system was investigated. • Partitioning of caffeine in aqueous (PEG 400 + Na_2SO_4) system was investigated. • Caffeine partition showed to be dependent on temperature and TLL. - Abstract: Environmental friendly methods for liquid–liquid extraction have been taken into account due to critical conditions and ecotoxicological effects potentially produced by organic solvents applied in traditional methods. Liquid–liquid extraction using aqueous two phase systems (ATPSs) presents advantages when compared to traditional liquid–liquid extraction. (Polyethylene glycol (PEG) + sodium sulfate + water) ATPS was applied to study partition of caffeine. Binodal curves for ATPSs composed of PEG of different molecular weights (400 g · mol"−"1, 4000 g · mol"−"1 and 6000 g · mol"−"1) sodium sulfate + water were determined by cloud point method at three different temperatures (293.15, 313.15 and 333.15) K. Liquid–liquid equilibrium (LLE) data (tie-lines, slope of the tie-line and tie-lines length) were obtained applying a gravimetric method proposed by Merchuck and co-workers at the same temperatures for aqueous (PEG 400 + sodium sulfate) and aqueous (PEG 400 + sodium sulfate + caffeine) systems. Reliability of the experimental tie-line (TL) data was evaluated using the equations reported by Othmer–Tobias and satisfactory linearity was obtained. Concerning to aqueous (PEG + sodium sulfate) system, the results pointed out that the higher PEG molecular weight the largest is the heterogeneous region. Moreover, temperature showed not to be relevant on binodal curves behavior, but it influenced on tie-line slopes. Partitioning of caffeine in aqueous (PEG 400 + sodium sulfate) system was investigated at different temperatures

  12. On the solvation of the phosphocholine headgroup in an aqueous propylene glycol solution

    Science.gov (United States)

    Rhys, Natasha H.; Al-Badri, Mohamed Ali; Ziolek, Robert M.; Gillams, Richard J.; Collins, Louise E.; Lawrence, M. Jayne; Lorenz, Christian D.; McLain, Sylvia E.

    2018-04-01

    The atomic-scale structure of the phosphocholine (PC) headgroup in 30 mol. % propylene glycol (PG) in an aqueous solution has been investigated using a combination of neutron diffraction with isotopic substitution experiments and computer simulation techniques—molecular dynamics and empirical potential structure refinement. Here, the hydration of the PC headgroup remains largely intact compared with the hydration of this group in a bilayer and in a bulk water solution, with the PG molecules showing limited interactions with the headgroup. When direct PG interactions with PC do occur, they are most likely to coordinate to the 3+N (CH 3 ) motifs. Further, PG does not affect the bulk water structure and the addition of PC does not perturb the PG-solvent interactions. This suggests that the reason why PG is able to penetrate into membranes easily is that it does not form strong-hydrogen bonding or electrostatic interactions with the headgroup allowing it to easily move across the membrane barrier.

  13. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  14. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  15. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions

    International Nuclear Information System (INIS)

    Siongco, Kathrina R.; Leron, Rhoda B.; Li, Meng-Hui

    2013-01-01

    Highlights: • The densities, refractive indices, and viscosities of aqueous DES solutions were measured. • DES are made from N,N-diethylethanol ammonium chloride + glycerol or ethylene glycol. • The temperature studied was (298.15 to 343.15) K. • The measured data were reported as functions of temperature and composition. • The measured data were represented satisfactorily by the applied correlations. -- Abstract: In this work, we report new experimental data on density, ρ, refractive index, n D, and viscosity, η, of two deep eutectic solvents, N,N-diethylethanol ammonium chloride–glycerol (DEACG) and N,N-diethylethanol ammonium chloride–ethylene glycol (DEACEG), and their aqueous solutions, over the complete composition range, at temperatures from (298.15 to 343.15) K. Densities and viscosities were measured using the vibrating tube and the falling ball techniques, respectively, while the refractive index at the sodium D line was measured using an automatic refractometer. We aimed to represent the measured properties as a function of temperature and composition, and correlated them using the Redlich–Kister-type equation, for density, a polynomial function, for refractive index, and the Vogel–Fulcher–Tammann (VFT) equation, for viscosity

  16. Extraction mechanism of sulfamethoxazole in water samples using aqueous two-phase systems of poly(propylene glycol) and salt

    Energy Technology Data Exchange (ETDEWEB)

    Xie Xueqiao; Wang Yun; Han Juan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan Yongsheng, E-mail: yys@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2011-02-14

    Based on the poly(propylene glycol){sub 400} (PPG{sub 400})-salt aqueous two-phase system (ATPS), a green, economical and effective sample pretreatment technique coupled with high performance liquid chromatography was proposed for the separation and determination of sulfamethoxazole (SMX). The extraction yield of SMX in PPG{sub 400}-salt ATPS is influenced by various factors, including the salt species, the amount of salt, pH, and the temperature. Under the optimum conditions, most of SMX was partitioning into the polymer-rich phase with the average extraction efficiency of 99.2%, which may be attributed to the hydrophobic interaction and salting-out effect. This extraction technique has been successfully applied to the analysis of SMX in real water samples with the recoveries of 96.0-100.6%, the detection limits of 0.1 {mu}g L{sup -1}, and the linear ranges of 2.5-250.0 {mu}g L{sup -1}.

  17. Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

    Science.gov (United States)

    Morariu, Simona; Bercea, Maria

    2012-01-12

    The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.

  18. Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions

    International Nuclear Information System (INIS)

    Mohammadi, Amir H.; Richon, Dominique

    2012-01-01

    Highlights: → Dissociation conditions of H 2 S or CO 2 hydrate + inhibitor aqueous solution are reported. → Methanol, methanol + NaCl and EG + NaCl aqueous solutions are considered as inhibitors. → Comparisons are made between our experimental data and the corresponding literature data. - Abstract: This work aims at reporting the dissociation pressures of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions at different temperatures and various concentrations of inhibitor in aqueous solution. The equilibrium results were generated using an isochoric pressure-search method. These values are compared with some selected experimental data from the literature on the dissociation conditions of hydrogen sulfide and carbon dioxide simple hydrates in the presence of pure water to show the inhibition effects of the above mentioned aqueous solutions. Comparisons are finally made between our experimental values and the corresponding literature data. Some disagreements among the literature data and our data are found.

  19. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  20. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol-polylactide conjugate

    Directory of Open Access Journals (Sweden)

    Chen WL

    2015-04-01

    Full Text Available Wei-Lin Chen,1,2 Yun-Fen Peng,1,3 Sheng-Kuo Chiang,1 Ming-Hsi Huang1–3 1National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; 2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; 3PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan Abstract: A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol-polylactide (PEG-PLA with carboxyl pyrene, using N,N’-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt as a coupling agent and 4-dimethylaminopyridine (DMAP as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS, proton nuclear magnetic resonance (1H-NMR, infrared spectroscopy (IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA, to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA did not alter the crystallization ability of the poly(ethylene glycol (PEG blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles

  1. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  2. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  3. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode

    International Nuclear Information System (INIS)

    Tran, Binh; Oladeji, Isaiah O.; Wang, Zedong; Calderon, Jean; Chai, Guangyu; Atherton, David; Zhai, Lei

    2013-01-01

    We report the first fully compressed Li 4 Ti 5 O 12 electrode designed by an aqueous process. An adhesive, elastomeric, and lithium ion conductive PEG-based copolymer is used as a binder for the aqueous fabrication thick, flexible, and densely packed Li 4 Ti 5 O 12 (LTO) electrodes. Self-adherent cathode films exceeding 200 μm in thickness and withholding high active mass loadings of 28 mg/cm 2 deliver 4.2 mAh/cm 2 at C/2 rate. Structurally defect-free electrodes are fabricated by casting aqueous cathode slurries onto nickel foam, dried, and hard-calendared at 10 tons/cm 2 . As a multifunctional material, the binder is synthesized by the copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), methyl methacrylate (MMA), and isobutyl vinyl ether (IBVE) in optimal proportions. Furthermore, coordinating the binder with lithium salt is necessary for the electrode to function

  4. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  5. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Science.gov (United States)

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  6. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    Science.gov (United States)

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant

  7. (Liquid + liquid) equilibrium data for the system (propylene glycol + water + tetraoctyl ammonium 2-methyl-1-naphthoate)

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Shazad, Maryam; Schuur, B.; Haan, de A.B.

    2012-01-01

    Propylene glycol (PG) is an important low toxic glycol, widely used in the food, cosmetics, pharmaceutical and the chemical industries. The recovery of PG from aqueous streams using conventional unit operations such as evaporation is highly energy demanding because of the large amounts of water that

  8. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  9. Stereocomplexed 8-armed poly(ethylene glycol)-poly(lactide) star block copolymer hydrogels: Gelation mechanism, mechanical properties and degradation behavior

    NARCIS (Netherlands)

    Buwalda, S.J.; Calucci, L.; Forte, C.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Mixing aqueous poly(ethylene glycol)-poly(d-lactide) and poly(ethylene glycol)-poly(l-lactide) star block copolymer solutions resulted in the formation of stereocomplexed hydrogels within 1 min. A study towards the mechanism of the temperature dependent formation of stereocomplexes in the hydrogels

  10. Polyalkylene glycols, base fluids for special lubricants and hydraulic fluids; Polyalkylenglykole, Basisoele fuer Spezialschmierstoffe und Hydraulikfluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Poellmann, K. [Clariant GmbH (Germany)

    2004-08-01

    For many years polyalkylene glycols have been used as base fluids for special lubricants. In this matter they compete with polyol esters and polyalphaolefines. Synthesis of polyalkylen glycols is founded upon the anionic polymerisation of ethyleneoxid, propyleneoxid and if necessary of other oxigen-containing monomeres. The flexibility of this synthesis is the reason that polyalkylene glycole is a collective term, including a broad group of base fluids with partly extreme different properties. Typical for polyalkylene glycols is a high viscosity-index, watersolubility and adsorbing power for water, low friction numbers, but also the incompatibility with current mineral-oil-soluble additive systems. Because of this quality profile there has been developped specific niche-applications in the lubricant-area for polyalkylene glycols in the last 30 years, where each of the specific benefits has been used. Among them are watercontaining HFC hydraulicfluids, refrigerator oils, and oils for ethylene-compressors. HFC fluids are formulated with high-viscous, water-soluble polyalkylene glycols. For refrigerator oils in motor-car conditioning the R 134A compatibility of water-insoluble polyalkylene glycols is essential. For the use in ethylene-compressors the crucial point is the insolubility of polyalkylene glycol in ethylene. (orig.)

  11. Liquid–liquid equilibria in the quinary aqueous two-phase system of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol: Experimental investigation and thermodynamic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hekayati, Javad; Roosta, Aliakbar, E-mail: aa.roosta@sutech.ac.ir; Javanmardi, Jafar

    2016-02-10

    Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na{sub 2}SO{sub 4} + H{sub 2}O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.

  12. Liquid–liquid equilibria in the quinary aqueous two-phase system of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol: Experimental investigation and thermodynamic modeling

    International Nuclear Information System (INIS)

    Hekayati, Javad; Roosta, Aliakbar; Javanmardi, Jafar

    2016-01-01

    Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na_2SO_4 + H_2O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.

  13. Moessbauer investigation of maghemite-based glycolic acid nanocomposite

    International Nuclear Information System (INIS)

    Santos, J. G.; Silveira, L. B.; Oliveira, A. C.; Garg, V. K.; Lacava, B. M.; Tedesco, A. C.; Morais, P. C.

    2007-01-01

    Transmission electron microscopy, X-ray diffraction and Moessbauer spectroscopy were used in the characterization of a nanocomposite containing magnetic nanoparticles dispersed in a glycolic acid-based template. Maghemite nanoparticles were identified as the iron oxide phase dispersed in the polymeric template. From the low-temperature Moessbauer data the amount of the iron-based, non-magnetic material at the nanoparticle surface was estimated as roughly one monolayer in thickness.

  14. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  15. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  16. Ineffectiveness of a fluorometric method for identifying irradiated food base on thymine glycol

    International Nuclear Information System (INIS)

    Ewing, D.D.; Stepanik, T.M.

    1992-01-01

    At dosages used for food irradiation, some of the thymine present in the DNA of irradiated food may be converted to thymine glycol. A fluorometric assay for thymine glycol was investigated as a possible method of detecting irradiated foods based on this effect. Experiments were performed on homogenates of irradiated chicken breast meat and on DNA isolated from irradiated chicken breast meat. In both cases the assay was subject to interference from one of the reagents, o-aminobenzaldehyde, and lacked the necessary sensitivity to detect the thymine glycol produced by radiolysis of the DNA at relevant dosages

  17. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Paunovic, V.; Schaaf, van der J.; Schouten, J.C.; Nijhuis, T.A.

    2013-01-01

    Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating

  18. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2012-01-01

    Glycol chitosan was linked to vitamin D2 hemisuccinate (ergocalciferol hemisuccinate) for controlled release through water-soluble carbodiimide activation. The resulting conjugate formed self-assembled nanoparticles in aqueous solution with particle size of 279 nm and ergocalciferol hemisuccinate...... content of 8.4% (w/w). Almost spherical 50–90 nm nanoparticles were observed by scanning and transmission electron microscopy upon drying. Drug linking to glycol chitosan was confirmed by FTIR spectroscopy and proton NMR. Particles were also characterized by differential scanning calorimetry and wide...

  19. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  20. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.

    Science.gov (United States)

    Madaghiele, Marta; Marotta, Francesco; Demitri, Christian; Montagna, Francesco; Maffezzoli, Alfonso; Sannino, Alessandro

    2014-12-30

    The objective of this work was to develop composite hydrogels based on poly(ethylene glycol) diacrylate (PEGDA) and collagen (Coll), potentially useful for biomedical applications. Semi-interpenetrating polymer networks (semi-IPNs) were obtained by photo-stabilizing aqueous solutions of PEGDA and acrylic acid (AA), in the presence of collagen. Further grafting of the collagen macromolecules to the PEGDA/poly(AA) network was achieved by means of a carbodiimide-mediated crosslinking reaction. The resulting hydrogels were characterized in terms of swelling capability, collagen content and mechanical properties. The grafting procedure was found to significantly improve the mechanical stability of the IPN hydrogels, due to the establishment of covalent bonding between the PEGDA/poly(AA) and the collagen networks. The suitability of the composite hydrogels to be processed by means of stereolithography (SLA) was also investigated, toward creating biomimetic constructs with complex shapes, which might be useful either as platforms for tissue engineering applications or as tissue mimicking phantoms.

  1. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  2. [Isolation and purification of alpha-glycerophosphate oxidase in a polyethylene glycol/(NH4 )2SO4 aqueous two-phase system].

    Science.gov (United States)

    Meng, Yao; Jin, Jiagui; Liu, Shuangfeng; Yang, Min; Zhang, Qinglian; Wan, Li; Tang, Kun

    2014-02-01

    Alpha-glycerophosphate oxidase (alpha-GPO) from Enterococcus casseli flavus was successfully isolated and purified by using polyethylene glycol (PEG)/(NH4)2SO4 aqueous two-phase system (ATPS). The results showed that the chosen PEG/(NH4)2SO4 ATPS could be affected by PEG molecular weight, pH, concentration of PEG and (NH4)2SO4, and inorganic salt as well as additional amount of crude enzyme. After evaluating these influencing factors, the final optimum purification strategy was formed by 16.5% (m/m) PEG2000, 13.2% (m/m) (NH4)2SO4, pH 7.5 and 30% (m/m) additive crude enzyme, respectively. The NaCl was a negative influencing factor which would lead to lower purification fold and activity recovery. These conditions eventually resulted in the activity recovery of 89% (m/m), distribution coefficient of 1.2 and purification fold of 7.0.

  3. Intensification of ethylene glycol production process

    DEFF Research Database (Denmark)

    Wisutwattanaa, Apiwit; Frauzem, Rebecca; Suriyapraphadilok, Uthaiporn

    2017-01-01

    This study aims to generate an alternative design for ethylene glycol production process focusing on a reduction of operating cost and emissions. To achieve this, the phenomena-based method for process intensification was applied. 3 stages of process intensification were performed. First, the base......-case design was obtained, resulting in the production of ethylene glycol via two steps: ethylene oxidation synthesis followed by ethylene oxide hydration to produce ethylene glycol. Feasibility of the design was verified and the process was rigorously designed using a computer process simulation program...... solutions. As the result of intensification method, membrane separation was suggested and applied to the design. With the operation of the new equipment, the ethylene glycol production process was improved for 54.51 percent in terms of energy consumption....

  4. Determination of the Impact of Glycolate on ARP and MCU Operations

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.; Peters, T.; Shehee, T.

    2012-01-01

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU). Sorption testing was performed using both MST and modified MST (mMST) in the presence of 5,000 and 10,000 ppm (mass basis) glycolate. 10,000 ppm is the estimated bounding concentration expected in the DWPF recycle stream based on DWPF melter flammable gas model results. The presence of glycolate was found to slow the removal of Sr and Pu by MST, while increasing the removal rate of Np. Results indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. There was no measurable effect on U removal at either glycolate concentration. The slower removal rates for Sr and Pu at 5,000 and 10,000 ppm glycolate could result in lower DF values for these sorbates in ARP based on the current (12 hours) and proposed (8 hours) contact times. For the highest glycolate concentration used in this study, the percentage of Sr removed at 6 hours of contact decreased by 1% and the percentage of Pu removed decreased by nearly 7%. The impact may prove insignificant if the concentration of glycolate that is returned to the tank farm is well below the concentrations tested in this study. The presence of glycolate also decreased the removal rates for all three sorbates (Sr, Pu, and Np) by mMST. Similarly to MST, the results for mMST indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. The presence of glycolate did not change the lack

  5. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions.

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0±1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼10(4)s(-1) at pH 7.4 and 37°C, the activation energy, 50.2kJ/mol and its pH dependence at 1.1°C was fitted to: k (s(-1))=520+6.5×10(7)[H(+)]+3.0×10(9)[OH(-)]. Copyright © 2014. Published by Elsevier Inc.

  6. Electrochemical deposition of Ni coating on Cu substrate in ethylene glycol + iCl/sub 2/.6H/sub 2/0 electrolyte characterization of Ni coatings

    International Nuclear Information System (INIS)

    Ghaffar, A.

    2011-01-01

    The primary objective of this work was to develop the technical know-how regarding the electrodeposition technique and the parameters affecting the quality of the electrodeposit such as electrolyte nature, its pH, current density, potential, substrate material etc. The ethylene glycol based organic electrolyte was employed to improve the aesthetics, surface and structural properties of nickel electroplatings. For the purpose of achieving improvements in nickel plating, a comparative work-study was carried out using aqueous and organic electrolytes. The voltammetric experiments were performed to find out the electroactive potential domain of ethylene glycol electrolyte, or in other words, to get the current density and potential ranges suitable for electrodeposition of nickel on copper substrate. Electroplating was carried out galvanostatically at different current densities and concentrations to find out the quality of Ni electrodeposit in both aqueous and organic electrolytes. The most suited electrolyte concentration (0.6 M hydrated nickel chloride dissolved in corresponding electrolytic solvent) and current density (1 mA/cm/sup 2/) were chosen to carry out nickel plating in aqueous electrolyte as well as in ethylene glycol electrolyte. Subsequently, current efficiencies were calculated for both electrolytes to find out the improvement in the quality of Ni deposit. Finally, the material characterization techniques such as X-ray diffraction, scanning electron microscopy, atomic force microscopy and adhesion testing were performed to fully access the composition, structure and surface morphology of nickel coating. (author)

  7. Utilizing microfluidics to synthesize polyethylene glycol microbeads for Förster resonance energy transfer based glucose sensing

    Science.gov (United States)

    Kantak, Chaitanya; Zhu, Qingdi; Beyer, Sebastian; Bansal, Tushar; Trau, Dieter

    2012-01-01

    Here, we utilize microfluidic droplet technology to generate photopolymerizeable polyethylene glycol (PEG) hydrogel microbeads incorporating a fluorescence-based glucose bioassay. A microfluidic T-junction and multiphase flow of fluorescein isothiocyanate dextran, tetramethyl rhodamine isothiocyanate concanavalin A, and PEG in water were used to generate microdroplets in a continuous stream of hexadecane. The microdroplets were photopolymerized mid-stream with ultraviolet light exposure to form PEG microbeads and were collected at the outlet for further analysis. Devices were prototyped in PDMS and generated highly monodisperse 72 ± 2 μm sized microbeads (measured after transfer into aqueous phase) at a continuous flow rate between 0.04 ml/h—0.06 ml/h. Scanning electron microscopy analysis was conducted to analyze and confirm microbead integrity and surface morphology. Glucose sensing was carried out using a Förster resonance energy transfer (FRET) based assay. A proportional fluorescence intensity increase was measured within a 1–10 mM glucose concentration range. Microfluidically synthesized microbeads encapsulating sensing biomolecules offer a quick and low cost method to generate monodisperse biosensors for a variety of applications including cell cultures systems, tissue engineering, etc. PMID:22655010

  8. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  9. Poly(ethylene glycol-Prodrug Conjugates: Concept, Design, and Applications

    Directory of Open Access Journals (Sweden)

    Shashwat S. Banerjee

    2012-01-01

    Full Text Available Poly(ethylene glycol (PEG is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials.

  10. Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2006-01-01

    The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H 2 O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good

  11. EXTRACTION OF MONOAZO DYES BY HYDROPHILIC EXTRACTANTS FROM AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available The extraction of mono azo dyes E102, E122, E110, E124, E129 from aqueous solutions with hydrophilic solvents (alcohols, esters, ketones and polymers (poly-N-vinylamides, polyethylene glycol was studied. The main regularities of extraction are established. The distribution coefficients and degree of extraction of dyes was estimate. The influence of the nature of solvents and polymers on the extraction of dyes from aqueous solutions are established.

  12. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. III. Research on ethylene glycol and diethylene glycol for carcinogenic effects].

    Science.gov (United States)

    Dunkelberg, H

    1987-03-01

    Ethylene glycol and diethylene glycol were each administered once weekly subcutaneously to groups of 100 female NMRI mice at 3 dosages (30; 10 und 3 mg single dose per mouse). Tricaprylin was used as solvent. The mean total dosage per mouse was 2110.5; 707.0 and 196.2 mg for ethylene glycol and 2029.8; 671.7 and 213.3 mg for diethylene glycol. Neither ethylene glycol nor diethylene glycol induced tumors at the injection site or away from the point of administration.

  13. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets

    International Nuclear Information System (INIS)

    Shan Guobin; Demopoulos, George P

    2010-01-01

    Aqueous well-dispersed and phase-pure anatase TiO 2 truncated octahedron nanoplatelets (NPLs) were prepared via controlled hydrolysis of titanium tetrachloride (TiCl 4 ) in ethylene glycol at 240 deg. C. Two shapes, square and hexagon, were observed by microscopy, exactly corresponding to the truncated octahedron NPLs. Ethylene glycol was found to produce water in situ that reacts with TiCl 4 to produce TiO 2 and HCl-the latter promoting TiO 2 colloid peptization. TiO 2 truncated octahedron NPLs are formed under the stabilizing action of ethylene glycol thermolysis derivatives, such as aldehydes. Crystal growth of the TiO 2 NPLs was affected by the reaction temperature that determines the water production rate and HCl-assisted peptization. TGA and FT-IR results showed ∼1.2% ethylene glycol thermolysis derivatives are attached to the surface of the TiO 2 NPLs, which prevents their agglomeration, hence making them easily dispersible in aqueous media. HR-TEM and SAED results showed that the TiO 2 NPLs are well crystallized and that the SAED patterns of the single TiO 2 NPL changes with its size and shape. XRD patterns showed that the TiO 2 NPLs are phase-pure anatase and the percentage of the {101} plane in the TiO 2 NPLs to be only 18%-a structural feature that renders the TiO 2 NPLs with enhanced UV absorption and reactivity properties.

  14. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  15. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications.

    Science.gov (United States)

    Cho, Ik Sung; Cho, Myeong Ok; Li, Zhengzheng; Nurunnabi, Md; Park, Sung Young; Kang, Sun-Woong; Huh, Kang Moo

    2016-06-25

    The major limitations of typical thermogelling polymers for practical applications are low gel stability and weak mechanical properties under physiological conditions. In this study, we have synthesized a new polysaccharide-based thermogelling polymer that can be photo-crosslinked by UV irradiation to form a mechanically resilient and elastic hydrogel. Methacrylated hexanoyl glycol chitosan (M-HGC), was synthesized by a series of chemical modifications, N-hexanoylation and N-methacrylation, of glycol chitosan (GC). Various M-HGC polymers with different methacryl group contents were synthesized and their thermogelling and photo-crosslinkable properties were evaluated. The M-HGCs demonstrated a thermo-reversible sol-gel transition behavior in aqueous solutions. The thermally-induced hydrogels could be chemically crosslinked by UV-triggered photo-crosslinking. From the cytotoxicity studies using MTT and the live/dead assay, the M-HGC hydrogels showed non-cytotoxicity. These photo-crosslinkable thermogelling M-HGC polymers may hold great promises for various biomedical applications, such as an injectable delivery system and 3D cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  17. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  18. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Ilić Sanja M.

    2005-01-01

    Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  19. Novel one-component polymeric benzophenone photoinitiator containing poly (ethylene glycol) as hydrogen donor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kemin, E-mail: wangkm61@gmail.com; Lu, Yuhui; Chen, Penghui; Shi, Jingsong; Wang, Hongning; Yu, Qiang, E-mail: yuqiang@cczu.edu.cn

    2014-02-14

    Benzophenone (BP) is a common initiator which is often used in the UV-curing production and related fields. However, the shortcomings such as toxicity, odor, and migration always limit the development of the traditional BP photoinitiator. Polymeric benzophenone photoinitiator (PEG-BP) was synthesized basing on polyethylene glycol (PEG), succinic anhydride, 4-hydroxybenzophenone and epichlorohydrin. The structure of PEG-BP was characterized by IR and {sup 1}H NMR. The radiation absorption of PEG-BP was detected by UV spectrophotometer with the maximum absorption wavelength at 283 nm in acetonitrile solvent, undergone significant redshift corresponding to small molecule photoinitiator BP, thus enhanced the photosensitive efficiency of UV-curing system in the long wavelength region. Besides, PEG-BP has better water solubility than BP, thus could be used in both oil and aqueous solution. The obvious advantage of this initiator was the elimination of amine based hydrogen donors and to provide alternative hydrogen donors with easily availability and non-toxicity. The effects of molecular weights of PEG-BP, photoinitiator concentration, UV-radiation intensity and different monomers on photopolymerization kinetics were investigated in detail. The synthesized polymeric photoinitiators are attractive to be used as type II photoinitiators. - Highlights: • Novel one-component polymeric benzophenone photoinitiator was synthesized. • This photoinitiator contained poly (ethylene glycol) as hydrogen donor. • This photoinitiator was the elimination of amine based hydrogen donors.

  20. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  1. Prediction of liquid-liquid equilibria for polyethylene glycol based aqueous two-phase system by ASOG and UNIFAC method

    Directory of Open Access Journals (Sweden)

    M. Perumalsamy

    2009-03-01

    Full Text Available Liquid-Liquid equilibrium data were obtained for the polyethylene glycol2000(PEG2000-sodium citrate-water system at 298.15, 308.15 and 318.15 K. The effect of temperature on binodal and tie line data was studied and published in a previous article (Murugesan and Perumalsamy, 2005. The interaction parameters of ASOG and UNIFAC models were estimated using the LLE data of PEG2000-sodium citrate-water system and are used to predict the LLE data for PEG6000-sodium citrate-water system at 298.15, 308.15 and 318.15 K (literature data. The predicted LLE data by both ASOG and UNIFAC models showed good agreement with the experimental and literature data.

  2. Non-aqueous energy storage devices using graphene nanosheets synthesized by green route

    Directory of Open Access Journals (Sweden)

    Dattakumar Mhamane

    2013-04-01

    Full Text Available In this paper we report the use of triethylene glycol reduced graphene oxide (TRGO as an electrode material for non-aqueous energy storage devices such as supercapacitors and Li-ion batteries. TRGO based non–aqueous symmetric supercapacitor is constructed and shown to deliver maximum energy and power densities of 60.4 Wh kg–1 and 0.15 kW kg–1, respectively. More importantly, symmetric supercapacitor shows an extraordinary cycleability (5000 cycles with over 80% of capacitance retention. In addition, Li-storage properties of TRGO are also evaluated in half-cell configuration (Li/TRGO and shown to deliver a reversible capacity of ∼705 mAh g–1 with good cycleability at constant current density of 37 mA g–1. This result clearly suggests that green-synthesized graphene can be effectively used as a prospective electrode material for non-aqueous energy storage systems such as Li-ion batteries and supercapacitors.

  3. Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO{sub 2} catalysts: Role of Pt and product distribution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fuying [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Gu, Quan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi’an 710062 (China); Niu, Yu [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); School of Chemical Engineering, Fuzhou University, Fuzhou 350116 (China); Wang, Renzhang [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Tong, Yuecong; Zhu, Shuying; Zhang, Hualei [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Wang, Xuxu [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China)

    2017-01-01

    Highlights: • Photocatalytic EG reforming generates many hydrocarbons besides H{sub 2}, CO{sub 2} and CO. • Pt loading greatly improves the photocatalytic activity of TiO{sub 2} for EG reforming. • Half amount of the produced H{sub 2} over Pt/TiO{sub 2} originates from EG reforming. - Abstract: Pt nanoparticles were loaded on anatase TiO{sub 2} by the photodeposition method to investigate their photocatalytic activity for H{sub 2} evolution in an aqueous solution containing a certain amount of ethylene glycol (EG) as the sacrificial agent. The surface properties and chemical states of the Pt/TiO{sub 2} sample were characterized by X-ray powder diffraction analysis, Brunauer–Emmett–Teller surface area analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and electrochemical resistance. The aqueous-phase photocatalytic EG reforming using Pt/TiO{sub 2} and anatase TiO{sub 2} generated not only H{sub 2} and CO{sub 2}, but also CO, CH{sub 4}, C{sub 2}H{sub 6}, and C{sub 2}H{sub 4}. Moreover, the amount of formate and acetate complexes in the solution increased gradually. The EG adsorption and gas-phase intermediates during photocatalytic reaction processes were investigated by the in situ FTIR spectrum. Finally, the photocatalytic EG reforming reaction mechanism was elucidated. This helped to better understand the role of a sacrificial agent in a photocatalytic hydrogen production.

  4. Hyperosmolar metabolic acidosis in burn patients exposed to glycol based topical antimicrobials-A systematic review.

    Science.gov (United States)

    Leibson, Tom; Davies, Paige; Nickel, Cheri; Koren, Gideon

    2018-06-01

    The well documented susceptibility of burn patients to acquired infections via damaged skin mandates application of antimicrobial agents. These agents are dissolved in various vehicles that augment skin absorption thus allowing greater efficacy. Polyethylene glycol (PEG) and Propylene glycol (PropG) are among the most commonly used vehicles, and both have been used in numerous medications and cosmetic products over the past few decades. Rarely, burn patients treated with agents containing these glycols present with a life threatening systemic toxidrome of hyperosmolar metabolic acidosis. We present a systematic review of outcomes in burn patients treated with similar agents. Relevant studies were identified through systematic searches conducted in MEDLINE (Ovid), Embase (Ovid), CENTRAL (Ovid), and Web of Science (Thomson Reuters), from database inception to August 4th, 2016. All publications of clinical burn patient studies included at least one arm receiving a glycol based topical therapy. A total of 61 studies involving 10,282 patients and 4 different antimicrobial medications fulfilled the inclusion criteria. Nine burn patients (0.09%) were documented to present with hyperosmolar metabolic acidosis during topical silver sulfadiazine treatment. Propylene glycol isolated from their blood accounted for the high osmole gap. This first systematic review found very few cases of documented hyperosmolar metabolic acidosis, all within one study that had set to specifically explore this toxidrome. High index of suspicion with frequent osmolar gap monitoring may help identify future toxicities in a timely manner. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  5. Electrochemical investigation on the effects of sulfate ion concentration, temperature and medium pH on the corrosion behavior of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. Medhashree

    2017-03-01

    Full Text Available The effects of sulfate ion concentration, temperature and medium pH on the corrosion of Mg–Al–Zn–Mn alloy in 30% aqueous ethylene glycol solution have been investigated by electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy methods. Surface morphology of the alloy was examined before and after immersing in the corrosive media by scanning electron microscopy (SEM and energy dispersion X-ray (EDX analysis. Activation energy, enthalpy of activation and entropy of activation were calculated from Arrhenius equation and transition state theory equation. The obtained results indicate that, the rate of corrosion increases with the increase in sulfate ion concentration and temperature of the medium and decreases with the increase in the pH of the medium.

  6. Ethylene glycol blood test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  7. Solubilities, densities and refractive indices for the ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at (15 and 35) deg. C

    International Nuclear Information System (INIS)

    Zhou Yanhong; Li Shuni; Zhai Quanguo; Jiang Yucheng; Hu Mancheng

    2010-01-01

    The solubilities, densities and refractive indices data for the four ternary systems ethylene glycol + MCl + H 2 O (M = Na, K, Rb, Cs) at different temperatures were measured, with mass fractions of ethylene glycol in the range of 0 to 1.0. In all cases, the presence of ethylene glycol significantly reduces the solubility of the salts in aqueous solution. The experimental data of density, refractive index and solubility of saturated solutions for these systems were correlated using polynomial equations as a function of the mass fraction of ethylene glycol. On the other hand, the refractive index and density of unsaturated solutions was also determined for the four ternary systems with varied unsaturated salt concentrations. Values for both the properties were correlated with the salt concentrations and proportions of ethylene glycol in the solutions.

  8. Enthalpy of phase transition and prediction of phase Equilibria in systems of glycols and glycol ethers

    OpenAIRE

    Esina, Zoya; Miroshnikov, Aleksandr; Korchuganova, Margarita

    2014-01-01

    The PCEAS model was used to study the liquid-solid and liquid-vapor phase transitions at constant pressure in systems containing glycols and glycol ethers. This method is based on minimizing the excess Gibbs energy over the solvation parameter, which takes into account the processes of association of molecules in various phases. To compute the diagrams, the data on enthalpy and phase transition temperatures of pure components are required, while the information about the interactions in the b...

  9. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  10. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  11. Safety of polyethylene glycol 3350 solution in chronic constipation: randomized, placebo-controlled trial

    OpenAIRE

    McGraw, Thomas

    2016-01-01

    Thomas McGraw Global Medical Affairs, Merck & Co., Inc., Kenilworth, NJ, USA Purpose: To evaluate the safety and tolerability of aqueous solution concentrate (ASC) of polyethylene glycol (PEG) 3350 in patients with functional constipation.Patients and methods: The patients who met Rome III diagnostic criteria for functional constipation were randomized in this multicenter, randomized, placebo-controlled, single-blind study to receive once daily dose of PEG 3350 (17 g) ASC or ...

  12. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  13. Novel Displacement Agents for Aqueous 2-Phase Extraction Can Be Estimated Based on Hybrid Shortcut Calculations.

    Science.gov (United States)

    Kress, Christian; Sadowski, Gabriele; Brandenbusch, Christoph

    2016-10-01

    The purification of therapeutic proteins is a challenging task with immediate need for optimization. Besides other techniques, aqueous 2-phase extraction (ATPE) of proteins has been shown to be a promising alternative to cost-intensive state-of-the-art chromatographic protein purification. Most likely, to enable a selective extraction, protein partitioning has to be influenced using a displacement agent to isolate the target protein from the impurities. In this work, a new displacement agent (lithium bromide [LiBr]) allowing for the selective separation of the target protein IgG from human serum albumin (represents the impurity) within a citrate-polyethylene glycol (PEG) ATPS is presented. In order to characterize the displacement suitability of LiBr on IgG, the mutual influence of LiBr and the phase formers on the aqueous 2-phase system (ATPS) and partitioning is investigated. Using osmotic virial coefficients (B22 and B23) accessible by composition gradient multiangle light-scattering measurements, the precipitating effect of LiBr on both proteins and an estimation of both protein partition coefficients is estimated. The stabilizing effect of LiBr on both proteins was estimated based on B22 and experimentally validated within the citrate-PEG ATPS. Our approach contributes to an efficient implementation of ATPE within the downstream processing development of therapeutic proteins. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Selected polyethylene glycols as DOP substitutes. Addendum 1

    International Nuclear Information System (INIS)

    Gerber, B.V.

    1981-01-01

    The recommendation is made that Polyethylene glycol (PEG) 400 be considered as a substitute for DOP in aerosol generators producing a polydisperse distribution for testing the integrity of filters and for testing respirator fit. Further, the recommendation is made that pentaethylene glycol (PTAEG) and possibly hexaethylene glycol be considered as a substitute for DOP in aerosol generators thermally producing monodisperse aerosol for quality acceptance tests according tu US federal specifications and standards. The toxicology data base available on the polyethylene glycol family of chemical compounds is discussed and the conclusion is drawn that the probability of approval and acceptance as a non-hazardous substance in the filter and filter media test role is high. Data and analysis supporting PTAEG performance equivalent to DOP in the filter and filter media test role are given or referenced. Cost and availability of the substitute materials is discussed. Conclusions based on the present data and information are given and recommendations for further work are made

  15. Species dependent radiotracer study of Cr(VI) and Cr(III) using an aqueous biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    Roy, K.; Lahiri, S. [Chemical Sciences Div., Saha Inst. of Nuclear Physics, Kolkata (India)

    2008-07-01

    The speciation study of Cr(III) and Cr(VI) was carried out using a polyethylene glycol (PEG) based aqueous biphasic extraction system (ABS). Neutron activated Cr(III) and Cr(VI) salts were assayed in a HPGe detector before and after employing aqueous biphasic extraction. Different salts of various salting out abilities were taken as the salt rich phase. The best condition for extraction of Cr(VI) and the maximum differential attitude of ABS to Cr(VI) and Cr(III) was observed when 2 M Na{sub 2}SO{sub 4} and PEG 4000 (50% w/w) solutions were used. Cr(III) can also be extracted by the PEG with prior complexation with diphenylthiocarbazone (dithizone). The chromium dithizonate complex is quantitatively extracted by the PEG rich phase. (orig.)

  16. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    Science.gov (United States)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  17. Analysis of products of thymine irradiated by 18O8+ ion beam in N2O saturated aqueous solution

    International Nuclear Information System (INIS)

    Cai Xichen; Wei Zengquan; Li Wenjian; Liang Jianping; Li Qiang

    1999-01-01

    Some methods of capillary gas chromatography, such as GC, GC-MS GC-FT-IR, are used to analyze the products of thymine irradiated by 18 O 8+ ion beam in N 2 O saturated aqueous solution. From the results of GC-MS the molecular weight of products can be determined, and from the results of GC-FT-IR some molecular structure information of products can be obtained. By this way the products, 5,6-Dihydro-thymine, 5-Hydroxyl-5-Methylhydantoin, 5-Hydroxyl-6-Hydro-thymine, 5-Hydro-6-Hydroxyl thymine, 5-Hydroxymethyluracil, Trans-Thymine glycol, Cis-Thymine glycol and dimers are determined without separation of them from samples. Though these products are as same as those products of thymine irradiated by γ rays in N 2 O saturated aqueous solution, the mechanism of thymine irradiated by heavy ion beam in aqueous solution is different from that by γ rays. The main products of thymine irradiated by 18 O 8+ ion beam in N 2 O saturated aqueous solution are hydroxyl adducts at 5-6 band of thymine, while the main products of thymine irradiated by γ ray in N 2 O saturated aqueous solution are dimers of thymine

  18. Ethylene glycol, but not DMSO, could replace glycerol inclusion in soybean lecithin-based extenders in ram sperm cryopreservation.

    Science.gov (United States)

    Najafi, Abouzar; Daghigh-Kia, Hossein; Dodaran, Hossein Vaseghi; Mehdipour, Mahdieh; Alvarez-Rodriguez, Manuel

    2017-02-01

    The aim of this study was to evaluate the effects of glycerol, ethylene glycol or DMSO in a soybean lecithin extender for freezing ram semen. In this study, 20 ejaculates were collected from four Ghezel rams and diluted with soybean lecithin extender with glycerol (7%), ethylene glycol (3%, 5% and 7%) or DMSO (3%, 5% and 7%). Sperm motility (CASA), membrane integrity (HOS test), viability, total abnormality, mitochondrial activity (Rhodamine 123) and apoptotic features (Annexin V/Propidium iodide) were assessed after thawing. There was no significant difference between glycerol and ethylene glycol at different concentrations (3% and 5%) regarding sperm total and progressive motility, viability, and membrane integrity. The least percentages of mitochondrial functionality were observed in samples frozen with all different DMSO concentrations tested (Plecithin extender. We propose that glycerol in a soybean lecithin based extender could be replaced by ethylene glycol at 3% or 5% concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Separation of four flavonol glycosides from Solanum rostratum Dunal using aqueous two-phase flotation followed by preparative high-performance liquid chromatography.

    Science.gov (United States)

    Chang, Lin; Shao, Qian; Xi, Xingjun; Chu, Qiao; Wei, Yun

    2017-02-01

    Aqueous two-phase flotation followed by preparative high-performance liquid chromatography was used to separate four flavonol glycosides from Solanum rostratum Dunal. In the aqueous two-phase flotation section, the effects of sublation solvent, solution pH, (NH 4 ) 2 SO 4 concentration in aqueous solution, cosolvent, N 2 flow rate, flotation time, and volumes of the polyethylene glycol phase on the recovery were investigated in detail, and the optimal conditions were selected: 50 wt% polyethylene glycol 1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH 4 ) 2 SO 4 concentration in aqueous phase, 40 mL/min of N 2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume, and two times. After aqueous two-phase flotation concentration, the flotation products were purified by preparative high-performance liquid chromatography. The purities of the final products A and B were 98.1 and 99.0%. Product B was the mixture of three compounds based on the analysis of high-performance liquid chromatography at the temperature of 10°C, while product A was hyperoside after the identification by nuclear magnetic resonance. Astragalin, 3'-O-methylquercetin 3-O-β-d-galactopyranoside, and 3'-O-methylquercetin 3-O-β-d-glucopyranoside were obtained with the purity of 93.8, 97.1, and 99.2%, respectively, after the further separation of product B using preparative high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermodynamic properties of actinide complexes. Part 5: Uranyl(VI)-thioglycolate system; thorium(IV)-glycolate and -thioglycolate systems

    Energy Technology Data Exchange (ETDEWEB)

    di Bernardo, P; Roncari, E; Mazzi, U; Bettella, F [Padua Univ. (Italy). Istituto di Chimica Generale ed Inorganica; Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi); Magon, L [Ferrara Univ. (Italy). Istituto Chimico

    1978-04-01

    The changes in free energy, enthalpy and entropy for the formation of uranyl(VI)-thioglycolate, thorium(IV)-glycolate and -thioglycolate complexes have been determined. The changes in free energy were calculated from the stability constants obtained from a potentiometric determination of the concentration of free hydrogen ion, using a glass or quinhydrone electrode. The enthalpy values were measured calorimetrically. The measurements were performed at 25.0/sup 0/C in an aqueous sodium perchlorate medium with the total sodium concentration equal to 100 M. A comparison of the magnitude of the enthalpy and entropy changes for the various systems gives additional support of the view that the thioglycolate acts as a monodentate ligand while the glycolate forms chelate rings.

  1. Design of microemulsion system suitable for the oral delivery of poorly aqueous soluble beta-carotene.

    Science.gov (United States)

    Peng, Cheng; Svirskis, Darren; Lee, Sung Je; Oey, Indrawati; Kwak, Hae-Soo; Chen, Guanyu; Bunt, Craig; Wen, Jingyuan

    2017-02-14

    Beta-carotene is a potent antioxidant for maintaining human health. However, its oral absorption is low due to poor aqueous solubility of less than 1 μg/ml. A microemulsion delivery system was designed to solubilize beta-carotene toward enhancing its oral bioavailability. From seven pseudoternary diagrams constructed, three systems were selected with large microemulsion areas suitable for oral administration and dilution in the predominately aqueous gastrointestinal fluids. Conductivity and rheology characterization were conducted along four dilution lines within the selected systems. Three pseudoternary-phase diagrams were selected with large microemulsion regions, >60% of the total phase diagram area, which provide microemulsions with higher drug-loading capacity. A phenomenon was observed by which both propylene glycol and Capmul MCM EP stabilize the microstructure of the microemulsions has been proposed based on the characterization studies. An optimal bicontinuous microemulsion formulation was selected comprising 12% orange oil, 24% Capmul MCM, 18% Tween 20, 6% Labrasol, 20% propylene glycol and 20% water, with a high beta-carotene loading capacity of 140.8 μg/ml and droplet size of 117.4 nm. In conclusion, the developed novel microemulsion formulation allows solubilizing beta-carotene and is a promising basis for further development as a functional beverage.

  2. Aqueous Two-Phase Systems: A New Approach for the Determination of Brilliant Blue FCF in Water and Food Samples

    Directory of Open Access Journals (Sweden)

    Sabah Shiri

    2013-01-01

    Full Text Available A novel, simple, and more sensitive spectrophotometric procedure has been developed for the determination of brilliant blue FCF in water and food samples by an aqueous two-phase system (ATPS. In this method, adequate amount of polyethylene glycol/ sodium carbonate (PEG-4000/Na2CO3 was added to aqueous solution for formation of a homogeneous solution. To the mixture solution, suitable amount of Na2CO3 was added, the mixture solution was shaken until the salt was dissolved, and then it was separated into two clear phases easily and rapidly. The target analyte in the water sample was extracted into the polyethylene glycol phase. After extraction, measuring the absorbance at 634 nm was done. The effects of different parameters such as polyethylene glycol (type and concentration, pH, salt (type and amount, centrifuge time, and temperature on the ATPS of dye was investigated and optimum conditions were established. Linear calibration curves were obtained in the range of 0.25–750 ng/mL for brilliant blue FCF under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb was 0.12 ng/mL. The relative standard deviation (RSD for 400 ng/mL was 3.14%. The method was successfully applied to the determination of brilliant blue FCF in spiked samples with satisfactory results. The relative recovery was between 96.0 and 102.2%.

  3. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  4. Partial molar volumes of organic solutes in water. XXVIII. Three aliphatic poly(ethylene glycols) at temperatures T = 298 K–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2017-01-01

    Highlights: • Standard molar volumes of three poly(ethylene glycols) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data are analyzed and compared with those of similar solutes. - Abstract: Densities of dilute aqueous solutions of three poly(ethylene glycols): 3-oxapentane-1,5-diol (diethylene glycol), 3,6-dioxaoctane-1,8-diol (triethylene glycol), and 3,5,9-trioxaundecane-1,11-diol (tetraethylene glycol) measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data complement both the previous measurements performed at atmospheric pressure in the temperature range from (278 to 343) K and the data already available for the first member of the homologous series (ethylene glycol). A comparison with data previously measured for the homologous series of linear aliphatic polyethers (poly(ethylene glycol) dimethyl ethers, glymes), diethylene glycol monomethyl ether (3,6-dioxaheptan-1-ol), and selected alkane-α,ω-diols is presented.

  5. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.

    Science.gov (United States)

    Zheng, Ming; Li, Zhigang; Huang, Xueying

    2004-05-11

    The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.

  6. Prediction of scale potential in ethylene glycol containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sandengen, Kristian; Oestvold, Terje

    2006-03-15

    This work presents a method for scale prediction in MEG (Mono Ethylene Glycol / 1,2-ethane-diol) containing solutions. It is based on an existing PVT scale model using a Pitzer ion interaction model for the aqueous phase. The model is well suited for scale prediction in saline solutions, where the PVT part is necessary for calculating CO{sub 2} phase equilibria being critical for carbonate scale. MEG influences the equilibria contained in the model, and its effect has been added empirically. Thus the accuracy of the model is limited by the amount of available experimental data. The model is applicable in the range 0-99wt% MEG and includes a wide variety of salts. In addition to the aspects of scale modelling in MEG+water solutions, this work presents new experimental data on CaSO4 solubility (0-95wt% MEG and 22-80 deg.C). CaSO4 solubility is greatly reduced by MEG to an extent that ''Salting-out'' is possible. (author) (tk)

  7. Development of sodium acetate trihydrate-ethylene glycol composite phase change materials with enhanced thermophysical properties for thermal comfort and therapeutic applications.

    Science.gov (United States)

    Kumar, Rohitash; Vyas, Sumita; Kumar, Ravindra; Dixit, Ambesh

    2017-07-12

    The heat packs using phase change materials (PCMs) are designed for possible applications such as body comfort and medical applications under adverse situations. The development and performance of such heat packs rely on thermophysical properties of PCMs such as latent heat, suitable heat releasing temperature, degree of supercooling, effective heat releasing time, crystallite size, stability against spontaneous nucleation in metastable supercooled liquid state and thermal stability during heating and cooling cycles. Such PCMs are rare and the available PCMs do not exhibit such properties simultaneously to meet the desired requirements. The present work reports a facile approach for the design and development of ethylene glycol (EG) and aqueous sodium acetate trihydrate (SAT) based composite phase change materials, showing these properties simultaneously. The addition of 2-3 wt% EG in aqueous SAT enhances the softness of SAT crystallites, its degree of supercooling and most importantly the effective heat releasing time by ~10% with respect to aqueous SAT material. In addition, the maximum heat releasing temperature of aqueous SAT has been tailored from 56.5 °C to 55 °C, 54.9 °C, 53.5 °C, 51.8 °C and 43.2 °C using 2%, 3%, 5%, 7% and 10 wt% EG respectively, making the aqueous SAT-EG composite PCMs suitable for desired thermal applications.

  8. Validation of an analytical methodology for the determination of diethylene glycol and ethylene glycol as impurities in glycerin and propylene glycol

    International Nuclear Information System (INIS)

    Rosabal Cordovi, Ursula M; Fonseca Gola, Antonio; Cordovi Velazquez, Juan M; Morales Torres, Galina

    2014-01-01

    A methodology for the quantification of diethylene glycol (DEG) and the ethylene glycol (EG) impurities by gas Chromatography with flame ionization detector in glycerol and propylene glycol samples was developed and validated. It was selected dimethyl sulphoxide as internal standard. It was used hydrogen as carrier and auxiliary gas. The temperature program was 100°C holding one minute, then ramp to rate of 7.5°C/ min up to 200 °C. A Restek 624 column was used, with a flow in column of 4.20 ml/ min. Temperatures of the injector and detector were set at 220°C and 250 °C, respectively. The linearity was determined at 25-75 ?μg/ml as interval of concentrations for both impurities with correlation coefficients larger than 0.999. Detection Limits were settled down in 0.0350 μ?g/ml to the diethylene glycol, and 0.0572 μg/ml to ethylene glycol, while the quantitation limits were 0.1160 μ?g/ml to DEG and 0.1897 μg/ml to the EG. The recoveries were 99.98 % and 100.00 %, respectively; with RSD % 1.18 % to DEG, and 0.60 % to the EG. The obtained results demonstrated that the methodology was linear, accurate, robustness, sensitive and selective to be used in the determination of both impurities in the quality control of the glycerol and propylene glycol as raw materials

  9. Sync-measurement experimental study of (fluoroethane + dimethylether tetraethylene glycol), (fluoroethane + dimethylether triethylene glycol) and (fluoroethane + dimethylether diethylene glycol) systems

    International Nuclear Information System (INIS)

    Feng, Lejun; Zheng, Danxing; Huang, Weijia

    2016-01-01

    Highlights: • Three new working pairs are proposed for absorption power cycle. • Sync-measured the solubility and absorption enthalpy data at 303.15 K. • Thermokinetic experiment is consistent with the previous thermodynamics study. - Abstract: In this work, three new working pairs, {fluoroethane (HFC161) + dimethylether tetraethylene glycol (DMETEG)}, {HFC161 + dimethylether triethylene glycol (DMETrEG)} and {HFC161 + dimethylether diethylene glycol (DMEDEG)}, are proposed for absorption power cycle. The working pairs are assessed from both thermodynamics and thermokinetic perspective. By combining the microcalorimetry and isothermal synthesis methods, an experimental apparatus was developed to simultaneously obtain the microcalorimetry and vapour–liquid equilibrium data. Then, the solubility and absorption enthalpy data of the three new working pairs were sync-measured at 303.15 K by this sync-measurement experimental apparatus. The thermodynamics data indicated that the affinities of the three working pairs increased from strong to weak in the following order: HFC161 + DMETEG > HFC161 + DMETrEG > HFC161 + DMEDEG. Then the thermokinetic parameters of the absorption rate constant and activation energy were analysed based on the thermokinetic experiment at (303.15, 313.15, 323.15, and 333.15) K. As a result, the affinities of the three working pairs are consistent with the previous thermodynamics study. In addition, the intermolecular interactions within the three systems were analysed according to the intermolecular hydrogen bonds; overall, the (HFC161 + DMETEG) system is considered to be the potential option for applications.

  10. Photochemical properties of Ysub(t) base in aqueous solution

    International Nuclear Information System (INIS)

    Paszyc, S.; Rafalska, M.

    1979-01-01

    Photoreactivity of Ysub(t) base (I) has been studied in aqueous solution (pH-6) saturated with oxygen. Two photoproducts (II,III), resulting from irradiation at lambda = 253.7 nm and lambda >= 290 nm were isolated and their structures determined. The quantum yield for Ysub(t) base disappearance (rho dis) is 0.002 (lambda = 313 nm). It was shown that dye- sensitised photo-oxidation of Ysub(t) base in aqueous solution occurs according to a Type I mechanism as well as with participation of singlet state oxygen. Quantum yields, fluorescence decay times and phosphorescence of Ysub(t) base have also been determined. (author)

  11. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  12. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  13. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    Science.gov (United States)

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-11-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times.

  14. Studies on the interactions of diglycine and triglycine with polyethylene glycol 400 in aqueous solutions by density and ultrasound speed measurements

    International Nuclear Information System (INIS)

    Sahin, Melike; Ayranci, Erol

    2013-01-01

    Highlights: ► Di- and tri-glycine in aqueous PEG400 solutions were investigated thermodynamically. ► Density and ultrasound speed of glycine oligomer-PEG400-water systems were measured. ► Apparent molar volumes and isentropic compressions were calculated. ► Apparent molar isobaric expansions were derived. ► Results were interpreted in terms of water–glycine oligomer-PEG400 interactions. -- Abstract: Density and ultrasound speed were measured accurately for diglycine + water, triglycine + water, diglycine + water-polyethylene glycol 400 (PEG400) and triglycine + water-PEG400 solutions at T = (293.15, 298.15, 303.15 and 308.15) K. The results were used in evaluating thermodynamic properties as apparent molar volumes (V Ø ) and apparent molar isentropic compressions (K SΦ ) of diglycine and triglycine in water and in PEG400 solutions. Infinite dilution values of these parameters, V o Ø , and K o SΦ , were obtained from their plots as a function of molality by extrapolation and have been utilized in obtaining transfer volumes and transfer compressions at infinite dilution. All transfer volumes and transfer compressions were found to increase with increasing molality of PEG400. Apparent molar isobaric expansions were derived from the temperature dependence of V Ø values at infinite dilution and at finite concentrations. All the results were interpreted in terms of solute (diglycine or triglycine) and co-solute (PEG400) and solvent (H 2 O) interactions

  15. Exposure to glycols and their renal effects in motor servicing workers.

    Science.gov (United States)

    Laitinen, J; Liesivuori, J; Savolainen, H

    1995-10-01

    Ten car mechanics frequently exposed to glycol-based cooling liquids were followed during a workshift. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were measured. The car mechanics gave urine samples after the workshift and their excretion of ethylene glycol, propylene glycol, oxalic acid, calcium and ammonia was analysed and compared to that of unexposed office workers. Urinary succinate dehydrogenase activity and glycosaminoglycans were also measured in both groups. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were negligible. Urinary ethylene glycol excretion in exposed workers was significantly higher than that in unexposed workers, but propylene glycol excretion was at the same levels as in controls. In the exposed group, the excretion of the end metabolite of ethylene glycol, oxalic acid (47 +/- 11 mmol/mol creatinine, mean +/- SD, n = 10) differed slightly from that of controls (36 +/- 14 mmol/mol creatinine, mean +/- SD, n = 10). Urinary excretion of ammonia was higher among exposed workers than office workers. The excretion of calcium did not differ from that of controls. A marginally decreased urinary succinate dehydrogenase activity was found in the exposed men. The excretion of glycosaminoglycans was significantly lower in exposed workers. Therefore, it seems that ethylene glycol is absorbed by skin contact. The internal body burden is associated with oxaluria and increased ammoniagenesis typical of chronic acidosis.

  16. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures

    Directory of Open Access Journals (Sweden)

    Takayuki Odahara

    2016-06-01

    Full Text Available The data provide information in support of the research article, “Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures” [1]. The data regarding variation of absorption spectra is used as an indicator of the duration of Rp. viridis PRU and RC, Rb. sphaeroides RC and LH2, and Rb. capsulatus LH2 in the native state in the presence of NaCl/polyethylene glycol (PEG mixture. The data about minimum concentrations of salt and PEG whose aqueous phases are mutually separated presents information on additional influence of Tris buffer and N-octyl-β-d-glucoside on the salt–PEG phase separation.

  17. Identification of Poly(ethylene glycol) and Poly(ethylene glycol)-Based Detergents Using Peptide Search Engines.

    Science.gov (United States)

    Ahmadi, Shiva; Winter, Dominic

    2018-06-05

    Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.

  18. Ethylene Glycol, Hazardous Substance in the Household

    Directory of Open Access Journals (Sweden)

    Jiří Patočka

    2010-01-01

    Full Text Available Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment.

  19. Biosynthetic mechanism of glycolate in Chromatium, 4

    International Nuclear Information System (INIS)

    Asami, Sumio; Takabe, Tetsuo; Akazawa, Takashi

    1977-01-01

    The metabolic transformation of glycolate to glycine occurring in photosynthesizing cells of Chromatium was investigated by the radioisotopic technique and by amino acid analysis. By analyzing the distribution of radiocarbon upon feeding (1- 14 C) glycolate, (2- 14 C) glyoxylate and (1- 14 C) glycine to bacterial cells, it was demonstrated that glycolate is converted to glycine via glyoxylate, and both glycolate and glycine are excreted extracellularly. Although the formation of serine was barely detected by the above two techniques in both N 2 and O 2 atmospheres, it was found that 14 CO 2 is evolved quite markedly from both (1- 14 C) glycolate and (1- 14 C) glycine fed to the Chromatium cells. Analytical results of transient changes in amino acid compositions under atmospheric changes of N 2 →O 2 and by the addition of exogenous glycolate in N 2 confirm the notion that glycolate is converted to glycine. Acidic amino acids (glutamic acid and aspartic acid) appear to take part in glycine formation as amino donors. The formation of glycine from glycolate in a N 2 atmosphere suggests that an unknown glycolate dehydrogenation reaction may operate in the overall process. (auth.)

  20. Extraction of hafnium by 1-phenyl-3-methyl-4-benzoyl-5-pyralozone from aqueous-alcoholic solutions

    International Nuclear Information System (INIS)

    Hala, J.; Prihoda, J.

    1975-01-01

    Extraction of hafnium by 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HL) in benzene, toluene, chloroform and tetrachloromethane from aqueous-alcoholic solutions of the formal acidity of 2M-HClO 4 was studied. Methyl, ethyl, n- and isopropyl, tert-butyl and allyl alcohol as well as ethylene glycol monomethyl ether and propylene glycol were used as organic components of the mixed aqueous-organic phase. Their presence in some cases resulted in a synergic increase in the distribution ratio of hafnium. The increase is interpreted using the results of a slope analysis and measurements of the alcohol distribution and the relative permittivity of the organic phase. It is suggested that HfL 4 molecules were solvated by alcohol molecules in the organic phase. At high alcohol concentration synergism changed into antagonism. This was caused by changes in the distribution of HL and its interaction with the alcohol in the organic phase. (author)

  1. Liquid-Liquid Equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  2. Liquid-liquid equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, B.; Haan, de A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  3. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  4. Synthesis of C60(OH)18-20 in aqueous alkaline solution under O2-atmosphere

    International Nuclear Information System (INIS)

    Alves, Gustavo Catao; Ladeira, Luiz Orlando; Righi, Ariete; Krambrock, Klaus; Pinheiro, Mauricio Veloso B.; Calado, Hallen Daniel; Gil, Rossimiriam Pereira de Freitas

    2006-01-01

    In this work we report on an alternative synthesis of water-soluble fullerenes known as fullerols, aiming for biomedical applications. The synthesis is based on a process in which polyethylene glycol (PEG400) is used as phase-transfer catalyst between fullerene/benzene and aqueous NaOH solutions. The polyhydroxylation of the fullerenes occurs in the NaOH solution under a continuous flow of O 2 to enhance the reaction yield. The resulting compound was characterized with infrared spectroscopy, nuclear magnetic resonance, thermo-gravimetric analysis and optical absorption. The formation of C 60 (OH) 18-20 in high yields was confirmed. (author)

  5. Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Kontogeorgis, Georgios

    2009-01-01

    A thorough investigation of triethylene glycol (TEG) containing systems has been performed. The introduction of a new six-site association scheme for the TEG molecule has shown to be advantageous. Glycols are often modeled using a four-site scheme (abbreviated as 4C) hence ignoring the internal...... lone pairs of oxygen. The new association scheme also takes these sites into account. The new parameters of TEG are based on the vapor pressure data, liquid density data, and liquid-liquid equilibria (LLE) data (n-heptane), and they are tested for binary systems (methane, n-octane, n-nonane, n...

  6. Highly sensitive luminescent sensor for cyanide ion detection in aqueous solution based on PEG-coated ZnS nanoparticles.

    Science.gov (United States)

    Mehta, Surinder K; Salaria, Khushboo; Umar, Ahmad

    2013-03-15

    Using polyethylene glycol (PEG) coated ZnS nanoparticles (NPs), a novel and highly sensitive luminescent sensor for cyanide ion detection in aqueous solution has been presented. ZnS NPs have been used to develop efficient luminescence sensor which exhibits high reproducibility and stability with the lowest limit of detection of 1.29×10(-6) mol L(-1). The observed limit of detection of the fabricated sensor is ~6 times lower than maximum value of cyanide permitted by United States Environmental Protection Agency for drinking water (7.69×10(-6) mol L(-1)). The interfering studies show that the developed sensor possesses good selectivity for cyanide ion even in presence of other coexisting ions. Importantly, to the best of our knowledge, this is the first report which demonstrates the utilization of PEG- coated ZnS NPs for efficient luminescence sensor for cyanide ion detection in aqueous solution. This work demonstrates that rapidly synthesized ZnS NPs can be used to fabricate efficient luminescence sensor for cyanide ion detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Using microcantilever sensors to measure poly(lactic-co-glycolic acid) plasticization by moisture uptake

    DEFF Research Database (Denmark)

    Alves, Gustavo Marcati A.; Bose-Goswami, Sanjukta; Mansano, Ronaldo D.

    2018-01-01

    Polymeric materials absorb water when exposed to humidity or in contact with aqueous solutions. The polymer and water molecules interact, changing the physicochemical parameters of the material; the most noticeable effect is a decreased glass transition temperature (Tg), known as plasticization. We...... used microcantilever sensors to measure the Tg versus moisture content in poly(lactic-co-glycolic acid) (PLGA), a biodegradable polymer used in implants and as a drug carrier. We demonstrate a concomitant measurement of the mass absorption and Tg using nanograms of material and an inexpensive setup...

  8. Quaternary (liquid + liquid) equilibria of aqueous two-phase polyethylene glycol, poly-N-vinylcaprolactam, and KH{sub 2}PO{sub 4}: Experimental and the generalized Flory-Huggins theory

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Zarrabi, Mona [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)

    2008-06-15

    A quaternary (liquid + liquid) equilibrium study was performed to focus attention on the interaction parameters between poly-N-vinylcaprolactam (PVCL) and poly-ethylene glycol (PEG) as well as between other species. At first, the new experimental data of (liquid + liquid) equilibria for aqueous two-phase systems containing PEG, KH{sub 2}PO{sub 4}, and PVCL at T = 303.15 K have been determined. Then the Flory-Huggins theory with two electrostatic terms (the Debye-Huckel and the Pitzer-Debye-Huckel equations) has been generalized to correlate the phase behavior of the quaternary system. Good agreement has been found between experimental and calculated data from both models especially from the Pitzer-Debye-Huckel equation. Also an effort was done to compare the effect of temperature as well as addition of PVCL on the binodal curves of PEG, KH{sub 2}PO{sub 4}, and water. The effect of the type of salt on the binodals has been also studied, and the salting out power of the salts has been determined.

  9. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  10. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  11. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  12. Biodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro ...

    African Journals Online (AJOL)

    ... drug encapsulation efficiency and release profile of PLGA mico/nanoparticles. The current knowledge of protein instability during preparation, storage and release from PLGA micro/nanoparticles and protein stabilization approaches has also been discussed in this review. Keywords: Poly(D, L-lactic-co-glycolic acid), ...

  13. Synthesis and aqueous phase behavior of thermoresponsive biodegradable poly(D,L-3-methylglycolide)-block-poly(ethyelene glycol)-block-poly(D,L-3-methylglycolide) triblock copolymers

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan; Kwon, Young-Min; Bae, You Han; Kim, Sung Wan

    2002-01-01

    Novel biodegradable thermosensitive triblock copolymers of poly(D,L-3-methylglycolide)-block-poly(ethylene glycol)-block-poly(D,L-3-methylglycolide) (PMG-PEG-PMG) have been synthesized. Ring-opening polymerization of D,L-3-methyl-glycolide (MG) initiated with poly(ethylene glycol) (PEG) and

  14. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  15. Characterisation of UV-cured acrylate networks by means of hydrolysis followed by aqueous size-exclusion combined with reversed-phase chromatography

    NARCIS (Netherlands)

    Peters, R.; Litvinov, V. M.; Steeman, P.; Dias, A. A.; Mengerink, Y.; van Benthem, R.; de Koster, C. G.; van der Wal, S. J.; Schoenmakers, P.

    2007-01-01

    UV-cured networks prepared from mixtures of di-functional (polyethylene-glycol di-acrylate) and mono-functional (2-ethylhexyl acrylate) acrylates were analysed after hydrolysis, by aqueous size-exclusion chromatography coupled to on-line reversed-phase liquid-chromatography. The mean network density

  16. Salts-based size-selective precipitation: toward mass precipitation of aqueous nanoparticles.

    Science.gov (United States)

    Wang, Chun-Lei; Fang, Min; Xu, Shu-Hong; Cui, Yi-Ping

    2010-01-19

    Purification is a necessary step before the application of nanocrystals (NCs), since the excess matter in nanoparticles solution usually causes a disadvantage to their subsequent coupling or assembling with other materials. In this work, a novel salts-based precipitation technique is originally developed for the precipitation and size-selective precipitation of aqueous NCs. Simply by addition of salts, NCs can be precipitated from the solution. After decantation of the supernatant solution, the precipitates can be dispersed in water again. By means of adjusting the addition amount of salt, size-selective precipitation of aqueous NCs can be achieved. Namely, the NCs with large size are precipitated preferentially, leaving small NCs in solution. Compared with the traditional nonsolvents-based precipitation technique, the current one is simpler and more rapid due to the avoidance of condensation and heating manipulations used in the traditional precipitation process. Moreover, the salts-based precipitation technique was generally available for the precipitation of aqueous nanoparticles, no matter if there were semiconductor NCs or metal nanoparticles. Simultaneously, the cost of the current method is also much lower than that of the traditional nonsolvents-based precipitation technique, making it applicable for mass purification of aqueous NCs.

  17. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions.

    Science.gov (United States)

    Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans

    2012-11-23

    Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    Science.gov (United States)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  19. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    Directory of Open Access Journals (Sweden)

    Courtney A. Cunningham MD

    2015-09-01

    Full Text Available In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  20. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    of impurities such as formic and diglycolic acid that were then carried over in the SME products. Oxalic acid present in the simulated tank farm waste was also detected. Finally, numerous other compounds, at low concentrations, were observed present in etheric extracts of aqueous supernate solutions of the SME samples and are thought to be breakdown products of antifoam 747. The data collectively suggest that although addition of glycolic acid and antifoam 747 will introduce a number of impurities and breakdown products into the melter feed, the concentrations of these organics is expected to remain low and may not significantly impact REDOX or off-gas flammability predictions. In the SME products examined presently, which contained variant amounts of glycolic acid and antifoam 747, no unexpected organic degradation product was found at concentrations above 500 mg/kg, a reasonable threshold concentration for an organic compound to be taken into account in the REDOX modeling. This statement does not include oxalic or formic acid that were sometimes observed above 500 mg/kg and acetic acid that has an analytical detection limit of 1250 mg/kg due to high glycolate concentration in the SME products tested. Once a finalized REDOX equation has been developed and implemented, REDOX properties of known organic species will be determined and their impact assessed. Although no immediate concerns arose during the study in terms of a negative impact of organics present in SME products of the glycolic flowsheet, evidence of antifoam degradation suggest that an alternative antifoam to antifoam 747 is worth considering. The determination and implementation of an antifoam that is more hydrolysis resistant would have benefits such as increasing its effectiveness over time and reducing the generation of degradation products

  1. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    of impurities such as formic and diglycolic acid that were then carried over in the SME products. Oxalic acid present in the simulated tank farm waste was also detected. Finally, numerous other compounds, at low concentrations, were observed present in etheric extracts of aqueous supernate solutions of the SME samples and are thought to be breakdown products of antifoam 747. The data collectively suggest that although addition of glycolic acid and antifoam 747 will introduce a number of impurities and breakdown products into the melter feed, the concentrations of these organics is expected to remain low and may not significantly impact REDOX or off-gas flammability predictions. In the SME products examined presently, which contained variant amounts of glycolic acid and antifoam 747, no unexpected organic degradation product was found at concentrations above 500 mg/kg, a reasonable threshold concentration for an organic compound to be taken into account in the REDOX modeling. This statement does not include oxalic or formic acid that were sometimes observed above 500 mg/kg and acetic acid that has an analytical detection limit of 1250 mg/kg due to high glycolate concentration in the SME products tested. Once a finalized REDOX equation has been developed and implemented, REDOX properties of known organic species will be determined and their impact assessed. Although no immediate concerns arose during the study in terms of a negative impact of organics present in SME products of the glycolic flowsheet, evidence of antifoam degradation suggest that an alternative antifoam to antifoam 747 is worth considering. The determination and implementation of an antifoam that is more hydrolysis resistant would have benefits such as increasing its effectiveness over time and reducing the generation of degradation products.

  2. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.

    Science.gov (United States)

    Li, Xuanyu; Jiang, Xingyu

    2017-12-24

    Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production. Copyright © 2017. Published by Elsevier B.V.

  3. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  4. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    Science.gov (United States)

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties.

    Science.gov (United States)

    Mya, Khine Y; Lin, Esther M J; Gudipati, Chakravarthy S; Gose, Halima B A S; He, Chaobin

    2010-07-22

    Poly(hexafluorobutyl methacrylate) (PHFBMA) homopolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated living radical polymerization in the presence of cyano-2-propyl dithiobenzoate (CPDB) RAFT agent. A block copolymer of PHFBMA-poly(propylene glycol acrylate) (PHFBMA-b-PPGA) with dangling poly(propylene glycol) (PPG) side chains was then synthesized by using CPDB-terminated PHFBMA as a macro-RAFT agent. The amphiphilic properties and self-assembly of PHFBMA-b-PPGA block copolymer in aqueous solution were investigated by dynamic and static light scattering (DLS and SLS) studies, in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). Although PPG shows moderately hydrophilic character, the formation of nanosize polymeric micelles was confirmed by fluorescence and TEM studies. The low value of the critical aggregation concentration exhibited that the tendency for the formation of copolymer aggregates in aqueous solution was very high due to the strong hydrophobicity of the PHFBMA(145)-b-PPGA(33) block copolymer. The combination of DLS and SLS measurements revealed the existence of micellar aggregates in aqueous solution with an association number of approximately 40 +/- 7 for block copolymer micelles. It was also found in TEM observation that there are 40-50 micelles accumulated into one aggregate and these micelles are loosely packed inside the aggregate.

  6. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  7. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.

    Science.gov (United States)

    Krishna, Lekshmi; Jayabalan, Muthu

    2009-12-01

    Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.

  8. Direct purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel using a PEG/salt-based Aqueous Two Phase System.

    Science.gov (United States)

    Mehrnoush, Amid; Sarker, Md Zaidul Islam; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2011-10-10

    An Aqueous Two-Phase System (ATPS) was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000-10,000), potassium phosphate composition (12-20%, w/w), system pH (6-9), and addition of different concentrations of neutral salts (0-8%, w/w) on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w) NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%). Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.

  9. Thermal decomposition and spectroscopic investigation of a new aqueous glycolato(-peroxo) Ti(IV) solution-gel precursor

    International Nuclear Information System (INIS)

    De Dobbelaere, Christopher; Mullens, Jules; Hardy, An; Van Bael, Marlies K.

    2011-01-01

    Highlights: → A totally water based glycolato-Ti(IV) precursor is presented and characterized. → The precursors' thermal decomposition profile depends on the ligand to metal ratio. → Titanium is coordinated in an unidentate fashion by the glycolate anion. → Smooth and uniform TiO 2 films can be prepared from the precursor solution. - Abstract: A new aqueous solution-gel precursor based on water soluble glycolato(-peroxo)-Ti(IV) complexes is developed for the preparation of TiO 2 films. With regard to the decomposition of complexes towards oxide formation, it is important to gain insight in the chemical transformations inside the precursor during thermal treatment. Therefore, the thermo-oxidative decomposition pathway of a gel obtained by slow evaporation of the precursor solution is described based on hyphenated thermogravimetric analysis with Fourier transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). Pure glycolic acid is used as a reference system for this study. By varying the molar glycolic acid to Ti(IV) ratio, the thermal decomposition of the gel can be drastically shortened and the profile's course changed. Gel structure and chemical changes in the gel upon heating are also studied by means of off-line FTIR. A unidentate coordination of the titanium(IV) ion by the carboxylate group of the glycolato ligands and the involvement of the hydroxyl group is confirmed. Phase formation at certain points in the thermal decomposition is studied by X-ray diffraction and Raman spectroscopy. Finally, it is proven that the new precursor is a valuable candidate for the deposition of low carbon containing solution-gel films which can ultimately be converted into smooth and uniform TiO 2 films.

  10. Poly(N-vinylimidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids

    Energy Technology Data Exchange (ETDEWEB)

    Schemeth, Dieter; Noël, Jean-Christophe [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Jakschitz, Thomas [Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria); Rainer, Matthias, E-mail: m.rainer@uibk.ac.at [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Tessadri, Richard [Institute of Mineralogy and Petrography, Leopold-Franzens University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Huck, Christian W. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Bonn, Günther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria)

    2015-07-23

    Highlights: • Free-radical polymerization of protonable vinylimidazole with EGMDA. • Polymer-optimization by maximum loading capacity of phenolic acids. • Performs better than SiO{sub 2} and Al{sub 2}O{sub 3} in normal phase mode using acetonitrile. • Performs equal or even better in anion-exchange mode compared to Oasis-MAX. • Efficient purification of phenolic compounds from crude extract. - Abstract: In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC–qTOF-MS.

  11. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-23

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  12. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  13. Ethylene glycol intercalation in smectites. molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Szczerba, Marek; Klapyta, Zenon; Kalinichev, Andrey

    2012-01-01

    observed for typical smectite. Based on the calculated radial distribution functions, it was confirmed that water and ethylene glycol molecules compete for the coordination sites of the calcium ions in the clay interlayers. It was also found that the differences in the smectite layer charge, charge location, and the type of the interlayer cation affect the ethylene glycol and water packing in the interlayer space and as result have strong influence on the basal spacing and on the structure of complex. Varying amounts and ratio of both ethylene glycol and water are, however, the most important factor influencing the extent of the smectite expansion. Comparison of two-layer structure obtained from molecular dynamics simulations with previous models leads to the conclusion that the arrangement of ethylene glycol molecules in the interlayers, used in simulations of X-ray diffractograms of clays, should be modified. In contrast to the Reynolds (1965) model, the main difference is that, for different location of the clay charge, interlayer ions tend to change their positions. In the case of montmorillonite, calcium ions are located in the middle of the interlayer space, while for beidellite they are located much closer to the clay surface. Water in these structures does not form distinct layers but is distributed rather broadly with a tendency to be concentrated close to the smectite surface. One-layer structure of ethylene glycol/water-smectite complex, characteristic of vermiculite was also proposed. (authors)

  14. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  15. Viscosity and density data for the ternary system water(1)–ethanol(2)–ethylene glycol(3) between 298.15 K and 328.15 K

    International Nuclear Information System (INIS)

    Quijada-Maldonado, E.; Meindersma, G.W.; Haan, A.B. de

    2013-01-01

    Highlights: ► We measure density and dynamic viscosity of pure ethylene glycol. ► We measure ternary densities with water and ethanol. ► We measure ternary dynamic viscosities with water and ethanol. ► The Eyring–Patel–Teja model correlate well ternary viscosities. ► We predict ternary dynamic viscosities with the ASOG-VISCO model. - Abstract: Ethylene glycol is an organic solvent used in extractive distillation to separate water–ethanol mixtures. An appropriate process description requires accurate physical property data. In this paper, experimental liquid densities and dynamic viscosities of pure ethylene glycol as well as the ternary system water–ethanol–ethylene glycol are presented over a wide temperature range (298.15 K to 328.15 K) at atmospheric pressure. A quadratic mixing rule was used to correlate the ternary liquid densities. The Eyring–Patel–Teja model with two Margules-type mixing rules for polar and aqueous systems is used to correlate the dynamic viscosity data over the measured ternary compositions and temperatures. An excellent agreement with experimental data is obtained. Additionally, the predictive ASOG-VISCO model demonstrated a good representation of the experimental data.

  16. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  17. Parallel proton transfer pathways in aqueous acid-base reactions

    NARCIS (Netherlands)

    Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using

  18. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  19. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  20. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  1. End-group characterisation of poly(propylene glycol)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS).

    Science.gov (United States)

    Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H

    2008-10-01

    The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).

  2. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  3. Preparation of various hydrogels based on poly (Vinyl pyrrolidone) and poly ethylene glycol using gamma and electron irradiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2006-11-01

    Different hydrogels have been prepared using gamma and electron irradiation; the hydrogels are composed of poly(vinyl pyrolidone) (PVP), poly(ethylene glycol) (PEG). The influence of some process parameters on the properties of the hydrogels has been investigated as: the gel fraction, maximum swelling, swelling kinetics, and mechanical properties. In the first part of this study, hydrogel dressings have been prepared using electron irradiation, and the dressings are composed of poly(vinyl pyrrolidone) (PVP), poly(ethylene glycol) (PEG) and agar. The gel fraction increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. The prepared hydrogels dressings could be considered as a good barrier against microbes. In the second part, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. In the third part of the study, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and poly(ethylene glycol) (PEG) with various molecular weights, and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. The data show that PEG with low molecular weight needs a high dose for the gelation, and the presence of PVP lowers the needed gelation dose. The maximum swelling decreases with increasing irradiation dose and the PVP concentration, which is due to higher crosslinks between the polymer chains. (author)

  4. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  5. Polyethylene glycol: a game-changer laxative for children.

    Science.gov (United States)

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol.

  6. Multi-morphological growth of nano-structured In{sub 2}Se{sub 3} by ambient pressure triethylene glycol based solution syntheses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tongfei; Wang, Jian; Lai, Junyun; Zheng, Xuerong; Liu, Weiyan; Ji, Junna [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Liu, Hui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-10-15

    In{sub 2}Se{sub 3} nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized by a new, facile, ambient pressure triethylene glycol based solution chemical route using indium(III) chloride and selenium powder as precursors. The growing morphology, crystallization, chemical stoichiometry and light absorption property of the In{sub 2}Se{sub 3} products synthesized were characterized by TEM, HRTEM, FESEM, XRD, EDX and UV–vis–NIR measurements. Multi-morphological growth of the nano-structured In{sub 2}Se{sub 3} in triethylene glycol based solution syntheses with changed assisting agents and reaction styles was demonstrated. - Highlights: • Multimorphological growth of In{sub 2}Se{sub 3} was demonstrated based on solution chemistry. • A new, facile, low cost and fast air pressure TEG based solution process was used. • Nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized. • Morphology, crystallization, stoichiometry and light absorption was characterized. • Solution growth of β-In{sub 2}Se{sub 3} nanosheets was firstly reported by this submission.

  7. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  8. Synthesis of C{sub 60}(OH){sub 18-20} in aqueous alkaline solution under O{sub 2}-atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Gustavo Catao; Ladeira, Luiz Orlando; Righi, Ariete; Krambrock, Klaus; Pinheiro, Mauricio Veloso B. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Fisica; Calado, Hallen Daniel; Gil, Rossimiriam Pereira de Freitas [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica]. E-mail: gustavo.catao@terra.com.br

    2006-09-15

    In this work we report on an alternative synthesis of water-soluble fullerenes known as fullerols, aiming for biomedical applications. The synthesis is based on a process in which polyethylene glycol (PEG400) is used as phase-transfer catalyst between fullerene/benzene and aqueous NaOH solutions. The polyhydroxylation of the fullerenes occurs in the NaOH solution under a continuous flow of O{sub 2} to enhance the reaction yield. The resulting compound was characterized with infrared spectroscopy, nuclear magnetic resonance, thermo-gravimetric analysis and optical absorption. The formation of C{sub 60}(OH){sub 18-20} in high yields was confirmed. (author)

  9. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)

    Science.gov (United States)

    Peled, E.; Livshits, V.; Duvdevani, T.

    We recently reported the development of a new nanoporous proton-conducting membrane (NP-PCM) and have applied it in a direct methanol fuel cell (DMFC) and in other direct oxidation fuel cells. The use of the NP-PCM in the DMFC offers several advantages over the Nafion-based DMFC including lower membrane cost, lower methanol crossover which leads to a much higher fuel utilization and higher conductivity. In this work, we found that the 90 °C swelling of the NP-PCM is only 5-8% and that the diffusion constant of methanol at 80-130 °C is higher by a factor of 1.5-3 than that of ethylene glycol (EG). The maximum power density of methanol/oxygen and EG/oxygen FCs equipped with a 100 μm thick NP-PCMs is 400 and 300 mW/cm 2 respectively, higher than that for a DMFC based on Nafion 115 (260 mW/cm 2 [Eletrochem. Solid-State Lett. 4 (4) (2001) A31]. This puts the DEGFC in direct competition with both DMFC and indirect methanol FC. Ethylene glycol (EG) is well known in the automobile industry and in contrast to methanol, its distribution infrastructure already exists, thus it is a promising candidate for practical electric vehicles.

  10. Aqueous-based thick photoresist removal for bumping applications

    Science.gov (United States)

    Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.

    2015-03-01

    Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.

  11. Pitting morphologies of zirconium base alloys in aqueous and non aqueous chloride media

    International Nuclear Information System (INIS)

    Palit, G.C.; Gadiyar, H.S.

    1988-01-01

    Pitting morphology of zirconium and Zr-Cr alloys in aqueous chloride and nonaqueous methanol + 0.4 per cent HCl solution was investigated and observed to follow different modes in these two environments. While in aqueous chloride solution pitting was transgranular and randomly oriented, in methanol-chloride solution pits were observed to initiate and propagate along the grain boundaries. In aqueous chloride solution very irregular and sponge like zirconium metal was formed inside the pit while in methanol-chloride solution the pits were crystallographic in nature. Optical microscopy has revealed that pits preferentially initiate and propagate along scratch line in aqueous chloride solution, but such was not the case in nonaqueous methanol-chloride solution. The nature and the mechanism operating in the catastropic failure of these materials are investigated. (author). 10 refs., 11 figs

  12. Synthesis and functionalization of dextran-based single-chain nanoparticles in aqueous media

    OpenAIRE

    Gracia R.; Marradi M.; Cossío U.; Benito A.; Pérez-San Vicente A.; Gómez-Vallejo V.; Grande H.-J.; Llop J.; and Loinaz I.

    2017-01-01

    Water-dispersible dextran-based single-chain polymer nanoparticles (SCPNs) were prepared in aqueous media and under mild conditions. Radiolabeling of the resulting biocompatible materials allowed the study of lung deposition of aqueous aerosols after intratracheal nebulization by means of single-photon emission computed tomography (SPECT), demonstrating their potential use as imaging contrast agents.

  13. Self-assembly behavior of well-defined polymethylene-block-poly(ethylene glycol) copolymers in aqueous solution

    KAUST Repository

    Alkayal, Nazeeha; Zapsas, George; Bilalis, Panayiotis; Hadjichristidis, Nikolaos

    2016-01-01

    procedure was confirmed by size-exclusion chromatography (SEC) and 1H NMR spectroscopy. These block copolymers self-assembled into spherical micelles in aqueous solutions and exhibit low critical micelle concentration (CMC) of 2–4 mg/mL, as determined

  14. Thermal decomposition and spectroscopic investigation of a new aqueous glycolato(-peroxo) Ti(IV) solution-gel precursor

    Energy Technology Data Exchange (ETDEWEB)

    De Dobbelaere, Christopher, E-mail: christopher.dedobbelaere@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Mullens, Jules, E-mail: jules.mullens@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Hardy, An, E-mail: an.hardy@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2011-06-10

    Highlights: {yields} A totally water based glycolato-Ti(IV) precursor is presented and characterized. {yields} The precursors' thermal decomposition profile depends on the ligand to metal ratio. {yields} Titanium is coordinated in an unidentate fashion by the glycolate anion. {yields} Smooth and uniform TiO{sub 2} films can be prepared from the precursor solution. - Abstract: A new aqueous solution-gel precursor based on water soluble glycolato(-peroxo)-Ti(IV) complexes is developed for the preparation of TiO{sub 2} films. With regard to the decomposition of complexes towards oxide formation, it is important to gain insight in the chemical transformations inside the precursor during thermal treatment. Therefore, the thermo-oxidative decomposition pathway of a gel obtained by slow evaporation of the precursor solution is described based on hyphenated thermogravimetric analysis with Fourier transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). Pure glycolic acid is used as a reference system for this study. By varying the molar glycolic acid to Ti(IV) ratio, the thermal decomposition of the gel can be drastically shortened and the profile's course changed. Gel structure and chemical changes in the gel upon heating are also studied by means of off-line FTIR. A unidentate coordination of the titanium(IV) ion by the carboxylate group of the glycolato ligands and the involvement of the hydroxyl group is confirmed. Phase formation at certain points in the thermal decomposition is studied by X-ray diffraction and Raman spectroscopy. Finally, it is proven that the new precursor is a valuable candidate for the deposition of low carbon containing solution-gel films which can ultimately be converted into smooth and uniform TiO{sub 2} films.

  15. Proton beam micromachining on strippable aqueous base developable negative resist

    International Nuclear Information System (INIS)

    Rajta, I.; Uzonyi, I.; Baradacs, E.; Chatzichristidi, M.; Raptis, I.; Valamontes, E.S.

    2004-01-01

    Complete text of publication follows. Proton Beam Micromachining (PBM, also known as P-beam writing), a novel direct- write process for the production of 3D microstructures, can be used to make multilevel structures in a single layer of resist by varying the ion energy. The interaction between the bombarding ions and the target material is mainly ionization, and very few ions suffer high angle nuclear collisions, therefore structures made with PBM have smooth near vertical side walls. The most commony applied resists in PBM are the positive, conventional, polymethyl methacrylate (PMMA); and the negative, chemically amplified, SU-8 (Micro Chem Corp). SU-8 is an epoxy based resist suitable also for LIGA and UV-LIGA processes, it offers good sensitivity, good process latitude, very high aspect ratio and therefore it dominates in the high aspect ratio micromachining applications. SU-8 requires 30 nC/mm 2 fluence for PBM irradiations at 2 MeV protons. Its crosslinking chemistry is based on the eight epoxy rings in the polymer chain, which provide a very dense three dimensional network in the presence of suitably activated photo acid generators (PAGs) which is very difficult to be stripped away after development. Thus, stripping has to be assisted with plasma processes or with special liquid removers. Moreover, the SU-8 developer is organic, propylene glycol methyl ether acetate (PGMEA), and thus environmentally non-friendly. To overcome the SU-8 stripping limitations, design of a negative resist system where solubility change is not based solely on cross- linking but also on the differentiation of hydrophilicity between exposed and non-exposed areas is desirable. A new resist formulation, fulfilling the above specifications has been developed recently [1]. This formulation is based on a specific grade epoxy novolac (EP) polymer, a partially hydrogenated poly-4-hydroxy styrene (PHS) polymer, and an onium salt as photoacid generator (PAG), and has been successfully

  16. An alternative method to isolate protease and phospholipase A2 toxins from snake venoms based on partitioning of aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    GN Gómez

    2012-01-01

    Full Text Available Snake venoms are rich sources of active proteins that have been employed in the diagnosis and treatment of health disorders and antivenom therapy. Developing countries demand fast economical downstream processes for the purification of this biomolecule type without requiring sophisticated equipment. We developed an alternative, simple and easy to scale-up method, able to purify simultaneously protease and phospholipase A2 toxins from Bothrops alternatus venom. It comprises a multiple-step partition procedure with polyethylene-glycol/phosphate aqueous two-phase systems followed by a gel filtration chromatographic step. Two single bands in SDS-polyacrylamide gel electrophoresis and increased proteolytic and phospholipase A2 specific activities evidence the homogeneity of the isolated proteins.

  17. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical Reduction with Vanadium (+2 Salts

    Directory of Open Access Journals (Sweden)

    Andrea Pietro Reverberi

    2016-09-01

    Full Text Available Copper nanoparticles have been synthesized in ethylene glycol (EG using copper sulphate as a precursor and vanadium sulfate as an atypical reductant being active at room temperature. We have described a technique for a relatively simple preparation of such a reagent, which has been electrolytically produced without using standard procedures requiring an inert atmosphere and a mercury cathode. Several stabilizing agents have been tested and cationic capping agents have been discarded owing to the formation of complex compounds with copper ions leading to insoluble phases contaminating the metallic nanoparticles. The elemental copper nanoparticles, stabilized with polyvinylpyrrolidone (PVP and sodium dodecyl sulphate (SDS, have been characterized for composition by energy dispersive X-ray spectroscopy (EDS, and for size by dynamic light scattering (DLS, and transmission electron microscopy (TEM, giving a size distribution in the range of 40–50 nm for both stabilizing agents. From a methodological point of view, the process described here may represent an alternative to other wet-chemical techniques for metal nanoparticle synthesis in non-aqueous media based on conventional organic or inorganic reductants.

  18. Final report on the safety assessment of Triethylene Glycol and PEG-4.

    Science.gov (United States)

    2006-01-01

    manicuring preparations" product category. This ingredient, with an oral LD50 in rats of 32.77 g/kg, has low acute toxicity. Rats given up to 50,000 ppm PEG-4 in drinking water for 5 days showed no permanent signs of toxicity. Rats given daily oral doses up to 2 g/kg/day of PEG-4 for 33 days showed no signs of toxicity. Undiluted PEG-4 produced only minimal injury to the rabbit eye. PEG-4 was not mutagenic in Ames-type assays, did not induce chromosome aberration in an in vivo bone marrow assay, and was negative for genotoxicity in a dominant lethal assay using rats. Other PEG compounds, which have previously been reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel, e.g., PEG-6, are mixtures that likely include Triethylene Glycol and PEG-4, so these data were also considered. PEG-6 and PEG-8 were not dermal irritants in several rabbit studies. PEG-2 Stearate had a potential for slight irritation in rabbits but was not a sensitizer in guinea pigs. PEG-2 Cocamine was a moderate irritant in rabbits, producing severe erythema. In one dermal study, PEG-2 Cocamine was determined to be corrosive to rabbit skin, causing eschar and necrosis. PEG-6 and PEG-8 caused little to no ocular irritation. PEG-8 was not mutagenic or genotoxic in a Chinese hamster ovary assay, a sister-chromatid exchange assay, and in an unscheduled DNA synthesis assay. In clinical studies on normal skin, PEG-6 and PEG-8 caused mild cases of immediate hypersensitivity; PEG-8 was not a sensitizer; PEG-2 Stearate was not an irritant, a sensitizer, or a photosensitizer; and PEG-6 Stearate was not an irritant or sensitizer. In damaged skin, cases of systemic toxicity and contact dermatitis in burn patients were attributed to a PEG-based topical ointment. The CIR Expert Panel acknowledged the lack of dermal sensitization data for Triethylene Glycol and dermal irritation and sensitization data for PEG-4. That PEG-6, PEG-8, and PEG-2 Stearate were not irritants or sensitizers suggested that Triethylene Glycol

  19. Aqueous lubricating properties of charged (ABC) and neutral (ABA) triblock copolymer chains

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Patil, Navin J.

    2014-01-01

    Application of charged polymer chains as additives for lubricating neutral surfaces in aqueous envi- ronment, especially via polymer physisorption, is generally impeded by the electrostatic repulsion be- tween adjacent polymers on the surface. In this study, we have investigated the adsorption an...... improvement compared to fully charged polymer chains, e.g. poly(acrylic acid)- block -poly(2-methoxyethyl acrylate) (PAA- b -PMEA), which is attributed to dilution of charged moieties on the surface and subsequent improvement of the lubricating fi lm stability......Application of charged polymer chains as additives for lubricating neutral surfaces in aqueous envi- ronment, especially via polymer physisorption, is generally impeded by the electrostatic repulsion be- tween adjacent polymers on the surface. In this study, we have investigated the adsorption...... and aqueous lubricating properties of an amphiphilic triblock copolymer, comprised of a neutral poly(ethylene glycol) (PEG) block, a hydrophobic poly(2-methoxyethyl acrylate) (PMEA) block, and a charged poly(methacrylic acid) (PMAA) block, namely PEG- b -PMEA- b -PMAA. After adsorption onto a nonpolar...

  20. Assessment of Palmitoyl and Sulphate Conjugated Glycol Chitosan for Development of Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Ikram Ullah Khan

    2013-06-01

    Full Text Available Introduction: Amphiphilic copolymers are capable of forming core shell-like structures at the critical micellar concentration (CMC; hence, they can serve as drug carriers. Thus, in the present work, polymeric micelles based on novel chitosan derivative were synthesized. Methods: Block copolymer of palmitoyl glycol chitosan sulfate (PGCS was prepared by grafting palmitoyl and sulfate groups serving as hydrophobic and hydrophilic fractions, respectively. Then, fourier transform infrared spectra (FTIR and spectral changes in iodine/iodide mixture were carried out. Results: FTIR studies confirmed the formation of palmitoyl glycol chitosan sulfate (PGCS and spectral changes in iodine/iodide mixture indicated CMC which lies in the range of 0.003-0.2 mg/ml. Conclusion: Therefore, our study indicated that polymeric micelles based on palmitoyl glycol chitosan sulphate could be used as a prospective carrier for water insoluble drugs.

  1. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  2. Biosynthetic mechanism of glycolate in Chromatium, (3)

    International Nuclear Information System (INIS)

    Asami, Sumio; Akazawa, Takashi

    1976-01-01

    The effects of α-hydroxy-2-pyridinemethanesulfonate (α-HPMS), 2,3-epoxypropionate(glycidate), and cyanide on the photosynthetic activity of Chromatium were investigated. The α-HPMS stimulated the photosynthetic CO 2 fixation in the bacterial cells in both N 2 and O 2 environments. The formation and subsequent excretion of both glycolate and glycine in the O 2 atmosphere were markedly enhanced by the HPMS. In contrast to the recent report that glycidate especially inhibits the glycolate formation in tabacco leaf disks, the authors found that it had no influence on the CO 2 fixation by Chromatium in either N 2 or O 2 atmosphere, and that the synthesis and extracellular excretion of glycolate were markedly stimulated by glycidate treatment. The cyanide (0.01 - 1mM) exerted some marked inhibitory effect on the photosynthetic CO 2 fixation in N 2 . In O 2 atmosphere, the photosynthesis was stimulated by the 0.01 mM cyanide, and inhibited by it above this level. Both the incorporation of 14 CO 2 into glycolate and the total synthesis of glycolate in light were also enhanced by the 0.01 mM cyanide, and strongly inhibited above that concentration. (J.P.N.)

  3. Comparison of colorimetric m ethods for the quantification of model proteins in aqueous two-phase systems

    OpenAIRE

    Glyk, Anna; Heinisch, Sandra L.; Scheper, Thomas; Beutel, Sascha

    2015-01-01

    In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore...

  4. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, Ashok K.; Athawale, Anjali A.; Subramanian, M.; Seshagiri, T.K.; Khanna, Pawan K.; Manchanda, Vijay K.

    2011-01-01

    Adsorptive sorbent for bio-aggressive natural aqueous media like seawater was developed by one pot simultaneous synthesis of silver nanoparticles (Ag nps) and poly(ethylene glycol methacrylate phosphate) (PEGMP) by UV-initiator induced photo-polymerization. The photo-polymerization was carried out by irradiating N,N'-dimethylformamide (DMF) solution containing appropriate amounts of the functional monomer (ethylene glycol methacrylate phosphate), UV initiator (α,α'-dimethoxy-α-phenyl acetophenone), and Ag + ions with 365 nm UV light in a multilamps photoreactor. To increase mechanical strength, nano-composite sorbent (Ag-PEGMP) was also reinforced with thermally bonded non-woven poly(propylene) fibrous sheet. Transmission electron microscopy (TEM) of the nano-composite sorbent showed uniform distribution of spherical Ag nanoparticles with particles size ranging from 3 to 6 nm. The maximum amount of Ag 0 that could be anchored in the form of nanoparticles were 5 ± 1 and 10 ± 1 wt.% in self-supported PEGMP and poly(propylene) reinforced PEGMP matrices, respectively. Ag-PEGMP sorbent was found to be stable under ambient conditions for a period of six months. Ag-PEGMP composite sorbent did not exhibit growth at all after incubation with pre-grown Escherichia coli cells, and showed non-adherence of this bacteria to the composite. This indicated that composite sorbent has the bio-resistivity due to bacterial repulsion and bactericidal properties of Ag nanoparticles embedded in the PEGMP. Sorption of U(VI) in PEGMP and Ag-PEGMP nano-composite sorbents from well-stirred seawater was studied to explore the possibility of using it for uranium preconcentration from bio-aggressive aqueous streams. The nano-composite sorbent was used to preconcentrate U(VI) from a process aqueous waste stream.

  5. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  6. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  7. Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

    Science.gov (United States)

    Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.

    2010-01-01

    Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041

  8. Monoclonal antibody to DNA containing thymine glycol

    Energy Technology Data Exchange (ETDEWEB)

    Leadon, S A; Hanawalt, P C [Stanford Univ., CA (USA). Dept. of Biological Sciences

    1983-08-01

    Exposure of DNA to ionizing or near ultraviolet radiation modifies thymine to form ring-saturated products. One of the major products formed is 5,6-dihydroxy-5.6-dihydrothymine (thymine glycol). Thymine glycol can also be selectively formed by oxidizing DNA with OsO/sub 4/. We have isolated hybrids that produce monoclonal antibodies against thymine glycol by fusing mouse myeloma cells (P3X63-Ag8-6.5.3) with spleen cells from BALB/c mice immunized with OsO/sub 4/-oxidized poly(dT) complexed with methylated bovine serum albumin. This report describes the characterization of the antibody from one hybridoma using a competitive enzyme-linked immunosorbent assay (ELISA). The antibody reacted with both single- and double-stranded DNA treated with OsO/sub 4/, and with OsO/sub 4/-treated poly(dA-dT) and poly(dT); it did not crossreact with unmodified or apurinic DNA. It also reacted with DNA treated with H/sub 2/O/sub 2/ or with ..gamma..-rays at doses as low as 250 rad. We were able to detect 2 fmoles of thymine glycol in OsO/sub 4/-treated DNA and could quantitate 1 thymine glycol per 220000 thymines. Using the antibody and the ELISA, the formation and removal of thymine glycol was examined in cultures of African green monkey cells irradiated with 25 krad of ..gamma..-rays. The antibody reactive sites produced by irradiation (8.5 per 10/sup 6/ thymines) were efficiently removed from the cellular DNA.

  9. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  10. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  11. Preparation and characterization of titania based nanowires

    International Nuclear Information System (INIS)

    Stengl, Vaclav; Bakardjieva, Snejana; Murafa, Natalie; Vecernikova, Eva; Subrt, Jan; Balek, Vladimir

    2007-01-01

    A new method for preparation of titania nanowires with diameter around 10 nm and length up to 2-3 μm is described. The precursor was prepared from sodium titanate by adding ethylene glycole (EG) and heating at temperature of 198 deg. C for 6 h under reflux. The sodium titanate glycolate formed by this way aggregated into 1D nanostructures and was subsequently transformed into titania glycolate during a chemical treatment with 98% sulfuric acid. Titania nanowires with variable amount of anatase and rutile were prepared by heating to temperatures in the range 350-1000 deg. C. The precursor as well as titania based samples were characterized by X-ray diffraction, Infrared spectroscopy, Scanning electron microscopy, High resolution transmission microscopy, Thermogravimetry, Differential thermal analysis, Evolved gas analysis and Emanation thermal analysis. The nitrogen adsorption/desorption was used for surface area and porosity determination. The photoactivity of the prepared titania samples was assessed by the photocatalytic decomposition of 4-chlorophenol in an aqueous slurry under UV irradiation of 365 nm wavelength

  12. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams.

    Science.gov (United States)

    Han, Xu; Liu, Yang; Critser, John K

    2010-08-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a "mass-redemption" method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system. (c) 2010 Elsevier Inc. All rights reserved.

  13. Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas Aeruginosa PU21 beads

    International Nuclear Information System (INIS)

    Lin, C.-C.; Lai, Y.-T.

    2006-01-01

    In this study, immobilized Pseudomonas aeruginosa PU21 beads were used as an adsorbent for lead(II). Different weight percentages of chitosan were added to polyethylene glycol (PEG, 0.5 wt.% in aqueous solution) and alginate (18 wt.% in aqueous solution), and then blended or cross-linked using different concentrations of epichlorohydrin (ECH) to prepare beads of different sizes and increased mechanical strength. Before blending or cross-linking, different weight percentages of P. aeruginosa PU21 were added to increase lead(II) adsorption. Subsequently the optimized bead composition (concentration of ECH, percentages of chitosan and P. aeruginosa PU21) and the optimum adsorption conditions (agitation rate and pH in the aqueous solution) were ascertained. Finally, the optimized beads adsorbing lead(II) were regenerated by 0.1 M aqueous HCl solutions and the most effective desorption agitation rate was ascertained. The results indicate that the reuse of immobilized P. aeruginosa PU21 beads was feasible. In addition, the equilibrium adsorption, kinetics, changes in the thermodynamic properties of adsorption of lead(II) on optimized beads were also investigated

  14. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery

    International Nuclear Information System (INIS)

    Allen Zennifer, M.; Manikandan, S.; Suganthi, K.S.; Leela Vinodhan, V.; Rajan, K.S.

    2015-01-01

    Highlights: • CuO–ethylene glycol nanofluids prepared and characterized. • Maximum thermal conductivity enhancement of 14.1% at 50 °C for 1 vol% nanofluid. • Heat transfer performance in correspondence with improved transport properties. • 11.8% enhancement in heat transfer rate for 1 vol% nanofluid. - Abstract: Ethylene glycol (EG) plays an important role as coolant in sub-artic and artic regions owing to its low freezing point. However one of the limitations of ethylene glycol for energy management is its low thermal conductivity, which can be improved by addition of nanoparticles. In the present work, cupric oxide nanoparticles have been synthesized followed by dispersion in ethylene glycol through extended probe ultrasonication without addition of chemical dispersing agent. Temperature dependency of thermal conductivity of 1 vol% CuO–ethylene glycol nanofluid exhibited a minimum at a critical temperature corresponding to lower thickness of interfacial layers and negligible Brownian motion. The influence of liquid layering on thermal conductivity was predominant at temperatures below critical temperature leading to higher thermal conductivity at lower temperature. Brownian motion-induced microconvection resulted in thermal conductivity increase with temperature above the critical temperature. About 14.1% enhancement in thermal conductivity was obtained at 50 °C for 1 vol% CuO–ethylene glycol nanofluid. The viscosity of CuO–ethylene glycol nanofluid was lower than the viscosity of ethylene glycol at temperatures below 50 °C and 120 °C for 1 vol% and 0.5 vol% CuO–ethylene glycol nanofluids. Our data reveal that the CuO–ethylene glycol nanofluids are better coolants than ethylene glycol for transient cooling under constant heat flux conditions with 11.8% enhancement in heat transfer rate for 1 vol% CuO–ethylene glycol nanofluid. Hence the use of ethylene glycol-based nanofluids is a promising approach for energy management.

  15. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    International Nuclear Information System (INIS)

    Nagasaki, Yukio

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C 60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C 60 /acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. (topical review)

  16. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; Hayen, H.; de Bruijn, Joost Dick; Karst, U.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Two in vivo degradation studies were performed on segmented poly(ether ester)s based on polyethylene glycol (PEG) and poly(butylene terephthalate) (PBT) (PEOT/PBT). In a first series of experiments, the in vivo degradation of melt-pressed discs of different copolymer compositions were followed up

  17. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    Directory of Open Access Journals (Sweden)

    Hyunok Choi

    2010-12-01

    Full Text Available Propylene glycol and glycol ether (PGE in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs and semi-VOCs (SVOCs, including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP, and di(2-ethylhexylphthalate (DEHP. Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3 additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  18. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  19. Ethylene- and diethylene glycol metabolism, toxicity and treatment

    International Nuclear Information System (INIS)

    Wiener, H.L.

    1986-01-01

    Each year numerous men and domestic animals suffer from ethylene glycol (EG) poisoning. The present approach to treating EG poisoning by administering ethanol is aimed at preventing the oxidation of EG to glycolate, the toxic mediator. When treatment is delayed or the amount of EG consumed is large, successful treatment is rarely obtained, since the concentration of glycolate becomes excessive. In an effort to develop a better approach to treating EG poisoning, studies were conducted to determine the feasibility of using pig liver glycolic acid oxidase (GAO) as a means of enzyme therapy in male rats receiving EG. Pig liver GAO was active in vitro in rat blood, oxidizing glycolate to glyoxylate. When injected intravenously into male rats, GAO had an approximate half-life of twenty five minutes and its elimination followed first order kinetics. Despite activity in vitro, native pig liver GAO did not display detectable activity in vivo. Diethylene glycol (DEG) when ingested also results in toxicity. The metabolism and toxicity of DEG was investigated in male Wistar rats using [ 14 C]-DEG synthesized from [U- 14 C]-EG and ethylene oxide and purified by high performance liquid chromatography. (2-Hydroxyethoxy)acetic acid (HEAA) was identified as the major product of DEG oxidation. These results suggest that the treatment of DEG poisoning should follow the same regimen as treatment for EG poisoning

  20. NABTIT-a computer program for non-aqueous acid-base titration.

    Science.gov (United States)

    Budevsky, O; Zikolova, T; Tencheva, J

    1988-11-01

    A program NABTIT written in BASIC has been developed for the treatment of data (ml/mV) obtained from potentiometric acid-base titrations in non-aqueous solvents. No preliminary information on equilibrium constants is required for the input. The treatment of the data is based on known equations and uses least-squares procedures. The essence of the method is to determine the equivalence volume (V(e)) accurately, and to use the data acquired by adding titrant after V(e) for the pH*-calibration of the non-aqueous potentiometric cell. As a by-product or the calculations, the pK* value of the substance titrated is also obtained, and in some cases the autoprotolysis constant of the medium (pK*(s)). Good agreement between experiment and theory was found in the treatment of data obtained for water and methanol-water mixtures.

  1. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    Science.gov (United States)

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  3. Assessment of the combined approach of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines using bupivacaine as a model drug

    DEFF Research Database (Denmark)

    Nielsen, Anders Bach; Frydenvang, Karla Andrea; Liljefors, Tommy

    2005-01-01

    as their iodide salts. Chloride, mesylate, formate, acetate, glycolate, and tosylate salts were obtained by anion exchange of the N-methyl-bupivacaine derivative. N-Alkylation and salt formation afforded quaternary ammonium salts possessing pH-independent aqueous solubilities far exceeding that of the parent......Quaternary prodrug types of poorly water-soluble tertiary amines have been shown to exhibit significantly enhanced solubilities as compared to the parent amine. In the present study the combined effect of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines have been...

  4. PEG and Thickeners: A Critical Interaction Between Polyethylene Glycol Laxative and Starch-Based Thickeners.

    Science.gov (United States)

    Carlisle, Brian J; Craft, Garrett; Harmon, Julie P; Ilkevitch, Alina; Nicoghosian, Jenik; Sheyner, Inna; Stewart, Jonathan T

    2016-09-01

    Clinicians commonly encounter dysphagia and constipation in a skilled nursing population. Increasing the viscosity of liquids, usually with a starch- or xanthan gum-based thickener, serves as a key intervention for patients with dysphagia. We report a newly identified and potentially dangerous interaction between polyethylene glycol 3350 laxative (PEG) and starch-thickened liquids. A patient requiring nectar-thickened liquids became constipated, and medical staff prescribed PEG for constipation. His nurse observed that the thickened apple juice immediately thinned to near-water consistency when PEG was added. She obtained the same results with thickened water and coffee. We quantified this phenomenon by isothermal rotational rheology. Results confirmed a precipitous loss of thickening when PEG was added to starch-based thickeners but not with xanthan gum-based thickeners. Clinicians and front-line staff should be aware of this potentially critical interaction between PEG- and starch-based thickeners. Although confirmatory studies are needed, our preliminary data suggest that PEG may be compatible with xanthan gum-- based thickeners. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  5. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  6. Experimental study and phase equilibrium modeling of systems containing acid gas and glycol

    DEFF Research Database (Denmark)

    Afzal, Waheed; Breil, Martin P.; Tsivintzelis, Ioannis

    2012-01-01

    In this work, we study phase equilibria of systems containing acid gases and glycols. The acid gases include carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon dioxide (CO2) while glycols include monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG). A brief lit...

  7. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  8. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  9. The proton dynamics of ethylene glycol

    CERN Document Server

    Novikov, A G; Sobolev, O V

    2002-01-01

    The results of inelastic neutron scattering experiments on ethylene glycol at T=300 K, T=348 K and T=393 K by using the 'direct-geometry' double time-of-flight neutron-scattering spectrometer DIN-2PI (Frank Laboratory of Neutron Physics, JINR, Dubna) are presented. The quasi-elastic and inelastic components of the neutron scattering have been considered. The diffusion characteristics and generalized frequency distributions for protons of ethylene glycol molecules were obtained from the neutron-scattering spectra. (orig.)

  10. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  11. Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers

    NARCIS (Netherlands)

    Fernandez, Isabel C. Saldarriaga; Busscher, Henk J.; Metzger, Steve W.; Grainger, David W.; van der Mei, Henny C.

    Biomaterial-associated infections (BAI) remain a serious clinical complication, often arising from an inability of host tissue-implant integration to out-compete bacterial adhesion and growth. A commercial polymer coating based on polyethylene glycol (PEG), available in both chemically inert and

  12. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  13. Aqueous biphasic systems containing PEG-based deep eutectic solvents for high-performance partitioning of RNA.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Yuzhi; Zhou, Yigang; Xu, Kaijia; Li, Na; Wen, Qian; Yang, Qin

    2017-08-01

    In this work, 16 kinds of novel deep eutectic solvents (DESs) composed of polyethylene glycol (PEG) and quaternary ammonium salts, were coupled with Aqueous Biphasic Systems (ABSs) to extract RNA. The phase forming ability of ABSs were comprehensively evaluated, involving the effects of various proportions of DESs' components, carbon chain length and anions species of quaternary ammonium salts, average molecular weights of PEG and inorganic salts nature. Then the systems were applied in RNA extraction, and the results revealed that the extraction efficiency values were distinctly enhanced by relatively lower PEG content in DESs, smaller PEG molecular weights, longer carbon chain of quaternary ammonium salts and more hydrophobic inorganic salts. Then the systems composed of [TBAB][PEG600] and Na 2 SO 4 were utilized in the influence factor experiments, proving that the electrostatic interaction was the dominant force for RNA extraction. Therefore, back-extraction efficiency values ranging between 85.19% and 90.78% were obtained by adjusting the ionic strength. Besides, the selective separation of RNA and tryptophane (Trp) was successfully accomplished. It was found that 86.19% RNA was distributed in the bottom phase, while 72.02% Trp was enriched in the top phase in the novel ABSs. Finally, dynamic light scattering (DLS) and transmission electron microscope (TEM) were used to further investigate the extraction mechanism. The proposed method reveals the outstanding feasibility of the newly developed ABSs formed by PEG-based DESs and inorganic salts for the green extraction of RNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of simplified PC-SAFT to glycol ethers

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2...

  15. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  16. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pirvu, Cristian, E-mail: c_pirvu@chim.pub.ro [University Polytechnic of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest (Romania); Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana [University Polytechnic of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest (Romania)

    2011-11-30

    Highlights: > Electrochemical monitoring of PPy and PPy-PEG films over immersion time. > Electrochemical and surface analysis showed that PEG improves the stability of PPy films. > Mott-Schottky analysis reveals p-type conductance for both films. > In situ AFM analysis sustains electrochemical behaviour. > A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O{sub 2} inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  17. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    Directory of Open Access Journals (Sweden)

    Chu QC

    2016-01-01

    Full Text Available Qiuchen Chu,1,* Hong Xu,2,* Meng Gao,1 Xin Guan,1 Hongyan Liu,1 Sa Deng,1 Xiaokui Huo,1 Kexin Liu,1 Yan Tian,1 Xiaochi Ma1 1College of Pharmacy, 2College of Basic Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer remains a major problem around the world. Resibufogenin (RBG is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison, which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid (PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN, and RBG/coumarin-6-loaded PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS, and 5-fluorouracil solution (used as the negative controls, as assayed using flow cytometry. LD50 (median lethal dose values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in

  18. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  19. Prediction and validation of the duration of hemodialysis sessions for the treatment of acute ethylene glycol poisoning.

    Science.gov (United States)

    Iliuta, Ioan-Andrei; Lachance, Philippe; Ghannoum, Marc; Bégin, Yannick; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Agharazii, Mohsen

    2017-08-01

    The duration of hemodialysis (HD) sessions for the treatment of acute ethylene glycol poisoning is dependent on concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. Ethylene glycol assays are not readily available, potentially leading to undue extension or premature termination of HD. We report a prediction model for the duration of high-efficiency HD sessions based retrospectively on a cohort study of 26 cases of acute ethylene glycol poisoning in 24 individuals treated by alcohol dehydrogenase competitive inhibitors, cofactors and HD. Two patients required HD for more than 14 days, and two died. In 19 cases, the mean ethylene glycol elimination half-life during high-efficiency HD was 165 minutes (95% confidence interval of 151-180 minutes). In a training set of 12 patients with acute ethylene glycol poisoning, using the 90th percentile half-life (195 minutes) and a target ethylene glycol concentration of 2 mmol/l (12.4 mg/dl) allowed all cases to reach a safe ethylene glycol under 3 mmol/l (18.6 mg/dl). The prediction model was then validated in a set of seven acute ethylene glycol poisonings. Thus, the HD session time in hours can be estimated using 4.7 x (Ln [the initial ethylene glycol concentration (mmol/l)/2]), provided that metabolic acidosis is corrected. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. 21 CFR 172.712 - 1,3-Butylene glycol.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.712 1,3-Butylene glycol. The food additive 1,3-butylene glycol (CAS...

  1. Absorption of dilute sulfur dioxide in aqueous poly-ethylene glycol 400 solutions at T = 308.15 K and p = 122.60 kPa

    International Nuclear Information System (INIS)

    Zhang Jianbin; Liu Lihua; Huo Tanrui; Liu Zhanying; Zhang Tong; Wei Xionghui

    2011-01-01

    Highlights: → Isothermal (gas + liquid) equilibrium (GLE) data at T = 308.15 K and p = 122.60 kPa. → Solubility of SO 2 in pure PEG 400 presented an extreme maximum of 951 mg . L -1 . → Solubility of SO 2 in w 1 = 0.40 PEGW is an extreme minimum of 190 mg . L -1 . - Abstract: Isothermal (gas + liquid) equilibrium (GLE) data at T = 308.15 K and p = 122.60 kPa are reported for the absorption of dilute SO 2 in various aqueous poly-ethylene glycol 400 (PEG) solutions, in which SO 2 partial pressures are in the range of (0.9 to 92) Pa. Measurements are carried out by a saturation method using a glass absorption apparatus, which was controlled at constant temperatures by a thermostatic circulation bath with a Beckmann thermometer. The GLE data were obtained with uncertainties within 0.02 K for temperature, 0.1 kPa for total pressures, 3% for SO 2 concentration in the gas phase, and 0.6% for SO 2 concentration in the liquid phase. The measurements show that the solubility of dilute SO 2 in the system of {PEG (1) + water (2)} increases with increasing PEG concentration in the mass fraction range of w 1 = (0.40 to 1.00), and the solubility of SO 2 in the system of {PEG (1) + water (2)} presents an extreme minimum at the mass fraction of w 1 = 0.40 of 190 mg . L -1 when SO 2 in the gas phase is designed at Φ SO 2 = 5 . 10 -4 . The peculiarity of this work is used to provide important GLE data for the design and operation of the absorption and desorption process in flue gas desulfurization (FGD) with potential industrial application of the solutions containing PEG.

  2. Development and Stability Evaluation of Liquid Crystal-Based Formulations Containing Glycolic Plant Extracts and Nano-Actives

    Directory of Open Access Journals (Sweden)

    Andreza Rodrigues Ueoka

    2018-03-01

    Full Text Available Emulsions are of great use in cosmetic formulations due to their stability. The aim of this work was to develop and assess organoleptic, physicochemical, and microscopic properties of four auto-emulsifiable oil-in-water formulations. Such formulations were developed containing 4.0% cetearyl alcohol, dicetyl phosphate, and ceteth-10 phosphate (Formulation A, nano-actives obtained from safflower, coconut, and clove oils (Formulation B; a mixture of glycolic extracts from Centella asiatica leaves, Aesculus hippocastanum seeds, and Hamamelis virginiana leaves (Formulation C; association between the nano-actives and glycolic extracts described above (Formulation D. The formulations were trialed for 90 days under the normal stability test. The developed formulations were considered all stable and homogeneous, with liquid crystals possibly being formed. Organoleptic parameters and pH of Formulations A and B remained unchanged, but the color of Formulations C and D changed due to the natural color of the glycolic extracts used. It can be concluded that the formation of liquid crystals increased the stability of the formulations, and future tests should be carried out in order to assess the rheological properties and hydration potential of the developed formulations.

  3. Activity-Based Approach for Teaching Aqueous Solubility, Energy, and Entropy

    Science.gov (United States)

    Eisen, Laura; Marano, Nadia; Glazier, Samantha

    2014-01-01

    We describe an activity-based approach for teaching aqueous solubility to introductory chemistry students that provides a more balanced presentation of the roles of energy and entropy in dissolution than is found in most general chemistry textbooks. In the first few activities, students observe that polar substances dissolve in water, whereas…

  4. Poly(lactic-co-glycolic) Acid/Solutol HS15-Based Nanoparticles for Docetaxel Delivery.

    Science.gov (United States)

    Cho, Hyun-Jong; Park, Ju-Hwan; Kim, Dae-Duk; Yoon, In-Soo

    2016-02-01

    Docetaxel (DCT) is one of anti-mitotic chemotherapeutic agents and has been used for the treatment of gastric cancer as well as head and neck cancer, breast cancer and prostate cancer. Poly(lactic- co-glycolic) acid (PLGA) is one of representative biocompatible and biodegradable polymers, and polyoxyl 15 hydroxystearate (Solutol HS15) is a nonionic solubilizer and emulsifying agent. In this investigation, PLGA/Solutol HS15-based nanoparticles (NPs) for DCT delivery were fabricated by a modified emulsification-solvent evaporation method. PLGA/Solutol HS15/DCT NPs with about 169 nm of mean diameter, narrow size distribution, negative zeta potential, and spherical morphology were prepared. The results of solid-state studies revealed the successful dispersion of DCT in PLGA matrix and its amorphization during the preparation process of NPs. According to the result of in vitro release test, emulsifying property of Solutol HS15 seemed to contribute to the enhanced drug release from NPs at physiological pH. All these findings imply that developed PLGA/Solutol HS15-based NP can be a promising local anticancer drug delivery system for cancer therapy.

  5. Alteration in Oxidative/nitrosative imbalance, histochemical expression of osteopontin and antiurolithiatic efficacy of Xanthium strumarium (L.) in ethylene glycol induced urolithiasis.

    Science.gov (United States)

    Panigrahi, Padma Nibash; Dey, Sahadeb; Sahoo, Monalisa; Choudhary, Shyam Sundar; Mahajan, Sumit

    2016-12-01

    Xanthium strumarium has traditionally been used in the treatment of urolitiasis especially by the rural people in India, but its antiurolithiatic efficacy was not explored scientifically till now. Therefore, the present study was designed to validate the ethnic practice scientifically, and explore the possible antiurolithiatic effect to rationalize its medicinal use. Urolitiasis was induced in hyperoxaluric rat model by giving 0.75% ethylene glycol (EG) for 28days along with 1% ammonium chloride (AC) for first 14days. Antiurolithiatic effect of aqueous-ethanol extract of Xanthium strumarium bur (xanthium) was evaluated based on urine and serum biochemistry, oxidative/nitrosative stress indices, histopathology, kidney calcium and calcium oxalate content and immunohistochemical expression of matrix glycoprotein, osteopontin (OPN). Administration of EG and AC resulted in hyperoxaluria, crystalluria, hypocalciuria, polyurea, raised serum urea, creatinine, erythrocytic lipid peroxidise and nitric oxide, kidney calcium content as well as crystal deposition in kidney section in lithiatic group rats. However, xanthium treatment significantly restored the impairment in above kidney function test as that of standard treatment, cystone. The up-regulation of OPN was also significantly decreased after xanthium treatment. The present findings demonstrate the curative efficacy of xanthium in ethylene glycol induced urolithiasis, possibly mediated through inhibition of various pathways involved in renal calcium oxalate formation, antioxidant property and down regulation of matrix glycoprotein, OPN. Therefore, future studies may be established to evaluate its efficacy and safety for clinical use. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Antiurolithiatic and antioxidant efficacy of Musa paradisiaca pseudostem on ethylene glycol-induced nephrolithiasis in rat.

    Science.gov (United States)

    Panigrahi, Padma Nibash; Dey, Sahadeb; Sahoo, Monalisa; Dan, Ananya

    2017-01-01

    Musa paradisiaca has been used in the treatment of urolithiasis by the rural people in South India. Therefore, we plan to evaluate its efficacy and possible mechanism of antiurolithiatic effect to rationalize its medicinal use. Urolithiasis was induced in hyperoxaluric rat model by giving 0.75% ethylene glycol (EG) for 28 days along with 1% ammonium chloride (AC) for the first 14 days. Antiurolithiatic effect of aqueous-ethanol extract of M. paradisiaca pseudostem (MUSA) was evaluated based on urine and serum biochemistry, microscopy of urine, oxidative/nitrosative indices, kidney calcium content, and histopathology. Administration of EG and AC resulted in increased crystalluria and oxaluria, hypercalciuria, polyuria, crystal deposition in urine, raised serum urea, and creatinine as well as nitric oxide concentration and erythrocytic lipid peroxidation in lithiatic group. However, MUSA treatment significantly restored the impairment in above kidney function test as that of standard treatment, cystone in a dose-dependent manner. The present findings demonstrate the efficacy of MUSA in EG-induced urolithiasis, which might be mediated through inhibiting various pathways involved in renal calcium oxalate formation, antioxidant effect, and potential to inhibit biochemical markers of renal impairment.

  7. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    Science.gov (United States)

    Zhang, Yong-Xing; Jia, Yong

    2016-12-01

    Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g-1 at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO42- ions were partly reduced to Cr(OH)3 by Fe(II) ions and the organic groups in the Fe-EG complex.

  8. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    Science.gov (United States)

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  9. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  10. Synthesis of Highly Effective Novel Graphene Oxide-Polyethylene Glycol-Polyvinyl Alcohol Nanocomposite Hydrogel For Copper Removal

    Directory of Open Access Journals (Sweden)

    Eman Serag

    2017-10-01

    Full Text Available A novel Graphene oxide-polyethylene glycol and polyvinyl alcohol (GO-PEG-PVA triple network hydrogel were prepared to remove Copper(II ion from its aqueous solution. The structures, morphologies, and properties of graphene oxide (GO, the composite GO-PEG-PVA and PEG-PVA were characterized using FTIR, X-ray diffraction, Scanning Electronic Microscope and Thermal Gravimetric analysis. A series of systematic batch adsorption experiments were conducted to study the adsorption property of GO, GO-PEG-PVA hydrogel and PEG-PVA hydrogel under different conditions (e.g. pH, contact time and Cu2+ ions concentration. The high adsorption capacity, easy regeneration, and effective adsorption–desorption results proved that the prepared GO-PEG-PVA composite hydrogel could be an effective adsorbent in removing Cu2+ ion from its aqueous solution. The maximum adsorption capacities were found to be 917, 900 and 423 mg g–1 for GO-PEG-PVA hydrogel, GO and PEG-PVA hydrogel, respectively at pH 5, 25 °C and Cu2+ ions’ concentration 500 mg l–1. The removal efficiency of the recycled GO-PEG-PVA hydrogel were 83, 81, 80 and 79% for the first four times, which proved efficient reusability.

  11. Observation of a sequence of wetting transitions in the binary water+ethylene glycol monobutyl ether mixture

    Science.gov (United States)

    Wu, Chih-Kang; Chen, Li-Jen

    2005-08-01

    A homemade pendant drop/bubble tensiometer was assembled and applied to perform the surface-interfacial tension measurements for the binary water+ethylene glycol monobutyl ether (C4E1) mixture over the temperature range from 50to128°C at 10bar. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH2i+1(OCH2CH2)jOH. The wetting behavior of the C4E1-rich phase at the interface separating the gas and the aqueous phases was systematically examined according to the wetting coefficient calculated from the experimental results of surface/interfacial tensions. It was found that the C4E1-rich phase exhibits a sequence of wetting transitions, nonwetting→partial wetting→complete wetting, at the gas-water interface in the water+C4E1 system along with increasing the temperature, consistent with the conjecture of Kahlweit and Busse [J. Chem. Phys. 91, 1339 (1989)]. In addition, the relationship of the mutual solubility and the interfacial tension of the interface separating the C4E1-rich phase and the aqueous phase is discussed.

  12. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  13. Characterization of a monoclonal antibody to thymidine glycol monophosphate

    International Nuclear Information System (INIS)

    Chen, B.X.; Hubbard, K.; Ide, H.; Wallace, S.S.; Erlanger, B.F.

    1990-01-01

    A monoclonal antibody specific for thymine glycol (TG) in irradiated or OsO4-treated DNA was obtained by immunizing with thymidine glycol monophosphate (TMP-glycol) conjugated to bovine serum albumin by a carbodiimide procedure. Screening by dot-immunobinding and enzyme-linked immunosorbant assay (ELISA) procedures gave eight clones that bound OsO4- treated DNA. One of them, 2.6F.6B.6C, an IgG2a kappa, was characterized further. Hapten inhibition studies with OsO4-treated DNA showed that the antibody was specific for TMP-glycol. Among the various inhibitors tested, inhibition was in the order TMP-glycol greater than 5,6-dihydrothymidine phosphate greater than TMP greater than thymidine glycol greater than TG. Inhibition by 5,6-dihydrothymidine, thymidine, thymine, AMP, and CMP was negligible. In OsO4-treated DNA, as few as 0.5 TG per 10,000 bp were detectable by direct ELISA. Inhibition assays could detect as few as 1.5 TG per 10,000 bp. The antibody was equally reactive with native or denatured DNA containing TG. Among the X-irradiated homopolymers dC, dA, dG, and dT, only dT reacted with the antibody. Using an ELISA, the antibody could detect damage in irradiated DNA at the level of 20 Gy. Thus the antibody is of potential use in assays for DNA damage caused by X rays or other agents that damage DNA by free radical interactions

  14. GLYCOL METHACRYLATE EMBEDDING OF ALGINATE-POLYLYSINE MICROENCAPSULATED PANCREATIC-ISLETS

    NARCIS (Netherlands)

    FRITSCHY, WM; GERRITS, PO; WOLTERS, GHJ; PASMA, A; VANSCHILFGAARDE, R

    A method for processing and embedding alginate-polylysine microencapsulated pancreatic tissue in glycol methacrylate resin (GMA) is described. Fixation in 4% phosphate buffered formaldehyde, processing in ascending concentrations of glycol methacrylate monomer and embedding in Technovit 7100 results

  15. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac.

    Science.gov (United States)

    Shi, Shuai; Zhang, Zhaoliang; Luo, Zichao; Yu, Jing; Liang, Renlong; Li, Xingyi; Chen, Hao

    2015-06-12

    This study aimed to develop a cationic nanosuspension of chitosan (CS) and methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) for ocular delivery of diclofenac (DIC). MPEG-PCL-CS block polymer was synthesized by covalent coupling of MPEG-PCL with CS. The critical micelle concentration of the MPEG-PCL-CS block polymer was 0.000692 g/L. DIC/MPEG-PCL-CS nanosuspension (mean particle size = 105 nm, zeta potential = 8 mV) was prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The nanosuspension was very stable without apparent physical property changes after storage at 4 °C or 25 °C for 20 days, but it was unstable in the aqueous humor solution after 24 h incubation. Sustained release of the encapsulated DIC from the nanosuspension occurred over 8 h. Neither a blank MPEG-PCL-CS nanosuspension nor a 0.1% (mass fraction) DIC/MPEG-PCL-CS nanosuspension caused ocular irritation after 24 h of instillation. Enhanced penetration and retention in corneal tissue was achieved with a Nile red/MPEG-PCL-CS nanosuspension compared with a Nile red aqueous solution. In vivo pharmacokinetics studies showed enhanced pre-corneal retention and penetration of the DIC/MPEG-PCL-CS nanosuspension, which resulted in a higher concentration of DIC (Cmax) in the aqueous humor and better bioavailability compared with commercial DIC eye drops (P < 0.01).

  16. A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries

    Science.gov (United States)

    Cao, Jianyu; Tao, Meng; Chen, Hongping; Xu, Juan; Chen, Zhidong

    2018-05-01

    The development of electroactive organic materials for use in aqueous redox flow battery (RFB) electrolytes is highly attractive because of their structural flexibility, low cost and sustainability. Here, we report on a highly reversible anthraquinone-based anolyte (1,8-dihydroxyanthraquinone, 1,8-DHAQ) for alkaline aqueous RFB applications. Electrochemical measurements reveal the substituent position of hydroxyl groups for DHAQ isomers has a significant impact on the redox potential, electrochemical reversibility and water-solubility. 1,8-DHAQ shows the highest redox reversibility and rapidest mass diffusion among five isomeric DHAQs. The alkaline aqueous RFB using 1,8-DHAQ as the anolyte and potassium ferrocyanide as the catholyte yields open-circuit voltage approaching 1.1 V and current efficiency and capacity retention exceeding 99.3% and 99.88% per cycle, respectively. This aqueous RFB produces a maximum power density of 152 mW cm-2 at 100% SOC and 45 °C. Choline hydroxide was used as a hydrotropic agent to enhance the water-solubility of 1,8-DHAQ. 1,8-DHAQ has a maximum solubility of 3 M in 1 M KOH with 4 M choline hydroxide.

  17. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653 ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  18. Preparation and Separation of Telechelic Carborane-Containing Poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Uchman, M.; Lepšík, Martin; Srnec, Martin; Zedník, J.; Kozlík, P.; Kalíková, K.

    2013-01-01

    Roč. 78, č. 6 (2013), s. 528-535 ISSN 2192-6506 R&D Projects: GA AV ČR IAAX00320901 Grant - others:GA ČR(CZ) GPP208/12/P236 Institutional support: RVO:61388963 Keywords : carboranes * click chemistry * poly(ethylene glycol) * quantum chemistry * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013

  19. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    Science.gov (United States)

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  20. IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer

    International Nuclear Information System (INIS)

    Kumar, Piyush; Srivastava, Rohit

    2015-01-01

    In the present study, we have fabricated biocompatible and biodegradable monodisperse IR 820 encapsulated polycaprolactone (PCL) glycol chitosan (GC): Poloxamer blend nanoparticles (PP-IR NPs) for imaging and effective photo-immunotherapy. IR 820 has been used as an imaging and photothermal agent whereas glycol chitosan (GC) as an immunostimulatory agent. The combination of IR 820, poloxamer, and GC can be used effectively for photoimmunotherapy for cancer, drug-resistant and TNF-α resistant estrogen positive breast cancer. PP-IR NPs are stable in aqueous solution. The uniform size of 100–220 nm with a high zeta value of + 38 ± 2 mV led them to accumulate in cancer cells. Laser treatment did not affect the morphology of PP-IR NPs as observed under the transmission electron microscope (TEM). In vitro cytotoxicity studies on MCF-7 cells showed enhanced toxicity upon laser treatment. Further, we validated the cell death by reactive oxygen species (ROS) production. Our studies thus showed that PP-IR NPs are effective in suppressing metastatic cancer as the combinational therapy leads to the formation of apoptotic bodies in MCF-7 cells. - Highlights: • PPIR nanoparticles for photoimmunotherapy for cancer • IR 820/GC serves as theranostic and immunostimulatory. • Photoimmunotherapy enhances cytotoxicity by reactive oxygen species production

  1. IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush; Srivastava, Rohit, E-mail: rsrivasta@iitb.ac.in

    2015-12-01

    In the present study, we have fabricated biocompatible and biodegradable monodisperse IR 820 encapsulated polycaprolactone (PCL) glycol chitosan (GC): Poloxamer blend nanoparticles (PP-IR NPs) for imaging and effective photo-immunotherapy. IR 820 has been used as an imaging and photothermal agent whereas glycol chitosan (GC) as an immunostimulatory agent. The combination of IR 820, poloxamer, and GC can be used effectively for photoimmunotherapy for cancer, drug-resistant and TNF-α resistant estrogen positive breast cancer. PP-IR NPs are stable in aqueous solution. The uniform size of 100–220 nm with a high zeta value of + 38 ± 2 mV led them to accumulate in cancer cells. Laser treatment did not affect the morphology of PP-IR NPs as observed under the transmission electron microscope (TEM). In vitro cytotoxicity studies on MCF-7 cells showed enhanced toxicity upon laser treatment. Further, we validated the cell death by reactive oxygen species (ROS) production. Our studies thus showed that PP-IR NPs are effective in suppressing metastatic cancer as the combinational therapy leads to the formation of apoptotic bodies in MCF-7 cells. - Highlights: • PPIR nanoparticles for photoimmunotherapy for cancer • IR 820/GC serves as theranostic and immunostimulatory. • Photoimmunotherapy enhances cytotoxicity by reactive oxygen species production.

  2. Investigation on the ion pair amphiphiles and their in vitro release of amantadine drug based on PLGA–PEG–PLGA gel

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Ji, Xiaoqing; Shi, Chunhuan; Liu, Jing; Wang, Haiyang; Luan, Yuxia

    2014-01-01

    The amantadine drug and oleic acid surfactant are used to form amantadine-based ion pair amphiphiles based on proton transfer reaction between the drug and the surfactant molecules. The ion pair amphiphiles are characterized by 1 H-nuclear magnetic resonance, Fourier transform infrared spectroscopy, and X-ray diffraction. Self-assembly properties of amantadine-based ion pair amphiphiles are studied by surface tension determination, transmission electron microscopy, zeta potential, and dynamic light scattering. The aggregation behavior studies indicate that the as-prepared ion pair amphiphiles can self-assemble into vesicles with the size of 200–300 nm in aqueous solution. The drug release results show that the amantadine release rate could be well controlled by incorporating the amantadine-based ion pair vesicles in poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA–PEG–PLGA) copolymer hydrogel. The drug release from the AT–OA vesicle-loaded PLGA–PEG–PLGA hydrogel is significantly inhibited in comparison with the AT-loaded PLGA–PEG–PLGA hydrogel. The present work thus demonstrates that the vesicle-loaded hydrogel is a good candidate for the drug delivery system with long-term controlled drug release behavior

  3. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry.

    Science.gov (United States)

    Yu, Ran; Duan, Lei; Jiang, Jingkun; Hao, Jiming

    2017-03-01

    The ozonation of hydroxyl compounds (e.g., sugars and alcohols) gives a broad range of products such as alcohols, aldehydes, ketones, and carboxylic acids. This study developed and optimized a two-step derivatization procedure for analyzing polar products of aldehydes and carboxylic acids from the ozonation of diethylene glycol (DEG) in a non-aqueous environment using gas chromatography-mass spectrometry. Experiments based on Central Composite Design with response surface methodology were carried out to evaluate the effects of derivatization variables and their interactions on the analysis. The most desirable derivatization conditions were reported, i.e., oximation was performed at room temperature overnight with the o-(2,3,4,5,6-pentafluorobenzyl) hydroxyl amine to analyte molar ratio of 6, silylation reaction temperature of 70°C, reaction duration of 70min, and N,O-bis(trimethylsilyl)-trifluoroacetamide volume of 12.5μL. The applicability of this optimized procedure was verified by analyzing DEG ozonation products in an ultrafine condensation particle counter simulation system. Copyright © 2016. Published by Elsevier B.V.

  4. Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycols and itaconic acid

    Directory of Open Access Journals (Sweden)

    Mićić Maja M.

    2007-01-01

    Full Text Available New types of hydrogels were prepared by the radical copolymerization of 2-hydroxyethyl methacrylate, itaconic acid and four different poly(alkylene glycol (methacrylate components (Bisomers in a water/ethanol mixture as solvent. The polymers swell in water at 25°C to yield homogeneous transparent hydrogels. All the hydrogels displayed pH sensitive behavior in buffers of the pH range from 2.20 to 7.40, under conditions similar to those of biological fluids. The presence of these two comonomers, which were added to HEMA, increased the swelling degree of the hydrogels and gave gels with better elasticity. The hydrogels were thermally stable in the vicinity of the physiological temperature (37°C. The copolymer containing pure poly(ethylene glycol acrylate units generally had the best properties. The tests performed on the hydrogels confirmed that they were neither hemolytic nor cytotoxic. The copolymer samples showed better cell viability and less hemolytic activity than the PHEMA sample, confirming the assumption that poly(alkylene glycols improve the biocompatibility of hydrogels. Due to their swelling and mechanical characteristics, as well as the very good biocompatibility and bioadhesive properties, poly(Bisomer/HEMA/IA hydrogels are promising for utilization in the field of biomedicals, especially for the controlled release of drugs.

  5. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    International Nuclear Information System (INIS)

    Pirvu, Cristian; Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana

    2011-01-01

    Highlights: → Electrochemical monitoring of PPy and PPy-PEG films over immersion time. → Electrochemical and surface analysis showed that PEG improves the stability of PPy films. → Mott-Schottky analysis reveals p-type conductance for both films. → In situ AFM analysis sustains electrochemical behaviour. → A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O 2 inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  6. A reaction-based fluorescent sensor for detection of cyanide in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shan-Teng; Sie, Yi-Wun [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China); Wan, Chin-Feng [School of Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan (China); Wu, An-Tai, E-mail: antai@cc.ncue.edu.tw [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China)

    2016-05-15

    A simple boronic acid derivative was utilized as a reaction-based receptor for CN{sup −} in aqueous solution. The receptor showed a selective and sensitive response to CN{sup −} over other various anions via nucleophilic addition of CN{sup −} to the imine moiety of the boronic-based receptor.

  7. General-base catalysed hydrolysis and nucleophilic substitution of activated amides in aqueous solutions

    NARCIS (Netherlands)

    Buurma, NJ; Blandamer, MJ; Engberts, JBFN; Buurma, Niklaas J.

    The reactivity of 1-benzoyl-3-phenyl-1,2,4-triazole (1a) was studied in the presence of a range of weak bases in aqueous solution. A change in mechanism is observed from general-base catalysed hydrolysis to nucleophilic substitution and general-base catalysed nucleophilic substitution. A slight

  8. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P encopresis.

  9. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  10. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  11. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma. Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV) spectrophotometry was used ...

  12. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    F. Widhi Mahatmanti

    2014-07-01

    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  13. Novel solid – solid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  14. Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting

    Science.gov (United States)

    Akbari-Fakhrabadi, A.; Mangalaraja, R. V.; Sanhueza, Felipe A.; Avila, Ricardo E.; Ananthakumar, S.; Chan, S. H.

    2012-11-01

    Gadolinia-doped ceria (Ce0.9Gd0.1O1.95, GDC) electrolyte was fabricated by aqueous-based tape casting method for solid oxide fuel cells (SOFCs). The ceramic powder prepared by combustion synthesis was used with poly acrylic acid (PAA), poly vinyl alcohol (PVA), poly ethylene glycol (PEG), Octanol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate and double distilled water as dispersant, binder, plasticizer, defoamer, surfactant and solvent respectively, to prepare stable GDC slurry. The conditions for preparing stable GDC slurries were studied and optimized by sedimentation, zeta potential and viscosity measurements. Green tapes with smooth surface, flexibility, thickness in the range of 0.35-0.4 mm and 45% relative green density were prepared. Conventional and flash sintering techniques were used and compared for densification which demonstrated the possibility of surpassing sintering at high temperatures and retarding related grain growth.

  15. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  16. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409 of...

  17. Study of Propylene Glycol, Dimethylformamide and Formaldehyde Vapors Sensors Based on MWCNTs/SnO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Zaven Adamyan

    2017-06-01

    Full Text Available We present results of our research works related to the study of thick-film multiwall carbon nanotube/tin oxide nanocomposite sensors of propylene glycol (PG, dimethylformamide (DMF and formaldehyde (FA vapors derived using hydrothermal synthesis and sol-gel methods. Investigations of response/recovery characteristics in the 50-300 oC operating temperature range reveal that the optimal operating temperature for PG, DMF and FA vapor sensors, taking into account both high response and acceptable response and recovery times, are about 200 and 220 oC, respectively. A sensor response dependence on gas concentration in all cases is linear. The minimal propylene glycol and dimethylformamide gas concentrations at which the perceptible signal was registered by us were 13 ppm and 5 ppm, respectively.

  18. Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin

    2017-10-01

    Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.

  19. Ethylene glycol poisoning

    African Journals Online (AJOL)

    Ethylene glycol poisoning. A 22-year-old male presented to the emergency centre after drinking 300 ml of antifreeze. Clinical examination was unremarkable except for a respiratory rate of 28 bpm, GCS of 9 and slight nystagmus. Arterial blood gas revealed: pH 7.167, pCO2. 3.01 kPa, pO2 13.0 kPa (on room air), HCO3-.

  20. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  1. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  2. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    Science.gov (United States)

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  4. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets

    Science.gov (United States)

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-01

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments.

  5. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  6. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  7. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    Science.gov (United States)

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  8. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] hydrophobic catalyst beads in microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Wi, Jun; Li, Xiang; Song, Tong; Song, Zi Fan; Chang, Zhen Qi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Meng, Da Qiao [Si Chuan Institute of Materials and Technology, Jiang You (China)

    2015-10-15

    The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200-1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads.

  9. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] hydrophobic catalyst beads in microfluidics

    International Nuclear Information System (INIS)

    Wi, Jun; Li, Xiang; Song, Tong; Song, Zi Fan; Chang, Zhen Qi; Meng, Da Qiao

    2015-01-01

    The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200-1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads

  10. Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.; Krause, T.R.; Deepak; Vojta, Y.; Thuillet, E.; Mertz, C.J.

    1995-07-01

    The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests with soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided

  11. Exploring Poly(ethylene glycol-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution

    Directory of Open Access Journals (Sweden)

    Noverra M. Nizardo

    2018-03-01

    Full Text Available Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol (PEG macroinitiator via atom transfer radical polymerization (ATRP of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and 1H NMR spectroscopy. While the polymers with polysulfobetaine blocks exhibit phase transitions in the physiologically interesting window of 30–50 °C only in pure aqueous solution, the polymers bearing polysulfabetaine blocks enabled phase transitions only in physiological saline solution. By copolymerizing a pair of structurally closely related sulfo- and sulfabetaine monomers, thermoresponsive behavior can be implemented in aqueous solutions of both low and high salinity. Surprisingly, the presence of the PEG blocks can affect the UCST-transitions of the polyzwitterions notably. In specific cases, this results in “schizophrenic” thermoresponsive behavior displaying simultaneously an UCST and an LCST (lower critical solution temperature transition. Exploratory experiments on the UCST-transition triggered the encapsulation and release of various solvatochromic fluorescent dyes as model “cargos” failed, apparently due to the poor affinity even of charged organic compounds to the collapsed state of the polyzwitterions.

  12. An Overview of Poly(lactic-co-glycolic Acid (PLGA-Based Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Piergiorgio Gentile

    2014-02-01

    Full Text Available Poly(lactic-co-glycolic acid (PLGA has attracted considerable interest as a base material for biomedical applications due to its: (i biocompatibility; (ii tailored biodegradation rate (depending on the molecular weight and copolymer ratio; (iii approval for clinical use in humans by the U.S. Food and Drug Administration (FDA; (iv potential to modify surface properties to provide better interaction with biological materials; and (v suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

  13. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    2018-05-08

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.

  14. Preparation of an aqueous graphitic ink for thermal drop-on-demand inkjet printing

    Energy Technology Data Exchange (ETDEWEB)

    Romagnoli, Marcello; Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it; Cannio, Maria; Barbieri, Francesco; Giovanardi, Roberto

    2016-10-01

    A graphitic ink for thermal DOD inkjet printing was developed. Challenges to be met were related to the small size of the getting nozzle (20 μm), demanding high dispersion stability of submicron particles, as well as to the physical requirements of the printer. In addition, solvents potentially hazardous to human health were excluded a priori. These necessities led to the development of a ternary aqueous solvent system based on 2-propanol and monoethylene glycol, offering an environmental-friendly alternative to conventional graphene solvents. In addition, high flexibility in terms of physical properties (e.g. surface tension, viscosity, density) important for jetting is obtained. Size reduction and exfoliation, accomplished by wet-grinding of graphite in the presence of a surfactant, were followed by laser diffraction and XRD line broadening analyses, respectively. The separated graphitic colloids used for preparation of inks were composed of ca 30 layers of AB–stacked graphene flakes, as determined by line broadening analyses (XRD data). Jetting of an ink with a solid content of 0.3 mg/mL gave a thickness increase of ca. 25 nm/pass, as determined by FESEM. Electrical characterization evidenced the need to remove residual organic molecules to regain the electrical properties of the graphitic particles. - Highlights: • A non-hazardous graphitic ink for thermal DOD inkjet printing was developed. • The ternary mixture water/ethylene glycol/2-propanol is suitable as solvent. • Physical properties important for jetting is tailored by solvent composition. • Surfactant-aided grinding gives exfoliation of graphite without inflicting microstrain.

  15. Preparation of (Bi,Pb)2Sr2Ca2Cu3Ox precursor powders by a modified polyethylene glycol based sol-gel process

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Andersen, N.H.

    2002-01-01

    A modified sol-gel process based on polyethylene glycol has been developed for preparing (Bi,Pb)(2)Sr2Ca2Cu3Ox precursor powders in view of Ag-sheeted tape manufacture. A careful control of the pH and concentration temperature yields an amorphous gel, which can be converted to a fine and extremely...

  16. Carbon microspheres as ball bearings in aqueous-based lubrication.

    Science.gov (United States)

    St Dennis, J E; Jin, Kejia; John, Vijay T; Pesika, Noshir S

    2011-07-01

    We present an exploratory study on a suspension of uniform carbon microspheres as a new class of aqueous-based lubricants. The surfactant-functionalized carbon microspheres (∼0.1 wt %) employ a rolling mechanism similar to ball bearings to provide low friction coefficients (μ ≈ 0.03) and minimize surface wear in shear experiments between various surfaces, even at high loads and high contact pressures. The size range, high monodispersity, and large yield stress of the C(μsphere), as well as the minimal environmental impact, are all desirable characteristics for the use of a C(μsphere)-SDS suspension as an alternative to oil-based lubricants in compatible devices and machinery.

  17. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  18. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    Science.gov (United States)

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  19. Noncovalent pegylation by dansyl-poly(ethylene glycol)s as a new means against aggregation of salmon calcitonin.

    Science.gov (United States)

    Mueller, Claudia; Capelle, Martinus A H; Arvinte, Tudor; Seyrek, Emek; Borchard, Gerrit

    2011-05-01

    During all stages of protein drug development, aggregation is one of the most often encountered problems. Covalent conjugation of poly(ethylene glycol) (PEG), also called PEGylation, to proteins has been shown to reduce aggregation of proteins. In this paper, new excipients based on PEG are presented that are able to reduce aggregation of salmon calcitonin (sCT). Several PEG polymers consisting of a hydrophobic dansyl-headgroup attached to PEGs of different molecular weights have been synthesized and characterized physicochemically. After addition of dansyl-methoxypoly(ethylene glycol) (mPEG) 2 kDa to a 40 times molar excess of sCT resulted in an increase in dansyl-fluorescence and a decrease in 90° light scatter suggesting possible interactions. The aggregation of sCT in different buffer systems in presence or absence of the different dansyl-PEGs was measured by changes in Nile red fluorescence and turbidity. Dansyl-mPEG 2 kDa in a 1:1 molar ratio to sCT strongly reduced aggregation. Reduction of sCT aggregation was also measured for the bivalent dansyl-PEG 3 kDa in a 1:1 molar ratio. Dansyl-mPEG 5 kDa deteriorated sCT aggregation. Potential cytotoxicity and hemolysis were investigated. This paper shows that dansyl-PEGs are efficacious in reducing aggregation of sCT. Copyright © 2010 Wiley-Liss, Inc.

  20. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends

    International Nuclear Information System (INIS)

    Chen, Changzhong; Wang, Linge; Huang, Yong

    2011-01-01

    Highlights: → Ultrafine PEG/CA phase change fibers were fabricated by electrospinning. → PEG content dramatically influenced the fiber morphology and phase change behaviors. → The electrospun fibers have excellent thermal properties for thermal energy storage. - Abstract: Ultrafine phase change fibers based on polyethylene glycol (PEG)/cellulose acetate (CA) blends in which PEG acts as a model phase change material (PCM) and CA acts as a supporting material, were successfully prepared via electrospinning. The effect of PEG content on the morphology, crystalline properties, phase change behaviors and tensile properties of the composite fibers was studied systematically by field-emission scanning electron microscopy (FE-SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and a tensile tester, respectively. The SEM observation indicates that maximum PEG content in the fibers could reach up to 70 wt%, and the morphology and average diameter of the composite fibers vary with PEG content. Thermal analysis results show that the latent heats of the phase change fibers increase with the increasing of PEG content in the fibers, and the PEG/CA fibers with high enthalpies have a good capability to regulate their interior temperature as the ambient temperature alters. Therefore, the developed phase change fibers have enormous applicable potentials in thermal energy storage and temperature regulation.

  1. Simple micro-patterning of high conductive polymer with UV-nano-imprinted patterned substrate and ethylene glycol-based second doping

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Kurihara, Kazuma; Yamashita, Takahiro; Itoh, Toshihiro

    2014-01-01

    We have developed a simple micro-patterning process for high conductive polymer (i.e., poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)) with a patterned substrate by using an ultraviolet (UV) nano-imprint and an ethylene glycol-based second doping technique. In the patterning process, the PEDOT:PSS water dispersion is first coated only on the hydrophilic area, which is fabricated by UV nano-imprinting, forming patterned PEDOT:PSS on the substrate. The patterned PEDOT:PSS film is then immersed in the ethylene glycol as a second doping technique for increasing its conductivity. The proposed process provides simplicity in terms of shorter process steps of the UV nano-imprinting and PEDOT:PSS coating and higher conductivity of patterned PEDOT:PSS film than existing complicated micro-fabrication processes for organic materials. The 200 nm wide nano-imprinted pillar structures change the wettability of the substrate where the contact angle of the substrate is decreased from 66.8° to 33.3°. The patterning resolution with the nano-imprinted pattern substrate is down to 100 µm, which is useful for sensor applications. The conductivity increase delivers a low sheet resistance (120 Ω sq −1 ) of patterned PEDOT:PSS film. Then, the patterning of PEDOT:PSS sensor shapes with its 300 µm wide feature line and high conductivity are demonstrated. Therefore, our process leads to applications to a variety of PEDOT:PSS-based sensors. (paper)

  2. Effect of monobutylether ethylene glycol on Mg/Al layered double hydroxide: a physicochemical and conductivity study

    International Nuclear Information System (INIS)

    Paulo, Maria Joao; Matos, Bruno Ribeiro de; Ntais, Spyridon; Coral Fonseca, Fabio; Tavares, Ana C.

    2013-01-01

    Mg–Al hydrotalcite-like compounds with OH − ions intercalated in the gallery and modified with monobutylether ethylene glycol (mbeeg) were prepared from Mg 6 Al 2 (CO 3 )(OH) 16 ·4H 2 O by the reconstruction method. The effect of the ethylene glycol, a moderate surfactant, on the textural properties and on the vapor water sorption of the layered double hydroxides was investigated by transmission electron microscopy and nitrogen and water sorption techniques. The ion conductivity of the samples was measured at 98 % RH up to 180 °C. The compounds are formed by nanoplatelets with a lateral size inferior to 20 nm. The addition of the ethylene glycol was found to increase the specific surface area, total pore volume, and water sorption capacity of the Mg–Al layered double hydroxide. However, it also decreased the average pore diameter, and the ion conductivity of the ethylene glycol modified layered double hydroxide was lower than expected based on the samples’ specific surface area and water content.

  3. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  4. Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging.

    Directory of Open Access Journals (Sweden)

    Sindhu Saraswathy

    Full Text Available Trabecular meshwork (TM bypass surgeries attempt to enhance aqueous humor outflow (AHO to lower intraocular pressure (IOP. While TM bypass results are promising, inconsistent success is seen. One hypothesis for this variability rests upon segmental (non-360 degrees uniform AHO. We describe aqueous angiography as a real-time and physiologic AHO imaging technique in model eyes as a way to simulate live AHO imaging.Pig (n = 46 and human (n = 6 enucleated eyes were obtained, orientated based upon inferior oblique insertion, and pre-perfused with balanced salt solution via a Lewicky AC maintainer through a 1mm side-port. Fluorescein (2.5% was introduced intracamerally at 10 or 30 mm Hg. With an angiographer, infrared and fluorescent (486 nm images were acquired. Image processing allowed for collection of pixel information based on intensity or location for statistical analyses. Concurrent OCT was performed, and fixable fluorescent dextrans were introduced into the eye for histological analysis of angiographically active areas.Aqueous angiography yielded high quality images with segmental patterns (p<0.0001; Kruskal-Wallis test. No single quadrant was consistently identified as the primary quadrant of angiographic signal (p = 0.06-0.86; Kruskal-Wallis test. Regions of high proximal signal did not necessarily correlate with regions of high distal signal. Angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways.Aqueous angiography is a real-time and physiologic AHO imaging technique in model eyes.

  5. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-01-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe 3 O 4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe 3 O 4 ) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g −1 and 131 emu g −1 , respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  6. Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems

    NARCIS (Netherlands)

    Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.

    2010-01-01

    Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich

  7. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  8. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  9. Removal of diethyl phthalate from aqueous phase using magnetic poly(EGDMA-VP) beads

    Energy Technology Data Exchange (ETDEWEB)

    Tuemay Oezer, Elif [Department of Chemistry, Uludag University, Bursa (Turkey); Osman, Bilgen, E-mail: bilgeno@uludag.edu.tr [Department of Chemistry, Uludag University, Bursa (Turkey); Kara, Ali; Besirli, Necati; Guecer, Seref [Department of Chemistry, Uludag University, Bursa (Turkey); Soezeri, Hueseyin [TUBITAK-UME, National Metrology Institute, PO Box 54 TR-41470, Gebze/Kocaeli (Turkey)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Magnetic beads were prepared for removal of diethyl phthalate (DEP). Black-Right-Pointing-Pointer Total capacity of the beads was determined as 98.9 mg DEP per gram polymer. Black-Right-Pointing-Pointer Magnetic beads were regenerated easily and reused for DEP adsorption. Black-Right-Pointing-Pointer Adsorption isotherms, kinetics and thermodynamics were elucidated. - Abstract: The barium hexaferrite (BaFe{sub 12}O{sub 19}) containing magnetic poly(ethylene glycol dimethacrylate-vinyl pyridine), (mag-poly(EGDMA-VP)) beads (average diameter = 53-212 {mu}m) were synthesized and characterized. Their use as an adsorbent in the removal of diethyl phthalate (DEP) from an aqueous solution was investigated. The mag-poly(EGDMA-VP) beads were prepared by copolymerizing of 4-vinyl pyridine (VP) with ethylene glycol dimethacrylate (EGDMA). The mag-poly(EGDMA-VP) beads were characterized by N{sub 2} adsorption/desorption isotherms (BET), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), elemental analysis, scanning electron microscope (SEM) and swelling studies. At a fixed solid/solution ratio, the various factors affecting the adsorption of DEP from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. The maximum DEP adsorption capacity of the mag-poly(EGDMA-VP) beads was determined as 98.9 mg/g at pH 3.0, 25 Degree-Sign C. All the isotherm data can be fitted with both the Langmuir and the Dubinin-Radushkevich isotherm models. The pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The thermodynamic parameters obtained indicated the exothermic nature of the adsorption. The DEP adsorption capacity did not change after 10 batch successive reactions, demonstrating the usefulness of the magnetic beads in applications.

  10. Efficacy of polyethylene glycol 4000 on constipation of

    Directory of Open Access Journals (Sweden)

    ZHANG Lian-yang

    2010-06-01

    Full Text Available Constipation is one of themost common chronic gastrointestinal problems. The estimated incidence of constipation in the United States is3% to 19% in general population.1,2 Patientswith head injuries, spinal cord injuries, pelvic fractures, lower extremity fractures ormultiple traumas require a long-term bed rest, during which the incidence of constipation reached as high as 50%.3,4 Constipation always brings inconvenience and tremendous suffering to patientsand strongly influences the recovery from primary disease. Irritants or lubricants can relieve the symptoms, but long-term application of them may lead to side effects like melanosis coli5 and cathartic colon6. The absorption of fat soluble vitamins is also affected.7 Polyethylene glycol 4000 (trade name: Forlax®, a long chain polymer with a high molecular weight, can conjugate withwater molecule through hydrogen bond to increase the water content and volume of stools, thereby, facilitate bowelmovement and defecation.8,9 It is neither absorbed nor metabolized in the digestive tract, hence it is highly safe and well tolerable. Thus, long-term medication of polyethylene glycol 4000 is conducive to the reconstruction of normal defecation pattern. Therefore, polyethylene glycol 4000 is now being widely used as the mainstay adult chronic functional constipation management.10,11 The aim of this study was to verify the efficacy and safety of polyethylene glycol 4000 on adult functional constipation of posttraumatic bedridden patients.

  11. Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; Feijen, Jan; van Blitterswijk, Clemens

    2000-01-01

    Protein release from a series of biodegradable poly(ether ester) multiblock copolymers, based on poly(ethylene glycol) (PEG) and poly(butylene terephthalate) (PBT) was investigated. Lysozyme-containing PEG/PBT films and microspheres were prepared using an emulsion technique. Proteins were

  12. Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery.

    Science.gov (United States)

    Soliman, Mahmoud E; Elmowafy, Enas; Casettari, Luca; Alexander, Cameron

    2018-05-30

    The aim of this work was to obtain an intranasal delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the delivery of risedronate (RS). For this, novel in situ forming gels comprising thermo-responsive star-shaped polymers, utilizing either polyethylene glycol methyl ether (PEGMA-ME 188, Mn 188) or polyethylene glycol ethyl ether (PEGMA-EE 246, Mn 246), with polyethylene glycol methyl ether (PEGMA-ME 475, Mn 475), were synthesized and characterized. RS was trapped in the selected gel-forming solutions at a concentration of 0.2% w/v. The pH, rheological properties, in vitro drug release, ex vivo permeation as well as mucoadhesion were also examined. MTT assays were conducted to verify nasal tolerability of the developed formulations. Initial in vivo studies were carried out to evaluate anti-osteoporotic activity in a glucocorticoid induced osteoporosis model in rats. The results showed successful development of thermo-sensitive formulations with favorable mechanical properties at 37 °C, which formed non-irritant, mucoadhesive porous networks, facilitating nasal RS delivery. Moreover, sustained release of RS, augmented permeability and marked anti-osteoporotic efficacy as compared to intranasal (IN) and intravenous (IV) RS solutions were realized. The combined results show that the in situ gels should have promising application as nasal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive.

    Science.gov (United States)

    Ge, Xiangyu; Li, Jinjin; Zhang, Chenhui; Luo, Jianbin

    2018-03-27

    Boric acid is a weak acid and has been used as a lubrication additive because of its special structure. In this study, we report that boric acid could achieve a robust superlubricity (μ friction coefficient of approximately 0.004-0.006 could be achieved with boric acid under neutral conditions (pH of approximately 6.4), which is different from the acidic conditions leading to superlubricity. The influence of various factors, including boric acid concentration, sliding speed, applied load, PEG molecular weight, and the volume of lubricant on the superlubricity, were investigated. The results reveal that the PEG aqueous solution with the boric acid additive could achieve superlubricity under a wide range of conditions. The surface composition analysis shows that the synergy effect between boric acid and PEG provides sufficient H + ions to realize the running-in process. Moreover, a composite tribochemical film composed of silica and ammonia-containing compounds were formed on the ball surface, contributing to the superlubricity. The film thickness calculation shows that superlubricity was achieved in a mixed lubrication region, and therefore, the superlubricity state was dominated by both the composite tribochemical film formed via the tribochemical reaction on the contact surfaces and the hydrodynamic lubricating film between the contact surfaces. Such a liquid superlubricity achieved under neutral conditions is of importance for both scientific understanding and engineering applications.

  14. Poly(Neopentyl Glycol Furanoate): A Member of the Furan-Based Polyester Family with Smart Barrier Performances for Sustainable Food Packaging Applications

    OpenAIRE

    Laura Genovese; Nadia Lotti; Valentina Siracusa; Andrea Munari

    2017-01-01

    In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate) (PNF) to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, th...

  15. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Xing [School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Jia, Yong, E-mail: yjiaahedu@163.com [School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 (China)

    2016-12-15

    Highlights: • Fe-EG complex microspheres were synthesized by a hydrothermal method. • The removal properties towards Cr(VI) ions were investigated. • The adsorption and reduction mechanism was revealed by FTIR and XPS. - Abstract: Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g{sup −1} at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO{sub 4}{sup 2−} ions were partly reduced to Cr(OH){sub 3} by Fe(II) ions and the organic groups in the Fe-EG complex.

  16. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    Science.gov (United States)

    Akapo, Samuel O.; Syed, Sajid; Mamangun, Anicia; Skinner, Wayne

    2009-01-01

    Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts. PMID:20140083

  17. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain

    DEFF Research Database (Denmark)

    Kalman, Judit; Paul, Kai B.; Khan, Farhan R.

    2015-01-01

    This study investigated the bioaccumulation dynamics of silver nanoparticles (Ag NPs) with different coatings (polyvinyl pyrrolidone, polyethylene glycol and citrate), in comparison with aqueous Ag (added as AgNO3), in a simplified freshwater food chain comprising the green alga Chlorella vulgaris...... and the crustacean Daphnia magna. Algal uptake rate constants (ku) and membrane transport characteristics (binding site density, transporter affinity and strength of binding) were determined after exposing algae to a range of either aqueous Ag or Ag NP concentrations. In general, higher ku values were related......). Ag NPs were only visualised in algal cells exposed to high Ag NP concentrations. To establish D. magna biodynamic model constants, organisms were fed Ag-contaminated algae and depurated for 96 h. Assimilation efficiencies ranged from 10 to 25 % and the elimination of accumulated Ag followed a two...

  18. Aqueous biphasic systems involving alkylsulfate-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Deive, Francisco J. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Rodriguez, Ana [Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Marrucho, Isabel M., E-mail: imarrucho@itqb.unl.pt [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Rebelo, Luis P.N. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal)

    2011-11-15

    Highlights: > K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4} act as phase promoter in aqueous solutions of ILs. > Remarkable influence of alkyl-chain length on solubility curves of alkylsulfate-based ILs. > Merchuck correlation was used for describing these systems. > {Delta}S{sub hyd} and Hofmeister series were used to discuss the different salting out effects. - Abstract: The specific effects of K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4}, as high charge-density inorganic salts and thus inducers of the formation of aqueous biphasic systems (ABS) containing several ethyl-methylimidazolium alkylsulfate ionic liquids, C{sub 2}MIM C{sub n}SO{sub 4} (n = 2, 4, 6, or 8), have been assessed at T = 298.15 K. The results are analyzed in the light of the Hofmeister series. The influence of different alkyl chain lengths in the anion, together with the ability of the selected inorganic salts to induce the formation of ABS, is discussed. Phase diagrams have been determined through turbidimetry, including tie lines assignments from mass phase ratios according to the lever - arm rule. The Merchuck equation was satisfactorily used to correlate the solubility curve.

  19. Curcumin based optical sensing of fluoride in organo-aqueous media using irradiation technique

    Science.gov (United States)

    Venkataraj, Roopa; Radhakrishnan, P.; Kailasnath, M.

    2017-06-01

    The present work describes the degradation of natural dye Curcumin in organic-aqueous media upon irradiation by a multi-wavelength source of light like mercury lamp. The presence of anions in the solution leads to degradation of Curcumin and this degradation is especially enhanced in the case of fluoride ion. The degradation of Curcumin is investigated by studying the change in its absorption and fluorescence characteristics in organoaqueous solution upon irradiation. A broad detection range of fluoride ranging from 2.3×10-6-2.22×10-3 M points to the potential of the method of visible light irradiation enabling aqueous based sensing of fluoride using Curcumin.

  20. Characterization of tetraethylene glycol passivated iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  1. Determination of the impact of glycolate on ARP and MCU operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-17

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal, phase separation, or coalescer performance at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU).

  2. Radiolysis of nucleosides in aqueous solutions: base liberation by the base attack mechanism

    International Nuclear Information System (INIS)

    Fujita, S.

    1984-01-01

    On the radiolysis of uridine and some other nucleosides in aqueous solution, a pH-dependent liberation of uracil or the corresponding base was found. e - sub(aq) and HOsup(anion radicals) 2 gave no freed bases, although many oxidizing radicals, including OH, Clsup(anion radicals) 2 , Brsup(anion radicals) 2 , (CNS)sup(anion radicals) 2 and SOsup(anion radicals) 4 , did cause the release of unaltered bases, depending on the pH of the solutions. The base yields were generally high at pH >= 11, with the exception of SOsup(anion radicals) 4 , which gave a rather high yield of uracil (from uridine) even in the pH region of - , present at high pH as the dissociated form of OH, may act partly as an oxidizing radical. A plausible mechanism of 3 1 -radical formation is discussed. (author)

  3. Photosonic digestion of aqueous organics

    International Nuclear Information System (INIS)

    Toy, M.S.

    1993-02-01

    The objective of the program discussed in this report has been to develop an on-line aqueous organic digestion process that decomposes the organic compounds in water to ionic species, which can then be removed by the plant's demineralizers. At the Susquehanna Steam Electric Plant (SSES) of Pennsylvania Power and Light Company (PP ampersand L), the sonolysis process was tested by application to standard water streams to which ethylene glycol and urea were added. There were a substantial number of ionic species generated from both compounds as determined by ion chromatography. The sonolysis process and another organic destruction method, the General Electric ozone/UV process, were compared for their ability to remove the total organic carbon (TOC) and total inorganic carbon (TIC) from streams from the collection tanks of the plant's radwaste system. The sonolysis process efficiency, evaluated after the effluent from sonolysis was passed through a demineralizer, was estimated to be 55 + 17% for TOC removal as compared to a 93% removal by ozone/UV. Sonolysis led to the removal of 93% of the TIC as compared to 100% by the UV/ozone process

  4. Chemically induced dynamic electron polarization. Pulse radiolysis of aqueous solutions of alcohols

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Thurnauer, M.C.

    1975-01-01

    The radical pair model of chemically induced dynamic electron polarization (CIDEP) is experimentally verified. Aqueous solutions of alcohols were irradiated with 3 MeV electrons and observed with time resolved electron paramagnetic resonance (EPR) spectroscopy. Relative line intensities of the polarized EPR spectra of radicals from methanol and especially ethylene glycol, alone and in the presence of radicals from compounds containing halogens, illustrates the polarization dependence on the g-factor differences between the radical pair components. The observation of the relative polarization enhancement in the various lines of the multiline EPR spectra illustrates the polarization dependence on the hyperfine terms. Intrinsic enhancements are calculated and are shown to be proportional to the observed enhancement, showing that the radical pair model of CIDEP is qualitatively correct

  5. Use of polyethylene glycol in functional constipation and fecal impaction.

    Science.gov (United States)

    Mínguez, Miguel; López Higueras, Antonio; Júdez, Javier

    2016-12-01

    The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG), with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely) NOT colonoscopy. Critical reading of selected articles (English or Spanish), sorting their description according to group age (adult/pediatric age) and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis). Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two), psyllium (one), tegaserod (one), prucalopride (one), paraffin oil (one), fiber combinations (one) and Descurainia sophia (one). Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short and long-term. They are as efficacious as enemas in fecal

  6. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    International Nuclear Information System (INIS)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel; Rodes, Antonio

    2010-01-01

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  7. The effect of functionalized silver nanoparticles over the thermal conductivity of base fluids

    Science.gov (United States)

    Seyhan, Merve; Altan, Cem Levent; Gurten, Berna; Bucak, Seyda

    2017-04-01

    Thermal conductivities of nanofluids are expected to be higher than common heat transfer fluids. The use of metal nanoparticles has not been intensely investigated for heat transfer applications due to lack of stability. Here we present an experimental study on the effect of silver nanoparticles (Ag NPs) which are stabilized with surfactants, on the thermal conductivity of water, ethylene glycol and hexane. Hydrophilic Ag NPs were synthesized in aqueous medium with using gum arabic as surfactant and oleic acid/oleylamine were used to stabilize Ag NPs in the organic phase. The enhancement up to 10 per cent in effective thermal conductivity of hexane and ethylene glycol was achieved with addition of Ag NPs at considerably low concentrations (i.e. 2 and 1 per cent, by weight, for hexane and ethylene glycol respectively). However, almost 10 per cent of deterioration was recorded at effective thermal conductivity of water when Ag NPs were added at 1 per cent (by wt). Considerable amount of Gum Arabic in the medium is shown to be the major contributor to this fall, causing lowering of thermal conductivity of water. Same particles performed much better in ethylene glycol where the stabilizer does not lower the thermal conductivity of the base fluid. Also thermal conductivity of nanofluids was found to be temperature independent except water based Ag nanofluids above a threshold concentration. This temperature dependency is suggested to be due to inhibition of hydrogen bonding among water molecules in the presence of high amounts of gum arabic.

  8. Upstream petroleum industry glycol dehydrator benzene emissions status report

    International Nuclear Information System (INIS)

    1999-07-01

    The population of dehydrators referred to are located in the Western Sedimentary Basin in northeast British Columbia, Alberta and Saskatchewan, and includes units installed at wellsites, compressor stations, gas plants, central crude oil treating facilities, and reservoir or salt cavern gas storage facilities. Benzene emissions from the still column vent on glycol dehydrators occur as a result of glycol's strong affinity for aromatic hydrocarbons, including benzene. A study was carried out to: 1) develop a list of oil and gas companies operating in Canada, 2) develop an equipment and benzene emissions inventory of glycol dehydrators, 3) develop a database in Microsoft Access format to gather and maintain inventory and emission data, 4) evaluate and validate at least 10% of the reported data, 5) develop a list of companies that manufacture dehydrators and incinerators to determine how many new dehydrators were sold for use in Canada in 1998, and 6) prepare a report summarizing findings and recommendations. The companies included in the survey were the oil and gas companies identified by the Nickels' Oil and Gas Index and others provided by CAPP, CGA, and SEPAC. The project was carried out to gather glycol dehydrator equipment and still column vent benzene emissions information. 8 refs

  9. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  10. Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jin Young; Hwang, In Hong; Kim, Hyun; Song, Eun Joo; Kim, Kyung Beom; Kim, Cheal [Seoul National Univ., Seoul (Korea, Republic of)

    2013-07-15

    A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward CN{sup -} ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of CN{sup -} to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 μM) is below the 1.9 μM suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of CN. concentrations in aqueous samples.

  11. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on

  12. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  13. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bekkali, Noor L. H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E. J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G. P.; Voropaiev, Maksym; Benninga, Marc A.

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes

  14. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2014-03-01

    Full Text Available Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFrac module for distillation columns, to investigate the effect on the separation of the ethylene glycol-glycerol mixture composition, the separating agent feed stages, the separating agent split stream feed, and the azeotropic feed temperature. The NRTL model was used to calculate the phase equilibrium of these strongly polar mixtures. A rigorous simulation of the extractive distillation column finally established was also performed, including a secondary recovery column for the mixture of solvents and a recycle loop, to simulate an industrially relevant situation. This simulation allowed establishing the complete parameters to dehydrate ethanol: the optimal stage for separating agent feed is stage 4; the most adequate composition for the glycols mixture is 60 mol% ethylene glycol and 40 mol% glycerol. Finally, energetically efficient operating conditions for each one of the columns were established through a preliminary pinch analysis.

  15. Immediate-type hypersensitivity to polyethylene glycols

    DEFF Research Database (Denmark)

    Wenande, E; Garvey, L H

    2016-01-01

    Polyethylene glycols (PEGs) or macrogols are polyether compounds widely used in medical and household products. Although generally considered biologically inert, cases of mild to life-threatening immediate-type PEG hypersensitivity are reported with increasing frequency. Nevertheless, awareness...

  16. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.

    Science.gov (United States)

    Yamamoto, Y; Sefton, M V

    1998-01-01

    Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.

  17. A Novel and Sensitive Method for the Determination of Vitamin B2 (Riboflavin in Urine and Pharmaceutical Samples Using an Aqueous Two-Phase Extraction

    Directory of Open Access Journals (Sweden)

    Sabah Shiri

    2013-01-01

    Full Text Available A novel, simple, and more sensitive spectrophotometric procedure has been developed for the determination of vitamin B2 (riboflavin by an aqueous two-phase extraction (ATPE. An ATPE is formed mostly by water and does not require an organic solvent. Other ATPE components used in this study were the polymer, polyethylene glycol (PEG, and some salts such as Na2SO4 and Na2CO3. The method is based on the interaction between vitamin B2 (riboflavin and sodium sulfate (Na2SO4 in an acidic medium (pH 6.4. The influences of effective parameters such as salt (type and concentration, polyethylene glycol (molecular weight and concentration, temperature, centrifuging time, and pH of the sample solution were studied and optimized. The linear range was 1.3–320 ng/mL (R2=0.9991; n=10 with the relative standard deviation (RSD for 60 ng/mL 3.68%. The limit of detection (LOD calculated from three times of standard deviation of blank were 0.2 ng/mL and recoveries from analysis of real samples between 94.82% and 103.98% were obtained for the determination of vitamin B2 (riboflavin in urine and pharmaceutical samples.

  18. Penetration enhancer: monoethylether of diethylene glycol

    International Nuclear Information System (INIS)

    Koprda, V.; Kassai, Z.; Bohacik, L.; Bezek, S.; Hadcrafft, J.; Falson-Rieg, F.

    1999-01-01

    The monoethylether of diethylene glycol (Transcutol), an excellent solubilising agent, has been suggested as a penetration enhancer compatible with trans-dermal drug delivery systems. Using the abdominal skin of 5 day old rats and Franz-type diffusion cells the following topics were studied in this contribution: (1) Flux of Transcutol, labelled with [Ethyl- 14 C]-ether, across an intact skin model, (2) Changes in properties of the skin barrier after stripping with adhesive tape, and (3) Changes in flux of Transcutol when mixed with different co-solvents. The flux from pure solvent in donor compartment reached around 50 μg cm -2 hr -1 across the intact skin horny layer, whilst after 12 strips the flux increased about 200 times. In the presence of propylene glycol dipelargonate, the flux over 2 mg cm -2 hr -1 across non stripped skin was achieved. (authors)

  19. Ketamine nano-delivery based on poly-lactic-co-glycolic acid (PLGA) nanoparticles

    Science.gov (United States)

    Hirano, Sota; Bovi, Michele; Romeo, Alessandro; Guzzo, Flavia; Chiamulera, Cristiano; Perduca, Massimiliano

    2018-04-01

    This work describes a novel method for the generation of a ketamine nano-delivery, to improve brain blood barrier permeability and increase drug therapeutic window as anaesthetic, analgesic and potential antidepressant. The approach herein described is based on ketamine-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled to an apolipoprotein E (ApoE) peptide for delivery to the central nervous system. PLGA particles were synthesized with amount of drug, coupled with the ApoE peptide on the surface, and validated by physical characterization. The produced nanodevice showed a good colloidal stability in water, confirmed by zeta potential measurements, with a diameter in the range of 185-205 nm. The ketamine encapsulation was verified by liquid chromatography-mass spectrometry analyses obtaining an encapsulation efficiency up to 21.2 ± 3.54%. Once the occurrence of ApoE peptide functionalization was confirmed with fluorescence spectroscopy, the thermal stability and morphological information were obtained by differential scanning calorimetry and further dynamic light scattering measurements. The spherical shape and a rough nanoparticles surface were observed by atomic force microscopy. The reliability of this approach may be further developed as a protocol to be used to generate PLGA nanoparticles greater than 100 nm able to better penetrate blood brain barrier and release a neuroactive molecule at lower doses.

  20. A new pyrazoline-based fluorescent sensor for Al3+ in aqueous solution.

    Science.gov (United States)

    Hu, Shengli; Song, Jingjing; Wu, Gongying; Cheng, Cuixia; Gao, Qing

    2015-02-05

    A new pyrazoline-based fluorescent sensor was synthesized and the structure was confirmed by single crystal X-ray diffraction. The sensor responds to Al(3+) with high selectivity among a series of cations in aqueous methanol. This sensor forms a 1:1 complex with Al(3+) and displays fluorescent quenching. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Impact of scaling on the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  2. Inert Reassessment Document for Ethylene Glycol

    Science.gov (United States)

    Ethylene Glycol has many uses and are also used as antifreeze and deicers, as solvents, humectants, as chemical intermediates in the synthesis of other chemicals, and as components of many products such as brake fluids, lubricants, inks,and lacquers.

  3. Preparation of Nanosilver and Nanogold Based on Dog Rose Aqueous Extract

    OpenAIRE

    Pulit, Jolanta; Banach, Marcin

    2014-01-01

    This paper describes a process of obtaining nanosilver and nanogold based on chemical reduction using substances contained in the aqueous extract of dog rose (Rosa canina). The resulting products were subjected to spectrophotometric analysis (UV-Vis), and testing of the nanoparticles’ size and suspension stability was carried out by measuring the electrokinetic potential, ζ, via dynamic light scattering (DLS). Solid samples were imaged by scanning electron microscopy (SEM). The obtained data ...

  4. Newly designed PdRuBi/N-Graphene catalysts with synergistic effects for enhanced ethylene glycol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Tengfei; Huang, Yiyin; Ding, Kui; Wu, Peng; Abbas, Syed Comail; Ghausi, Muhammad Arsalan; Zhang, Teng; Wang, Yaobing

    2016-01-01

    Graphical abstract: We rationally design and synthesize a ternary PdRuBi/NG catalyst with significantly enhanced catalytic activity with synergetic effect of Ru and Bi towards ethylene glycol electro-oxidation. - Abstract: Palladium (Pd)-based catalysts are appealing electro-catalysts for alcohol oxidation reaction in fuel cell, but still not efficient as the complicated oxidation process and sluggish kinetic. Here we rationally design and synthesize a PdRuBi/NG tri-metallic catalyst with space synergetic effect for enhanced ethylene glycol electro-oxidation, in which both Ru and Bi in the catalyst are synergistic effective in promoting catalytic activity of Pd catalytic interlayer by electronic effect and surface modification mechanism respectively. It shows 4.2 times higher peak current density towards ethylene glycol electro-oxidation than commercial Pd/C catalyst, and the catalytic durability is also greatly improved.

  5. Application of aqueous biphasic systems as strategy to purify tannase from Aspergillus tamarii URM 7115.

    Science.gov (United States)

    de Sena, Amanda Reges; Barros Oliveira, Flávio Manoel; Campos Leite, Tonny Cley; Evaristo da Silva Nascimento, Talita Camila; Moreira, Keila Aparecida; de Assis, Sandra Aparecida

    2017-10-21

    The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 2 4 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67 h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (M PEG 600; 4,000 and 8,000 g/ mol), and PEG (C PEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (C CIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) M PEG , 24% (w/w) C PEG , 15% (w/w) C CIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.

  6. Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2017-09-01

    Full Text Available A fast and efficient method based on a polyethylene glycol (PEG 600/(NH42SO4 aqueous two-phase system for extracting lectin from Zihua snap-bean (Phaseolus vulgaris seeds was established. According to a Box–Behnken design (BBD, involving four factors at three levels each subjected to analysis of variance (ANOVA and response surface analysis, the protein recovery and the purification factor of lectin in the top phase were used as the response values of the variance analysis to acquire the multivariate quadratic regression model. SDS–PAGE electrophoresis and the hemagglutination test were used to detect the distribution of lectin in the aqueous two-phase system (ATPS. The obtained data indicated that lectin was preferentially partitioned into the PEG-rich phase, and the ATPS, composed of 15% (NH42SO4 (w/w, 18% PEG 600 (w/w, 0.4 g/5 g NaCl and 1 mL crude extract, showed good selectivity for lectin when the pH value was 7.5. Under the optimal conditions, most of the lectin was assigned to the top phase in the ATPS, and the hemagglutination activity of the purified lectin in the top phase was 3.08 times that of the crude extract. Consequently, the PEG 600/(NH42SO4 aqueous two-phase system was an effective method for separating and enriching lectin directly from the crude extract of Zihua snap-bean seeds.

  7. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  8. One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction

    International Nuclear Information System (INIS)

    Fernández-Ujados, Mónica; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-01-01

    A one-step aqueous synthesis of highly fluorescent water-soluble copper nanoclusters (CuNCs) is here described, based on direct reduction of the metal precursor with NaBH 4 in the presence of bidentate ligands (made of lipoic acid anchoring groups, appended with a poly(ethylene glycol) short chain). A complete optical and structural characterization was carried out: the optical emission was centred at 416 nm, with a luminescence quantum yield in water of 3.6% (the highest one reported so far in water for this kind of nanocluster). The structural characterization reveals a homogeneous size distribution (of 2.5 nm diameter) with spherical shape. The CuNCs obtained offer long-term stability (the luminescence emission remained unaltered after more than two months) under a broad range of chemical conditions (e.g. stored at pH 3–12 or even in a high ionic strength medium such as 1 M NaCl) and high photostability, keeping their fluorescence emission intact after more than 2 h of daylight and UV-light exposition. All those advantageous features warrant synthesized CuNCs being promising fluorescent nanoprobes for further developments including (bio)applications. (paper)

  9. Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution

    International Nuclear Information System (INIS)

    Chuang, Ching-Yen; Liao, Yi-Chia; Lee, Jyh-Wei; Li, Chia-Lin; Chu, Jinn P.; Duh, Jenq-Gong

    2013-01-01

    Recently thin film metallic glass represents a class of promising engineering materials for structural applications. In this work, the Zr-based thin film metallic glass (TFMG) was fabricated on the Si and AISI 420 substrates using a Zr–Cu–Ni–Al alloy and pure Zr metal targets by a pulsed DC magnetron sputtering system. The chemical compositions, crystalline structures, microstructures and corrosion behavior in hydrochloric (HCl) aqueous solutions of Zr-based TFMGs were investigated. The results showed that the surface morphologies of Zr-based TFMG were very smooth. A compact and dense structure without columnar structure was observed. The amorphous structure of Zr-based TFMG was characterized by the X-ray diffractometer and transmission electron microscopy analyses. After the potentiodynamic polarization test, the better corrosion resistance was achieved for the Zr-based TFMG coated AISI 420 in 1 mM HCl aqueous solution. Based on the surface morphologies and chemical analysis results of the corroded surfaces, the pitting, crevice corrosion and filiform corrosion were found. The corrosion mechanisms of the Zr-based TFMG were discussed in this work. - Highlights: ► Zr-based thin film metallic glass with amorphous structure. ► Better corrosion resistance of Zr-based thin film metallic glass observed. ► Pitting, crevice and filiform corrosion reactions revealed. ► The Cu-rich corrosion products found in the pit. ► Nanowire and flaky corrosion products formed adjacent to the filiform corrosion path

  10. Use of polyethylene glycol in functional constipation and fecal impaction

    Directory of Open Access Journals (Sweden)

    Miguel Mínguez

    Full Text Available Objective: The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG, with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Methodology: Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely NOT colonoscopy. Critical reading of selected articles (English or Spanish, sorting their description according to group age (adult/pediatric age and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis. Results: Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two, psyllium (one, tegaserod (one, prucalopride (one, paraffin oil (one, fiber combinations (one and Descurainia sophia (one. Conclusions: Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose and are the first-line treatment for functional constipation in the short and long

  11. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo

    2016-01-01

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method

  12. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-04-15

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

  13. Molecular bases for radiation mutagenesis. Three year progress report, November 15, 1975--November 14, 1978

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1978-07-01

    Studies on isolation and characterization of radiation products included: isolation and identification of cis- and trans-Thy glycols from the mixture of gamma irradiation products of Thy; identification of two isomers as radiation products from radiolysis of cytosine in aerated aqueous solutions and radiolysis of Thd in aerated aqueous solutions. Studies on synthesis of radiation products included: Stereospecific synthesis of cis- and trans-pyrimidine glycols; preparation of pyrimidine hydroperoxide; and synthesis of cis- and trans-1-carbamylimidazolidone-4, 5-diols. Studies on biological effects were conducted using human lymphocyte cultures, Chinese hamster cells, and root tip cells of Vicia faba. Effects of 6-TOOH on chromosomal aberrations, colony-forming ability, and unscheduled DNA synthesis were studied. Mutagenic effects of radiation products of Thy derivatives were investigated. Methods and procedures are described for UV-spectroscopic study, isolation of products, characterization of products, kinetic studies, mechanistic studies, and tracer studies

  14. A Case of Chronic Ethylene Glycol Intoxication Presenting without Classic Metabolic Derangements

    Directory of Open Access Journals (Sweden)

    Stephanie M. Toth-Manikowski

    2014-01-01

    Full Text Available Acute ethylene glycol ingestion classically presents with high anion gap acidosis, elevated osmolar gap, altered mental status, and acute renal failure. However, chronic ingestion of ethylene glycol is a challenging diagnosis that can present as acute kidney injury with subtle physical findings and without the classic metabolic derangements. We present a case of chronic ethylene glycol ingestion in a patient who presented with acute kidney injury and repeated denials of an exposure history. Kidney biopsy was critical to the elucidation of the cause of his worsening renal function.

  15. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...

  16. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    Science.gov (United States)

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight ( 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  17. Germination Behaviour of Lawsonia inermis L. as Influenced by Polyethylene Glycol (PEG

    Directory of Open Access Journals (Sweden)

    Enneb Hanen

    2016-11-01

    Full Text Available Tunisian Flora is well known for its richness and diversity of medicinal plants such as henna plant (Lawsonia inermis L. a flowering plant belongs to the family of Lyteraceae, distributed in dry tropical and subtropical zones including North Africa. This plant pertains to continental oases where water shortage, constitute the essential limiting factor of agricultural production. The present study was carried out to evaluate the impact of water stress on the germination of the henna plant (Lawsonia inermis L.. Seeds were germinated under stress of aqueous Polyethylene Glycol (PEG solutions blended to create water potentials of 0, -0.2, -0.4, -0.6, - 0.8 and -1 MPa. Results showed that seeds germinated in PEG solutions exhibited significantly lower cumulative germination rate (CGR than control especially when water potential fell below -0.6 MPa. Mean germination time (MGT was delayed by increasing PEG concentrations, while germination stress tolerance index (GSTI was decreased with the increase in PEG concentrations. The highest percentage of GSTI in stressed condition was 84.13% for PEG (-0.2MPa whereas, the lowest value was 8.37% for PEG (-1MPa.

  18. Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester.

    Science.gov (United States)

    Agrawal, Gaurav; Oh, Jungmin; Sreedhar, Balamurali; Tie, Shan; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2014-09-19

    In this article, we extend the simulated moving bed reactor (SMBR) mode of operation to the production of propylene glycol methyl ether acetate (DOWANOL™ PMA glycol ether) through the esterification of 1-methoxy-2-propanol (DOWANOL™ PM glycol ether) and acetic acid using AMBERLYST™ 15 as a catalyst and adsorbent. In addition, for the first time, we integrate the concept of modulation of the feed concentration (ModiCon) to SMBR operation. The performance of the conventional (constant feed) and ModiCon operation modes of SMBR are analyzed and compared. The SMBR processes are designed using a model based on a multi-objective optimization approach, where a transport dispersive model with a linear driving force for the adsorption rate has been used for modeling the SMBR system. The adsorption equilibrium and kinetics parameters are estimated from the batch and single column injection experiments by the inverse method. The multiple objectives are to maximize the production rate of DOWANOL™ PMA glycol ether, maximize the conversion of the esterification reaction and minimize the consumption of DOWANOL™ PM glycol ether which also acts as the desorbent in the chromatographic separation. It is shown that ModiCon achieves a higher productivity by 12-36% over the conventional operation with higher product purity and recovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  20. A new polymeric adsorbent developing for uranium recovering and richment from aqueous media

    International Nuclear Information System (INIS)

    Gueler, H.; Aycik, G. A.; Sahiner, N.; Gueven, O.

    1997-01-01

    Using adsorbents is thought to be the most effective method for recovering the low concentrations of uranium in the aqueous media because of their fast and selective uptake of uranium, a sufficient adsorption capacity and high physical and chemical stability against the media. In this study, a new polymeric adsorbent bearing both hydrophilic groups providing swelling in water and amidoxime groups for chelating with uranyl ions (UO 2 ''2+) has been developed and its adsorptive ability for uranium from aqueous media has been investigated. The polymers obtained by irradiating the solution of polyethylene glycol (PEG) in acrylonitrile (AN) are defined as Interpenetrating Polymer Networks (IPNs) and the adsorbent has been obtained by applying the amidoximation reaction to the IPNs with a conversion of % 60 approximately. Kinetics of the conversion reaction of nitrile (CN) group to amidoxime (HONCNH 2 ) group has been studied by reacting with hydroxylamine (NH 2 OH) solution at a molar ratio of NH 2 OH/CN=1.25 in aqueous media at different temperatures, 30,40,50''0C, for 3-4 days. The degree of amidoximation was determined by UO 2 ''2+ ion adsorption and FTIR spectrometer and the UO 2 ''2+ ion adsorption values were found by both UV and gamma spectrometry and also by gravimetry. It was found that the polymeric adsorbent has a very high adsorption ability for uranium (∼ 540 mg U/g IPN/day)

  1. Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol

    Directory of Open Access Journals (Sweden)

    David E. Sander

    2017-04-01

    Full Text Available With the increasing pressure to reduce emissions, friction reduction is always an up-to-date topic in the automotive industry. Among the various possibilities to reduce mechanical friction, the usage of a low-viscosity lubricant in the engine is one of the most effective and most economic options. Therefore, lubricants of continuously lower viscosity are being developed and offered on the market that promise to reduce engine friction while avoiding deleterious mixed lubrication and wear. In this work, a 1.6 L downsized Diesel engine is used on a highly accurate engine friction test-rig to determine the potential for friction reduction using low viscosity lubricants under realistic operating conditions including high engine loads. In particular, two hydrocarbon-based lubricants, 0W30 and 0W20, are investigated as well as a novel experimental lubricant, which is based on a polyalkylene glycol base stock. Total engine friction is measured for all three lubricants, which show a general 5% advantage for the 0W20 in comparison to the 0W30 lubricant. The polyalkylene glycol-based lubricant, however, shows strongly reduced friction losses, which are about 25% smaller than for the 0W20 lubricant. As the 0W20 and the polyalkylene glycol-based lubricant have the same HTHS-viscosity , the findings contradict the common understanding that the HTHS-viscosity is the dominant driver related to the friction losses.

  2. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    Science.gov (United States)

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  3. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    Science.gov (United States)

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure

    International Nuclear Information System (INIS)

    Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh.; Abdulagatov, I.M.

    2011-01-01

    Highlights: → Viscosity and density of polyethylene glycols. → Combined experimental apparatus for density and viscosity measurements. → Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.

  5. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 589.1001... or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat... on cat food causes the feed to be adulterated and in violation of the Federal Food, Drug, and...

  6. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    Science.gov (United States)

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reaction mechanism of ethylene glycol decomposition on Pt model catalysts: A density functional theory study

    International Nuclear Information System (INIS)

    Lv, Cun-Qin; Yang, Bo; Pang, Xian-Yong; Wang, Gui-Chang

    2016-01-01

    Highlights: • DFT calculations were performed to study the ethylene glycol decomposition on Pt. • The final products are CO and H_2 on Pt(111), (100) and (211). • Ethylene glycol decomposition on Pt(111) undergoes via initial O−H bond scission and followed by C−H bond cleavage. • Ethylene glycol decomposition proceeds via initial O−H bond scission and followed by O−H bond cleavage on Pt(100)/(211). - Abstract: Understanding and controlling bond beak sequence is important in catalytic processes. The DFT-GGA method combined with slab model was performed to study the ethylene glycol decomposition on various Pt model catalysts such as close-packed Pt(111), stepped Pt(211) and a more open one, Pt(100). Calculation results show that the adsorption energies of ethylene glycol and other decomposition species depend on the coordination number of surface atom, that is, low coordination number correspond to high adsorption energy. Moreover, it was found that final products of ethylene glycol decomposition are CO and H_2 on all model catalysts, but the reaction mechanism varies: On Pt(111), the first step is O−H bond scission, followed by C−H bond cleavage, namely C_2H_6O_2 → HOCH_2CH_2O + H → HOCH_2CHO + 2H→ HOCH_2CO +3H → OCH_2CO + 4H → OCHCO + 5H → CO + HCO + 5H → 2CO + 6H→ 2CO + 3H_2; On Pt(211) and Pt(100), however, it is a second O−H bond cleavage that follows the initial O−H bond scission, that is, C_2H_6O_2 → HOCH_2CH_2O + H → OCH_2CH_2O + 2H → OCHCH_2O + 3H → OCHCHO + 4H → 2HCO + 4H → 2CO + 6H → 2CO + 3H_2  on Pt(211), and C_2H_6O_2 →HOCH_2CH_2O+ H → OCH_2CH_2O + 2H→OCHCH_2O+3H→OCCH_2O+4H→CO+H_2CO+4H→CO+HCO+5H→2CO+6H→2CO+3H_2 on Pt(100) For the catalytic order of ethylene glycol to form H_2, it may be determined based on the rate-controlling step, and it is Pt(111) > Pt(211) > Pt(100).

  8. Investigation on thermo physical characteristics of ethylene glycol based Al:ZnO nanofluids

    International Nuclear Information System (INIS)

    Kiruba, R.; George, Ritty; Gopalakrishnan, M.; Kingson Solomon Jeevaraj, A.

    2015-01-01

    The present work describes the experimental aspects of viscosity and thermal conductivity characteristics of nanofluids. Aluminium doped zinc oxide nanostructures were synthesized by chemical precipitation method. Ultrasonic technique is used to disperse the nanostructures in ethylene glycol. Structural and morphological properties of Al doped ZnO nanostructures are characterized using X-ray diffractometer and scanning electron microscopic technique. The effect of concentration and temperature on thermo-physical properties of Al/ZnO nanofluids is also investigated. The experimental results showed there is enhancement in thermal conductivity with rise in temperature which can be utilized for coolant application

  9. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2017-01-01

    Full Text Available Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225–250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose. Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol.

  10. Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Ojha, Priyanka; Rai, Premanjali

    2013-04-01

    The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock-Dechert-Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.

  11. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  12. Comparison of efficacies of vegetable oil based and polyethylene glycol based bisacodyl suppositories in treating patients with neurogenic bowel dysfunction after spinal cord injury: a meta-analysis.

    Science.gov (United States)

    Yi, Zhu; Jie, Cheng; Wenyi, Zhang; Bin, Xie; Hongzhu, Jin

    2014-10-01

    We performed a meta-analysis to compare the efficacies of vegetable oil based bisacodyl (VOB) and polyethylene glycol based bisacodyl (PGB) suppositories in treating patients with neurogenic bowel dysfunction (NBD) after spinal cord injury (SCI). Relevant clinical studies (up to February 2014) were retrieved through the following databases: PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CCTR), Chinese National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), Wanfang, and VIP database for Chinese Technical Periodicals. Data were analyzed using the standardized weighted mean difference (SMD) and its 95% confidence interval (CI). P-values 0.05) between patients in the PGB and VOB groups. Based on the results, we conclude that the PGB suppository could act faster than the VOB suppository in the treatment of NBD in patients with SCI.

  13. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

    Science.gov (United States)

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F

    2005-02-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require

  14. Glycolic acid synthesis during dark glucose U14C metabolism, in French Bean and Maize leaves

    International Nuclear Information System (INIS)

    Cailliau-Commanay, Lucienne; Calmes, Jean; Latche, J.-C.; Cavalie, Gerard

    1977-01-01

    Serine, glycerate and glycolate are among the first radioactive compounds when French Bean and Maize leaves are fed with glucose U 14 C. Failing to detect radioactive glycine suggests that glycolate so synthesized is unavailable for the photorespiration glycolate pool [fr

  15. Laser-induced photochemical reaction of aqueous maleic acid solutions containing H2O2

    International Nuclear Information System (INIS)

    Shimizu, Yuichi; Kawanishi, Shunichi; Suzuki, Nobutake

    1995-01-01

    Hydroxy acid such as glycolic, tartaric and malic acids was directly produced by XeF-laser irradiation of the N 2 -saturated maleic acid aqueous solution containing H 2 O 2 . The selectivities of these products at the maximum of tartaric acid were 71, 4, and 2% at H 2 O 2 feeding rate of 3.2 ml h -1 , respectively. On the other hand, the irradiation of maleates such as dipotassium, calcium, and disodium greatly enhanced the selectivities of tartaric acid formation to 19%, and of malic acid formation to 13%, respectively, for dipotassium maleate. It may be considered from these results that the stability of the hydroxylated intermediate radical plays an important role for the efficient formations of tartaric and malic acids. (author)

  16. A highly sensitive fluorescent probe based on BODIPY for Hg2+ in aqueous solution

    Directory of Open Access Journals (Sweden)

    ZHAO Junwei

    2016-12-01

    Full Text Available A highly sensitive fluorescent probe based on BODIPY and hydrazine for Hg2+ was designed and synthesized.This probe could detect mercury ions in aqueous solutions within 5 min.With the increase of Hg2+ mole concentration,an obvious red shift of UV-Vis absorption wavelength was observed and the fluorescence intensity significantly enhanced.It was found that the fluorescence intensity of an aqueous solution containing 0.1 μmol/L Hg2+ is much stronger than that of blank solution,which indicats that the fluorescent probe has high sensitivity.In addition,other metal ions could not cause the change of fluorescent spectra,which means this probe has good selectivity,as well.

  17. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {l_brace}M{sub W} = (1000, 6000, and 35,000) g . mol{sup -1}{r_brace} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.

  18. Freezing mechanisms of aqueous binary solution on the oscillating vertical cooled plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, Hiromichi; Fukusako, Shoichiro; Yamada, Masahiko; Yanagida, Koki

    1999-07-01

    An experimental and analytical study concerning the freezing characteristics of aqueous binary solution on the oscillating cooled wall was conducted for the purpose of establishment of the continuous production method of slush ice. Ethylene glycol solution was adopted as the test fluid and froze on a vertical cooled plate with an oscillation motion in a vessel. Experiments were carried out for a variety of conditions such as initial concentration of solution, oscillating acceleration, and stroke of the motion. As a result, it was found that the frozen layer being formed on the cooled plate continuously separated from it under the appropriate conditions. Furthermore, the condition range where the continuous production of slush ice may be available was well predicted by using the present analytical results. The experimental setup is depicted in Figure A-1. The essential components of the apparatus are the test section, a cooling brine circulation loop, and associated instrumentation. Figure A-2 presents the continuous production range of slush ice, in which the ordinate is the maximum acceleration of the cooled plate and the abscissa denotes the initial concentration of aqueous binary solution. It is evident from the figure that the tendency of the production range of slush ice obtained by the present analysis well predicts the experimental results.

  19. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    Science.gov (United States)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  20. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media.

    Science.gov (United States)

    Fernández-Lucas, Jesús; Fresco-Taboada, Alba; de la Mata, Isabel; Arroyo, Miguel

    2012-07-01

    The effect of several water-miscible cosolvents on activity and stability of soluble and immobilized 2'-deoxyribosyltransferase from Lactobacillus reuteri on Sepabeads® has been studied in order to establish optimal conditions for enzymatic synthesis of nucleosides using purine bases with low solubility in aqueous buffer. As a rule of thumb, there was a general reduction of soluble enzyme activity when cosolvent content was gradually increased in reaction medium. In contrast, immobilized enzyme activity was enhanced 1.2-1.4-fold at 20% of methanol, ethanol, 2-propanol, diethylene glycol, and acetone; and at 10% and 30% acetonitrile. Likewise, highest increased activity (1.8-fold) was also obtained in presence of 20% acetonitrile. Immobilized enzyme was successfully used in the synthesis of 2'-deoxyxanthosine and 2'-deoxyguanosine using 2'-deoxyuridine as sugar donor and the corresponding poor water-soluble base in the presence of 30% of methanol, ethanol, 2-propanol, ethylene glycol, acetonitrile, and DMSO, giving high nucleoside yields at 4h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe; Liu, Xin; Sun, Miao; Ma, Xiaohua; Han, Yu

    2012-01-01

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which

  2. Preoperative bowel preparation in children: Polyethylene glycol ...

    African Journals Online (AJOL)

    Preoperative bowel preparation in children: Polyethylene glycol versus normal saline. ... In children, (is this standard of care?: this method is mostly followed) this is usually ... Patients and Methods: Thirty patients, admitted in the Department of ...

  3. Core-shell nanoreactors for efficient aqueous biphasic catalysis.

    Science.gov (United States)

    Zhang, Xuewei; Cardozo, Andrés F; Chen, Si; Zhang, Wenjing; Julcour, Carine; Lansalot, Muriel; Blanco, Jean-François; Gayet, Florence; Delmas, Henri; Charleux, Bernadette; Manoury, Eric; D'Agosto, Franck; Poli, Rinaldo

    2014-11-17

    Water-borne phosphine-functionalized core-cross-linked micelles (CCM) consisting of a hydrophobic core and a hydrophilic shell were obtained as stable latexes by reversible addition-fragmentation chain transfer (RAFT) in water in a one-pot, three-step process. Initial homogeneous aqueous-phase copolymerization of methacrylic acid (MAA) and poly(ethylene oxide) methyl ether methacrylate (PEOMA) is followed by copolymerization of styrene (S) and 4-diphenylphosphinostyrene (DPPS), yielding P(MAA-co-PEOMA)-b-P(S-co-DPPS) amphiphilic block copolymer micelles (M) by polymerization-induced self-assembly (PISA), and final micellar cross-linking with a mixture of S and diethylene glycol dimethacrylate. The CCM were characterized by dynamic light scattering and NMR spectroscopy to evaluate size, dispersity, stability, and the swelling ability of various organic substrates. Coordination of [Rh(acac)(CO)2 ] (acac=acetylacetonate) to the core-confined phosphine groups was rapid and quantitative. The CCM and M latexes were then used, in combination with [Rh(acac)(CO)2 ], to catalyze the aqueous biphasic hydroformylation of 1-octene, in which they showed high activity, recyclability, protection of the activated Rh center by the polymer scaffold, and low Rh leaching. The CCM latex gave slightly lower catalytic activity but significantly less Rh leaching than the M latex. A control experiment conducted in the presence of the sulfoxantphos ligand pointed to the action of the CCM as catalytic nanoreactors with substrate and product transport into and out of the polymer core, rather than as a surfactant in interfacial catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  5. Processing of high performance composites based on peek by aqueous suspension prepregging

    Directory of Open Access Journals (Sweden)

    Liliana Burakowski Nohara

    2010-06-01

    Full Text Available The use of polyamic acid (PAA precursor as interphase in polymer composites is one of the many applications of polyimides (PIs. In this work, composites based on poly(ether-ether-ketone (PEEK and carbon fibers were prepared using two manufacturing techniques for thermoplastic composites: hot compression molding, and aqueous polymeric suspension prepregging using PIs as interphase. Two PAAs were synthesized and used as interphases: 3,3'-4,4'-benzophenonetetracarboxylic dianhydride/oxydianiline (BTDA/ODA and pyromellitic dianhydride/oxydianiline (PMDA/ODA. The PAA/PI systems were analyzed by differential scanning calorimetry (DSC, thermogravimetry (TGA, Fourier transform infrared spectroscopy (FTIR and nuclear magnetic resonance (NMR. Results from these analyses confirmed the synthesis of these compounds. Aqueous polymeric suspension prepregging was more efficient than hot compression molding when the PMDA/ODA PAA/PI interphase was used; also, the interlaminar shear strength of composites produced using this technique was 14.5% higher than the one produced using hot compression molding.

  6. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    Science.gov (United States)

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with

  7. Glycolic acid peel therapy – a current review

    Directory of Open Access Journals (Sweden)

    Sharad J

    2013-11-01

    Full Text Available Jaishree Sharad Skinfiniti Aesthetic Skin and Laser Clinic, Mumbai, India Abstract: Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I–IV. All in all, it is a peel that is here to stay. Keywords: acne scar, melasma, photoaging, chemical peel, alpha-hydroxy peel

  8. Temperature-Invariant Aqueous Microgels as Hosts for Biomacromolecules.

    Science.gov (United States)

    Mastour Tehrani, Sepehr; Lu, Yijie; Guerin, Gerald; Soleimani, Mohsen; Pichugin, Dmitry; Winnik, Mitchell A

    2015-10-12

    Immobilization of enzymes on solid supports has been widely used to improve enzyme recycling, enzyme stability, and performance. We are interested in using aqueous microgels (colloidal hydrogels) as carriers for enzymes used in high-temperature reactions. These microgels should maintain their volume and colloidal stability in aqueous media up to 100 °C to serve as thermo-stable supports for enzymes. For this purpose, we prepared poly(N-hydroxyethyl acrylamide) (PHEAA) microgels via a two-step synthesis. First, we used precipitation polymerization in water to synthesize colloidal poly(diethylene glycol-ethyl ether acrylate) (PDEGAC) particles as a precursor. PDEGAC forms solvent swollen microgels in organic solvents such as methanol and dioxane and in water at temperatures below 15 °C. In the second step, these PDEGAC particles were transformed to PHEAA microgels through aminolysis in dioxane with ethanolamine and a small amount of ethylenediamine. Dynamic laser scattering studies confirmed that the colloidal stability of microgels was maintained during the aminolysis in dioxane and subsequent transfer to water. Characterization of the PHEAA microgels indicated about 9 mol % of primary amino groups. These provide functionality for bioconjugation. As proof-of-concept experiments, we attached the enzyme horseradish peroxidase (HRP) to these aqueous microgels through (i) N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride (EDC) coupling to the carboxylated microgels or (ii) bis-aryl hydrazone (BAH) coupling to microgels functionalized with 6-hydrazinonicotinate acetone (PHEAA-HyNic). Our results showed that HRP maintained its catalytic activity after covalent attachment (87% for EDC coupling, 96% for BAH coupling). The microgel enhanced the stability of the enzyme to thermal denaturation. For example, the residual activity of the microgel-supported enzyme was 76% after 330 min of annealing at 50 °C, compared to only 20% for the free enzyme under these

  9. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  10. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    International Nuclear Information System (INIS)

    Żyła, Gaweł; Fal, Jacek; Traciak, Julian; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-01-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  11. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  12. Fixation of radioactive elements on diethylene-glycol-succinate and its use for the determination of gross activity in urine

    International Nuclear Information System (INIS)

    Hafez, M.B.; Nazmy, A.F.; Eldesoky, M.M.

    1977-01-01

    Studies are given to illustrate surface adsorption of 144 Ce, 90 Sr, 232 Th, 235 U, 239 Pu and 241 Am on diethylene-glycol-succinate, DGS. Adsorption of these elements was studied from aqueous and phosphate solutions. A procedure for the determination of gross activity in urine, based on surface adsorption on DGS is described. Groups of nine solutions, in 30 ml 1N HNO 3 , were spiked with the investigated radioactive elements (approximately 5 pCi). The pH of the solutions was adjusted to a range of 0.5 to 10 using ammonia. Each solution was passed through the column and the fixed activity was removed from the column with 50 ml of 4N HCl, followed by two washes with 10 ml of distilled water. The acid solution was evaporated to dryness for alpha- or beta-counting. The percentage fixation was determined by comparison with a standard source of the same spiked element. Adsorption was found to depend on pH, age of the tracer solution, hydrolysis state of the radioelement and the ionic strength of the solution. The adsorption phenomenon which was particularly well observed could be used as a separation stage in a method for the determination of gross activity in urine. Recoveries of about 85% were obtained. (T.G.)

  13. Literature Review On Impact Of Glycolate On The 2H Evaporator And The Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Adu-Wusu, K.

    2012-01-01

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations (le) 33 mg/L or 0.44 mM. The ETF unit operations that will have

  14. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  15. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  16. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    Science.gov (United States)

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  17. Deriving Biomonitoring Equivalents for selected E- and P-series glycol ethers for public health risk assessment.

    Science.gov (United States)

    Poet, Torka; Ball, Nicholas; Hays, Sean M

    2016-01-01

    Glycol ethers are a widely used class of solvents that may lead to both workplace and general population exposures. Biomonitoring studies are available that have quantified glycol ethers or their metabolites in blood and/or urine amongst exposed populations. These biomonitoring levels indicate exposures to the glycol ethers, but do not by themselves indicate a health hazard risk. Biomonitoring Equivalents (BEs) have been created to provide the ability to interpret human biomonitoring data in a public health risk context. The BE is defined as the concentration of a chemical or metabolite in a biological fluid (blood or urine) that is consistent with exposures at a regulatory derived safe exposure limit, such as a tolerable daily intake (TDI). In this exercise, we derived BEs for general population exposures for selected E- and P-series glycol ethers based on their respective derived no effect levels (DNELs). Selected DNELs have been derived as part of respective Registration, Evaluation, Authorisation and Regulation of Chemicals (REACh) regulation dossiers in the EU. The BEs derived here are unique in the sense that they are the first BEs derived for urinary excretion of compounds following inhalation exposures. The urinary mass excretion fractions (Fue) of the acetic acid metabolites for the E-series GEs range from approximately 0.2 to 0.7. The Fues for the excretion of the parent P-series GEs range from approximately 0.1 to 0.2, with the exception of propylene glycol methyl ether and its acetate (Fue = 0.004). Despite the narrow range of Fues, the BEs exhibit a larger range, resulting from the larger range in DNELs across GEs. The BEs derived here can be used to interpret human biomonitoring data for inhalation exposures to GEs amongst the general population. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple

    Energy Technology Data Exchange (ETDEWEB)

    Daeneke, Torben; Spiccia, Leone [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria (Australia); Uemura, Yu.; Koumura, Nagatoshi [Research Institute for Photovoltaic Technology, National Institute of Advanced Industrial Science and Technology AIST, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan); Duffy, Noel W. [CSIRO Energy Technology, Clayton, VIC (Australia); Mozer, Attila J. [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW (Australia); Bach, Udo [Department of Materials Engineering, Monash University, Victoria (Australia)

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Investigations into the use of water glycol as the hydraulic fluid in a servo system

    International Nuclear Information System (INIS)

    Cole, G.V.

    1984-07-01

    The effects of water glycol on the performance of a hydraulic system and on the life of the system components have been investigated and a guide to the design of systems using water glycol is given. The dynamic performance of the system using water-glycol was compared with that using mineral oil, then the system was endurance tested to determine its service life. (author)

  20. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R

    2010-01-01

    proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile...

  1. Acute oxalate nephropathy caused by ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    Jung Woong Seo

    2012-12-01

    Full Text Available Ethylene glycol (EG is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

  2. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  3. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    Science.gov (United States)

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  5. First report of suspected ethylene glycol poisoning in 2 dogs in South Africa : clinical communication

    Directory of Open Access Journals (Sweden)

    N. Keller

    2005-06-01

    Full Text Available Ethylene glycol (anti-freeze toxicity is a serious emergency in both veterinary and human medicine. Ethylene glycol (E/G is the active anti-freeze principle in radiator water additives. It is odourless, colourless and has a sweet taste. As little as 5 mℓ or 20 mℓ is sufficient to kill a cat or a dog, respectively. Ethylene glycol is rapidly absorbed and metabolised in the liver to oxalate, which is deposited as calcium oxalate in the kidneys causing irreversible damage. This report describes 2 dogs that were suspected to have ingested ethylene glycol. The report contains a description of the 3 stages of ethylene glycol toxicity as well as a short discussion of the treatment. Public awareness about the dangers of anti-freeze will help in limiting exposure of pets and humans to this potentially fatal toxin. Veterinarians need to be aware of anti-freeze toxicity as delayed recognition and treatment will lead to the death of the patient.

  6. Poly(Neopentyl Glycol Furanoate: A Member of the Furan-Based Polyester Family with Smart Barrier Performances for Sustainable Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Laura Genovese

    2017-09-01

    Full Text Available In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate (PNF to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, through a solvent-free process, starting directly from 2,5-furandicarboxylic acid. PNF was revealed to be a material with good thermal stability, characterized by a higher Tg and Tm and a lower RAF fraction compared to poly(propylene 2,5-furanoate (PPF, ascribable to the two methyl side groups present in PNF glycol-sub-unit. PNF’s mechanical characteristics, i.e., very high elastic modulus and brittle fracture, were found to be similar to those of PPF and PEF. Barrier properties to different gases, temperatures and relative humidity were evaluated. From the results obtained, PNF was showed to be a material with very smart barrier performances, significantly superior with respect to PEF’s ones. Lastly, PNF’s permeability behavior did not appreciably change after contact with food simulants, whereas it got worse with increasing RH, due to the polar nature of furan ring.

  7. Poly(Neopentyl Glycol Furanoate): A Member of the Furan-Based Polyester Family with Smart Barrier Performances for Sustainable Food Packaging Applications.

    Science.gov (United States)

    Genovese, Laura; Lotti, Nadia; Siracusa, Valentina; Munari, Andrea

    2017-09-04

    In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate) (PNF) to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, through a solvent-free process, starting directly from 2,5-furandicarboxylic acid. PNF was revealed to be a material with good thermal stability, characterized by a higher T g and T m and a lower RAF fraction compared to poly(propylene 2,5-furanoate) (PPF), ascribable to the two methyl side groups present in PNF glycol-sub-unit. PNF's mechanical characteristics, i.e., very high elastic modulus and brittle fracture, were found to be similar to those of PPF and PEF. Barrier properties to different gases, temperatures and relative humidity were evaluated. From the results obtained, PNF was showed to be a material with very smart barrier performances, significantly superior with respect to PEF's ones. Lastly, PNF's permeability behavior did not appreciably change after contact with food simulants, whereas it got worse with increasing RH, due to the polar nature of furan ring.

  8. Poly(Neopentyl Glycol Furanoate): A Member of the Furan-Based Polyester Family with Smart Barrier Performances for Sustainable Food Packaging Applications

    Science.gov (United States)

    Munari, Andrea

    2017-01-01

    In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate) (PNF) to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, through a solvent-free process, starting directly from 2,5-furandicarboxylic acid. PNF was revealed to be a material with good thermal stability, characterized by a higher Tg and Tm and a lower RAF fraction compared to poly(propylene 2,5-furanoate) (PPF), ascribable to the two methyl side groups present in PNF glycol-sub-unit. PNF’s mechanical characteristics, i.e., very high elastic modulus and brittle fracture, were found to be similar to those of PPF and PEF. Barrier properties to different gases, temperatures and relative humidity were evaluated. From the results obtained, PNF was showed to be a material with very smart barrier performances, significantly superior with respect to PEF’s ones. Lastly, PNF’s permeability behavior did not appreciably change after contact with food simulants, whereas it got worse with increasing RH, due to the polar nature of furan ring. PMID:28869555

  9. Lactose hydrolysis in aqueous two-phase system by whole-cell {beta}-galactosidase of Kluyveromyces marxianus. Semicontinuous and continuous processes

    Energy Technology Data Exchange (ETDEWEB)

    Tomaska, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Stredansky, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Tomaskova, A [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Sturdik, E [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology

    1995-01-01

    Semicontinuous and continuous hydrolysis of lactose in aqueous two-phase systems (polyethylene glycol 20000/ dextran 40) with whole-cell {beta}-galactosidase of K. marxianus were studied. Both phase polymers had no effect on {beta}-galactosidase activity confined in cells. Good operational stability of the biocatalyst during 55 cycles of semicontinuous process was observed without appreciable decrease in product concentration. Continuous hydrolysis of lactose was performed in the stirred bioreactor, connected with the phase separator. The satisfactory degree of hydrolysis (between 82-88%) and volumetric productivity (21.6 g/l/h) were reached during 72 hours of continuous hydrolysis of 5% (w/w) lactose. (orig.)

  10. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  11. Macrogol (polyethylene glycol) laxatives in children with functional constipation and faecal impaction: a systematic review

    OpenAIRE

    Candy, D; Belsey, J

    2008-01-01

    As the evidence base supporting the use of laxatives in children is very limited, we undertook an updated systematic review to clarify the issue. A comprehensive literature search was carried out to identify randomised controlled trials of polyethylene glycol (PEG) versus either placebo or active comparator, in patients aged

  12. Aqueous two-phase system purification for superoxide dismutase induced by menadione from Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakcıoğlu, Berna; Tongul, Burcu; Tarhan, Leman

    2017-03-01

    In the present work, the partitioning behavior of menadione-induced superoxide dismutase (SOD; EC 1.15.1.1), an antioxidant enzyme that has various applications in the medical and cosmetic industries, from the white rot fungus Phanerochaete chrysosporium has been characterized on different types of aqueous two-phase systems (ATPSs) (poly(ethylene glycol)/polypropylene glycol (PEG/PPG)-dextran, PEG-salt and PPG-salt). PEG-salt combinations were found most optimal systems for the purification of SOD. The best partition conditions were found using the PEG-3350 24% and K 2 HPO 4 5% (w/w) with pH 7.0 at 25 °C. The partition coefficient of total SOD activity and total protein concentration observed in this system were 0.17 and 6.65, respectively, with the recovery percentage as 78.90% in the bottom phase and 13.17% in the top phase. The highest purification fold for SOD from P. chrysosporium was found as 6.04 in the bottom phase of PEG 3350%24 - K 2 HPO 4 %5 (w/w) system with pH 7.0. SOD purified from P. chrysosporium was determined to be a homodimer in its native state with a molecular weight of 60  ± 4 kDa. Consequently, simple and only one step PEG-salt ATPS system was developed for SOD purification from P. chrysosporium.

  13. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    International Nuclear Information System (INIS)

    Singh, Tejwant; Kumar, Arvind

    2011-01-01

    Research highlights: → The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. → Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. → Viscometric studies revealed studied ionic liquids as water-structure makers. → Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density ρ, speed of sound u, and viscosity η of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [C n mim] having [BF 4 ] - , [Cl] - , [C 1 OSO 3 ] - , and [C 8 OSO 3 ] - as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume φ V , isentropic compressibility β s , and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (V int ) molar electrostriction volume (V elec ), molar disordered (V dis ), and cage volume (V cage ). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  14. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    OpenAIRE

    Gil, I. D.; García, L. C.; Rodríguez, G.

    2014-01-01

    Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFr...

  15. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky...

  16. The beneficial effect of cynodon dactylon fractions on ethylene glycol-induced kidney calculi in rats.

    Science.gov (United States)

    Khajavi Rad, Abolfazl; Hadjzadeh, Mousa-Al-Reza; Rajaei, Ziba; Mohammadian, Nema; Valiollahi, Saleh; Sonei, Mehdi

    2011-01-01

    To assess the beneficial effect of different fractions of Cynodon dactylon (C. dactylon) on ethylene glycol-induced kidney calculi in rats. Male Wistar rats were randomly divided into control, ethylene glycol, curative, and preventive groups. The control group received tap drinking water for 35 days. Ethylene glycol, curative, and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation. Preventive and curative subjects also received different fractions of C. dactylon extract in drinking water at 12.8 mg/kg, since day 0 and day 14, respectively. After 35 days, the kidneys were removed and examined for histopathological findings and counting the CaOx deposits in 50 microscopic fields. In curative protocol, treatment of rats with C. dactylon N-butanol fraction and N-butanol phase remnant significantly reduced the number of the kidney CaOx deposits compared to ethylene glycol group. In preventive protocol, treatment of rats with C. dactylon ethyl acetate fraction significantly decreased the number of CaOx deposits compared to ethylene glycol group. Fractions of C. dactylon showed a beneficial effect on preventing and eliminating CaOx deposition in the rat kidney. These results provide a scientific rational for preventive and treatment roles of C. dactylon in human kidney stone disease.

  17. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  18. The effectiveness of polyethylene glycol (PEG) and polyvinyl ...

    African Journals Online (AJOL)

    mahlos

    2012-05-29

    May 29, 2012 ... Key words: Acetone, tannin, polyethylene glycol (PEG), polyvinyl polypyrrolidone (PVPP). ... hydrolysable tannins may occur in the same plant. ..... Rev. Food Sci. Nutr., 38: 421-464. Cornell. (2000). Tannins: Chemical analysis.

  19. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol...

  20. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.

    NARCIS (Netherlands)

    Holland, T.A.; Bodde, E.W.H.; Baggett, L.S.; Tabata, Y.; Mikos, A.G.; Jansen, J.A.

    2005-01-01

    In this study, hydrogel scaffolds, based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF), were implanted into osteochondral defects in the rabbit model. Scaffolds consisted of two layers-a bottom, bone forming layer and a top, cartilage forming layer. Three scaffold formulations were

  1. Salt-Induced Control of the Grafting Density in Poly(ethylene glycol) Brush Layers by a Grafting-to Approach

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Olsen, Stefan; Thormann, Esben

    2018-01-01

    In this work, a method to obtain control of the grafting density during the formation of polymer brush layers by the grafting-to method of thiolated poly(ethylene glycol) onto gold is presented. The grafting density of the polymer chains was adjusted by adding Na2SO4 in concentrations between 0.......2 and 0.9 M to the aqueous polymer solution during the grafting process. The obtained grafting densities ranged from 0.26 to 1.60 chains nm-2, as determined by surface plasmon resonance. The kinetics of the grafting process were studied in situ by a quartz crystal microbalance with dissipation......, and a mushroom to brush conformational transition was observed when the polymer was grafted in the presence of Na2SO4. The transition from mushroom to brush was only observed for long periods of grafting, highlighting the importance of time to obtain high grafting densities. Finally, the prepared brush layer...

  2. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Shahabi, Somayyeh

    2011-01-01

    Graphical abstract: Apparent molar volume against molality: o, ·, and Δ, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, Δ, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research highlights: → C 12 H 25 SO 3 Na(SDSn) was seen to interact with PEG more weakly than C 12 H 25 SO 4 Na(SDS). → The constraints on molecular mobility of SDS micelles are larger than those of SDSn. → Entropy change on micellization for SDSn is larger than those for SDS. → Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. → Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C 12 H 25 SO 4 Na) or sodium dodecyl sulfonate (C 12 H 25 SO 3 Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C 12 H 25 SO 4 Na and C 12 H 25 SO 3 Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C 12 H 25 SO 4 Na/C 12 H 25 SO 3 Na and PEG were studied and it was found that sodium alkyl sulfonates were seen to interact more weakly than their sulfate analogues.

  3. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    OpenAIRE

    Bekkali, Noor L.H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E.J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G.P.; Voropaiev, Maksym; Benninga, Marc A.

    2017-01-01

    ABSTRACT Objective: The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). Methods: In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of

  4. Runinal and Intermediary Metabolism of Propylene Glycol in Lactating Holstein Cows

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Raun, Birgitte Marie Løvendahl

    2007-01-01

    Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG).......Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG)....

  5. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc [Vietnam Academy of Science and Technology, Ho Chi Minh CIty (Viet Nam); Huong, Nguyen Thi [Hanoi University of Science, Hanoi (Viet Nam); Vietnam National University, Hanoi (Viet Nam)

    2014-08-15

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm{sup -1}K{sup -1} compared with the thermal conductivity 419 Wm{sup -1}K{sup -1} of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  6. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    International Nuclear Information System (INIS)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc; Huong, Nguyen Thi

    2014-01-01

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm -1 K -1 compared with the thermal conductivity 419 Wm -1 K -1 of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  7. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    Science.gov (United States)

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  8. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  9. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isbir, Aybueke A. [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)]. E-mail: osolak@science.ankara.edu.tr; Ustuendag, Zafer [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Bilge, Selen [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Zeynel [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)

    2006-07-28

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO{sub 2}, keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined.

  10. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Ustuendag, Zafer; Bilge, Selen; Kilic, Zeynel

    2006-01-01

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO 2 , keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined

  11. Steric Stabilization of “Charge-Free” Cellulose Nanowhiskers by Grafting of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Jun Araki

    2014-12-01

    Full Text Available A sterically stabilized aqueous suspension of “charge-free” cellulose nanowhiskers was prepared by hydrochloric acid hydrolysis of cotton powders and subsequent surface grafting of monomethoxy poly(ethylene glycol (mPEG. The preparation scheme included carboxylation of the terminal hydroxyl groups in mPEG via oxidation with silica gel particles carrying 2,2,6,6-tetramethyl-1-pyperidinyloxyl (TEMPO moieties and subsequent esterification between terminal carboxyls in mPEG and surface hydroxyl groups of cellulose nanowhiskers, mediated by 1,1'-carbonyldiimidazole (CDI in dimethyl sulfoxide or dimethylacetamide. Some of the prepared PEG-grafted samples showed remarkable flow birefringence and enhanced stability after 24 h, even in 0.1 M NaCl, suggesting successful steric stabilization by efficient mPEG grafting. Actual PEG grafting via ester linkages was confirmed by attenuated total reflectance-Fourier transform infrared spectrometry. In a typical example, the amount of grafted mPEG was estimated as ca. 0.3 g/g cellulose by two measurements, i.e., weight increase after grafting and weight loss after alkali cleavage of ester linkages. Transmission electron microscopy indicated unchanged nanowhisker morphology after mPEG grafting.

  12. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  13. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  14. Changes to the Aqueous Humor Proteome during Glaucoma.

    Science.gov (United States)

    Kaeslin, Martha Andrea; Killer, Hanspeter Ezriel; Fuhrer, Cyril Adrian; Zeleny, Nauke; Huber, Andreas Robert; Neutzner, Albert

    2016-01-01

    To investigate the aqueous humor proteome in patients with glaucoma and a control group. Aqueous humor was obtained from five human donors diagnosed with primary open angle glaucoma (POAG) and five age- and sex-matched controls undergoing cataract surgery. Quantitative proteome analysis of the aqueous humor by hyper reaction monitoring mass spectrometry (HRM-MS) based on SWATH technology was performed. Expression levels of 87 proteins were found to be different between glaucomatous and control aqueous humor. Of the 87 proteins, 34 were significantly upregulated, whereas 53 proteins were downregulated in the aqueous humor from glaucoma patients compared to controls. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, antioxidant as well as proteolysis-related processes. Glaucoma leads to profound changes to the aqueous humor proteome consistent with an altered metabolic state, an inflammatory response and impaired antioxidant defense.

  15. Process Design of Industrial Triethylene Glycol Processes Using the Cubic-Plus-Association (CPA) Equation of State

    DEFF Research Database (Denmark)

    Arya, Alay; Maribo-Mogensen, Bjørn; Tsivintzelis, Ioannis

    2014-01-01

    The Cubic-Plus-Association (CPA) equation of state (EoS) has already been proven to be a successful model for phase equilibrium calculations for systems containing glycols. In the present work, we interface a thermodynamic property package (Thermo System), based on CPA, with Aspen HYSYS through...

  16. Removal of Cu 2+ Ions from Aqueous Medium Using Clinoptilolite/Emeraldine Base Composite

    Directory of Open Access Journals (Sweden)

    Silviya I. Lavrova

    2016-12-01

    Full Text Available The aim of this study was to investigate the removal efficiency of in situ synthesized composites consisted of emeraldine base and clinoptilolite on copper ions removal from aqueous medium. Two composite materials (Composite I and Composite II with different quantity of clinoptilolite were synthesised. The influence of the composite dosage, the contact time and the initial copper ions concentration has been studied. The results show that the significant removal of the copper ions becomes at the first minute of the contact between the composite material and the aqueous medium and the longer contact time leads to increasing of the copper ions removal. The removal efficiency at the 1st minute was 57.5% and 77.3% using Composite Iand Composite II, respectively. Maximum removal efficiency of 87.3% and 96.8% was achieved at the same dosage of Composite I and Composite II, respectively, at contact time of 360 minutes and temperature of 24 °C.

  17. A study on IP2C actuators using ethylene glycol or EmI-Tf as solvent

    International Nuclear Information System (INIS)

    Di Pasquale, Giovanna; Pollicino, Antonino; Fortuna, Luigi; Graziani, Salvatore; Umana, Elena; La Rosa, Manuela

    2011-01-01

    Ionic polymer–polymer composites (IP 2 Cs) are a novel class of all-organic electroactive polymers that can operate both as electromechanical actuators and as sensors. They are an evolution of ionic polymer–metal composites (IPMCs), since the metallic layers, used to realize the electrodes, are substituted by using organic conductors based on PEDOT:PSS. For the IPMC based actuators it is generally reported that solvents different from water can be used to avoid the dehydration phenomenon. Here the possibility to use ethylene glycol and an ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, as diluents for the IP 2 C is investigated. Moreover, different materials have been used for the manufacture of the device electrodes and the performances of different organic transducers have been observed and compared. Reported results show that the use of both ethylene glycol and EmI-Tf as the solvent can have beneficial effects both on the working time duration of IP 2 C and on the corresponding transduction behaviors

  18. An Exact Method to Determine the Conductivity of Aqueous Solutions in Acid-Base Titrations

    Directory of Open Access Journals (Sweden)

    Norma Rodríguez-Laguna

    2015-01-01

    Full Text Available Several works in the literature show that it is possible to establish the analytic equations to estimate the volume V of a strong base or a strong acid (Vb and Va, resp. being added to a solution of a substance or a mix of substances during an acid-base titration, as well as the equations to estimate the first derivative of the titration plot dpH/dV, and algebraic expressions to determine the buffer β capacity with dilution βdil. This treatment allows establishing the conditions of thermodynamic equilibria for all species within a system containing a mix of species from one or from various polyacid systems. The present work shows that it is possible to determine exactly the electric conductivity of aqueous solutions for these Brønsted acid-base titrations, because the functional relation between this property and the composition of the system in equilibrium is well known; this is achieved using the equivalent conductivity λi values of each of the ions present in a given system. The model employed for the present work confirms the experimental outcomes with the H2SO4, B(OH3, CH3COOH, and H3PO4 aqueous solutions’ titration.

  19. Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite.

    Science.gov (United States)

    Ferrarini, F; Bonetto, L R; Crespo, Janaina S; Giovanela, M

    2016-01-01

    Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer-Emmett-Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.

  20. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tejwant [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India); Kumar, Arvind, E-mail: arvind@csmcri.or [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India)

    2011-06-15

    Research highlights: The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. Viscometric studies revealed studied ionic liquids as water-structure makers. Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density {rho}, speed of sound u, and viscosity {eta} of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [C{sub n}mim] having [BF{sub 4}]{sup -}, [Cl]{sup -}, [C{sub 1}OSO{sub 3}]{sup -}, and [C{sub 8}OSO{sub 3}]{sup -} as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume {phi}{sub V}, isentropic compressibility {beta}{sub s}, and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (V{sub int}) molar electrostriction volume (V{sub elec}), molar disordered (V{sub dis}), and cage volume (V{sub cage}). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  1. Ethylene glycol modified 2-(2′-aminophenyl)benzothiazoles at the amino site: the excited-state N-H proton transfer reactions in aqueous solution, micelles and potential application in live-cell imaging

    International Nuclear Information System (INIS)

    Liu, Bo-Qing; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tseng, Huan-Wei; Chou, Pi-Tai

    2016-01-01

    Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2′-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH 2 Cl 2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15  ±  3 nm under a critical micelle concentration (CMC) of ∼80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at  >  CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging. (paper)

  2. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    Science.gov (United States)

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  3. Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System – Process Optimization and Intensification

    Directory of Open Access Journals (Sweden)

    Ivana Rukavina

    2011-01-01

    Full Text Available Polyphenols are one of the most numerous and widespread groups of compounds in the plant world. Nowadays, organic solvents such as methanol, ethanol, acetone, dimethylformamide, ethyl acetate and diethylether are mainly used for the extraction of polyphenols. These solvents require special process conditions and special care in the disposal of the used solvents. In this paper, the extraction of polyphenols from the model solution was performed using the aqueous two-phase system which contains 80.90 % water and represents low burden on the environment. The aqueous solution of gallic acid (GA was used as a model solution of polyphenols. The extraction was performed in the aqueous two-phase system containing PEG6000/H2O/(NH42SO4 in a macroextractor (V=10 mL and microextractor (V=14 ƒμL. The influence of the process parameters, the concentration of gallic acid, pH and composition of the aqueous two-phase system was investigated in order to maximize the partition coefficient. The method of multifactor experimental planning was used to optimize the extraction process and the results were statistically analysed using the evolutionary operation method (EVOP. Optimal operating conditions of the extraction process were pH=6.50, γGA=4.50 g/L, the mass fraction of polyethylene glycol (PEG wPEG=0.1037 g/g and the mass fraction of ammonium sulphate (AMS wAMS=0.0925 g/g. Under these conditions the maximal partition coefficient of K=5.54 and the extraction efficiency of E=89.11 % were achieved and successfully applied for total phenol extraction from white wine in the macro- and microextractor. Approximately the same partition coefficients and extraction efficiency were achieved in the microextractor within a 60-fold shorter residence time.

  4. Hemodiafiltration efficacy in treatment of methanol and ethylene glycol poisoning in a 2-year-old girl.

    Science.gov (United States)

    Szmigielska, Agnieszka; Szymanik-Grzelak, Hanna; Kuźma-Mroczkowska, Elżbieta; Roszkowska-Blaim, Maria

    2015-01-01

    Every year about 2.4 million people in USA are exposed to toxic substances. Many of them are children below 6 years of age. Majority of poisonings in children are incidental and related to household products including for example drugs, cleaning products or antifreeze products. Antifreeze solutions contain ethylene glycol and methanol. Treatment of these toxic substances involves ethanol administration, fomepizole, hemodialysis and correction of metabolic acidosis. The aim of the study was to check the efficacy of continuous venovenous hemodiagiltration in intoxication with ethylene glycol and methanol. One year and 7 months old girl after intoxication with ethylene glycol and methanol was treated with continuous venovenous hemodiafiltration instead of hemodialysis because of technical problems (circulatory instability). Intravenous ethanol infusion with hemodialtration resulted in rapid elimination of methanol from the body and significantly reduced blood ethylene glycol level. Continuous venovenous hemodiafiltration can be helpful in treatment of ethylene glycol and methanol intoxication.

  5. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. II: APPENDICES

    Science.gov (United States)

    The report gives results of the collection of emissions test data st two triethylene glycol units to provide data for the comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. [NOTE: Glycol dehydrators are used in the natural gas i...

  6. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  7. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  8. Stabilization of Polyethylene Glycol in Archaeological Wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig

    Projektet har fokuseret på polythylen glycol (PEG) stabilitet og nedbrydning i træ fra konserverede skibsvrag som Vasa (Stockholm) og Skuldelev skibene. En række avancerede analyseteknikker er anvendt til at undersøge indtrængningsdybden for forskellige molekylstørrelser PEG i ikke-nedbrudt træ f...

  9. Changes to the Aqueous Humor Proteome during Glaucoma.

    Directory of Open Access Journals (Sweden)

    Martha Andrea Kaeslin

    Full Text Available To investigate the aqueous humor proteome in patients with glaucoma and a control group.Aqueous humor was obtained from five human donors diagnosed with primary open angle glaucoma (POAG and five age- and sex-matched controls undergoing cataract surgery. Quantitative proteome analysis of the aqueous humor by hyper reaction monitoring mass spectrometry (HRM-MS based on SWATH technology was performed.Expression levels of 87 proteins were found to be different between glaucomatous and control aqueous humor. Of the 87 proteins, 34 were significantly upregulated, whereas 53 proteins were downregulated in the aqueous humor from glaucoma patients compared to controls. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, antioxidant as well as proteolysis-related processes.Glaucoma leads to profound changes to the aqueous humor proteome consistent with an altered metabolic state, an inflammatory response and impaired antioxidant defense.

  10. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    Science.gov (United States)

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  11. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    Science.gov (United States)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Efficacy and Complications of Polyethylene Glycols for Treatment of Constipation in Children

    OpenAIRE

    Chen, Si-Le; Cai, Shi-Rong; Deng, Liang; Zhang, Xin-Hua; Luo, Te-Dong; Peng, Jian-Jun; Xu, Jian-Bo; Li, Wen-Feng; Chen, Chuang-Qi; Ma, Jin-Ping; He, Yu-Long

    2014-01-01

    Abstract Constipation is a common childhood complaint. In 90% to 95% of children, constipation is functional, which means that there is no objective evidence of an underlying pathological condition. Polyethylene glycol (PEG or macrogol) solution is an osmotic laxative agent that is absorbed in only trace amounts from the gastrointestinal tract and routinely used to treat chronic constipation in adults. Here, we report the results of a meta-analysis of PEG-based laxatives compared with lactulo...

  13. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela [Faculty of Chemical Technology, Poznan University of Technology, ul. Piotrowo 3, PL-60 965 Poznan (Poland)

    2010-09-01

    Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H{sub 2}SO{sub 4} electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids. (author)

  14. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    Science.gov (United States)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛ

  15. Outcome of patients in acute poisoning with ethylene glycol - factors which may have influence on evolution

    OpenAIRE

    Tanasescu, A; Macovei, RA; Tudosie, MS

    2014-01-01

    Introduction. Intoxication with ethylene glycol occurs as a result of intentional ingestion in suicide attempts or accidentally. Clinical ethylene glycol poisoning is not specific and occurs in many poisoning cases therefore the diagnosis is difficult. Early diagnostic and establishment of therapy are very important for a favorable evolution. The mortality rate of ethylene glycol intoxication ranges between 1 and 22% depending on the amount of alcohol ingestion and the time period between alc...

  16. A NOVEL RHODAMINE-BASED FLUORESCENCE CHEMOSENSOR CONTAINING POLYETHER FOR MERCURY (II IONS IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Wenqi Du

    Full Text Available A novel rhodamine-based Hg2+ chemosensor P2 containing polyether was readily synthesized and investigated, which displayed high selectivity and sensitivity for Hg2+. Because of good water-solubility of polyther, the rhodamine-based chemosensor containing polyether can be used in aqueous solution. The sensor responded rapidly to Hg2+ in pure water solutions with a 1:1 stoichiometry. Meanwhile, it indicated excellent adaptability and also the responsiveness.

  17. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Zeyneb Aslan

    2015-10-01

    Full Text Available ABSTRACT Objective: In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. Materials and Methods: The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1% in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1% in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. Results: At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-α, IL-1β and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. Conclusion: The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  18. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  19. Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community.

    Science.gov (United States)

    Harding-Marjanovic, Katie C; Yi, Shan; Weathers, Tess S; Sharp, Jonathan O; Sedlak, David L; Alvarez-Cohen, Lisa

    2016-04-05

    The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well-understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyi-containing enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination.

  20. A new Schiff base based on vanillin and naphthalimide as a fluorescent probe for Ag+ in aqueous solution

    Science.gov (United States)

    Zhou, Yanmei; Zhou, Hua; Ma, Tongsen; Zhang, Junli; Niu, Jingyang

    2012-03-01

    A new Schiff base based on vanillin and naphthalimide was designed and synthesized as fluorescent probe. The probe showed high selectivity for Ag+ over other metal ions such as Pb2+, Na+, K+, Cd2+, Ba2+, Cr3+, Zn2+, Cu2+, Ni2+, Ca2+, Al3+ and Mg2+ in aqueous solution. A new fluorescence emission was observed at 682 nm in the presence of Ag+ ion. The fluorescence intensity quenched with increasing the concentration of Ag+ at 682 nm. The method of job's plot confirmed the 1:2 complex between Ag+ and probe, and the mechanism was proposed.

  1. Exergoeconomic analysis of glycol cold thermal energy storage systems for building applications. Paper no. IGEC-1-155

    International Nuclear Information System (INIS)

    Bakan, K.; Dincer, I.; Rosen, M.A.

    2005-01-01

    An exergoeconomic analysis is reported of glycol cold thermal energy storage (CTES) systems. Exergoeconomics combines thermodynamic analysis (using both the first and second laws of thermodynamics) with principles of economics, mostly cost accounting. Exergy analysis provides more meaningful and useful information than energy analysis about the efficiency and performance of glycol CTES. The main reason is that traditional analyses are based on mass and energy balances and only external losses can be detected, while exergy analysis measures the quality of energy and includes irreversibility's that occur during any process. According to simulation results, the exergy efficiency of the glycol CTES is roughly 75% less than the energy efficiency due to irreversibility's, and the system efficiency is less than the tank efficiency. Irreversibility's for the overall system are higher than for the tank. Also, the reference ambient temperature has an effect on exergy destruction and efficiency. A 5 o C change in ambient temperature causes a 25% change in exergy efficiency. This result implies that cold energy is more efficient at higher ambient temperatures. Heat losses from the tank depend on the ambient temperature; a 5 o C increase in ambient temperature causes a heat loss increase of 6%. (author)

  2. Fluorinated polyimides grafted with poly(ethylene glycol) side chains by the RAFT-mediated process and their membranes

    International Nuclear Information System (INIS)

    Chen Yiwang; Chen Lie; Nie Huarong; Kang, E.T.; Vora, R.H.

    2005-01-01

    Graft polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from fluorinated polyimide (FPI) was carried out by the reversible addition-fragmentation chain transfer (RAFT)-mediated process. The peroxides generated by the ozone treatment on FPI facilitated the thermally-initiated graft copolymerization from FPI backbone. The 'living' character of the graft chain growing was ascertained in the subsequent chain extension of PEGMA. Nuclear magnetic resonance (NMR) and molecular weight measurements were used to characterize the chemical composition and structure of the copolymers. Microfiltration (MF) membranes were fabricated from the FPI-g-PEGMA comb copolymers by phase inversion in aqueous media. Surface composition analysis of the membranes scanned by X-ray photoelectron spectroscopy (XPS) revealed a substantial surface enrichment of the hydrophilic components. The pore size distribution of the resulting membranes was found to be much more uniform than that of the corresponding membranes cast from FPI-g-PEGMA prepared by the conventional radical polymerization process in the absence of the chain transfer agent. The morphology of the membranes was characterized by scanning electron microscopy (SEM)

  3. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN) / polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. Adsorption analyses were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K. Adsorption time was increased from zero to 48 hours. Adsorption capacities of uranyl ions by PEG/AN IPNS were determined by gamma spectrometer. The results indicate that adsorption capacity increases linearly with increasing temperature. The max adsorption capacity was found as 602 mgu/g IPN at 308K. Adsorption rate was evaluated from the curve plotted of adsorption capacity versus time, for each temperature. Rate constants for uranyl ions adsorption on amidoximated ipns were calculated for 290K, 298K, 308K and 318K at the solution concentration of 1x10 -2 M . The results showed that as the temperature increases the rate constant increases exponentially too. The mean activation energy of uranyl ions adsorption was found as 34.6 kJ/mole by using arrhenius equation. (author)

  4. Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine)

    International Nuclear Information System (INIS)

    Ji Minglei; Yang Wuli; Ren Qingguang; Lu Daru

    2009-01-01

    In order to enhance the dispersion ability of hydrophobic nanoparticles in water while maintaining their unique properties, we utilized poly(ethylene glycol) grafted hyperbranched poly(amido amine) (h-PAMAM-g-PEG) to modify three types of hydrophobic nanoparticle, CdSe, Au, and Fe 3 O 4 , and transferred them into water to extend their applications in biology. Considering the large amounts of amino groups in hyperbranched poly(amido amine) (h-PAMAM) polymer, complexation interaction between h-PAMAM-g-PEG copolymer and nanoparticles was achieved and ligand exchange between the copolymers and original small molecules ligands occurred. The transferred nanoparticles could be easily dispersed in water with better stability, and their unique properties, such as fluorescence, surface plasmon resonance, and superparamagnetism, were well maintained in the ligand exchange process. In addition, increasing the number of grafted PEG showed a negative effect on the ligand exchange process. Due to the existence of h-PAMAM-g-PEG ligands, the stabilized nanoparticles have improved stability in aqueous and ionic solutions. In the case of CdSe nanoparticles, the h-PAMAM-g-PEG layer leads to a lower cytotoxicity when compared with bare CdSe particles, and they could be directly used in bioimaging.

  5. Electrospinnability of poly lactic-co-glycolic acid (PLGA)

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Baldursdottir, Stefania G.; Aho, Johanna

    2017-01-01

    PURPOSE: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers. METHOD: Various s...

  6. D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Wu YP

    2015-08-01

    Full Text Available Yupei Wu,1,* Qian Chu,2,* Songwei Tan,1 Xiangting Zhuang,1 Yuling Bao,1 Tingting Wu,1 Zhiping Zhang1,3,41Tongji School of Pharmacy, 2Department of Oncology, Tongji Hospital, Tongji Medical School, 3Hubei Engineering Research Center for NDDS, 4National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, People’s Republic of China*These authors contributed equally to this workAbstract: Paclitaxel (PTX is one of the most effective antineoplastic drugs. Its current clinical administration Taxol® is formulated in Cremophor EL, which causes serious side effects. Nanoparticles (NP with lower systemic toxicity and enhanced therapeutic efficiency may be an alternative formulation of the Cremophor EL-based vehicle for PTX delivery. In this study, novel amphipathic 4-arm-PEG-TPGS derivatives, the conjugation of D-α-tocopherol polyethylene glycol succinate (TPGS and 4-arm-polyethylene glycol (4-arm-PEG with different molecular weights, have been successfully synthesized and used as carriers for the delivery of PTX. These 4-arm-PEG-TPGS derivatives were able to self-assemble to form uniform NP with PTX encapsulation. Among them, 4-arm-PEG5K-TPGS NP exhibited the smallest particle size, highest drug-loading efficiency, negligible hemolysis rate, and high physiologic stability. Therefore, it was chosen for further in vitro and in vivo investigations. Facilitated by the effective uptake of the NP, the PTX-loaded 4-arm-PEG5K-TPGS NP showed greater cytotoxicity compared with free PTX against human ovarian cancer (A2780, non-small cell lung cancer (A549, and breast adenocarcinoma cancer (MCF-7 cells, as well as a higher apoptotic rate and a more significant cell cycle arrest effect at the G2/M phase in A2780 cells. More importantly, PTX-loaded 4-arm-PEG5K-TPGS NP resulted in a significantly improved tumor growth inhibitory effect in comparison to Taxol® in S180 sarcoma-bearing mice models. This study suggested

  7. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits.

    Science.gov (United States)

    Tayel, Saadia Ahmed; El-Nabarawi, Mohamed Ahmed; Tadros, Mina Ibrahim; Abd-Elsalam, Wessam Hamdy

    2013-02-25

    Terbinafine hydrochloride (T-HCl) is recommended for the management of fungal keratitis. To maintain effective aqueous humor concentrations, frequent instillation of T-HCl drops is necessary. This work aimed to develop alternative controlled-release in situ ocular drug-loaded nanoemulsion (NE) gels. Twelve pseudoternary-phase diagrams were constructed using oils (isopropyl myristate/Miglyol 812), surfactants (Tween 80/Cremophor EL), a co-surfactant (polyethylene glycol 400) and water. Eight drug-loaded (0.5%, w/v) NEs were evaluated for thermodynamic stability, morphology, droplet size and drug release in simulated tear fluid (pH 7.4). Following dispersion in gellan gum solution (0.2%, w/w), the in situ NE gels were characterized for transparency, rheological behavior, mucoadhesive force, drug release and histopathological assessment of ocular irritation. Drug pharmacokinetics of sterilized F31 [Miglyol 812, Cremophor EL: polyethylene glycol 400 (1:2) and water (5, 55 and 40%, w/w, respectively)] in situ NE gel and oily drug solution were evaluated in rabbit aqueous humor. The NEs were thermodynamically stable and have spherical droplets (<30 nm). The gels were transparent, pseudoplastic, mucoadhesive and showed more retarded zero-order drug release rates. F31 in situ NE gel showed the least ocular irritation potential and significantly (P<0.01) higher C(max), delayed T(max), prolonged mean residence time and increased bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    OpenAIRE

    Laher, A.E.; Goldstein, L.N.; Wells, M.D.; Dufourq, N.; Moodley, P.

    2013-01-01

    Introduction: Delayed treatment of ethylene glycol poisoning can have catastrophic consequences that may result in death. Case report: Three young men presented to the Emergency Centre (EC) with a main complaint of feeling unwell after consuming “homemade alcohol”. A fourth person had died at home an hour earlier. Blood analysis revealed a raised anion gap metabolic acidosis as well as a raised osmolar gap in all three patients. Discussion: The clinical presentation of ethylene glycol a...

  9. Influence of Polyethylene Glycol (PEG in CMC-NH4BR Based Polymer Electrolytes: Conductivity and Electrical Study

    Directory of Open Access Journals (Sweden)

    Nur Khalidah Zainuddin

    2017-04-01

    Full Text Available The present work was carried with new type and promising polymer electrolytes system by development of carboxylmethylcellulose (CMC doped NH4Br and plasticized with polyethylene glycol (PEG. The sample was successfullyprepared via solution casting with no separation phase and good mechanical properties. The electrical conductivity andthermal conductivity of CMC-NH4Br-PEG based PEs system have been measured by the electrical impedancespectroscopy method in the temperature range of 303–373 K. The highest ionic conductivity gained is 2.48 x 10-3 Scm-1at ambient temperature for sample contain with 8 wt. % PEG. It can be concluded that the plasticized is accountable forthe conductance and assist to enhancing the ionic conductivity of the CMC-NH4Br-PEG electrolyte system. The addition of PEG to the CMC-based electrolyte can enhance towards the cation mobility which is turn increases ionic conductivity. The conductivity-temperature of plasticized BdPEs system was found obeys the Arrhenius relation where the ionic conductivity increases with temperature and activation energy for the ions hopping of the highest conducting PEs system only required small value to migrate. The electrical studies show a non-Debye behaviour of BdPEs based on the analyzed data using complex permittivity, ε* and complex electrical modulus, M* of the sample at different temperature.

  10. Optical reading of contaminants in aqueous media based on gold nanoparticles.

    Science.gov (United States)

    Du, Jianjun; Zhu, Bowen; Peng, Xiaojun; Chen, Xiaodong

    2014-09-10

    With increasing trends of global population growth, urbanization, pollution over-exploitation, and climate change, the safe water supply has become a global issue and is threatening our society in terms of sustainable development. Therefore, there is a growing need for a water-monitoring platform with the capability of rapidness, specificity, low-cost, and robustness. This review summarizes the recent developments in the design and application of gold nanoparticles (AuNPs) based optical assays to detect contaminants in aqueous media with a high performance. First, a brief discussion on the correlation between the optical reading strategy and the optical properties of AuNPs is presented. Then, we summarize the principle behind AuNP-based optical assays to detect different contaminants, such as toxic metal ion, anion, and pesticides, according to different optical reading strategies: colorimetry, scattering, and fluorescence. Finally, the comparison of these assays and the outlook of AuNP-based optical detection are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  12. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. I: TECHNICAL REPORT

    Science.gov (United States)

    The report gives results of the collection of emissions tests data at two triethylene glycol units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural gas indu...

  13. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel

    CSIR Research Space (South Africa)

    Mittal, H

    2016-08-01

    Full Text Available This research paper reports the utilization of gum xanthan-grafted-polyacrylic acid and Fe(sub3)O(sub4) magnetic nanoparticles based nanocomposite hydrogel (NCH) for the highly effective adsorption of methyl violet (MV) from aqueous solution...

  14. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review.

    Science.gov (United States)

    Laxma Reddy, P Venkata; Kavitha, Beluri; Kumar Reddy, Police Anil; Kim, Ki-Hyun

    2017-04-01

    The TiO 2 based photocatalyst has great potential for the disinfection/inactivation of harmful pathogens (such as E.coli in aqueous media) along with its well-known usefulness on various chemical pollutants. The disinfection property of TiO 2 is primarily attributed to surface generation of reactive oxygen species (ROS) as well as free metal ions formation. Furthermore, its disinfection capacity and overall performance can be significantly improved through modifications of the TiO 2 material. In this review, we provide a brief survey on the effect of various TiO 2 materials in the disinfection of a wide range of environmentally harmful microbial pathogens (e.g., bacteria, fungi, algae, and viruses) in aqueous media. The influencing factors (such as reactor design, water chemistry, and TiO 2 modifications) of such processes are discussed along with the mechanisms of such disinfection. It is believed that the combined application of disinfection and decontamination will greatly enhance the utilization of TiO 2 photocatalyst as a potential alternative to conventional methods of water purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Aqueous dispersion of red clay-based ceramic powder with the addition of starch

    Directory of Open Access Journals (Sweden)

    Maria Victoria Alcantar Umaran

    2013-04-01

    Full Text Available The optimum dispersion and rheological properties of red clay-based ceramic suspension loaded with unary and binary starch were investigated in aqueous medium. The aqueous ceramic suspension was prepared consisting of red clay, quartz, feldspar, and distilled water. Using a polyelectrolyte dispersant (Darvan 821A, the ternary ceramic powder was initially optimized to give the smallest average particle size at 0.8 wt. (% dispersant dosage as supported by sedimentation test. This resulted into an optimum high solid loading of 55 wt. (%. The addition of either unary or binary starches to the optimized ceramic slurry increased the viscosity but maintained an acceptable fluidity. The mechanism of such viscosity increase was found to be due to an adsorption of starch granules onto ceramic surfaces causing tolerable agglomeration. Correspondingly, the rheological evaluations showed that the flow behaviors of all starch-loaded ceramic slurries can be described using Herschel-Bulkley model. The parameters from this model indicated that all ceramic slurries loaded with starch are shear thinning that is required for direct casting process.

  16. A New Flexible Soy-Based Adhesive Enhanced with Neopentyl Glycol Diglycidyl Ether: Properties and Application

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2016-09-01

    Full Text Available Soy-based adhesives inherently possess low water resistance and brittleness, which limit their application on plywood fabrication. This investigation involves using a long chain cross-linker, neopentyl glycol diglycidyl ether (NGDE, to produce an intrinsic toughening effect to reduce the brittleness and improve the water resistance of a soybean meal–based adhesive. The solids content, viscosity, functional groups, fracture surface micrographs, and thermal stability of the adhesives were measured. Three-layer plywood was fabricated using the resultant adhesive, and the tensile shear strength of the plywood was measured. All adhesive properties were compared with a soybean meal/polyamidoamine-epichlorohydrin (PAE adhesive and commercial melamine urea formaldehyde resin. The results showed that adding 6 g NGDE improved the water resistance of the soybean meal-based adhesive by 12.5%. This improvement is attributed to the following reasons: (1 a dense cross-linked network is formed by the chemical reaction between NGDE and protein molecules; (2 the toughness of the adhesive increases and a smooth and homogeneous fracture surface is created, which effectively prevents moisture intrusion; (3 the addition of NGDE increases the thermostability of the cured adhesive. The tensile shear strength of the plywood bonded with the soybean meal-based adhesive with 6 g NGDE was 286.2% higher than that without NGDE and attained 1.12 MPa, which was attributed to the reduction in the adhesive’s viscosity, and the improvement in the water resistance and toughness of the adhesive. The tensile shear strength of the plywood bonded with 6 g NGDE was 19.1% higher than that with 6 g PAE and was similar to the MUF resin, which validated the novel adhesive being suitable for use as an industrial plywood adhesive.

  17. Arsenate reductase from Thermus thermophilus conjugated to polyethylene glycol-stabilized gold nanospheres allow trace sensing and speciation of arsenic ions.

    Science.gov (United States)

    Politi, Jane; Spadavecchia, Jolanda; Fiorentino, Gabriella; Antonucci, Immacolata; De Stefano, Luca

    2016-10-01

    Water sources pollution by arsenic ions is a serious environmental problem all around the world. Arsenate reductase enzyme (TtArsC) from Thermus thermophilus extremophile bacterium, naturally binds arsenic ions, As(V) and As (III), in aqueous solutions. In this research, TtArsC enzyme adsorption onto hybrid polyethylene glycol-stabilized gold nanoparticles (AuNPs) was studied at different pH values as an innovative nanobiosystem for metal concentration monitoring. Characterizations were performed by UV/Vis and circular dichroism spectroscopies, TEM images and in terms of surface charge changes. The molecular interaction between arsenic ions and the TtArsC-AuNPs nanobiosystem was also monitored at all pH values considered by UV/Vis spectroscopy. Tests performed revealed high sensitivities and limits of detection equal to 10 ± 3 M -12 and 7.7 ± 0.3 M -12 for As(III) and As(V), respectively. © 2016 The Author(s).

  18. Magnetic fluids stabilized by polypropylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.V., E-mail: lav@icmm.r [Institute of Continuous Media Mechanics, UB RAS, Academic Korolev Str. 1, Perm 614013 (Russian Federation); Lysenko, S.N. [Institute of Technical Chemistry, UB RAS, Academic Korolev Str. 3, Perm 614013 (Russian Federation)

    2011-05-15

    A series of samples of magnetic fluids stabilized with low-molecular weight polypropylene glycol (PPG) of different molecular masses were synthesized. The use of PPG allowed the maximum extension of the carrier fluid range to include ethyl- and butyl-acetate, ethanol, butanol, acetone, carbon tetrachloride, toluene, kerosene and PPG itself. Magnetic and rheological properties of the samples were investigated. Based on the results of investigation it has been concluded that magnetic nanoparticles are covered by a monolayer of surfactant molecules. At low temperatures the propanol-based sample preserves fluidity up to -115 {sup o}C. Measurement of critical temperatures of other base fluids showed that alcohols are the best carrier medium. Coagulation stability of the ethanol-based ferrocolloid with respect to water and kerosene was explored. It has been found that kerosene, whose fraction by weight exceeds 22.5%, does not mix with the colloid. This effect can be used to produce magneto-controllable extractors of ethyl alcohol. Under the action of water the colloid coagulates, which allows one to substitute the carrier fluid and to separate the colloid into fractions. - Research highlights: PPG stabilizes the magnetic particles in the polar and non-polar media. The minimum operating temperature reaches -115 {sup o}C. Alcohols are the best environment for PPG-stabilized particles. PPG magnetic fluids can be used as magnetic extractors of alcohol. PPG MF can be divided into fractions by partial coagulation with water.

  19. Efficacy of polyethylene glycol 4000 on constipation of posttraumatic bedridden patients.

    Science.gov (United States)

    Zhang, Lian-yang; Yao, Yuan-zhang; Wang, Tao; Fei, Jun; Shen, Yue; Chen, Yong-hua; Zong, Zhao-wen

    2010-06-01

    To investigate the efficacy and safety of polyethylene glycol 4000 on adult patients with functional constipation due to posttraumatic confinement to bed. A total of 201 posttraumatic bedridden patients were studied in this prospective, open-labeled, single-group study. Polyethylene glycol 4000 was administered orally for 14 days and the dosage was adjusted according to the Bristol stool types. Demographic characteristics, disease status, treatment period and factors affecting clinical outcome, especially the concomitant medications, were recorded. After administration of polyethylene glycol 4000, 194 cases (96.52%) showed remission of constipation, including 153 (76.12%) persistent remission. The average defecation frequency increased significantly after treatment and the percentage of patients with stools of normal types (Bristol types 3-5) increased as well. Genders, ages and concomitant medications showed no significant influence on the persistent remission rate. After consecutive treatment for two weeks, patients with slight movement showed a significantly higher remission rate than those without movement (95% vs 80%). At the end of treatment, most accompanying symptoms were relieved obviously. Patients with a medical history of constipation or ever taking laxatives showed a lower remission rate. Sixty cases (29.85%) developed diarrhea during the observational period, among whom 6 (10%) withdrew from the clinical observation voluntarily at the first onset of diarrhea. Two cases suffered from abdominal pain. Polyethylene glycol 4000 has efficacy on functional constipation in posttraumatic bedridden patients. Furthermore, patients with milder symptoms, more movement in bed, and longer duration of treatment but without accompanying symptoms can achieve a higher remission rate.

  20. Highly Sensitive Colorimetric Assay for Determining Fe3+ Based on Gold Nanoparticles Conjugated with Glycol Chitosan

    Directory of Open Access Journals (Sweden)

    Kyungmin Kim

    2017-01-01

    Full Text Available A highly sensitive and simple colorimetric assay for the detection of Fe3+ ions was developed using gold nanoparticles (AuNPs conjugated with glycol chitosan (GC. The Fe3+ ion coordinates with the oxygen atoms of GC in a hexadentate manner (O-Fe3+-O, decreasing the interparticle distance and inducing aggregation. Time-of-flight secondary ion mass spectrometry showed that the bound Fe3+ was coordinated to the oxygen atoms of the ethylene glycol in GC, which resulted in a significant color change from light red to dark midnight blue due to aggregation. Using this GC-AuNP probe, the quantitative determination of Fe3+ in biological, environmental, and pharmaceutical samples could be achieved by the naked eye and spectrophotometric methods. Sensitive response and pronounced color change of the GC-AuNPs in the presence of Fe3+ were optimized at pH 6, 70°C, and 300 mM NaCl concentration. The absorption intensity ratio (A700/A510 linearly correlated to the Fe3+ concentration in the linear range of 0–180 μM. The limits of detection were 11.3, 29.2, and 46.0 nM for tap water, pond water, and iron supplement tablets, respectively. Owing to its facile and sensitive nature, this assay method for Fe3+ ions can be applied to the analysis of drinking water and pharmaceutical samples.

  1. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  2. An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.

    Science.gov (United States)

    Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; Du, Xian-Long; Wang, Jian-Qiang; He, He-Yong; Cao, Yong

    2014-12-01

    The formate-based rechargeable hydrogen battery (RHB) promises high reversible capacity to meet the need for safe, reliable, and sustainable H2 storage used in fuel cell applications. Described herein is an additive-free RHB which is based on repetitive cycles operated between aqueous formate dehydrogenation (discharging) and bicarbonate hydrogenation (charging). Key to this truly efficient and durable H2 handling system is the use of highly strained Pd nanoparticles anchored on graphite oxide nanosheets as a robust and efficient solid catalyst, which can facilitate both the discharging and charging processes in a reversible and highly facile manner. Up to six repeated discharging/charging cycles can be performed without noticeable degradation in the storage capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. UNIQUAC interaction parameters for molecules with -OH groups on adjacent carbon atoms in aqueous solution determined by molecular mechanics - glycols, glycerol and glucose

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Klein, R. A.

    1997-01-01

    UNIQUAC interaction parameters have been determined, using molecular mechanics calculations, for 1,2-ethanediol, 1,2-propanediol, glycerol and glucose with water in aqueous solution. Conformational space for individual pairs of molecules was explored using a stochastic method, the Boltzmann Jump...

  4. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    Science.gov (United States)

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  5. Nanostructured aqueous dispersions of citrem interacting with lipids and PEGylated lipids

    DEFF Research Database (Denmark)

    Hedegaard, S.F.; Nilsson, Christa; Laurinmäki, P.

    2013-01-01

    We report on the formation of nanostructured aqueous dispersions based on the negatively charged food-grade emulsifier citrem (citric acid esters of mono- and diglycerides). To our knowledge, this is the first report in the literature on the spontaneous formation of aqueous PEGylated and non-PEGy...... ) phase. Based on the SAXS results, the partial replacement of citrem by high amount of MO or PHYT induced the formation of hexosomes. The investigated dispersions of citrem could be attractive as nanocarriers of poorly water-soluble drugs and functional foods.......We report on the formation of nanostructured aqueous dispersions based on the negatively charged food-grade emulsifier citrem (citric acid esters of mono- and diglycerides). To our knowledge, this is the first report in the literature on the spontaneous formation of aqueous PEGylated and non...

  6. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingjian; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Li, Weiwei; Han, Xu; Zhang, Xingxiang, E-mail: zhangpolyu@gmail.com

    2013-10-20

    Graphical abstract: The maximum 50 wt% Brij58 is loaded into the porous MCM-41 networks, and a new peak at 18.8° in XRD patterns confirmed the changes of crystallization behavior of Brij58 against the bulk one. - Highlights: • Poly(ethylene glycol) hexadecyl ether and poly(ethylene glycol) octadecyl ether have the good thermal storage ability. • New peak at 18.8° proved the coexisted confined crystallization and nucleation-induced crystallization. • Poly(ethylene glycol) alkyl ether/MCM-41 PCMs exhibits the good thermal stability. - Abstract: A series of shape-stabilized phase change materials (PCMs), composed of poly(ethylene glycol) hexadecyl ether (Brij58) or poly(ethylene glycol) octadecyl ether (Brij76) and porous silica (MCM-41), were prepared by the physical mixing method. The structure, thermal stability, energy storage ability and crystallization behavior of these composites are deeply investigated and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). Obvious phase transition behavior and energy storage capability are observed for these Brij/MCM-41 composites, and the heat storage efficiency increased with the weight of Brij component. New peak at 18.8° demonstrated that the pore size and the surface adsorption ability of MCM-41 affect the crystallization behavior of Brij molecule. The crystalline structure and energy storage ability of these Brij/MCM-41 composites are discussed based on the crystallization process.

  7. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma.

    Science.gov (United States)

    Chaudhary, Savita; Dayal, Surabhi

    2013-10-01

    Various treatment modalities are available for management of melasma, ranging from topical and oral to chemical peeling, but none is promising alone. Very few studies are available regarding efficacy of combination of topical treatment with chemical peeling. Combination of chemical peeling and topical regimen can be a good treatment modality in the management of this recalcitrant disorder. To assess the efficacy of combination of topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling in the treatment of melasma in Indian patients. Forty Indian patients of moderate to severe epidermal variety melasma were divided into two groups of 20 each. One Group i.e. peel group received topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling and other group i.e. control group received topical regimen (2% hydroquinone, 1% hydrocortisone, 0.05% tretinoin). There was an overall decrease in MASI from baseline in 24 weeks of therapy in both the groups (P value peel with topical regimen showed early and greater improvement than the group which was receiving topical regimen only. This study concluded that combining topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling significantly enhances the therapeutic efficacy of glycolic acid peeling. The combination of glycolic acid peeling with the topical regimen is a highly effective, safe and promising therapeutic option in treatment of melasma.

  8. Homogeneous dispersion of gadolinium oxide nanoparticles into a non-aqueous-based polymer by two surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Jorice, E-mail: jorice.samuel@gmail.com [AREVA T and D UK Ltd, AREVA T and D Research and Technology Centre (United Kingdom); Raccurt, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Mancini, Cedric; Dujardin, Christophe; Amans, David; Ledoux, Gilles [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France); Poncelet, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Tillement, Olivier [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France)

    2011-06-15

    Gadolinium oxide nanoparticles are more and more used. They can notably provide interesting fluorescence properties. Herein they are incorporated into a non-aqueous-based polymer, the poly(methyl methacrylate). Their dispersion within the polymer matrix is the key to improve the composite properties. As-received gadolinium oxide nanopowders cannot be homogeneously dispersed in such a polymer matrix. Two surface treatments are, therefore, detailed and compared to achieve a good stability of the nanoparticles in a non-aqueous solvent such as the 2-butanone. Then, once the liquid suspensions have been stabilized, they are used to prepare nanocomposites with homogeneous particles dispersion. The two approaches proposed are an hybrid approach based on the growth of a silica shell around the gadolinium oxide nanoparticles, and followed by a suitable silane functionalization; and a non-hybrid approach based on the use of surfactants. The surface treatments and formulations involved in both methods are detailed, adjusted and compared. Thanks to optical methods and in particular to the use of a 'home made' confocal microscope, the dispersion homogeneity within the polymer can be assessed. Both methods provide promising and conclusive results.

  9. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo

    Directory of Open Access Journals (Sweden)

    Tianjun Liu

    2012-05-01

    Full Text Available Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  10. Thermodynamics of single polyethylene and polybutylene glycols with hydrogen-bonding ends: A transition from looped to open conformations

    Science.gov (United States)

    Lee, Eunsang; Paul, Wolfgang

    2018-02-01

    A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.

  11. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    Science.gov (United States)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  12. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.

    Science.gov (United States)

    Ozcelik, Berkay; Brown, Karl D; Blencowe, Anton; Ladewig, Katharina; Stevens, Geoffrey W; Scheerlinck, Jean-Pierre Y; Abberton, Keren; Daniell, Mark; Qiao, Greg G

    2014-09-01

    Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-μm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Safety of polyethylene glycol 3350 solution in chronic constipation: randomized, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    McGraw T

    2016-07-01

    Full Text Available Thomas McGraw Global Medical Affairs, Merck & Co., Inc., Kenilworth, NJ, USA Purpose: To evaluate the safety and tolerability of aqueous solution concentrate (ASC of polyethylene glycol (PEG 3350 in patients with functional constipation.Patients and methods: The patients who met Rome III diagnostic criteria for functional constipation were randomized in this multicenter, randomized, placebo-controlled, single-blind study to receive once daily dose of PEG 3350 (17 g ASC or placebo solution for 14 days. The study comprised a screening period (visit 1, endoscopy procedure (visits 2 and 3, and follow-up telephone calls 30 days post-treatment. Safety end points included adverse events (AEs, clinical laboratory evaluations, vital signs, and others. The primary end points were the proportion of patients with abnormalities of the oral and esophageal mucosa, detected by visual and endoscopic examination of the oral cavity and esophagus, respectively, compared with placebo. A secondary objective was to compare the safety and tolerability of ASC by evaluating AEs or adverse drug reactions.Results: A total of 65 patients were enrolled in this study, 31 were randomized to PEG 3350 ASC and 34 were randomized to placebo, of which 62 patients completed the study. No patients in either group showed abnormalities in inflammation of the oral mucosa during visit 2 (before treatment or visit 3 (after treatment. Fewer abnormalities of the esophageal mucosa were observed in the PEG 3350 ASC group than in the placebo group on visit 3, with no significant difference in the proportion of abnormalities between the treatment groups. Overall, 40 treatment-emergent AEs were observed in 48.4% of patients treated with PEG 3350 ASC, and 41 treatment-emergent AEs were observed in 55.9% of patients treated with placebo – nonsignificant difference of -7.5% (95% CI: -21.3, 6.3 between treatment groups. No serious AEs or deaths were reported, and no patient discontinued because

  14. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay

    Science.gov (United States)

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mârtensson, Lena; Swenson, Jan

    2014-07-01

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the

  15. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.ir [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shahabi, Somayyeh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Apparent molar volume against molality: o, {center_dot}, and {Delta}, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, {Delta}, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research Highlights: > C{sub 12}H{sub 25}SO{sub 3}Na(SDSn) was seen to interact with PEG more weakly than C{sub 12}H{sub 25}SO{sub 4}Na(SDS). > The constraints on molecular mobility of SDS micelles are larger than those of SDSn. > Entropy change on micellization for SDSn is larger than those for SDS. > Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. > Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C{sub 12}H{sub 25}SO{sub 4}Na) or sodium dodecyl sulfonate (C{sub 12}H{sub 25}SO{sub 3}Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C{sub 12}H{sub 25}SO{sub 4}Na and C{sub 12}H{sub 25}SO{sub 3}Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C{sub 12}H{sub 25}SO{sub 4}Na/C{sub 12}H{sub 25}SO{sub 3}Na and PEG were studied and it was found that sodium alkyl sulfonates were seen

  16. Determination of Glycol Ethers in Ambient Air by Adsorption Sampling and Thermal Desorption with GC/MS Analysis: Performance Evaluation and Field Application

    Directory of Open Access Journals (Sweden)

    Young-Kyo Seo

    2012-01-01

    Full Text Available Some of glycol ethers, such as 2-methoxyethanol (2-ME and 2-ethoxyethanol (2-EE are known to be toxic and classified as hazardous air pollutants in USA, Japan and Germany. In Korea, however, there has been no study conducted so far for these compounds in ambient air. In addition, no clear methodologies for the measurement of glycol ethers have been yet established. We carried out this study to evaluate a sampling and analytical method for the determination of glycol ethers, in ambient air samples collected in specific industrial areas of South Korea. To measure glycol ethers, adsorption sampling and thermal desorption with GC/MS analysis were used in this study. The analytical method showed good repeatability, linearity and sensitivity. The lower detection limits were estimated to be approximately 0.3∼0.5 ppb. Based on storage tests, it was suggested that samples should be analyzed within two weeks. It was also demonstrated that this method can be used for the simultaneous measurement of glycol ethers and other aromatic VOCs such as benzene, toluene, and xylenes. Field sampling campaign was carried out at 2 sites, located in a large industrial area, from October 2006 to June 2007, and a total of 480 samples were collected seasonally. Among them, 2-ME was not detected from any samples, while 2-EE and 2-Ethyloxyethylacetate (2-EEA were found in 7 and 70 samples, respectively. The measured concentrations of 2-EE and 2-EEA for samples were ranged from 0.7-2.5 ppb and from 0.5-10.5 ppb, respectively. To our knowledge, this is the first measurement report for glycol ethers in the ambient atmosphere not only in Korea but also the rest of the world.

  17. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment.

    Science.gov (United States)

    Xu, Xiao-Yu; Yan, Bing

    2016-04-28

    A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.

  18. Transparent Low Molecular Weight Poly(Ethylene Glycol Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs

    Directory of Open Access Journals (Sweden)

    Théophile Pelras

    2017-11-01

    Full Text Available Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs.

  19. Effect of Aqueous Phase Recycling in Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Klemmer, Maika; Madsen, René Bjerregaard; Houlberg, Kasper

    2016-01-01

    was observed with a maximum increase in the first recycle experiment. However, the recycling of the aqueous phase also resulted in lower heating values and higher water contents in the oil fraction. Based on these findings, recycling the aqueous phase is a trade-off between improved yields and reduced burn...... qualities of the biocrude. That said, recycling also lowers carbon discharge to the aqueous fraction, which may contribute significantly to reducing the environmental footprint of an industrial HTL plant....

  20. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    OpenAIRE

    Joshua, CJ; Simmons, BA; Singer, SW

    2016-01-01

    © 2016 The Royal Society of Chemistry. This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than...

  1. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    Science.gov (United States)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  2. High-performance aqueous rechargeable batteries based on zinc ...

    Indian Academy of Sciences (India)

    A new aqueous Zn–NiCo2O4 rechargeable battery system with a high voltage, consisting of NiCo2O4 as cathode and metal Zn as anode, is proposed for the first time. It is cheap and environmental friendly, and its energy density is about 202.8 Wh kg–1. The system still maintains excellent capacity retention of about 85% ...

  3. Design of peptide-conjugated glycol chitosan nanoparticles for near infrared fluorescent (NIRF) in vivo imaging of bladder tumors

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Enhanced permeability and retention (EPR) effects for tumor treatment have been utilized as a representative strategy to accumulate untargeted nanoparticles in the blood vessels around tumors. However, the EPR effect itself was not sufficient for the nanoparticles to penetrate into cancer cells. For the improvement of diagnosis and treatment of cancer using nanoparticles, many more nanoparticles need to specifically enter cancer cells. Otherwise, can leave the tumor area and not contribute to treatment. In order to enhance the internalization process, specific ligands on nanoparticles can help their specific internalization in cancer cells by receptor-mediated endocytosis. We previously developed glycol chitosan based nanoparticles that suggested a promising possibility for in vivo tumor imaging using the EPR effect. The glycol chitosan nanoparticles showed a long circulation time beyond 1 day and they were accumulated predominantly in tumor. In this study, we evaluated two peptides for specific targeting and better internalization into urinary bladder cancer cells. We conjugated the peptides on to the glycol chitosan nanoparticles; the peptide-conjugated nanoparticles were also labeling with near infrared fluorescent (NIRF) dye, Cy5.5, to visualize them by optical imaging in vivo. Importantly real-time NIRF imaging can also be used for fluorescence (NIRF)-guided surgery of tumors beyond normal optical penetration depths. The peptide conjugated glycol chitosan nanoparticles were characterized with respect to size, stability and zeta-potential and compared with previous nanoparticles without ligands in terms of their internalization into bladder cancer cells. This study demonstrated the possibility of our nanoparticles for tumor imaging and emphasized the importance of specific targeting peptides.

  4. TiO{sub 2}-based photocatalytic disinfection of microbes in aqueous media: A review

    Energy Technology Data Exchange (ETDEWEB)

    Laxma Reddy, P.Venkata [Program in Environmental Science and Engineering, University of Texas El Paso, El Paso, TX 799038 (United States); Kavitha, Beluri [Department of Pharmacology, Kamineni Institute of Medical Sciences, Dr. NTRUHS, Vijayawada, Andhra Pradesh 520008 (India); Kumar Reddy, Police Anil [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Kim, Ki-Hyun, E-mail: kkim61@hanyang.ac.kr [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of)

    2017-04-15

    The TiO{sub 2} based photocatalyst has great potential for the disinfection/inactivation of harmful pathogens (such as E.coli in aqueous media) along with its well-known usefulness on various chemical pollutants. The disinfection property of TiO{sub 2} is primarily attributed to surface generation of reactive oxygen species (ROS) as well as free metal ions formation. Furthermore, its disinfection capacity and overall performance can be significantly improved through modifications of the TiO{sub 2} material. In this review, we provide a brief survey on the effect of various TiO{sub 2} materials in the disinfection of a wide range of environmentally harmful microbial pathogens (e.g., bacteria, fungi, algae, and viruses) in aqueous media. The influencing factors (such as reactor design, water chemistry, and TiO{sub 2} modifications) of such processes are discussed along with the mechanisms of such disinfection. It is believed that the combined application of disinfection and decontamination will greatly enhance the utilization of TiO{sub 2} photocatalyst as a potential alternative to conventional methods of water purification. - Highlights: • The advent of industrialization jeopardized the quality of drinking water. • TiO{sub 2} photocatalysis holds promise both in the degradation of pollutants and for disinfection. • The applicability of TiO{sub 2}-based decontamination is explored for microbial disinfection. • Here we provide a comprehensive review on titania-based photocatalysts for disinfection.

  5. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    International Nuclear Information System (INIS)

    Khan, Taimur; Chaudhuri, Malay

    2013-01-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants K f and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  6. Development of a pH-responsive imprinted polymer for diclofenac and study of its binding properties in organic and aqueous media.

    Science.gov (United States)

    Mohajeri, Seyed Ahmad; Malaekeh-Nikouei, Bizhan; Sadegh, Hasan

    2012-05-01

    Three different molecularly imprinted polymers (MIPs) for drug delivery of diclofenac in gastrointestinal tract were synthesized employing bulk polymerization method and their binding and release properties were studied in different pH values. Methacrylic acid (MAA), methacrylamide (MAAM) and 4-vinyl pyridine (4VP) were tested as functional monomers and ethylene glycole dimethacrylate (EDMA) was used as a cross-linker monomer in polymeric feed. Binding properties and imprinting factor (IF) of MIPs were studied in comparison with their non-imprinted ones (Blank) in organic and aqueous media. Diclofenac release in aqueous solvents at pH values of 1.5, 6.0 and 8.0, simulating gastrointestinal fluids, were also studied. The results indicated the specific binding of diclofenac to imprinted polymers. Duo to the stronger non-specific bounds in aqueous solutions, IF values decreased in water compared to acetonitrile as an organic medium. Our results proved that all polymers represented pH-responsive diclofenac delivery at above conditions. The data showed that imprinted polymer, prepared by MAA had superior properties, in comparison with other polymers, for minimum release (14%) of drug in gastric acid and maximum release (90%) in basic condition. The results indicated that diclofenac imprinted polymer could be used as a pH-responsive matrix in preparation of a new drug delivery system for diclofenac.

  7. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  8. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    Science.gov (United States)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  9. Aqueous shunt implantation in glaucoma

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-01-01

    Full Text Available Aqueous shunts or glaucoma drainage devices are increasingly utilized in the management of refractory glaucoma. The general design of the most commonly-used shunts is based on the principles of the Molteno implant: ie. a permanent sclerostomy (tube, a predetermined bleb area (plate and diversion of aqueous humour to the equatorial region and away from the limbal subconjunctival space. These three factors make aqueous shunts more resistant to scarring as compared to trabeculectomy. The two most commonly used shunts are the Ahmed Glaucoma Valve, which contains a flow-restrictor, and the non-valved Baervedlt Glaucoma Implant. While the valved implants have a lower tendency to hypotony and related complications, the non-valved implants with larger, more-biocompatible end plate design, achieve lower intraocular pressures with less encapsulation. Non-valved implants require additional suturing techniques to prevent early hypotony and a number of these methods will be described. Although serious shunt-related infection is rare, corneal decompensation and diplopia are small but significant risks.

  10. Synthesis and Characterization of Starch-based Aqueous Polymer Isocyanate Wood Adhesive

    Directory of Open Access Journals (Sweden)

    Shu-min Wang

    2015-09-01

    Full Text Available Modified starch was prepared in this work by acid-thinning and oxidizing corn starch with ammonium persulfate. Also, starch-based aqueous polymer isocyanate (API wood adhesive was prepared. The effect of the added amount of modified starch, styrene butadiene rubber (SBR, polymeric diphenylmethane diisocyanate (P-MDI, and the mass concentration of polyvinyl alcohol (PVOH on the bonding strength of starch-based API adhesives were determined by orthogonal testing. The starch-based API adhesive performance was found to be the best when the addition of modified starch (mass concentration 35% was 45 g, the amount of SBR was 3%, the PVOH mass concentration was 10%, and the amount of P-MDI was 18%. The compression shearing of glulam produced by starch-based API adhesive reached bonding performance indicators of I type adhesive. A scanning electron microscope (SEM was used to analyze the changes in micro-morphology of the starch surface during each stage. Fourier transform infrared spectroscopy (FT-IR was used to study the changes in absorption peaks and functional groups from starch to starch-based API adhesives. The results showed that during starch-based API adhesive synthesis, corn starch surface was differently changed and it gradually reacted with other materials.

  11. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    Imani, A.; Modarress, H.; Eliassi, A.; Abdous, M.

    2009-01-01

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 ) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  12. Bipallidal haemorrhage after ethylene glycol intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M. [CHU Pointe a Pitre, Service de Neurologie, Lille (France); Sengler, C. [CHU Pointe a Pitre, Laboratoire de Pharmaco-Toxicologie, Guadeloupe (France); Benabdallah, E. [CHU Pointe a Pitre, Service de Radiologie, Guadeloupe (France); Colombani, S. [Centre d' Imagerie medicale, Martinique (France)

    2005-02-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  13. Bipallidal haemorrhage after ethylene glycol intoxication

    International Nuclear Information System (INIS)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M.; Sengler, C.; Benabdallah, E.; Colombani, S.

    2005-01-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  14. Activity coefficients at infinite dilution of organic solutes in diethylene glycol and triethylene glycol from gas–liquid chromatography

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Letcher, Trevor M.; Naidoo, Paramespri; Ramjugernath, Deresh

    2013-01-01

    Highlights: • γ 13 ∞ values reported for 25 organic solutes in the solvents DEG and TEG. • Measurements undertaken using the glc technique at T = (333.2, 348.2, and 363.2) K. • Measurements at elevated temperature possible by pre-saturation of carrier gas. • Comparison of DEG and TEG performance with a number of solvents. -- Abstract: The infinite dilution activity coefficients for 25 hydrocarbon solutes in diethylene glycol (DEG) and triethylene glycol (TEG) were measured using the gas–liquid chromatography technique with pre-saturation of the carrier gas. The hydrocarbon solutes included n-alkanes, alk-1-enes, alk-1-ynes, cycloalkanes, alkylbenzenes and alkanols. At the temperatures at which measurements were conducted, the solvents were volatile, and pre-saturation was considered necessary. The measurements were made at T = (333.2, 348.2 and 363.2) K. Values of the selectivity and capacity relating to DEG and TEG, for two sets of mixtures, which are usually difficult to separate by distillation or solvent extraction, were calculated from the experimental results. The two sets of mixtures were: cyclohexane and benzene; and benzene and methanol. The results obtained in this work were then compared to values for other solvents, at similar temperatures, which were obtained or calculated from literature data

  15. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment.

    Science.gov (United States)

    Zhang, Hongyan; Lin, Ling; Zeng, Xiaoxue; Ruan, Yajuan; Wu, Yongning; Lin, Minggui; He, Ye; Fu, FengFu

    2016-04-15

    We herein developed a novel biosensor for the visual detection of trace uranyl ion (UO2(2+)) in aqueous environment with high sensitivity and specificity by using DNAzyme-functionalized magnetic beads (MBs) for UO2(2+) recognition and gold nano-particles (AuNPs)-based enzymatic catalysis oxidation of TMB (3,3',5,5'-tetramethylbenzidine sulfate) for signal generation. The utilization of MBs facilitates the magnetic separation and collection of sensing system from complex sample solution, which leads to more convenient experimental operation and more strong resistibility of the biosensor to the matrix of sample, and the utilization of AuNPs-based enzymatic catalysis amplification greatly improved the sensitivity of the biosensor. Compared with the previous DNAzyme-based UO2(2+) sensors, the proposed biosensor has outstanding advantages such as relative high sensitivity and specificity, operation convenience, low cost and more strong resistibility to the matrix of sample. It can be used to detect as low as 0.02 ppb (74 pM) of UO2(2+) in aqueous environment by only naked-eye observation and 1.89 ppt (7.0 pM) of UO2(2+) by UV-visible spectrophotometer with a recovery of 93-99% and a RSD ≤ 5.0% (n=6) within 3h. Especially, the visual detection limit of 0.02 ppb (74 pM) is much lower than the maximum allowable level of UO2(2+) (130 nM) in the drinking water defined by the U.S. Environmental Protection Agency (EPA), indicating that our method meets the requirement of rapid and on-site detection of UO2(2+) in the aqueous environment by only naked-eye observation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  17. Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunxi Hai

    2017-06-01

    Full Text Available This study focus on specifying the roles of solvent ethylene glycol (EG and polymers for synthesis of uniformly distributed magnesium oxide (MgO nanoparticles with average crystallite size of around 50 nm through a modified polyol method. Based on different characterization results, it was concluded that, Mg2+ ions was precipitated by the −OH and CO32− ions decomposed from urea in ethylene glycol (EG medium (CO(NH22 → NH3 + HNCO, HNCO + H2O → NH3 + CO2, thus forming well crystallized Mg5(CO34(OH2 (H2O4 precursor which could be converted to MgO by calcination. Surface protectors PEG and PVP have no obvious influences on cyrtsal structure, morphology and size uniformity of as-prepared precursors and target MgO nanoparticles. In comparison with polymers PEG and PVP, solvent EG plays an important role in controlling the morphology and diameter uniformity of MgO nanoparticles.

  18. Inverse hydrochemical models of aqueous extracts tests

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  19. Self-Assembly of Calix[4]arene-Based Amphiphiles Bearing Polyethylene Glycols: Another Example of "Platonic Micelles".

    Science.gov (United States)

    Yoshida, Kenta; Fujii, Shota; Takahashi, Rintaro; Matsumoto, Sakiko; Sakurai, Kazuo

    2017-09-12

    The aggregation number of classical micelles exhibits a certain distribution, which is a recognizable feature of conventional micelles. However, we recently identified perfectly monodisperse calix[4]arene-based micelles whose aggregation numbers agree with the vertex numbers of regular polyhedra, that is, Platonic solids, and thus they are named "Platonic micelles". Regarding our hypothesis of the formation mechanism of Platonic micelles, both repulsive interactions including steric hindrance and electrostatic repulsions among the headgroups are important for determining their aggregation number; however, neither of these is necessarily needed to consider. In this study, we employed polyethylene glycols (PEGs) as the nonionic headgroup of calix[4]arene-based amphiphiles to study the effects of only repulsive interactions caused by steric hindrance on the formation of Platonic micelles. The amphiphiles containing relatively low-molecular-weight PEGs (550 or 1000 g mol -1 ) form dodecamer or octamer micelles, respectively, with no variation in the aggregation number. However, relatively high-molecular-weight PEGs (2000 g mol -1 ) produce polydispersed micelles with a range of aggregation number. PEG 2000 exhibits a greater affinity for water than PEG 550 and 1000, resulting in fewer hydrophobic interactions in micelle formation, as indicated by the drastic increase of the critical micelle concentration (CMC) value in the PEG 2000 system. The instability of the structure of PEG 2k CaL5 micelles might contribute to the higher mobility of PEG in the micellar shell, resulting in a non-Platonic aggregation number with polydispersity.

  20. Flow of Aqueous Humor

    Science.gov (United States)

    ... Home Flow of Aqueous Humor Flow of Aqueous Humor Most, but not all, forms of glaucoma are ... remains normal when some of the fluid (aqueous humor) produced by the eye's ciliary body flows out ...