WorldWideScience

Sample records for glycogen trophoblast cells

  1. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  2. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  3. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions

    International Nuclear Information System (INIS)

    Zhou, Jinghua; Zhang, Jianyun; Li, Feixue; Liu, Jing

    2016-01-01

    Highlights: • Tebuconazole (TEB) inhibited the proliferation of human placental trophoblasts. • TEB changed cell cycle distribution of G1 and G2 phases of trophoblasts. • TEB induced apoptosis of trophoblasts via mitochondrial pathway. • TEB decreased the invasive and migratory capacities of trophoblasts. • TEB altered the mRNA levels of key regulatory genes in trophoblasts - Abstract: Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy.

  4. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jinghua [Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058 (China); Zhang, Jianyun [Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Feixue [Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Liu, Jing, E-mail: jliue@zju.edu.cn [Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058 (China); Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-05-05

    Highlights: • Tebuconazole (TEB) inhibited the proliferation of human placental trophoblasts. • TEB changed cell cycle distribution of G1 and G2 phases of trophoblasts. • TEB induced apoptosis of trophoblasts via mitochondrial pathway. • TEB decreased the invasive and migratory capacities of trophoblasts. • TEB altered the mRNA levels of key regulatory genes in trophoblasts - Abstract: Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy.

  5. Trophoblast cells of ruminant placentas - A mini review

    International Nuclear Information System (INIS)

    Igwebuike, U.M.

    2004-09-01

    Understanding of ruminant placental structure and function is essential for veterinarians and researchers. The ruminant placenta is classified as cotyledonary and synepitheliochorial on the bases of its gross anatomical features and histological characteristics respectively. The richly vascularized embryonic chorioallantois is lined on its outer surface by cells of the trophectodermal epithelium. These cells which assume specialized functions are referred to as trophoblast cells. Two morphologically and functionally distinct cell types have been recognized in the trophectoderm of the placenta of ruminant animals. These are the mononucleate trophoblast cells and the binucleate trophoblast cells. The occurrence, morphological characteristics, and specialized functions of these trophoblast cells, in relation to conceptus nutrition and survival in utero are discussed in this review. (author)

  6. Establishment and characterization of a spontaneously immortalized trophoblast cell line (HPT-8) and its hepatitis B virus-expressing clone.

    Science.gov (United States)

    Zhang, Lei; Zhang, Weilu; Shao, Chen; Zhang, Jingxia; Men, Ke; Shao, Zhongjun; Yan, Yongping; Xu, Dezhong

    2011-08-01

    Most trophoblast cell lines currently available to study vertical transmission of hepatitis B virus (HBV) are immortalized by viral transformation. Our goal was to establish and characterize a spontaneously immortalized human first-trimester trophoblast cell line and its HBV-expressing clone. Chorionic villi of Asian human first-trimester placentae were digested with trypsin and collagenase I to obtain the primary trophoblast cell culture. A spontaneously immortalized trophoblast cell line (HPT-8) was analyzed by scanning and transmission electron microscopy, cell cycle analysis, immunohistochemistry and immunofluorescence. HPT-8 cells were stably transfected with the adr subtype of HBV (HPT-8-HBV) and characterized by PCR and enzyme-linked immunosorbent assay. We obtained a clonal derivative of a spontaneously immortalized primary cell clone (HPT-8). HPT-8 cells were epithelioid and polygonal, and formed multinucleate, giant cells. They exhibited microvilli, distinct desmosomes between adjacent cells, abundant endoplasm, lipid inclusions and glycogen granules, which are all characteristic of cytotrophoblasts. HPT-8 cells expressed cytokeratin 7, cytokeratin 18, vimentin, cluster of differentiation antigen 9, epidermal growth factor receptor, stromal cell-derived factor 1 and placental alkaline phosphatase. They secreted prolactin, estradiol, progesterone and hCG, and were positive for HLA-G, a marker of extravillous trophoblasts. HPT-8-HBV cells were positive for HBV relaxed-circular, covalently closed circular DNA and pre-S sequence. HPT-8-HBV cells also produced and secreted HBV surface antigen and HBV e antigen. We established a trophoblast cell line, HPT-8 and its HBV-expressing clone which could be valuable in exploring the mechanism of HBV viral integration in human trophoblasts during intrauterine infection.

  7. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  8. Live cell imaging of in vitro human trophoblast syncytialization.

    Science.gov (United States)

    Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei

    2014-06-01

    Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.

  9. Evidence for Differential Glycosylation of Trophoblast Cell Types*

    Science.gov (United States)

    Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E.; Longtine, Mark S.; Schust, Danny J.; Haslam, Stuart M.; Blois, Sandra M.; Dell, Anne; Clark, Gary F.

    2016-01-01

    Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3–4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2–3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2–3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. PMID:26929217

  10. Evidence for Differential Glycosylation of Trophoblast Cell Types.

    Science.gov (United States)

    Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E; Longtine, Mark S; Schust, Danny J; Haslam, Stuart M; Blois, Sandra M; Dell, Anne; Clark, Gary F

    2016-06-01

    Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Wang, Kai [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Gong, Yun Guo; Khoo, Sok Kean [Genomic Microarray Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503 (United States); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States)

    2013-02-08

    Highlights: ► CDX2 and EOMES play critical roles in human induced trophoblast progenitors (iTP). ► iTP cells directly transformed from fibroblasts. ► Differentiation of iTP cells into extravillous trophoblasts and syncytiotrophoblasts. -- Abstract: Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, can be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and

  12. [Cells of immune system of mother and trophoblast cells: constructive cooperation for the sake of achievement of the joint purpose].

    Science.gov (United States)

    Aĭlamazian, E K; Stepanova, O I; Sel'kov, S A; Sokolov, D I

    2013-01-01

    In the present review modern data about change of morfo-functional properties of a trophoblast during pregnancy, and also about influence of the cytokines produced by cells of a microenvironment, including leucocytes of mother, on a functional state of trophoblast is cited. Features of interaction between trophoblast and immune cells of mother are described within physiological pregnancy and within pregnancy complicated by preeclampsia.

  13. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  14. Decidual Stromal Cell Response to Paracrine Signals from the Trophoblast: Amplification of Immune and Angiogenic Modulators

    DEFF Research Database (Denmark)

    Hess, AP; Hamilton, AE; Talbi, S

    2007-01-01

    During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important...... a functional genomics approach to investigate these paracrine interactions. Human endometrial stromal cells were decidualized with progesterone and were further treated with conditioned media (CM) from human trophoblasts (TCM) or, as a control, with conditioned media (CCM) from non-decidualized stromal cells...... regulated groups. The data demonstrate a significant induction of pro-inflammatory cytokines and chemokines, as well as angiogenic/static factors in decidualized endometrial stromal cells in response to trophoblast-secreted products. The data suggest that the trophoblast acts to alter the local immune...

  15. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  16. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    Science.gov (United States)

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  18. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. ADAM28 localizes to HLA-G+ trophoblasts and promotes column cell outgrowth.

    Science.gov (United States)

    De Luca, L C; Le, H T; Mara, D L; Beristain, A G

    2017-07-01

    Trophoblast progenitor cell differentiation towards the extravillous trophoblast (EVT) lineage initiates within proximal regions of anchoring columns of first trimester placental villi. While molecular processes controlling the initial stages of progenitor cell differentiation along the EVT pathway have been described, much remains unknown about factors important in distal column cell differentiation into invasive EVTs. ADAMs are proteases that regulate growth factor signaling, cell-matrix adhesion, and matrix proteolysis, and thus impact many processes relevant in placentation. Global gene expression studies identified the ADAM subtype, ADAM28, to be highly expressed in EVT-like trophoblasts, suggesting that it may play a role in EVT function. This study aims to test the functional importance of ADAM28 in column cell outgrowth and maintenance. ADAM28 mRNA levels and protein localization were determined by qPCR and immunofluorescence microscopy analyses in purified placental villi cell populations and tissues. ADAM28 function in trophoblast column outgrowth was examined using ADAM28-targetting siRNAs in Matrigel-imbedded placental explant cultures. Within placental villi, ADAM28 mRNA levels were highest in HLA-G + column trophoblasts, and consistent with this, ADAM28 was preferentially localized to HLA-G + trophoblasts within distal anchoring columns and decidual tissue. siRNA-directed loss of ADAM28 impaired trophoblast column outgrowth and resulted in increased apoptosis in matrix-invading trophoblasts. Our findings suggest that ADAM28 promotes column outgrowth by providing survival cues within anchoring column cells. This study also provides insight into a possible role for ADAM28 in driving differentiation of column trophoblasts into invasive HLA-G + EVT subsets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Novel method for detection of glycogen in cells.

    Science.gov (United States)

    Skurat, Alexander V; Segvich, Dyann M; DePaoli-Roach, Anna A; Roach, Peter J

    2017-05-01

    Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange.

    Science.gov (United States)

    Loi, Pasqualino; Galli, Cesare; Lazzari, Giovanna; Matsukawa, Kazutsugu; Fulka, Josef; Goeritz, Frank; Hildebrandt, Thomas B

    2018-04-13

    Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation.

  2. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status......, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates...

  3. Muscle glycogen and cell function--Location, location, location.

    Science.gov (United States)

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  5. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P cells expressed NKG2D at 10% oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  6. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC Promote Trophoblast Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Nan Yu

    Full Text Available Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo-secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β and leukemia inhibitory factor (LIF expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR. The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP-2 (MMP-2, MMP-9, vascular endothelial growth factor (VEGF, tissue inhibitor of metalloproteinase (TIMP-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.

  7. Synthesis and release of fatty acids by human trophoblast cells in culture

    International Nuclear Information System (INIS)

    Coleman, R.A.; Haynes, E.B.

    1987-01-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from [ 14 C]acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from [ 14 C]acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. [ 14 C]acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with [1- 14 C]oleate; trophoblast cells then released 14 C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the 14 C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release

  8. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Science.gov (United States)

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    Science.gov (United States)

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Progranulin shows cytoprotective effects on trophoblast cells in vitro but does not antagonize TNF-α-induced apoptosis.

    Science.gov (United States)

    Stubert, Johannes; Waldmann, Kathrin; Dieterich, Max; Richter, Dagmar-Ulrike; Briese, Volker

    2014-11-01

    The glycoprotein progranulin directly binds to TNF-receptors and thereby can antagonize the inflammatory effects of TNF-α. Here we analyzed the impact of both cytokines on cytotoxicity and viability of trophoblast cells. Isolated villous first trimester human trophoblast cells and the human choriocarcinoma cell line BeWo were treated with recombinant human progranulin and TNF-α. Analyses were performed by LDH- and MTT-assay and measurement of caspase-8-activity. Progranulin treatment showed some cytoprotective effects on isolated trophoblast cells. However, TNF-α-induced apoptosis was not antagonized by addition of progranulin. Effects were similar, but more pronounced in BeWo cells. The cytoprotective activity of progranulin on trophoblast cells in vitro was only weak and of doubtful biologic relevance. It was not able to antagonize TNF-α. Future studies should focus on possible paracrine activities of progranulin.

  11. Decreased IL-33 Production Contributes to Trophoblast Cell Dysfunction in Pregnancies with Preeclampsia

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2018-01-01

    Full Text Available Preeclampsia (PE is a life-threatening pregnancy complication which is related to aggradation of risk regarding fetal and maternal morbidity and mortality. Dysregulation of systemic inflammatory response and dysfunction of trophoblast cells have been proposed to be involved in the development and progression of PE. Some studies have demonstrated that interleukin-33 (IL-33 is an immunomodulatory cytokine that is associated with the immune regulation of tumor cells. However, little is known whether IL-33 and its receptor ST2/IL-1 R4 could regulate trophoblast cells, which are associated with the pathogenesis of PE. In this study, our target is to explore the impact of IL-33 on trophoblast cells and elucidate its underlying pathophysiological mechanisms. Placental tissues from the severe PE group (n=11 and the normotensive pregnant women’s group (n=11 were collected for the protein expression and distribution of IL-33 along with its receptor ST2/IL-1 R4 via Western blot analysis and immunohistochemistry, respectively. We discovered that the level of IL-33 was decreased in placental tissues of pregnant women with PE, while no distinction was observed in the expression of ST2/IL-1 R4. These results were further verified in villous explants which were treated with sodium nitroprusside with different concentrations, to simulate the pathological environment of PE. To investigate IL-33 effects on trophoblast cells separately, IL-33 shRNA was introduced into HTR8/SVneo cells and villi. IL-33 shRNA weakened the proliferation, migration, and invasion capacity of HTR8/SVneo cells. The migration distance of villous explants was also markedly decreased. The reduced invasion of trophoblast cells is a result of IL-33 knockdown which could be related to the decline of MMP2/9 activity and the increased utterance of TIMP1/2. Overall, our findings demonstrated that the reduction of IL-33 production was connected with the reduced functional capability of

  12. A Critical Role of TET1/2 Proteins in Cell-Cycle Progression of Trophoblast Stem Cells

    Directory of Open Access Journals (Sweden)

    Stephanie Chrysanthou

    2018-04-01

    Full Text Available Summary: The ten-eleven translocation (TET proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage. : TET proteins are well known for their role in pluripotency. Here, Hemberger and colleagues show that TET1 and TET2 are also critical for maintaining the epithelial integrity of trophoblast stem cells. TET1/2 ensure mitotic cell-cycle progression by stabilizing cyclin B1 and by regulating centrosome organization. These insights reveal the importance of TET proteins beyond their role in epigenome remodeling. Keywords: TET proteins, trophoblast stem cells, cell cycle, endoreduplication, self-renewal, mitosis, trophoblast giant cells, differentiation

  13. Effects of phytoestrogens genistein and daidzein on progesterone and estrogen (estradiol) production of human term trophoblast cells in vitro.

    Science.gov (United States)

    Richter, Dagmar Ulrike; Mylonas, Ioannis; Toth, Bettina; Scholz, Christoph; Briese, Volker; Friese, Klaus; Jeschke, Udo

    2009-01-01

    Phytoestrogens are a diverse group of nonsteroidal plant compounds that occur naturally in many plants. Because they possess a ring system similar to estrogens they are able to bind on estrogen receptors alpha and beta in humans. The effects of the phytoestrogens genistein and daidzein on the production of progesterone and estrogen in isolated human term trophoblast cells in vitro were tested in this study. Cytotrophoblast cells were isolated from human term placentas. Phytoestrogens genistein and daidzein were incubated in different concentrations with trophoblast cells. Untreated cells were used as controls. After 24 h aliquots were removed and tested for progesterone and estrogen production. The production of the steroid hormones progesterone and estrogen are influenced by phytoestrogens genistein and daidzein in human term trophoblast cells. A strong inhibition effect of both phytoestrogens tested in the production of progesterone was demonstrated. In addition, a significant stimulating effect on estrogen production by genistein and daidzein was observed. Results obtained with this study show that phytoestrogens (genistein and daidzein) sufficiently reduce progesterone production in human term trophoblast cells. Because blockade of progesterone is a possible mechanism involved in initiation of labor, we may speculate that high doses of phytoestrogens at the feto-maternal interphase could play a negative role in maintenance of pregnancy. Stimulation of estrogen production by genistein and daidzein in trophoblast cells is probably due to estrogen receptor blocking effects of both phytoestrogens. Trophoblast cells seem to compensate blocking of its estrogen receptors by higher estrogen production.

  14. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  15. Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yahong Jiang

    Full Text Available Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ, trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11, KISS1, insulin-like growth factor binding protein 4 (IGFBP4, collagen type I alpha 1 (COLIA1, matrix metallopeptidase 9 (MMP9, and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA, MMP1, gap junction protein alpha 1 (GJA1, et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua.

  16. The psychoactive compound of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC) inhibits the human trophoblast cell turnover.

    Science.gov (United States)

    Costa, M A; Fonseca, B M; Marques, F; Teixeira, N A; Correia-da-Silva, G

    2015-08-06

    The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. In vitro effects of triiodothyronine on gene expression in mouse trophoblast cells.

    Science.gov (United States)

    Silva, J F; Ocarino, N M; Serakides, R

    2015-01-01

    The objective of the present study was to evaluate the effects of different doses of T3 (10(-4) M, 10(-7) M, 10(-9) M) on the in vitro gene expression of Tpbp, Prl3b1, VEGF, PGF, PL-1, and INFy in mouse trophoblast cells by real-time RT-PCR. Doses of 10(-7) and 10(-9) M T3 increased the mRNA levels of Tpbp, Pl3b1, VEGF, PGF, INFy and PL-1. In contrast, the dose of 10(-4) M reduced the gene expression of PL-1 and VEGF. T3 affected the gene expression of differentiation, hormonal, immune and angiogenic factors in mouse trophoblast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gender-Dependent Survival of Allogeneic Trophoblast Stem Cells in Liver

    Science.gov (United States)

    Epple-Farmer, Jessica; Debeb, Bisrat G.; Smithies, Oliver; Binas, Bert

    2012-01-01

    In view of the well-known phenomenon of trophoblast immune privilege, trophoblast stem cells (TSCs) might be expected to be immune privileged, which could be of interest for cell or gene therapies. Yet in the ectopic sites tested so far, TSC transplants fail to show noticeable immune privilege and seem to lack physiological support. However, we show here that after portal venous injection, green fluorescent protein (GFP)-labeled TSCs survive for several months in the livers of allogeneic female but not male mice. Gonadectomy experiments revealed that this survival does not require the presence of ovarian hormones but does require the absence of testicular factors. By contrast, GFP-labeled allogeneic embryonic stem cells (ESCs) are reliably rejected; however, these same ESCs survive when mixed with unlabeled TSCs. The protective effect does not require immunological compatibility between ESCs and TSCs. Tumors were not observed in animals with either successfully engrafted TSCs or coinjected ESCs. We conclude that in a suitable hormonal context and location, ectopic TSCs can exhibit and confer immune privilege. These findings suggest applications in cell and gene therapy as well as a new model for studying trophoblast immunology and physiology. PMID:19523327

  19. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    International Nuclear Information System (INIS)

    Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet; Taylor, Douglas D.

    2011-01-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm ± 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  20. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Atay, Safinur [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Gercel-Taylor, Cicek [Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States); Kesimer, Mehmet [Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Taylor, Douglas D., E-mail: ddtaylor@louisville.edu [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States)

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  1. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    Science.gov (United States)

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  2. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress

    Science.gov (United States)

    Bolnick, Jay M.; Kilburn, Brian A.; Bolnick, Alan D.; Diamond, Michael P.; Singh, Manvinder; Hertz, Michael; Dai, Jing

    2015-01-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-NG-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. PMID:25431453

  3. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    Science.gov (United States)

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  4. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Feng, E-mail: jiangfeng1161@163.com [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Zhao, Hongxi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Wang, Li [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China); Guo, Xinyu [Assisted Reproductive Center, General Hospital of Guangzhou Military Command, Guangzhou 510010 (China); Wang, Xiaohong; Yin, Guowu [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Hu, Yunsheng [Department of Orthopedics, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Li, Yi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Yao, Yuanqing, E-mail: yuanqingyaoxa@163.com [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China)

    2015-02-27

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.

  5. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    International Nuclear Information System (INIS)

    Jiang, Feng; Zhao, Hongxi; Wang, Li; Guo, Xinyu; Wang, Xiaohong; Yin, Guowu; Hu, Yunsheng; Li, Yi; Yao, Yuanqing

    2015-01-01

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions

  6. Y-27632 enhances differentiation of blastocyst like cystic human embryoid bodies to endocrinologically active trophoblast cells on a biomimetic platform

    Directory of Open Access Journals (Sweden)

    Totey Satish M

    2009-09-01

    Full Text Available Abstract Trophoblast differentiation and formation of the placenta are important events linked to post-implantation embryonic development. Models mimicking the biology of trophoblast differentiation in a post-implantation maternal microenvironment are needed for understanding disorders like placental-ischemia or for applications in drug-screening, and would help in overcoming the ethical impasse on using human embryos for such research. Here we attempt to create such a model by using embryoid bodies (EBs and a biomimetic platform composed of a bilayer of fibronectin and gelatin on top of low-melting agarose. Using this model we test the hypothesis that cystic-EBs (day 30 that resemble blastocysts morphologically, are better sources as compared to noncytic EBs (day 10, for functional trophoblast differentiation; and that the Rho kinases inhibitor Y27632 can enhance this differentiation. Non/cytic EBs with/out Y27632 were grown on this platform for 28 days, and screened from secretion and expression of trophoblast and other lineage markers using ECLIA, RT-PCR, and Immunofluorescence. All EBs attached on this surface and rapidly proliferated into hCG and progesterone (P2 secreting functional trophoblast cells. However, the cells derived from cytic-EBs and cytic-EBs+ Y27632 showed the maximum secretion of these hormones and expressed IGF2, supporting our hypothesis. Also Y27632 reduced extraembryonic endoderm and trophoblast lineage differentiation from early noncystic-EBs, whereas, it specifically enhanced the induction of trophoblast and multinucleated syncitiotrophoblast differentiation from late cystic-EBs. In vivo trophoblast differentiation can be replicated in fibronectin based biomaterials, using cytic-EBs and by maneuvering the Rho-ROCK pathways. Response of EBs to a compound may vary temporally, and determination of their right stage is crucial for applications in directed-differentiation or drug-screening.

  7. Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States

    Science.gov (United States)

    Chen, Richard J.; Zhang, Guofeng; Garfield, Susan H.; Shi, Yi-Jun; Chen, Kevin G.; Robey, Pamela G.; Leapman, Richard D.

    2015-01-01

    Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions. PMID:26565809

  8. Waddlia chondrophila infects and multiplies in ovine trophoblast cells stimulating an inflammatory immune response.

    Directory of Open Access Journals (Sweden)

    Nick Wheelhouse

    Full Text Available Waddlia chondrophila (W. chondrophila is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus. This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity.Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i. and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways.W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.

  9. Waddlia chondrophila infects and multiplies in ovine trophoblast cells stimulating an inflammatory immune response.

    Science.gov (United States)

    Wheelhouse, Nick; Coyle, Christopher; Barlow, Peter G; Mitchell, Stephen; Greub, Gilbert; Baszler, Tim; Rae, Mick T; Longbottom, David

    2014-01-01

    Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity. Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways. W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.

  10. Is Type-2 Diabetes a Glycogen Storage Disease of Pancreatic β-Cells?

    Science.gov (United States)

    Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F

    2018-01-01

    Elevated plasma glucose leads to pancreatic β-cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this ‘glucotoxicity’ via dysregulated biochemical pathways promoting β-cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β-cells in normoglycaemia and in diabetes. PMID:28683284

  11. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses.

    Science.gov (United States)

    Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal

    2017-09-05

    Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Identification of differences in gene expression in primary cell cultures of human endometrial epithelial cells and trophoblast cells following their interaction

    DEFF Research Database (Denmark)

    Høgh, Mette; Islin, Henrik; Møller, Charlotte

    2006-01-01

    The interaction between the cell types was simulated in vitro by growing primary cell cultures of human endometrial epithelial cells and trophoblast cells together (co-culture) and separately (control cultures). Gene expression in the cell cultures was compared using the Differential Display method and confirmed...

  13. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells

    DEFF Research Database (Denmark)

    Djurisic, S; Teiblum, S; Tolstrup, C K

    2015-01-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complicati...

  14. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption.

    Science.gov (United States)

    Sagrillo-Fagundes, Lucas; Clabault, Hélène; Laurent, Laetitia; Hudon-Thibeault, Andrée-Anne; Salustiano, Eugênia Maria Assunção; Fortier, Marlène; Bienvenue-Pariseault, Josianne; Wong Yen, Philippe; Sanderson, J Thomas; Vaillancourt, Cathy

    2016-07-30

    This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.

  15. Glycogen serves as an energy source that maintains astrocyte cell proliferation in the neonatal telencephalon.

    Science.gov (United States)

    Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko

    2017-06-01

    Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.

  16. Rac1/β-Catenin Signalling Pathway Contributes to Trophoblast Cell Invasion by Targeting Snail and MMP9

    Directory of Open Access Journals (Sweden)

    Minghua Fan

    2016-03-01

    Full Text Available Background/Aims: Preeclampsia is an idiopathic and serious complication during gestation in which placental trophoblast cells differentiate into several functional subtypes, including highly invasive extravillous trophoblasts (EVTs. Although the cause and pathogenesis of preeclampsia have remained unclear, numerous studies have suggested that the inadequacy of EVT invasion leads to imperfect uterine spiral artery remodelling, which plays a crucial role in the development of preeclampsia. Rac1, or Ras-related C3 botulinum toxin substrate 1, was found to be a key regulator of the migration, invasion uand apoptosis of various tumour cells. Because EVTs share similar invasive and migratory biological behaviours with malignant cells, this study aimed to determine whether the Rac1 signalling pathway affects trophoblast invasion and is thus involved in the pathogenesis of preeclampsia. Methods: We measured the activity of Rac1 and its downstream targets, β-catenin, Snail and MMP9 in placental tissues from patients experiencing a normal pregnancy and those with preeclampsia. Furthermore, we treated HTR-8/SVneo cells with a shRNA Rac1 vector and the β-catenin inhibitor IWP-2 and explored Rac1 signalling pathway activation as well as the effects of Snail and β-catenin on trophoblast invasion. Results: In placental samples from patients experiencing a normal pregnancy and those with preeclampsia, active Rac1 levels and MMP9 protein and mRNA levels were significantly decreased in term pregnancy samples compared to early pregnancy samples. Lower levels were found in preeclampsia samples than in normal term pregnancy samples, and these levels significantly declined in severe preeclampsia samples compared with mild preeclampsia samples. Further analyses demonstrated that both Rac1 shRNA and the β-catenin inhibitor significantly suppressed MMP9 and Snail activation in trophoblasts, thus impairing trophoblast invasion. Notably, silencing Rac1 down

  17. Effects of gamma-irradiation on the glycogen and lipid contents of the rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Nahed, R H.A.; Al-Zahaby, Al-Ahmmady, S.; Sanad, S M.K.; Roushdy, H M

    1986-01-01

    Histochemical changes in the glycogen and lipid contents of the rat liver cells were studied at different intervals following whole body gamma-irradiation at the exposure dose level of 600 rads. The glycogen and lipid contents were significantly altered, the changes were time-dependent.

  18. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts.

    Science.gov (United States)

    Zhao, Lei; Shao, Qianqian; Zhang, Yun; Zhang, Lin; He, Ying; Wang, Lijie; Kong, Beihua; Qu, Xun

    2016-02-09

    Maternal immune adaptation is required for a successful pregnancy to avoid rejection of the fetal-placental unit. Dendritic cells within the decidual microenvironment lock in a tolerogenic profile. However, how these tolerogenic DCs are induced and the underlying mechanisms are largely unknown. In this study, we show that human extravillous trophoblasts redirect the monocyte-to-DC transition and induce regulatory dendritic cells. DCs differentiated from blood monocytes in the presence of human extravillous trophoblast cell line HTR-8/SVneo displayed a DC-SIGN(+)CD14(+)CD1a(-) phenotype, similar with decidual DCs. HTR8-conditioned DCs were unable to develop a fully mature phenotype in response to LPS, and altered the cytokine secretory profile significantly. Functionally, conditioned DCs poorly induced the proliferation and activation of allogeneic T cells, whereas promoted CD4(+)CD25(+)Foxp3(+) Treg cells generation. Furthermore, the supernatant from DC and HTR-8/SVneo coculture system contained significant high amount of M-CSF and MCP-1. Using neutralizing antibodies, we discussed the role of M-CSF and MCP-1 during monocyte-to-DCs differentiation mediated by extravillous trophoblasts. Our data indicate that human extravillous trophoblasts play an important role in modulating the monocyte-to-DC differentiation through M-CSF and MCP-1, which facilitate the establishment of a tolerogenic microenvironment at the maternal-fetal interface.

  19. miR-520 promotes DNA-damage-induced trophoblast cell apoptosis by targeting PARP1 in recurrent spontaneous abortion (RSA).

    Science.gov (United States)

    Dong, Xiujuan; Yang, Long; Wang, Hui

    2017-04-01

    The establishment and maintenance of successful pregnancy mainly depends on trophoblast cells. Their dysfunction has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy. However, the underlying mechanisms of trophoblasts dysfunction remain unclear. DNA-damage-induced cell apoptosis has been reported to play a vital role in cell death. In this study, we identified a novel microRNA (miR-520) in RSA progression via regulating trophoblast cell apoptosis. Microarray analysis showed that miR-520 was highly expressed in villus of RSA patients. By using flow cytometry analysis, we observed miR-520 expression was correlated with human trophoblast cell apoptosis in vitro, along with decreased poly (ADP-ribose) polymerase-1 (PARP1) expression. With the analysis of clinic samples, we observed that miR-520 level was negatively correlated with PARP1 level in RSA villus. In addition, overexpression of PARP1 restored the miR-520-induced trophoblast cell apoptosis in vitro. The status of chromosome in trophoblast implied that miR-520-promoted DNA-damage-induced cell apoptosis to regulate RSA progression. These results indicated that the level of miR-520 might associate with RSA by prompting trophoblast cell apoptosis via PARP1 dependent DNA-damage pathway.

  20. Quantitative investigation of reproduction of gonosomal condensed chromatin during trophoblast cell polyploidization and endoreduplication in the east-european field vole Microtus rossiaemeridionalis

    Directory of Open Access Journals (Sweden)

    Bogdanova Margarita S

    2003-04-01

    Full Text Available Abstract Simultaneous determinations of DNA content in cell nuclei and condensed chromatin bodies formed by heterochromatized regions of sex chromosomes (gonosomal chromatin bodies, GCB have been performed in two trophoblast cell populations of the East-European field vole Microtus rossiaemeridionalis: in the proliferative population of trophoblast cells of the junctional zone of placenta and in the secondary giant trophoblast cells. One or two GCBs have been observed in trophoblast cell nuclei of all embryos studied (perhaps both male and female. In the proliferative trophoblast cell population characterized by low ploidy levels (2–16c and in the highly polyploid population of secondary giant trophoblast cells (32–256c the total DNA content in GCB increased proportionally to the ploidy level. In individual GCBs the DNA content also rose proportionally to the ploidy level in nuclei both with one and with two GCBs in both trophoblast cell populations. Some increase in percentage of nuclei with 2–3 GCBs was shown in nuclei of the placenta junctional zone; this may be accounted for by genome multiplication via uncompleted mitoses. In nuclei of the secondary giant trophoblast cells (16–256c the number of GCBs did not exceed 2, and the fraction of nuclei with two GCBs did not increase, which suggests the polytene nature of sex chromosomes in these cells. In all classes of ploidy the DNA content in trophoblast cell nuclei with the single GCB was lower than in nuclei with two and more GCBs. This can indicate that the single GCB in many cases does not derive from fusion of two GCBs. The measurements in individual GCBs suggest that different heterochromatized regions of the X- and Y-chromosome may contribute in GCB formation.

  1. ECM-dependent HIF induction directs trophoblast stem cell fate via LIMK1-mediated cytoskeletal rearrangement.

    Directory of Open Access Journals (Sweden)

    Hwa J Choi

    Full Text Available The Hypoxia-inducible Factor (HIF family of transcriptional regulators coordinates the expression of dozens of genes in response to oxygen deprivation. Mammalian development occurs in a hypoxic environment and HIF-null mice therefore die in utero due to multiple embryonic and placental defects. Mouse embryonic stem cells do not differentiate into placental cells; therefore, trophoblast stem cells (TSCs are used to study mouse placental development. Consistent with a requirement for HIF activity during placental development in utero, TSCs derived from HIF-null mice exhibit severe differentiation defects and fail to form trophoblast giant cells (TGCs in vitro. Interestingly, differentiating TSCs induce HIF activity independent of oxygen tension via unclear mechanisms. Here, we show that altering the extracellular matrix (ECM composition upon which TSCs are cultured changes their differentiation potential from TGCs to multinucleated syncytiotropholasts (SynTs and blocks oxygen-independent HIF induction. We further find that modulation of Mitogen Activated Protein Kinase Kinase-1/2 (MAP2K1/2, MEK-1/2 signaling by ECM composition is responsible for this effect. In the absence of ECM-dependent cues, hypoxia-signaling pathways activate this MAPK cascade to drive HIF induction and redirect TSC fate along the TGC lineage. In addition, we show that integrity of the microtubule and actin cytoskeleton is critical for TGC fate determination. HIF-2α ensures TSC cytoskeletal integrity and promotes invasive TGC formation by interacting with c-MYC to induce non-canonical expression of Lim domain kinase 1-an enzyme that regulates microtubule and actin stability, as well as cell invasion. Thus, we find that HIF can integrate positional and metabolic cues from within the TSC niche to regulate placental development by modulating the cellular cytoskeleton via non-canonical gene expression.

  2. Immunolocalization of progesterone receptors in binucleate trophoblast cells of the buffalo placenta (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Ambrósio

    2007-06-01

    Full Text Available The binucleate trophoblast cells (CTBs of the water buffalo placenta (Bubalus bubalis were studied with emphasis on the presence of progesterone receptor. Placentomal tissues from 27 buffalos (2-10 months of pregnancy were processed and embedded in paraplast (Paraplast Embedding Media – Paraplast Plus to locate the progesterone receptors using the immunohistochemistry technique. The immunohistochemical reaction for progesterone receptor through monoclonal antibody PgR Ab2 showed staining of CTBs, caruncular epithelial and estromal cells and blood vessel estromal pericitos present in the placentome throughout the entire gestational period analyzed. These results indicate the production of progesterone with autocrine and paracrine action in the placentome growth, differentiation and functional regulation.

  3. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  4. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2.

    Directory of Open Access Journals (Sweden)

    Jie Ding

    Full Text Available Our study was approved by the Medical Ethics Committee of Tang Du Hospital, Fourth Military Medical University and complied strictly with national ethical guidelines. Preeclampsia (PE is a specific clinical disorder characterized by gestational hypertension and proteinuria and is a leading cause of maternal and perinatal mortality worldwide. The miR-519d-3p is upregulated in the maternal plasma of patients with PE which indicates a possible association between this microRNA and the pathogenesis of PE. No studies to date have addressed the effect of miR-519d-3p on the invasion and migration of trophoblast cells. In our study, we found that miR-519d-3p expression was elevated in placental samples from patients with PE. In vitro, overexpression of miR-519d-3p significantly inhibited trophoblast cell migration and invasion, whereas transfection of a miR-519d-3p inhibitor enhanced trophoblast cell migration and invasion. Luciferase assays confirmed that matrix metalloproteinase-2 (MMP-2 is a direct target of miR-519d-3p. Quantitative real-time PCR and western blot assays showed that overexpression of miR-519d-3p downregulated MMP-2 mRNA and protein expression. Knockdown of MMP-2 using a siRNA attenuated the increased trophoblast migration and invasion promoted by the miR-519d-3p inhibitor. In placentas from patients with PE or normal pregnancies, a negative correlation between the expression of MMP-2 and miR-519d-3p was observed using the Pearson correlation and linear regression analysis. Our present findings suggest that upregulation of miR-519d-3p may contribute to the development of PE by inhibiting trophoblast cell migration and invasion via targeting MMP-2; miR-519d-3p may represent a potential predictive and therapeutic target for PE.

  5. Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells?

    Science.gov (United States)

    Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F

    2017-07-05

    Elevated plasma glucose leads to pancreatic β cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this "glucotoxicity" via dysregulated biochemical pathways promoting β cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β cells in normoglycemia and in diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cell-to-Cell Contact Results in a Selective Translocation of Maternal Human Immunodeficiency Virus Type 1 Quasispecies across a Trophoblastic Barrier by both Transcytosis and Infection

    Science.gov (United States)

    Lagaye, S.; Derrien, M.; Menu, E.; Coïto, C.; Tresoldi, E.; Mauclère, P.; Scarlatti, G.; Chaouat, G.; Barré-Sinoussi, F.; Bomsel, M.

    2001-01-01

    Mother-to-child transmission can occur in utero, mainly intrapartum and postpartum in case of breastfeeding. In utero transmission is highly restricted and results in selection of viral variant from the mother to the child. We have developed an in vitro system that mimics the interaction between viruses, infected cells present in maternal blood, and the trophoblast, the first barrier protecting the fetus. Trophoblastic BeWo cells were grown as a tight polarized monolayer in a two-chamber system. Cell-free virions applied to the apical pole neither crossed the barrier nor productively infected BeWo cells. In contrast, apical contact with human immunodeficiency virus (HIV)-infected peripheral blood mononuclear cells (PBMCs) resulted in transcytosis of infectious virus across the trophoblastic monolayer and in productive infection correlating with the fusion of HIV-infected PBMCs with trophoblasts. We showed that viral variants are selected during these two steps and that in one case of in utero transmission, the predominant maternal viral variant characterized after transcytosis was phylogenetically indistinguishable from the predominant child's virus. Hence, the first steps of transmission of HIV-1 in utero appear to involve the interaction between HIV type 1-infected cells and the trophoblastic layer, resulting in the passage of infectious HIV by transcytosis and by fusion/infection, both leading to a selection of virus quasispecies. PMID:11312350

  7. Role of prostate apoptosis response 4 in translocation of GRP78 from the endoplasmic reticulum to the cell surface of trophoblastic cells.

    Directory of Open Access Journals (Sweden)

    Marie Cohen

    Full Text Available Glucose-regulated protein 78 (GRP78 is an endoplasmic reticulum (ER molecular chaperone that belongs to the heat shock protein 70 family. GRP78 is also present on the cell surface membrane of trophoblastic cells, where it is associated with invasive or fusion properties of these cells. Impaired mechanism of GRP78 relocation from ER to the cell surface was observed in preeclamptic cytotrophoblastic cells (CTB and could take part in the pathogenesis of preeclampsia. In this study, we have investigated whether prostate apoptosis response 4 (Par-4, a protein identified as a partner of GRP78 relocation to the cell surface in prostate cancer cells, is present in trophoblastic cells and is involved in the translocation of GRP78 to the cell surface of CTB. Par-4 is indeed present in trophoblastic cells and its expression correlates with expression of membrane GRP78. Moreover, overexpression of Par-4 led to an increase of cell surface expression of GRP78 and decreased Par-4 gene expression reduced cell surface localization of GRP78 confirming a role of Par-4 in relocation of GRP78 from ER to the cell surface. Accordingly, invasive property was modified in these cells. In conclusion, we show that Par-4 is expressed in trophoblastic cells and is involved in transport of GRP78 to the cell surface and thus regulates invasive property of extravillous CTB.

  8. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  9. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Silljé, H H; Paalman, J W; ter Schure, E G; Olsthoorn, S Q; Verkleij, A J; Boonstra, Johannes; Verrips, C T

    Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation.

  10. Elsevier Trophoblast Research Award Lecture: Unique properties of decidual T cells and their role in immune regulation during human pregnancy.

    Science.gov (United States)

    Tilburgs, T; Claas, F H J; Scherjon, S A

    2010-03-01

    Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Centrosome Clustering in the Development of Bovine Binucleate Trophoblast Giant Cells.

    Science.gov (United States)

    Klisch, Karl; Schraner, Elisabeth M; Boos, Alois

    2017-01-01

    Binucleate trophoblast giant cells (BNC) are the characteristic feature of the ruminant placenta. During their development, BNC pass through 2 acytokinetic mitoses and become binucleate with 2 tetraploid nuclei. In this study, we investigate the number and location of centrosomes in bovine BNC. Centrosomes typically consist of 2 centrioles surrounded by electron-dense pericentriolar material. Duplication of centrosomes is tightly linked to the cell cycle, which ensures that the number of centrosomes remains constant in proliferating diploid cells. Alterations of the cell cycle, which affect the number of chromosome sets, also affect the number of centrosomes. In this study, we use placentomal tissue from pregnant cows (gestational days 80-230) for immunohistochemical staining of γ-tubulin (n = 3) and transmission electron microscopy (n = 3). We show that mature BNC have 4 centrosomes with 8 centrioles, clustered in the angle between the 2 cell nuclei. During the second acytokinetic mitosis, the centrosomes must be clustered to form the poles of a bipolar spindle. In rare cases, centrosome clustering fails and tripolar mitosis leads to the formation of trinucleate "BNC". Generally, centrosome clustering occurs in polyploid tumor cells, which have an increased number of centrioles, but it is absent in proliferating diploid cells. Thus, inhibition of centrosome clustering in tumor cells is a novel promising strategy for cancer treatment. BNC are a cell population in which centrosome clustering occurs as part of the normal life history. Thus, they might be a good model for the study of the molecular mechanisms of centrosome clustering. © 2016 S. Karger AG, Basel.

  12. Sera of patients with recurrent miscarriages containing anti-trophoblast antibodies (ATAB) reduce hCG and progesterone production in trophoblast cells in vitro.

    Science.gov (United States)

    von Schönfeldt, Viktoria; Rogenhofer, Nina; Ruf, Katharina; Thaler, Christian J; Jeschke, Udo

    2016-09-01

    Reproductive failure including RM has been suggested to correlate with antibodies that cross react with HLA-negative syncytiotrophoblasts and we have reported that 17% of women with 2 or more miscarriages and 34% of women with 3 or more miscarriages express anti-trophoblast antibodies (ATAB). Until now, the mechanism, how ATAB interfere with pregnancy success is not known. HCG and progesterone both play fundamental roles in supporting human pregnancy. Therefore we investigated the effects of sera of RM patients containing ATAB on the hCG and progesterone production of cells of the choriocarcinoma cell line JEG-3. In vitro study to investigate effects of patient sera with and without ATAB on hCG and progesterone secretion of JEG-3 cells. The presence of ATAB was detected as described earlier. Effects of sera from ATAB positive and ATAB negative RM patients on hCG and progesterone secretion by JEG-3 cells were analysed 12 and 24h after plating. Sera of women without pregnancy pathologies served as controls. Sera of ATAB-positive RM patients significantly inhibit hCG secretion of JEG-3 cells for 12h after plating compared to sera of healthy controls (p=0.019) and significantly reduce progesterone production for 12h (p=0.046) and 24h (p=0.027) of co-culture. Sera of ATAB-negative RM patient show no significant effect on progesterone secretion. Inhibition of hCG and progesterone production might point to a mechanism, how ATAB interfere with early pregnancies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. TCDD Induces the Hypoxia-Inducible Factor (HIF-1α Regulatory Pathway in Human Trophoblastic JAR Cells

    Directory of Open Access Journals (Sweden)

    Tien-Ling Liao

    2014-09-01

    Full Text Available The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K inhibitor or N-acetylcysteine (a ROS scavenger. The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ, PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development.

  14. Glycogen metabolism in humans

    OpenAIRE

    Adeva-Andany, María M.; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-01-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through...

  15. Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells.

    Science.gov (United States)

    Guan, Zhong; Li, Huai-Fang; Guo, Li-Li; Yang, Xiang

    2015-08-01

    This study aimed to investigate the effects of three different antioxidants, namely vitamin C, vitamin E, and molecular hydrogen, on cytotrophoblasts in vitro. Two trophoblast cell lines, JAR and JEG-3, were exposed to different concentrations of vitamin C (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), vitamin E (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), and molecular hydrogen (0, 25, 50, 100, 500 μmol/L) for 48 h. The cell viability was detected using the MTS assay. The secretion of human chorionic gonadotropin (hCG) and the tumor necrosis factor-α (TNF-α) were assessed and the expression of TNF-α mRNA was observed by real-time RT-PCR. Cell viability was significantly suppressed by 500 μmol/L vitamins C and E (P 0.05). The expression of TNF-α was increased by 100 μmol/L vitamin C and 50 μmol/L vitamins E, separately or combined (P vitamin C and E, separately or combined. High levels of antioxidant vitamins C and E may have significant detrimental effects on placental function, as reflected by decreased cell viability and secretion of hCG; and placental immunity, as reflected by increased production of TNF-a. Meanwhile hydrogen showed no such effects on cell proliferation and TNF-α expression, but it could affect the level of hCG, indicating hydrogen as a potential candidate of antioxidant in the management of preeclampsia (PE) should be further studied.

  16. Immunoglobulins from sera of APS patients bind HTR-8/SVneo trophoblast cell line and reduce additional mediators of cell invasion.

    Science.gov (United States)

    Jovanović Krivokuća, Milica; Abu Rabi, Tamara; Stefanoska, Ivana; Vrzić-Petronijević, Svetlana; Petronijević, Miloš; Vićovac, Ljiljana

    2017-12-01

    Immunoglobulins from sera of patients with antiphospholipid syndrome (APS) decrease trophoblast cell invasion in vitro. This study aimed to extend understanding of cellular effects of immunoglobulins from APS (aPL+) in HTR-8/SVneo cells. aPL+ IgG induced change in effector molecules important for cell invasion was investigated further. After 1h of culture 21% cells bound aPL+ IgG, as opposed to 6% in control (aPL-). This was accompanied by increase in phospho-p38 at 30min. After 24h treatment aPL+IgG decreased protein levels of integrin subunits α1 (78% of control; p<0.01), α4 (65% of control, p<0.01), α5 (76% of control; p<0.01) and β1 (80% of control; p<0.01), and secreted gal-1 (68% of control; p<0.05). ProMMP-9 was reduced to 70% of control (p<0.001). Treatment with inhibitor of p38 MAPK signaling SB202190 reversed inhibition in integrin β1 and secreted gal-1. Involvement of p38 MAPK signaling and decrease in integrin subunit α4 , proMMP-9, and secreted gal-1 in HTR-8/SVneo cells are novel and extend the list of mediators of trophoblast invasion affected by aPL. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.

    Science.gov (United States)

    Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J

    2016-05-01

    Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.

  18. Estrogen regulates progesterone production by human placental trophoblast cells in culture

    International Nuclear Information System (INIS)

    Grimes, R.W.

    1990-01-01

    We have suggested that estrogen regulates placental low-density lipoprotein (LDL) uptake and thus progesterone (P 4 ) production during primate pregnancy based on results obtained in antiestrogen-treated baboons. The objectives of the present study, were to determine whether estrogen is also important to regulation of P 4 formation by the human placenta, and whether effects of estrogen were mediated by availability of cholesterol substrate via the LDL, de novo, or deesterification pathways. Term human placenta were dispersed in 0.125% trypsin, cytotrophoblasts were purified via a 70-5% Percoll gradient, incubated 72 h in DMEM with 10% FBS to stimulate formation of syncytia, then incubated an additional 48 h with estradiol (E2). In Experiment 1, 1 μg/ml E 2 and 500 μg/MI LDL-protein, stimulated P 4 (P 2 increased LDL uptake. Scatchard analysis indicated that trophoblast uptake of [ 125 I]LDL (ng/mg cell protein) was 50% greater (P 2 (mean ± SE, 638 +/- 23; n = 6) than DMEM in the presence of antiestrogen MER-25. Moreover, uptake and degradation of LDL, and cellular content of free and esterified cholesterol, increased in a dose-dependent manner with 0.1 to 1000 ng/ml E 2 . These results suggest that estrogen regulates placental cell uptake of LDL and thus availability of cholesterol for P 4 biosynthesis during human pregnancy. In Experiment 2, E 2 Stimulated P 4 formation (ng/mg cell protein/48 h) from a control level of 194 ± 25 to 357 ± 62, in the absence of LDL. Under these conditions, cholesterol for P 4 biosynthesis must have been derived from de novo synthesis and/or deesterification of cholesteryl ester stores

  19. An Unusual Case of Locally Advanced Glycogen-Rich Clear Cell Carcinoma of the Breast

    Directory of Open Access Journals (Sweden)

    Beatriz Martín-Martín

    2011-09-01

    Full Text Available Glycogen-rich clear cell (GRCC is a rare subtype of breast carcinoma characterized by carcinoma cells containing an optically clear cytoplasm and intracytoplasmic glycogen. We present the case of a 55-year-old woman with a palpable mass in the right breast and clinical signs of locally advanced breast cancer (LABC. The diagnosis of GRCC carcinoma was based on certain histopathological characteristics of the tumor and immunohistochemical analysis. To our knowledge, this is the first case of GRCC LABC with intratumoral calcifications. There is no evidence of recurrence or metastatic disease after 14 months’ follow-up.

  20. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells

    Science.gov (United States)

    Pérez-Palacios, Raquel; Macías-Redondo, Sofía; Climent, María; Contreras-Moreira, Bruno; Muniesa, Pedro; Schoorlemmer, Jon

    2016-01-01

    Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as

  1. Serum depletion induces changes in protein expression in the trophoblast-derived cell line HTR-8/SVneo.

    Science.gov (United States)

    Novoa-Herran, Susana; Umaña-Perez, Adriana; Canals, Francesc; Sanchez-Gomez, Myriam

    2016-01-01

    How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test ( n  = 3, significance level 0.10, D > 0.642) and/or ANOVA ( n  = 3, p  depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that

  2. Application of monoclonal antibodies against trophoblastic cells to study female infertility

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Alena; Elzeinová, Fatima; Bukovský, A.; Madar, J.; Ulčová-Gallová, Z.; Pěknicová, Jana

    2004-01-01

    Roč. 51, č. 6 (2004), s. 482-483 ISSN 1046-7408. [European congress of reproductive immunology. Plzeň, 30.06.2004-03.07.2004] R&D Projects: GA MŠk LN00B030 Keywords : trophoblast * monoclonal antibody * ELISA Subject RIV: EC - Immunology Impact factor: 1.808, year: 2004

  3. Cell Adhesion Minimization by a Novel Mesh Culture Method Mechanically Directs Trophoblast Differentiation and Self-Assembly Organization of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao

    2015-10-01

    Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.

  4. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    International Nuclear Information System (INIS)

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-01-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio [(activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)]. Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of 125 I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms

  5. HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of "stemness-" associated transcription factors.

    Science.gov (United States)

    Weber, Maja; Knoefler, Ilka; Schleussner, Ekkehard; Markert, Udo R; Fitzgerald, Justine S

    2013-01-01

    JEG3 is a choriocarcinoma--and HTR8/SVneo a transformed extravillous trophoblast--cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor) cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT-) is distinct from JEG3 (CDX2+ and NOTCH1+) as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo's self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of "stemness-" associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  6. Brucella suis vaccine strain 2 induces endoplasmic reticulum stress that affects intracellular replication in goat trophoblast cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiangguo eWang

    2016-02-01

    Full Text Available Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER, and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2 in goat trophoblast cells (GTCs and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm, a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA, a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection.

  7. The lncRNA TUG1 modulates proliferation in trophoblast cells via epigenetic suppression of RND3.

    Science.gov (United States)

    Xu, Yetao; Ge, Zhiping; Zhang, Erbao; Zuo, Qing; Huang, Shiyun; Yang, Nana; Wu, Dan; Zhang, Yuanyuan; Chen, Yanzi; Xu, Haoqin; Huang, Huan; Jiang, Zhiyan; Sun, Lizhou

    2017-10-12

    Due to limited treatment options, pre-eclampsia (PE) is associated with fetal perinatal and maternal morbidity and mortality. During the causes of PE, failure of uterine spiral artery remodeling which might be related to functioning abnormally of trophoblast cells, result in the occurrence and progression of PE. Recently, abnormal expression of long non-coding RNAs (lncRNAs), as imperative regulators involved in human diseases progression (included PE), which has been indicated by increasing evidence. In this research, we found that TUG1, a lncRNA, was markedly reduced in placental samples from patients with PE. Loss-function assays indicated that knockdown TUG1 significantly affected cell proliferation, apoptosis, migration and network formation in vitro. RNA-seq revealed that TUG1 could affect abundant genes, and then explore the function and regulatory mechanism of TUG1 in trophoblast cells. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays validated that TUG1 can epigenetically inhibit the level of RND3 through binding to EZH2, thus promoting PE development. Therefore, via illuminating the TUG1 mechanisms underlying PE development and progression, our findings might furnish a prospective therapeutic strategy for PE intervention.

  8. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage.

    Science.gov (United States)

    Wang, Xiaofang; Lazorchak, Adam S; Song, Li; Li, Enqin; Zhang, Zhenwu; Jiang, Bin; Xu, Ren-He

    2016-02-01

    Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However, the generation methods reported so far vary greatly in quality and efficiency. Here, we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells "T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs, T-MSCs do not have increased expression of inflammatory mediators in response to IFNγ. Moreover, T-MSCs constitutively express a high level of the immune inhibitory ligand PD-L1 and elicit strong and durable efficacy in two distinct animal models of autoimmune disease, dextran sulfate sodium induced colitis, and experimental autoimmune encephalomyelitis, at doses near those approved for clinical trials. Together, we present a simple and fast derivation method to generate MSCs from hESCs, which possess potent immunomodulatory properties in vitro and in vivo and may serve as a novel and ideal candidate for MSC-based therapies. © 2015 AlphaMed Press.

  9. Function of caspase-14 in trophoblast differentiation

    Directory of Open Access Journals (Sweden)

    Charles Adrian K

    2009-09-01

    Full Text Available Abstract Background Within the human placenta, the cytotrophoblast consists of a proliferative pool of progenitor cells which differentiate to replenish the overlying continuous, multi-nucleated syncytiotrophoblast, which forms the barrier between the maternal and fetal tissues. Disruption to trophoblast differentiation and function may result in impaired fetal development and preeclampsia. Caspase-14 expression is limited to barrier forming tissues. It promotes keratinocyte differentiation by cleaving profilaggrin to stabilise keratin intermediate filaments, and indirectly providing hydration and UV protection. However its role in the trophoblast remains unexplored. Methods Using RNA Interference the reaction of control and differentiating trophoblastic BeWo cells to suppressed caspase-14 was examined for genes pertaining to hormonal, cell cycle and cytoskeletal pathways. Results Transcription of hCG, KLF4 and cytokeratin-18 were increased following caspase-14 suppression suggesting a role for caspase-14 in inhibiting their pathways. Furthermore, hCG, KLF4 and cytokeratin-18 protein levels were disrupted. Conclusion Since expression of these molecules is normally increased with trophoblast differentiation, our results imply that caspase-14 inhibits trophoblast differentiation. This is the first functional study of this unusual member of the caspase family in the trophoblast, where it has a different function than in the epidermis. This knowledge of the molecular underpinnings of trophoblast differentiation may instruct future therapies of trophoblast disease.

  10. Relevance of the NR4A sub-family of nuclear orphan receptors in trophoblastic BeWo cell differentiation.

    Science.gov (United States)

    Malhotra, Sudha Saryu; Gupta, Satish Kumar

    2017-01-01

    Nur-77, a member of the NR4A sub-family of nuclear orphan receptors, is downregulated in the placentae of pre-eclamptic women. Here, we investigate the relevance of Nor-1, Nurr-1 and Nur-77 in trophoblastic cell differentiation. Their transcript levels were found to be significantly upregulated in BeWo cells treated with forskolin. The maximum increase was observed after 2 h, with a second peak in the expression levels after 48 h. The expression of NR4A sub-family members was also found to be upregulated in BeWo cells after treatment with hCG and GnRH. A similar significant increase was observed at the respective protein levels after 2 and 48 h of treatment with forskolin, hCG or GnRH. Silencing Nor-1, Nurr-1 or Nur-77 individually did not show any effect on forskolin-, hCG- and/or GnRH-mediated BeWo cell fusion and/or hCG secretion. After silencing any one member of the NR4A sub-family, an increase in the transcript levels of the other sub-family members was observed, indicating a compensatory effect due to their functional redundancy. Simultaneously silencing all three NR4A sub-family members significantly downregulated forskolin- and hCG-mediated BeWo cell fusion and/or hCG secretion. However, a considerable amount of cell death occurred after forskolin or hCG treatment as compared to the control siRNA-transfected cells. These results suggest that the NR4A sub-family of nuclear orphan receptors has a role in trophoblastic cell differentiation.

  11. Dysregulated DNA Methyltransferase 3A Upregulates IGFBP5 to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia.

    Science.gov (United States)

    Jia, Yuanhui; Li, Ting; Huang, Xiaojie; Xu, Xianghong; Zhou, Xinyao; Jia, Linyan; Zhu, Jingping; Xie, Dandan; Wang, Kai; Zhou, Qian; Jin, Liping; Zhang, Jiqin; Duan, Tao

    2017-02-01

    Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date. Here we revealed that aberrant DNA methyltransferase 3A (DNMT3A) plays a critical role in preeclampsia. Our results show that the expression and localization of DNMT3A are dysregulated in preeclamptic placenta. Moreover, knockdown of DNMT3A obviously inhibits trophoblast cell migration and invasion. Mechanistically, IGFBP5 (insulin-like growth factor-binding protein 5), known as a suppressor, is upregulated by decreased DNMT3A because of promoter hypomethylation. Importantly, IGFBP5 downregulation can rescue the defects caused by DNMT3A knockdown, thereby, consolidating the significance of IGFBP5 in the downstream of DNMT3A in trophoblast. Furthermore, we detected low promoter methylation and high protein expression of IGFBP5 in the clinical samples of preeclamptic placenta. Collectively, our study suggests that dysregulation of DNMT3A and IGFBP5 is relevant to preeclampsia. Thus, we propose that DNMT3A and IGFBP5 can serve as potential markers and targets for the clinical diagnosis and therapy of preeclampsia. © 2017 American Heart Association, Inc.

  12. Overexpression of Endogenous Anti-Oxidants with Selenium Supplementation Protects Trophoblast Cells from Reactive Oxygen Species-Induced Apoptosis in a Bcl-2-Dependent Manner.

    Science.gov (United States)

    Khera, Alisha; Vanderlelie, Jessica J; Holland, Olivia; Perkins, Anthony V

    2017-06-01

    The human placenta provides life support for the developing foetus, and a healthy placenta is a prerequisite to a healthy start to life. Placental tissue is subject to oxidative stress which can lead to pathological conditions of pregnancy such as preeclampsia, preterm labour and intrauterine growth restriction. Up-regulation of endogenous anti-oxidants may alleviate placental oxidative stress and provide a therapy for these complications of pregnancy. In this study, selenium supplementation, as inorganic sodium selenite (NaSel) or organic selenomethionine (SeMet), was used to increase the protein production and cellular activity of the important redox active proteins glutathione peroxidase (GPx) and thioredoxin reductase (Thx-Red). Placental trophoblast cell lines, BeWo, JEG-3 and Swan-71, were cultured in various concentrations of NaSel or SeMet for 24 h and cell extracts prepared for western blots and enzyme assays. Rotenone and antimycin were used to stimulate mitochondrial reactive oxygen species (ROS) production and induce apoptosis. Trophoblast cells supplemented with 100 nM NaSel and 500 nM SeMet exhibited significantly enhanced expression and activity of both GPx and Thx-Red. Antimycin and rotenone were found to generate ROS when measured by 2',7'-dichlorofluorescein diacetate (DCFDA) assay, and selenium supplementation was shown to reduce ROS production in a dose-dependent manner. Rotenone, 100 μM treatment for 4 h, caused trophoblast cell apoptosis as evidenced by increased Annexin V binding and decreased expression of Bcl-2. In both assays of apoptosis, selenium supplementation was able to prevent apoptosis, preserve Bcl-2 expression and protect trophoblast cells from mitochondrial oxidative stress. This data suggests that selenoproteins such as GPx and Thx-Red have an important role in protecting trophoblast cells from mitochondrial oxidative stress and that selenium supplementation may be important in treating some placental pathologies.

  13. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells.

    Science.gov (United States)

    Djurisic, S; Teiblum, S; Tolstrup, C K; Christiansen, O B; Hviid, T V F

    2015-03-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complications, partly explained by HLA-G polymorphisms which are associated with differences in the alternative splicing pattern and of the stability of HLA-G mRNA. Of special importance is a 14 bp insertion/deletion polymorphism located in the 3'-untranslated region of the HLA-G gene. In the current study, we present novel evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, using a very accurate and sensitive Digital droplet PCR technique. Allelic imbalance in heterozygous samples was observed as differential expression levels of 14 bp insertion/deletion allele-specific mRNA transcripts, which was further associated with low levels of HLA-G surface expression on primary trophoblast cells. Full gene sequencing of HLA-G allowed us to study correlations between HLA-G extended haplotypes and single-nucleotide polymorphisms and HLA-G surface expression. We found that a 1:1 expression (allelic balance) of the 14 bp insertion/deletion mRNA alleles was associated with high surface expression of HLA-G and with a specific HLA-G extended haplotype. The 14 bp del/del genotype was associated with a significantly lower abundance of the G1 mRNA isoform, and a higher abundance of the G3 mRNA isoform. Overall, the present study provides original evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, which influences HLA-G surface expression on primary trophoblast cells, considered to be important in the pathogenesis of pre-eclampsia and other pregnancy complications. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation.

    Science.gov (United States)

    Yang, Weiwei; Li, Qinghua; Pan, Zhifang

    2014-01-01

    Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports demonstrated that S1P receptors are expressed in the EVT cells and S1P could regulate migration and function of trophoblast cells via S1P receptors. However, little is known about roles of S1P in the invasion of EVT cells. Our study was performed to investigate S1P effect on the invasion of EVT cells. We used the extravillous trophoblast cell line HTR8/SVneo cells to evaluate the effect. In vitro invasion assay was employed to determine the invasion of HTR8/SVneo cells induced by S1P. MMP-2 enzyme activity and relative level in the supernatants of HTR8/SVneo was assessed by gelatin zymography and western blot. Based on the above, siRNA and specific inhibitors were used for the intervention and study of potential signal pathways, and Real-time qPCR and western blot were used to test the mRNA and protein level of potential signal targets. We found that S1P could promote HTR8/SVneo cell invasion and upregulates activity and level of MMP-2. The promotion requires activation of MEK-ERK and is dependent on the axis of S1P/S1PR1. Our investigation of S1P may provide new insights into the molecular mechanisms of EVT invasion.

  15. Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion

    Directory of Open Access Journals (Sweden)

    Furuoka Hidefumi

    2008-12-01

    Full Text Available Abstract Background The cell tropism of Brucella abortus, a causative agent of brucellosis and facultative intracellular pathogen, in the placenta is thought to be a key event of infectious abortion, although the molecular mechanism for this is largely unknown. There is a higher degree of bacterial colonization in the placenta than in other organs and many bacteria are detected in trophoblast giant (TG cells in the placenta. In the present study, we investigated mechanism of B. abortus invasion into TG cells. Results We observed internalization and intracellular growth of B. abortus in cultured TG cells. A monoclonal antibody that inhibits bacterial internalization was isolated and this reacted with heat shock cognate protein 70 (Hsc70. Depletion and over expression of Hsc70 in TG cells inhibited and promoted bacterial internalization, respectively. IFN-γ receptor was expressed in TG cells and IFN-γ treatment enhanced the uptake of bacteria by TG cells. Administering the anti-Hsc70 antibody to pregnant mice served to prevent infectious abortion. Conclusion B. abortus infection of TG cells in placenta is mediated by Hsc70, and that such infection leads to infectious abortion.

  16. Optimizing bone morphogenic protein 4-mediated human embryonic stem cell differentiation into trophoblast-like cells using fibroblast growth factor 2 and transforming growth factor-β/activin/nodal signalling inhibition.

    Science.gov (United States)

    Koel, Mariann; Võsa, Urmo; Krjutškov, Kaarel; Einarsdottir, Elisabet; Kere, Juha; Tapanainen, Juha; Katayama, Shintaro; Ingerpuu, Sulev; Jaks, Viljar; Stenman, Ulf-Hakan; Lundin, Karolina; Tuuri, Timo; Salumets, Andres

    2017-09-01

    Several studies have demonstrated that human embryonic stem cells (hESC) can be differentiated into trophoblast-like cells if exposed to bone morphogenic protein 4 (BMP4) and/or inhibitors of fibroblast growth factor 2 (FGF2) and the transforming growth factor beta (TGF-β)/activin/nodal signalling pathways. The goal of this study was to investigate how the inhibitors of these pathways improve the efficiency of hESC differentiation when compared with basic BMP4 treatment. RNA sequencing was used to analyse the effects of all possible inhibitor combinations on the differentiation of hESC into trophoblast-like cells over 12 days. Genes differentially expressed compared with untreated cells were identified at seven time points. Additionally, expression of total human chorionic gonadotrophin (HCG) and its hyperglycosylated form (HCG-H) were determined by immunoassay from cell culture media. We showed that FGF2 inhibition with BMP4 activation up-regulates syncytiotrophoblast-specific genes (CGA, CGB and LGALS16), induces several molecular pathways involved in embryo implantation and triggers HCG-H production. In contrast, inhibition of the TGF-β/activin/nodal pathway decreases the ability of hESC to form trophoblast-like cells. Information about the conditions needed for hESC differentiation toward trophoblast-like cells helps us to find an optimal model for studying the early development of human trophoblasts in normal and in complicated pregnancy. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  17. The role of Sep (O-phosphoserine) tRNA: Sec (selenocysteine) synthase (SEPSECS) in proliferation, apoptosis and hormone secretion of trophoblast cells.

    Science.gov (United States)

    Zhao, H-D; Zhang, W-G; Sun, M-N; Duan, Q-F; Li, F-L; Li, H

    2013-11-01

    To investigate whether Sep (O-phosphoserine) tRNA: Sec (selenocysteine) synthase (SEPSECS), which plays an essential role in the synthesis of selenoprotein, affects proliferation, apoptosis and hormone secretion of human trophoblast cells. Human trophoblast JEG-3 cells were divided into four groups: control group, SEPSECS silenced-expression group, empty vector group and SEPSECS over-expression group. Over-expression and silenced-expression were achieved by transfection with plasmid DNA or RNA oligonucleotide, respectively. 3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyltetrazolium bromide (MTT) and colony formation assays were performed to investigate cell proliferation, while apoptosis was tested by annexin V-FITC, PI double staining and caspases-3 activation assays, enzyme-linked immunosorbent assay (ELISA) was used to determine the level of progesterone (PG) and human chorionic gonadotropin (hCG). SEPSECS silenced-expression clearly inhibited proliferation of JEG-3 cells (p < 0.05), significantly induced cell apoptosis (p < 0.01) and reduced the production of PG and hCG (p < 0.05). On the contrary, SEPSECS over-expression significantly promoted both cell proliferation (p < 0.01) and secretion of PG and hCG (p < 0.05). SEPSECS significantly affects proliferation, apoptosis and hormone secretion of human trophoblast cells, suggesting that a potential relationship exists among SEPSECS, cell proliferation, apoptosis and hormone production of human placental trophoblast cells. Furthermore, this may provide a clue to uncover the relationship between selenium and human placental in association with an emphasis on the importance of selenium adequacy during pregnancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. HTR8/SVneo Cells Display Trophoblast Progenitor Cell-Like Characteristics Indicative of Self-Renewal, Repopulation Activity, and Expression of “Stemness-” Associated Transcription Factors

    Directory of Open Access Journals (Sweden)

    Maja Weber

    2013-01-01

    Full Text Available Introduction. JEG3 is a choriocarcinoma—and HTR8/SVneo a transformed extravillous trophoblast—cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT- is distinct from JEG3 (CDX2+ and NOTCH1+ as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo’s self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of “stemness-” associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  19. Hepatitis C Virus Sensing by Human Trophoblasts Induces Innate Immune Responses and Recruitment of Maternal NK Cells: Potential Implications for Limiting Vertical Transmission.

    Science.gov (United States)

    Giugliano, Silvia; Petroff, Margaret G; Warren, Bryce D; Jasti, Susmita; Linscheid, Caitlin; Ward, Ashley; Kramer, Anita; Dobrinskikh, Evgenia; Sheiko, Melissa A; Gale, Michael; Golden-Mason, Lucy; Winn, Virginia D; Rosen, Hugo R

    2015-10-15

    Hepatitis C virus (HCV) is the world's most common blood-borne viral infection for which there is no vaccine. The rates of vertical transmission range between 3 and 6% with odds 90% higher in the presence of HIV coinfection. Prevention of vertical transmission is not possible because of lack of an approved therapy for use in pregnancy or an effective vaccine. Recently, HCV has been identified as an independent risk factor for preterm delivery, perinatal mortality, and other complications. In this study, we characterized the immune responses that contribute to the control of viral infection at the maternal-fetal interface (MFI) in the early gestational stages. In this study, we show that primary human trophoblast cells and an extravillous trophoblast cell line (HTR8), from first and second trimester of pregnancy, express receptors relevant for HCV binding/entry and are permissive for HCV uptake. We found that HCV-RNA sensing by human trophoblast cells induces robust upregulation of type I/III IFNs and secretion of multiple chemokines that elicit recruitment and activation of decidual NK cells. Furthermore, we observed that HCV-RNA transfection induces a proapoptotic response within HTR8 that could affect the morphology of the placenta. To our knowledge, for the first time, we demonstrate that HCV-RNA sensing by human trophoblast cells elicits a strong antiviral response that alters the recruitment and activation of innate immune cells at the MFI. This work provides a paradigm shift in our understanding of HCV-specific immunity at the MFI as well as novel insights into mechanisms that limit vertical transmission but may paradoxically lead to virus-related pregnancy complications. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. miR-518b Enhances Human Trophoblast Cell Proliferation Through Targeting Rap1b and Activating Ras-MAPK Signal

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2018-03-01

    Full Text Available Preeclampsia is a pregnancy-specific complication defined as newly onset gestational hypertension and proteinuria. Deficiency in placental development is considered as the predominant cause of preeclampsia. Our previous study found that the expression of miR-518b increased significantly in the preeclamptic placentas, indicating the potential participation of this small RNA in the occurrence of preeclampsia. In this study, data analysis using multiple databases predicted Rap1b as a candidate target of miR-518b. An evident decrease in Rap1b expression was observed in preeclamptic placentas when compared with the control placentas, which was negatively correlated with the level of miR-518b. Based on the data of in situ hybridization and immunohistochemistry showing that Rap1b exhibited similar localization with miR-518b in villous cytotrophoblast cells and column trophoblasts, we further explored their function in regulating trophoblast cell proliferation. In HTR8/SVneo cells, exogenous transfection of miR-518b reduced the expression of Rap1b, and dual-luciferase reporter assay validated Rap1b as the direct target of miR-518b. The small RNA could increase the BrdU incorporation and the ratio of cells at S phase, and enhance the phosphorylation of Raf-1 and ERK1/2. Such growth-promoting effect could be efficiently reversed by Rap1b overexpression. The data indicate that miR-518b can promote trophoblast cell proliferation via Rap1b–Ras–MAPK pathway, and the aberrant upregulation of miR-518b in preeclamptic placenta may contribute to the excessive trophoblast proliferation. The study provides new evidence to further understand the etiology of preeclampsia.

  1. Syndecan-1 Acts as an Important Regulator of CXCL1 Expression and Cellular Interaction of Human Endometrial Stromal and Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Dunja Maria Baston-Buest

    2017-01-01

    Full Text Available Successful implantation of the embryo into the human receptive endometrium is substantial for the establishment of a healthy pregnancy. This study focusses on the role of Syndecan-1 at the embryo-maternal interface, the multitasking coreceptor influencing ligand concentration, release and receptor presentation, and cellular morphology. CXC motif ligand 1, being involved in chemotaxis and angiogenesis during implantation, is of special interest as a ligand of Syndecan-1. Human endometrial stromal cells with and without Syndecan-1 knock-down were decidualized and treated with specific inhibitors to evaluate signaling pathways regulating CXC ligand 1 expression. Western blot analyses of MAPK and Wnt members were performed, followed by analysis of spheroid interactions between human endometrial cells and extravillous trophoblast cells. By mimicking embryo contact using IL-1β, we showed less ERK and c-Jun activation by depletion of Syndecan-1 and less Frizzled 4 production as part of the canonical Wnt pathway. Additionally, more beta-catenin was phosphorylated and therefore degraded after depletion of Syndecan-1. Secretion of CXC motif ligand 1 depends on MEK-1 with respect to Syndecan-1. Regarding the interaction of endometrial and trophoblast cells, the spheroid center-to-center distances were smaller after depletion of Syndecan-1. Therefore, Syndecan-1 seems to affect signaling processes relevant to signaling and intercellular interaction at the trophoblast-decidual interface.

  2. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  3. miR-125b-1-3p inhibits trophoblast cell invasion by targeting sphingosine-1-phosphate receptor 1 in preeclampsia.

    Science.gov (United States)

    Li, Qinghua; Pan, Zhifang; Wang, Xuejian; Gao, Zhiqin; Ren, Chune; Yang, Weiwei

    2014-10-10

    Preeclampsia (PE) is the leading cause of maternal and perinatal mortality and morbidity. Understanding the molecular mechanisms underlying placentation facilitates the development of better intervention of this disease. MicroRNAs are strongly implicated in the pathogenesis of this syndrome. In current study, we found that miR-125b-1-3p was elevated in placentas derived from preeclampsia patients. Transfection of miR-125b-1-3p mimics significantly inhibited the invasiveness of human trophoblast cells, whereas miR-125b-1-3p inhibitor enhanced trophoblast cell invasion. Luciferase assays identified that S1PR1 was a novel direct target of miR-125b-1-3p in the placenta. Overexpression of S1PR1 could reverse the inhibitory effect of miR-125b-1-3p on the invasion of trophoblast cells. These findings suggested that abnormal expression of miR-125b-1-3p might contribute to the pathogenesis of preeclampsia. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival

    Directory of Open Access Journals (Sweden)

    Joffrey ePelletier

    2012-02-01

    Full Text Available The hypoxia-inducible factor 1 (HIF-1, in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1, were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these hypoxia-preconditioned cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO2 acts as an alarm that prepares the cells to face subsequent nutrient depletion and to survive.

  5. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Joffrey; Bellot, Grégory [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France); Gounon, Pierre; Lacas-Gervais, Sandra [Centre Commun de Microscopie Appliquée, University of Nice-Sophia Antipolis, Nice (France); Pouysségur, Jacques; Mazure, Nathalie M., E-mail: mazure@unice.fr [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France)

    2012-02-28

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO{sub 2} acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  6. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    International Nuclear Information System (INIS)

    Pelletier, Joffrey; Bellot, Grégory; Gounon, Pierre; Lacas-Gervais, Sandra; Pouysségur, Jacques; Mazure, Nathalie M.

    2012-01-01

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO 2 acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  7. A Resource for the Transcriptional Signature of Bona Fide Trophoblast Stem Cells and Analysis of Their Embryonic Persistence

    Directory of Open Access Journals (Sweden)

    Georg Kuales

    2015-01-01

    Full Text Available Trophoblast stem cells (TSCs represent the multipotent progenitors that give rise to the different cells of the embryonic portion of the placenta. Here, we analysed the expression of key TSC transcription factors Cdx2, Eomes, and Elf5 in the early developing placenta of mouse embryos and in cultured TSCs and reveal surprising heterogeneity in protein levels. We analysed persistence of TSCs in the early placenta and find that TSCs remain in the chorionic hinge until E9.5 and are lost shortly afterwards. To define the transcriptional signature of bona fide TSCs, we used inducible gain- and loss-of-function alleles of Eomes or Cdx2, and EomesGFP, to manipulate and monitor the core maintenance factors of TSCs, followed by genome-wide expression profiling. Combinatorial analysis of resulting expression profiles allowed for defining novel TSC marker genes that might functionally contribute to the maintenance of the TSC state. Analyses by qRT-PCR and in situ hybridisation validated novel TSC- and chorion-specific marker genes, such as Bok/Mtd, Cldn26, Duox2, Duoxa2, Nr0b1, and Sox21. Thus, these expression data provide a valuable resource for the transcriptional signature of bona fide and early differentiating TSCs and may contribute to an increased understanding of the transcriptional circuitries that maintain and/or establish stemness of TSCs.

  8. Is Glycogenin Essential for Glycogen Synthesis?

    Science.gov (United States)

    Oldfors, Anders

    2017-07-05

    Glycogen synthesis requires a priming oligosaccharide, formed by autoglucosylation of glycogenin, a core protein in glycogen particles. In this edition of Cell Metabolism, Testoni et al. (2017) challenge this generally accepted concept by demonstrating that glycogenin inactivation in mice results in an increased amount of glycogen and not glycogen depletion. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  10. Early expression of pregnancy-specific glycoprotein 22 (PSG22) by trophoblast cells modulates angiogenesis in mice.

    Science.gov (United States)

    Blois, Sandra M; Tirado-González, Irene; Wu, Julie; Barrientos, Gabriela; Johnson, Briana; Warren, James; Freitag, Nancy; Klapp, Burghard F; Irmak, Ster; Ergun, Suleyman; Dveskler, Gabriela S

    2012-06-01

    Mouse and human pregnancy-specific glycoproteins (PSG) are known to exert immunomodulatory functions during pregnancy by inducing maternal leukocytes to secrete anti-inflammatory cytokines that promote a tolerogenic decidual microenvironment. Many such anti-inflammatory mediators also function as proangiogenic factors, which, along with the reported association of murine PSG with the uterine vasculature, suggest that PSG may contribute to the vascular adaptations necessary for successful implantation and placental development. We observed that PSG22 is strongly expressed around the embryonic crypt on Gestation Day 5.5, indicating that trophoblast giant cells are the main source of PSG22 during the early stages of pregnancy. PSG22 treatment up-regulated the secretion of transforming growth factor beta 1 and vascular endothelial growth factor A (VEGFA) in murine macrophages, uterine dendritic cells, and natural killer cells. A possible role of PSGs in uteroplacental angiogenesis is further supported by the finding that incubation of endothelial cells with PSG22 resulted in the formation of tubes in the presence and absence of VEGFA. We determined that PSG22, like human PSG1 and murine PSG17 and PSG23, binds to the heparan sulfate chains in syndecans. Therefore, our findings indicate that despite the independent evolution and expansion of human and rodent PSG, members in both families have conserved functions that include their ability to induce anti-inflammatory cytokines and proangiogenic factors as well as to induce the formation of capillary structures by endothelial cells. In summary, our results indicate that PSG22, the most abundant PSG expressed during mouse early pregnancy, is likely a major contributor to the establishment of a successful pregnancy.

  11. Incorporation of phosphate into glycogen by glycogen synthase.

    Science.gov (United States)

    Contreras, Christopher J; Segvich, Dyann M; Mahalingan, Krishna; Chikwana, Vimbai M; Kirley, Terence L; Hurley, Thomas D; DePaoli-Roach, Anna A; Roach, Peter J

    2016-05-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Downregulation of miR-29a/b/c in placenta accreta inhibits apoptosis of implantation site intermediate trophoblast cells by targeting MCL1.

    Science.gov (United States)

    Gu, Yongzhong; Bian, Yuehong; Xu, Xiaofei; Wang, Xietong; Zuo, Changting; Meng, Jinlai; Li, Hongyan; Zhao, Shigang; Ning, Yunnan; Cao, Yongzhi; Huang, Tao; Yan, Junhao; Chen, Zi-Jiang

    2016-12-01

    Placenta accreta is defined as abnormal adhesion of placental villi to the uterine myometrium. Although this condition has become more common as a result of the increasing rate of cesarean sections, the underlying causative mechanism(s) remain elusive. Because microRNA-29a/b/c (miR-29a/b/c) have been shown to play important roles in placental development, this study evaluated the roles of these microRNAs in placenta accreta. Expression of miR-29a/b/c and myeloid cell leukemia-1 (MCL1) were quantified in patient tissues and HTR8/SVneo trophoblast cells using the real-time quantitative polymerase chain reaction. Western blotting was used to analyze expression of the MCL1 protein in HTR8/SVneo trophoblast cells with altered expression of miR-29a/b/c. To determine their role in apoptosis, miR-29a/b/c were overexpressed in HTR-8/SVneo cells, and levels of apoptosis were analyzed by flow cytometry. Luciferase activity assays were used to determine whether MCL1 is a target gene of miR-29a/b/c. Expression of miR-29a/b/c was significantly lower in creta sites compared to noncreta sites (p = 0.018, 0.041, and 0.022, respectively), but expression of MCL1 was upregulated in creta sites (p = 0.039). MCL1 expression was significantly downregulated in HTR-8/SVneo cells overexpressing miR-29a/b/c (p = 0.002, 0.008, and 0.013, respectively). Luciferase activity assays revealed that miR-29a/b/c directly target the 3' untranslated region of MCL1 in 293T cells. Over-expression of miR-29a/b/c induced apoptosis in the HTR-8/SVneo trophoblast cell line. Moreover, histopathological evaluation revealed that the number of implantation site intermediate trophoblast (ISIT) cells was increased in creta sites and that these cells were positive for MCL1. Our results demonstrate that in placenta accreta, miR-29a/b/c inhibits apoptosis of ISIT cells by targeting MCL1. These findings provide new insights into the pathogenesis of placenta accreta. Copyright © 2016 Elsevier Ltd. All rights

  13. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency

    Directory of Open Access Journals (Sweden)

    Yufen Xie

    2014-11-01

    Full Text Available Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC, elevated O2 and mitochondrial function are necessary to placental lineages at the maternal–placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. In an implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor 4 (FGF4 enabled the highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2 initiated the most TSC differentiation after 24 h despite exposure to FGF4. However, hypoxic stress supported differentiation poorly after 4–7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential and maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos, and high pyruvate kinase M2 (glycolysis despite FGF4 removal. Inhibiting OxPhos inhibited optimum differentiation at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2 > 0.5–2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation.

  14. Lithium Impairs Kidney Development and Inhibits Glycogen Synthase Kinase-3β in Collecting Duct Principal Cells

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    level significantly whereas total GSK-3β abundance was unaltered. Li+ treatment increased α-Smooth Muscle Actin (α-SMA) protein level significantly whereas E-cadherin expression was unaltered. In summary, Li+ treatment impairs postnatal development of the kidney cortex and outer medulla and increases pGSK......The postnatal rat kidney is highly susceptible to Lithium (Li+), which leads to significant tissue injury. We hypothesized that Li+ impairs development of the kidney through entry into epithelial cells of the distal nephron, inhibition of Glycogen Synthase Kinase-3β (GSK-3β) through phosphorylation...... on serine9 (pGSK-3β)and subsequent epithelial to mesenchymal dedifferentiation (EMT). GSK-3β immunoreactive protein was associated with collecting ducts in developing and adult human and rat kidney. Total GSK-3β protein abundance was stable in medulla while it decreased in cortex in the postnatal period...

  15. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content

    OpenAIRE

    Wilson, Wayne A.; Boyer, Michael P.; Davis, Keri D.; Burke, Michael; Roach, Peter J.

    2010-01-01

    The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilize Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase is located within cells. We demonstrate that the localization pattern of Gsy2-GFP depends upon the glycogen content of the cell. When glyco...

  16. Calbindin-D9k (CaBP9k) localization and levels of expression in trophoblast cells from human term placenta.

    Science.gov (United States)

    Belkacemi, Louiza; Gariépy, Gilles; Mounier, Catherine; Simoneau, Lucie; Lafond, Julie

    2004-01-01

    During pregnancy, the calcium (Ca(2+)) transport machinery of the placenta is solely responsible for the nutrient supply to the developing fetus, where active Ca(2+) transport occurs from the mother to the fetus. As part of a larger study to determine the role of Ca(2+) in placental transport in vivo, we questioned whether calbindin-D9k (CaBP9k), which is mainly expressed in duodenum, uterus, and placenta of several mammals, is present in cytotrophoblast cells and syncytiotrophoblasts of human term placenta. We were interested in this protein because of its potential importance in serving as an indicator of Ca(2+) availability and utilization in the placenta. Here, we demonstrated that CaBP9k transcript is present in both cell types, with a lower expression in cytotrophoblast cells as compared to syncytiotrophoblasts. Moreover, we showed by immunochemistry that CaBP9k protein was present in cytotrophoblast and syncytiotrophoblast placental tissue sections as well as in cultured cells. The occurrence of CaBP9k protein in trophoblast cells was further confirmed by Western blot analysis. Thus, these results indicate for the first time that CaBP9k is unequivocally expressed by trophoblast cells from human term placenta.

  17. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    Science.gov (United States)

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  18. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Directory of Open Access Journals (Sweden)

    Ellen Melaleuca Menkhorst

    Full Text Available Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT invade through the differentiated uterine endometrium (the decidua to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8 M, medroxyprogesterone acetate (10(-7 M and cAMP (0.5 mM for 14 days. Conditioned media (CM was collected on day 2 (non-decidualized CM and 14 (decidualized CM of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1, dipeptidyl peptidase 1 (DPP1/cathepsin C and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro

  19. Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2009-05-01

    Full Text Available Abstract Background The human placenta-derived cell line BeWo has been demonstrated to be restrictive to cell-free HIV-1 infection. BeWo cells are however permissive to infection by VSV-G pseudotyped HIV-1, which enters cells by a receptor-independent mechanism, and to infection by HIV-1 via a cell-to-cell route. Results Here we analysed viral entry in wild type BeWo (CCR5+, CXCR4+ and BeWo-CD4+ (CD4+, CCR5+, CXCR4+ cells. We report that HIV-1 internalisation is not restricted in either cell line. Levels of internalised p24 antigen between VSV-G HIV-1 pseudotypes and R5 or X4 virions were comparable. We next analysed the fate of internalised virions; X4 and R5 HIV-1 virions were less stable over time in BeWo cells than VSV-G HIV-1 pseudotypes. We then investigated the role of the proteasome in restricting cell-free HIV-1 infection in BeWo cells using proteasome inhibitors. We observed an increase in the levels of VSV-G pseudotyped HIV-1 infection in proteasome-inhibitor treated cells, but the infection by R5-Env or X4-Env pseudotyped virions remains restricted. Conclusion Collectively these results suggest that cell-free HIV-1 infection encounters a surface block leading to a non-productive entry route, which either actively targets incoming virions for non-proteasomal degradation, and impedes their release into the cytoplasm, or causes the inactivation of mechanisms essential for viral replication.

  20. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji-meng [School of Medicine, Nankai University, Tianjin 300071 (China); State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Zhao, Hong-xi [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038 (China); Wang, Li [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China); Gao, Zhi-ying, E-mail: gaozy301@yahoo.com.cn [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China); Yao, Yuan-qing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China)

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expression of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.

  1. Incorporation of radioactivity from [14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in brain cells.

    Science.gov (United States)

    Dringen, R; Schmoll, D; Cesar, M; Hamprecht, B

    1993-05-01

    A pure population of astroglial cells was selected from heterogeneous astroglia-rich primary cultures in a medium containing sorbitol instead of glucose. It was shown that astroglial cells synthesize glycogen when they are returned to a glucose-containing medium, and that when [14C]lactate is also present the synthesized glycogen is radioactively labelled. Compared with the degree of incorporation of radioactivity in the presence of tritiated glucose, the incorporation of radioactivity from lactate was small but significant. After incubation of astroglial cells with radioactively labelled lactate, the glycogen was isolated and enzymatically hydrolysed to glucose, which was found to be radioactively labelled. Astrocytes are therefore able to convert lactate to glucosyl residues, a metabolic pathway known as gluconeogenesis. It is proposed that astrocytic gluconeogenesis may consume lactic acid formed in neighboring cells such as neurons, during anaerobic glycolysis at times of high energy demand.

  2. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs, the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs. Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb, TRL345, reactive with glycoprotein B (gB, but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

  3. Blocking Epidermal Growth Factor Receptor Signaling in HTR-8/SVneo First Trimester Trophoblast Cells Results in Dephosphorylation of PKBα/AKT and Induces Apoptosis

    Directory of Open Access Journals (Sweden)

    J. Bolnick

    2011-01-01

    Full Text Available We identified a major peptide signaling target of EGF/EGFR pathway and explored the consequences of blocking or activating this pathway in the first trimester extravillous trophoblast cells, HTR-8/SVneo. A global analysis of protein phosphorylation was undertaken using novel technology (Kinexus Kinetworks that utilizes SDS-polyacrylamide minigel electrophoresis and multi-lane immunoblotting to permit specific and semiquantitative detection of multiple phosphoproteins. Forty-seven protein phosphorylation sites were queried, and the results reported based on relative phosphorylation at each site. EGF- and Iressa-(gefitinib, ZD1839, an inhibitor of EGFR treated HTR-8/SVneo cells were subjected to immunoblotting and flow cytometry to confirm the phosphoprotein screen and to assess the effects of EGF versus Iressa on cell cycle and apoptosis. EGFR mediates the phosphorylation of important signaling proteins, including PKBα/AKT. This pathway is likely to be central to EGFR-mediated trophoblast survival. Furthermore, EGF treatment induces proliferation and inhibits apoptosis, while Iressa induces apoptosis.

  4. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines

    Directory of Open Access Journals (Sweden)

    Valeria Feinshtein

    2013-09-01

    Full Text Available Objectives. Marijuana is the most commonly used illicit drug during pregnancy. Due to high lipophilicity, cannabinoids can easily penetrate physiological barriers like the human placenta and jeopardize the developing fetus. We evaluated the impact of cannabidiol (CBD, a major non-psychoactive cannabinoid, on P-glycoprotein (P-gp and Breast Cancer Resistance Protein (BCRP expression, and P-gp function in a placental model, BeWo and Jar choriocarcinoma cell lines (using P-gp induced MCF7 cells (MCF7/P-gp for comparison. Study design. Following the establishment of the basal expression of these transporters in the membrane fraction of all three cell lines, P-gp and BCRP protein and mRNA levels were determined following chronic (24–72 h exposure to CBD, by Western Blot and qPCR. CBD impact on P-gp efflux function was examined by uptake of specific P-gp fluorescent substrates (calcein-AM, DiOC2(3 and rhodamine123(rh123. Cyclosporine A (CsA served as a positive control. Results. Chronic exposure to CBD resulted in significant changes in the protein and mRNA levels of both transporters. While P-gp was down-regulated, BCRP levels were up-regulated in the choriocarcinoma cell lines. CBD had a remarkably different influence on P-gp and BCRP expression in MCF7/P-gp cells, demonstrating that these are cell type specific effects. P-gp dependent efflux (of calcein, DiOC2(3 and rh123 was inhibited upon short-term exposure to CBD. Conclusions. Our study shows that CBD might alter P-gp and BCRP expression in the human placenta, and inhibit P-gp efflux function. We conclude that marijuana use during pregnancy may reduce placental protective functions and change its morphological and physiological characteristics.

  5. [Trophoblast: conductor of the maternal immune tolerance].

    Science.gov (United States)

    Mesdag, V; Salzet, M; Vinatier, D

    2014-11-01

    Pregnancy is a temporary semi-allograft that survives for nine months. The importance of this event for the survival of the species justifies several tolerance mechanisms that are put into place at the beginning of pregnancy, some of which occur even at the time of implantation. The description of these mechanisms underlines the leadership of the trophoblast. The trophoblast is the conductor of the events, protects himself by expressing specific antigens and regulates the environment of the decidua according to the calendar of the events of the pregnancy The trophoblast and the decidual environment attract the effectors of immunity, almost all present in the decidua. The immunological atmosphere of the decidua evolves during the pregnancy modulating the level of activation of the immunological cells and adapting the level of activation to the stage of the pregnancy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    Directory of Open Access Journals (Sweden)

    Lawrence H. Lin

    Full Text Available Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia.

  7. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    Science.gov (United States)

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-12-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: "Gestational trophoblastic disease AND Ultrasonography, Doppler." Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1) Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2) There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3) Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4) Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia.

  8. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  9. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  10. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  11. Reactive Oxygen Stimulation of Interleukin-6 Release in the Human Trophoblast Cell Line HTR-8/SVneo by the Trichlorethylene Metabolite S-(1,2-Dichloro)-l-Cysteine.

    Science.gov (United States)

    Hassan, Iman; Kumar, Anjana M; Park, Hae-Ryung; Lash, Lawrence H; Loch-Caruso, Rita

    2016-09-01

    Trichloroethylene (TCE) is a common environmental pollutant associated with adverse reproductive outcomes in humans. TCE intoxication occurs primarily through its biotransformation to bioactive metabolites, including S-(1,2-dichlorovinyl)-l-cysteine (DCVC). TCE induces oxidative stress and inflammation in the liver and kidney. Although the placenta is capable of xenobiotic metabolism and oxidative stress and inflammation in placenta have been associated with adverse pregnancy outcomes, TCE toxicity in the placenta remains poorly understood. We determined the effects of DCVC by using the human extravillous trophoblast cell line HTR-8/SVneo. Exposure to 10 and 20 μM DCVC for 10 h increased reactive oxygen species (ROS) as measured by carboxydichlorofluorescein fluorescence. Moreover, 10 and 20 μM DCVC increased mRNA expression and release of interleukin-6 (IL-6) after 24-h exposure, and these responses were inhibited by the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid and by treatments with antioxidants (alpha-tocopherol and deferoxamine), suggesting that DCVC-stimulated IL-6 release in HTR-8/SVneo cells is dependent on beta-lyase metabolic activation and increased generation of ROS. HTR-8/SVneo cells exhibited decreased mitochondrial membrane potential at 5, 10, and 20 μM DCVC at 5, 10, and 24 h, showing that DCVC induces mitochondrial dysfunction in HTR-8/Svneo cells. The present study demonstrates that DCVC stimulated ROS generation in the human placental cell line HTR-8/SVneo and provides new evidence of mechanistic linkage between DCVC-stimulated ROS and increase in proinflammatory cytokine IL-6. Because abnormal activation of cytokines can disrupt trophoblast functions necessary for placental development and successful pregnancy, follow-up investigations relating these findings to physiologic outcomes are warranted. © 2016 by the Society for the Study of Reproduction, Inc.

  12. Glycogen synthesis in glycogenin 1-deficient patients

    DEFF Research Database (Denmark)

    Krag, Thomas O.; Ruiz-Ruiz, Cristina; Vissing, John

    2017-01-01

    Context: Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup....... A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. Objective: We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Design, Setting, and Patients: Two patients with mutations...... in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Results: Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients...

  13. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells.

    Science.gov (United States)

    Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon

    2013-12-01

    Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.

  14. Biomarker for Glycogen Storage Diseases

    Science.gov (United States)

    2017-07-03

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  15. Glucose metabolism in cultured trophoblasts from human placenta

    International Nuclear Information System (INIS)

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H.

    1990-01-01

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with 14 C-labeled glucose and reactions were stopped by addition of perchloric acid. 14 CO 2 production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more 14 C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO 2 by the phosphogluconate (PG) pathway was estimated from specific yields of 14 CO 2 from [1- 14 C]-D-glucose and [6- 14 C]-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro

  16. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    International Nuclear Information System (INIS)

    Matthews, Q; Lum, JJ; Isabelle, M; Harder, S; Jirasek, A; Brolo, AG

    2014-01-01

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF 2 = 0.57 and MCF7, SF 2 = 0.70) and one radiosensitive (LNCaP, SF 2 = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments

  17. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Q; Lum, JJ [BC Cancer Agency — Vancouver Island Centre (Canada); Isabelle, M; Harder, S; Jirasek, A [Physics and Astronomy, University of Victoria (Australia); Brolo, AG [Chemistry, University of Victoria (Australia)

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  18. Gestational Trophoblastic Disease -Choriocarcinoma

    International Nuclear Information System (INIS)

    Bozik, M.

    2011-01-01

    Gestational trophoblastic tumors are a group of a diseases from the benign hydatidiform mole, through the invasive mole to the highly malignant form of a choriocarcinoma. Choriocarcinoma is a rare tumor and it is the most malignant and aggressive neoplasm of all the gestational trophoblastic diseases. It grows rapidly and metastasizes to the lung, liver, and, less frequently, to the brain. The author presents the case of a 26-year-old woman who is indicated to the CT examination for suspected brain tumor based on the previous examinations. The patient was diagnosed with metastatic choriocarcinoma to the brain, kidney and adrenal gland on the basis of an anamnesis by her husband, a high value of beta-hCG and a gynecological examination. (author)

  19. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis - Could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis?

    DEFF Research Database (Denmark)

    Hatt, Lotte; Brinch, Marie; Singh, Ripudaman

    2014-01-01

    stem cell microarray analysis. Results: 39 genes were identified as candidates for unique fetal cell markers. More than half of these are genes known to be expressed in the placenta, especially in extravillous trophoblasts (EVTs). Immunohistochemical staining of placental tissue confirmed CD105......Introduction: Circulating fetal cells in maternal blood provide a tool for risk-free, non-invasive prenatal diagnosis. However, fetal cells in the maternal circulation are scarce, and to effectively isolate enough of them for reliable diagnostics, it is crucial to know which fetal cell type......(s) should be targeted. Materials and Methods: Fetal cells were enriched from maternal blood by magnetic-activated cell sorting using the endothelial cell marker CD105 and identified by XY fluorescence in situ hybridization. Expression pattern was compared between fetal cells and maternal blood cells using...

  20. Human papillomavirus infects placental trophoblast and Hofbauer cells, but appears not to play a causal role in miscarriage and preterm labor.

    Science.gov (United States)

    Ambühl, Lea M M; Leonhard, Anne K; Widen Zakhary, Carina; Jørgensen, Annemette; Blaakaer, Jan; Dybkaer, Karen; Baandrup, Ulrik; Uldbjerg, Niels; Sørensen, Suzette

    2017-10-01

    Recently, an association between human papillomavirus infection and both spontaneous abortion and spontaneous preterm delivery was suggested. However, the reported human papillomavirus prevalence in pregnant women varies considerably and reliable conclusions are difficult. We aimed to investigate human papillomavirus infection in placental tissue of a Danish study cohort. Furthermore, we studied the cellular localization of human papillomavirus. In this prospective case-control study, placental tissue was analyzed for human papillomavirus infection by nested PCR in the following four study groups: full-term delivery (n = 103), spontaneous preterm delivery (n = 69), elective abortion (n = 54), and spontaneous abortion (n = 44). Moreover, human papillomavirus cellular target was identified using in situ hybridization. Human papillomavirus prevalence in placental tissue was 8.7% in full-term deliveries, 8.8% in spontaneous preterm deliveries, 10.9% in spontaneous abortions, and 20.4% in elective abortions. Twelve different human papillomavirus types were detected, and placental human papillomavirus infection was associated to a disease history of cervical cancer. Human papillomavirus DNA was identified in trophoblast cells, cells of the placental villi mesenchyme including Hofbauer cells, and in parts of the encasing endometrium. Placental human papillomavirus infections are not likely to constitute a risk factor for spontaneous preterm labor or spontaneous abortions in the Danish population, although an effect of human papillomavirus DNA in placental cells cannot be excluded. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Brain glycogen in health and disease.

    Science.gov (United States)

    Duran, Jordi; Guinovart, Joan J

    2015-12-01

    Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo.

    NARCIS (Netherlands)

    G.T. Ma (Grace); M.E. Roth (Matthew); J.C. Groskopf (John); F.G. Grosveld (Frank); J.D. Engel (Douglas); D.I.H. Linzer (Daniel); F.Y. Tsai (Fong-Ying); S.H. Orkin (Stuart)

    1997-01-01

    textabstractWe previously demonstrated that the zinc finger transcription factors GATA-2 and GATA-3 are expressed in trophoblast giant cells and that they regulate transcription from the mouse placental lactogen I gene promoter in a transfected trophoblast cell line. We present evidence here that

  3. Sci-Thur PM – Colourful Interactions: Highlights 03: Radiation induced glycogen accumulation in non-small cell lung cancer xenografts detected using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Samantha J.; Isabelle, Martin; DeVorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre; Lum, Julian; Jirasek, Andrew [BC Cancer Agency/ Vancouver Island Cancer Centre, Gloucestershire Hospitals NHS Foundation Trust, BC Cancer Agency/ Vancouver Island Cancer Centre, BC Cancer Agency/ Vancouver Island Cancer Centre, BC Cancer Agency/ Vancouver Island Cancer Centre, University of Victoria/ Department of Chemistry, BC Cancer Agency/ Vancouver Island Cancer Centre, University of British Columbia Okanagan (Canada)

    2016-08-15

    Purpose: This study presents the novel application of Raman spectroscopy (RS) to identify biochemical signatures of radiation response in human non-small cell lung cancer (NSCLC) xenografts, irradiated in vivo. Methods: Human NSCLC cells (H460) were subcutaneously injected into the flanks of 12 mice. Tumours were treated with single fraction radiation doses (0, 5 or 15 Gy) and harvested at 3 days post irradiation. A Renishaw inVia Raman microscope coupled to a 785 nm laser was used to collect Raman spectral maps for each tumour. Immunohistochemistry (IHC) staining for CAIX was used to visualize hypoxia, and co-registration between IHC fluorescence and Raman images was carried out. Results: Principal component analysis revealed radiation induced spectral signatures linked to changes in protein, nucleic acid, lipid and carbohydrates. In particular, a marked increase in glycogen for irradiated tumours was observed. Spatial mapping revealed intra-tumoural heterogeneity in the distribution of glycogen within the tumour, suggesting tumour response to radiation is not globally uniform. Furthermore, co-registration of Raman glycogen maps with CAIX IHC staining showed a correlation between glycogen rich and hypoxic regions of the tissue. Conclusions: We identify glycogen as a unique radiation induced response in NSCLC tumour xenografts, which may reflect inherent metabolic changes associated with radiation response in tissue. This study provides unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrates the potential of RS for detecting radiobiological responses in tumours.

  4. Sci-Thur PM – Colourful Interactions: Highlights 03: Radiation induced glycogen accumulation in non-small cell lung cancer xenografts detected using Raman spectroscopy

    International Nuclear Information System (INIS)

    Harder, Samantha J.; Isabelle, Martin; DeVorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre; Lum, Julian; Jirasek, Andrew

    2016-01-01

    Purpose: This study presents the novel application of Raman spectroscopy (RS) to identify biochemical signatures of radiation response in human non-small cell lung cancer (NSCLC) xenografts, irradiated in vivo. Methods: Human NSCLC cells (H460) were subcutaneously injected into the flanks of 12 mice. Tumours were treated with single fraction radiation doses (0, 5 or 15 Gy) and harvested at 3 days post irradiation. A Renishaw inVia Raman microscope coupled to a 785 nm laser was used to collect Raman spectral maps for each tumour. Immunohistochemistry (IHC) staining for CAIX was used to visualize hypoxia, and co-registration between IHC fluorescence and Raman images was carried out. Results: Principal component analysis revealed radiation induced spectral signatures linked to changes in protein, nucleic acid, lipid and carbohydrates. In particular, a marked increase in glycogen for irradiated tumours was observed. Spatial mapping revealed intra-tumoural heterogeneity in the distribution of glycogen within the tumour, suggesting tumour response to radiation is not globally uniform. Furthermore, co-registration of Raman glycogen maps with CAIX IHC staining showed a correlation between glycogen rich and hypoxic regions of the tissue. Conclusions: We identify glycogen as a unique radiation induced response in NSCLC tumour xenografts, which may reflect inherent metabolic changes associated with radiation response in tissue. This study provides unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrates the potential of RS for detecting radiobiological responses in tumours.

  5. Human papillomavirus infects placental trophoblast and Hofbauer cells, but appears not to play a causal role in miscarriage and preterm labor

    DEFF Research Database (Denmark)

    Ambühl, Lea M.M.; Leonhard, Anne K.; Widen Zakhary, Carina

    2017-01-01

    INTRODUCTION: Recently, an association between human papillomavirus (HPV) infection and both spontaneous abortion and spontaneous preterm delivery was suggested. However, the reported HPV prevalence in pregnant women varies considerably and reliable conclusions are difficult. We aimed to investig......INTRODUCTION: Recently, an association between human papillomavirus (HPV) infection and both spontaneous abortion and spontaneous preterm delivery was suggested. However, the reported HPV prevalence in pregnant women varies considerably and reliable conclusions are difficult. We aimed...... (n=103), spontaneous preterm delivery (n=69), elective abortion (n=54), and spontaneous abortion (n=44). Moreover, HPV cellular target was identified by the use of in situ hybridization. RESULTS: HPV prevalence in placental tissue was 8.7% in full-term deliveries, 8.8% in spontaneous preterm...... deliveries, 10.9% in spontaneous abortions, and 20.4% in elective abortions. 12 different HPV-types were detected and placental HPV infection was associated to a disease history of cervical cancer. HPV DNA was identified in trophoblast cells, cells of the placental villi mesenchyme including Hofbauer cells...

  6. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signalling

    Directory of Open Access Journals (Sweden)

    Martin eKnöfler

    2013-09-01

    Full Text Available Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signalling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorioallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signalling in the human placenta and discuss its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β-catenin and induction of Wnt-dependent T-cell factor 4 suggesting that canonical Wnt signalling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signalling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β-catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signalling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodelling. Moreover, changes in Wnt signalling have been observed upon cytomegalovirus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signalling in physiological and abnormal

  7. Muscle glycogen synthesis before and after exercise.

    Science.gov (United States)

    Ivy, J L

    1991-01-01

    The importance of carbohydrates as a fuel source during endurance exercise has been known for 60 years. With the advent of the muscle biopsy needle in the 1960s, it was determined that the major source of carbohydrate during exercise was the muscle glycogen stores. It was demonstrated that the capacity to exercise at intensities between 65 to 75% VO2max was related to the pre-exercise level of muscle glycogen, i.e. the greater the muscle glycogen stores, the longer the exercise time to exhaustion. Because of the paramount importance of muscle glycogen during prolonged, intense exercise, a considerable amount of research has been conducted in an attempt to design the best regimen to elevate the muscle's glycogen stores prior to competition and to determine the most effective means of rapidly replenishing the muscle glycogen stores after exercise. The rate-limiting step in glycogen synthesis is the transfer of glucose from uridine diphosphate-glucose to an amylose chain. This reaction is catalysed by the enzyme glycogen synthase which can exist in a glucose-6-phosphate-dependent, inactive form (D-form) and a glucose-6-phosphate-independent, active form (I-form). The conversion of glycogen synthase from one form to the other is controlled by phosphorylation-dephosphorylation reactions. The muscle glycogen concentration can vary greatly depending on training status, exercise routines and diet. The pattern of muscle glycogen resynthesis following exercise-induced depletion is biphasic. Following the cessation of exercise and with adequate carbohydrate consumption, muscle glycogen is rapidly resynthesised to near pre-exercise levels within 24 hours. Muscle glycogen then increases very gradually to above-normal levels over the next few days. Contributing to the rapid phase of glycogen resynthesis is an increase in the percentage of glycogen synthase I, an increase in the muscle cell membrane permeability to glucose, and an increase in the muscle's sensitivity to insulin

  8. Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells - Liquid biopsies for monitoring complications of pregnancy.

    Directory of Open Access Journals (Sweden)

    Grace Truong

    Full Text Available Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT cells, modifying their bioactivity on endothelial cells (EC. Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE and spontaneous preterm birth (SPTB. HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen on exosome release was quantified using nanocrystals (Qdot® coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™ was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications.

  9. A Rare Gestational Trophoblastic Disease: Placental Site Trophoblastic Tumor

    Directory of Open Access Journals (Sweden)

    Senem Yaman Tunç

    2016-12-01

    PSTT is a rare tumor. In contrast to other trophoblastic tumors, PSTT produces a small amount of ß-HCG and it is relatively insensitive to chemotherapy. Adjuvant chemotherapy is suggested to follow surgical treatment in the cases with metastasis.

  10. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2015-10-01

    Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    International Nuclear Information System (INIS)

    Blazquez, Alba G.; Briz, Oscar; Gonzalez-Sanchez, Ester; Perez, Maria J.; Ghanem, Carolina I.; Marin, Jose J.G.

    2014-01-01

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug

  12. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, Alba G., E-mail: albamgb@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Briz, Oscar, E-mail: obriz@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Gonzalez-Sanchez, Ester, E-mail: u60343@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); Perez, Maria J., E-mail: mjperez@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); University Hospital of Salamanca, IECSCYL-IBSAL, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Ghanem, Carolina I., E-mail: cghanem@ffyb.uba.ar [Instituto de Investigaciones Farmacologicas, Facultad de Farmacia y Bioquimica, CONICET, Universidad de Buenos Aires, Buenos Aires (Argentina); Marin, Jose J.G., E-mail: jjgmarin@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain)

    2014-05-15

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug.

  13. Gestational trophoblastic neoplasms

    International Nuclear Information System (INIS)

    Demas, B.E.; Hricak, H.; Braga, C.

    1988-01-01

    Twenty-four women with suspected gestational trophoblastic neoplasms were evaluated prospectively to identify imaging algorithms optimal for treatment planning. All underwent chest radiography, chest CT, hepatic and cranial CT or MR imaging, and pelvic MR imaging. Ten also underwent pelvic CT, 13 pelvic US. The most sensitive imaging combination was chest CT, hepatic and cranial CT or MR imaging, and pelvic MR imaging. However, correct assignment to ACOG therapeutic categories was achieved by means of history, physical examination, beta subunit of human chorionic gonadotropin measurements, and chest radiography in 81% of patients. Hepatic and cranial imaging defined the need for radiation therapy. Chest CT was needed only when chest radiographs were negative. Pelvic imaging aided diagnosis but did not assist in treatment planning

  14. The Elsevier Trophoblast Research Award Lecture: Importance of metzincin proteases in trophoblast biology and placental development: a focus on ADAM12.

    Science.gov (United States)

    Aghababaei, Mahroo; Beristain, Alexander G

    2015-04-01

    Placental development is a highly regulated process requiring signals from both fetal and maternal uterine compartments. Within this complex system, trophoblasts, placental cells of epithelial lineage, form the maternal-fetal interface controlling nutrient, gas and waste exchange. The commitment of progenitor villous cytotrophoblasts to differentiate into diverse trophoblast subsets is a fundamental process in placental development. Differentiation of trophoblasts into invasive stromal- and vascular-remodeling subtypes is essential for uterine arterial remodeling and placental function. Inadequate placentation, characterized by defects in trophoblast differentiation, may underlie the earliest cellular events driving pregnancy disorders such as preeclampsia and fetal growth restriction. Molecularly, invasive trophoblasts acquire characteristics defined by profound alterations in cell-cell and cell-matrix adhesion, cytoskeletal reorganization and production of proteolytic factors. To date, most studies have investigated the importance of the matrix metalloproteinases (MMPs) and their ability to efficiently remodel components of the extracellular matrix (ECM). However, it is now becoming clear that besides MMPs, other related proteases regulate trophoblast invasion via mechanisms other than ECM turnover. In this review, we will summarize the current knowledge on the regulation of trophoblast invasion by members of the metzincin family of metalloproteinases. Specifically, we will discuss the emerging roles that A Disintegrin and Metalloproteinases (ADAMs) play in placental development, with a particular focus on the ADAM subtype, ADAM12. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    Science.gov (United States)

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  16. Enrofloxacin and Toltrazuril Are Able to Reduce Toxoplasma gondii Growth in Human BeWo Trophoblastic Cells and Villous Explants from Human Third Trimester Pregnancy

    Directory of Open Access Journals (Sweden)

    Rafaela J. da Silva

    2017-07-01

    Full Text Available Classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic strategies is indispensable to minimize the side effects and improve the control of infection. Previous studies demonstrated that enrofloxacin and toltrazuril reduced the incidence of Neospora caninum and Toxoplasma gondii infection. The aim of the present study was to evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii infection in human trophoblast cells (BeWo line and in human villous explants from the third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine, or combination of sulfadiazine+pyrimethamine, and the cellular or tissue viability was verified. Next, BeWo cells were infected by T. gondii (2F1 clone or the ME49 strain, whereas villous samples were only infected by the 2F1 clone. Then, infected cells and villous were treated with all antibiotics and the T. gondii intracellular proliferation as well as the cytokine production were analyzed. Finally, we evaluated the direct effect of enrofloxacin and toltrazuril in tachyzoites to verify possible changes in parasite structure. Enrofloxacin and toltrazuril did not decrease the viability of cells and villous in lower concentrations. Both drugs were able to significantly reduce the parasite intracellular proliferation in BeWo cells and villous explants when compared to untreated conditions. Regardless of the T. gondii strain, BeWo cells infected and treated with enrofloxacin or toltrazuril induced high levels of IL-6 and MIF. In villous explants, enrofloxacin induced high MIF production. Finally, the drugs increased the number of unviable parasites and triggered damage to tachyzoite structure. Taken together, it can be concluded that

  17. Enrofloxacin and Toltrazuril Are Able to Reduce Toxoplasma gondii Growth in Human BeWo Trophoblastic Cells and Villous Explants from Human Third Trimester Pregnancy.

    Science.gov (United States)

    da Silva, Rafaela J; Gomes, Angelica O; Franco, Priscila S; Pereira, Ariane S; Milian, Iliana C B; Ribeiro, Mayara; Fiorenzani, Paolo; Dos Santos, Maria C; Mineo, José R; da Silva, Neide M; Ferro, Eloisa A V; de Freitas Barbosa, Bellisa

    2017-01-01

    Classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic strategies is indispensable to minimize the side effects and improve the control of infection. Previous studies demonstrated that enrofloxacin and toltrazuril reduced the incidence of Neospora caninum and Toxoplasma gondii infection. The aim of the present study was to evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii infection in human trophoblast cells (BeWo line) and in human villous explants from the third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine, or combination of sulfadiazine+pyrimethamine, and the cellular or tissue viability was verified. Next, BeWo cells were infected by T. gondii (2F1 clone or the ME49 strain), whereas villous samples were only infected by the 2F1 clone. Then, infected cells and villous were treated with all antibiotics and the T. gondii intracellular proliferation as well as the cytokine production were analyzed. Finally, we evaluated the direct effect of enrofloxacin and toltrazuril in tachyzoites to verify possible changes in parasite structure. Enrofloxacin and toltrazuril did not decrease the viability of cells and villous in lower concentrations. Both drugs were able to significantly reduce the parasite intracellular proliferation in BeWo cells and villous explants when compared to untreated conditions. Regardless of the T. gondii strain, BeWo cells infected and treated with enrofloxacin or toltrazuril induced high levels of IL-6 and MIF. In villous explants, enrofloxacin induced high MIF production. Finally, the drugs increased the number of unviable parasites and triggered damage to tachyzoite structure. Taken together, it can be concluded that enrofloxacin and

  18. Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.

    Science.gov (United States)

    Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz

    2017-06-01

    Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  20. Determination of the Glycogen Content in Cyanobacteria.

    Science.gov (United States)

    De Porcellinis, Alice; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-07-17

    Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.

  1. Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis.

    Science.gov (United States)

    Tu, Chengyi; Xu, Robert; Koleti, Meghana; Zoldan, Janet

    2017-08-01

    Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome. Copyright © 2017. Published by Elsevier B.V.

  2. Notch signaling activation in human embryonic stem cells is required for embryonic but not trophoblastic lineage commitment

    OpenAIRE

    Yu, Xiaobing; Zou, Jizhong; Ye, Zhaohui; Hammond, Holly; Chen, Guibin; Tokunaga, Akinori; Mali, Prashant; Li, Yue-Ming; Civin, Curt; Gaiano, Nicholas; Cheng, Linzhao

    2008-01-01

    The Notch signaling pathway plays important roles in cell fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell fate choices in human embryonic stem (hES) cells. Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hES cell lines. We report here that activation of Notch signaling is required for undifferentiated hES cells to form the pr...

  3. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG)

    OpenAIRE

    Worby, Carolyn A.; Gentry, Matthew S.; Dixon, Jack E.

    2007-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual-specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PT...

  4. Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy.

    Directory of Open Access Journals (Sweden)

    Ayako Kitano

    Full Text Available BACKGROUND AND PURPOSE: The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer. METHODS: Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined. RESULTS: Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2 and decreased phosphorylation of focal adhesion kinase (FAK. The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts. CONCLUSION: The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.

  5. Immunomodulator expression in trophoblasts from the feline immunodeficiency virus (FIV-infected cat

    Directory of Open Access Journals (Sweden)

    Donaldson Janet R

    2011-07-01

    Full Text Available Abstract Background FIV infection frequently compromises pregnancy under experimental conditions and is accompanied by aberrant expression of some placental cytokines. Trophoblasts produce numerous immunomodulators that play a role in placental development and pregnancy maintenance. We hypothesized that FIV infection may cause dysregulation of trophoblast immunomodulator expression, and aberrant expression of these molecules may potentiate inflammation and compromise pregnancy. The purpose of this project was to evaluate the expression of representative pro-(TNF-α, IFN-γ, IL-1β, IL-2, IL-6, IL-12p35, IL-12p40, IL-18, and GM-CSF and anti-inflammatory cytokines (IL-4, IL-5, and IL-10; CD134, a secondary co-stimulatory molecule expressed on activated T cells (FIV primary receptor; the chemokine receptor CXCR4 (FIV co-receptor; SDF-1α, the chemokine ligand to CXCR4; and FIV gag in trophoblasts from early-and late-term pregnancy. Methods We used an anti-cytokeratin antibody in immunohistochemistry to identify trophoblasts selectively, collected these cells using laser capture microdissection, and extracted total RNA from the captured cell populations. Real time, reverse transcription-PCR was used to quantify gene expression. Results We detected IL-4, IL-5, IL-6, IL-1β, IL-12p35, IL-12p40, and CXCR4 in trophoblasts from early-and late-term pregnancy. Expression of cytokines increased from early to late pregnancy in normal tissues. A clear, pro-inflammatory microenvironment was not evident in trophoblasts from FIV-infected queens at either stage of pregnancy. Reproductive failure was accompanied by down-regulation of both pro-and anti-inflammatory cytokines. CD134 was not detected in trophoblasts, and FIV gag was detected in only one of ten trophoblast specimens collected from FIV-infected queens. Conclusion Feline trophoblasts express an array of pro-and anti-inflammatory immunomodulators whose expression increases from early to late pregnancy in

  6. Muscle Glycogen Remodeling and Glycogen Phosphate Metabolism following Exhaustive Exercise of Wild Type and Laforin Knockout Mice*

    Science.gov (United States)

    Irimia, Jose M.; Tagliabracci, Vincent S.; Meyer, Catalina M.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2015-01-01

    Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. PMID:26216881

  7. Comparative experimental infection of Listeria monocytogenes and Listeria ivanovii in bovine trophoblasts.

    Science.gov (United States)

    Rocha, Cláudia E; Mol, Juliana P S; Garcia, Luize N N; Costa, Luciana F; Santos, Renato L; Paixão, Tatiane A

    2017-01-01

    Listeria monocytogenes is a Gram-positive, facultative intracellular and invasive bacterium that has tropism to the placenta, and causes fetal morbidity and mortality in several mammalian species. While infection with L. monocytogenes and L. ivanovii are known as important causes of abortion and reproductive failure in cattle, the pathogenesis of maternal-fetal listeriosis in this species is poorly known. This study used the bovine chorioallantoic membrane explant model to investigate the kinetics of L. monocytogenes, L. ivanovii, and L. innocua infections in bovine trophoblastic cells for up to 8 h post infection. L. monocytogenes and L. ivanovii were able to invade and multiply in trophoblastic cells without causing cell death or inducing expression of pro-inflammatory genes. Although L. innocua was unable to multiply in bovine trophoblastic cells, it induced transcription of the pro-inflammatory mediator CXCL6. This study demonstrated for the first time the susceptibility of bovine trophoblastic cells to L. monocytogenes and L. ivanovii infection.

  8. Generation of Elf5-Cre knockin mouse strain for trophoblast-specific gene manipulation.

    Science.gov (United States)

    Kong, Shuangbo; Liang, Guixian; Tu, Zhaowei; Chen, Dunjin; Wang, Haibin; Lu, Jinhua

    2018-04-01

    Placental development is a complex and highly controlled process during which trophoblast stem cells differentiate to various trophoblast subtypes. The early embryonic death of systemic gene knockout models hampers the investigation of these genes that might play important roles during placentation. A trophoblast specific Cre mouse model would be of great help for dissecting out the potential roles of these genes during placental development. For this purpose, we generate a transgenic mouse with the Cre recombinase inserted into the endogenous locus of Elf5 gene that is expressed specifically in placental trophoblast cells. To analyze the specificity and efficiency of Cre recombinase activity in Elf5-Cre mice, we mated Elf5-Cre mice with Rosa26 mT/mG reporter mice, and found that Elf5-Cre transgene is expressed specifically in the trophoectoderm as early as embryonic day 4.5 (E4.5). By E12.5, the activity of Elf5-Cre transgene was detected exclusively in all derivatives of trophoblast lineages, including spongiotrophoblast, giant cells, and labyrinth trophoblasts. In addition, Elf5-Cre transgene was also active during spermatogenesis, from spermatids to mature sperms, which is consistent with the endogenous Elf5 expression in testis. Collectively, our results provide a unique tool to delete specific genes selectively and efficiently in trophoblast lineage during placentation. © 2018 Wiley Periodicals, Inc.

  9. Glycogen Synthase Kinase-3 Modulates Hyperosmotic-Induced Urea Transporter A1 Relocation in the Inner Medullary Collecting Duct Cells.

    Science.gov (United States)

    Li, Yong-Xia; Huang, Yun; Liu, Song; Mao, Yan; Yuan, Cheng-Yan; Yang, Xiao; Yao, Li-Jun

    2016-01-01

    Glycogen synthase kinase 3 (GSK3) regulates urine concentration by mediating the vasopressin-induced aquaporin 2 expression and water permeability, although it is unknown whether GSK3 also mediates the accumulation of the urea transporter A1 (UT-A1). The aim of this study is to investigate the effect of GSK3 on UT-A1 distribution. Mouse inner medullary collecting duct 3 cells were transfected with UT-A1-GFP construct. The stable transfected cells were cultured under hypertonic conditions, treated with GSK3 inhibitor lithium chloride, GSK3 activator, lysosome or proteasome inhibitor. The expression levels of UT-A1, GSK3, and phospho-GSK3 were analyzed using western blot. The interaction between UT-A1 and the Golgi apparatus was examined using confocal immunofluorescence microscope. The UT-A1 trafficking was examined using the biotinylation of surface membranes. UT-A1 dissociated away from the Golgi apparatus and translocated to the plasma membrane under hypertonic-NaCl and NaCl plus urea stimulation. This movement was accompanied by the increased phosphorylation of GSK3 and its localization on the cellular membrane. Moreover, these results were duplicated by treating the cells with the GSK3 inhibitor, and by contrast, were partially reversed by the GSK3 activator. Treating cells with a lysosome or proteasome inhibitor failed to attenuate the effects of hypertonic stimulus, indicating that the loss of UT-A1 from the Golgi was not due to degradation. Our results suggest that GSK3 may in part modulate the hypertonic-induced intracellular UT-A1 redistribution and its accumulation on the plasma membrane, which may constitute another mechanism by which GSK3 modulates urine concentration. © 2016 S. Karger AG, Basel.

  10. Regulation of pregnancy-associated plasma protein A2 (PAPPA2 in a human placental trophoblast cell line (BeWo

    Directory of Open Access Journals (Sweden)

    Christians Julian K

    2011-04-01

    Full Text Available Abstract Background Pregnancy-associated plasma protein A2 (PAPPA2 is an insulin-like growth factor-binding protein (IGFBP protease expressed at high levels in the placenta and upregulated in pregnancies complicated by preeclampsia and HELLP (Hemolytic anemia, Elevated Liver enzymes, and Low Platelet count syndrome. However, it is unclear whether elevated PAPPA2 expression causes abnormal placental development, or whether upregulation compensates for placental pathology. In the present study, we investigate whether PAPPA2 expression is affected by hypoxia, oxidative stress, syncytialization factors or substances known to affect the expression of PAPPA2's paralogue, PAPPA. Methods BeWo cells, a model of placental trophoblasts, were treated with one of the following: hypoxia (2% O2, oxidative stress (20 microM hydrogen peroxide, forskolin (10 microM and 100 microM, TGF-beta (10 and 50 ng/mL, TNF-alpha (100 ng/mL, IL-1beta (100 ng/mL or PGE2 (1 microM. We used quantitative RT-PCR (qRT-PCR to quantify the mRNA levels of PAPPA2, as well as those of PAPPA and ADAM12 since these proteases have similar substrates and are also highly expressed in the placenta. Where we observed significant effects on PAPPA2 mRNA levels, we tested for effects at the protein level using an in-cell Western assay. Results Hypoxia, but not oxidative stress, caused a 47-fold increase in PAPPA2 mRNA expression, while TNF-alpha resulted in a 6-fold increase, and both of these effects were confirmed at the protein level. PGE2 resulted in a 14-fold upregulation of PAPPA2 mRNA but this was not reflected at the protein level. Forskolin, TGF-beta and IL-1beta had no significant effect on PAPPA2 mRNA expression. We observed no effects of any treatment on PAPPA or ADAM12 expression. Conclusion Our study demonstrates that factors previously known to be highly expressed in preeclamptic placentae (PGE2 and TNF-alpha, contribute to the upregulation of PAPPA2. Hypoxia, known to occur in

  11. Alteration of Pituitary Tumor Transforming Gene-1 Regulates Trophoblast Invasion via the Integrin/Rho-Family Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Seung Mook Lim

    Full Text Available Trophoblast invasion ability is an important factor in early implantation and placental development. Recently, pituitary tumor transforming gene 1 (PTTG1 was shown to be involved in invasion and proliferation of cancer. However, the role of PTTG1 in trophoblast invasion remains unknown. Thus, in this study we analyzed PTTG1 expression in trophoblasts and its effect on trophoblast invasion activity and determined the mechanism through which PTTG1 regulates trophoblast invasion. Trophoblast proliferation and invasion abilities, regardless of PTTG1 expression, were analyzed by quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting analysis, invasion assay, western blot, and zymography after treatment with small interfering RNA against PTTG1 (siPTTG1. Additionally, integrin/Rho-family signaling in trophoblasts by PTTG1 alteration was analyzed. Furthermore, the effect of PTTG1 on trophoblast invasion was evaluated by microRNA (miRNA mimic and inhibitor treatment. Trophoblast invasion was significantly reduced through decreased matrix metalloproteinase (MMP-2 and MMP-9 expression when PTTG1 expression was inhibited by siPTTG1 (p < 0.05. Furthermore, knockdown of PTTG1 increased expression of integrin alpha 4 (ITGA4, ITGA5, and integrin beta 1 (ITGB1; otherwise, RhoA expression was significantly decreased (p < 0.05. Treatment of miRNA-186-5p mimic and inhibitor controlled trophoblast invasion ability by altering PTTG1 and MMP expression. PTTG1 can control trophoblast invasion ability via regulation of MMP expression through integrin/Rho-family signaling. In addition, PTTG1 expression and its function were regulated by miRNA-186-5p. These results help in understanding the mechanism through which PTTG1 regulates trophoblast invasion and thereby implantation and placental development.

  12. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Priyadarsini Kumar

    Full Text Available Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2 and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts and a villous pathway (giving rise to multinucleated syncytiotrophoblast. Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion. Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNF

  13. TNF-α inhibits trophoblast integration into endothelial cellular networks.

    Science.gov (United States)

    Xu, B; Nakhla, S; Makris, A; Hennessy, A

    2011-03-01

    Preeclampsia has been linked to shallow trophoblast invasion and failure of uterine spiral artery transformation. Interaction between trophoblast cells and maternal uterine endothelium is critically important for this remodelling. The aim of our study was to investigate the effect of TNF-α on the interactions of trophoblast-derived JEG-3 cells into capillary-like cellular networks. We have employed an in vitro trophoblast-endothelial cell co-culture model to quantify trophoblast integration into endothelial cellular networks and to investigate the effects of TNF-α. Controlled co-cultures were also treated with anti-TNF-α antibody (5 μg/ml) to specifically block the effect of TNF-α. The invasion was evaluated by performing quantitative PCR (Q-PCR) to analyse gene expression of matrix metalloproteinases-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, integrins (α(1)β(1) and α(6)β(4)), plasminogen activator inhibitor (PAI)-1, E-cadherin and VE-cadherin. JEG-3 cell integration into endothelial networks was significantly inhibited by exogenous TNF-α. The inhibition was observed in the range of 0.2-5 ng/ml, to a maximum 56% inhibition at the highest concentration. This inhibition was reversed by anti-TNF-α antibody. Q-PCR analysis showed that mRNA expression of integrins α(1)β(1) and MMP-2 was significantly decreased. VE-cadherin mRNA expression was significantly up-regulated (32-80%, p integration into maternal endothelial cellular networks, and this process involves the inhibition of MMP-2 and a failure of integrins switch from α(6)β(4) to α(1)β(1.) These molecular correlations reflect the changes identified in human preeclampsia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis

    DEFF Research Database (Denmark)

    Multhaupt, H A; Mazar, A; Cines, D B

    1994-01-01

    BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors by troph......BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors...... at the leading edge of migrating extravillous trophoblast cells. Receptors were also abundantly expressed during the first and second trimesters of gestation by villous trophoblast, where they were located on apical villous projections and within intracellular vacuoles, a subset of which were lysosomes...

  15. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels.

    Science.gov (United States)

    Yang, Ke; Guo, Yang; Stacey, William C; Harwalkar, Jyoti; Fretthold, Jonathan; Hitomi, Masahiro; Stacey, Dennis W

    2006-08-30

    The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.

  16. Placental Trophoblast Responses to Porphyromonas gingivalis Mediated by Toll-like Receptor-2 and -4

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2013-09-01

    Full Text Available Trophoblast participates in preventing allorecognition and controlling pathogens that compromise fetal wellbeing. Toll-like receptors recognize conserved sequences on the pathogens surface and trigger effector cell functions. Porphyromonas gingivalis is thought to spread to the umbilical cord and cause fetal growth restriction. Objective: To characterize expression and function of TLR-2 and TLR-4 in trophoblast cells from Porphyromonas gingivalisinfected pregnant rats. Methods: Live Porphyromonas gingivalis were challenged into the maxillary first molar subgingival sulcus of female rats before and/or during pregnancy and sacrified on gestational day (GD 14 and 20. Porphyromonas gingivalis was detected by API-ZYM system in the maternal blood of the retro-orbital venous plexus and the umbilical cord. TLR-2 and TLR-4 expressions in trophoblast cells was detected by immunohistochemistry. Results: Porphyromonas gingivalis was first detected in the maternal blood and finally spread to the umbilical cord. Syncytiotrophoblast, spongitrophoblast and trophoblastic giant cell in treated groups had significantly higher expression of TLR-2 and TLR-4 than control group (p<0.05. Conclusion: Syncytiotrophoblast, spongitrophoblast and trophoblastic giant cell are able to recognize Porphyromonas gingivalis through TLR-2 and TLR-4 expression. The ligation of TLR-2 and TLR-4 promoted cytokine production and induced trophoblast cell death. These findings strengthen links between periodontal disease and fetal growth restriction.DOI: 10.14693/jdi.v20i2.150

  17. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Directory of Open Access Journals (Sweden)

    Marta ePardo

    2015-03-01

    Full Text Available ABSTRACTBrain glycogen synthase kinase-3 (GSK3 is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC. To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with wild-type mice. Environmental enrichment (EE increased NPC proliferation in male, but not female, GSK3 knockin mice and wild-type mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched wild-type mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 hr pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.

  18. Introduction to the Thematic Minireview Series: Brain glycogen metabolism.

    Science.gov (United States)

    Carlson, Gerald M; Dienel, Gerald A; Colbran, Roger J

    2018-05-11

    The synthesis of glycogen allows for efficient intracellular storage of glucose molecules in a soluble form that can be rapidly released to enter glycolysis in response to energy demand. Intensive studies of glucose and glycogen metabolism, predominantly in skeletal muscle and liver, have produced innumerable insights into the mechanisms of hormone action, resulting in the award of several Nobel Prizes over the last one hundred years. Glycogen is actually present in all cells and tissues, albeit at much lower levels than found in muscle or liver. However, metabolic and physiological roles of glycogen in other tissues are poorly understood. This series of Minireviews summarizes what is known about the enzymes involved in brain glycogen metabolism and studies that have linked glycogen metabolism to multiple brain functions involving metabolic communication between astrocytes and neurons. Recent studies unexpectedly linking some forms of epilepsy to mutations in two poorly understood proteins involved in glycogen metabolism are also reviewed. © 2018 Carlson et al.

  19. Glycogen and its metabolism: some new developments and old themes

    Science.gov (United States)

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  20. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    Science.gov (United States)

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  1. MTA3 regulates CGB5 and Snail genes in trophoblast

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Miyazaki, Jun [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Nishizawa, Haruki [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Kurahashi, Hiroki [Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States); Wang, Kai, E-mail: Kai.Wang@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States)

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  2. MTA3 regulates CGB5 and Snail genes in trophoblast

    International Nuclear Information System (INIS)

    Chen, Ying; Miyazaki, Jun; Nishizawa, Haruki; Kurahashi, Hiroki; Leach, Richard; Wang, Kai

    2013-01-01

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  3. MSX2 Induces Trophoblast Invasion in Human Placenta.

    Directory of Open Access Journals (Sweden)

    Hao Liang

    Full Text Available Normal implantation depends on appropriate trophoblast growth and invasion. Inadequate trophoblast invasion results in pregnancy-related disorders, such as early miscarriage and pre-eclampsia, which are dangerous to both the mother and fetus. Msh Homeobox 2 (MSX2, a member of the MSX family of homeobox proteins, plays a significant role in the proliferation and differentiation of various cells and tissues, including ectodermal organs, teeth, and chondrocytes. Recently, MSX2 was found to play important roles in the invasion of cancer cells into adjacent tissues via the epithelial-mesenchymal transition (EMT. However, the role of MSX2 in trophoblastic invasion during placental development has yet to be explored. In the present study, we detected MSX2 expression in cytotrophoblast, syncytiotrophoblast, and extravillous cytotrophoblast cells of first or third trimester human placentas via immunohistochemistry analysis. Furthermore, we found that the in vitro invasive ability of HTR8/SVneo cells was enhanced by exogenous overexpression of MSX2, and that this effect was accompanied by increased protein expression of matrix metalloproteinase-2 (MMP-2, vimentin, and β-catenin. Conversely, treatment of HTR8/SVneo cells with MSX2-specific siRNAs resulted in decreased protein expression of MMP-2, vimentin, and β-catenin, and reduced invasion levels in a Matrigel invasion test. Notably, however, treatment with the MSX2 overexpression plasmid and the MSX2 siRNAs had no effect on the mRNA expression levels of β-catenin. Meanwhile, overexpression of MSX2 and treatment with the MSX2-specific siRNA resulted in decreased and increased E-cadherin expression, respectively, in JEG-3 cells. Lastly, the protein expression levels of MSX2 were significantly lower in human pre-eclamptic placental villi than in the matched control placentas. Collectively, our results suggest that MSX2 may induce human trophoblast cell invasion, and dysregulation of MSX2 expression may

  4. Drug induced exocytosis of glycogen in Pompe disease.

    Science.gov (United States)

    Turner, Christopher T; Fuller, Maria; Hopwood, John J; Meikle, Peter J; Brooks, Doug A

    2016-10-28

    Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca 2+ -dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules. Copyright © 2016. Published by Elsevier Inc.

  5. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  6. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-06-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.

  7. Gestational Trophoblastic Disease—Health Professional Version

    Science.gov (United States)

    Gestational trophoblastic disease (GTD) is a broad term encompassing both benign and malignant growths arising from products of conception in the uterus. GTDs contain paternal chromosomes and are placental in origin. Find evidence-based information on gestational trophoblastic disease treatment.

  8. Chronic inhibition of glycogen synthase kinase-3 protects against rotenone-induced cell death in human neuron-like cells by increasing BDNF secretion.

    Science.gov (United States)

    Giménez-Cassina, Alfredo; Lim, Filip; Díaz-Nido, Javier

    2012-12-07

    Mitochondrial dysfunction is a common feature of many neurodegenerative disorders. Likewise, activation of glycogen synthase kinase-3 (GSK-3) has been proposed to play an important role in neurodegeneration. This multifunctional protein kinase is involved in a number of cellular functions and we previously showed that chronic inhibition of GSK-3 protects neuronal cells against mitochondrial dysfunction-elicited cell death, through a mechanism involving increased glucose metabolism and the translocation of hexokinase II (HKII) to mitochondria. Here, we sought to gain deeper insight into the molecular basis of this neuroprotection. We found that chronic inhibition of GSK-3, either genetically or pharmacologically, elicited a marked increase in brain-derived neurotrophic factor (BDNF) secretion, which in turn conferred resistance to mitochondrial dysfunction through subcellular re-distribution of HKII. These results define a molecular pathway through which chronic inhibition of GSK-3 may protect neuronal cells from death. Moreover, they highlight the potential benefits of enhanced neurotrophic factor secretion as a therapeutic approach to treat neurodegenerative diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Hepatic glycogen synthesis in the fetal mouse: An ultrastructural, morphometric, and autoradiographic investigation of the relationship between the smooth endoplasmic reticulum and glycogen

    International Nuclear Information System (INIS)

    Breslin, J.S.

    1989-01-01

    Fetal rodent hepatocytes undergo a rapid and significant accumulation of glycogen prior to birth. The distinct association of the smooth endoplasmic reticulum (SER) with glycogen during glycogen synthesis documented in the adult hepatocyte has not been clearly demonstrated in the fetus. The experiments described in this dissertation tested the hypothesis that SER is present and functions in the synthesis of fetal hepatic glycogen. Biochemical analysis, light microscopic (LM) histochemistry and electron microscope (EM) morphometry demonstrated that fetal hepatic glycogen synthesis began on day 15, with maximum accumulation occurring between days 17-19. Glycogen accumulation began in a small population of cells. Both the number of cells containing glycogen and the quantity of glycogen per cell increased as glycogen accumulated. Smooth endoplasmic reticulum (SER) was observed on day 14 of gestation and throughout fetal hepatic glycogen synthesis, primarily as dilated ribosome-free terminal extensions of rough endoplasmic reticulum (RER), frequently associated with glycogen. SER was in close proximity to isolated particles of glycogen and at the periphery of large compact glycogen deposits. Morphometry demonstrated that the membrane surface of SER in the average fetal hepatocyte increased as glycogen accumulated through day 18 and dropped significantly as glycogen levels peaked on day 19. Parallel alterations in RER membrane surface, indicated overall increases in ER membrane surface. Autoradiography following administration of 3 H-galactose demonstrated that newly synthesized glycogen was deposited near profiles of SER at day 16 and at day 18; however, at day 18 the majority of label was uniformly distributed over glycogen remote from profiles of SER

  10. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells

    DEFF Research Database (Denmark)

    Llavero, Francisco; Urzelai, Bakarne; Osinalde, Nerea

    2015-01-01

    Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate...... in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described....... More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation...

  11. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  12. Neuronal glycogen synthesis contributes to physiological aging.

    Science.gov (United States)

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-10-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Trophoblast retrieval and isolation from the cervix: origins of cervical trophoblasts and their potential value for risk assessment of ongoing pregnancies.

    Science.gov (United States)

    Moser, Gerit; Drewlo, Sascha; Huppertz, Berthold; Armant, D Randall

    2018-03-28

    Early during human development, the trophoblast lineage differentiates to commence placentation. Where the placenta contacts the uterine decidua, extravillous trophoblast (EVT) cells differentiate and invade maternal tissues. EVT cells, identified by expression of HLA-G, invade into uterine blood vessels (endovascular EVT), as well as glands (endoglandular EVT), and open such luminal structures towards the intervillous space of the placenta. Endoglandular invasion diverts the contents of uterine glands to the intervillous space, while glands near the margin of the placenta that also contain endoglandular EVT cells open into the reproductive tract. Cells of the trophoblast lineage have thus been recovered from the uterine cavity and endocervical canal. An emerging non-invasive technology [trophoblast retrieval and isolation from the cervix (TRIC)] isolates and examines EVT cells residing in the cervix to explore their origin, biology and relationship to pregnancy and fetal status. This review explores the origins and possible uses of trophoblast cells obtained during ongoing pregnancies (weeks 5-20) by TRIC. We hypothesize that endoglandular EVT cells at the margins of the expanding placenta enter the uterine cavity and are carried together with uterine secretion products to the cervix where they can be retrieved from a Papanicolaou (Pap) smear. The advantages of TRIC for investigation of human placentation and prenatal testing will be considered. Evidence from the literature, and from archived in utero placental histological sections, is presented to support these hypotheses. We used 52 out of 80 publications that appeared between 1966 and 2017 and were found by searching the PubMed and Google Scholar databases. The studies described trophoblast invasion of uterine vessels and glands, as well as trophoblast cells residing in the reproductive tract. This was supplemented with literature on human placental health and disease. The literature describes a variety of

  14. Detection of fetal-specific DNA after enrichment for trophoblasts using the monoclonal antibody LK26 in model systems but failure to demonstrate fetal DNA in maternal peripheral blood

    DEFF Research Database (Denmark)

    Hviid, T V; Sørensen, S; Morling, N

    1999-01-01

    Trophoblast cells can be detected in maternal blood during normal human pregnancy and DNA from these cells may be used for non-invasive prenatal diagnosis of inherited diseases. The possibility of enriching trophoblast cells from maternal blood samples using a monoclonal antibody (LK26) against...... a folate-binding protein, which recognizes trophoblast in normal tissues, in conjunction with immunomagnetic cell sorting was investigated. Verification of the presence of fetal DNA in the sorted samples was done by detection of fetal/paternal-specific short tandem repeat (STR) alleles using polymerase...... on peripheral maternal blood samples. However, it was not possible to detect fetal DNA sequences in these samples, most probably due to the extremely low number of trophoblast cells. Positive identification and retrieval of trophoblast cells in suspension or trophoblast nuclear material prepared on microscope...

  15. Tyrosine glycosylation is involved in muscle-glycogen synthesis

    International Nuclear Information System (INIS)

    Rodriguez, I.R.; Tandecarz, J.S.; Kirkman, B.R.; Whelan, W.J.

    1986-01-01

    Rabbit-muscle glycogen contains a covalently bound protein having Mr 37,000 that the authors will henceforth refer to as glycogenin. It is completely insoluble in water at pH 5, and may be generated as a precipitate as a result of the combined action on glycogen of α-amylase and glucoamylase, or by treatment with anhydrous hydrogen fluoride. In the former case the protein still carries some of the glucose residues of glycogen (10-30 per mole of glycogenin). The linkage between glycogen and glycogenin has been identified as a novel glycosidic-amino acid bond. The authors demonstrated glucosylation with UDP[/sup 14/C]glucose by a muscle extract of two rabbit-muscle proteins contained in the same extract. The relation of these proteins to glycogenin, and whether the amino acid undergoing glucosylation is tyrosine, remains to be explored. The discovery of glycogenin is, the authors believe, an important clue to the mechanism of biogenesis of glycogen and may represent a previously unsuspected means of metabolic control of the glycogen content of the cell and the location of glycogen within the cell. The facts that the linkage between glycogen and glycogenin is via tyrosine, that insulin stimulates glycogen synthesis, and acts on its receptor by causing it to become an active tyrosine kinase, may be linked by a common thread

  16. Glycogen synthase kinase 3β regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    International Nuclear Information System (INIS)

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-01-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 β (GSK3β) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3β has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3β (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3β delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3β is required for the activation of NFAT during wound repair

  17. OS041. Apolipoprotein A-I protects normal integration of the trophoblast into endothelial cellular networks in an in vitro model of preeclampsia.

    Science.gov (United States)

    Charlton, F; Xu, B; Makris, A; Hennessy, A; Rye, K-A

    2012-07-01

    Failure of the trophoblast to appropriately invade uterine spiral arteries is thought to be an initiating event in preeclampsia, a disorder associated with endothelial dysfunction. A dyslipidemia characterised by low plasma levels of high density lipoproteins (HDL) and elevated triglycerides has also been described in preeclampsia. The pro-inflammatory cytokine TNF-α inhibits trophoblast invasion of uterine endothelial cells. Previous work using an in vitro JEG-3 cell/Uterine endothelial cell co-culture model investigated the effect of apoliopoprotein A-I, the main apolipoprotein component of HDL, on trophoblast incorporation into endothelial tubules in the presence and absence of TNF-α. These effects are now investigated using the human invasive trophoblast cell line HTR-8/SVneo. This study asks if apoA-I, which has established anti-inflammatory properties, can protect against the deleterious effect of TNF-α on trophoblast-endothelial cell interactions. The in vitro trophoblast-uterine endothelial cell co-culture model was used to investigate the effect of apoA-I on trophoblast incorporation into endothelial tubules in the presence and absence of TNF-α. Uterine endothelial cells were pre-incubated with lipid free apoA-I (final apoA-I concentration 1 mg/mL) for 16h prior to seeding on matrigel coated plates. Tubules formed within 4h. Fluorescence-labelled HTR-8/SVneo trophoblast cells were then co-cultured with the endothelial cells±TNF-α (final concentration of 0.2ng/mL). Bright field and fluorescent images were captured after 24h. The effect of TNF-α on HTR-8/SVneo cell invasion was quantified with Image J software. Integration of HTR-8/SVneo trophoblast cells into uterine endothelial tubular networks was also imaged using live cell imaging techniques (Zeiss Axiovert). TNF-α inhibited HTR-8/SVneo (trophoblast) cell integration into endothelial tubular structures by 24.1±3.7% pintegration of trophoblast into endothelial tubular structures in the presence

  18. Glycogen distribution in adult and geriatric mice brains

    KAUST Repository

    Alrabeh, Rana

    2017-05-01

    Astrocytes, the most abundant glial cell type in the brain, undergo a number of roles in brain physiology; among them, the energetic support of neurons is the best characterized. Contained within astrocytes is the brain’s obligate energy store, glycogen. Through glycogenolysis, glycogen, a storage form of glucose, is converted to pyruvate that is further reduced to lactate and transferred to neurons as an energy source via MCTs. Glycogen is a multi-branched polysaccharide synthesized from the glucose uptaken in astrocytes. It has been shown that glycogen accumulates with age and contributes to the physiological ageing process in the brain. In this study, we compared glycogen distribution between young adults and geriatric mice to understand the energy consumption of synaptic terminals during ageing using computational tools. We segmented and densely reconstructed neuropil and glycogen granules within six (three 4 month old old and three 24 month old) volumes of Layer 1 somatosensory cortex mice brains from FIB-SEM stacks, using a combination of semi-automated and manual tools, ilastik and TrakEM2. Finally, the 3D visualization software, Blender, was used to analyze the dataset using the DBSCAN and KDTree Nearest neighbor algorithms to study the distribution of glycogen granules compared to synapses, using a plugin that was developed for this purpose. The Nearest Neighbors and clustering results of 6 datasets show that glycogen clusters around excitatory synapses more than inhibitory synapses and that, in general, glycogen is found around axonal boutons more than dendritic spines. There was no significant accumulation of glycogen with ageing within our admittedly small dataset. However, there was a homogenization of glycogen distribution with age and that is consistent with published literature. We conclude that glycogen distribution in the brain is not a random process but follows a function distribution.

  19. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    Science.gov (United States)

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  20. Glycogen synthase kinase-3β facilitates cell apoptosis induced by high fluence low-power laser irradiation through acceleration of Bax translocation

    Science.gov (United States)

    Huang, Lei; Wu, Shengnan; Xing, Da

    2011-03-01

    Glycogen synthase kinase-3β (GSK-3β) is a critical activator of cell apoptosis induced by a diverse array of insults. However, the effects of GSK-3β on the human lung adenocarcinoma cell (ASTC-a-1) apoptosis induced by high fluence low-power laser irradiation (HF-LPLI) are not clear. Here, we showed that GSK-3β was constantly translocated from cytoplasm to nucleus and activated during HF-LPLI-induced cell apoptosis. In addition, we found that co-overexpression of YFP-GSK-3β and CFP-Bax in ASTC-a-1 cells accelerated both Bax translocations to mitochondria and cell apoptosis, compared to the cells expressed CFP-Bax only under HF-LPLI treatment, indicating that GSK-3β facilitated ASTC-a-1 cells apoptosis through acceleration mitochondrial translocation of Bax. Our results demonstrate that GSK-3β exerts some of its pro-apoptotic effects in ASTC-a-1 cells by regulating the mitochondrial localization of Bax, a key component of the intrinsic apoptotic cascade.

  1. Drugs Approved for Gestational Trophoblastic Disease

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for gestational trophoblastic disease. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  2. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia.

    Science.gov (United States)

    Zheng, Qin; Dai, Kuixing; Cui, Xinyuan; Yu, Ming; Yang, Xuesong; Yan, Bin; Liu, Shuai; Yan, Qiu

    2016-05-01

    Preeclampsia is a pregnancy-related syndrome which can cause perinatal mortality and morbidity. Inadequate invasion by trophoblast cells may lead to poor perfusion of the placenta, even result in preeclampsia. Understanding the molecular mechanisms underlying placentation facilitates the better intervention of preeclampsia. Urokinase-type plasminogen activator receptor (uPAR) is involved in the physiological and pathological processes. Leukemia inhibitory factor (LIF) is an important regulator in the establishment of pregnancy. However, the expression of uPAR in preeclamptic patients and its relationship with LIF remains unclear. In the current study, we found that the level of uPAR was relatively lower in the placentas from preeclamptic patients as compared with normal pregnant women. LIF promoted trophoblast cell outgrowth by upregulating uPAR in an explants culture, and LIF also enhanced migration and invasion potential through uPAR in trophoblast JAR and JEG-3 cell lines, and with increased gelatinolytic activities of matrix metalloproteinase 2 (MMP-2). The effect of LIF and uPAR on trophoblast migration and invasion was mediated by PI3K/AKT signaling pathway. Our data indicates the roles of LIF in promoting trophoblast migration and invasion through uPAR and suggest that abnormal expression of uPAR might be associated with the etiology of preeclampsia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Volume I. Glycogen: A historical overview, an adjunct to thesis. Volume II. Non-glucose components of glycogen

    International Nuclear Information System (INIS)

    Kirkman, B.R.

    1988-01-01

    Investigations have been carried out on three non-glucose components of native glycogen: protein, glucosamine, and phosphate. The protein, glycogenin, appears to serve as the primer upon which new molecules of glycogen are synthesized. When cell extracts are incubated with ( 14 C)UDPG, ( 14 C)glucose becomes transferred onto pre-existing chains of alpha-1,4 linked glucose associated with free glycogenin. The transferase and glycogenin remain associated during various purification steps. Liver glycogen appears to contain less than 0.02% protein which may correspond to the presence of one molecule of glycogenin (37 kDa) per alpha particle of liver glycogen. The core beta particle within each alpha particle may be synthesized upon glycogenin, while the remaining 20-40 beta particles may arise from each other. The author has demonstrated the natural occurrence of glucosamine in liver glycogen (but not muscle glycogen) from various species in an amount of about one molecule per molecule of glycogen. The glucosamine is underivatized, appears to be randomly scattered in the glycogen, and may be derived from dietary galactosamine. Similar to Fontana (1980), the author observed that native liver glycogen could be fractionated on DEAE-cellulose apparently on the basis of phosphate content. The more strongly bound glycogen possessed a greater molecular weight and content of glucosamine and phosphate. Possible explanations for these subfractions are considered. The phosphate appears to be concentrated near the center of the glycogen molecules. About 30% appears to be associated with glucose-6P and the remainder with an unidentified phosphodiester. The phosphate may stimulate glycogen synthesis. How the phosphate becomes incorporated is unknown

  4. Genetics Home Reference: glycogen storage disease type 0

    Science.gov (United States)

    ... skeletal muscle, glycogen stored in muscle cells is broken down to supply the cells with energy. The ... that is stored in the liver can be broken down rapidly when glucose is needed to maintain ...

  5. Genetics Home Reference: glycogen storage disease type VI

    Science.gov (United States)

    ... or elevated levels of ketones in the blood (ketosis). Ketones are molecules produced during the breakdown of ... and may use fats for energy, resulting in ketosis. Glycogen accumulates within liver cells, causing these cells ...

  6. Glycogen synthase kinase-3 inhibitors suppress the AR-V7-mediated transcription and selectively inhibit cell growth in AR-V7-positive prostate cancer cells.

    Science.gov (United States)

    Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito

    2017-06-01

    Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.

  7. Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase.

    OpenAIRE

    Franch, J; Aslesen, R; Jensen, J

    1999-01-01

    We investigated the effects of insulin and adrenaline on the rate of glycogen synthesis in skeletal muscles after electrical stimulation in vitro. The contractile activity decreased the glycogen concentration by 62%. After contractile activity, the glycogen stores were fully replenished at a constant and high rate for 3 h when 10 m-i.u./ml insulin was present. In the absence of insulin, only 65% of the initial glycogen stores was replenished. Adrenaline decreased insulin-stimulated glycogen s...

  8. Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains

    Science.gov (United States)

    Ye, Shoudong; Tan, Li; Yang, Rongqing; Fang, Bo; Qu, Su; Schulze, Eric N.; Song, Houyan; Ying, Qilong; Li, Ping

    2012-01-01

    Background Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. β-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of β-catenin and c-Myc protein levels. Stabilized β-catenin promoted ES self-renewal through two mechanisms. First, β-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, β-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. β-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cells with non-permissive genetic backgrounds by regulation of multiple signaling pathways. These findings would be useful to improve the availability of normally non-permissive mouse strains as research tools. PMID:22540008

  9. The role of invasive trophoblast in implantation and placentation of primates

    Science.gov (United States)

    Carter, Anthony M.; Enders, Allen C.; Pijnenborg, Robert

    2015-01-01

    We here review the evolution of invasive placentation in primates towards the deep penetration of the endometrium and its arteries in hominoids. The strepsirrhine primates (lemurs and lorises) have non-invasive, epitheliochorial placentation, although this is thought to be derived from a more invasive type. In haplorhine primates, there is differentiation of trophoblast at the blastocyst stage into syncytial and cellular trophoblast. Implantation involves syncytiotrophoblast that first removes the uterine epithelium then consolidates at the basal lamina before continuing into the stroma. In later stages of pregnancy, especially in Old World monkeys and apes, cytotrophoblast plays a greater role in the invasive process. Columns of trophoblast cells advance to the base of the implantation site where they spread out to form a cytotrophoblastic shell. In addition, cytotrophoblasts advance into the lumen of the spiral arteries. They are responsible for remodelling these vessels to form wide, low-resistance conduits. In human and great apes, there is additional invasion of the endometrium and its vessels by trophoblasts originating from the base of the anchoring villi. Deep trophoblast invasion that extends remodelling of the spiral arteries to segments in the inner myometrium evolved in the common ancestor of gorilla, chimp and human. PMID:25602074

  10. The role of invasive trophoblast in implantation and placentation of primates.

    Science.gov (United States)

    Carter, Anthony M; Enders, Allen C; Pijnenborg, Robert

    2015-03-05

    We here review the evolution of invasive placentation in primates towards the deep penetration of the endometrium and its arteries in hominoids. The strepsirrhine primates (lemurs and lorises) have non-invasive, epitheliochorial placentation, although this is thought to be derived from a more invasive type. In haplorhine primates, there is differentiation of trophoblast at the blastocyst stage into syncytial and cellular trophoblast. Implantation involves syncytiotrophoblast that first removes the uterine epithelium then consolidates at the basal lamina before continuing into the stroma. In later stages of pregnancy, especially in Old World monkeys and apes, cytotrophoblast plays a greater role in the invasive process. Columns of trophoblast cells advance to the base of the implantation site where they spread out to form a cytotrophoblastic shell. In addition, cytotrophoblasts advance into the lumen of the spiral arteries. They are responsible for remodelling these vessels to form wide, low-resistance conduits. In human and great apes, there is additional invasion of the endometrium and its vessels by trophoblasts originating from the base of the anchoring villi. Deep trophoblast invasion that extends remodelling of the spiral arteries to segments in the inner myometrium evolved in the common ancestor of gorilla, chimp and human. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line.

    Science.gov (United States)

    Park, Hae-Ryung; Loch-Caruso, Rita

    2014-11-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20μM BDE-47 for 24h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20μM BDE-47 for 24h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    Science.gov (United States)

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pregnancy outcomes after chemotherapy for trophoblastic neoplasia.

    Science.gov (United States)

    Garcia, Mila Trementosa; Lin, Lawrence Hsu; Fushida, Koji; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo

    2016-12-01

    The successful development of chemotherapy enabled a fertilitysparing treatment for patients with trophoblastic neoplasia. After disease remission, the outcome of a subsequent pregnancy becomes a great concern for these women. To analyze existing studies in the literature that describe the reproductive outcomes of patients with trophoblastic neoplasia treated with chemotherapy. Systematic review was performed searching for articles on Medline/ Pubmed, Lilacs and Cochrane Library databases, using the terms "gestational trophoblastic disease" and "pregnancy outcome". A total of 18 articles were included. No evidence of decreased fertility after chemotherapy for trophoblastic neoplasia was observed. The abortion rates in patients who conceived within 6 months after chemotherapy was higher compared to those who waited longer. Some studies showed increased rates of stillbirth and repeat hydatidiform moles. Only one work showed increased congenital abnormalities. The pregnancies conceived after chemotherapy for trophoblastic neoplasia should be followed with clinical surveillance due to higher rates of some pregnancy complications. However, studies in the literature provide reassuring data about reproductive outcomes of these patients.

  14. Pregnancy outcomes after chemotherapy for trophoblastic neoplasia

    Directory of Open Access Journals (Sweden)

    MILA TREMENTOSA GARCIA

    Full Text Available SUMMARY Introduction The successful development of chemotherapy enabled a fertilitysparing treatment for patients with trophoblastic neoplasia. After disease remission, the outcome of a subsequent pregnancy becomes a great concern for these women. Objective To analyze existing studies in the literature that describe the reproductive outcomes of patients with trophoblastic neoplasia treated with chemotherapy. Method Systematic review was performed searching for articles on Medline/ Pubmed, Lilacs and Cochrane Library databases, using the terms “gestational trophoblastic disease” and “pregnancy outcome”. Results A total of 18 articles were included. No evidence of decreased fertility after chemotherapy for trophoblastic neoplasia was observed. The abortion rates in patients who conceived within 6 months after chemotherapy was higher compared to those who waited longer. Some studies showed increased rates of stillbirth and repeat hydatidiform moles. Only one work showed increased congenital abnormalities. Conclusion The pregnancies conceived after chemotherapy for trophoblastic neoplasia should be followed with clinical surveillance due to higher rates of some pregnancy complications. However, studies in the literature provide reassuring data about reproductive outcomes of these patients.

  15. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  16. Genetics Home Reference: glycogen storage disease type IX

    Science.gov (United States)

    ... or elevated levels of ketones in the blood (ketosis). Ketones are molecules produced during the breakdown of ... down glycogen for glucose contributes to hypoglycemia and ketosis. Reduced energy production in muscle cells leads to ...

  17. Genetics Home Reference: glycogen storage disease type V

    Science.gov (United States)

    ... with GSDV experience mild symptoms such as poor stamina; others do not experience any symptoms. Related Information ... myophosphorylase. This enzyme is found only in muscle cells, where it breaks down glycogen into a simpler ...

  18. Glycogen phosphorylation and Lafora disease.

    Science.gov (United States)

    Roach, Peter J

    2015-12-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. © 2016 AlphaMed Press.

  20. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC) Induces Trophoblast Dysfunction.

    Science.gov (United States)

    Chang, Xinwen; Bian, Yiding; He, Qizhi; Yao, Julei; Zhu, Jingping; Wu, Jinting; Wang, Kai; Duan, Tao

    2017-01-01

    Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC), the major component of marijuana, on trophoblast function, placental development, and birth outcomes. The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC) staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3) were detected by western blot. We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC Induces Trophoblast Dysfunction

    Directory of Open Access Journals (Sweden)

    Xinwen Chang

    2017-06-01

    Full Text Available Aims: Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC, the major component of marijuana, on trophoblast function, placental development, and birth outcomes. Methods: The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3 were detected by western blot. Results: We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Conclusion: Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction.

  2. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    Science.gov (United States)

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan)

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E, a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.

  4. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases].

    Science.gov (United States)

    Boufettal, H; Feige, J-J; Benharouga, M; Aboussaouira, T; Nadifi, S; Mahdaoui, S; Samouh, N; Alfaidy, N

    2013-10-01

    Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Why does the brain (not) have glycogen?

    Science.gov (United States)

    DiNuzzo, Mauro; Maraviglia, Bruno; Giove, Federico

    2011-05-01

    In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve. Copyright © 2011 WILEY Periodicals, Inc.

  6. Glycogen Synthase Kinase-3β

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    cells were quantitated using enzyme immunometric assays. The activity of GSK-3β (serine-9-phosphorylated GSK-3β/total GSK-3β) was lower at baseline compared with follow-up. No significant mean change over time was observed in levels of total GSK-3β and serine-9-phosphorylated GSK-3β. Exploratory......Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...... with emotional lability, subjective mood fluctuations and cognitive function in healthy individuals. Thirty-seven healthy subjects were evaluated with neuropsychological tests and blood samples at baseline and 12-week follow-up. Total GSK-3β and serine-9-phosphorylated GSK-3β in peripheral blood mononuclear...

  7. Persistent trophoblast disease following partial molar pregnancy.

    NARCIS (Netherlands)

    Wielsma, S.; Kerkmeijer, L.G.W.; Bekkers, R.L.M.; Pyman, J.; Tan, J.; Quinn, M.

    2006-01-01

    OBJECTIVE: Human chorionic gonadotrophin (hCG) follow-up data were analysed retrospectively in all patients registered in the Hydatidiform Mole Registry at the Royal Women's Hospital, Melbourne from January 1992 to January 2001 to determine the risk of persistent trophoblast disease following

  8. Gestational trophoblastic disease following complete hydatidiform ...

    African Journals Online (AJOL)

    Gestational trophoblastic disease following complete hydatidiform mole in Mulago Hospital, Kampala, Uganda. ... The main outcome measures were pre- and post-evacuation serum hCG levels and complications associated with oral methotrexate use. Results : The prevalence of CHM was 3.42 per 1,000 deliveries.

  9. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle.

    Science.gov (United States)

    Krag, Thomas O; Ruiz-Ruiz, Cristina; Vissing, John

    2017-08-01

    Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup. A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Two patients with mutations in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients with GSD type XV. We found that glycogenin 1 was absent, but glycogenin 2 was present in the patients, whereas the opposite was the case in healthy controls. Electron microscopy revealed that glycogen was present between and not inside myofibrils in type II fibers, compromising the ultrastructure of these fibers, and only type I fibers contained PG bodies. We also found significant changes to the expression levels of several enzymes directly involved in glycogen and glucose metabolism. To our knowledge, this is the first report demonstrating expression of glycogenin 2 in glycogenin 1-deficient patients, suggesting that glycogenin 2 rescues the formation of glycogen in patients with glycogenin 1 deficiency. Copyright © 2017 Endocrine Society

  10. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line

    International Nuclear Information System (INIS)

    Park, Hae-Ryung; Loch-Caruso, Rita

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20 μM BDE-47 for 24 h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20 μM BDE-47 for 24 h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation. - Highlights: • BDE-47 stimulated ARE reporter activity and GSH production. • BDE-47 resulted in differential

  11. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ryung, E-mail: heaven@umich.edu; Loch-Caruso, Rita

    2014-11-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20 μM BDE-47 for 24 h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20 μM BDE-47 for 24 h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation. - Highlights: • BDE-47 stimulated ARE reporter activity and GSH production. • BDE-47 resulted in differential

  12. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

    Science.gov (United States)

    Tang, Xiaoli; Zheng, Dong; Hu, Ping; Zeng, Zongyue; Li, Ming; Tucker, Lynne; Monahan, Renee; Resnick, Murray B; Liu, Manran; Ramratnam, Bharat

    2014-03-01

    Glycogen synthase kinase 3 beta (GSK3β) is a critical protein kinase that phosphorylates numerous proteins in cells and thereby impacts multiple pathways including the β-Catenin/TCF/LEF-1 pathway. MicroRNAs (miRs) are a class of noncoding small RNAs of ∼22 nucleotides in length. Both GSK3β and miR play myriad roles in cell functions including stem cell development, apoptosis, embryogenesis and tumorigenesis. Here we show that GSK3β inhibits the expression of miR-96, miR-182 and miR-183 through the β-Catenin/TCF/LEF-1 pathway. Knockout of GSK3β in mouse embryonic fibroblast cells increases expression of miR-96, miR-182 and miR-183, coinciding with increases in the protein level and nuclear translocation of β-Catenin. In addition, overexpression of β-Catenin enhances the expression of miR-96, miR-182 and miR-183 in human gastric cancer AGS cells. GSK3β protein levels are decreased in human gastric cancer tissue compared with surrounding normal gastric tissue, coinciding with increases of β-Catenin protein, miR-96, miR-182, miR-183 and primary miR-183-96-182 cluster (pri-miR-183). Furthermore, suppression of miR-183-96-182 cluster with miRCURY LNA miR inhibitors decreases the proliferation and migration of AGS cells. Knockdown of GSK3β with siRNA increases the proliferation of AGS cells. Mechanistically, we show that β-Catenin/TCF/LEF-1 binds to the promoter of miR-183-96-182 cluster gene and thereby activates the transcription of the cluster. In summary, our findings identify a novel role for GSK3β in the regulation of miR-183-96-182 biogenesis through β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

  13. Vitamin D attenuates sphingosine-1-phosphate (S1P)-mediated inhibition of extravillous trophoblast migration.

    Science.gov (United States)

    Westwood, Melissa; Al-Saghir, Khiria; Finn-Sell, Sarah; Tan, Cherlyn; Cowley, Elizabeth; Berneau, Stéphane; Adlam, Daman; Johnstone, Edward D

    2017-12-01

    Failure of trophoblast invasion and remodelling of maternal blood vessels leads to the pregnancy complication pre-eclampsia (PE). In other systems, the sphingolipid, sphingosine-1-phosphate (S1P), controls cell migration therefore this study determined its effect on extravillous trophoblast (EVT) function. A transwell migration system was used to assess the behaviour of three trophoblast cell lines, Swan-71, SGHPL-4, and JEG3, and primary human trophoblasts in the presence or absence of S1P, S1P pathway inhibitors and 1,25(OH) 2 D 3 . QPCR and immunolocalisation were used to demonstrate EVT S1P receptor expression. EVTs express S1P receptors 1, 2 and 3. S1P inhibited EVT migration. This effect was abolished in the presence of the specific S1PR2 inhibitor, JTE-013 (p S1P alone) whereas treatment with the S1R1/3 inhibitor, FTY720, had no effect. In other cell types S1PR2 is regulated by vitamin D; here we found that treatment with 1,25(OH) 2 D 3 for 48 or 72 h reduces S1PR2 (4-fold; S1P did not inhibit the migration of cells exposed to 1,25(OH) 2 D 3 (p S1P receptor isoforms, S1P predominantly signals through S1PR2/Gα 12/13 to activate Rho and thereby acts as potent inhibitor of EVT migration. Importantly, expression of S1PR2, and therefore S1P function, can be down-regulated by vitamin D. Our data suggest that vitamin D deficiency, which is known to be associated with PE, may contribute to the impaired trophoblast migration that underlies this condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantification of the glycogen cascade system: the ultrasensitive responses of liver glycogen synthase and muscle phosphorylase are due to distinctive regulatory designs

    Directory of Open Access Journals (Sweden)

    Venkatesh KV

    2005-05-01

    Full Text Available Abstract Background Signaling pathways include intricate networks of reversible covalent modification cycles. Such multicyclic enzyme cascades amplify the input stimulus, cause integration of multiple signals and exhibit sensitive output responses. Regulation of glycogen synthase and phosphorylase by reversible covalent modification cycles exemplifies signal transduction by enzyme cascades. Although this system for regulating glycogen synthesis and breakdown appears similar in all tissues, subtle differences have been identified. For example, phosphatase-1, a dephosphorylating enzyme of the system, is regulated quite differently in muscle and liver. Do these small differences in regulatory architecture affect the overall performance of the glycogen cascade in a specific tissue? We address this question by analyzing the regulatory structure of the glycogen cascade system in liver and muscle cells at steady state. Results The glycogen cascade system in liver and muscle cells was analyzed at steady state and the results were compared with literature data. We found that the cascade system exhibits highly sensitive switch-like responses to changes in cyclic AMP concentration and the outputs are surprisingly different in the two tissues. In muscle, glycogen phosphorylase is more sensitive than glycogen synthase to cyclic AMP, while the opposite is observed in liver. Furthermore, when the liver undergoes a transition from starved to fed-state, the futile cycle of simultaneous glycogen synthesis and degradation switches to reciprocal regulation. Under such a transition, different proportions of active glycogen synthase and phosphorylase can coexist due to the varying inhibition of glycogen-synthase phosphatase by active phosphorylase. Conclusion The highly sensitive responses of glycogen synthase in liver and phosphorylase in muscle to primary stimuli can be attributed to distinctive regulatory designs in the glycogen cascade system. The different

  15. Development of Non-Viral, Trophoblast-Specific Gene Delivery for Placental Therapy.

    Directory of Open Access Journals (Sweden)

    Noura Abd Ellah

    Full Text Available Low birth weight is associated with both short term problems and the fetal programming of adult onset diseases, including an increased risk of obesity, diabetes and cardiovascular disease. Placental insufficiency leading to intrauterine growth restriction (IUGR contributes to the prevalence of diseases with developmental origins. Currently there are no therapies for IUGR or placental insufficiency. To address this and move towards development of an in utero therapy, we employ a nanostructure delivery system complexed with the IGF-1 gene to treat the placenta. IGF-1 is a growth factor critical to achieving appropriate placental and fetal growth. Delivery of genes to a model of human trophoblast and mouse placenta was achieved using a diblock copolymer (pHPMA-b-pDMAEMA complexed to hIGF-1 plasmid DNA under the control of trophoblast-specific promoters (Cyp19a or PLAC1. Transfection efficiency of pEGFP-C1-containing nanocarriers in BeWo cells and non-trophoblast cells was visually assessed via fluorescence microscopy. In vivo transfection and functionality was assessed by direct placental-injection into a mouse model of IUGR. Complexes formed using pHPMA-b-pDMAEMA and CYP19a-923 or PLAC1-modified plasmids induce trophoblast-selective transgene expression in vitro, and placental injection of PLAC1-hIGF-1 produces measurable RNA expression and alleviates IUGR in our mouse model, consequently representing innovative building blocks towards human placental gene therapies.

  16. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery.

    Science.gov (United States)

    Perrone, Mara; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Douglas, Justin; Franco, Massimo; Liberati, Elisa; Russo, Vincenzo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas

    2017-10-01

    The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems. Copyright © 2017 Elsevier B.V. All rights

  17. Glycogen synthase activation by sugars in isolated hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  18. Glycogen Storage Disease Type IV

    DEFF Research Database (Denmark)

    Bendroth-Asmussen, Lisa; Aksglaede, Lise; Gernow, Anne B

    2016-01-01

    molecular genetic analyses confirmed glycogen storage disease Type IV with the finding of compound heterozygosity for 2 mutations (c.691+2T>C and c.1570C>T, p.R524X) in the GBE1 gene. We conclude that glycogen storage disease Type IV can cause early miscarriage and that diagnosis can initially be made...

  19. Insights into Brain Glycogen Metabolism

    Science.gov (United States)

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  20. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

      Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle...... function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from...

  1. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    OpenAIRE

    E. Ruchti; P.J. Roach; A.A. DePaoli-Roach; P.J. Magistretti; I. Allaman

    2016-01-01

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the ...

  2. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  3. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  4. Imaging and Clinical Data of Placental Site Trophoblastic Tumor: A Case Report

    International Nuclear Information System (INIS)

    Niknejadi, Maryam; Ahmadi, Firoozeh; Akhbari, Farnaz

    2016-01-01

    Placental site trophoblastic tumor (PSTT) is a very rare variant of gestational trophoblastic tumor. It can occur after normal termination of pregnancy or spontaneous abortion and ectopic or molar pregnancy. There is a wide range of clinical manifestations from a benign condition to an aggressive disease with fatal outcome. One of the most important characteristics of PSTT, unlike other forms of gestational trophoblastic diseases (GTD) is the presence of low beta-subunit of human chorionic gonadotropin (β-hCG) levels because it is a neoplastic proliferation of intermediate trophoblastic cells. However, human placental lactogen (hPL) is increased on histologic section and in the serum of patients too. We present a case of PSTT and discuss the differential diagnosis in order to further familiarize physicians with the diagnosis and treatment of this disease. It has a varied clinical spectrum and usually presents with irregular vaginal bleeding or amenorrhea. Diagnosis is confirmed by dilatation and curettage (D and C) and hysterectomy. Because chemotherapy is not effective, surgery is the cornerstone of treatment. This case is presented because it is a rare neoplasm with different treatments and it should be differentiated from molar pregnancy

  5. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells

    DEFF Research Database (Denmark)

    Jensen, Poul Henning; Christensen, Erik Ilsø; Ebbesen, P.

    1990-01-01

    We have studied the effect of plasminogen activator inhibitors PAI-1 and PAI-2 on the binding of urokinase-type plasminogen activator (u-PA) to its receptor in the human choriocarcinoma cell line JAR. With 125I-labeled ligands in whole-cell binding assays, both uncomplexed u-PA and u......, with the highest density of grains over the membrane at cell-cell interphases, but, after incubation at 37 degrees C, 17 and 27% of the grains for u-PA and u-PA-PAI-1 complexes, respectively, appeared over lysosomal-like bodies. These findings suggest that the u-PA receptor possesses a clearance function......-PA-inhibitor complexes bound to the receptor with a Kd of approximately 100 pM at 4 degrees C. Transferring the cells to 37 degrees C led to degradation to amino acids of up to 50% of the cell-bound u-PA-inhibitor complexes, whereas the degradation of uncomplexed u-PA was 15%; the remaining ligand was recovered...

  6. Enhancement of trophoblast differentiation and survival by low molecular weight heparin requires heparin-binding EGF-like growth factor.

    Science.gov (United States)

    Bolnick, Alan D; Bolnick, Jay M; Kohan-Ghadr, Hamid-Reza; Kilburn, Brian A; Pasalodos, Omar J; Singhal, Pankaj K; Dai, Jing; Diamond, Michael P; Armant, D Randall; Drewlo, Sascha

    2017-06-01

    Does low molecular weight heparin (LMWH) require heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) signaling to induce extravillous trophoblast differentiation and decrease apoptosis during oxidative stress? LMWH increased HBEGF expression and secretion, and HBEGF signaling was required to stimulate trophoblast extravillous differentiation, increase invasion in vitro and reduce trophoblast apoptosis during oxidative stress. Abnormal trophoblast differentiation and survival contribute to placental insufficiency syndromes, including preeclampsia and intrauterine growth restriction. Preeclampsia often manifests as a pro-thrombotic state, with unsuccessful transformation of the spiral arteries that reduces oxygen supply and can produce placental infarction. LMWH improves placental function by increasing blood flow. Recent data suggest that the actions of LMWH transcend its anti-coagulative properties, but the molecular mechanism is unknown. There is evidence that LMWH alters the expression of human HBEGF in trophoblast cells, which regulates human trophoblast pathophysiology. HBEGF, itself, is capable of increasing trophoblast survival and invasiveness. First-trimester placental explants and the HTR-8/SVneo cell line, established using extravillous trophoblast outgrowths from first-trimester villous explants, were treated in vitro with LMWH to examine the effects on HBEGF signaling and trophoblast function under normal physiological and pathological conditions. A highly specific antagonist of HBEGF and other inhibitors of HBEGF downstream signaling were used to determine the relationship between LMWH treatment and HBEGF. Placental tissues (n = 5) were obtained with IRB approval and patient consent from first-trimester terminations. Placental explants and HTR-8/SVneo cells were cultured on plastic or Matrigel™ and treated with a therapeutic dose of LMWH (Enoxaparin; 10 IU/ml), with or without CRM197, pan Erb-B2 Receptor Tyrosine Kinase (ERBB

  7. Uterine Rupture Due to Invasive Metastatic Gestational Trophoblastic Neoplasm

    Science.gov (United States)

    Bruner, David I.; Pritchard, Amy M.; Clarke, Jonathan

    2013-01-01

    While complete molar pregnancies are rare, they are wrought with a host of potential complications to include invasive gestational trophoblastic neoplasia. Persistent gestational trophoblastic disease following molar pregnancy is a potentially fatal complication that must be recognized early and treated aggressively for both immediate and long-term recovery. We present the case of a 21-year-old woman with abdominal pain and presyncope 1 month after a molar pregnancy with a subsequent uterine rupture due to invasive gestational trophoblastic neoplasm. We will discuss the complications of molar pregnancies including the risks and management of invasive, metastatic gestational trophoblastic neoplasia. PMID:24106538

  8. Co-expression of cytokeratins and vimentin by highly invasive trophoblast in the white-winged vampire bat, Diaemus youngi, and the black mastiff bat, Molossus ater, with observations on intermediate filament proteins in the decidua and intraplacental trophoblast.

    Science.gov (United States)

    Badwaik, N K; Rasweiler, J J; Muradali, F

    1998-11-01

    Histological and immunocytochemical studies of gravid reproductive tracts obtained from the white-winged vampire bat (Diaemus youngi) and the black mastiff bat (Molossus ater) have established that both species develop unusually invasive trophoblast. This is released by the developing discoidal haemochorial placenta, expresses both cytokeratins and vimentin, and invades the myometrium and adjacent tissues (including the ovaries) via interstitial migration within the walls of maternal blood vessels. Hence, this trophoblast is noteworthy for the extent to which it undergoes an epithelial-mesenchymal transformation. In Molossus, it originates from the cytotrophoblastic shell running along the base of the placenta, is mononuclear, and preferentially invades maternal arterial vessels serving the discoidal placenta. This trophoblast may have a role in dilatation of these vessels when the discoidal placenta becomes functional. In Diaemus, the highly invasive trophoblast appears to originate instead from a layer of syncytiotrophoblast on the periphery of the placenta is multinucleated, and vigorously invades both arterial and venous vessels. During late pregnancy, it becomes extensively branched and sends attenuated processes around many of the myometrial smooth muscle fibres. In view of its distribution, this trophoblast could have important influences upon myometrial contractility and the function of blood vessels serving the gravid tract. Other aspects of intermediate filament expression in the uteri and placentae of these bats are also noteworthy. Many of the decidual giant cells in Molossus co-express cytokeratins and vimentin, while the syncytiotrophoblast lining the placental labyrinth in Diaemus late in pregnancy expresses little cytokeratin.

  9. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  10. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  11. Ets-2 and p53 mediate cAMP-induced MMP-2 expression, activity and trophoblast invasion

    Directory of Open Access Journals (Sweden)

    Goldman Shlomit

    2009-11-01

    Full Text Available Abstract Background We have previously shown that Matrix metalloproteinase (MMP -2 is a key-enzyme in early trophoblast invasion and that Protein Kinase A (PKA increases MMP-2 expression and trophoblast invasion. The aim of this study was to examine MMP -2 regulation by PKA in invasive trophoblasts: JAR choriocarcinoma cell-line and 6-8 w first trimester trophoblasts. Methods The effect of Forskolin (PKA on MMP-2 expression was assessed by Northern Blot and RT-PCR. Possible transcription factors binding to consensus MMP-2 promoter sequences in response to Forskolin, were detected by EMSA binding assay and their expression assessed by western blot analysis. Antisense transfection of relevant transcription factors was performed and the inhibitory effect assessed on MMP-2 expression (RT-PCR, secretion (zymography and trophoblast invasiveness (transwell migration assay. Results We found that Forskolin increased MMP-2 mRNA in JAR cells within 24 hours, and induced binding to p53, Ets, C/EBP and AP-2. Transcription factors Ets-2, phospho- p53, C/EBP epsilon, C/EBP lambda and AP-2 alpha bound to their respective binding sequences in response to Forskolin and the expressions of these transcription factors were all elevated in Forskolin- treated cells. Inhibition of Ets-2 and p53 reduced MMP-2 expression, secretion and invasiveness of Forskolin treated cells. Conclusion MMP-2 is regulated by PKA through several binding sites and transcription factors including Ets-2, p53, C/EBP, C/EBP lambda and AP-2 alpha. Ets-2 and p53 mediate cAMP- induced trophoblast invasiveness, through regulation of MMP-2.

  12. Effect of proline rich 15-deficiency on trophoblast viability and survival.

    Directory of Open Access Journals (Sweden)

    Katherine C Gates

    Full Text Available Deviations from the normal program of gene expression during early pregnancy can lead to early embryonic loss as well as dysfunctional placentation, which can cause significant morbidity and mortality. Proline rich 15 (PRR15 is a low molecular weight nuclear protein expressed by the trophoblast during early gestation. Lentivirus-mediated knockdown of PRR15 mRNA in ovine trophectoderm led to demise of the embryo by gestational day 15, providing compelling evidence that PRR15 expression is critical during this precarious window of development. Our objective was to determine the effect of PRR15 knockdown on trophoblast gene expression, proliferation, and survival. The first-trimester human trophoblast cell line, ACH-3P, was infected with control lentivirus or a lentivirus expressing a short hairpin (shRNA to target PRR15 mRNA for degradation, resulting in a 68% reduction in PRR15 mRNA. Microarray analysis of these cell lines revealed differential expression of genes related to cancer, focal adhesion, and p53 signaling. These changes included significant up-regulation of GDF15, a cytokine increased in pregnancies with preeclampsia. Viability and proliferation decreased in PRR15-deficient cells, which was consistent with down-regulation of cell cycle-related genes CCND1 and CDK6 and an up-regulation of CCNG2 and CDKN1A in the PRR15-deficient cells. TNFSF10, a tumor necrosis factor superfamily member known to induce apoptosis increased significantly in the PRR15-deficient cells. Migration through a basement membrane matrix decreased and an increased population of apoptotic cells was present when treated with shRNA to target PRR15. These results suggest that PRR15 enhances trophoblast viability and survival during early implantation and placentation.

  13. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... Legacy Society Make Gifts of Stock Donate Your Car Personal Fundraising Partnership & Support Share Your Story Spread the Word Give While You Shop Contact Us Donate Now Glycogen Storage Disease Type ...

  14. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... the most common form of glycogen storage disease, accounting for 25% of all cases. It is an ... Links Videos Webinars About ALF OVERVIEW Programs About Liver Disease Ask the Experts People ALF ...

  15. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.; Roach, P.J.; DePaoli-Roach, A.A.; Magistretti, Pierre J.; Allaman, I.

    2016-01-01

    to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin

  16. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    Science.gov (United States)

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  17. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN, one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65 at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor. Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus.

  18. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  19. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Science.gov (United States)

    Vadrot, Nathalie; Ghanem, Sarita; Braut, Françoise; Gavrilescu, Laura; Pilard, Nathalie; Mansouri, Abdellah; Moreau, Richard; Reyl-Desmars, Florence

    2012-01-01

    During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  20. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Directory of Open Access Journals (Sweden)

    Nathalie Vadrot

    Full Text Available During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α targets hepatocytes and induces abnormal reactive oxygen species (ROS production responsible for mitochondrial DNA (mtDNA alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC was used to measure the rapid (10 min and transient TNF-α induced increase in ROS production (168±15%. A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM. In addition, mitochondrial D-loop immunoprecipitation (mtDIP revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  1. PP042. Anti-hypertensive drugs hydralazine, clonidine and labetalol improve trophoblast integration into endothelial cellular networks in vitro.

    Science.gov (United States)

    Xu, B; Charlton, F; Makris, A; Hennessy, A

    2012-07-01

    Preeclampsia is an exaggerated maternal inflammatory state with over-expression of placental soluble fms-like tyrosine kinase 1 (sFlt-1). It is also associated with shallow trophoblast invasion and inadequate transformation of uterine spiral arteries. Antihypertensive drugs administrated in preeclampsia to control blood pressure have been reported to regulate placental and circulating cytokine production from women with preeclampsia. Whether they could modulate the interaction between trophoblast and endothelial cells are not investigated. This study is to examine the effect of pharmacological dose of anti-hypertensive hydralazine, clonidine and labetalol on trophoblast cell integration into inflammatory TNF-a pre-exposed endothelial cellular networks. Human uterine myometrial microvascular endothelial cells (UtMVECs) were pre-incubated with (or without) low dose (0.5ng/ml) inflammatory TNF-a or TNF-a plus sFlt-1 (100ng/ml) for 24hours. These cells were labelled with red fluorescence and seeded on a 24-well culture plate coated with Matrigel. Endothelial tubular structures appeared within 4hours. Green fluorescent-labelled HTR-8/SVneo trophoblast cells were then co-cultured with endothelial cells, with (or without) hydralazine (10μg/ml), clonidine (1.0μg/ml) or labetalol (0.5μg/ml). Red and green fluorescent images were captured after 24hours. Drug effect on HTR-8 cells integration into endothelial cellular networks was quantified by Image Analysis software. The conditioned media were also collected to measure concentrations of free VEGF, PLGF and sFlt-1 by ELISA. When HTR-8/SVneo trophoblast cells were co-cultured with TNF-a pre-incubated endothelial cells, hydralazine and clonidine can significantly increase the trophoblast integration into endothelial cellular networks. This increase was not seen if co-cultured with normal endothelial cells (without TNF-a pre-incubation) or with TNF-a plus sFlt-1 treated endothelial cells. Labetalol could increase the HTR-8

  2. Labeling of hepatic glycogen after short- and long-term stimulation of glycogen synthesis in rats injected with 3H-galactose

    International Nuclear Information System (INIS)

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1990-01-01

    The effects of short- and long-term stimulation of glycogen synthesis elicited by dexamethasone were studied by light (LM) and electron (EM) microscopic radioautography (RAG) and biochemical analysis. Adrenalectomized rats were fasted overnight and pretreated for short- (3 hr) or long-term (14 hr) periods with dexamethasone prior to intravenous injection of tracer doses of 3H-galactose. Analysis of LM-RAGs from short-term rats revealed that about equal percentages (44%) of hepatocytes became heavily or lightly labeled 1 hr after labeling. The percentage of heavily labeled cells increased slightly 6 hr after labeling, and unlabeled glycogen became apparent in some hepatocytes. The percentage of heavily labeled cells had decreased somewhat 12 hr after labeling, and more unlabeled glycogen was evident. In the long-term rats 1 hr after labeling, a higher percentage of heavily labeled cells (76%) was observed compared to short-term rats, and most glycogen was labeled. In spite of the high amount of labeling seen initially, the percentage of heavily labeled hepatocytes had decreased considerably to 55% by 12 hr after injection; and sparsely labeled and unlabeled glycogen was prevalent. The EM-RAGs of both short- and long-term rats were similar. Silver grains were associated with glycogen patches 1 hr after labeling; 12 hr after labeling, the glycogen patches had enlarged; and label, where present, was dispersed over the enlarged glycogen clumps. Analysis of DPM/mg tissue corroborated the observed decrease in label 12 hr after administration in the long-term animals. The loss of label observed 12 hr after injection in the long-term pretreated rats suggests that turnover of glycogen occurred during this interval despite the net accumulation of glycogen that was visible morphologically and evident from biochemical measurement

  3. Rumen papillae keratinization, cell glycogen and chemical composition of the meat from young bulls fed different levels of concentrate and babassu mesocarp bran

    Directory of Open Access Journals (Sweden)

    Simone Santos Barros

    2015-06-01

    Full Text Available This study aimed to assess the rumen papillae keratinization, cellular levels of liver and muscle glycogen, and the chemical composition of meat from feedlot-finished Nellore young bulls fed with levels of concentrate and babassu mesocarp bran. Twenty-eight animals with initial age of 21 months and initial body weight of 356.7 ± 19 kg were randomized to the following treatments: two levels of concentrate in the diet (65% and 71%, with or without inclusion of 35% of babassu mesocarp bran. Fragments of liver, muscle and rumen were obtained after slaughter of the animals. Levels of concentrate and babassu mesocarp bran in the diet did not affect the quantities of liver and muscle glycogen, and did not induce hyperkeratinization of rumen papillae. The chemical composition of the meat was not affected by the studied factors. The inclusion of 35% babassu mesocarp bran in high concentrate diets does not induce hyperkeratinization of rumen papillae, and does not change the amount of muscle and liver glycogen or the chemical characteristics of meat of Nellore young bulls.

  4. Identification of CD147 (basigin) as a mediator of trophoblast functions.

    Science.gov (United States)

    Lee, Cheuk-Lun; Lam, Maggie P Y; Lam, Kevin K W; Leung, Carmen O N; Pang, Ronald T K; Chu, Ivan K; Wan, Tiffany H L; Chai, Joyce; Yeung, William S B; Chiu, Philip C N

    2013-11-01

    Does CD147 regulate trophoblast functions in vitro? CD147 exists as a receptor complex on human trophoblast and regulates the implantation, invasion and differentiation of trophoblast. CD147 is a membrane protein implicated in a variety of physiological and pathological conditions due to its regulation of cell-cell recognition, cell differentiation and tissue remodeling. Reduced placental CD147 expression is associated with pre-eclampsia, but the mechanism of actions remains unclear. A loss of function approach or functional blocking antibody was used to study the function of CD147 in primary human cytotrophoblasts isolated from first trimester termination of pregnancy and/or in the BeWo cell line, which possesses characteristics of human cytotrophoblasts. CD147 expression was analyzed by immunofluorescence staining and western blotting. CD147-associated protein complex on plasma membrane were separated by blue native gel electrophoresis and identified by reversed-phase liquid chromatography coupled with quadrupole time-of-flight hybrid mass spectrometer. Cell proliferation and invasion were determined by fluorometric cell proliferation assays and transwell invasion assays, respectively. Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) activities were measured by gelatin gel zymography and uPA assay kits, respectively. Cell migration was determined by wound-healing assays. Cell fusion was analyzed by immunocytochemistry staining of E-cadherin and 4',6-diamidino-2-phenylindole. The transcripts of matrix proteinases and trophoblast lineage markers were measured by quantitative PCR. Extracellular signal-regulated kinase (ERK) activation was analyzed by western blot using antibodies against ERKs. CD147 exists as protein complexes on the plasma membrane of primary human cytotrophoblasts and BeWo cells. Several known CD147-interacting partners, including integrin β1 and monocarboxylate transporter-1, were identified. Suppression of CD147 by si

  5. Glycogen Phosphomonoester Distribution in Mouse Models of the Progressive Myoclonic Epilepsy, Lafora Disease*

    Science.gov (United States)

    DePaoli-Roach, Anna A.; Contreras, Christopher J.; Segvich, Dyann M.; Heiss, Christian; Ishihara, Mayumi; Azadi, Parastoo; Roach, Peter J.

    2015-01-01

    Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500–2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a−/− and Epm2b−/− mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease. PMID:25416783

  6. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  7. Gestational trophoblastic disease with hyperthyroidism: Anesthetic management

    Directory of Open Access Journals (Sweden)

    Puneet Khanna

    2012-01-01

    Full Text Available The coexistence of hyperthyroidism with gestational trophoblastic disease is a known albeit rare clinical condition. We herein report the successful anesthetic management of such a case in our institute. There are only few case reports in literature of this association. Often, the diagnosis of hyperthyroid state is retrospective one, as it can be missed in the emergency scenario of patient requiring molar evacuation. This case report highlights the perioperative management and optimization of hyperthyroid state prior to surgical evacuation of the invasive hydatidiform mole.

  8. Somatomedin-C stimulates glycogen synthesis in fetal rat hepatocytes

    International Nuclear Information System (INIS)

    Freemark, M.; D'Ercole, A.J.; Handwerger, S.

    1985-01-01

    The effects of somatomedin-C/insulin-like growth factor I (Sm-C) on glycogen metabolism in cultured hepatocytes from 20-day-old rat fetuses have been examined and compared with the effects of insulin. Sm-C (25-375 ng/ml; 3.25-50 nM) stimulated dose-dependent increases in [ 14 C]glucose incorporation into glycogen (14.4-72.9% and total cell glycogen content (10.6-34.3%. Maximal stimulation of glycogen synthesis by Sm-C occurred at 2-4 h of incubation. Insulin (10 nM to 10 microM) also stimulated [ 14 C]glucose incorporation but its potency was only 1/20th that of Sm-C. The time course of stimulation of glucose incorporation by insulin was identical to that of Sm-C, the dose-response curves of the two hormones were parallel, and the maximal effects of insulin were not enhanced by simultaneous exposure of cells to Sm-C. These findings suggest that Sm-C and insulin stimulate glycogenesis in fetal liver through similar or identical mechanisms. Since the potency of Sm-C was 20 times greater than that of insulin, the glycogenic action of insulin in fetal liver may be mediated through binding to a hepatic receptor which also binds Sm-C. In addition to having mitogenic effects on fetal tissues, Sm-C may have direct anabolic effects on fetal carbohydrate metabolism

  9. Modified glycogen as construction material for functional biomimetic microfibers.

    Science.gov (United States)

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-05

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Localization of chondromodulin-I at the feto-maternal interface and its inhibitory actions on trophoblast invasion in vitro

    Directory of Open Access Journals (Sweden)

    Kondo Jun

    2011-08-01

    Full Text Available Abstract Background Chondromodulin-I (ChM-I is an anti-angiogenic glycoprotein that is specifically localized at the extracellular matrix of the avascular mesenchyme including cartilage and cardiac valves. In this study, we characterized the expression pattern of ChM-I during early pregnancy in mice in vivo and its effect on invasion of trophoblastic cells into Matrigel in vitro. Results Northern blot analysis clearly indicated that ChM-I transcripts were expressed in the pregnant mouse uterus at 6.5-9.5 days post coitum. In situ hybridization and immunohistochemistry revealed that ChM-I was localized to the mature decidua surrounding the matrix metalloproteinase-9 (MMP-9-expressing trophoblasts. Consistent with this observation, the expression of ChM-I mRNA was induced in decidualizing endometrial stromal cells in vitro, in response to estradiol and progesterone. Recombinant human ChM-I (rhChM-I markedly inhibited the invasion through Matrigel as well as the chemotactic migration of rat Rcho-1 trophoblast cells in a manner independent of MMP activation. Conclusions This study demonstrates the inhibitory action of ChM-I on trophoblast migration and invasion, implying the potential role of the ChM-I expression in decidual cells for the regulated tissue remodeling and angiogenesis at feto-maternal interface.

  11. Hexokinase 2, glycogen synthase and phosphorylase play a key role in muscle glycogen supercompensation

    DEFF Research Database (Denmark)

    Irimia, José M; Rovira, Jordi; Nielsen, Jakob N

    2012-01-01

    Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood.......Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood....

  12. Minimally-aggressive gestational trophoblastic neoplasms.

    Science.gov (United States)

    Cole, Laurence A

    2012-04-01

    We have previously defined a new syndrome "Minimally-aggressive gestational trophoblastic neoplasms" in which choriocarcinoma or persistent hydatidiform mole has a minimal growth rate and becomes chemorefractory. Previously we described a new treatment protocol, waiting for hCG rise to >3000 mIU/ml and disease becomes more advanced, then using combination chemotherapy. Initially we found this treatment successful in 8 of 8 cases, here we find this protocol appropriate in a further 16 cases. Initially we used hyperglycosylated hCG, a limited availability test, to identify this syndrome. Here we propose also using hCG doubling rate to detect this syndrome. Minimally aggressive gestational trophoblastic disease can be detected by chemotherapy resistance or low hyperglycosylated hCG, disease by hyperglycosylated hCG and by hCG doubling test. All were recommended to hold off further chemotherapy until hCG >3000mIU/ml. One case died prior to the start of the study, one case withdrew because of a lung nodule and one withdrew refusing the suggested combination chemotherapy. The remaining 16 women were all successfully treated. A total of 8 plus 16 or 24 of 24 women were successfully treated using the proposed protocol, holding back on chemotherapy until hCG >3000mIU/ml. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Proportion hyperglycosylated hCG: a new test for discriminating gestational trophoblastic diseases.

    Science.gov (United States)

    Cole, Laurence A

    2014-11-01

    Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG with large oligosaccharide side chains. Although hCG is produced by syncytiotrophoblast cells, hyperglycosylated hCG marks cytotrophoblast cell. Hyperglycosylated hCG signals placental implantation. Total hCG in serum and urine is measured by the Siemens Immulite hCG pregnancy test; the result is in milli-international unit per milliliter. Hyperglycosylated hCG is determined by the B152 microtiter plate assay; the result is in nanogram per milliliter. Hyperglycosylated hCG results can be converted to milli-international unit per milliliter equivalents by multiplying by 11. The test measures proportion hyperglycosylated hCG, hyperglycosylated hCG / total hCG. Proportion hyperglycosylated hCG marks cases intent on developing persistent hydatidiform mole (68% detection at 17% false detection). Proportion hyperglycosylated hCG also marks persistent hydatidiform mole (100% detection at 5.1% false detection). Proportion hyperglycosylated hCG distinguishes choriocarcinoma and gestational trophoblastic neoplasm cases, absolutely discriminating aggressive cases and minimally aggressive cases. Proportion hyperglycosylated hCG identifies quiescent gestational trophoblastic disease cases. It recognizes quiescent cases that become persistent disease (100% detection at 0% false positive). Proportion hyperglycosylated hCG is an invaluable test for discriminating gestational trophoblastic diseases.

  14. Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication.

    Science.gov (United States)

    Aagaard, Kjersti M; Lahon, Anismrita; Suter, Melissa A; Arya, Ravi P; Seferovic, Maxim D; Vogt, Megan B; Hu, Min; Stossi, Fabio; Mancini, Michael A; Harris, R Alan; Kahr, Maike; Eppes, Catherine; Rac, Martha; Belfort, Michael A; Park, Chun Shik; Lacorazza, Daniel; Rico-Hesse, Rebecca

    2017-01-27

    Zika virus (ZIKV) is an emerging mosquito-borne (Aedes genus) arbovirus of the Flaviviridae family. Although ZIKV has been predominately associated with a mild or asymptomatic dengue-like disease, its appearance in the Americas has been accompanied by a multi-fold increase in reported incidence of fetal microcephaly and brain malformations. The source and mode of vertical transmission from mother to fetus is presumptively transplacental, although a causal link explaining the interval delay between maternal symptoms and observed fetal malformations following infection has been missing. In this study, we show that primary human placental trophoblasts from non-exposed donors (n = 20) can be infected by primary passage ZIKV-FLR isolate, and uniquely allowed for ZIKV viral RNA replication when compared to dengue virus (DENV). Consistent with their being permissive for ZIKV infection, primary trophoblasts expressed multiple putative ZIKV cell entry receptors, and cellular function and differentiation were preserved. These findings suggest that ZIKV-FLR strain can replicate in human placental trophoblasts without host cell destruction, thereby serving as a likely permissive reservoir and portal of fetal transmission with risk of latent microcephaly and malformations.

  15. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  16. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.

    Science.gov (United States)

    Santiago-Martínez, Michel Geovanni; Encalada, Rusely; Lira-Silva, Elizabeth; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Reyes-García, Marco Antonio; Saavedra, Emma; Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Jasso-Chávez, Ricardo

    2016-05-01

    Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental

  17. Membrane Protected Apoptotic Trophoblast Microparticles Contain Nucleic Acids

    Science.gov (United States)

    Orozco, Aaron F.; Jorgez, Carolina J.; Horne, Cassandra; Marquez-Do, Deborah A.; Chapman, Matthew R.; Rodgers, John R.; Bischoff, Farideh Z.; Lewis, Dorothy E.

    2008-01-01

    Microparticles (MPs) that circulate in blood may be a source of DNA for molecular analyses, including prenatal genetic diagnoses. Because MPs are heterogeneous in nature, however, further characterization is important before use in clinical settings. One key question is whether DNA is either bound to aggregates of blood proteins and lipid micelles or intrinsically associated with MPs from dying cells. To test the latter hypothesis, we asked whether MPs derived in vitro from dying cells were similar to those in maternal plasma. JEG-3 cells model extravillous trophoblasts, which predominate during the first trimester of pregnancy when prenatal diagnosis is most relevant. MPs were derived from apoptosis and increased over 48 hours. Compared with necrotic MPs, DNA in apoptotic MPs was more fragmented and resistant to plasma DNases. Membrane-specific dyes indicated that apoptotic MPs had more membranous material, which protects nucleic acids, including RNA. Flow cytometry showed that MPs derived from dying cells displayed light scatter and DNA staining similar to MPs found in maternal plasma. Quantification of maternal MPs using characteristics defined by MPs generated in vitro revealed a significant increase of DNA+ MPs in the plasma of women with preeclampsia compared with plasma from women with normal pregnancies. Apoptotic MPs are therefore a likely source of stable DNA that could be enriched for both early genetic diagnosis and monitoring of pathological pregnancies. PMID:18974299

  18. IL-27 Activates Human Trophoblasts to Express IP-10 and IL-6: Implications in the Immunopathophysiology of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Nanlin Yin

    2014-01-01

    Full Text Available Purpose. To investigate the effects of IL-27 on human trophoblasts and the underlying regulatory signaling mechanisms in preeclampsia. Methods. The expression of IL-27 and IL-27 receptor (WSX-1 was studied in the placenta or sera from patients with preeclampsia. In vitro, we investigated the effects of IL-27 alone or in combination with inflammatory cytokine tumor necrosis factor (TNF-α on the proinflammatory activation of human trophoblast cells (HTR-8/SVneo and the underlying intracellular signaling molecules. Results. The expression of IL-27 and IL-27 receptor α (WSX-1 was significantly elevated in the trophoblastic cells from the placenta of patients with preeclampsia compared with control specimens. In vitro, IL-27 could induce the expression of inflammatory factors IFN-γ-inducible protein 10 (CXCL10/IP-10 and IL-6 in trophoblasts, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-α on the release of IP-10 and IL-6. Furthermore, the production of IP-10 and IL-6 stimulated by IL-27 was differentially regulated by intracellular activation of phosphatidylinositol 3-OH kinase-AKT, p38MAPK, and JAK/STAT pathways. Conclusions. These results provide a new insight into the IL-27-activated immunopathological effects mediated by distinct intracellular signal transduction molecules in preeclampsia.

  19. Trophoblastic progranulin expression is upregulated in cases of fetal growth restriction and preeclampsia.

    Science.gov (United States)

    Stubert, Johannes; Schattenberg, Florian; Richter, Dagmar-Ulrike; Dieterich, Max; Briese, Volker

    2012-05-13

    The expression of the anti-inflammatory glycoprotein progranulin and the hypoxia-induced transcription factor 1α (HIF-1α) in the villous trophoblast was compared between placentae from patients with preeclampsia (PE), fetal growth restriction (FGR), and normal controls. Matched pairs analysis of third trimester placentae specimens (mean gestational age 36+2) was performed by semiquantitative measurements of the immunohistochemical staining intensities for progranulin and HIF-1α expression (PE n=13, FGR n=9 and controls n=11). Further, placental progranulin mRNA expression was analyzed by qRT-PCR on term placentae (n=3 for each group). Compared to controls, villous trophoblast revealed a significantly higher expression of progranulin in cases of PE (Pprogranulin protein was not accompanied by an increase of the progranulin mRNA in term placentae. Increased expression of progranulin protein in villous trophoblast cells in cases of PE and FGR may result from disturbed placental development and, therefore, may be of pathogenetic importance. The increase was correlated to HIF-1α expression. Further evaluation of this potential mechanism of regulation is required.

  20. lessons from a hybrid epithelioid trophoblastic tumor and chorio

    African Journals Online (AJOL)

    (36,900 mIU/ml) and examination showed a bleeding cervical mass. An initial ... characterized by abnormal proliferation of placental trophoblasts and include .... MRI is invaluable to assess extra uterine disease spread and complications.

  1. A five - year review of gestational trophoblastic diseases in Port ...

    African Journals Online (AJOL)

    Methods: A retrospective analysis of women treated for gestational ... persistent trophoblastic disease while 8(21.1%) had chemotherapy for choriocarcinoma. ... as well as proper counseling of patients treated on the benefits of follow up visits.

  2. Uterine Rupture Due to Invasive Metastatic Gestational Trophoblastic Neoplasm

    Directory of Open Access Journals (Sweden)

    David I Bruner

    2013-09-01

    Full Text Available While complete molar pregnancies are rare, they are wrought with a host of potential complications to include invasive gestational trophoblastic neoplasia. Persistent gestational trophoblastic disease following molar pregnancy is a potentially fatal complication that must be recognized early and treated aggressively for both immediate and long-term recovery. We present the case of a 21-year-old woman with abdominal pain and presyncope 1 month after a molar pregnancy with a subsequent uterine rupture due to invasive gestational trophoblastic neoplasm. We will discuss the complications of molar pregnancies including the risks and management of invasive, metastatic gestational trophoblastic neoplasia. [West J Emerg Med. 2013;14(5:444–447.

  3. Increased placental trophoblast inclusions in placenta accreta.

    Science.gov (United States)

    Adler, E; Madankumar, R; Rosner, M; Reznik, S E

    2014-12-01

    Trophoblast inclusions (TIs) are often found in placentas of genetically abnormal gestations. Although best documented in placentas from molar pregnancies and chromosomal aneuploidy, TIs are also associated with more subtle genetic abnormalities, and possibly autism. Less than 3% of non-aneuploid, non-accreta placentas have TIs. We hypothesize that placental genetics may play a role in the development of placenta accreta and aim to study TIs as a potential surrogate indicator of abnormal placental genetics. Forty cases of placenta accreta in the third trimester were identified in a search of the medical records at one institution. Forty two third trimester control placentas were identified by a review of consecutively received single gestation placentas with no known genetic abnormalities and no diagnosis of placenta accreta. Forty percent of cases with placenta accreta demonstrated TIs compared to 2.4% of controls. More invasive placenta accretas (increta and percreta) were more likely to demonstrate TIs than accreta (47% versus 20%). Prior cesarean delivery was more likely in accreta patients than controls (67% versus 9.5%). Placenta accreta is thought to be the result of damage to the endometrium predisposing to abnormal decidualization and invasive trophoblast growth into the myometrium. However, the etiology of accreta is incompletely understood with accreta frequently occurring in women without predisposing factors and failing to occur in predisposed patients. This study has shown that TIs are present at increased rates in cases of PA. Further studies are needed to discern what underlying pathogenic mechanisms are in common between abnormal placentation and the formation of TIs. Published by Elsevier Ltd.

  4. Molecular cloning and characterization of glycogen synthase in Eriocheir sinensis.

    Science.gov (United States)

    Li, Ran; Zhu, Li-Na; Ren, Li-Qi; Weng, Jie-Yang; Sun, Jin-Sheng

    2017-12-01

    Glycogen plays an important role in glucose and energy homeostasis at cellular and organismal levels. In glycogen synthesis, glycogen synthase (GS) is a rate-limiting enzyme catalysing the addition of α-1,4-linked glucose units from (UDP) 3 -glucose to a nascent glycogen chain using glycogenin (GN) as a primer. While studies on mammalian liver GS (GYS2) are numerous, enzymes from crustaceans, which also use glycogen and glucose as their main energy source, have received less attention. In the present study, we amplified full-length GS cDNA from Eriocheir sinensis. Tissue expression profiling revealed the highest expression of GS in the hepatopancreas. During moulting, GS expression and activity declined, and glycogen levels in the hepatopancreas were reduced. Recombinant GS was expressed in Escherichia coli Rosetta (DE3), and induction at 37°C or 16°C yielded EsGS in insoluble inclusion bodies (EsGS-I) or in soluble form (EsGS-S), respectively. Enzyme activity was measured in a cell-free system containing glucose-6-phosphate (G6P), and both forms possessed glycosyltransferase activity, but refolded EsGS-I was more active. Enzyme activity of both GS and EsGS-I in the hepatopancreas was optimum at 25°C, which is coincident with the optimum growth temperature of Chinese mitten crab, and higher (37°C) or lower (16°C) temperatures resulted in lower enzyme activity. Taken together, the results suggest that GS may be important for maintaining normal physiological functions such as growth and reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Role of ultrasound in the diagnosis and management of gestational trophoblastic disease in Rural health facilities- A case report

    International Nuclear Information System (INIS)

    Bach, J.F.H.

    2015-01-01

    Gestational trophoblastic disease (GTD) is a rare kind of proliferative disorder of trophoblastic cells which develops from the placenta in early pregnancy. It can be benign, premalignant or malignant. Molar pregnancy, also known as Hydatidiform Mole, is a form of benign GTD. The complete hydatidiform mole (CHM) sub-type which limited to endometrium is most common. It has excellent prognosis if early appropriate diagnosis and management are done. A well performed ultrasound(US) play a primordial role in the diagnosis of maternal health disorders during routine prenatal care. This helps in avoiding complications and consequently aids in achieving the objectives of the Millennium Development Goals (MDGs) in Rwanda. To understand the definition of Gestational trophoblastic disease(GTD) and to recognize key diagnostic findings of complete molar pregnancy on ultrasound and appropriate management in maternal follow up. Review the differential diagnosis for ultrasound findings seen with GTD and other modalities Ultrasound is the first modality to be used in all rural health facilities for diagnosis of suspected Gestational trophoblastic disease (GTD) for better results. It is available and free of radiation

  6. Glycogen resynthesis rate following cross-country skiing is closely correlated to skeletal muscle glycogen content

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    on an optimal glycogen resynthesis rate before a subsequent exercise session. The purpose of present study was to evaluate the glycogen resynthesis rate in elite cross-country (cc) skiers, following exhaustive exercise, and to examine the role of muscular glycogen content on the resynthesis rate. METHOD: Ten...... as 4h and 22h after the race and analyzed for glycogen content. Figure 1. Correlation between muscle glycogen resynthesis rate and glycogen content after and in the rocery period after exercise. Line indicate best fit of all the data points (r2 = 0.41, p

  7. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  8. Lafora disease offers a unique window into neuronal glycogen metabolism.

    Science.gov (United States)

    Gentry, Matthew S; Guinovart, Joan J; Minassian, Berge A; Roach, Peter J; Serratosa, Jose M

    2018-05-11

    Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Knockdown of Heparanase Suppresses Invasion of Human Trophoblasts by Activating p38 MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guanglu Che

    2018-01-01

    Full Text Available Preeclampsia is a pregnancy-related disease with increasing maternal and perinatal morbidity and mortality worldwide. Defective trophoblast invasion is considered to be a major factor in the pathophysiological mechanism of preeclampsia. Heparanase, the only endo-β-glucuronidase in mammalian cells, has been shown to be abnormally expressed in the placenta of preeclampsia patients in our previous study. The biological role and potential mechanism of heparanase in trophoblasts remain unclear. In the present study, stably transfected HTR8/SVneo cell lines with heparanase overexpression or knockdown were constructed. The effect of heparanase on cellular proliferation, apoptosis, invasion, tube formation, and potential pathways in trophoblasts was explored. Our results showed that overexpression of heparanase promoted proliferation and invasion. Knockdown of heparanase suppressed proliferation, invasion, and tube formation but induced apoptosis. These findings reveal that downregulation of heparanase may contribute to defective placentation and plays a crucial role in the pathogenesis of preeclampsia. Furthermore, increased activation of p38 MAPK in heparanase-knockdown HTR8/SVneo cell was shown by MAPK pathway phosphorylation array and Western blotting assay. After pretreatment with 3 specific p38 MAPK inhibitors (BMS582949, SB203580, or BIRB796, inadequate invasion in heparanase-knockdown HTR8/SVneo cell was rescued. That indicates that knockdown of heparanase decreases HTR8/SVneo cell invasion through excessive activation of the p38 MAPK signaling pathway. Our study suggests that heparanase can be a potential predictive biomarker for preeclampsia at an early stage of pregnancy and represents a promising therapeutic target for the treatment of preeclampsia.

  10. Imprinted NanoVelcro Microchips for Isolation and Characterization of Circulating Fetal Trophoblasts: Toward Noninvasive Prenatal Diagnostics

    OpenAIRE

    Hou, Shuang; Chen, Jie-Fu; Song, Min; Zhu, Yazhen; Jan, Yu Jen; Chen, Szu Hao; Weng, Tzu-Hua; Ling, Dean-An; Chen, Shang-Fu; Ro, Tracy; Liang, An-Jou; Lee, Tom; Jin, Helen; Li, Man; Liu, Lian

    2017-01-01

    Circulating fetal nucleated cells (CFNCs) in maternal blood offer an ideal source of fetal genomic DNA for noninvasive prenatal diagnostics (NIPD). We developed a class of nanoVelcro microchips to effectively enrich a subcategory of CFNCs, i.e., circulating trophoblasts (cTBs) from maternal blood, which can then be isolated with single-cell resolution by a laser capture microdissection (LCM) technique for downstream genetic testing. We first established a nanoimprinting fabrication process to...

  11. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu

    2016-02-01

    Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy.

    Science.gov (United States)

    Zois, Christos E; Harris, Adrian L

    2016-02-01

    Metabolic reprogramming is a hallmark of cancer cells and contributes to their adaption within the tumour microenvironment and resistance to anticancer therapies. Recently, glycogen metabolism has become a recognised feature of cancer cells since it is upregulated in many tumour types, suggesting that it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells under stress conditions such as hypoxia, glucose deprivation and anticancer treatment. The various methods to detect glycogen in tumours in vivo as well as pharmacological modulators of glycogen metabolism are also reviewed. Finally, we discuss the therapeutic value of targeting glycogen metabolism as a strategy for combinational approaches in cancer treatment.

  13. The STOX1 genotype associated with pre-eclampsia leads to a reduction of trophoblast invasion by alpha-T-catenin upregulation

    NARCIS (Netherlands)

    van Dijk, Marie; van Bezu, Jan; van Abel, Daan; Dunk, Caroline; Blankenstein, Marinus A.; Oudejans, Cees B. M.; Lye, Stephen J.

    2010-01-01

    By using complementary in vitro and ex vivo approaches, we show that the risk allele (Y153H) of the pre-eclampsia susceptibility gene STOX1 negatively regulates trophoblast invasion by upregulation of the cell-cell adhesion protein alpha-T-catenin (CTNNA3). This is effectuated at the crucial

  14. Edaravone inhibits hypoxia-induced trophoblast-soluble Fms-like tyrosine kinase 1 expression: a possible therapeutic approach to preeclampsia.

    Science.gov (United States)

    Zhao, Y; Zheng, Y F; Luo, Q Q; Yan, T; Liu, X X; Han, L; Zou, L

    2014-07-01

    To investigate the effects of edaravone, a potent free radical scavenger used clinically, on hypoxia-induced trophoblast-soluble Fms-like tyrosine kinase 1 (sFlt-1) expression. A trophoblast cell line (HRT-8/SVneo) impaired by cobalt chloride (CoCl2) was used as the cell model under hypoxic conditions. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) was used to measure the viability of cells exposed to CoCl2 and edaravone. The levels of intracellular reactive oxygen species (ROS) were analyzed by flow cytometry. mRNA expression of sFlt-1, vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) in trophoblasts was measured by real-time polymerase chain reaction, and the secretion of sFlt-1, VEGF, and PlGF proteins was analyzed by enzyme-linked immunosorbent assays (ELISAs). A human umbilical vein endothelial cell (HUVEC) tube-formation assay was performed to identify the effects of CoCl2 and edaravone on vascular development. CoCl2 treatment caused the loss of trophoblast viability, the formation of ROS, and sFlt-1 mRNA and protein expression in a dose-dependent manner. Pretreatment with edaravone significantly inhibited hypoxia-induced oxidative stress formation and sFlt-1 expression in trophoblasts. Neither PlGF nor VEGF mRNA or protein expression was increased by CoCl2. In the in vitro tube formation assay, edaravone showed a protective role in vascular development under hypoxic conditions. This study demonstrated that hypoxia leading to increased sFlt-1 release in trophoblasts may contribute to the placental vascular formation abnormalities observed in preeclampsia and suggested that the free radical scavenger edaravone could be a candidate for the effective treatment of preeclampsia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor.

    Science.gov (United States)

    Armant, D Randall; Kilburn, Brian A; Petkova, Anelia; Edwin, Samuel S; Duniec-Dmuchowski, Zophia M; Edwards, Holly J; Romero, Roberto; Leach, Richard E

    2006-02-01

    Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.

  16. Ultrastructure and cytochemistry of cardiac intramitochondrial glycogen.

    Science.gov (United States)

    Sótonyi, P; Somogyi, E; Nemes, A; Juhász-Nagy, S

    1976-01-01

    Authors have observed abnormalities of glycogen localization in cardiac muscle, after normothermic cardiac arrest. The identification of these intramitrochondrial particles as glycogen was confirmed by selective staining with periodic acid-lead citrat, periodic acid-thiosemicarbazide protein methods and by their selective removal from tissue sections by alfa-amylase. The intramitochondrial glycogen particles were of beta-type. Some intramitochondrial particles were surrounded by paired membranes which resulted from protrusion of parts of mitochondrial membrane.

  17. Postexercise muscle glycogen resynthesis in humans.

    Science.gov (United States)

    Burke, Louise M; van Loon, Luc J C; Hawley, John A

    2017-05-01

    Since the pioneering studies conducted in the 1960s in which glycogen status was investigated using the muscle biopsy technique, sports scientists have developed a sophisticated appreciation of the role of glycogen in cellular adaptation and exercise performance, as well as sites of storage of this important metabolic fuel. While sports nutrition guidelines have evolved during the past decade to incorporate sport-specific and periodized manipulation of carbohydrate (CHO) availability, athletes attempt to maximize muscle glycogen synthesis between important workouts or competitive events so that fuel stores closely match the demands of the prescribed exercise. Therefore, it is important to understand the factors that enhance or impair this biphasic process. In the early postexercise period (0-4 h), glycogen depletion provides a strong drive for its own resynthesis, with the provision of CHO (~1 g/kg body mass) optimizing this process. During the later phase of recovery (4-24 h), CHO intake should meet the anticipated fuel needs of the training/competition, with the type, form, and pattern of intake being less important than total intake. Dietary strategies that can enhance glycogen synthesis from suboptimal amounts of CHO or energy intake are of practical interest to many athletes; in this scenario, the coingestion of protein with CHO can assist glycogen storage. Future research should identify other factors that enhance the rate of synthesis of glycogen storage in a limited time frame, improve glycogen storage from a limited CHO intake, or increase muscle glycogen supercompensation. Copyright © 2017 the American Physiological Society.

  18. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    Science.gov (United States)

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  19. Green Tea Polyphenol Epigallocatechin-3-Gallate Enhance Glycogen Synthesis and Inhibit Lipogenesis in Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jane J. Y. Kim

    2013-01-01

    Full Text Available The beneficial effects of green tea polyphenols (GTP against metabolic syndrome and type 2 diabetes by suppressing appetite and nutrient absorption have been well reported. However the direct effects and mechanisms of GTP on glucose and lipid metabolism remain to be elucidated. Since the liver is an important organ involved in glucose and lipid metabolism, we examined the effects and mechanisms of GTP on glycogen synthesis and lipogenesis in HepG2 cells. Concentrations of GTP containing 68% naturally occurring (−-epigallocatechin-3-gallate (EGCG were incubated in HepG2 cells with high glucose (30 mM under 100 nM of insulin stimulation for 24 h. GTP enhanced glycogen synthesis in a dose-dependent manner. 10 μM of EGCG significantly increased glycogen synthesis by 2fold (P<0.05 compared with insulin alone. Western blotting revealed that phosphorylation of Ser9 glycogen synthase kinase 3β and Ser641 glycogen synthase was significantly increased in GTP-treated HepG2 cells compared with nontreated cells. 10 μM of EGCG also significantly inhibited lipogenesis (P<0.01. We further demonstrated that this mechanism involves enhanced expression of phosphorylated AMP-activated protein kinase α and acetyl-CoA carboxylase in HepG2 cells. Our results showed that GTP is capable of enhancing insulin-mediated glucose and lipid metabolism by regulating enzymes involved in glycogen synthesis and lipogenesis.

  20. Genetics Home Reference: glycogen storage disease type VII

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type VII Glycogen storage disease type VII Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type VII (GSDVII) is an inherited ...

  1. Genetics Home Reference: glycogen storage disease type IV

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type IV Glycogen storage disease type IV Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type IV (GSD IV) is an ...

  2. Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts.

    Science.gov (United States)

    Hemmings, D G; Kilani, R; Nykiforuk, C; Preiksaitis, J; Guilbert, L J

    1998-06-01

    Forty percent of women with primary cytomegalovirus (CMV) infections during pregnancy infect their fetuses with complications for the baby varying from mild to severe. How CMV crosses the syncytiotrophoblast, the barrier between maternal blood and fetal tissue in the villous placenta, is unknown. Virus may cross by infection of maternal cells that pass through physical breaches in the syncytiotrophoblast or by direct infection of the syncytiotrophoblast, with subsequent transmission to underlying fetal placental cells. In this study, we show that pure (>99.99%), long-term and healthy (>3 weeks) cultures of syncytiotrophoblasts are permissively infected with CMV. Greater than 99% of infectious progeny virus remained cell associated throughout culture periods up to 3 weeks. Infection of term trophoblasts required a higher virus inoculum, was less efficient, and progressed more slowly than parallel infections of placental and human embryonic lung fibroblasts. Three laboratory strains (AD169, Towne, and Davis) and a clinical isolate from a congenitally infected infant all permissively infected trophoblasts, although infection efficiencies varied. The infection of first trimester syncytiotrophoblasts with strain AD169 occurred at higher frequency and progressed more rapidly than infection of term cells but less efficiently and rapidly than infection of fibroblasts. These results show that villous syncytiotrophoblasts can be permissively infected by CMV but that the infection requires high virus titers and proceeds slowly and that progeny virus remains predominantly cell associated.

  3. Putative role of glycogen as a peripheral biomarker of GSK3β activity.

    Science.gov (United States)

    Frizzo, Marcos Emilio

    2013-09-01

    Glycogen synthase kinase 3-β (GSK3β) has a pivotal role in several intracellular signaling cascades that are involved in gene transcription, cytoskeletal reorganization, energy metabolism, cell cycle regulation, and apoptosis. This kinase has pleiotropic functions, and the importance of its activity has recently been shown in neurons and platelets. In addition to its regulatory function in several physiological events, changes in GSK3β activity have been associated with many psychiatric and neurodegenerative illnesses, such as Alzheimer's disease, schizophrenia and autism-spectrum disorders. Beside the reports of its involvement in several pathologies, it has become increasingly apparent that GSK3β might be a common therapeutic target for different classes of psychiatric drugs, and also that the GSK3β ratio may be a useful parameter to determine the biochemical changes that might occur during antidepressant treatment. Although GSK3β is commonly described as a key enzyme in a plethora of signaling cascades, originally it was identified as playing an important role in the regulation of glycogen synthesis, given its ability to inactivate glycogen synthase (GS) by phosphorylation. Acting as a constitutively active kinase, GSK3β phosphorylates GS, which results in a decrease of glycogen production. GSK3β phosphorylation increases glycogen synthesis and storage, while its dephosphorylation decreases glycogen synthesis. Inactivation of GSK3β leads to dephosphorylation of GS and increase in glycogen synthesis in the adipose tissue, muscle and liver. Glycogen levels are reduced by antidepressant treatment, and this effect seems to be related to an effect of drugs on GSK3β activity. Peripherally, glycogen is also abundantly found in platelets, where it is considered a major energy source, required for a variety of its functions, including the release reaction. Recently, analysis of platelets from patients with late-life major depression showed that active forms of

  4. Comparative studies of placentation and immunology in non-human primates suggest a scenario for the evolution of deep trophoblast invasion and an explanation for human pregnancy disorders

    DEFF Research Database (Denmark)

    Carter, Anthony Michael

    2011-01-01

    in the orangutan and became polymorphic in the lineage leading to gorilla, bonobo, chimpanzee, and human. Interaction between HLA-C1 and HLA-C2 on the surface of trophoblast and killer immunoglobulin-like receptors (KIRs) expressed by uterine natural killer cells are important regulators of trophoblast invasion....... Evolution of this system in great apes may have been one prerequisite for deep trophoblast invasion but seems to have come at a price. The evidence now suggests that certain combinations of maternal genotype for KIRs and fetal genotype for HLA-C imply an increased risk of preeclampsia, fetal growth...... restriction, and recurrent abortion. The fetal genotype is in part derived from the father providing an explanation for the paternal contribution to reproductive disorders....

  5. Technical note: A method for isolating glycogen granules from ruminal protozoa for further characterization.

    Science.gov (United States)

    Hall, Mary Beth

    2016-03-01

    Evaluation of physical, chemical, and enzymatic hydrolysis characteristics of protozoal glycogen is best performed on a pure substrate to avoid interference from other cell components. A method for isolating protozoal glycogen granules without use of detergents or other potentially contaminating chemicals was developed. Rumen inoculum was incubated anerobically in vitro with glucose. Glycogen-laden protozoa produced in the fermentation, primarily isotrichids, were allowed to sediment in a separatory funnel and were dispensed. The protozoa were processed through repeated centrifugations and sonication to isolate glycogen granules largely free of feed and cellular debris. The final water-insoluble lyophilized product analyzed as 98.3% α-glucan with very rare starch granules and 1.9% protein. Observed losses of glycogen granules during the clean-up process indicate that this procedure should not be used for quantitative assessment of protozoal glycogen from fermentations. Further optimization of this procedure to enhance the amount of glycogen obtained per fermentation may be possible. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    Science.gov (United States)

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  7. Rare Presentation of Metastatic Cystic Trophoblastic Tumor in a Patient Without Prior Chemotherapy

    Directory of Open Access Journals (Sweden)

    Michael L. Wang

    2017-07-01

    Full Text Available Cystic trophoblastic tumor (CTT is a rare testicular germ cell tumor (GCT predominantly seen in post-chemotherapy patients. It is prognostically similar to teratoma and requires no additional chemotherapy in the absence of a nonteratomatous GCT component. We report a case of metastatic CTT in a patient with primary testicular teratoma without prior chemotherapy. Retroperitoneal lymph node metastases contained teratoma, embryonal carcinoma, and CTT. The CTT was β-hCG positive and SALL4 negative by immunohistochemistry (IHC. CTT can arise in metastatic testicular GCT in treatment naïve patients. An important differential diagnosis is choriocarcinoma due to treatment implications, and SALL4 IHC may help.

  8. Gadd45 α expression in preeclampsia placenta and the effect of Gadd45 α on trophoblast HTR8/Svneo

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Objective: To study the expression of Gadd45 α in preeclampsia placenta and the regulating effect of Gadd45 α knockdown on trophoblast HTR8/Svneo. Methods: Preeclampsia placenta tissue and normal placenta tissue were collected, and mRNA contents and protein contents of Gadd45 α were detected by fluorescent quantitative PCR and Western blotting respectively; trophoblast cells HTR8/Svneo were cultured and after transfection of Gadd45 α siRNA, cell invasion ability and expression of invasion-assiotiated molecules were detected. Results: mRNA content and protein content of Gadd45 α in preeclampsia placenta tissue were higher than those in normal placenta tissue; after transfection of Gadd45 α siRNA, mRNA content and protein content of Gadd45 α in HTR8/Svneo cells significantly decreased, and the number of invasive cells as well as expression of MMP1, MMP2, MMP3 and MMP9 significantly increased. Conclusion: The expression of Gadd45 α in preeclampsia placenta abnormally increases; inhibting the expression of Gadd45 α in trophoblasts HTR8/Svneo can promote invasion and increase the expression of MMPs molecules.

  9. Increased Laforin and Laforin Binding to Glycogen Underlie Lafora Body Formation in Malin-deficient Lafora Disease*

    Science.gov (United States)

    Tiberia, Erica; Turnbull, Julie; Wang, Tony; Ruggieri, Alessandra; Zhao, Xiao-Chu; Pencea, Nela; Israelian, Johan; Wang, Yin; Ackerley, Cameron A.; Wang, Peixiang; Liu, Yan; Minassian, Berge A.

    2012-01-01

    The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen. PMID:22669944

  10. Pluralistic roles for glycogen in the central and peripheral nervous systems.

    Science.gov (United States)

    Fryer, Kirsty L; Brown, Angus M

    2015-02-01

    Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K(+)]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K(+)]o, the resulting increase in intracellular bicarbonate alkalizing the cell's interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.

  11. Diagnostics of trophoblast disease and the control of therapeutic efficiency based on definition of chorionic gonadotrapin and trophoblastic beta1-glycoprotein

    International Nuclear Information System (INIS)

    Yugrinova, L.G.; Olefirenko, G.A.; Dotsenko, Yu.S.

    1982-01-01

    A comparative estimation of markers of trophoblast disease, chorionic gonadotropin (CG) and trophoblastic beta 1 -glycoprotein defined by different methods is given. It is found that diagnostics and control of therapeutic efficiency for patients having trophoblast disease based on CG definition are possible. In 86% of cases the clinical diagnosis was confirmed by the immunoradioautography, and in 33% - by the immunodiffusion method. The dependence of marker detection frequency on the therapeutic efficiency is found

  12. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  13. Cytotoxicant-induced trophoblast dysfunction and abnormal pregnancy outcomes: role of zinc and metallothionein.

    Science.gov (United States)

    McAleer, Mary Frances; Tuan, Rocky S

    2004-12-01

    Normal trophoblast function, including implantation, hormone production, and formation of the selectively permeable maternofetal barrier, is essential for the establishment and maintenance of the fetoplacental unit and proper fetal development. Maternal cytotoxicant exposure causes the destruction of these cells, especially the terminally differentiated syncytiotrophoblasts, and results in a myriad of poor pregnancy outcomes. These outcomes range from intrauterine growth retardation and malformation to spontaneous abortion or stillbirth. There is recent evidence that the metal-binding protein, metallothionein, is involved in the protection of human trophoblastic cells from heavy metal-induced and severe oxidative stress-induced apoptosis. Metallothionein, with its unique biochemical structure, can both bind essential metal ions, such as the transcription modulator zinc, and yet allow their ready displacement by toxic nonessential metal ions or damaging free radicals. These properties suggest that metallothionein may be responsible not only for sequestering the cytotoxic agents, but also for altering signal transduction in the affected cells. Here, we review several identified causes of adverse pregnancy outcomes (specifically, prenatal exposure to cigarette smoke and alcohol, gestational infection, and exposure to environmental contaminants), discuss the role of zinc in modulating the cellular response to these toxic insults, and then propose how metallothionein may function to mediate this protective response. Published 2005 Wiley-Liss, Inc.

  14. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  15. The clinicopathological features of intermediate trophoblastic tumor in the pineal region

    Directory of Open Access Journals (Sweden)

    ZHANG Yun-xiang

    2012-08-01

    Full Text Available Objective To evaluate the clinicopathological features of intermediate trophoblastic tumor (ITT in the pineal region. Methods A retrospective study was performed to analyse the diagnostic and therapeutic process of 1 case with ITT in the pineal region. The specimen obtained from the surgery was dealt with common tissue processing mode and cut into slices. HE staining was performed to observe histophathological features. Immunohistochemical staining (SP two-step method was performed to analyse the expression of tumor markers. Related literatures were reviewed. Results A 6-year old boy with clinical manifestations of penis enlargement and rapid growth for more than one year, presented a mass in his pineal region through MRI. The tumor was surgically excised after it is refractory to 10 times experimental radiotherapy as germinoma. The level of β-human chorionic gonadotropin ( β-hCG in his postoperative blood was decreased to normal, but gradually increased, once again followed to normal after three times chemotherapy. Patient was normal almost postoperative 6 months later by follow -up. Pathological examination showed sheets necrosis with multiple calcification and scattered fresh blood cells, epithelioid tumor cells with solid growth pattern. The tumor cells were atypical mononuclear cells with relative uniform (between heterotypic cells and partially surrounding and invasing the vascular walls. The cytoplasm of tumor cells was eosinophilic or clear, the nucleus was round or irregular in shape and some with intranuclear pseudoinclusions, and its mitotic figures were rarely seen under light microscopy. The tumor cells showed strong positive for AE1/AE3, cell adhesion molecules 5.2 (CAM5.2, human placental lactogen (hPL, octamer-binding transcription factor 3/4 (Oct3/4, epidermal growth factor receptor (EGFR and E-cadherin. P53 was also expressed. The positive rate of Ki-67 was about 10%, and β-hCG was expressed in the extremely tumor cells. The

  16. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes.

    Science.gov (United States)

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K

    2015-01-01

    Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.

  17. The Csr System Regulates Escherichia coli Fitness by Controlling Glycogen Accumulation and Energy Levels.

    Science.gov (United States)

    Morin, Manon; Ropers, Delphine; Cinquemani, Eugenio; Portais, Jean-Charles; Enjalbert, Brice; Cocaign-Bousquet, Muriel

    2017-10-31

    In the bacterium Escherichia coli , the posttranscriptional regulatory system Csr was postulated to influence the transition from glycolysis to gluconeogenesis. Here, we explored the role of the Csr system in the glucose-acetate transition as a model of the glycolysis-to-gluconeogenesis switch. Mutations in the Csr system influence the reorganization of gene expression after glucose exhaustion and disturb the timing of acetate reconsumption after glucose exhaustion. Analysis of metabolite concentrations during the transition revealed that the Csr system has a major effect on the energy levels of the cells after glucose exhaustion. This influence was demonstrated to result directly from the effect of the Csr system on glycogen accumulation. Mutation in glycogen metabolism was also demonstrated to hinder metabolic adaptation after glucose exhaustion because of insufficient energy. This work explains how the Csr system influences E. coli fitness during the glycolysis-gluconeogenesis switch and demonstrates the role of glycogen in maintenance of the energy charge during metabolic adaptation. IMPORTANCE Glycogen is a polysaccharide and the main storage form of glucose from bacteria such as Escherichia coli to yeasts and mammals. Although its function as a sugar reserve in mammals is well documented, the role of glycogen in bacteria is not as clear. By studying the role of posttranscriptional regulation during metabolic adaptation, for the first time, we demonstrate the role of sugar reserve played by glycogen in E. coli Indeed, glycogen not only makes it possible to maintain sufficient energy during metabolic transitions but is also the key component in the capacity of cells to resume growth. Since the essential posttranscriptional regulatory system Csr is a major regulator of glycogen accumulation, this work also sheds light on the central role of posttranscriptional regulation in metabolic adaptation. Copyright © 2017 Morin et al.

  18. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment.

    Science.gov (United States)

    Aikawa, Shimpei; Nishida, Atsumi; Ho, Shih-Hsin; Chang, Jo-Shu; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-01-01

    Oxygenic photosynthetic microorganisms such as cyanobacteria and microalgae have attracted attention as an alternative carbon source for the next generation of biofuels. Glycogen abundantly accumulated in cyanobacteria is a promising feedstock which can be converted to ethanol through saccharification and fermentation processes. In addition, the utilization of marine cyanobacteria as a glycogen producer can eliminate the need for a freshwater supply. Synechococcus sp. strain PCC 7002 is a fast-growing marine coastal euryhaline cyanobacteria, however, the glycogen yield has not yet been determined. In the present study, the effects of light intensity, CO2 concentration, and salinity on the cell growth and glycogen content were investigated in order to maximize glycogen production in Synechococcus sp. strain PCC 7002. The optimal culture conditions for glycogen production in Synechococcus sp. strain PCC 7002 were investigated. The maximum glycogen production of 3.5 g L(-1) for 7 days (a glycogen productivity of 0.5 g L(-1) d(-1)) was obtained under a high light intensity, a high CO2 level, and a nitrogen-depleted condition in brackish water. The glycogen production performance in Synechococcus sp. strain PCC 7002 was the best ever reported in the α-polyglucan (glycogen or starch) production of cyanobacteria and microalgae. In addition, the robustness of glycogen production in Synechococcus sp. strain PCC 7002 to salinity was evaluated in seawater and freshwater. The peak of glycogen production of Synechococcus sp. strain PCC 7002 in seawater and freshwater were 3.0 and 1.8 g L(-1) in 7 days, respectively. Glycogen production in Synechococcus sp. strain PCC 7002 maintained the same level in seawater and half of the level in freshwater compared with the optimal result obtained in brackish water. We conclude that Synechococcus sp. strain PCC 7002 has high glycogen production activity and glycogen can be provided from coastal water accompanied by a fluctuation

  19. Chemotherapy for resistant or recurrent gestational trophoblastic neoplasia.

    LENUS (Irish Health Repository)

    Alazzam, Mo'iad

    2012-12-01

    Gestational trophoblastic neoplasia (GTN) is a highly curable group of pregnancy-related tumours; however, approximately 25% of GTN tumours will be resistant to, or will relapse after, initial chemotherapy. These resistant and relapsed lesions will require salvage chemotherapy with or without surgery. Various salvage regimens are used worldwide. It is unclear which regimens are the most effective and the least toxic.

  20. MR imaging of gestational trophoblastic tumor: role of gadolinium enhancement

    International Nuclear Information System (INIS)

    Choi, Si Young; Byun, Jae Young; Kim, Bum Su; Yun, Young Hyun; Mun, Kyung Mi; Park, Kyung Sin; Kim, Byung Kee; Bae, Seog Nyeon; Shinn, Kyung Sub.

    1997-01-01

    The purpose of this study is to investigate the role of gadolinium enhanced MR imaging in the evaluation of gestational trophoblastic tumors (invasive mole and choriocarcinoma). Pre-enhanced T1-and T2-weighted images and gadolinium enhanced T1-weighted images of 34 gestational trophoblastic tumors (15 choriocarcinomas, 19 invasive moles) were retrospectively evaluated and enhancement patterns were analyzed. Morphologica differences and structural characteristics were analyzed by the evaluation of tumor margin, patterns of hemorrhagic necroses, the development of intratumoral vascularity, and molar villi. Graded scores of MR findings between pre- and gadolinium enhanced images were based on the following criteria : 1) visualization of tumor margin 2) distinction between tumor necrosis and zone of trophoblastic proliferation ; and 3) molar villi. Statistical differences between graded scores of pre- and post-enhanced images were analyzed. Gadolinium enhanced MR imaging was helpful for the visualization of tumor characteristics in gestational trophoblastic tumors and in differential diagnosis between invasive mole and choriocarcinoma. (author). 16 refs., 4 tabs., 4 figs

  1. Monoclonal antibodies against human trophoblast in female infertility

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Alena; Elzeinová, Fatima; Bukovský, A.; Madar, J.; Ulčová-Gallová, Z.; Pěknicová, Jana

    2005-01-01

    Roč. 54, č. 3 (2005), s. 159 ISSN 0271-7352. [European Congress of Reproductive Immunology /3./. 05.09.11-05.09.15, Essex] R&D Projects: GA MZd(CZ) NR7838 Institutional research plan: CEZ:AV0Z50520514 Keywords : monoclonal antibodies * female infertility * trophoblast Subject RIV: EB - Genetics ; Molecular Biology

  2. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts

    Science.gov (United States)

    Tuuli, Methodius G.; Longtine, Mark S.; Shin, Joong Sik; Lawrence, Russell; Inder, Terrie; Michael Nelson, D.

    2012-01-01

    The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus. PMID:22374759

  3. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  4. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  5. Antiphospholipid antibody-induced miR-146a-3p drives trophoblast interleukin-8 secretion through activation of Toll-like receptor 8.

    Science.gov (United States)

    Gysler, Stefan M; Mulla, Melissa J; Guerra, Marta; Brosens, Jan J; Salmon, Jane E; Chamley, Lawrence W; Abrahams, Vikki M

    2016-07-01

    What is the role of microRNAs (miRs) in antiphospholipid antibody (aPL)-induced trophoblast inflammation? aPL-induced up-regulation of trophoblast miR-146a-3p is mediated by Toll-like receptor 4 (TLR4), and miR-146a-3p in turn drives the cells to secrete interleukin (IL)-8 by activating the RNA sensor, TLR8. Obstetric antiphospholipid syndrome (APS) is an autoimmune disorder characterized by circulating aPL and an increased risk of pregnancy complications. We previously showed that aPL recognizing beta2 glycoprotein I (β2GPI) elicit human first trimester trophoblast secretion of IL-8 by activating TLR4. Since some miRs control TLR responses, their regulation in trophoblast cells by aPL and functional role in the aPL-mediated inflammatory response was investigated. miRs can be released from cells via exosomes, and therefore, miR exosome expression was also examined. A panel of miRs was selected based on their involvement with TLR signaling: miR-9; miR-146a-5p and its isomiR, miR-146a-3p; miR-155, miR-210; and Let-7c. Since certain miRs can activate the RNA sensor, TLR8, this was also investigated. For in vitro studies, the human first trimester extravillous trophoblast cell line, HTR8 was studied. HTR8 cells transfected to express a TLR8 dominant negative (DN) were also used. Plasma was evaluated from pregnant women who have aPL, either with or without systemic lupus erythematous (SLE) (n = 39); SLE patients without aPL (n = 30); and healthy pregnant controls (n = 20). Trophoblast HTR8 wildtype and TLR8-DN cells were incubated with or without aPL (mouse anti-human β2GPI mAb) for 48-72 h. HTR8 cells were also treated with or without aPL in the presence and the absence of a TLR4 antagonist (lipopolysaccharide from Rhodobacter sphaeroides; LPS-RS), specific miR inhibitors or specific miR mimics. miR expression levels in trophoblast cells, trophoblast-derived exosomes and exosomes isolated from patient plasma were measured by qPCR. Trophoblast IL-8 secretion was

  6. Carcass glycogen repletion on carbohydrate re-feeding after starvation.

    OpenAIRE

    Cox, D J; Palmer, T N

    1987-01-01

    In mice, the response of carcass glycogen to glucose re-feeding after starvation is biphasic. The initial repletive phase is followed by partial (greater than 50%) glycogen mobilization. This turnover of carcass glycogen in response to carbohydrate re-feeding may play an important role in the provision of C3 precursors for hepatic glycogen synthesis.

  7. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine.

    Directory of Open Access Journals (Sweden)

    Fiona Hey

    Full Text Available The WNT signalling pathway controls many developmental processes and plays a key role in maintenance of intestine renewal and homeostasis. Glycogen Synthase Kinase 3 (GSK3 is an important component of the WNT pathway and is involved in regulating β-catenin stability and expression of WNT target genes. The mechanisms underpinning GSK3 regulation in this context are not completely understood, with some evidence suggesting this occurs through inhibitory N-terminal serine phosphorylation in a similar way to GSK3 inactivation in insulin signaling. To investigate this in a physiologically relevant context, we have analysed the intestinal phenotype of GSK3 knockin mice in which N-terminal serines 21/9 of GSK3α/β have been mutated to non-phosphorylatable alanine residues. We show that these knockin mutations have very little effect on overall intestinal integrity, cell lineage commitment, β-catenin localization or WNT target gene expression although a small increase in apoptosis at villi tips is observed. Our results provide in vivo evidence that GSK3 is regulated through mechanisms independent of N-terminal serine phosphorylation in order for β-catenin to be stabilised.

  8. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    Science.gov (United States)

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G -/- mice compared to the wild type controls. The metabolic rate of the mice as measured by O 2 consumption and CO 2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of irradiation with fast electrons on the uridindiphosphateglucose mechanism of glycogen synthesis in NKly tumours, spleen and liver of mice having tumours

    International Nuclear Information System (INIS)

    Goryukhina, T.A.; Misheneva, V.S.; Burova, T.M.; Seits, I.F.

    1976-01-01

    A marked and stable decrease in the glycogen content of the liver has been observed within the entire 96-hour period after a single exposure to fast electrons (1000 rads) of mice having NKly tumour. Tumour cells maintain a low glycogen level that is peculiar for them. Activity of enzymes (UDPG-pyrophosphorylase, phosphoglucomutase and UDPG-glycogensynthetase) considerably changes but, in most cases, there is no parallelism between the glycogen content and glycogensynthetase activity

  10. Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan.

    Science.gov (United States)

    Sullivan, Mitchell A; Nitschke, Silvia; Steup, Martin; Minassian, Berge A; Nitschke, Felix

    2017-08-11

    Lafora disease (LD, OMIM #254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.

  11. Sonographic image of cervix epithelioid trophoblastic tumor coexisting with mucinous adenocarcinoma in a postmenopausal woman: A case report.

    Science.gov (United States)

    Zhu, Yi; Zhang, Guo-Nan; Zhang, Rui-Bo; Shi, Yu; Wang, Deng-Feng; He, Rong

    2017-09-01

    Epithelioid trophoblastic tumor (ETT) is a distinctive but rare gestational trophoblastic neoplasia (GTN) composed of chorionic-type intermediate trophoblast cells. Approximately 50% ETT arose from the uterine cervix or lower uterine segment following a previous pregnancy with vaginal bleeding. With its unusual ability to simulate an invasive epithelioid neoplasm, ETT frequently poses a diagnostic challenge, especially involving the uterine cervix. We herein report the case of a 60-year-old female with persistent vaginal bleeding and middle-level elevation of serum human chorionic gonadotropin (hCG). Ultrasound revealed a 3.0 × 2.7 cm well-circumscribed, strongly echogenic lesion in the cervix, with a peripheral pattern of Doppler signals. The enhanced pattern by contrast-enhanced ultrasound displayed strong peripheral enhancement accompanied with globular appearance, then centripetal filling completely, and fading away rapidly. The final pathological diagnosis was ETT accompanying mucinous adenocarcinoma. Due to the pre-operative evaluation of a presumed IB2 cervix mucinous adenocarcinoma, the patient was treated with 2 courses of neoadjuvant chemotherapy followed by radical hysterectomy. The patient is currently disease-free for the past 1 year. This case report demonstrates that sonographic image of tumor shapes and blood flow could be helpful in differentiating ETT from another GTN and enable more accurate diagnosis before treatment.

  12. Roles of the insulinlike growth factor family in nonpregnant human endometrium and at the decidual: trophoblast interface.

    Science.gov (United States)

    Giudice, L C; Irwin, J C

    1999-01-01

    The insulinlike growth factor (IGF) family is believed to be important in endometrial development during the menstrual cycle and in the process of implantation. The mitogenic, differentiative, and antiapoptotic properties of the IGFs and their binding proteins, as well as their spatial and temporal expression in cycling endometrium, suggest that they may participate in endometrial growth, differentiation, apoptosis, and perhaps angiogenesis. IGFBP proteases, which increase IGF bioavailability, have been localized to endometrial stromal cells and to the human cytotrophoblast and likely play important roles in endometrial, decidual, and trophoblast physiology. IGFBP-1 is a major protein product of nonpregnant endometrium during the mid-late secretory phase and occurs in abundance in decidua. Its roles as an IGF-binding protein and as a trophoblast integrin ligand suggest that it may have multiple roles in endometrial development and in interactions between the decidua and the invading trophoblast. Recent evidence suggests that it may have a role in the process of shallow implantation in the clinical disorder of preclampsia. In contrast to knowledge about the roles of IGF peptides, IGFBP proteases, and IGFBPs in normal endometrial development and early human pregnancy, little information is available regarding this family in abnormal endometrial development, in occult endometrial defects, and in uterine receptivity and nonreceptivity.

  13. Glycogen content in hepatocytes is related with their size in normal rat liver but not in cirrhotic one.

    Science.gov (United States)

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Vorobev, Mikhail L; Kudryavtsev, Boris N

    2016-04-01

    Hepatocytes differ from one another by the degree of the ploidy, size, position in the liver lobule, and level of the DNA-synthetic processes. It is believed, that the cell size exerts substantial influence on the metabolism of the hepatocytes and the glycogen content in them. The aim of the present study was to test this hypothesis. Dry weight of hepatocytes, their ploidy and glycogen content were determined in the normal and the cirrhotic rat liver. Liver cirrhosis in rats was produced by chronic inhalation of CCl4 vapours in the course of 6 months. A combined cytophotometric method was used. Dry weight of the cell, its glycogen and DNA content were successively measured on a mapped preparation. Hepatocytes of each ploidy class in the normal and the cirrhotic rat liver accumulated glycogen at the same rate. In the normal liver, there was a distinct correlation between the size of hepatocytes and glycogen content in them. This correlation was observed in each ploidy class, and was especially pronounced in the class of mononucleate tetraploid hepatocytes. In the cirrhotic liver, there was no correlation between the size of the cells and their glycogen content. The impairment of liver lobular structure probably explains the observed lack of correlation between hepatocyte size and their glycogen content in the cirrhotic liver. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  14. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    Science.gov (United States)

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  15. Steroid hormones modulate galectin-1 in the trophoblast HTR-8/SVneocell line

    Directory of Open Access Journals (Sweden)

    Bojić-Trbojević Žanka

    2008-01-01

    Full Text Available The effects of steroids on galectin-1 (gal-1 were studied in HTR-8/SVneo cells by immunocytochemistry, cell-based ELISA, the MTT proliferation test and the Matrigel TM invasion test. Dexamethasone (DEX, progesterone (PRG, and mifepristone (RU486 were used. Gal-1 was modulated in a steroid- and dose-dependent manner by DEX, which mildly but significantly stimulated production at low concentrations (0.1-10 nM, and inhibited it at 100 nM, while the effects of PRG and RU486 were opposite. HTR-8/SVneo cell invasion of Matrigel was significantly decreased in the presence of DEX and lactose. The obtained data support the proposed regulatory role of steroids in trophoblast gal-1 production.

  16. Glycogen synthase kinase 3: more than a namesake.

    Science.gov (United States)

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-03-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.

  17. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors

    Directory of Open Access Journals (Sweden)

    Daniela Hulcová

    2018-03-01

    Full Text Available Glycogen synthase kinase-3β (GSK-3β is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM, masonine (IC50 = 27.81 ± 0.01 μM}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM}.

  18. Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts.

    Science.gov (United States)

    Yang, Xiaohua; Haghiac, Maricela; Glazebrook, Patricia; Minium, Judi; Catalano, Patrick M; Hauguel-de Mouzon, Sylvie

    2015-09-01

    What are the effects of fatty acids on placental inflammatory cytokine with respect to toll-like receptor-4/nuclear factor-kappa B (TLR4/NF-kB)? Exogenous fatty acids induce a pro-inflammatory cytokine response in human placental cells in vitro via activation of TLR4 signaling pathways. The placenta is exposed to changes in circulating maternal fatty acid concentrations throughout pregnancy. Fatty acids are master regulators of innate immune pathways through recruitment of toll-like receptors and activation of cytokine synthesis. Trophoblast cells isolated from 14 normal term human placentas were incubated with long chain fatty acids (FA) of different carbon length and degree of saturation. The expression and secretion of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-alpha (TNF-α) were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Antibodies against TLR4 ligand binding domain, downstream signaling and anti-p65 NFkB-inhibitor were used to characterize the pathways of FA action. General approach used primary human term trophoblast cell culture. Methods and end-points used real-time quantitative PCR, cytokine measurements, immunohistochemistry, western blots. The long chain saturated fatty acids, stearic and palmitic (PA), stimulated the synthesis as well as the release of TNF-α, IL-6 and IL-8 by trophoblast cells (2- to 6-fold, P acids did not modify cytokine expression significantly. Palmitate-induced inflammatory effects were mediated via TLR4 activation, NF-kB phosphorylation and nuclear translocation. TNF-α protein level was close to the limit of detection in the culture medium even when cells were cultured with PA. These mechanisms open the way to a better understanding of how changes in maternal lipid homeostasis may regulate placental inflammatory status. X.Y. was recipient of fellowship award from West China Second University Hospital, Sichuan University (NIH HD 22965-19). The authors have nothing

  19. A Primary Human Trophoblast Model to Study the Effect of Inflammation Associated with Maternal Obesity on Regulation of Autophagy in the Placenta.

    Science.gov (United States)

    Simon, Bailey; Bucher, Matthew; Maloyan, Alina

    2017-09-27

    Maternal obesity is associated with an increased risk of adverse perinatal outcomes that are likely mediated by compromised placental function that can be attributed to, in part, the dysregulation of autophagy. Aberrant changes in the expression of autophagy regulators in the placentas from obese pregnancies may be regulated by inflammatory processes associated with both obesity and pregnancy. Described here is a protocol for sampling of villous tissue and isolation of villous cytotrophoblasts from the term human placenta for primary cell culture. This is followed by a method for simulating the inflammatory milieu in the obese intrauterine environment by treating primary trophoblasts from lean pregnancies with tumor necrosis factor alpha (TNFα), a proinflammatory cytokine that is elevated in obesity and in pregnancy. Through the implementation of the protocol described here, it is found that exposure to exogenous TNFα regulates the expression of Rubicon, a negative regulator of autophagy, in trophoblasts from lean pregnancies with female fetuses. While a variety of biological factors in the obese intrauterine environment maintain the potential to modulate critical pathways in trophoblasts, this ex vivo system is especially useful for determining if expression patterns observed in vivo in human placentas with maternal obesity are a direct result of TNFα signaling. Ultimately, this approach affords the opportunity to parse out the regulatory and molecular implications of inflammation associated with maternal obesity on autophagy and other critical cellular pathways in trophoblasts that have the potential to impact placental function.

  20. Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker.

    Science.gov (United States)

    Zadora, Julianna; Singh, Manvendra; Herse, Florian; Przybyl, Lukasz; Haase, Nadine; Golic, Michaela; Yung, Hong Wa; Huppertz, Berthold; Cartwright, Judith E; Whitley, Guy; Johnsen, Guro M; Levi, Giovanni; Isbruch, Annette; Schulz, Herbert; Luft, Friedrich C; Müller, Dominik N; Staff, Anne Cathrine; Hurst, Laurence D; Dechend, Ralf; Izsvák, Zsuzsanna

    2017-11-07

    Preeclampsia is a complex and common human-specific pregnancy syndrome associated with placental pathology. The human specificity provides both intellectual and methodological challenges, lacking a robust model system. Given the role of imprinted genes in human placentation and the vulnerability of imprinted genes to loss of imprinting changes, there has been extensive speculation, but no robust evidence, that imprinted genes are involved in preeclampsia. Our study aims to investigate whether disturbed imprinting contributes to preeclampsia. We first aimed to confirm that preeclampsia is a disease of the placenta by generating and analyzing genome-wide molecular data on well-characterized patient material. We performed high-throughput transcriptome analyses of multiple placenta samples from healthy controls and patients with preeclampsia. Next, we identified differentially expressed genes in preeclamptic placentas and intersected them with the list of human imprinted genes. We used bioinformatics/statistical analyses to confirm association between imprinting and preeclampsia and to predict biological processes affected in preeclampsia. Validation included epigenetic and cellular assays. In terms of human specificity, we established an in vitro invasion-differentiation trophoblast model. Our comparative phylogenetic analysis involved single-cell transcriptome data of human, macaque, and mouse preimplantation embryogenesis. We found disturbed placental imprinting in preeclampsia and revealed potential candidates, including GATA3 and DLX5 , with poorly explored imprinted status and no prior association with preeclampsia. As a result of loss of imprinting, DLX5 was upregulated in 69% of preeclamptic placentas. Levels of DLX5 correlated with classic preeclampsia markers. DLX5 is expressed in human but not in murine trophoblast. The DLX5 high phenotype resulted in reduced proliferation, increased metabolism, and endoplasmic reticulum stress-response activation in

  1. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9.

    Science.gov (United States)

    Su, Mei-Tsz; Tsai, Pei-Yin; Tsai, Hui-Ling; Chen, Yi-Chi; Kuo, Pao-Lin

    2017-03-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an important regulator for embryo implantation and placental development, and is clinically associated with several obstetric disorders related to insufficient or inappropriate trophoblast invasion, such as recurrent abortion, preeclampsia, and intrauterine fetal growth restriction. This study was performed to identify the microRNAs targeting EG-VEGF, and evaluate the regulatory effect on trophoblast biology. miR-346 and miR-582-3p were initially identified via bioinformatic tools, and their specific binding sites on the EG-VEGF 3'UTR were further confirmed using dual luciferase and a co-transfection assays. miR-346 and miR-582-3p were demonstrated not only to suppress EG-VEGF expression, but also inhibit trophoblast invasion and migration in the JAR and HTR-8/SVneo cell lines. We further evaluated the effect of microRNAs in HTR-8/SVneo cells coexpressing EG-VEGF and miR-346 or miR-582-3p on matrix metalloproteinase (MMP 2 and MMP 9) and the tissue inhibitors of metalloproteinase (TIMP 1 and TIMP 2) using RT-PCR, western blotting and gelatin zymography. TIMP 1 and TIMP 2 were not affected by the two microRNAs, whereas the expressions and activities of MMP 2 and MMP 9 were significantly downregulated, which in turn inhibited the invasion ability of trophoblasts. In conclusion, miR-346 and miR-582-3p regulate EG-VEGF-induced trophoblast invasion through repressing MMP 2 and MMP 9, and may become novel diagnostic biomarkers or therapeutic targets for EG-VEGF-related obstetric disorders. © 2016 BioFactors, 43(2):210-219, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  2. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy.

    Science.gov (United States)

    Tirado-González, Irene; Freitag, Nancy; Barrientos, Gabriela; Shaikly, Valerie; Nagaeva, Olga; Strand, Magnus; Kjellberg, Lennart; Klapp, Burghard F; Mincheva-Nilsson, Lucia; Cohen, Marie; Blois, Sandra M

    2013-01-01

    Galectin-1 (gal-1) is expressed at the feto-maternal interface and plays a role in regulating the maternal immune response against placental alloantigens, contributing to pregnancy maintenance. Both decidua and placenta contribute to gal-1 expression and may be important for the maternal immune regulation. The expression of gal-1 within the placenta is considered relevant to cell-adhesion and invasion of trophoblasts, but the role of gal-1 in the immune evasion machinery exhibited by trophoblast cells remains to be elucidated. In this study, we analyzed gal-1 expression in preimplantation human embryos and first-trimester decidua-placenta specimens and serum gal-1 levels to investigate the physiological role played by this lectin during pregnancy. The effect on human leukocyte antigen G (HLA-G) expression in response to stimulation or silencing of gal-1 was also determined in the human invasive, proliferative extravillous cytotrophoblast 65 (HIPEC65) cell line. Compared with normal pregnant women, circulating gal-1 levels were significantly decreased in patients who subsequently suffered a miscarriage. Human embryos undergoing preimplantation development expressed gal-1 on the trophectoderm and inner cell mass. Furthermore, our in vitro experiments showed that exogenous gal-1 positively regulated the membrane-bound HLA-G isoforms (HLA-G1 and G2) in HIPEC65 cells, whereas endogenous gal-1 also induced expression of the soluble isoforms (HLA-G5 and -G6). Our results suggest that gal-1 plays a key role in pregnancy maternal immune regulation by modulating HLA-G expression on trophoblast cells. Circulating gal-1 levels could serve as a predictive factor for pregnancy success in early human gestation.

  3. Hyper-hippocampal glycogen induced by glycogen loading with exhaustive exercise.

    Science.gov (United States)

    Soya, Mariko; Matsui, Takashi; Shima, Takeru; Jesmin, Subrina; Omi, Naomi; Soya, Hideaki

    2018-01-19

    Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity. Although the effect of HCD on the brain remains unknown, brain supercompensation occurs following exhaustive exercise (EE), a component of GL. We thus employed a rat model of GL and examined whether GL increases glycogen levels in the brain as well as in muscle, and found that GL increased glycogen levels in the hippocampus and hypothalamus, as well as in muscle. We further explored the essential components of GL (exercise and/or diet conditions) to establish a minimal model of GL focusing on the brain. Exercise, rather than a HCD, was found to be crucial for GL-induced hyper-glycogen in muscle, the hippocampus and the hypothalamus. Moreover, EE was essential for hyper-glycogen only in the hippocampus even without HCD. Here we propose the EE component of GL without HCD as a condition that enhances brain glycogen stores especially in the hippocampus, implicating a physiological strategy to enhance hippocampal functions.

  4. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated...

  5. TROPHOBLASTIC β1 – GLYCOPROTEIN SYNTHESIS IN SEROPOSITIVE PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    R. N. Bogdanovich

    2005-01-01

    Full Text Available Abstract. The level of trophoblastic β1 – glycoprotein (SP–1 was determined in the blood sera of 200 healthy pregnant women and 184 women with threatened abortions in term till 20 weeks of pregnancy. In group of women experiencing recurrent abortions in 38 % cases antibodies to chorionic gonadotropin, in 39,5 % cases antibodies to phospholipids, in 25,5 % – antibodies to tireoglobulin were revealed in significant amounts. In 20,65 % lupus anticoagulant was found. The majority of women in this group had changes in homeostasis. The presence of autoantibodies during pregnancy is the unfavourable factor in the development of placental insufficiency. This is proved by the decreased secretion of trophoblastic β1 – glycoprotein – a marker of the fetal part of placenta. (Med. Immunol., 2005, vol.7, № 1, pp. 85588

  6. Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis

    DEFF Research Database (Denmark)

    Prats, Clara; Cadefau, Joan A; Cussó, Roser

    2005-01-01

    Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively....... Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed...... that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ...

  7. Lck/PLCγ control migration and proliferation of interleukin (IL)-2-stimulated T cells via the Rac1 GTPase/glycogen phosphorylase pathway.

    Science.gov (United States)

    Llavero, Francisco; Artaso, Alain; Lacerda, Hadriano M; Parada, Luis A; Zugaza, José L

    2016-11-01

    Recently, we have reported that the IL-2-stimulated T cells activate PKCθ in order to phosphorylate the serine residues of αPIX-RhoGEF, and to switch on the Rac1/PYGM pathway resulting in T cell migration and proliferation. However, the molecular mechanism connecting the activated IL-2-R with the PKCθ/αPIX/Rac1/PYGM pathway is still unknown. In this study, the use of a combined pharmacological and genetic approach identified Lck, a Src family member, as the tyrosine kinase phosphorylating PLCγ leading to Rac1 and PYGM activation in the IL-2-stimulated Kit 225 T cells via the PKCθ/αPIX pathway. The PLCγ tyrosine phosphorylation was required to activate first PKCθ, and then αPIX and Rac1/PYGM. The results presented here delineate a novel signalling pathway ranking equally in importance to the three major pathways controlled by the IL-2-R, i.e. PI3K, Ras/MAPK and JAK/STAT pathways. The overall evidence strongly indicates that the central biological role of the novel IL-2-R/Lck/PLCγ/PKCθ/αPIX/Rac1/PYGM signalling pathway is directly related to the control of fundamental cellular processes such as T cell migration and proliferation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    Science.gov (United States)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P glycogen content ( P glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  9. Gestational trophoblastic neoplasia: A 6 year retrospective study

    Directory of Open Access Journals (Sweden)

    Sushruta Shrivastava

    2014-01-01

    Full Text Available Aims and Objectives: To study the clinical presentations of gestational trophoblastic neoplasia and its response to chemotherapy. Materials and Methods: This is a retrospective study of 28 women of gestational trophoblastic neoplasia evaluated over a period of 6 years from January 2004 to December 2009. Patients were evaluated on the basis of their age, number of deliveries, history of abortion or molar pregnancy, and the treatment received. All patients were scored on the basis of WHO scoring system. Patients with low risk (score /=7 received multiple agent chemotherapy with EMACO regimen. After completion of chemotherapy patients were followed for a minimum of 2 years. The response to treatment was evaluated during follow-up by clinical examination, beta hCG levels and imaging as and when required. Results: Out of 28 women only 27 could be evaluated, because 1 patient was lost to follow-up. Out of 27 patients, 18 patients (66.67% achieved complete remission with the first-line chemotherapy and additional 25.92% (7/27 achieved complete remission with second line chemotherapy resulting in complete remission of 92.5% (25/27. Conclusion: Gestational trophoblastic neoplasia is curable if patient is properly evaluated and scored. It shows good response to chemotherapy.

  10. Clinical and radiological correlations in patients with gestational trophoblastic disease

    Directory of Open Access Journals (Sweden)

    Lana de Lourdes Aguiar Lima

    Full Text Available Abstract Gestational trophoblastic disease is an abnormality of pregnancy that encompasses a group of diseases that differ from each other in their propensity for regression, invasion, metastasis, and recurrence. In the past, it was common for patients with molar pregnancy to present with marked symptoms: copious bleeding; theca lutein cysts; uterus larger than appropriate for gestational age; early preeclampsia; hyperemesis gravidarum; and hyperthyroidism. Currently, with early diagnosis made by ultrasound, most patients are diagnosed while the disease is still in the asymptomatic phase. In cases of progression to trophoblastic neoplasia, staging-typically with Doppler flow studies of the pelvis and chest X-ray, although occasionally with computed tomography or magnetic resonance imaging-is critical to the choice of an appropriate antineoplastic therapy regimen. Because it is an unusual and serious disease that affects women of reproductive age, as well as because its appropriate treatment results in high cure rates, it is crucial that radiologists be familiar with gestational trophoblastic disease, in order to facilitate its early diagnosis and to ensure appropriate follow-up imaging.

  11. Clinical and radiological correlations in patients with gestational trophoblastic disease

    International Nuclear Information System (INIS)

    Lima, Lana de Lourdes Aguiar; Parente, Raphael Camara Medeiros; Amim Junior, Joffre; Rezende Filho, Jorge Fonte de; Montenegro, Carlos Antonio Barbosa; Braga, Antonio; Maesta, Izildinha

    2016-01-01

    Gestational trophoblastic disease is an abnormality of pregnancy that encompasses a group of diseases that differ from each other in their propensity for regression, invasion, metastasis, and recurrence. In the past, it was common for patients with molar pregnancy to present with marked symptoms: copious bleeding; theca lutein cysts; uterus larger than appropriate for gestational age; early preeclampsia; hyperemesis gravidarum; and hyperthyroidism. Currently, with early diagnosis made by ultrasound, most patients are diagnosed while the disease is still in the asymptomatic phase. In cases of progression to trophoblastic neoplasia, staging-typically with Doppler flow studies of the pelvis and chest X-ray, although occasionally with computed tomography or magnetic resonance imaging-is critical to the choice of an appropriate antineoplastic therapy regimen. Because it is an unusual and serious disease that affects women of reproductive age, as well as because its appropriate treatment results in high cure rates, it is crucial that radiologists be familiar with gestational trophoblastic disease, in order to facilitate its early diagnosis and to ensure appropriate follow-up imaging. (author)

  12. Clinical and radiological correlations in patients with gestational trophoblastic disease

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lana de Lourdes Aguiar; Parente, Raphael Camara Medeiros; Amim Junior, Joffre; Rezende Filho, Jorge Fonte de; Montenegro, Carlos Antonio Barbosa; Braga, Antonio, E-mail: lanalima@hotmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Maesta, Izildinha [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina

    2016-07-15

    Gestational trophoblastic disease is an abnormality of pregnancy that encompasses a group of diseases that differ from each other in their propensity for regression, invasion, metastasis, and recurrence. In the past, it was common for patients with molar pregnancy to present with marked symptoms: copious bleeding; theca lutein cysts; uterus larger than appropriate for gestational age; early preeclampsia; hyperemesis gravidarum; and hyperthyroidism. Currently, with early diagnosis made by ultrasound, most patients are diagnosed while the disease is still in the asymptomatic phase. In cases of progression to trophoblastic neoplasia, staging-typically with Doppler flow studies of the pelvis and chest X-ray, although occasionally with computed tomography or magnetic resonance imaging-is critical to the choice of an appropriate antineoplastic therapy regimen. Because it is an unusual and serious disease that affects women of reproductive age, as well as because its appropriate treatment results in high cure rates, it is crucial that radiologists be familiar with gestational trophoblastic disease, in order to facilitate its early diagnosis and to ensure appropriate follow-up imaging. (author)

  13. P27Kip1, regulated by glycogen synthase kinase-3β, results in HMBA-induced differentiation of human gastric cancer cells

    International Nuclear Information System (INIS)

    Wei, Min; Gu, Qinlong; Wang, Zhiwei; Yao, Hongliang; Yang, Zhongyin; Zhang, Qing; Liu, Bingya; Yu, Yingyan; Su, Liping; Zhu, Zhenggang

    2011-01-01

    Gastric cancer is the second most common cause of global cancer-related mortality. Although dedifferentiation predicts poor prognosis in gastric cancer, the molecular mechanism underlying dedifferentiation, which could provide fundamental insights into tumor development and progression, has yet to be elucidated. Furthermore, the molecular mechanism underlying the effects of hexamethylene bisacetamide (HMBA), a recently discovered differentiation inducer, requires investigation and there are no reported studies concerning the effect of HMBA on gastric cancer. Based on the results of FACS analysis, the levels of proteins involved in the cell cycle or apoptosis were determined using western blotting after single treatments and sequential combinations of HMBA and LiCl. GSK-3β and proton pump were investigated by western blotting after up-regulating Akt expression by Ad-Akt infection. To investigate the effects of HMBA on protein localization and the activities of GSK-3β, CDK2 and CDK4, kinase assays, immunoprecipitation and western blotting were performed. In addition, northern blotting and RNase protection assays were carried out to determine the functional concentration of HMBA. HMBA increased p27Kip1 expression and induced cell cycle arrest associated with gastric epithelial cell differentiation. In addition, treating gastric-derived cells with HMBA induced G0/G1 arrest and up-regulation of the proton pump, a marker of gastric cancer differentiation. Moreover, treatment with HMBA increased the expression and activity of GSK-3β in the nucleus but not the cytosol. HMBA decreased CDK2 activity and induced p27Kip1 expression, which could be rescued by inhibition of GSK-3β. Furthermore, HMBA increased p27Kip1 binding to CDK2, and this was abolished by GSK-3β inhibition. The results presented herein suggest that GSK-3β functions by regulating p27Kip1 assembly with CDK2, thereby playing a critical role in G0/G1 arrest associated with HMBA-induced gastric epithelial

  14. Let-7i-Induced Atg4B Suppression Is Essential for Autophagy of Placental Trophoblast in Preeclampsia.

    Science.gov (United States)

    Xu, Yinyan; Huang, Xinyan; Xie, Juan; Chen, Yanni; Fu, Jing; Wang, Li

    2017-09-01

    Autophagy, identified as type II programmed cell death, has already been known to be involved in the pathophysiology of preeclampsia (PE), which is a gestational disease with high morbidity. The present study aims to investigate the functional role of let-7i, a miRNA, in trophoblastic autophagy. Placental tissue used in this study was collected from patients with severe preeclampsia (SPE) or normal pregnant women. A decreased level of let-7i was found in placenta of SPE. In addition, autophagic vacuoles were observed in SPE and the expression of microtubule associated protein 1 light chain 3 (LC3) II/I was elevated. In vitro, let-7i mimics suppressed the autophagic activities in human HTR-8/SVneo trophoblast cell line (HTR-8) and human placental choriocarcinoma cell line JEG-3, whereas let-7i inhibitor enhanced the activities. As a potential target of let-7i, autophagy-related 4B cysteine peptidase (Atg4B) had an increased expression level in SPE. As expected, the increased expression of Atg4B was negatively regulated by let-7i using dual luciferase reporter assay. Furthermore, these trophoblast-like cells transfected with the let-7i mimic or inhibitors resulted in a significant change of Atg4B in both mRNA and protein level. More importantly, Atg4B overexpression could partly reverse let-7i mimic-reduced LC3II/I levels; whereas Atg4B silencing partly attenuated let-7i inhibitor-induced the level of LC3II/I expression. Taken together, these findings suggest that let-7i is able to regulate autophagic activity via regulating Atg4B expression, which might contribute to the pathogenesis of PE. J. Cell. Physiol. 232: 2581-2589, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Inhibition of autophagic proteolysis by inhibitors of phosphoinositide 3-kinase can interfere with the regulation of glycogen synthesis in isolated hepatocytes

    NARCIS (Netherlands)

    Dubbelhuis, Peter F.; van Sluijters, Daphne A.; Blommaart, Edward F. C.; Gustafson, Lori A.; van Woerkom, George M.; Herling, Andreas W.; Burger, Hans-Joerg; Meijer, Alfred J.

    2002-01-01

    Amino acid-induced cell swelling stimulates conversion of glucose into glycogen in isolated hepatocytes. Activation of glycogen synthase (GS) phosphatase, caused by the fall in intracellular chloride accompanying regulatory volume decrease, and activation of phosphoinositide 3-kinase (PI 3-kinase),

  16. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease.

    Science.gov (United States)

    Maqbool, Mudasir; Mobashir, Mohammad; Hoda, Nasimul

    2016-01-01

    Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Astrocyte glycogen as an emergency fuel under conditions of glucose deprivation or intense neural activity.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2015-02-01

    Energy metabolism in the brain is a complex process that is incompletely understood. Although glucose is agreed as the main energy support of the brain, the role of glucose is not clear, which has led to controversies that can be summarized as follows: the fate of glucose, once it enters the brain is unclear. It is not known the form in which glucose enters the cells (neurons and glia) within the brain, nor the degree of metabolic shuttling of glucose derived metabolites between cells, with a key limitation in our knowledge being the extent of oxidative metabolism, and how increased tissue activity alters this. Glycogen is present within the brain and is derived from glucose. Glycogen is stored in astrocytes and acts to provide short-term delivery of substrates to neural elements, although it may also contribute an important component to astrocyte metabolism. The roles played by glycogen awaits further study, but to date its most important role is in supporting neural elements during increased firing activity, where signaling molecules, proposed to be elevated interstitial K(+), indicative of elevated neural firing rates, activate glycogen phosphorylase leading to increased production of glycogen derived substrate.

  18. Comparative studies of placentation and immunology in non-human primates suggest a scenario for the evolution of deep trophoblast invasion and an explanation for human pregnancy disorders.

    Science.gov (United States)

    Carter, Anthony M

    2011-04-01

    Deep trophoblast invasion in the placental bed has been considered the hallmark of human pregnancy. It occurs by two routes, interstitial and endovascular, and results in transformation of the walls of the spiral arteries as they traverse the decidua and the inner third of the myometrium. Disturbances in this process are associated with reproductive disorders such preeclampsia. In contrast, trophoblast invasion in Old World monkeys occurs only by the endovascular route and seldom reaches the myometrium. Recently, it was shown that this pattern is maintained in gibbons, but that the human arrangement also occurs in chimpanzee and gorilla. There is an interesting parallel with results from placental immunology regarding the evolution of the major histocompatability complex class I antigen HLA-C and its cognate receptors. HLA-C is not present in Old World monkeys or gibbons. It emerged in the orangutan and became polymorphic in the lineage leading to gorilla, bonobo, chimpanzee, and human. Interaction between HLA-C1 and HLA-C2 on the surface of trophoblast and killer immunoglobulin-like receptors (KIRs) expressed by uterine natural killer cells are important regulators of trophoblast invasion. Evolution of this system in great apes may have been one prerequisite for deep trophoblast invasion but seems to have come at a price. The evidence now suggests that certain combinations of maternal genotype for KIRs and fetal genotype for HLA-C imply an increased risk of preeclampsia, fetal growth restriction, and recurrent abortion. The fetal genotype is in part derived from the father providing an explanation for the paternal contribution to reproductive disorders.

  19. Extravillous trophoblast invasion in placenta accreta is associated with differential local expression of angiogenic and growth factors: a cross-sectional study.

    Science.gov (United States)

    Duzyj, C M; Buhimschi, I A; Laky, C A; Cozzini, G; Zhao, G; Wehrum, M; Buhimschi, C S

    2018-02-22

    Placenta accreta is clinically associated with maternal uterine scar. Our objective was to investigate the biochemical contribution of maternal scarring to hyperinvasive trophoblast. We hypothesised that trophoblast over-invasion in placenta accreta is associated with aberrant invasion-site signalling of growth and angiogenic factors known to be involved in wound healing and promotion of cell invasion through the epithelial to mesenchymal cellular programme. Cross-sectional series. Yale-New Haven Hospital. Women with histologically confirmed normal and abnormal placentation. Placental invasion site tissue sections were immunostained for endoglin and other angiogenic regulators, and transforming growth factor β (TGFβ) proteins. Maternal serum endoglin, and the vascular endothelial growth factor (VEGF) mediators hypoxia-inducible factor-1α (HIF1α) and endostatin, were assessed using immunoassay. Differences in median H-score by immunostaining and in mean serum level by immunoassay. By immunostaining, placenta accreta samples demonstrated intervillous endoglin shedding and increased trophoblast expression of its cleavage protein matrix metalloproteinase-14. Absent decidual HIF1α and endostatin were observed in areas of VEGF upregulation. TGFβ1 was present in myocytes but not in collagen bundles into which accreta trophoblast invaded. Maternal serum endoglin decreased in praevia and accreta when corrected for gestational age. Angiogenic and growth factors at the placental invasion site are altered in accreta, both by decidual absence and within myometrial scar. We postulate this promotes the invasive phenotype of placenta accreta by activating hyperinvasive trophoblast and by dysregulating placental vascular remodelling. Yale Department of Obstetrics, Gynecology and Reproductive Sciences funds. Placenta accreta histology shows dysregulation of angiogenic and growth factors. © 2018 Royal College of Obstetricians and Gynaecologists.

  20. Trehalose, glycogen and ethanol metabolism in the gcr1 mutant of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Hamamci, H.

    2003-01-01

    Since Gcr1p is pivotal in controlling the transcription of glycolytic enzymes and trehalose metabolism seems to be one of the control points of glycolysis, we examined trehalose and glycogen synthesis in response to 2 % glucose pulse during batch growth in gcr1 (glucose regulation-1) mutant lacking...... fully functional glycolytic pathway and in the wild-type strain. An increase in both trehalose and glycogen stores was observed 1 and 2 h after the pulse followed by a steady decrease in both the wild-type and the gcr1 mutant. The accumulation was faster while the following degradation was slower in gcr......1 cells compared to wild-type ones. Although there was no distinct glucose consumption in the mutant cells it seemed that the glucose repression mechanism is similar in gcr1 mutant and in wild-type strain at least with respect to trehalose and glycogen metabolism....

  1. Exercise in muscle glycogen storage diseases.

    Science.gov (United States)

    Preisler, Nicolai; Haller, Ronald G; Vissing, John

    2015-05-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

  2. Efficacy of NETDC (New England Trophoblastic Disease Center prognostic index score to predict gestational trophoblastic tumor from hydatidiform mole

    Directory of Open Access Journals (Sweden)

    Khrismawan Khrismawan

    2004-03-01

    Full Text Available A prospective longitudinal analytic study assessing the efficacy of NETDC (New England Trophoblastic Disease Center prognostic index score in predicting malignancy after hydatidiform mole had been performed. Of the parameter evaluated; age of patients, type of hydatidiform mole, uterine enlargement, serum hCG level, lutein cyst, and presence of complicating factors were significant risk factors for malignancy after hydatidiform mole were evacuated (p<0.032. The study were done on 50 women diagnosed with hydatidiform mole with 1 year observation (January 2001-December 2002 at the Department of Obstetrics and Gynecology, Mohammad Hoesin Hospital, Palembang. The results showed that the NETDC prognostic index score predicted malignancy in 50% of high risk group and 10% in low risk group (p<0.05. This showed a higher number than that found by the WHO (19%-30%. The risk for incidence of  malignancy after hydatidiform mole in the high risk group is 9.0 times higher compared to that of the low risk group (CI: 1.769-45.786. (Med J Indones 2004; 13: 40-6 Keywords: New England Trophoblastic Disease Center (NETDC, gestational trophoblastic tumor, hydatidiform mole, high and low risk

  3. Quality of life of gestational trophoblastic neoplasia survivors: a study of patients at the Philippine General Hospital trophoblastic disease section.

    Science.gov (United States)

    Cagayan, M Stephanie Fay S; Llarena, Raquel T

    2010-01-01

    To evaluate the quality of life (QOL) of patients who were diagnosed with gestational trophoblastic neoplasia (GTN) at the Philippine General Hospital Trophoblastic Disease Section and who were in remission at the time of this study. A cross-sectional descriptive study designed to measure the QOL of all patients diagnosed as having GTN in remission and following up at the Philippine General Hospital Trophoblastic Disease Outpatient Clinic from May-August 2008 (N = 46). This study used the short form 12-question (SF-12) survey forms to evaluate the QOL of patients diagnosed with GTN. Scores from the SF-12 were analyzed using Pearson's correlation. Statistical significance was assumed for p values educational level and physical functioning. A negative correlation was found between the stage of GTN and patients' general health. In conclusion, the survivors' age, educational level and type of treatment had impact on the QOL among GTN survivors in terms of physical functioning. No relationship was established between the demographic variables and mental status. SF-12 appears to be a reliable instrument, suggesting its potential in measuring health status in GTN survivors. Age, educational attainment and type of treatment were shown to have an impact on the QOL of the surviving GTN patients.

  4. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    Directory of Open Access Journals (Sweden)

    Marin de Mas Igor

    2011-10-01

    Full Text Available Abstract Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate. The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose

  5. The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E-cadherin.

    Science.gov (United States)

    Duzyj, C M; Buhimschi, I A; Motawea, H; Laky, C A; Cozzini, G; Zhao, G; Funai, E F; Buhimschi, C S

    2015-06-01

    Epithelial-to-mesenchymal transition (EMT) is a process of molecular and phenotypic epithelial cell alteration promoting invasiveness. Loss of E-cadherin (E-CAD), a transmembrane protein involved in cell adhesion, is a marker of EMT. Proteolysis into N- and C-terminus fragments by ADAM10 and presenilin-1 (PSEN-1) generates soluble (sE-CAD) and transcriptionally active forms. We studied the protein expression patterns of E-CAD in the serum and placenta of women with histologically-confirmed over-invasive placentation. The patterns of expression and levels of sE-CAD were analyzed by Western blot, immunoassay, and immunoprecipitation. Tissue immunostaining for E-CAD, cytokeratin-7 (epithelial marker), vimentin (mesenchymal marker), ADAM10, PSEN-1 and β-catenin expression were investigated in parallel. N-terminus cleaved 80 kDa sE-CAD fragments were present in serum of pregnant women with gestational age regulation of the circulatory levels. Women with advanced trophoblast invasion did not display circulatory levels of sE-CAD different from those of women with normal placentation. Histologically, extravillous trophoblasts (EVT) closer to the placental-myometrial interface demonstrated less E-CAD staining than those found deeper in the myometrium. These cells expressed both vimentin and cytokeratin, an additional feature of EMT. EVT of placentas with advanced invasion displayed intracellular E-CAD C-terminus immunoreactivity predominating over that of the extracellular N-terminus, a pattern consistent with preferential PSEN-1 processing. Local processing of E-CAD may be an important molecular mechanism controlling the invasive phenotype of accreta EVT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of a canine model of glycogen storage disease type IIIa

    Directory of Open Access Journals (Sweden)

    Haiqing Yi

    2012-11-01

    Glycogen storage disease type IIIa (GSD IIIa is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR. The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT, aspartate transaminase (AST and alkaline phosphatase (ALP activities; serum creatine phosphokinase (CPK activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.

  7. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.

    Science.gov (United States)

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-10-15

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge. © 2014 The Authors. The Journal of Physiology © 2014

  8. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo.

    Science.gov (United States)

    Clough, Bret H; Zeitouni, Suzanne; Krause, Ulf; Chaput, Christopher D; Cross, Lauren M; Gaharwar, Akhilesh K; Gregory, Carl A

    2018-04-01

    Non-union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point-of-care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow-resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1-2 hours) exposure of osteoprogenitors to the GSK3β-inhibitor (2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO) at a concentration of 800 nM. Very-rapid-exposure-to-BIO (VRE-BIO) on either hMSCs or whole hBM resulted in the long-term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE-BIO treated hBM was tested in a rat spinal fusion model, VRE-BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE-BIO procedure may represent a rapid, safe, and point-of-care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. Stem Cells Translational Medicine 2018;7:342-353. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  10. Exercise in muscle glycogen storage diseases

    DEFF Research Database (Denmark)

    Preisler, Nicolai Rasmus; Haller, Ronald G; Vissing, John

    2015-01-01

    exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies...... that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.......Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase...

  11. Elsevier Trophoblast Research Award lecture: The multifaceted role of Nodal signaling during mammalian reproduction.

    Science.gov (United States)

    Park, C B; Dufort, D

    2011-03-01

    Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Glycogen Synthase Kinase 3α Is the Main Isoform That Regulates the Transcription Factors Nuclear Factor-Kappa B and cAMP Response Element Binding in Bovine Endothelial Cells Infected with Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Octavio Silva-García

    2018-01-01

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutive enzyme implicated in the regulation of cytokine expression and the inflammatory response during bacterial infections. Mammals have two GSK3 isoforms named GSK3α and GSK3β that plays different but often overlapping functions. Although the role of GSK3β in cytokine regulation during the inflammatory response caused by bacteria is well described, GSK3α has not been found to participate in this process. Therefore, we tested if GSK3α may act as a regulatory isoform in the cytokine expression by bovine endothelial cells infected with Staphylococcus aureus because this bacterium is one of the major pathogens that cause tissue damage associated with inflammatory dysfunction. Interestingly, although both isoforms were phosphorylated–inactivated, we consistently observed a higher phosphorylation of GSK3α at Ser21 than that of GSK3β at Ser9 after bacterial challenge. During a temporal course of infection, we characterized a molecular switch from pro-inflammatory cytokine expression (IL-8, promoted by nuclear factor-kappa B (NF-κB, at an early stage (2 h to an anti-inflammatory cytokine expression (IL-10, promoted by cAMP response element binding (CREB, at a later stage (6 h. We observed an indirect effect of GSK3α activity on NF-κB activation that resulted in a low phosphorylation of CREB at Ser133, a decreased interaction between CREB and the co-activator CREB-binding protein (CBP, and a lower expression level of IL-10. Gene silencing of GSK3α and GSK3β with siRNA indicated that GSK3α knockout promoted the interaction between CREB and CBP that, in turn, increased the expression of IL-10, reduced the interaction of NF-κB with CBP, and reduced the expression of IL-8. These results indicate that GSK3α functions as the primary isoform that regulates the expression of IL-10 in endothelial cells infected with S. aureus.

  13. Feasibility of central co-ordinated EMA/CO for gestational trophoblastic disease in the Netherlands

    NARCIS (Netherlands)

    van der Houwen, Clasien; Rietbroek, Ron C.; Lok, Christianne A. R.; ten Kate-Booij, Marianne J.; Lammes, Frits B.; Ansink, Anca C.

    2004-01-01

    In the Netherlands, high risk gestational trophoblastic disease (GTD) patients are treated in different referral hospitals with a national working party on trophoblastic tumours having a co-ordinating function. Our purpose was to evaluate whether this policy is a satisfactory alternative to complete

  14. No effect of glycogen level on glycogen metabolism during high intensity exercise

    DEFF Research Database (Denmark)

    Vandenberghe, Katleen; Hespel, P.; Eynde, Bart Vanden

    1995-01-01

    , either for 1 min 45 s (protocol 1; N = 18) or to exhaustion (protocol 2; N = 14). The exercise tests were preceded by either 5 d on a controlled normal (N) diet, or by 2 d of glycogen-depleting exercise accompanied by the normal diet followed by 3 d on a carbohydrate-rich (CHR) diet. In protocol 1......This study examined the effect of glycogen supercompensation on glycogen breakdown, muscle and blood lactate accumulation, blood-pH, and performance during short-term high-intensity exercise. Young healthy volunteers performed two supramaximal (125% of VO2max) exercise tests on a bicycle ergometer...

  15. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    Science.gov (United States)

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy

  16. Glycogen metabolism in aerobic mixed cultures

    DEFF Research Database (Denmark)

    Dircks, Klaus; Beun, J.J.; van Loosdrecht, M.C.M.

    2001-01-01

    In this study, the metabolism of glycogen storage and consumption in mixed cultures under aerobic conditions is described. The experimental results are used to calibrate a metabolic model, which as sole stoichiometric variables has the efficiency of oxidative phosphorylation (delta) and maintenance...... of glycogen and subsequent growth occur without significant loss of energy, as compared with direct growth on glucose. For kinetic modeling, Monod kinetics is used most commonly in activated sludge models to describe the rate of microbial transformation. Monod kinetics, however, does not provide a good...

  17. Nardostachys Jatamansi root extract protects of radiation induced glycogen depletion in Albino Wistar rats

    International Nuclear Information System (INIS)

    Damodara Gowda, K.M.; Krishna, A.P.; Shetty, Lathika; Suchetha Shetty, N.; Sanjeev, Ganesh

    2013-01-01

    Exposure to ionizing radiation cause variety of pathological processes in irradiated cells. The killing action of ionizing radiation is mainly mediated through the free radicals generated from the radiolysis of cellular water. In the present study, protective effects of Nardostachys Jatamansi root extract (NJE) on radiation induced depletion of glycogen in rats exposed to 3 Gy whole body electron beam irradiation (EBR) was investigated. EBR was performed at Microtron centre, Mangalore University. Treatment of rats with NJE at a dosage of 100, 200 and 400 mg/kg bw respectively once daily for 15 days before, after and both before and after irradiation was done. The liver, kidney and muscle was separated and used for the estimation of total glycogen content using standard procedures and also for the histochemical localization of glycogen by PAS staining method. The data was analyzed by paired t test and Kruskal Wallis test. P<0.05 was the level of significance. The irradiated rats exhibited significant decline (p=0.000) in the level of total glycogen content in the tissues of liver, kidney and muscle whereas, a nonsignificant variation was recorded in rats treated with NJE. This study indicated that treatment with NJE both before and after irradiation for 15 consecutive days provided significant protection against irradiation induced depletion of glycogen. (author)

  18. Mechanism of activation of liver glycogen synthase by swelling

    NARCIS (Netherlands)

    Meijer, A. J.; Baquet, A.; Gustafson, L.; van Woerkom, G. M.; Hue, L.

    1992-01-01

    The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High

  19. The role of astrocytic glycogen in supporting the energetics of neuronal activity.

    Science.gov (United States)

    Dinuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2012-11-01

    Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that grounds a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism.

  20. Radiation effects on testes. XI. Studies on glycogen and its metabolizing enzymes following radiation-induced atrophy

    International Nuclear Information System (INIS)

    Gupta, G.S.; Bawa, S.R.

    1977-01-01

    Effect of radiation on enzymes of carbohydrate metabolism has been studied. It is observed that hexokinase of testis is highly sensitive to radiation damage. Reduced hexokinase activity seems to be related to those parts of the testis (spermatocytes and spermatids) which depend upon glucose for their functioning. Radiation-induced atrophic testis is rich in glycogen content. The observations on the inhibition of gluocose-6-phosphatase and phosphorylase may explain the higher levels of the polysaccharide although a possibility of enhanced glycogenesis due to the activation of glycogen synthetase has also been suggested. The presence of glucose-6-phosphate isomerase and glycogen in atrophied testis in 11-month-treated rats indicate the higher glycolytic activity with hyperplastic testicular interstitium. The results suggest that the accumulated glycogen is acting as a reserve substrate in nongerminal cells

  1. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria.

    Science.gov (United States)

    Sakurai, Toshihiro; Aoki, Motohide; Ju, Xiaohui; Ueda, Tatsuya; Nakamura, Yasunori; Fujiwara, Shoko; Umemura, Tomonari; Tsuzuki, Mikio; Minoda, Ayumi

    2016-01-01

    The unicellular red alga Galdieria sulphuraria grows efficiently and produces a large amount of biomass in acidic conditions at high temperatures. It has great potential to produce biofuels and other beneficial compounds without becoming contaminated with other organisms. In G. sulphuraria, biomass measurements and glycogen and lipid analyses demonstrated that the amounts and compositions of glycogen and lipids differed when cells were grown under autotrophic, mixotrophic, and heterotrophic conditions. Maximum biomass production was obtained in the mixotrophic culture. High amounts of glycogen were obtained in the mixotrophic cultures, while the amounts of neutral lipids were similar between mixotrophic and heterotrophic cultures. The amounts of neutral lipids were highest in red algae, including thermophiles. Glycogen structure and fatty acids compositions largely depended on the growth conditions. Copyright © 2015. Published by Elsevier Ltd.

  2. Energy utilization and gluconeogenesis in isolated leech segmental ganglia: Quantitative studies on the control and cellular localization of endogenous glycogen.

    Science.gov (United States)

    Pennington, A J; Pentreath, V W

    1988-01-01

    The isolated segmental ganglia of the horse leech Haemopis sanguisuga were used as a model system to study the utilization and control of glycogen stores within nervous tissue. The glycogen in the ganglia was extracted and assayed fluorimentrically and its cellular localization and turnover studied by autoradiography in conjunction with [(3)H]glucose. We measured the glycogen after various periods of electrical stimulation and after incubation with K(+), Ca(2+), ouabain and glucose. The results for each experimental ganglion were compared to a paired control ganglion and the results analysed by paired t-tests. Electrical stimulation caused sequential changes in glycogen levels: a reduction of up to 67% (5-10 min); followed by an increase of up to 124% (between 15-50 min); followed by a reduction of up to 63% (60-90 min). Values were calculated for glucose utilization (e.g. 0.53 ?mol glucose/gm wet weight/min after 90 min) and estimates derived for glucose consumption per action potential per neuron (e.g. 0.12 fmol at 90 min). Glucose (1.5-10 mM) increased the amount of glycogen (1.5 mM by 30% at 60 min) and attenuated the effects of electrical stimulation. Ouabain (1 mM) blocked the effect of 5 min electrical stimulation. Nine millimolar K(+) increased glycogen by 27% after 10 min and decreased glycogen by 34% after 60 min; 3 mM Ca(2+) had no effect after 10 or 20 min and decreased glycogen by 29% after 60 min. Other concentrations of K(+) and Ca(2+) reduced glycogen after 60 min. Autoradiographic analysis demonstrated that the effects of elevated K(+) were principally within the glial cells. We conclude that (i) the glycogen stores in the glial cells of leech segmental ganglia provide an endogenous energy source which can support sustained neuronal activity, (ii) both electrical stimulation and elevated K(+) can induce gluconeogenesis within the ganglia, (iii) that electrical activation of neurons produces changes in the glycogen in the glial cells which are

  3. Glycogen Shunt Activity and Glycolytic Supercompensation in Astrocytes May Be Distinctly Mediated via the Muscle Form of Glycogen Phosphorylase

    DEFF Research Database (Denmark)

    Jakobsen, Emil; Bak, Lasse K; Walls, Anne B

    2017-01-01

    Glycogen is the main storage form of glucose in the brain. In contrast with previous beliefs, brain glycogen has recently been shown to play important roles in several brain functions. A fraction of metabolized glucose molecules are being shunted through glycogen before reentering the glycolytic ...

  4. The Gestational Trophoblastic Diseases: A Ten Year Retrospective Study

    Directory of Open Access Journals (Sweden)

    Razieh Mohammadjafari

    2010-01-01

    Full Text Available Background: Gestational trophoblastic disease (GTD defines a heterogenenous group ofinterrelated lesions that arise from the trophoblastic epithelium of the placenta. There are severalhistologically distinct types of GTD: hydatiform mole (complete or partial, persistant/invasivegestational trophoblastic neoplasia (GTN, choriocarcinoma and placenta site trophoblastictumors. The aim of this study was to determine the frequency and risk factors of GTD amongwomen admitted to Imam Khomeini Hospital in Ahvaz, Iran.Materials and Methods: This was a cross-sectional study conducted at Imam KhomeiniHospital in Ahvaz, Iran. All hospital records related to GTD (132 from 1996 until 2006 werereviewed. Demographic and histo-pathologic characteristics were extracted. Chi-square andFisher-exact tests were used to analyze all variables. P ≤ 0.05 was considered statisticallysignificant. SPSS, version 11 was used for statistical analysis.Results: The mean age of patients was 27.6 years. Most patients who presented with GTDwere of ages 18-35 years (71.3%. There was no relationship between age and hydatiformmole during the reproductive years. There were 28 (18.9% patients over the age 40, of which18 (15.90% of these had a complete hydatiform mole. Within this group, 9 (6.8% changedto a persistent mole. There was a significant relationship between age over 40 and completemole (p<0.02. The percentage of patients with blood groups A and O was the same (37.9%.There was a significant relationship between blood groups (O+ and A+ and complete mole(p<0.05.Conclusion: The most common age range for hydatiform mole was 18-35 years. Women overthe age of 40 had a more complete hydatiform mole, which is similar to the other countries.Age and blood group are two risk factors for hydatiform mole.

  5. Human parvovirus B19 antibodies induce altered membrane protein expression and apoptosis of BeWo trophoblasts.

    Science.gov (United States)

    Tzang, Bor-Show; Chiang, Szu-Yi; Chan, Hsu-Chin; Liu, Chung-Hsien; Hsu, Tsai-Ching

    2016-11-01

    Human parvovirus B19 (B19) is harmful during pregnancy since it can be vertically transmitted to the developing fetus. In addition, the anti‑B19 antibodies induced by B19 infection are believed to have a cytopathic role in B19 transmission; however, knowledge regarding the effects of anti‑B19 antibodies during pregnancy is limited. To investigate the possible roles of anti‑B19 antibodies during pregnancy, the present study examined the effects of anti‑B19‑VP1 unique region (VP1u), anti‑B19‑VP2 and anti‑B19‑nonstructural protein 1 (NS1) immunoglobulin G (IgG) antibodies on BeWo trophoblasts. Briefly, BeWo trophoblasts were incubated with purified IgG against B19‑VP1u, B19‑VP2 and B19‑NS1. Subsequently, the expression of surface proteins and apoptotic molecules were assessed in BeWo trophoblasts using flow cytometry, ELISA and western blotting. The expression levels of human leukocyte antigen (HLA)‑G were significantly increased on BeWo trophoblasts treated with rabbit anti‑B19‑VP1u IgG, and were unchanged in those treated with rabbit anti‑B19‑NS1 and anti‑B19‑VP2 IgG, as compared with the control group. Furthermore, the expression levels of globoside (P blood group antigen) and cluster of differentiation (CD)29 (β1 integrin) were significantly increased in BeWo trophoblasts treated with rabbit anti‑B19‑NS1 and anti‑B19‑VP2 IgG, whereas only CD29 was also significantly increased in cells treated with anti‑B19‑VP1u IgG. In addition, the number of cells at sub‑G1 phase; caspase‑3 activity; and the expression of intrinsic and extrinsic apoptotic molecules, including Fas‑associated death domain protein, activated caspase‑8, activated caspase‑3, B‑cell lymphoma 2‑associated X protein, cytochrome c, apoptotic peptidase activating factor 1 and activated caspase‑9, were significantly increased in BeWo trophoblasts treated with anti‑B19‑VP1u and anti‑B19‑NS1 IgG. In conclusion, the present

  6. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations.

    Science.gov (United States)

    Gormley, Matthew; Ona, Katherine; Kapidzic, Mirhan; Garrido-Gomez, Tamara; Zdravkovic, Tamara; Fisher, Susan J

    2017-08-01

    The maternal signs of preeclampsia, which include the new onset of high blood pressure, can occur because of faulty placentation. We theorized that transcriptomic analyses of trophoblast subpopulations in situ would lend new insights into the role of these cells in preeclampsia pathogenesis. Our goal was to enrich syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts from the placentas of severe preeclampsia cases. Total RNA was subjected to global transcriptional profiling to identify RNAs that were misexpressed compared with controls. This was a cross-sectional analysis of placentas from women who had been diagnosed with severe preeclampsia. Gestational age-matched controls were placentas from women who had a preterm birth with no signs of infection. Laser microdissection enabled enrichment of syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts. After RNA isolation, a microarray approach was used for global transcriptional profiling. Immunolocalization identified changes in messenger RNA expression that carried over to the protein level. Differential expression of non-protein-coding RNAs was confirmed by in situ hybridization. A 2-way analysis of variance of non-coding RNA expression identified particular classes that distinguished trophoblasts in cases vs controls. Cajal body foci were visualized by coilin immunolocalization. Comparison of the trophoblast subtype data within each group (severe preeclampsia or noninfected preterm birth) identified many highly differentially expressed genes. They included molecules that are known to be expressed by each subpopulation, which is evidence that the method worked. Genes that were expressed differentially between the 2 groups, in a cell-type-specific manner, encoded a combination of molecules that previous studies associated with severe preeclampsia and those that were not known to be dysregulated in this pregnancy complication. Gene ontology analysis of the

  7. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Determination of the glycogen content in cyanobacteria

    DEFF Research Database (Denmark)

    Porcellinis, Alice De; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-01-01

    of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover...

  9. Pregnancies in glycogen storage disease type Ia

    NARCIS (Netherlands)

    Martens, Danielle H. J.; Rake, Jan Peter; Schwarz, Martin; Ullrich, Kurt; Weinstein, David A.; Merkel, Martin; Sauer, Pieter J. J.; Smit, G. Peter A.

    OBJECTIVE: Reports on pregnancies in women with glycogen storage disease type Ia (GSD-Ia) are scarce. Because of improved life expectancy, pregnancy is becoming an important issue. We describe 15 pregnancies by focusing on dietary treatment, biochemical parameters, and GSD-Ia complications. STUDY

  10. Molecular Structure of Human-Liver Glycogen.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets.

  11. Can glycogen be measured by in vivo neutron activation analysis?

    International Nuclear Information System (INIS)

    Sutcliffe, J.F.; Smith, A.H.; King, R.F.G.H.; Smith, M.A.

    1992-01-01

    The object of this note is to examine the feasibility of measuring liver glycogen using in vivo neutron activation analysis. The authors present equations which allow the mass of glycogen to be expressed in terms of the masses of oxygen, hydrogen, carbon and nitrogen. Using the most precise, published measurements of these elements, the standard deviation in the estimate of liver glycogen was 34 g. The magnitude of this error precluded observing changes in liver glycogen which are normally in the range 16 g to 72 g. However, this technique might be useful in detecting transient high concentrations of liver glycogen.(UK)

  12. Glycogen with short average chain length enhances bacterial durability

    Science.gov (United States)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  13. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa.

    Science.gov (United States)

    Li, Xin-Hua; Gong, Qi-Ming; Ling, Yun; Huang, Chong; Yu, De-Min; Gu, Lei-Lei; Liao, Xiang-Wei; Zhang, Dong-Hua; Hu, Xi-Qi; Han, Yue; Kong, Xiao-Fei; Zhang, Xin-Xin

    2014-12-05

    We studied two patients from a nonconsanguineous family with life-long abnormal liver function, hepatomegaly and abnormal fatty acid profiles. Abnormal liver function, hypoglycemia and muscle weakness are observed in various genetic diseases, including medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and glycogen storage diseases. The proband showed increased free fatty acids, mainly C8 and C10, resembling fatty acid oxidation disorder. However, no mutation was found in ACADM and ACADL gene. Sequencing of theamylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) gene showed that both patients were compound heterozygotes for c.118C > T (p.Gln40X) and c.753_756 del CAGA (p.Asp251Glufsx29), whereas their parents were each heterozygous for one of these mutations. The AGL protein was undetectable in EBV-B cells from the two patients. Transcriptome analysis demonstrated a significant different pattern of gene expression in both of patients’ cells, including genes involving in the PPAR signaling pathway, fatty acid biosynthesis, lipid synthesis and visceral fat deposition and metabolic syndrome. This unique gene expression pattern is probably due to the absence of AGL, which potentially accounts for the observed clinical phenotypes of hyperlipidemia and hepatocyte steatosis in glycogen storage disease type IIIa.

  14. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    International Nuclear Information System (INIS)

    Ritchie, D.G.

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with [ 14 C]glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant [ 14 C]glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, [ 14 C]glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6

  15. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  16. The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise

    DEFF Research Database (Denmark)

    Aschenbach, W G; Suzuki, Y; Breeden, K

    2001-01-01

    In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase...... that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol....... Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction...

  17. Glycogen dynamics of crucian carp (Carassius carassius) in prolonged anoxia.

    Science.gov (United States)

    Vornanen, Matti; Haverinen, Jaakko

    2016-12-01

    Mobilization of glycogen stores was examined in the anoxic crucian carp (Carassius carassius Linnaeus). Winter-acclimatized fish were exposed to anoxia for 1, 3, or 6 weeks at 2 °C, and changes in the size of glycogen deposits were followed. After 1 week of anoxia, a major part of the glycogen stores was mobilized in liver (79.5 %) and heart (75.6 %), and large decreases occurred in gill (46.7 %) and muscle (45.1 %). Brain was an exception in that its glycogen content remained unchanged. The amount of glycogen degraded during the first anoxic week was sufficient for the anaerobic ethanol production for more than 6 weeks of anoxia. After 3 and 6 weeks of anoxia, there was little further degradation of glycogen in other tissues except the brain where the stores were reduced by 30.1 and 49.9 % after 3 and 6 weeks of anoxia, respectively. One week of normoxic recovery following the 6-week anoxia was associated with a complete replenishment of the brain glycogen and partial recovery of liver, heart, and gill glycogen stores. Notably, the resynthesis of glycogen occurred at the expense of the existing energy reserves of the body in fasting fish. These findings indicate that in crucian carp, glycogen stores are quickly mobilized after the onset of anoxia, with the exception of the brain whose glycogen stores may be saved for putative emergency situations.

  18. Patterns of glycogen turnover in liver characterized by computer modeling

    International Nuclear Information System (INIS)

    Youn, J.H.; Bergman, R.N.

    1987-01-01

    The authors used a computer model of liver glycogen turnover to reexamine the data of Devos and Hers, who reported the time course of accumulation in and loss from glycogen of label originating in [1- 14 C]galactose injected at different times after the start of refeeding of 40-h fasted mice or rats. In the present study computer representation of individual glycogen molecules was utilized to account for growth and degradation of glycogen according to specific hypothetical patterns. Using this model they could predict the accumulation and localization within glycogen of labeled glucose residues and compare the predictions with the previously published data. They considered three specific hypotheses of glycogen accumulation during refeeding: (1) simultaneous, (2) sequential, and (3) accelerating growth. Hypothetical patterns of glycogen degradation were (1) ordered and (2) random degradation. The pattern of glycogen synthesis consistent with experimental data was a steadily increasing number of growing glycogen molecules, whereas during degradation glycogen molecules are exposed to degrading enzymes randomly, rather than in a specific reverse order of synthesis. These patterns predict the existence of a specific mechanism for the steadily increasing seeding of new glycogen molecules during synthesis

  19. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Lobular and cellular patterns of early hepatic glycogen deposition in the rat as observed by light and electron microscopic radioautography after injection of 3H-galactose

    International Nuclear Information System (INIS)

    Michaels, J.E.; Hung, J.T.; Garfield, S.A.; Cardell, R.R. Jr.

    1984-01-01

    Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting 3 H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Two hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions

  1. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    Science.gov (United States)

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Processivity and Subcellular Localization of Glycogen Synthase Depend on a Non-catalytic High Affinity Glycogen-binding Site*

    OpenAIRE

    Díaz, Adelaida; Martínez-Pons, Carlos; Fita, Ignacio; Ferrer, Juan C.; Guinovart, Joan J.

    2011-01-01

    Glycogen synthase, a central enzyme in glucose metabolism, catalyzes the successive addition of α-1,4-linked glucose residues to the non-reducing end of a growing glycogen molecule. A non-catalytic glycogen-binding site, identified by x-ray crystallography on the surface of the glycogen synthase from the archaeon Pyrococcus abyssi, has been found to be functionally conserved in the eukaryotic enzymes. The disruption of this binding site in both the archaeal and the human muscle glycogen synth...

  3. Ordered synthesis and mobilization of glycogen in the perfused heart

    International Nuclear Information System (INIS)

    Brainard, J.R.; Hutson, J.Y.; Hoekenga, D.E.; Lenhoff, R.

    1989-01-01

    The molecular order of synthesis and mobilization of glycogen in the perfused heart was studied by 13 C NMR. By varying the glucose isotopomer ([1- 13 C]glucose or [2- 13 C]glucose) supplied to the heart, glycogen synthesized at different times during the perfusion was labeled at different carbon sites. Subsequently, the in situ mobilization of glycogen during ischemia was observed by detection of labeled lactate derived from glycolysis of the glucosyl monomers. When [1- 13 C]glucose was given initially in the perfusion and [2- 13 C]glucose was given second, [2- 13 C]lactate was detected first during ischemia and [3- 13 C]lactate second. This result, and the equivalent result when the glucose labels were given in the reverse order, demonstrates that glycogen synthesis and mobilization are ordered in the heart, where glycogen is found morphologically only as β particles. Previous studies of glycogen synthesis and mobilization in liver and adipocytes have suggested that the organization of β particles into α particles was partially responsible for ordered synthesis and mobilization. The observations reported here for cardiac glycogen suggest that another mechanism is responsible. In addition to examine the ordered synthesis and mobilization of cardiac glycogen, the authors have selectively monitored the NMR properties of 13 C-labeled glycogen synthesized early in the perfusion during further glycogen synthesis from a second, differently labeled substrate. During synthesis from the second labeled glucose monomer, the glycogen resonance from the first label decreased in integrated intensity and increased in line width. These results suggest either that there is significant isotopic exchange of glucosyl monomers in glycogen during net synthesis or that glucosyl residues incorporated into glycogen undergo motional restrictions as further glycogen synthesis occurs

  4. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin.

    Science.gov (United States)

    Lecuit, Marc; Nelson, D Michael; Smith, Steve D; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I; Cossart, Pascale

    2004-04-20

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA-E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand-receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously.

  5. Immunochemical identification of human trophoblast membrane antigens using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P J; Molloy, C M; Johnson, P M [Liverpool Univ. (UK). Dept. of Immunology

    1983-11-01

    Human trophoblast membrane antigens recognised by monoclonal antibodies (H310, H315, H316 and H317) have been identified using combinations of radioimmunoprecipitation, SDS-PAGE, electroblotting, chromatographic and ELISA-type techniques. H317 is known to identify heat-stable placental-type alkaline phosphatase and accordingly was shown to react with a protein of subunit Msub(r) of 68000. H310 and H316 both recognise an antigen with a subunit Msub(r) of 34000 under reducing conditions. In non-reducing conditions, the H310/316 antigen gave oligomers of a component of Msub(r) 62000. It is unknown whether this 62000 dalton component is a dimer of the 34000 dalton protein with either itself or a second protein chain of presumed Msub(r) around 28000. H315 recognises an antigen with subunit Msub(r) of 36000; in non-reducing conditions this component readily associates to oligomeric structures. The epitope recognised by H315 may be sensitive to SDS. The two proteins recognised by H310/316 and H315 have been termed the p34 and p36 trophoblast membrane proteins, respectively.

  6. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion.

    Science.gov (United States)

    Ball, E; Robson, S C; Ayis, S; Lyall, F; Bulmer, J N

    2006-03-01

    Invasion by extravillous trophoblast of uterine decidua and myometrium and the associated spiral artery 'transformation' are essential for the development of normal pregnancy. Small pilot studies of placental bed and basal plate tissues from miscarriages have suggested that impaired interstitial and endovascular trophoblast invasion may play a role in the pathogenesis of miscarriage. The hypothesis that early miscarriage is associated with reduced extravillous trophoblast invasion and spiral artery transformation was tested in a large series of placental bed biopsies containing decidua and myometrium and at least one spiral artery from early, karyotyped embryonic miscarriages (trophoblast (cytokeratin), myometrium and spiral artery medial smooth muscle (desmin), and endothelium (von Willebrand factor). Trophoblast invasion and individual features of spiral artery transformation were assessed histologically in spiral arteries of miscarriages (n = 176) and controls (n = 246) and analysed statistically using a logistic regression model. Trophoblast invasion of uterine tissues and spiral artery transformation did not differ between euploid and aneuploid early miscarriage and also did not differ significantly from normal pregnancy. These findings suggest that failed trophoblast invasion and spiral artery transformation do not have a pivotal role in the pathogenesis of early miscarriage.

  7. Gestational Trophoblastic Disease: A Multimodality Imaging Approach with Impact on Diagnosis and Management

    International Nuclear Information System (INIS)

    Dhanda, S.; Ramani, S.; Dhanda, S.; Ramani, S.; Thakur, M.

    2014-01-01

    Gestational trophoblastic disease is a condition of uncertain etiology, comprised of hydatiform mole (complete and partial), invasive mole, choriocarcinoma, and placental site trophoblastic tumor. It arises from abnormal proliferation of trophoblastic tissue. Early diagnosis of gestational trophoblastic disease and its potential complications is important for timely and successful management of the condition with preservation of fertility. Initial diagnosis is based on a multimodality approach: encompassing clinical features, serial quantitative β-hCG titers, and pelvic ultrasonography. Pelvic magnetic resonance imaging (MRI) is sometimes used as a problem-solving tool to assess the depth of myometrial invasion and extra uterine disease spread in equivocal and complicated cases. Chest radiography, body computed tomography (CT), and brain MRI have been recommended as investigative tools for overall disease staging. Angiography has a role in management of disease complications and metastases. Efficacy of PET (positron emission tomography) and PET/CT in the evaluation of recurrent or metastatic disease has not been adequately investigated yet. This paper discusses the imaging features of gestational trophoblastic disease on various imaging modalities and the role of different imaging techniques in the diagnosis and management of this entity. 1. Introduction Gestational trophoblastic disease (GTD) refers to an abnormal trophoblastic proliferation composed of a broad spectrum of lesions ranging from benign, albeit pre malignant hydatiform mole (complete and partial), through to the aggressive invasive mole, choriocarcinoma

  8. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); pglycogen (89.5±7.6 vs 152.6±8.1 mmol•kg(-1); pglycogen (90.0±5.0 vs 102.8±7.8 mmol•kg(-1); p=0...

  9. Differential effects of concomitant use of vitamins C and E on trophoblast apoptosis and autophagy between normoxia and hypoxia-reoxygenation.

    Directory of Open Access Journals (Sweden)

    Tai-Ho Hung

    2010-08-01

    Full Text Available Concomitant supplementation of vitamins C and E during pregnancy has been reportedly associated with low birth weight, the premature rupture of membranes and fetal loss or perinatal death in women at risk for preeclampsia; however, the cause is unknown. We surmise that hypoxia-reoxygenation (HR within the intervillous space due to abnormal placentation is the mechanism and hypothesize that concomitant administration of aforementioned vitamin antioxidants detrimentally affects trophoblast cells during HR.Using villous explants, concomitant administration of 50 microM of vitamins C and E was observed to reduce apoptotic and autophagic changes in the trophoblast layer at normoxia (8% oxygen but to cause more prominent apoptosis and autophagy during HR. Furthermore, increased levels of Bcl-2 and Bcl-xL in association with a decrease in the autophagy-related protein LC3-II were noted in cytotrophoblastic cells treated with vitamins C and E under standard culture conditions. In contrast, vitamin treatment decreased Bcl-2 and Bcl-xL as well as increased mitochondrial Bak and cytosolic LC3-II in cytotrophoblasts subjected to HR.Our results indicate that concomitant administration of vitamins C and E has differential effects on the changes of apoptosis, autophagy and the expression of Bcl-2 family of proteins in the trophoblasts between normoxia and HR. These changes may probably lead to the impairment of placental function and suboptimal growth of the fetus.

  10. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  11. Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review.

    Science.gov (United States)

    Loureiro, Laís Monteiro Rodrigues; Reis, Caio Eduardo Gonçalves; da Costa, Teresa Helena Macedo

    2018-01-18

    Coffee is one of the most consumed beverages in the world and it can improve insulin sensitivity, stimulating glucose uptake in skeletal muscle when adequate carbohydrate intake is observed. The aim of this review is to analyze the effects of coffee and coffee components on muscle glycogen metabolism. A literature search was conducted according to PRISMA and seven studies were included. They explored the effects of coffee components on various substances and signaling proteins. In one of the studies with humans, caffeine was shown to increase glucose levels, Ca 2+ /calmodulin-dependent protein kinase (CaMK) phosphorylation, glycogen resynthesis rates and glycogen accumulation after exercise. After intravenous injection of caffeine in rats, caffeine increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and glucose transport. In in vitro studies caffeine raised AMPK and ACC phosphorylation, increasing glucose transport activity and reducing energy status in rat muscle cells. Cafestol and caffeic acid increased insulin secretion in rat beta-cells, and glucose uptake into human muscle cells. Caffeic acid also increased AMPK and ACC phosphorylation, reducing the energy status and increasing glucose uptake in rat muscle cells. Chlorogenic acid did not show any positive or negative effect. The findings from the current review must be taken with caution due to the limited number of studies on the subject. In conclusion, various coffee components had a neutral or positive role in the metabolism of glucose and muscle glycogen, whilst no detrimental effect was described. Coffee beverages should be tested as an option for athlete's glycogen recovery.

  12. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission.

    Science.gov (United States)

    Sickmann, Helle M; Walls, Anne B; Schousboe, Arne; Bouman, Stephan D; Waagepetersen, Helle S

    2009-05-01

    The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present unclear. The significance of glycogen in fueling glutamate uptake into astrocytes was specifically addressed in cultured astrocytes. Moreover, the objective was to elucidate whether glycogen derived energy is important for maintaining glutamatergic neurotransmission, induced by repetitive exposure to NMDA in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue D-[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important for the astrocytic compartment. By inhibiting glycogen degradation in co-cultures it was evident that glycogen provides energy to sustain glutamatergic neurotransmission, i.e. release and uptake of glutamate. The relocation of glycogen derived lactate to the neuronal compartment was investigated by employing d-lactate, a competitive substrate for the monocarboxylate transporters. Neurotransmitter release was affected by the presence of d-lactate indicating that glycogen derived energy is important not only in the astrocytic but also in the neuronal compartment.

  13. Glycogen distribution in porcine fallopian tube epithelium during the estrus cycle.

    Science.gov (United States)

    Gregoraszczuk, E Ł; Cała, M; Witkowska, E

    2000-01-01

    Histochemical features of two different parts of the porcine Fallopian tube have been studied, with special reference to cyclic changes in the distribution of glycogen particles. Porcine Fallopian tubes were obtained from a local slaughterhouse. Slides were studied under light microscopy utilising histological and histochemical techniques. The most striking feature during the periovulatory stage of the estrus cycle was the occurrence of glycogen granules in the apical cytoplasm of epithelial cells in both the ampulla and isthmus of the Fallopian tubes. In the isthmus, cells containing numerous granules of polysaccharides aggregated into areas of different sizes were noted after ovulation. During the midluteal phase their number was minimal or were even absent. In the ampula typical extrusion of secretory granules and nuclei protruding into the tubal lumen was visible after ovulation. In the luteal phase a lot of nuclei protruded into the tubal lumen and some free in the lumen were noted. It is possible that glycogen in the preovulatory stage functions as a source of energy for ciliary movement and as a nourishment for the ovum. In the isthmus large number of aggregated glycogen particles was observed also after ovulation. In this stage of the cycle, numerous granules of polysaccharide aggregated in isthmus epithelium could be the major energy source for embriogenesis when the embryo travels down the Fallopian tubes, during the early cleavage stage.

  14. Hexokinase 2 drives glycogen accumulation in equine endometrium at day 12 of diestrus and pregnancy.

    Science.gov (United States)

    Bramer, Sarah A; Macedo, Alysson; Klein, Claudia

    2017-01-05

    Secretion of histotroph during the prolonged pre-implantation phase in mares is crucial to pregnancy maintenance, manifested as increased embryonic loss in mares with age-related endometrial degeneration. Glycogen content of uterine histotroph is higher during the progesterone-dominated phase of the estrous cycle in mares, but regulatory mechanisms are not well understood. mRNA expression of glycogen-metabolizing enzymes (HK1, HK2, GSK3B, GYS1, PEPCK, PKM, PYGM) in endometrial samples were compared among mares in anestrus, estrus, and at Day 12 of diestrus and pregnancy. In addition, hexokinase 2 (HK2) activity was assessed using a colorimetric assay. HK2 was the key regulator of glycogen accumulation during diestrus and pregnancy; hexokinase transcript abundance and enzyme activity were significantly higher during diestrus and pregnancy than estrus and anestrus. In addition, despite similar relative transcript abundance, hexokinase activity was significantly greater in the pregnant versus diestrous endometrium. Therefore, we inferred there was regulation of hexokinase activity through phosphorylation, in addition to its regulation at the transcriptional level during early pregnancy. Based on immunohistochemistry, HK2 was localized primarily in luminal and glandular epithelial cells, with weaker staining in stromal cells. Among glycogen metabolizing enzymes identified, expression of HK2 was significantly greater during the progesterone-dominated phase of the cycle.

  15. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    Science.gov (United States)

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  16. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  17. In vivo hepatic glycogen metabolism in the baboon

    International Nuclear Information System (INIS)

    Jehenson, P.; Canioni, P.; Hantraye, P.; Gueron, M.; Syrota, A.

    1988-01-01

    This paper describes hepatic glycogen synthesis from glucose studied in the baboon by C-13 MR spectroscopy at 2 T. Glycogen synthesis was followed for 3 hours on natural abundance spectra during glucose infusion. (1-C-13)-glucose (3g) was then injected. It produced a ten times larger rate of increase of glycogen-C 1 , which is much lower than expected, suggesting that glycogen synthesis mainly occurred from unlabeled gluconeogenic substrates. Signal-to-noise ratio was 50 for glycogen-C 1 on 2-minute H-1 decoupled spectra. Labeling of C 1 but also C 2 , C 5 and C 6 of glycogen indicated a 15% contribution of indirect pathways to its synthesis from glucose

  18. Analysis of genes involved in glycogen degradation in Escherichia coli.

    Science.gov (United States)

    Strydom, Lindi; Jewell, Jonathan; Meier, Michael A; George, Gavin M; Pfister, Barbara; Zeeman, Samuel; Kossmann, Jens; Lloyd, James R

    2017-02-01

    Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Qualitative and Quantitative Analyses of Glycogen in Human Milk.

    Science.gov (United States)

    Matsui-Yatsuhashi, Hiroko; Furuyashiki, Takashi; Takata, Hiroki; Ishida, Miyuki; Takumi, Hiroko; Kakutani, Ryo; Kamasaka, Hiroshi; Nagao, Saeko; Hirose, Junko; Kuriki, Takashi

    2017-02-22

    Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.

  20. Gestational trophoblastic disease in Abuth Zaria, Nigeria: A 5‑year ...

    African Journals Online (AJOL)

    Gestational trophoblastic disease in Abuth Zaria, Nigeria: A 5‑year review. ... Abimbola O. Kolawole, John K. Nwajagu, Adekunle O. Oguntayo, Marliya S. ... The data obtained were expressed in percentages, means, and standard deviations.

  1. Immunomodulator expression in trophoblasts from the feline immunodeficiency virus FIV infected cat

    Science.gov (United States)

    FIV infection frequently compromises pregnancy under experimental conditions and is accompanied by aberrant expression of some placental cytokines. Trophoblasts produce numerous immunomodulators that play a role in placental development and pregnancy maintenance. We hypothesized that FIV infection m...

  2. The role of invasive trophoblast in implantation and placentation of primates

    DEFF Research Database (Denmark)

    Carter, Anthony Michael; Enders, Allen C; Pijnenborg, Robert

    2015-01-01

    We here review the evolution of invasive placentation in primates towards the deep penetration of the endometrium and its arteries in hominoids. The strepsirrhine primates (lemurs and lorises) have non-invasive, epitheliochorial placentation, although this is thought to be derived from a more...... invasive type. In haplorhine primates, there is differentiation of trophoblast at the blastocyst stage into syncytial and cellular trophoblast. Implantation involves syncytiotrophoblast that first removes the uterine epithelium then consolidates at the basal lamina before continuing into the stroma...

  3. A possible relationship between gluconeogenesis and glycogen metabolism in rabbits during myocardial ischemia

    Directory of Open Access Journals (Sweden)

    RAQUEL R. DE AGUIAR

    2017-08-01

    Full Text Available ABSTRACT Ischemia is responsible for many metabolic abnormalities in the heart, causing changes in organ function. One of modifications occurring in the ischemic cell is changing from aerobic to anaerobic metabolism. This change causes the predominance of the use of carbohydrates as an energy substrate instead of lipids. In this case, the glycogen is essential to the maintenance of heart energy intake, being an important reserve to resist the stress caused by hypoxia, using glycolysis and lactic acid fermentation. In order to study the glucose anaerobic pathways utilization and understand the metabolic adaptations, New Zealand white rabbits were subjected to ischemia caused by Inflow occlusion technique. The animals were monitored during surgery by pH and lactate levels. Transcription analysis of the pyruvate kinase, lactate dehydrogenase and phosphoenolpyruvate carboxykinase enzymes were performed by qRT-PCR, and glycogen quantification was determined enzymatically. Pyruvate kinase transcription increased during ischemia, followed by glycogen consumption content. The gluconeogenesis increased in control and ischemia moments, suggesting a relationship between gluconeogenesis and glycogen metabolism. This result shows the significant contribution of these substrates in the organ energy supply and demonstrates the capacity of the heart to adapt the metabolism after this injury, sustaining the homeostasis during short-term myocardial ischemia.

  4. The structure of brain glycogen phosphorylase-from allosteric regulation mechanisms to clinical perspectives.

    Science.gov (United States)

    Mathieu, Cécile; Dupret, Jean-Marie; Rodrigues Lima, Fernando

    2017-02-01

    Glycogen phosphorylase (GP) is the key enzyme that regulates glycogen mobilization in cells. GP is a complex allosteric enzyme that comprises a family of three isozymes: muscle GP (mGP), liver GP (lGP), and brain GP (bGP). Although the three isozymes display high similarity and catalyze the same reaction, they differ in their sensitivity to the allosteric activator adenosine monophosphate (AMP). Moreover, inactivating mutations in mGP and lGP have been known to be associated with glycogen storage diseases (McArdle and Hers disease, respectively). The determination, decades ago, of the structure of mGP and lGP have allowed to better understand the allosteric regulation of these two isoforms and the development of specific inhibitors. Despite its important role in brain glycogen metabolism, the structure of the brain GP had remained elusive. Here, we provide an overview of the human brain GP structure and its relationship with the two other members of this key family of the metabolic enzymes. We also summarize how this structure provides valuable information to understand the regulation of bGP and to design specific ligands of potential pharmacological interest. © 2016 Federation of European Biochemical Societies.

  5. High glycogen levels in the hippocampus of patients with epilepsy

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Madsen, Flemming F; Secher, Niels H

    2006-01-01

    During intense cerebral activation approximately half of the glucose plus lactate taken up by the human brain is not oxidized and could replenish glycogen deposits, but the human brain glycogen concentration is unknown. In patients with temporal lobe epilepsy, undergoing curative surgery, brain......, glycogen was similarly higher than in grey and white matter. Consequently, in human grey and white matter and, particularly, in the hippocampus of patients with temporal lope epilepsy, glycogen constitutes a large, active energy reserve, which may be of importance for energy provision during sustained...

  6. Investigation and management of the hepatic glycogen storage diseases.

    Science.gov (United States)

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease.

  7. Extraction of glycogen on mild condition lacks AIG fraction.

    Science.gov (United States)

    Ghafouri, Z; Rasouli, M

    2016-12-01

    Extraction of animal tissues with cold water or perchloric acid yields less glycogen than is obtained with hot-alkaline. Extraction with acid and alkaline gives two fractions, acid soluble (ASG) and insoluble glycogen (AIG). The aim of this work is to examine the hypothesis that not all liver glycogen is extractable by Tris-buffer using current techniques. Rat liver was homogenized with Tris-buffer pH 8.3 and extracted for the glycogen fractions, ASG and AIG. The degree of homogenization was changed to remove all glycogen. The content of glycogen was 47.7 ± 1.2 and 11.6 ± 0.8 mg/g wet liver in the supernatant and pellet of the first extraction respectively. About 24% of total glycogen is lost through the first pellet. Increasing the extent of homogenization from 30 to 180 sec and from 15000 to 20000 rpm followed with 30 sec ultrasonication did not improve the extraction. ASG and AIG constitute about 77% and 23% of the pellet glycogen respectively. Extraction with cold Tris-buffer failed to extract glycogen completely.  Increasing the extent of homogenization followed with ultrasonication also did not improve the extraction. Thus it is necessary to re-examine the previous findings obtained by extraction with cold Tris-buffer.

  8. Gestational trophoblastic disease: experience at a tertiary care hospital of sindh

    International Nuclear Information System (INIS)

    Khaskheli, M.; Imdad, A.; Baloch, S.

    2007-01-01

    To determine the frequency, clinical presentation and management outcomes of Gestational Trophoblastic Disease (GTD). The case records of all the gestational trophoblastic cases during study period were analyzed regarding their illness history, clinical examination, investigations, treatment and follow-up. The main outcomes were measured in terms of duration, antecedent pregnancy, investigations, treatment and the follow-up. There were a total of 1030 obstetric admissions during the study period, which included 23 cases of trophoblastic disease. Hence, frequency of GTD was 1 per 45 live births. Of these 23 cases, 19 (82.6%) patients had hydatidiform mole and 4 patients had malignant trophoblastic disease. Eight patients (34.7%) received chemotherapy while rest of the patients had suction evacuation and follow-up. Among all patients, 21 (91.3%) fully recovered and 2 (8.69%) died because of extensive disease; metastasis extending upto brain. Frequency of trophoblastic disease was high in this series compared to world and national literature. Therefore, emphasis should be on the early diagnosis of disease as proper management in the early stages strongly influences the outcome of disease. Suction evacuation and follow-up are ideal treatments for benign trophoblastic disease. (author)

  9. Gestational trophoblastic disease: experience at a tertiary care hospital of sindh

    Energy Technology Data Exchange (ETDEWEB)

    Khaskheli, M; Imdad, A; Baloch, S [Liaquat Univ. of Medical and Health Sciences, Jamshoro (Pakistan). Dept. of Obstetrics and Gynaecology

    2007-02-15

    To determine the frequency, clinical presentation and management outcomes of Gestational Trophoblastic Disease (GTD). The case records of all the gestational trophoblastic cases during study period were analyzed regarding their illness history, clinical examination, investigations, treatment and follow-up. The main outcomes were measured in terms of duration, antecedent pregnancy, investigations, treatment and the follow-up. There were a total of 1030 obstetric admissions during the study period, which included 23 cases of trophoblastic disease. Hence, frequency of GTD was 1 per 45 live births. Of these 23 cases, 19 (82.6%) patients had hydatidiform mole and 4 patients had malignant trophoblastic disease. Eight patients (34.7%) received chemotherapy while rest of the patients had suction evacuation and follow-up. Among all patients, 21 (91.3%) fully recovered and 2 (8.69%) died because of extensive disease; metastasis extending upto brain. Frequency of trophoblastic disease was high in this series compared to world and national literature. Therefore, emphasis should be on the early diagnosis of disease as proper management in the early stages strongly influences the outcome of disease. Suction evacuation and follow-up are ideal treatments for benign trophoblastic disease. (author)

  10. The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2.

    Directory of Open Access Journals (Sweden)

    W H Davin Townley-Tilson

    Full Text Available Vascularization of the placenta is a critical developmental process that ensures fetal viability. Although the vascular health of the placenta affects both maternal and fetal well being, relatively little is known about the early stages of placental vascular development. The ubiquitin ligase Ankyrin repeat, SOCS box-containing 4 (ASB4 promotes embryonic stem cell differentiation to vascular lineages and is highly expressed early in placental development. The transcriptional regulator Inhibitor of DNA binding 2 (ID2 negatively regulates vascular differentiation during development and is a target of many ubiquitin ligases. Due to their overlapping spatiotemporal expression pattern in the placenta and contrasting effects on vascular differentiation, we investigated whether ASB4 regulates ID2 through its ligase activity in the placenta and whether this activity mediates vascular differentiation. In mouse placentas, ASB4 expression is restricted to a subset of cells that express both stem cell and endothelial markers. Placentas that lack Asb4 display immature vascular patterning and retain expression of placental progenitor markers, including ID2 expression. Using JAR placental cells, we determined that ASB4 ubiquitinates and represses ID2 expression in a proteasome-dependent fashion. Expression of ASB4 in JAR cells and primary isolated trophoblast stem cells promotes the expression of differentiation markers. In functional endothelial co-culture assays, JAR cells ectopically expressing ASB4 increased endothelial cell turnover and stabilized endothelial tube formation, both of which are hallmarks of vascular differentiation within the placenta. Co-transfection of a degradation-resistant Id2 mutant with Asb4 inhibits both differentiation and functional responses. Lastly, deletion of Asb4 in mice induces a pathology that phenocopies human pre-eclampsia, including hypertension and proteinuria in late-stage pregnant females. These results indicate that

  11. Diurnal variation in glycogen phosphorylase activity in rat liver. A quantitative histochemical study

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; Bosch, K. S.

    1987-01-01

    The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase

  12. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase

    DEFF Research Database (Denmark)

    Maile, C A; Hingst, Janne Rasmuss; Mahalingan, K K

    2017-01-01

    BACKGROUND: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS: Equine muscle biochemical...... had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6...

  13. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro

    International Nuclear Information System (INIS)

    Park, Hae-Ryung; Kamau, Patricia W.; Loch-Caruso, Rita

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15 μM and 9 fold at 20 μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20 μM) decreased the mitochondrial membrane potential by 47–64.5% at 4, 8 and 24 h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20 μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions

  14. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ryung, E-mail: heaven@umich.edu; Kamau, Patricia W.; Loch-Caruso, Rita

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15 μM and 9 fold at 20 μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20 μM) decreased the mitochondrial membrane potential by 47–64.5% at 4, 8 and 24 h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20 μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions

  15. Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs.

    Science.gov (United States)

    Morales-Prieto, D M; Ospina-Prieto, S; Schmidt, A; Chaiwangyen, W; Markert, U R

    2014-02-01

    MicroRNAs (miRNAs) regulate the expression of a large number of genes in plants and animals. Placental miRNAs appeared late in evolution and can be found only in mammals. Nevertheless, these miRNAs are constantly under evolutionary pressure. As a consequence, miRNA sequences and their mRNA targets may differ between species, and some miRNAs can only be found in humans. Their expression can be tissue- or cell-specific and can vary time-dependently. Human placenta tissue exhibits a specific miRNA expression pattern that dynamically changes during pregnancy and is reflected in the maternal plasma. Some placental miRNAs are involved in or associated with major pregnancy disorders, such as preeclampsia, intrauterine growth restriction or preterm delivery and, therefore, have a strong potential for usage as sensitive and specific biomarkers. In this review we summarize current knowledge on the origin of placental miRNAs, their expression in humans with special regard to trophoblast cells, interspecies differences, and their future as biomarkers. It can be concluded that animal models for human reproduction have a different panel of miRNAs and targets, and can only partly reflect or predict the situation in humans. Copyright © 2013. Published by Elsevier Ltd.

  16. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  17. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  18. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  19. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  20. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    Science.gov (United States)

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  1. Muscular glycogen storage diseases without increased glycogen content on histoplathological examination

    NARCIS (Netherlands)

    Hoeksma, M.; den Dunnen, W. F. A.; Niezen-Koning, K. E.; van Diggelen, O. P.; van Spronsen, F. J.

    Histopathological findings of muscle biopsies from five patients with two different muscular glycogen storage diseases (mGSD) were presented. From these investigations it emerged that the yield of histopathology in mGSD is low. In only one of five patients histopathological findings gave a clue

  2. RISK FACTORS FOR GESTATIONAL TROPHOBLASTIC NEOPLASIA: A CASE CONTROL STUDY IN A TERTIARY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Hema Sreedharan Nair

    2016-10-01

    Full Text Available BACKGROUND Gestational trophoblastic disease is a spectrum of proliferative abnormalities of the trophoblast. GTD represents a benign form of the disease while GTN is the malignant often metastatic lesion. 75-80 per cent of patients initially diagnosed as GTD will follow a benign course after dilatation and curettage. 15-20 per cent develop locally invasive disease and 3-5 per cent develop metastatic lesions. The study aims to assess the proportion of gestational trophoblastic neoplasia among women with gestational trophoblastic disease and identify the risk factors for chemotherapy in gestational trophoblastic neoplasia. MATERIALS AND METHODS This is a case-control study conducted in a tertiary hospital during a 5-year period. Cases are gestational trophoblastic neoplasia diagnosed by either rising beta-HCG levels or plateauing beta-HCG levels or by histological evidence of choriocarcinoma. Controls are cases of gestational trophoblastic disease post evacuation with normal H