WorldWideScience

Sample records for glycogen synthase kinase-3beta

  1. Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.

    Science.gov (United States)

    Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

    2010-09-01

    Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale.

  2. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    Energy Technology Data Exchange (ETDEWEB)

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  3. Regulation of glycogen synthase kinase-3{beta} (GSK-3{beta}) after ionizing radiation; Regulation der Glykogen Synthase Kinase-3{beta} (GSK-3{beta}) nach ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, K.A.

    2006-12-15

    Glycogen Synthase Kinase-3{beta} (GSK-3{beta}) phosphorylates the Mdm2 protein in the central domain. This phosphorylation is absolutely required for p53 degradation. Ionizing radiation inactivates GSK-3{beta} by phosphorylation at serine 9 and in consequence prevents Mdm2 mediated p53 degradation. During the work for my PhD I identified Akt/PKB as the kinase that phosphorylates GSK-3{beta} at serine 9 after ionizing radiation. Ionizing radiation leads to phosphorylation of Akt/PKB at threonine 308 and serine 473. The PI3 Kinase inhibitor LY294002 completely abolished Akt/PKB serine 473 phosphorylation and prevented the induction of GSK-3{beta} serine 9 phosphorylation after ionizing radiation. Interestingly, the most significant activation of Akt/PKB after ionizing radiation occurred in the nucleus while cytoplasmic Akt/PKB was only weakly activated after radiation. By using siRNA, I showed that Akt1/PKBa, but not Akt2/PKB{beta}, is required for phosphorylation of GSK- 3{beta} at serine 9 after ionizing radiation. Phosphorylation and activation of Akt/PKB after ionizing radiation depends on the DNA dependent protein kinase (DNA-PK), a member of the PI3 Kinase family, that is activated by free DNA ends. Both, in cells from SCID mice and after knockdown of the catalytic subunit of DNA-PK by siRNA in osteosarcoma cells, phosphorylation of Akt/PKB at serine 473 and of GSK-3{beta} at serine 9 was completely abolished. Consistent with the principle that phosphorylation of GSK-3 at serine 9 contributes to p53 stabilization after radiation, the accumulation of p53 in response to ionizing radiation was largely prevented by downregulation of DNA-PK. From these results I conclude, that ionizing radiation induces a signaling cascade that leads to Akt1/PKBa activation mediated by DNA-PK dependent phosphorylation of serine 473. After activation Akt1/PKBa phosphorylates and inhibits GSK-3{beta} in the nucleus. The resulting hypophosphorylated form of Mdm2 protein is no longer

  4. Lithium chloride ameliorates learning and memory ability and inhibits glycogen synthase kinase-3 beta activity in a mouse model of fragile X syndrome

    Institute of Scientific and Technical Information of China (English)

    Shengqiang Chen; Xuegang Luo; Quan Yang; Weiwen Sun; Kaiyi Cao; Xi Chen; Yueling Huang; Lijun Dai; Yonghong Yi

    2011-01-01

    In the present study, Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome. The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts, indicating a learning and memory disorder. After treatment with 30, 60, 90, 120, or 200 mg/kg lithium chloride, the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated, in particular, the 200 mg/kg lithium chloride treatment had the most significant effect. Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta, an inactive form of glycogen synthase kinase 3 beta, in the cerebral cortex and hippocampus of the Fmr1 KO mice. These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice, possibly by inhibiting glycogen synthase kinase 3 beta activity.

  5. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Cortés-Vieyra Ricarda

    2012-06-01

    Full Text Available Abstract Glycogen synthase kinase 3β (GSK3β plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.

  6. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens.

    Science.gov (United States)

    Cortés-Vieyra, Ricarda; Bravo-Patiño, Alejandro; Valdez-Alarcón, Juan J; Juárez, Marcos Cajero; Finlay, B Brett; Baizabal-Aguirre, Víctor M

    2012-06-12

    Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.

  7. Nuclear glycogen synthase kinase-3 {beta} (GSK-3) in Rhipicephalus (Boophilus) microplus tick embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mentzingen, Leticia; Andrade, Josiana G. de; Logullo, Carlos [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Biociencias e Biotecnologia. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Andrade, Caroline P. de; Vaz Junior, Itabajara [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Biotecnologia

    2008-07-01

    Full text: Glycogen synthase kinase-3 (GSK3) is recognized as a key component of a large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. Recent observations point to functions for phosphorylases several transcription factors in the nucleus. Also, GSK3b participate of the canonical W nt signalling pathway, which has been studied intensively in embryonic and cancer cells. Like in many other signaling pathways, most components in W nt signal transduction were highly conserved during the evolution. More than 40 proteins have been reported to be phosphorylated by GSK3, including over a dozen transcription factors. Although the mechanisms regulating GSK3 are not fully understood, precise control appears to be achieved by a combination of phosphorylation, localization, and interactions with GSK3-binding proteins. Although GSK3 is traditionally considered a cytosolic protein, it is also present in nuclei. Nuclear GSK3 is particularly interesting because of the many transcription factors that it regulates enabling GSK3 to influence many signaling pathways that converge on these transcription factors, thereby regulating the expression of many genes. Our group identified that GSK-3 {beta} could be detected in different stage eggs of R. micro plus. In this work we detected the GSK-3 in isolated nuclear fraction from the egg homogenates of R. micro plus by western-blot analysis, using anti-GSK- 3 {beta} antibodies. The enzyme activity was also detected radiochemically throughout embryogenesis in same fraction. The GSK-3 activity was inhibiting by using SB 216763 (selective molecule inhibitors of GSK-3). Taken together our results suggest that GSK-3 {beta} isoform probably is involved in gene transcription factors during R. micro plus embryo development.

  8. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    Science.gov (United States)

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  9. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway.

    Science.gov (United States)

    Razeghi, Peter; Bruckner, Brian A; Sharma, Saumya; Youker, Keith A; Frazier, O H; Taegtmeyer, Heinrich

    2003-01-01

    Left ventricular assist device (LVAD) support of the failing human heart improves myocyte function and increases cell survival. One potential mechanism underlying this phenomenon is activation of the protein kinase B (PKB)/Akt/glycogen synthase kinase-3beta (GSK-3beta) survival pathway. Left ventricular tissue was obtained both at the time of implantation and explantation of the LVAD (n = 11). Six patients were diagnosed with idiopathic dilated cardiomyopathy, 4 patients with ischemic cardiomyopathy and 1 patient with peripartum cardiomyopathy. The mean duration of LVAD support was 205 +/- 35 days. Myocyte diameter and phosphorylation of ERK were used as indices for reverse remodeling. Transcript levels of genes required for the activation of PKB/Akt (insulin-like growth factor-1, insulin receptor substrate-1) were measured by quantitative RT-PCR. In addition, we measured the relative activity of PKB/Akt and GSK-3beta, and assayed for molecular and histological indices of PKB/Akt activation (cyclooxygenase mRNA levels and glycogen levels). Myocyte diameter and phosphorylation of ERK decreased with LVAD support. In contrast, none of the components of the PKB/Akt/GSK-3beta pathway changed significantly with mechanical unloading. The PKB/Akt/GSK-3beta pathway is not activated during LVAD support. Other signaling pathways must be responsible for the improvement of cellular function and cell survival during LVAD support. Copyright 2003 S. Karger AG, Basel

  10. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    International Nuclear Information System (INIS)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin; Fu, Xinlu; Shen, Feihai; Huang, Zhiying

    2016-01-01

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  11. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Fu, Xinlu [Laboratory Animals Center, Sun Yat-sen University, Guangzhou 510006 (China); Shen, Feihai, E-mail: shenfh3@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Huang, Zhiying, E-mail: hzhiying@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China)

    2016-12-15

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  12. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3beta is implicated in the treatment of cervical carcinoma.

    Science.gov (United States)

    Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin

    2010-02-23

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3beta (GSK-3beta) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3beta(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3beta after transfection with GSK-3beta by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3beta (s9). Furthermore, we demonstrated GSK-3beta transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3beta was important to improve chemosensitization, indicating the significance of GSK-3beta-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  13. Attenuation of ischemia-reperfusion injury by sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts.

    Science.gov (United States)

    Fang, Neng-Xin; Yao, Yun-Tai; Shi, Chun-Xia; Li, Li-Huan

    2010-12-01

    Volatile anesthetic ischemic postconditioning reduces infarct size following ischemia/reperfusion. Whether phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase 3 beta (GSK3β) is causal for cardioprotection by postconditioning is controversial. We therefore investigated the impact of PKB/Akt and GSK3β in isolated perfused rat hearts subjected to 40 min of ischemia followed by 1 h of reperfusion. 2.0% sevoflurane (1.0 minimum alveolar concentration) was administered at the onset of reperfusion in 15 min as postconditioning. Western blot analysis was used to determine phosphorylation of PKB/Akt and its downstream target GSK3β after 1 h of reperfusion. Mitochondrial and cytosolic content of cytochrome C checked by western blot served as a marker for mitochondrial permeability transition pore opening. Sevoflurane postconditioning significantly improved functional cardiac recovery and decreased infarct size in isolated rat hearts. Compared with unprotected hearts, sevoflurane postconditioning-induced phosphorylation of PKB/Akt and GSK3β were significantly increased. Increase of cytochrome C in mitochondria and decrease of it in cytosol is significant when compared with unprotected ones which have reversal effects on cytochrome C. The current study presents evidence that sevoflurane-induced cardioprotection at the onset of reperfusion are partly through activation of PKB/Akt and GSK3β.

  14. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  15. Glycogen synthase kinase-3beta and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons.

    Science.gov (United States)

    Morel, M; Authelet, M; Dedecker, R; Brion, J P

    2010-06-02

    The complex bi-directional axoplasmic transport of mitochondria is essential for proper metabolic functioning of neurons and is controlled by phosphorylation. We have investigated by time-lapse imaging the effects of increased expression of glycogen synthase kinase-3beta (GSK-3beta) and of the p25 activator of cyclin dependent kinase 5 on mitochondria movements in mammalian cortical neurons and in PC12 cells. Both GSK-3beta and p25 increased the stationary behaviour of mitochondria in PC12 and in neurons, decreased their anterograde transport but did not affect the intrinsic velocities of mitochondria. The microtubule-associated tau proteins were more phosphorylated in GSK-3beta and p25 transfected neurons, but ultrastructural observation showed that these cells still contained microtubules and nocodazole treatment further reduced residual mitochondria movements in GSK-3beta or p25 transfected neurons, indicating that microtubule disruption was not the primary cause of increased mitochondrial stationary behaviour in GSK-3beta or p25 transfected neurons. Our results suggest that increased expression of GSK-3beta and p25 acted rather by decreasing the frequency of mitochondrial movements driven by molecular motors and that GSK-3beta and p25 might regulate these transports by controlling the time that mitochondria spend pausing, rather than their velocities. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

    Science.gov (United States)

    Tang, Xiaoli; Zheng, Dong; Hu, Ping; Zeng, Zongyue; Li, Ming; Tucker, Lynne; Monahan, Renee; Resnick, Murray B; Liu, Manran; Ramratnam, Bharat

    2014-03-01

    Glycogen synthase kinase 3 beta (GSK3β) is a critical protein kinase that phosphorylates numerous proteins in cells and thereby impacts multiple pathways including the β-Catenin/TCF/LEF-1 pathway. MicroRNAs (miRs) are a class of noncoding small RNAs of ∼22 nucleotides in length. Both GSK3β and miR play myriad roles in cell functions including stem cell development, apoptosis, embryogenesis and tumorigenesis. Here we show that GSK3β inhibits the expression of miR-96, miR-182 and miR-183 through the β-Catenin/TCF/LEF-1 pathway. Knockout of GSK3β in mouse embryonic fibroblast cells increases expression of miR-96, miR-182 and miR-183, coinciding with increases in the protein level and nuclear translocation of β-Catenin. In addition, overexpression of β-Catenin enhances the expression of miR-96, miR-182 and miR-183 in human gastric cancer AGS cells. GSK3β protein levels are decreased in human gastric cancer tissue compared with surrounding normal gastric tissue, coinciding with increases of β-Catenin protein, miR-96, miR-182, miR-183 and primary miR-183-96-182 cluster (pri-miR-183). Furthermore, suppression of miR-183-96-182 cluster with miRCURY LNA miR inhibitors decreases the proliferation and migration of AGS cells. Knockdown of GSK3β with siRNA increases the proliferation of AGS cells. Mechanistically, we show that β-Catenin/TCF/LEF-1 binds to the promoter of miR-183-96-182 cluster gene and thereby activates the transcription of the cluster. In summary, our findings identify a novel role for GSK3β in the regulation of miR-183-96-182 biogenesis through β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

  17. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  18. Lithium ameliorates open-field and elevated plus maze behaviors, and brain phospho-glycogen synthase kinase 3-beta expression in fragile X syndrome model mice.

    Science.gov (United States)

    Chen, Xi; Sun, Weiwen; Pan, Ying; Yang, Quan; Cao, Kaiyi; Zhang, Jin; Zhang, Yizhi; Chen, Mincong; Chen, Feidi; Huang, Yueling; Dai, Lijun; Chen, Shengqiang

    2013-10-01

    To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (popen-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (popen-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.

  19. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors.

    Science.gov (United States)

    Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2011-08-26

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.

  20. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell

    Science.gov (United States)

    Crofton, Elizabeth J.; Nenov, Miroslav N.; Zhang, Yafang; Scala, Federico; Page, Sean A.; McCue, David L.; Li, Dingge; Hommel, Jonathan D.; Laezza, Fernanda; Green, Thomas A.

    2017-01-01

    Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types. PMID:28126496

  1. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    Science.gov (United States)

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  2. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  3. Incorporation of phosphate into glycogen by glycogen synthase.

    Science.gov (United States)

    Contreras, Christopher J; Segvich, Dyann M; Mahalingan, Krishna; Chikwana, Vimbai M; Kirley, Terence L; Hurley, Thomas D; DePaoli-Roach, Anna A; Roach, Peter J

    2016-05-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Glycogen Synthase Kinase-3β

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    cells were quantitated using enzyme immunometric assays. The activity of GSK-3β (serine-9-phosphorylated GSK-3β/total GSK-3β) was lower at baseline compared with follow-up. No significant mean change over time was observed in levels of total GSK-3β and serine-9-phosphorylated GSK-3β. Exploratory......Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...... with emotional lability, subjective mood fluctuations and cognitive function in healthy individuals. Thirty-seven healthy subjects were evaluated with neuropsychological tests and blood samples at baseline and 12-week follow-up. Total GSK-3β and serine-9-phosphorylated GSK-3β in peripheral blood mononuclear...

  5. Glycogen synthase kinase 3-{beta} phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiangzi [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Preventive Medicine, Yanbian University College of Medicine, Yanji (China); Ju, Ji-hyun [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Novel S/T-P-S/T domains were identified in NICD. Black-Right-Pointing-Pointer Phosphorylation of NICD on the S/T-P-S/T domains induced nuclear localization. Black-Right-Pointing-Pointer GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. -- Abstract: We identified two S/T-P-S/T domains (2122-2124, 2126-2128) inducing Notch intracellular domain (NICD) nuclear localization. The GFP-NICD (1963-2145) fusion protein deletion mutant without classical NLS was localized in the nucleus like the full length GFP-NICD. However, quadruple substitution mutant (T2122A T2124A S2126A T2128A) showed increased cytoplasmic localization. GSK-3{beta} enhanced nuclear localization and transcriptional activity of WT NICD but not of quadruple substitution mutant. In vitro kinase assays revealed that GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. These results suggest that the novel S/T-P-S/T domain, phosphorylated by GSK-3{beta} is also involved in the nuclear localization of NICD as well as classical NLS.

  6. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content

    OpenAIRE

    Wilson, Wayne A.; Boyer, Michael P.; Davis, Keri D.; Burke, Michael; Roach, Peter J.

    2010-01-01

    The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilize Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase is located within cells. We demonstrate that the localization pattern of Gsy2-GFP depends upon the glycogen content of the cell. When glyco...

  7. Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.

    Science.gov (United States)

    Ding, Li; Liou, Geou-Yarh; Schmitt, Daniel M; Storz, Peter; Zhang, Jin-San; Billadeau, Daniel D

    2017-09-01

    Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3β promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3β attenuates caerulein-induced ADM formation and PanIN progression in Kras G12D transgenic mice. Furthermore, we demonstrate that GSK-3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3β participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Glycogen synthase activation by sugars in isolated hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  9. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  10. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    Science.gov (United States)

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis

    DEFF Research Database (Denmark)

    Prats, Clara; Cadefau, Joan A; Cussó, Roser

    2005-01-01

    Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively....... Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed...... that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ...

  12. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    Science.gov (United States)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P glycogen content ( P glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  13. Processivity and Subcellular Localization of Glycogen Synthase Depend on a Non-catalytic High Affinity Glycogen-binding Site*

    OpenAIRE

    Díaz, Adelaida; Martínez-Pons, Carlos; Fita, Ignacio; Ferrer, Juan C.; Guinovart, Joan J.

    2011-01-01

    Glycogen synthase, a central enzyme in glucose metabolism, catalyzes the successive addition of α-1,4-linked glucose residues to the non-reducing end of a growing glycogen molecule. A non-catalytic glycogen-binding site, identified by x-ray crystallography on the surface of the glycogen synthase from the archaeon Pyrococcus abyssi, has been found to be functionally conserved in the eukaryotic enzymes. The disruption of this binding site in both the archaeal and the human muscle glycogen synth...

  14. The primary defect in glycogen synthase activity is not based on increased glycogen synthase kinase-3a activity in diabetic myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael; Brusgaard, Klaus; Handberg, Aa.

    2004-01-01

    The mechanism responsible for the diminished activation of glycogen synthase (GS) in diabetic myotubes remains unclear, but may involve increased activity and/or expression of glycogen synthase kinase-3 (GSK-3). In myotubes established from type 2 diabetic and healthy control subjects we determined...

  15. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase

    DEFF Research Database (Denmark)

    Maile, C A; Hingst, Janne Rasmuss; Mahalingan, K K

    2017-01-01

    BACKGROUND: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS: Equine muscle biochemical...... had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6...

  16. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    Science.gov (United States)

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Molecular cloning and characterization of glycogen synthase in Eriocheir sinensis.

    Science.gov (United States)

    Li, Ran; Zhu, Li-Na; Ren, Li-Qi; Weng, Jie-Yang; Sun, Jin-Sheng

    2017-12-01

    Glycogen plays an important role in glucose and energy homeostasis at cellular and organismal levels. In glycogen synthesis, glycogen synthase (GS) is a rate-limiting enzyme catalysing the addition of α-1,4-linked glucose units from (UDP) 3 -glucose to a nascent glycogen chain using glycogenin (GN) as a primer. While studies on mammalian liver GS (GYS2) are numerous, enzymes from crustaceans, which also use glycogen and glucose as their main energy source, have received less attention. In the present study, we amplified full-length GS cDNA from Eriocheir sinensis. Tissue expression profiling revealed the highest expression of GS in the hepatopancreas. During moulting, GS expression and activity declined, and glycogen levels in the hepatopancreas were reduced. Recombinant GS was expressed in Escherichia coli Rosetta (DE3), and induction at 37°C or 16°C yielded EsGS in insoluble inclusion bodies (EsGS-I) or in soluble form (EsGS-S), respectively. Enzyme activity was measured in a cell-free system containing glucose-6-phosphate (G6P), and both forms possessed glycosyltransferase activity, but refolded EsGS-I was more active. Enzyme activity of both GS and EsGS-I in the hepatopancreas was optimum at 25°C, which is coincident with the optimum growth temperature of Chinese mitten crab, and higher (37°C) or lower (16°C) temperatures resulted in lower enzyme activity. Taken together, the results suggest that GS may be important for maintaining normal physiological functions such as growth and reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Glycogen synthase kinase 3: more than a namesake.

    Science.gov (United States)

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-03-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.

  19. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors

    Directory of Open Access Journals (Sweden)

    Daniela Hulcová

    2018-03-01

    Full Text Available Glycogen synthase kinase-3β (GSK-3β is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM, masonine (IC50 = 27.81 ± 0.01 μM}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM}.

  20. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    Science.gov (United States)

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  1. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); pglycogen (89.5±7.6 vs 152.6±8.1 mmol•kg(-1); pglycogen (90.0±5.0 vs 102.8±7.8 mmol•kg(-1); p=0...

  2. Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase.

    OpenAIRE

    Franch, J; Aslesen, R; Jensen, J

    1999-01-01

    We investigated the effects of insulin and adrenaline on the rate of glycogen synthesis in skeletal muscles after electrical stimulation in vitro. The contractile activity decreased the glycogen concentration by 62%. After contractile activity, the glycogen stores were fully replenished at a constant and high rate for 3 h when 10 m-i.u./ml insulin was present. In the absence of insulin, only 65% of the initial glycogen stores was replenished. Adrenaline decreased insulin-stimulated glycogen s...

  3. Hexokinase 2, glycogen synthase and phosphorylase play a key role in muscle glycogen supercompensation

    DEFF Research Database (Denmark)

    Irimia, José M; Rovira, Jordi; Nielsen, Jakob N

    2012-01-01

    Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood.......Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood....

  4. Glycogen synthase kinase-3 regulation of urinary concentrating ability.

    Science.gov (United States)

    Rao, Reena

    2012-09-01

    Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling.

  5. Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes

    Science.gov (United States)

    Beurel, Eléonore; Jope, Richard S.

    2010-01-01

    Inflammatory tolerance is the down-regulation of inflammation upon repeated stimuli, which is well-established to occur in peripheral immune cells. However, less is known about inflammatory tolerance in the brain although it may provide an important protective mechanism from detrimental consequences of prolonged inflammation, which appears to occur in many psychiatric and neurodegenerative conditions. Array analysis of 308 inflammatory molecules produced by mouse primary astrocytes after two sequential stimulations with lipopolysaccharide (LPS) distinguished three classes, tolerant, sensitized and unaltered groups. For many of these inflammatory molecules, inhibition of glycogen synthase kinase-3 (GSK3) increased tolerance and reduced sensitization. Focusing on LPS-tolerance in interleukin-6 (IL-6) production, we found that microglia exhibited a strong tolerance response that matched that of macrophages, whereas astrocytes exhibited only partial tolerance. The astrocyte semi-tolerance was found to be regulated by GSK3. GSK3 inhibitors or knocking down GSK3 levels promoted LPS-tolerance and astrocytes expressing constitutively active GSK3 did not develop LPS-tolerance. These findings identify the critical role of GSK3 in counteracting IL-6 inflammatory tolerance in cells of the CNS, supporting the therapeutic potential of GSK3 inhibitors to reduce neuroinflammation by promoting tolerance. PMID:20553816

  6. Mechanism of activation of liver glycogen synthase by swelling

    NARCIS (Netherlands)

    Meijer, A. J.; Baquet, A.; Gustafson, L.; van Woerkom, G. M.; Hue, L.

    1992-01-01

    The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High

  7. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    International Nuclear Information System (INIS)

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-01-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio [(activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)]. Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of 125 I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms

  8. Regulation of glycogen synthase kinase-3 during bipolar mania treatment.

    Science.gov (United States)

    Li, Xiaohong; Liu, Min; Cai, Zhuoji; Wang, Gang; Li, Xiaohua

    2010-11-01

    Bipolar disorder is a debilitating psychiatric illness presenting with recurrent mania and depression. The pathophysiology of bipolar disorder is poorly understood, and molecular targets in the treatment of bipolar disorder remain to be identified. Preclinical studies have suggested that glycogen synthase kinase-3 (GSK3) is a potential therapeutic target in bipolar disorder, but evidence of abnormal GSK3 in human bipolar disorder and its response to treatment is still lacking. This study was conducted in acutely ill type I bipolar disorder subjects who were hospitalized for a manic episode. The protein level and the inhibitory serine phosphorylation of GSK3 in peripheral blood mononuclear cells of bipolar manic and healthy control subjects were compared, and the response of GSK3 to antimanic treatment was evaluated. The levels of GSK3α and GSK3β in this group of bipolar manic subjects were higher than healthy controls. Symptom improvement during an eight-week antimanic treatment with lithium, valproate, and atypical antipsychotics was accompanied by a significant increase in the inhibitory serine phosphorylation of GSK3, but not the total level of GSK3, whereas concomitant electroconvulsive therapy treatment during a manic episode appeared to dampen the response of GSK3 to pharmacological treatment. Results of this study suggest that GSK3 can be modified during the treatment of bipolar mania. This finding in human bipolar disorder is in agreement with preclinical data suggesting that inhibition of GSK3 by increasing serine phosphorylation is a response of GSK3 to psychotropics used in bipolar disorder, supporting the notion that GSK3 is a promising molecular target in the pharmacological treatment of bipolar disorder. © 2010 John Wiley and Sons A/S.

  9. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease.

    Science.gov (United States)

    Maqbool, Mudasir; Mobashir, Mohammad; Hoda, Nasimul

    2016-01-01

    Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    Science.gov (United States)

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  11. Quantification of the glycogen cascade system: the ultrasensitive responses of liver glycogen synthase and muscle phosphorylase are due to distinctive regulatory designs

    Directory of Open Access Journals (Sweden)

    Venkatesh KV

    2005-05-01

    Full Text Available Abstract Background Signaling pathways include intricate networks of reversible covalent modification cycles. Such multicyclic enzyme cascades amplify the input stimulus, cause integration of multiple signals and exhibit sensitive output responses. Regulation of glycogen synthase and phosphorylase by reversible covalent modification cycles exemplifies signal transduction by enzyme cascades. Although this system for regulating glycogen synthesis and breakdown appears similar in all tissues, subtle differences have been identified. For example, phosphatase-1, a dephosphorylating enzyme of the system, is regulated quite differently in muscle and liver. Do these small differences in regulatory architecture affect the overall performance of the glycogen cascade in a specific tissue? We address this question by analyzing the regulatory structure of the glycogen cascade system in liver and muscle cells at steady state. Results The glycogen cascade system in liver and muscle cells was analyzed at steady state and the results were compared with literature data. We found that the cascade system exhibits highly sensitive switch-like responses to changes in cyclic AMP concentration and the outputs are surprisingly different in the two tissues. In muscle, glycogen phosphorylase is more sensitive than glycogen synthase to cyclic AMP, while the opposite is observed in liver. Furthermore, when the liver undergoes a transition from starved to fed-state, the futile cycle of simultaneous glycogen synthesis and degradation switches to reciprocal regulation. Under such a transition, different proportions of active glycogen synthase and phosphorylase can coexist due to the varying inhibition of glycogen-synthase phosphatase by active phosphorylase. Conclusion The highly sensitive responses of glycogen synthase in liver and phosphorylase in muscle to primary stimuli can be attributed to distinctive regulatory designs in the glycogen cascade system. The different

  12. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization

    DEFF Research Database (Denmark)

    Prats, Clara; Helge, Jørn W; Nordby, Pernille

    2009-01-01

    Glycogen synthase (GS) is considered the rate-limiting enzyme in glycogenesis but still today there is a lack of understanding on its regulation. We have previously shown phosphorylation-dependent GS intracellular redistribution at the start of glycogen re-synthesis in rabbit skeletal muscle (Prats......, C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165-23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise......, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated...

  13. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.

    Science.gov (United States)

    Fogt, Donovan L; Pan, Shujia; Lee, Sukho; Ding, Zhenping; Scrimgeour, Angus; Lawrence, John C; Ivy, John L

    2004-03-01

    Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.

  14. Pre- and posttranslational upregulation of muscle-specific glycogen synthase in athletes

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    Expression of muscle-specific glycogen synthase (GS) and phosphofructokinase (PFK) was analyzed in seven athletes and eight control subjects who were characterized using the euglycemic, hyperinsulinemic (2 mU.kg-1.min-1) clamp technique in combination with indirect calorimetry and biopsy sampling...

  15. Involvement of Glycogen Synthase Kinase-3 in the Mechanisms of Conditioned Food Aversion Memory Reconsolidation.

    Science.gov (United States)

    Nikitin, V P; Solntseva, S V; Kozyrev, S A

    2017-02-01

    Experiments were performed on the snails trained in conditioned food aversion for 3 days. Injection of TDZD-8 (glycogen synthase kinase-3 inhibitor, 2 mg/kg) in combination with reminder (presentation of a conditioned food stimulus) led to memory impairment developing 3 days after inhibitor/reminder exposure and followed by spontaneous recovery in 10 days. Injections of TDZD-8 in a dose of 4 or 20 mg/kg before reminder were shown to cause amnesia that persisted for more than 10 days. Memory recovery during repeated training was observed at the earlier period than after initial training. The impairment of memory reconsolidation by TDZD-8 after training of snails for 1 day was less pronounced than under standard training conditions (3 days). The effect of a glycogen synthase kinase-3 inhibitor during memory reconsolidation is probably followed by impairment of memory retrieval and/or partial loss, which can be compensated spontaneously or after repeated training.

  16. Dysregulation of muscle glycogen synthase in recovery from exercise in type 2 diabetes

    DEFF Research Database (Denmark)

    Pedersen, Andreas J T; Hingst, Janne Rasmuss; Friedrichsen, Martin

    2015-01-01

    AIMS/HYPOTHESIS: Insulin and exercise stimulate skeletal muscle glycogen synthase (GS) activity by dephosphorylation and changes in kinetic properties. The aim of this study was to investigate the effects of insulin, exercise and post-exercise insulin stimulation on GS phosphorylation, activity a...... and increased phosphorylation at sites 2 + 2a in type 2 diabetes in the recovery period imply an impaired response to exercise....

  17. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Science.gov (United States)

    Vadrot, Nathalie; Ghanem, Sarita; Braut, Françoise; Gavrilescu, Laura; Pilard, Nathalie; Mansouri, Abdellah; Moreau, Richard; Reyl-Desmars, Florence

    2012-01-01

    During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  18. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Directory of Open Access Journals (Sweden)

    Nathalie Vadrot

    Full Text Available During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α targets hepatocytes and induces abnormal reactive oxygen species (ROS production responsible for mitochondrial DNA (mtDNA alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC was used to measure the rapid (10 min and transient TNF-α induced increase in ROS production (168±15%. A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM. In addition, mitochondrial D-loop immunoprecipitation (mtDIP revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  19. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    Science.gov (United States)

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Conditional ablation of glycogen synthase kinase 3β in postnatal mouse kidney.

    Science.gov (United States)

    Ge, Yan; Si, Jin; Tian, Li; Zhuang, Shougang; Dworkin, Lance D; Gong, Rujun

    2011-01-01

    Glycogen synthase kinase (GSK)3 is a ubiquitously expressed serine/threonine kinase existing in two isoforms, namely GSK3α and GSK3β. Aside from the long-recognized role in insulin signal transduction and glycogen biosynthesis, GSK3β has been recently coined as a master control molecule in nuclear factor-κB activation and inflammatory kidney injury. Nevertheless, previous studies are less conclusive because they relied greatly on small molecule inhibitors, which lack selectivity and barely distinguish between the GSK3 isoforms. In addition, early embryonic lethality after global knockout of GSK3β precludes interrogation of the biological role of GSK3β in the adult kidney. To circumvent these issues, the Cre/loxP system was used to generate a conditional knockout mouse model in which the GSK3β gene was specifically deleted in kidney cortical tubules at postnatal mature stage. Kidney-specific ablation of GSK3β resulted in a phenotype no different from control littermates. Knockout mice (KO) were viable and exhibited normal development and normal kidney physiology in terms of kidney function, urine albumin excretion, and urine-concentrating ability. It is noteworthy that apart from normal glomerular and tubulointerstitial morphology, the kidneys from KO demonstrated more glycogen accumulation in the renal cortical tubules as assessed by both periodic acid-Schiff staining for light microscopy and direct biochemical assay, consistent with an elevated glycogen synthetic activity as evidenced by diminished inhibitory phosphorylation of glycogen synthase that occurred subsequent to GSK3β ablation. This finding was further validated by electron microscopic observations of increased deposition of glycogen particles in the renal tubules of KO, suggesting that GSK3α could not fully compensate for the loss of GSK3β in regulating glycogen metabolism in the kidney. Collectively, our study suggests that kidney-specific ablation of GSK3β barely affects kidney function

  1. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice

    OpenAIRE

    Nørregaard, Rikke; Tao, Shixin; Nilsson, Line; Woodgett, James R.; Kakade, Vijayakumar; Yu, Alan S. L.; Howard, Christiana; Rao, Reena

    2015-01-01

    In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine outp...

  2. Unchanged gene expression of glycogen synthase in muscle from patients with NIDDM following sulphonylurea-induced improvement of glycaemic control

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Bjørbaek, C

    1995-01-01

    We have previously shown that the mRNA expression of muscle glycogen synthase is decreased in non-insulin-dependent diabetic (NIDDM) patients; the objective of the present protocol was to examine whether the gene expression of muscle glycogen synthase in NIDDM is affected by chronic sulphonylurea...... as enhanced beta-cell responses to an oral glucose load. During euglycaemic, hyperinsulinaemic clamp (2 mU x kg-1 x min-1) in combination with indirect calorimetry, a 35% (p=0.005) increase in whole-body insulin-stimulated glucose disposal rate, predominantly due to an increased non-oxidative glucose....... In conclusion, improved blood glucose control in gliclazide-treated obese NIDDM patients has no impact on the gene expression of muscle glycogen synthase....

  3. Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease.

    Science.gov (United States)

    Valles-Ortega, Jordi; Duran, Jordi; Garcia-Rocha, Mar; Bosch, Carles; Saez, Isabel; Pujadas, Lluís; Serafin, Anna; Cañas, Xavier; Soriano, Eduardo; Delgado-García, José M; Gruart, Agnès; Guinovart, Joan J

    2011-11-01

    Lafora disease (LD) is caused by mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of polyglucosan inclusions called Lafora Bodies (LBs). Malin knockout (KO) mice present polyglucosan accumulations in several brain areas, as do patients of LD. These structures are abundant in the cerebellum and hippocampus. Here, we report a large increase in glycogen synthase (GS) in these mice, in which the enzyme accumulates in LBs. Our study focused on the hippocampus where, under physiological conditions, astrocytes and parvalbumin-positive (PV(+)) interneurons expressed GS and malin. Although LBs have been described only in neurons, we found this polyglucosan accumulation in the astrocytes of the KO mice. They also had LBs in the soma and some processes of PV(+) interneurons. This phenomenon was accompanied by the progressive loss of these neuronal cells and, importantly, neurophysiological alterations potentially related to impairment of hippocampal function. Our results emphasize the relevance of the laforin-malin complex in the control of glycogen metabolism and highlight altered glycogen accumulation as a key contributor to neurodegeneration in LD. Copyright © 2011 EMBO Molecular Medicine.

  4. Glycogen Phosphorylase and Glycogen Synthase: Gene Cloning and Expression Analysis Reveal Their Role in Trehalose Metabolism in the Brown Planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhang, Lu; Wang, Huijuan; Chen, Jianyi; Shen, Qida; Wang, Shigui; Xu, Hongxing; Tang, Bin

    2017-01-01

    RNA interference has been used to study insects' gene function and regulation. Glycogen synthase (GS) and glycogen phosphorylase (GP) are two key enzymes in carbohydrates' conversion in insects. Glycogen content and GP and GS gene expression in several tissues and developmental stages of the Brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) were analyzed in the present study, using quantitative reverse-transcription polymerase chain reaction to determine their response to double-stranded trehalases (dsTREs), trehalose-6-phosphate synthases (dsTPSs), and validamycin injection. The highest expression of both genes was detected in the wing bud, followed by leg and head tissues, and different expression patterns were shown across the developmental stages analyzed. Glycogen content significantly decreased 48 and 72 h after dsTPSs injection and 48 h after dsTREs injection. GP expression increased 48 h after dsTREs and dsTPSs injection and significantly decreased 72 h after dsTPSs, dsTRE1-1, and dsTRE1-2 injection. GS expression significantly decreased 48 h after dsTPS2 and dsTRE2 injection and 72 h after dsTRE1-1 and dsTRE1-2 injection. GP and GS expression and glycogen content significantly decreased 48 h after validamycin injection. The GP activity significantly decreased 48 h after validamycin injection, while GS activities of dsTPS1 and dsTRE2 injection groups were significantly higher than that of double-stranded GFP (dsGFP) 48 h after injection, respectively. Thus, glycogen is synthesized, released, and degraded across several insect tissues according to the need to maintain stable trehalose levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  5. Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man

    DEFF Research Database (Denmark)

    Ørskov, Lotte; Bak, Jens Friis; Abildgaard, Ulrik

    1996-01-01

    The purpose of the present study was to evaluate the role of muscle glycogen synthase activity in the reduction of glucose uptake during hypoglycaemia. Six healthy young men were examined twice; during 120 min of hyperinsulinaemic (1.5 mU.kg-1. min-1) euglycaemia followed by: 1)240 min of graded ...

  6. Inhibition of Glycogen Synthase Kinase-3ß Enhances Cognitive Recovery after Stroke: The Role of TAK1

    Science.gov (United States)

    Venna, Venugopal Reddy; Benashski, Sharon E.; Chauhan, Anjali; McCullough, Louise D.

    2015-01-01

    Memory deficits are common among stroke survivors. Identifying neuroprotective agents that can prevent memory impairment or improve memory recovery is a vital area of research. Glycogen synthase kinase-3ß (GSK-3ß) is involved in several essential intracellular signaling pathways. Unlike many other kinases, GSK-3ß is active only when…

  7. Glycogen synthase kinase-3β in patients with bipolar I disorder

    DEFF Research Database (Denmark)

    Jacoby, Anne S; Munkholm, Klaus; Vinberg, Maj

    2016-01-01

    OBJECTIVES: The enzyme glycogen synthase kinase-3β (GSK3β) is involved in the mechanisms of action of lithium and may play a role in relation to affective states in bipolar disorder. The objectives of the present study were to compare the activity of GSK-3β (measured as levels of phosphorylated GSK......-3β [p-GSK-3β]) between patients with bipolar disorder in the euthymic state and healthy control subjects, and to investigate whether GSK-3β activity varies with affective states in patients with bipolar I disorder. METHODS: In a prospective 6-12-month follow-up study, we investigated state......-specific, intraindividual alterations in the activity of GSK-3β in 60 patients with bipolar I disorder with an acute severe manic index episode and in subsequent euthymic, depressive and manic states and compared this with repeated measurements in healthy control subjects. Data were analyzed using linear mixed...

  8. Lithium Impairs Kidney Development and Inhibits Glycogen Synthase Kinase-3β in Collecting Duct Principal Cells

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    level significantly whereas total GSK-3β abundance was unaltered. Li+ treatment increased α-Smooth Muscle Actin (α-SMA) protein level significantly whereas E-cadherin expression was unaltered. In summary, Li+ treatment impairs postnatal development of the kidney cortex and outer medulla and increases pGSK......The postnatal rat kidney is highly susceptible to Lithium (Li+), which leads to significant tissue injury. We hypothesized that Li+ impairs development of the kidney through entry into epithelial cells of the distal nephron, inhibition of Glycogen Synthase Kinase-3β (GSK-3β) through phosphorylation...... on serine9 (pGSK-3β)and subsequent epithelial to mesenchymal dedifferentiation (EMT). GSK-3β immunoreactive protein was associated with collecting ducts in developing and adult human and rat kidney. Total GSK-3β protein abundance was stable in medulla while it decreased in cortex in the postnatal period...

  9. Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix.

    Science.gov (United States)

    Li, Hongyan; Jeong, Hyung Min; Choi, You Hee; Lee, Sung Ho; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl

    2013-05-10

    Osteoblast-specific transcription factor Osterix is a zinc-finger transcription factor that required for osteoblast differentiation and new bone formation. The function of Osterix can be modulated by post-translational modification. Glycogen synthase kinase 3 alpha (GSK3α) is a multifunctional serine/threonine protein kinase that plays a role in the Wnt signaling pathways and is implicated in the control of several regulatory proteins and transcription factors. In the present study, we investigated how GSK3α regulates Osterix during osteoblast differentiation. Wide type GSK3α up-regulated the protein level, protein stability and transcriptional activity of Osterix. These results suggest that GSK3α regulates osteogenic activity of Osterix. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    Science.gov (United States)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  11. Glycogen Synthase Kinase 3 Inhibitors in the Next Horizon for Alzheimer's Disease Treatment

    Directory of Open Access Journals (Sweden)

    Ana Martinez

    2011-01-01

    Full Text Available Glycogen synthase kinase 3 (GSK-3, a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimer's disease (AD being probably the link between β-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper.

  12. Redox Switch for the Inhibited State of Yeast Glycogen Synthase Mimics Regulation by Phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingan, Krishna K.; Baskaran†, Sulochanadevi; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D. (Indiana-Med)

    2017-01-10

    Glycogen synthase (GS) is the rate limiting enzyme in the synthesis of glycogen. Eukaryotic GS is negatively regulated by covalent phosphorylation and allosterically activated by glucose-6-phosphate (G-6-P). To gain structural insights into the inhibited state of the enzyme, we solved the crystal structure of yGsy2-R589A/R592A to a resolution of 3.3 Å. The double mutant has an activity ratio similar to the phosphorylated enzyme and also retains the ability to be activated by G-6-P. When compared to the 2.88 Å structure of the wild-type G-6-P activated enzyme, the crystal structure of the low-activity mutant showed that the N-terminal domain of the inhibited state is tightly held against the dimer-related interface thereby hindering acceptor access to the catalytic cleft. On the basis of these two structural observations, we developed a reversible redox regulatory feature in yeast GS by substituting cysteine residues for two highly conserved arginine residues. When oxidized, the cysteine mutant enzyme exhibits activity levels similar to the phosphorylated enzyme but cannot be activated by G-6-P. Upon reduction, the cysteine mutant enzyme regains normal activity levels and regulatory response to G-6-P activation.

  13. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    International Nuclear Information System (INIS)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-01-01

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and]2number 2 PO 4 /mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the 34 PO 4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro

  14. Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects.

    Science.gov (United States)

    Jensen, Jørgen; Tantiwong, Puntip; Stuenæs, Jorid T; Molina-Carrion, Marjorie; DeFronzo, Ralph A; Sakamoto, Kei; Musi, Nicolas

    2012-07-01

    Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of Vo(2max)). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K(m) for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser(641), Ser(645), and Ser(645,649,653,657)), and phosphorylation of these sites remained decreased after 3.5 h; Ser⁷ phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K(m) for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.

  15. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity

    DEFF Research Database (Denmark)

    Gaster, Michael; Petersen, Ingrid; Højlund, Kurt

    2002-01-01

    The most well-described defect in the pathophysiology of type 2 diabetes is reduced insulin-mediated glycogen synthesis in skeletal muscles. It is unclear whether this defect is primary or acquired secondary to dyslipidemia, hyperinsulinemia, or hyperglycemia. We determined the glycogen synthase...

  16. The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure

    DEFF Research Database (Denmark)

    Gaster, M; Schrøder, H D; Handberg, A

    2001-01-01

    results show that chronic exposure of human myotubes to high insulin with or without high glucose did not affect the basal kinetic parameters but abolished the reactivity of GS to acute insulin stimulation. We suggest that insulin induced insulin resistance of GS is caused by a failure of acute insulin......There is no consensus regarding the results from in vivo and in vitro studies on the impact of chronic high insulin and/or high glucose exposure on acute insulin stimulation of glycogen synthase (GS) kinetic parameters in human skeletal muscle. The aim of this study was to evaluate the kinetic...... parameters of glycogen synthase activity in human myotube cultures at conditions of chronic high insulin combined or not with high glucose exposure, before and after a subsequent acute insulin stimulation. Acute insulin stimulation significantly increased the fractional activity (FV(0.1)) of GS, increased...

  17. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Staehr, Peter; Hansen, Bo Falck

    2003-01-01

    In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites......, but the mechanism involved in human muscle and the defect in type 2 diabetes remain unclear. We studied the effect of insulin at physiological concentrations on glucose metabolism, insulin signaling and phosphorylation of GS in skeletal muscle from type 2 diabetic and well-matched control subjects during euglycemic......-hyperinsulinemic clamps. Analysis using phospho-specific antibodies revealed that insulin decreases phosphorylation of sites 3a + 3b in human muscle, and this was accompanied by activation of Akt and inhibition of glycogen synthase kinase-3alpha. In type 2 diabetic subjects these effects of insulin were fully intact...

  18. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  19. Imidazopyridine-based inhibitors of glycogen synthase kinase 3: synthesis and evaluation of amide isostere replacements of the carboxamide scaffold.

    Science.gov (United States)

    Yngve, Ulrika; Söderman, Peter; Svensson, Mats; Rosqvist, Susanne; Arvidsson, Per I

    2012-11-01

    In this study, we explored the effect of bioisostere replacement in a series of glycogen synthase kinase 3 (GSK3) inhibitors based on the imidazopyridine core. The synthesis and biological evaluation of a number of novel sulfonamide, 1,2,4-oxadiazole, and thiazole derivates as amide bioisosteres, as well as a computational rationalization of the obtained results are reported. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    International Nuclear Information System (INIS)

    Hegazy, M.G.; Reimann, E.M.; Thysseril, T.J.; Schlender, K.K.

    1986-01-01

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca 2+ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting 32 P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated 32 P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor

  1. Low birth weight and zygosity status is associated with defective muscle glycogen and glycogen synthase regulation in elderly twins

    DEFF Research Database (Denmark)

    Poulsen, Pernille; Wojtaszewski, Jørgen; Richter, Erik

    2007-01-01

    OBJECTIVE: An adverse intrauterine environment indicated by both low birth weight and monozygosity is associated with an age- or time-dependent reduction in glucose disposal and nonoxidative glucose metabolism in twins, suggesting impaired regulation of muscle glycogen synthesis. RESEARCH DESIGN ...

  2. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hoseok Choi

    2016-04-01

    Full Text Available Assaying the glycogen synthase kinase-3 (GSK3 activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  3. Glycogen synthase kinase-3: A promising therapeutic target for Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Marjelo M. Mines

    2011-11-01

    Full Text Available Recent advances in understanding the pathophysiological mechanisms contributing to Fragile X Syndrome (FXS have increased optimism that drug interventions can provide significant therapeutic benefits. FXS results from inadequate expression of functional fragile X mental retardation protein (FMRP. FMRP may have several functions, but it is most well-established as an RNA-binding protein that regulates translation, and it is by this mechanism that FMRP is capable of affecting numerous cellular processes by selectively regulating protein levels. The multiple cellular functions regulated by FMRP suggest that multiple interventions may be required for reversing the effects of deficient FMRP. Evidence that inhibitors of glycogen synthase kinase-3 (GSK3 may contribute to the therapeutic treatment of FXS is reviewed here. In the mouse model of FXS, which lacks FMRP expression (FX mice, GSK3 is hyperactive in several brain regions. Furthermore, significant improvements in several FX-related phenotypes have been obtained in FX mice following the administration of lithium, and in some case other GSK3 inhibitors. These responses include normalization of heightened audiogenic seizure susceptibility and of hyperactive locomotor behavior, enhancement of passive avoidance learning retention and of sociability behaviors, and corrections of macroorchidism, neuronal spine density, and neural plasticity measured electrophysiologically as long term depression. A pilot clinical trial of lithium in FXS patients also found improvements in several measures of behavior. Taken together, these findings indicate that lithium and other inhibitors of GSK3 are promising candidate therapeutic agents for treating FXS.

  4. Glycogen Synthase Kinase 3β Inhibition as a Therapeutic Approach in the Treatment of Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2013-08-01

    Full Text Available Alternative strategies beyond current chemotherapy and radiation therapy regimens are needed in the treatment of advanced stage and recurrent endometrial cancers. There is considerable promise for biologic agents targeting the extracellular signal-regulated kinase (ERK pathway for treatment of these cancers. Many downstream substrates of the ERK signaling pathway, such as glycogen synthase kinase 3β (GSK3β, and their roles in endometrial carcinogenesis have not yet been investigated. In this study, we tested the importance of GSK3β inhibition in endometrial cancer cell lines and in vivo models. Inhibition of GSK3β by either lithium chloride (LiCl or specific GSK3β inhibitor VIII showed cytostatic and cytotoxic effects on multiple endometrial cancer cell lines, with little effect on the immortalized normal endometrial cell line. Flow cytometry and immunofluorescence revealed a G2/M cell cycle arrest in both type I (AN3CA, KLE, and RL952 and type II (ARK1 endometrial cancer cell lines. In addition, LiCl pre-treatment sensitized AN3CA cells to the chemotherapy agent paclitaxel. Administration of LiCl to AN3CA tumor-bearing mice resulted in partial or complete regression of some tumors. Thus, GSK3β activity is associated with endometrial cancer tumorigenesis and its pharmacologic inhibition reduces cell proliferation and tumor growth.

  5. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Science.gov (United States)

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  6. Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics.

    Science.gov (United States)

    Li, Xiaohua; Rosborough, Kelley M; Friedman, Ari B; Zhu, Wawa; Roth, Kevin A

    2007-02-01

    Glycogen synthase kinase-3 (GSK3) has been recognized as an important enzyme that modulates many aspects of neuronal function. Accumulating evidence implicates abnormal activity of GSK3 in mood disorders and schizophrenia, and GSK3 is a potential protein kinase target for psychotropics used in these disorders. We previously reported that serotonin, a major neurotransmitter involved in mood disorders, regulates GSK3 by acutely increasing its N-terminal serine phosphorylation. The present study was undertaken to further determine if atypical antipsychotics, which have therapeutic effects in both mood disorders and schizophrenia, can regulate phospho-Ser-GSK3 and inhibit its activity. The results showed that acute treatment of mice with risperidone rapidly increased the level of brain phospho-Ser-GSK3 in the cortex, hippocampus, striatum, and cerebellum in a dose-dependent manner. Regulation of phospho-Ser-GSK3 was a shared effect among several atypical antipsychotics, including olanzapine, clozapine, quetiapine, and ziprasidone. In addition, combination treatment of mice with risperidone and a monoamine reuptake inhibitor antidepressant imipramine or fluoxetine elicited larger increases in brain phospho-Ser-GSK3 than each agent alone. Taken together, these results provide new information suggesting that atypical antipsychotics, in addition to mood stabilizers and antidepressants, can inhibit the activity of GSK3. These findings may support the pharmacological mechanisms of atypical antipsychotics in the treatment of mood disorders.

  7. Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease.

    Science.gov (United States)

    Tao, Shixin; Kakade, Vijayakumar R; Woodgett, James R; Pandey, Pankaj; Suderman, Erin D; Rajagopal, Madhumitha; Rao, Reena

    2015-06-01

    Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and has a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin-mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly upregulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct-specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed down the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function, and extended life span. GSK3β inhibition also reduced pERK, c-Myc, and cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β has a novel functional role in PKD pathophysiology, and its inhibition may be therapeutically useful to slow down cyst expansion and progression of PKD.

  8. Aberrant glycogen synthase kinase 3β in the development of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Takeo Shimasaki

    2012-01-01

    Full Text Available Development and progression of pancreatic cancer involves general metabolic disorder, local chronic inflammation, and multistep activation of distinct oncogenic molecular pathways. These pathologic processes result in a highly invasive and metastatic tumor phenotype that is a major obstacle to curative surgical intervention, infusional gemcitabine-based chemotherapy, and radiation therapy. Many clinical trials with chemical compounds and therapeutic antibodies targeting growth factors, angiogenic factors, and matrix metalloproteinases have failed to demonstrate definitive therapeutic benefits to refractory pancreatic cancer patients. Glycogen synthase kinase 3β (GSK3β, a serine/threonine protein kinase, has emerged as a therapeutic target in common chronic and progressive diseases, including cancer. Here we review accumulating evidence for a pathologic role of GSK3β in promoting tumor cell survival, proliferation, invasion, and resistance to chemotherapy and radiation in pancreatic cancer. We also discuss the putative involvement of GSK3β in mediating metabolic disorder, local inflammation, and molecular alteration leading to pancreatic cancer development. Taken together, we highlight potential therapeutic as well as preventive effects of GSK3β inhibition in pancreatic cancer.

  9. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  10. Parallel evolution of the glycogen synthase 1 (muscle) gene Gys1 between Old World and New World fruit bats (Order: Chiroptera).

    Science.gov (United States)

    Fang, Lu; Shen, Bin; Irwin, David M; Zhang, Shuyi

    2014-10-01

    Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.

  11. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    Science.gov (United States)

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  12. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    Science.gov (United States)

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  13. The Antimalarial Effect of Curcumin Is Mediated by the Inhibition of Glycogen Synthase Kinase-3β.

    Science.gov (United States)

    Ali, Amatul Hamizah; Sudi, Suhaini; Basir, Rusliza; Embi, Noor; Sidek, Hasidah Mohd

    2017-02-01

    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.

  14. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation1

    Science.gov (United States)

    Kadouche, Derifa; Arias, Maria Cecilia

    2016-01-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  15. Eckmaxol, a Phlorotannin Extracted from Ecklonia maxima, Produces Anti-β-amyloid Oligomer Neuroprotective Effects Possibly via Directly Acting on Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Jialing; Zheng, Jiachen; Huang, Chunhui; Zhao, Jiaying; Lin, Jiajia; Zhou, Xuezhen; Naman, C Benjamin; Wang, Ning; Gerwick, William H; Wang, Qinwen; Yan, Xiaojun; Cui, Wei; He, Shan

    2018-04-10

    Alzheimer's disease is a progressive neurodegenerative disorder that mainly affects the elderly. Soluble β-amyloid oligomer, which can induce neurotoxicity, is generally regarded as the main neurotoxin in Alzheimer's disease. Here we report that eckmaxol, a phlorotannin extracted from the brown alga Ecklonia maxima, could produce neuroprotective effects in SH-SY5Y cells. Eckmaxol effectively prevented but did not rescue β-amyloid oligomer-induced neuronal apoptosis and increase of intracellular reactive oxygen species. Eckmaxol also significantly reversed the decreased expression of phospho-Ser9-glycogen synthase kinase 3β and increased expression of phospho-extracellular signal-regulated kinase, which was induced by Aβ oligomer. Moreover, both glycogen synthase kinase 3β and mitogen activated protein kinase inhibitors produced neuroprotective effects in SH-SY5Y cells. Furthermore, eckmaxol showed favorable interaction in the ATP binding site of glycogen synthase kinase 3β and mitogen activated protein kinase. These results suggested that eckmaxol might produce neuroprotective effects via concurrent inhibition of glycogen synthase kinase 3β and extracellular signal-regulated kinase pathways, possibly via directly acting on glycogen synthase kinase 3β and mitogen activated protein kinase. Based on the central role that β-amyloid oligomers play in the pathogenesis of Alzheimer's disease and the high annual production of Ecklonia maxima for alginate and other nutritional ingredients, this report represents a new candidate for the treatment of Alzheimer's disease, and also expands the potential application of Ecklonia maxima and its constituents in the field of pharmacology.

  16. Hypothalamic glycogen synthase kinase 3β has a central role in the regulation of food intake and glucose metabolism

    OpenAIRE

    Benzler, Jonas; Ganjam, Goutham K.; Krüger, Manon; Pinkenburg, Olaf; Kutschke, Maria; Stöhr, Sigrid; Steger, Juliane; Koch, Christiane E.; Ölkrug, Rebecca; Schwartz, Michael W.; Shepherd, Peter R.; Grattan, David R.; Tups, Alexander

    2012-01-01

    GSK3β (glycogen synthase kinase 3β) is a ubiquitous kinase that plays a key role in multiple intracellular signalling pathways, and increased GSK3β activity is implicated in disorders ranging from cancer to Alzheimer’s disease. In the present study, we provide the first evidence of increased hypothalamic signalling via GSK3β in leptin-deficient Lepob/ob mice and show that intracerebroventricular injection of a GSK3β inhibitor acutely improves glucose tolerance in these mice. The beneficial ef...

  17. The role of glycogen synthase in the development of hyperglycemia in type 2 diabetes - 'To store or not to store glucose, that's the question'

    DEFF Research Database (Denmark)

    Beck-Nielsen, Henning

    2012-01-01

    This review deals with the role of glycogen storage in skeletal muscle for the development of insulin resistance and type 2 diabetes. Specifically, the role of the enzyme glycogen synthase, which seems to be locked in its hyperphosphorylated and inactivated state, is discussed. This defect seems ...... to be secondary to ectopic lipid disposition in the muscle cells. These molecular defects are discussed in the context of the overall pathophysiology of hyperglycemia in type 2 diabetic subjects. Copyright © 2012 John Wiley & Sons, Ltd....

  18. Glycogen synthase kinase-3: a key kinase in retinal neuron apoptosis in early diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Li Zhaohui; Ma Ling; Chen Xiaodong; Li Yonghao; Li Shiyi; Zhang Jinglin; Lu Lin

    2014-01-01

    Background Diabetes-related pathogenic factors can cause retinal ganglion cell (RGC) apoptosis,but the specific mechanism is not very clear.The aim of this study is to investigate the correlation between glycogen synthase kinase-3 (GSK-3) activation and retinal neuron apoptosis.Methods In an in vitro experiment,the number of apoptotic RGC-5 cells differentiated by staurosporine was evaluated via flow cytometry and nuclei staining using Hoechst 33258.GSK-3 phosphorylation and caspase-3 activation in RGC-5 cells after serum deprivation were determined using Western blotting.Mitochondrial membrane potential was detected using the dye 5,5',6,6'-tetrachloro-1,1',3,3'-tetrethyl benzimidalyl carbocyanine iodide,and reactive oxygen species (ROS) levels were measured with dihydroethidium.In an in vivo experiment,the number of apoptotic retinal neurons was evaluated via terminal transferase dUTP nick-end labeling (TUNEL),and GSK-3 phosphorylation was determined using Western blotting,in the retinal nerve epithelial tissue of rats in which diabetes was induced by intravenous tail-vein injection of streptozotocin for 4 weeks.Results The levels of phosphorylated Ser21/9 in GSK-3α/β and p-T308/S473-AKT were lower and the cleaved caspase-3 levels were higher in the serum-deprived model (P <0.05).Lithium chloride treatment was associated with a slower rate of apoptosis,increased mitochondrial membrane potential,and decreased ROS levels in differentiated RGC-5 cells (P <0.05).The level of blood glucose and the number of TUNEL-positive cells in the whole-mounted retinas were higher (P <0.01),and the levels of phosphorylated Ser21/9 in GSK-3α/β and body weight were lower (P <0.05).However,the thickness of the retinal nerve epithelial layer was not significantly less in diabetic rats compared with control group.Lithium chloride intravitreal injection increased the levels of phosphorylated Ser21/9 in GSK-3α/β and decreased TUNEL-positive cells in the whole-mounted retinas

  19. Regulation of basal gastric acid secretion by the glycogen synthase kinase GSK3.

    Science.gov (United States)

    Rotte, Anand; Pasham, Venkanna; Eichenmüller, Melanie; Yang, Wenting; Qadri, Syed M; Bhandaru, Madhuri; Lang, Florian

    2010-10-01

    According to previous observations, basal gastric acid secretion is downregulated by phosphoinositol-3-(PI3)-kinase, phosphoinositide-dependent kinase (PDK1), and protein kinase B (PKBβ/Akt2) signaling. PKB/Akt phosphorylates glycogen synthase kinase GSK3. The present study explored whether PKB/Akt-dependent GSK3-phosphorylation modifies gastric acid secretion. Utilizing 2',7'-bis-(carboxyethyl)-5(6')-carboxyfluorescein (BCECF)-fluorescence, basal gastric acid secretion was determined from Na(+)-independent pH recovery (∆pH/min) following an ammonium pulse, which reflects H(+)/K(+)-ATPase activity. Experiments were performed in gastric glands from gene-targeted mice (gsk3 ( KI )) with PKB/serum and glucocorticoid-inducible kinase (SGK)-insensitive GSKα,β, in which the serines within the PKB/SGK phosphorylation site were replaced by alanine (GSK3α(21A/21A), GSK3β(9A/9A)). The cytosolic pH in isolated gastric glands was similar in gsk3 ( KI ) and their wild-type littermates (gsk3 ( WT )). However, ∆pH/min was significantly larger in gsk3 ( KI ) than in gsk3 ( WT ) mice and ∆pH/min was virtually abolished by the H(+)/K(+)-ATPase inhibitor omeprazole (100 μM) in gastric glands from both gsk3 ( KI ) and gsk3 ( WT ). Plasma gastrin levels were lower in gsk3 ( KI ) than in gsk3 ( WT ). Both, an increase of extracellular K(+) concentration to 35 mM [replacing Na(+)/N-methyl-D: -glucamine (NMDG)] and treatment with forskolin (5 μM), significantly increased ∆pH/min to virtually the same value in both genotypes. The protein kinase A (PKA) inhibitor H89 (150 nM) and the H(2)-receptor antagonist ranitidine (100 μM) decreased ∆pH/min in gsk3 ( KI ) but not gsk3 ( WT ) and again abrogated the differences between the genotypes. The protein abundance of phosphorylated but not of total PKA was significantly larger in gsk3 ( KI ) than in gsk3 ( WT ). Basal gastric acid secretion is enhanced by the disruption of PKB/SGK-dependent phosphorylation and the

  20. Regulation of glycogen synthase kinase-3β (GSK-3β) after ionizing radiation

    International Nuclear Information System (INIS)

    Boehme, K.A.

    2006-12-01

    Glycogen Synthase Kinase-3β (GSK-3β) phosphorylates the Mdm2 protein in the central domain. This phosphorylation is absolutely required for p53 degradation. Ionizing radiation inactivates GSK-3β by phosphorylation at serine 9 and in consequence prevents Mdm2 mediated p53 degradation. During the work for my PhD I identified Akt/PKB as the kinase that phosphorylates GSK-3β at serine 9 after ionizing radiation. Ionizing radiation leads to phosphorylation of Akt/PKB at threonine 308 and serine 473. The PI3 Kinase inhibitor LY294002 completely abolished Akt/PKB serine 473 phosphorylation and prevented the induction of GSK-3β serine 9 phosphorylation after ionizing radiation. Interestingly, the most significant activation of Akt/PKB after ionizing radiation occurred in the nucleus while cytoplasmic Akt/PKB was only weakly activated after radiation. By using siRNA, I showed that Akt1/PKBa, but not Akt2/PKBβ, is required for phosphorylation of GSK- 3β at serine 9 after ionizing radiation. Phosphorylation and activation of Akt/PKB after ionizing radiation depends on the DNA dependent protein kinase (DNA-PK), a member of the PI3 Kinase family, that is activated by free DNA ends. Both, in cells from SCID mice and after knockdown of the catalytic subunit of DNA-PK by siRNA in osteosarcoma cells, phosphorylation of Akt/PKB at serine 473 and of GSK-3β at serine 9 was completely abolished. Consistent with the principle that phosphorylation of GSK-3 at serine 9 contributes to p53 stabilization after radiation, the accumulation of p53 in response to ionizing radiation was largely prevented by downregulation of DNA-PK. From these results I conclude, that ionizing radiation induces a signaling cascade that leads to Akt1/PKBa activation mediated by DNA-PK dependent phosphorylation of serine 473. After activation Akt1/PKBa phosphorylates and inhibits GSK-3β in the nucleus. The resulting hypophosphorylated form of Mdm2 protein is no longer able to degrade p53 which in

  1. The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise

    DEFF Research Database (Denmark)

    Aschenbach, W G; Suzuki, Y; Breeden, K

    2001-01-01

    In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase...... that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol....... Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction...

  2. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    International Nuclear Information System (INIS)

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-01-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3β (GSK-3β) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-α (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity

  3. Clinicopathological and biological significance of aberrant activation of glycogen synthase kinase-3 in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fu Y

    2014-06-01

    Full Text Available Yunfeng Fu,1 Xinyu Wang,1 Xiaodong Cheng,1 Feng Ye,2 Xing Xie,1,2 Weiguo Lu1,2 1Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, 2Women's Reproduction and Health Laboratory of Zhejiang Province, Hangzhou, People's Republic of China Background: Glycogen synthase kinase-3 (GSK-3 plays an important role in human cancer. The aim of this study is to evaluate the clinicopathological significance of expression of GSK-3α/β and pGSK-3α/βTyr279/216 in patients with epithelial ovarian cancer and to investigate whether GSK-3 inhibition can influence cell viability and tumor growth of ovarian cancer. Methods: Immunohistochemistry was used to examine expression of GSK-3α/β and pGSK-3α/βTyr279/216 in 71 human epithelial ovarian cancer tissues and correlations between protein expression, and clinicopathological factors were analyzed. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay following exposure of ovarian carcinoma cells to pharmacological inhibitors of GSK-3 or GSK-3 small interfering RNA. In vivo validation of tumor growth inhibition was performed with xenograft mice. Results: The expression levels of GSK-3α/β and pGSK-3α/βTyr279/216 in ovarian cancers were significantly higher than those in benign tumors. High expression of GSK-3α/β was more likely to be found in patients with advanced International Federation of Gynecology and Obstetrics (FIGO stages and high serum cancer antigen 125. Higher expression of pGSK-3α/βTyr279/216 was associated with advanced FIGO stages, residual tumor mass, high serum cancer antigen 125, and poor chemoresponse. Worse overall survival was revealed by Kaplan–Meier survival curves in patients with high expression of GSK-3α/β or pGSK-3α/βTyr279/216. Multivariate analysis indicated that FIGO stage, GSK-3α/β expression, and pGSK-3α/βTyr279/216 expression were independent prognostic factors for overall

  4. Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.

    2013-01-01

    The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

  5. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian B; Nielsen, Jakob N.; Birk, Jesper Bratz

    2004-01-01

    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). ...

  6. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Science.gov (United States)

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  7. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium

    DEFF Research Database (Denmark)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2012-01-01

    plasma lithium concentration of 1.0 mmol/L. Kidneys from lithium-treated rat pups exhibited dilated distal nephron segments with microcysts. Stereological analysis showed reduced cortex and outer medullary volumes. Lithium increased pGSK-3β and the proliferation marker PCNA protein abundances in cortex...... concentration capacity and diminished outer medullary volume. Histological sections of nephrectomy samples and a biopsy from 3 long-term lithium-treated patients showed multiple cortical microcysts that originated from normally appearing tubules. Microcysts were lined by a cuboidal PCNA-, GSK-3β- and pGSK-3β......It was hypothesized that lithium causes accelerated and permanent injury to the postnatally developing kidney through entry into epithelial cells of the distal nephron and inhibition of glycogen synthase kinase-3β (GSK-3β). GSK-3β immunoreactivity was associated with glomeruli, thick ascending limb...

  8. Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Højlund, Kurt; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2009-01-01

    Context: Insulin-stimulated glucose disposal is impaired in obesity and type 2 diabetes mellitus (T2DM) and is tightly linked to impaired skeletal muscle glucose uptake and storage. Impaired activation of glycogen synthase (GS) by insulin is a well-established defect in both obesity and T2DM....... The exaggerated insulin resistance in T2DM compared with obese subjects was not reflected by differences in site 3 phosphorylation but was accompanied by a significantly higher site 1b phosphorylation during insulin stimulation. Hyperphosphorylation of another Ca(2+)/calmodulin-dependent kinase-II target......, phospholamban-Thr17, was also evident in T2DM. Dephosphorylation of GS by phosphatase treatment fully restored GS activity in all groups. Conclusions: Dysregulation of GS phosphorylation plays a major role in impaired insulin regulation of GS in obesity and T2DM. In obesity, independent of T2DM...

  9. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts.

    Science.gov (United States)

    Flepisi, T B; Lochner, Amanda; Huisamen, Barbara

    2013-10-01

    Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.

  10. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β gene with differential expression patterns and regulatory functions.

    Directory of Open Access Journals (Sweden)

    Linjie Wang

    Full Text Available Glycogen synthase kinase 3 (GSK3α and GSK3β are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer's disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment.Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms.We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.

  11. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells.

    Science.gov (United States)

    Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon

    2013-12-01

    Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.

  12. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2+2a) phosphorylation

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Birk, Jesper Bratz; Richter, Erik

    2013-01-01

    Type 2 diabetes is characterized by reduced muscle glycogen synthesis. The key enzyme in this process, glycogen synthase (GS), is activated via proximal insulin signaling, but the exact molecular events remain unknown. We previously demonstrated that phosphorylation of Threonine-308 on Akt (p......Akt-T308), Akt2 activity, and GS activity in muscle were positivity associated with insulin sensitivity. Now, in the same study population, we determined the influence of several upstream elements in the canonical PI3K signaling on muscle GS activation. 181 non-diabetic twins were examined...

  13. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo.

    Science.gov (United States)

    Clough, Bret H; Zeitouni, Suzanne; Krause, Ulf; Chaput, Christopher D; Cross, Lauren M; Gaharwar, Akhilesh K; Gregory, Carl A

    2018-04-01

    Non-union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point-of-care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow-resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1-2 hours) exposure of osteoprogenitors to the GSK3β-inhibitor (2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO) at a concentration of 800 nM. Very-rapid-exposure-to-BIO (VRE-BIO) on either hMSCs or whole hBM resulted in the long-term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE-BIO treated hBM was tested in a rat spinal fusion model, VRE-BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE-BIO procedure may represent a rapid, safe, and point-of-care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. Stem Cells Translational Medicine 2018;7:342-353. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    Energy Technology Data Exchange (ETDEWEB)

    Manceur, Aziza P. [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Michael [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Holowacz, Tamara [Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Witterick, Ian [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Department of Otolaryngology, Head and Neck Surgery, University of Toronto, ON (Canada); Weksberg, Rosanna [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); McCurdy, Richard D. [The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); Warsh, Jerry J. [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Audet, Julie, E-mail: julie.audet@utoronto.ca [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada)

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  15. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  16. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    International Nuclear Information System (INIS)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  17. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition

    Science.gov (United States)

    Grieco, Steven F.; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S.; Beurel, Eléonore

    2016-01-01

    An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10 mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. PMID:27542584

  18. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking

    Science.gov (United States)

    Prasanna, Sivaprakasam; Daga, Pankaj R.; Xie, Aihua; Doerksen, Robert J.

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3α inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3α and GSK-3β isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the β isoform are the same in the α isoform, except that Asp133 in the β isoform is replaced by Glu196 in the α isoform. We prepared a homology model for GSK-3α, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the β isoform, and helped to explain the difference in their inhibitory activity.

  19. Hypothalamic glycogen synthase kinase 3β has a central role in the regulation of food intake and glucose metabolism.

    Science.gov (United States)

    Benzler, Jonas; Ganjam, Goutham K; Krüger, Manon; Pinkenburg, Olaf; Kutschke, Maria; Stöhr, Sigrid; Steger, Juliane; Koch, Christiane E; Ölkrug, Rebecca; Schwartz, Michael W; Shepherd, Peter R; Grattan, David R; Tups, Alexander

    2012-10-01

    GSK3β (glycogen synthase kinase 3β) is a ubiquitous kinase that plays a key role in multiple intracellular signalling pathways, and increased GSK3β activity is implicated in disorders ranging from cancer to Alzheimer's disease. In the present study, we provide the first evidence of increased hypothalamic signalling via GSK3β in leptin-deficient Lep(ob/ob) mice and show that intracerebroventricular injection of a GSK3β inhibitor acutely improves glucose tolerance in these mice. The beneficial effect of the GSK3β inhibitor was dependent on hypothalamic signalling via PI3K (phosphoinositide 3-kinase), a key intracellular mediator of both leptin and insulin action. Conversely, neuron-specific overexpression of GSK3β in the mediobasal hypothalamus exacerbated the hyperphagia, obesity and impairment of glucose tolerance induced by a high-fat diet, while having little effect in controls fed standard chow. These results demonstrate that increased hypothalamic GSK3β signalling contributes to deleterious effects of leptin deficiency and exacerbates high-fat diet-induced weight gain and glucose intolerance.

  20. The canonical wnt signal restricts the glycogen synthase kinase 3/fbw7-dependent ubiquitination and degradation of eya1 phosphatase.

    Science.gov (United States)

    Sun, Ye; Li, Xue

    2014-07-01

    Haploinsufficiency of Eya1 causes the branchio-oto-renal (BOR) syndrome, and abnormally high levels of Eya1 are linked to breast cancer progression and poor prognosis. Therefore, regulation of Eya1 activity is key to its tissue-specific functions and oncogenic activities. Here, we show that Eya1 is posttranslationally modified by ubiquitin and that its ubiquitination level is self-limited to prevent premature degradation. Eya1 has an evolutionarily conserved CDC4 phosphodegron (CPD) signal, a target site of glycogen synthase kinase 3 (GSK3) kinase and Fbw7 ubiquitin ligase, which is required for Eya1 ubiquitination. Genetic deletion of Fbw7 and pharmacological inhibition of GSK3 significantly decrease Eya1 ubiquitination. Conversely, activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the canonical Wnt signal suppresses Eya1 ubiquitination. Compound Eya1(+/-); Wnt9b(+/-) mutants exhibit an increased penetrance of renal defect, indicating that they function in the same genetic pathway in vivo. Together, these findings reveal that the canonical Wnt and PI3K/Akt signal pathways restrain the GSK3/Fbw7-dependent Eya1 ubiquitination, and they further suggest that dysregulation of this novel axis contributes to tumorigenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  2. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3.

    Science.gov (United States)

    Feyt, Christine; Kienlen-Campard, Pascal; Leroy, Karelle; N'Kuli, Francisca; Courtoy, Pierre J; Brion, Jean-Pierre; Octave, Jean-Noël

    2005-09-30

    Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.

  3. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    International Nuclear Information System (INIS)

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-01-01

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  4. Possible Role of the Glycogen Synthase Kinase-3 Signaling Pathway in Trimethyltin-Induced Hippocampal Neurodegeneration in Mice

    Science.gov (United States)

    Kim, Sung-Ho; Kim, Jong-Choon; Wang, Hongbing; Shin, Taekyun; Moon, Changjong

    2013-01-01

    Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction. PMID:23940567

  5. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenyu Ma

    Full Text Available Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD, the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.

  6. Role of Glycogen Synthase Kinase-3β in APP Hyperphosphorylation Induced by NMDA Stimulation in Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Xanthi Antoniou

    2010-01-01

    Full Text Available The phosphorylation of Amyloid Precursor Protein (APP at Thr668 plays a key role in APP metabolism that is highly relevant to AD. The c-Jun-N-terminal kinase (JNK, glycogen synthase kinase-3β (GSK-3β and cyclin-dependent kinase 5 (Cdk5 can all be responsible for this phosphorylation. These kinases are activated by excitotoxic stimuli fundamental hallmarks of AD. The exposure of cortical neurons to a high dose of NMDA (100 μM for 30’-45’ led to an increase of P-APP Thr668. During NMDA stimulation APP hyperphosphorylation has to be assigned to GSK-3β activity, since addition of L803-mts, a substrate competitive inhibitor of GSK-3β reduced APP phosphorylation induced by NMDA. On the contrary, inhibition of JNK and Cdk5 with D-JNKI1 and Roscovitine respectively did not prevent NMDA-induced P-APP increase. These data show a tight connection, in excitotoxic conditions, between APP metabolism and the GSK-3β signaling pathway.

  7. Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory.

    Science.gov (United States)

    Wu, Ping; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Xu, Chun-Mei; Lu, Lin

    2011-07-01

    Exposure to cocaine-associated conditioned stimuli elicits craving and increases the probability of cocaine relapse in cocaine users even after extended periods of abstinence. Recent evidence indicates that cocaine seeking can be inhibited by disrupting the reconsolidation of the cocaine cue memories and that basolateral amygdala (BLA) neuronal activity plays a role in this effect. Previous studies demonstrated that glycogen synthase kinase 3β (GSK-3β) plays a role in the reconsolidation of fear memory. Here, we used a conditioned place preference procedure to examine the role of GSK-3β in the BLA in the reconsolidation of cocaine cue memories. GSK-3β activity in the BLA, but not central amygdala (CeA), in rats that acquired cocaine (10 mg/kg)-induced conditioned place preference increased after re-exposure to a previously cocaine-paired chamber (i.e., a memory reactivation procedure). Systemic injections of the GSK-3β inhibitor lithium chloride after memory reactivation impaired the reconsolidation of cocaine cue memories and inhibited subsequent cue-induced GSK-3β activity in the BLA. Basolateral amygdala, but not central amygdala, injections of SB216763, a selective inhibitor of GSK-3β, immediately after the reactivation of cocaine cue memories also disrupted cocaine cue memory reconsolidation and prevented cue-induced increases in GSK-3β activity in the BLA. The effect of SB216763 on the reconsolidation of cocaine cue memories lasted at least 2 weeks and was not recovered by a cocaine priming injection. These results indicate that GSK-3β activity in the BLA mediates the reconsolidation of cocaine cue memories. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  8. Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy.

    Directory of Open Access Journals (Sweden)

    Ayako Kitano

    Full Text Available BACKGROUND AND PURPOSE: The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer. METHODS: Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined. RESULTS: Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2 and decreased phosphorylation of focal adhesion kinase (FAK. The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts. CONCLUSION: The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.

  9. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Directory of Open Access Journals (Sweden)

    Marta ePardo

    2015-03-01

    Full Text Available ABSTRACTBrain glycogen synthase kinase-3 (GSK3 is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC. To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with wild-type mice. Environmental enrichment (EE increased NPC proliferation in male, but not female, GSK3 knockin mice and wild-type mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched wild-type mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 hr pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.

  10. Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis.

    Science.gov (United States)

    Tu, Chengyi; Xu, Robert; Koleti, Meghana; Zoldan, Janet

    2017-08-01

    Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome. Copyright © 2017. Published by Elsevier B.V.

  11. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    Directory of Open Access Journals (Sweden)

    Shailendra P. Singh

    2015-08-01

    Full Text Available Glycogen synthase kinase-3β (GSK3β is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.

  12. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  13. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    Science.gov (United States)

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of AMPA receptor signaling

    Science.gov (United States)

    Beurel, Eléonore; Grieco, Steven F; Amadei, Celeste; Downey, Kimberlee; Jope, Richard S

    2016-01-01

    Objectives Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. Methods In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. Results Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. Conclusions These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment. PMID:27687706

  15. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing

    Science.gov (United States)

    Shinde, Mansi Y.; Sidoli, Simone; Kulej, Katarzyna; Mallory, Michael J.; Radens, Caleb M.; Reicherter, Amanda L.; Myers, Rebecca L.; Barash, Yoseph; Lynch, Kristen W.; Garcia, Benjamin A.; Klein, Peter S.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3–dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3–dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3–dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro. RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3–dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing. PMID:28916722

  16. Glycogen Synthase Kinase-3 Modulates Hyperosmotic-Induced Urea Transporter A1 Relocation in the Inner Medullary Collecting Duct Cells.

    Science.gov (United States)

    Li, Yong-Xia; Huang, Yun; Liu, Song; Mao, Yan; Yuan, Cheng-Yan; Yang, Xiao; Yao, Li-Jun

    2016-01-01

    Glycogen synthase kinase 3 (GSK3) regulates urine concentration by mediating the vasopressin-induced aquaporin 2 expression and water permeability, although it is unknown whether GSK3 also mediates the accumulation of the urea transporter A1 (UT-A1). The aim of this study is to investigate the effect of GSK3 on UT-A1 distribution. Mouse inner medullary collecting duct 3 cells were transfected with UT-A1-GFP construct. The stable transfected cells were cultured under hypertonic conditions, treated with GSK3 inhibitor lithium chloride, GSK3 activator, lysosome or proteasome inhibitor. The expression levels of UT-A1, GSK3, and phospho-GSK3 were analyzed using western blot. The interaction between UT-A1 and the Golgi apparatus was examined using confocal immunofluorescence microscope. The UT-A1 trafficking was examined using the biotinylation of surface membranes. UT-A1 dissociated away from the Golgi apparatus and translocated to the plasma membrane under hypertonic-NaCl and NaCl plus urea stimulation. This movement was accompanied by the increased phosphorylation of GSK3 and its localization on the cellular membrane. Moreover, these results were duplicated by treating the cells with the GSK3 inhibitor, and by contrast, were partially reversed by the GSK3 activator. Treating cells with a lysosome or proteasome inhibitor failed to attenuate the effects of hypertonic stimulus, indicating that the loss of UT-A1 from the Golgi was not due to degradation. Our results suggest that GSK3 may in part modulate the hypertonic-induced intracellular UT-A1 redistribution and its accumulation on the plasma membrane, which may constitute another mechanism by which GSK3 modulates urine concentration. © 2016 S. Karger AG, Basel.

  17. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    Science.gov (United States)

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  18. Inhibition of glycogen synthase kinase-3 reduces extension of the axonal leading process by destabilizing microtubules in cerebellar granule neurons.

    Science.gov (United States)

    Inami, Yoshihiro; Omura, Mitsuru; Kubota, Kenta; Konishi, Yoshiyuki

    2018-07-01

    Recent studies have uncovered various molecules that play key roles in neuronal morphogenesis. Nevertheless, the mechanisms underlying the neuron-type-dependent regulation of morphogenesis remain unknown. We have previously reported that inhibition of glycogen synthase kinase-3 (GSK3) markedly reduced axonal length of cerebellar granule neurons (CGNs) in a neuron-type-dependent manner. In the present study, we investigated the mechanisms by which the growth of CGN axons was severely suppressed upon GSK3 inhibition. Using time-lapse imaging of cultured CGNs at early morphogenesis, we found that extension of the leading process was severely inhibited by the pharmacological inhibition of GSK3. The rate of somal migration was also reduced with a GSK3 inhibitor in dissociated culture as well as in microexplant culture. In addition, CGNs ectopically expressed with a catalytically inactive mutant of GSK3 exhibited a migration defect in vivo. In axonal leading processes of CGNs, detyrosination and acetylation of α-tubulin, which are known to correlate with microtubule stability, were decreased by GSK3 inhibition. A photoconversion analysis found that inhibition of GSK3 increases the turnover of microtubules. Furthermore, in the presence of paclitaxel, a microtubule-stabilizing reagent, inhibition of GSK3 recovered the axonal leading process extension that was reduced by paclitaxel. Our results suggest that GSK3 supports the extension of axonal processes by stabilizing microtubules, contrary to its function in other neuron-types, lending mechanical insight into neuron-type-dependent morphological regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    The aim of the present study was to determine whether short-term appropriate insulinization of Type 1 (insulin-dependent) diabetic patients in long-term poor glycaemic control (HbA1C > 9.5%) was associated with an adaptive regulation of the activity and gene expression of key proteins in muscle...... glycogen storage and glycolysis: glycogen synthase and phosphofructokinase, respectively. In nine diabetic patients biopsies of quadriceps muscle were taken before and 24-h after intensified insulin therapy and compared to findings in eight control subjects. Subcutaneous injections of rapid acting insulin...... were given at 3-h intervals to improve glycaemic control in diabetic patients (fasting plasma glucose decreased from 20.8 +/- 0.8 to 8.7 +/- 0.8 mmol/l whereas fasting serum insulin increased from 59 +/- 8 to 173 +/- 3 pmol/l). Before intensified insulin therapy, analysis of muscle biopsies from...

  20. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    International Nuclear Information System (INIS)

    Gupta, Vivek; Chitranshi, Nitin; You, Yuyi; Gupta, Veer; Klistorner, Alexander; Graham, Stuart

    2014-01-01

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF +/− animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling

  1. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels.

    Science.gov (United States)

    Yang, Ke; Guo, Yang; Stacey, William C; Harwalkar, Jyoti; Fretthold, Jonathan; Hitomi, Masahiro; Stacey, Dennis W

    2006-08-30

    The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.

  2. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vivek, E-mail: vivek.gupta@mq.edu.au [Australian School of Advanced Medicine, Macquarie University (Australia); Chitranshi, Nitin; You, Yuyi [Australian School of Advanced Medicine, Macquarie University (Australia); Gupta, Veer [School of Medical Sciences, Edith Cowan University, Perth (Australia); Klistorner, Alexander; Graham, Stuart [Australian School of Advanced Medicine, Macquarie University (Australia); Save Sight Institute, Sydney University, Sydney (Australia)

    2014-11-21

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF{sup +/−} animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling.

  3. Critical role of glycogen synthase kinase-3β in regulating the avian heterophil response to Salmonella enterica serovar Enteritidis

    Directory of Open Access Journals (Sweden)

    Michael eKogut

    2014-11-01

    Full Text Available A microarray-assisted gene expression screen of chicken heterophils revealed glycogen synthase kinase-3β (GSK-3β, a multifunctional Ser/Thr kinase, to be consistently up-regulated 30-180 min following stimulation with Salmonella enterica serovar Enteritidis (S. Enteritidis. The present study was designed to delineate the role of GSK-3β in regulating the innate function of chicken heterophils in response to S. Enteritidis exposure. Using a specific GSK-3β ELISA assay, 30 min after infection with S. Enteritidis, heterophils had a significant decrease in total GSK-3β, but a significant increase in phosphorylated GSK-3 (Ser9. By 60 min post-infection, there was no difference in the amount of phosphorylated GSK-3β (Ser9 in either the uninfected and infected heterophils. S. Enteritidis interaction with heterophils alters GSK-3 activity by stimulating phosphorylation at Ser9 and that peaks by 30 min post-infection. Further, inhibition of GSK3β with lithium chloride resulted in a significant decrease in NF-κB activation and expression of IL-6, but induces a significant increase in the expression of the anti-inflammatory cytokine, IL-10. Using a phospho-specific antibody array confirmed the phosphorylation of GSK-3β (Ser9 as well as the phosphorylation of the downstream cytokine-activated intracellular signaling pathway involved in stimulating immune responses, IκB, the IκB subunit IKK-β, and the NF-κB subunits p105, p65, and c-Rel. Our data revealed that the phosphorylation of GSK-3β (Ser9 is responsible for inducing and controlling an innate response to the bacteria. Our findings suggest that the repression of GSK-3 activity is beneficial to the host cell and may act as a target for treatment in controlling intestinal colonization in chickens. Further experiments will define the in vivo modulation of GSK-3 as a potential alternative to antibiotics in salmonella and other intestinal bacterial infections.

  4. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    OpenAIRE

    E. Ruchti; P.J. Roach; A.A. DePaoli-Roach; P.J. Magistretti; I. Allaman

    2016-01-01

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the ...

  5. Morphological Analysis of CDC2 and Glycogen Synthase Kinase 3β Phosphorylation as Markers of G2 → M Transition in Glioma

    Directory of Open Access Journals (Sweden)

    José Javier Otero

    2011-01-01

    Full Text Available G2 → M transition is a strategic target for glioma chemotherapy. Key players in G2 → M transition include CDC2 and glycogen synthase kinase 3β (GSK3β, which are highly regulated by posttranslational phosphorylation. This report is a morphological analysis of CDC2 and GSK3β phosphorylation using immunohistochemistry in gliomas with different biological properties. GBM showed a 2.8-fold and 5.6-fold increase in number of cells positive for pThr161CDC2 and a 4.2- and 6.9-fold increase in number of cells positive for pTyr15CDC2 relative to oligodendroglioma and ependymoma, respectively. Elevated labeling for inhibited phospho-CDC2 (pTyr15CDC correlates with elevated levels of phosphorylated glycogen synthase kinase 3β (GSK3β. 71% of the GBM cases showed intermediate to high intensity staining for pSer9SGK3β 53% of oligodendroglioma, and 73% of ependymoma showed low intensity staining. CDC2 gene amplification correlates with increased survival in glioblastoma multiforme (GBM and astrocytoma WHO grades II-III, but not in oligodendroglioma WHO grades II-III.

  6. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice

    Science.gov (United States)

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-01-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl) phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle. PMID:28290602

  7. [Inhibition of glycogen synthase kinase 3b activity regulates Toll-like receptor 4-mediated liver inflammation].

    Science.gov (United States)

    Ren, Feng; Zhang, Hai-yan; Piao, Zheng-fu; Zheng, Su-jun; Chen, Yu; Chen, De-xi; Duan, Zhong-ping

    2012-09-01

    To determine the mechanism underlying the therapeutic activities of glycogen synthase kinase 3b (GSK3b) against hepatic ischemia-reperfusion (H-IR) injury by investigating the inhibitive effects of GSK3b on inflammation mediated by Toll-like receptor 4 (TLR4). C57BL/6 male mice were subjected to 90 min of warm liver cephalad lobe ischemia, followed by reperfusion for various lengths of time. The mice were divided into three groups: the H-IR untreated model (control group), and the H-IR inflammation-induced models that received an intraperitoneal injection of purified lipopolysaccharide (LPS) endotoxin alone (inflammation group) or with pretreatment of the SB216763 GSK3b-specific inhibitor (intervention group). To create a parallel isolated cell system for detailed investigations of macrophages, marrow-derived stem cells were isolated from femurs of the H-IR control group of mice and used to derive primary macrophages. The cells were then divided into the same three groups as the whole mouse system: control, LPS-induced inflammation model, and inflammation model with SB216763 intervention. Differential expressions of inflammation-related proteins and genes were detected by Western blotting and real-time quantitative PCR, respectively. The phosphorylation levels of ERK, JNK and p38 MAPK were induced in liver at 1 h after reperfusion, but then steadily decreased and returned to baseline levels by 4 h after reperfusion. In addition, the phosphorylation levels of ERK and JNK were induced in macrophages at 15 min after LPS stimulation, while the phosphorylation level of p38 MAPK was induced at 1 h; SB216763 pretreatment suppressed the LPS-stimulated ERK, JNK and p38 phosphorylation in macrophages. In the mouse model, GSK3b activity was found to promote the gene expression of anti-inflammatory cytokine IL-10 (control: 0.21 ± 0.08, inflammation: 0.83 ± 0.21, intervention: 1.76 ± 0.67; F = 3.16, P = 0.027) but to significantly inhibit the gene expression of pro

  8. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H

    1999-01-01

    been reported to increase the basal concentration of muscle GS mRNA in NIDDM patients to a level similar to that seen in control subjects although insulin-stimulated glucose disposal rates remain reduced in NIDDM patients. In the insulin resistant states examined so far, basal and insulin-stimulated......When whole body insulin-stimulated glucose disposal rate is measured in man applying the euglycaemic, hyperinsulinaemic clamp technique it has been shown that approximately 75% of glucose is taken up by skeletal muscle. After the initial transport step, glucose is rapidly phosphorylated to glucose...... critical roles in glucose oxidation/glycolysis and glucose storage, respectively. Glucose transporters and glycogen synthase activities are directly and acutely stimulated by insulin whereas the activities of hexokinases and phosphofructokinase may primarily be allosterically regulated. The aim...

  9. Discovery of novel 2-(4-aryl-2-methylpiperazin-1-yl)-pyrimidin-4-ones as glycogen synthase kinase-3β inhibitors.

    Science.gov (United States)

    Kohara, Toshiyuki; Nakayama, Kazuki; Watanabe, Kazutoshi; Kusaka, Shin-Ichi; Sakai, Daiki; Tanaka, Hiroshi; Fukunaga, Kenji; Sunada, Shinji; Nabeno, Mika; Saito, Ken-Ichi; Eguchi, Jun-Ichi; Mori, Akiko; Tanaka, Shinji; Bessho, Tomoko; Takiguchi-Hayashi, Keiko; Horikawa, Takashi

    2017-08-15

    We herein describe the results of further evolution of glycogen synthase kinase (GSK)-3β inhibitors from our promising compounds containing a 3-methylmorpholine moiety. Transformation of the morpholine moiety into a piperazine moiety resulted in potent GSK-3β inhibitors. SAR studies focused on the nitrogen atom of the piperazine moiety revealed that a phenyl group afforded potent inhibitory activity toward GSK-3β. Docking studies indicated that the phenyl group on the piperazine nitrogen atom and the methyl group on the piperazine make cation-π and CH-π interactions with GSK-3β respectively. 4-Methoxyphenyl analogue 29 showed most potent inhibitory activity toward GSK-3β with good in vitro and in vivo pharmacokinetic profiles, and 29 demonstrated a significant decrease in tau phosphorylation after oral administration in mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter...... volunteers. By applying inverse polymerase chain reaction and direct DNA sequencing, 532 base pairs (bp) of the GS promoter were identified and the transcriptional start site determined by primer extension. SSCP scanning of the promoter region detected five single nucleotide substitutions, positioned at 42......'-untranslated region, and the coding region of the GLUT4 gene showed four polymorphisms, all single nucleotide substitutions, positioned at -581, 1, 30, and 582. None of the three changes in the regulatory region of the gene had any major influence on expression of the GLUT4 gene in muscle. The variant at 582...

  11. Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis.

    Science.gov (United States)

    Li, Xiaowei; Jia, Zhihao; Wang, Weilin; Wang, Lingling; Liu, Zhaoqun; Yang, Bin; Jia, Yunke; Song, Xiaorui; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-08-01

    Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein kinase firstly identified as a regulator of glycogen synthesis. Recently, it has been proved to be a key regulator of the immune reaction. In the present study, a GSK3 homolog gene (designated as EsGSK3) was cloned from Chinese mitten crab, Eriocheir sinensis. The open reading frame (ORF) was 1824 bp, which encoded a predicted polypeptide of 607 amino acids. There was a conserved Serine/Threonine Kinase domain and a DNA binding domain found in EsGSK3. Phylogenetic analysis showed that EsGSK3 was firstly clustered with GSK3-β from oriental river prawn Macrobrachium nipponense in the invertebrate branch, while GSK3s from vertebrates formed the other distinct branch. EsGSK3 mRNA transcripts could be detected in all tested tissues of the crab including haepatopancreas, eyestalk, muscle, gonad, haemocytes and haematopoietic tissue with the highest expression level in haepatopancreas. And EsGSK3 protein was mostly detected in the cytoplasm of haemocyte by immunofluorescence analysis. The expression levels of EsGSK3 mRNA increased significantly at 6 h after Aeromonas hydrophila challenge (p level at 48 h (p > 0.05). The mRNA expression of lipopolysaccharide-induced tumor necrosis factor (TNF)-α factor (EsLITAF) was also induced by A. hydrophila challenge. However, the mRNA expression of EsLITAF and TNF-α production was significantly suppressed after EsGSK3 was blocked in vivo with specific inhibitor lithium, while the phagocytosis of crab haemocytes was significantly promoted. These results collectively demonstrated that EsGSK3 could regulate the innate immune responses of E. sinensis by promoting TNF-α production and inhibiting haemocyte phagocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis.

    Science.gov (United States)

    Sugden, P H; Fuller, S J; Weiss, S C; Clerk, A

    2008-03-01

    Glycogen synthase kinase 3 (GSK3, of which there are two isoforms, GSK3alpha and GSK3beta) was originally characterized in the context of regulation of glycogen metabolism, though it is now known to regulate many other cellular processes. Phosphorylation of GSK3alpha(Ser21) and GSK3beta(Ser9) inhibits their activity. In the heart, emphasis has been placed particularly on GSK3beta, rather than GSK3alpha. Importantly, catalytically-active GSK3 generally restrains gene expression and, in the heart, catalytically-active GSK3 has been implicated in anti-hypertrophic signalling. Inhibition of GSK3 results in changes in the activities of transcription and translation factors in the heart and promotes hypertrophic responses, and it is generally assumed that signal transduction from hypertrophic stimuli to GSK3 passes primarily through protein kinase B/Akt (PKB/Akt). However, recent data suggest that the situation is far more complex. We review evidence pertaining to the role of GSK3 in the myocardium and discuss effects of genetic manipulation of GSK3 activity in vivo. We also discuss the signalling pathways potentially regulating GSK3 activity and propose that, depending on the stimulus, phosphorylation of GSK3 is independent of PKB/Akt. Potential GSK3 substrates studied in relation to myocardial hypertrophy include nuclear factors of activated T cells, beta-catenin, GATA4, myocardin, CREB, and eukaryotic initiation factor 2Bvarepsilon. These and other transcription factor substrates putatively important in the heart are considered. We discuss whether cardiac pathologies could be treated by therapeutic intervention at the GSK3 level but conclude that any intervention would be premature without greater understanding of the precise role of GSK3 in cardiac processes.

  13. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  14. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Ze

    2010-02-01

    Full Text Available Abstract Background PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β in chemosensitivity. Methods We examined PMS2 and phosphorylated GSK-3β(s9 expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA, co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. Results We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9. Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Conclusions Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  15. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan [Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shu, Yi Min [Allergy and Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Wang, Shu Fang [Department of Pathology, Baylor College of Medicine, Houston, TX 77030 (United States); Da, Bang Hong; Wang, Ze Hua [Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Hua Bin [Allergy and Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Department of Medicine, Feinberg Medical School, Northwestern University, Chicago, IL 60611 (United States)

    2010-02-23

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  16. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Science.gov (United States)

    2010-01-01

    Background PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. Methods We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. Results We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Conclusions Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy. PMID:20178594

  17. Expression of mismatch repair gene PMS2 in nasopharyngeal carcinoma and regulation by glycogen synthase kinase-3β in vivo and in vitro.

    Science.gov (United States)

    Fang, Jugao; Lei, Wenbin; Huang, Xiaoming; Li, Pingdong; Chen, Xiaohong; Zhu, Xiaolin; Wen, Weiping; Li, Huabin

    2012-02-01

    To evaluate the expression of mismatch repair gene PMS2 in human nasopharyngeal carcinoma (NPC) tissues and evaluate the effect of glycogen synthase kinase (GSK)-3β on PMS2 production in vivo and in vitro. The expression of PMS2 and inactivated phosphorylated GSK-3β(s9) was examined by immunohistochemical staining in 25 NPC tissues and the relation was determined by correlation analysis. The effect of GSK-3β transfection in CNE-2 cells on PMS2 production as well as cell apoptosis and chemosensitization were evaluated using small interference RNA (siRNA), immunoblotting and flow cytometric analysis in vitro. The expression of inactivated phosphorylated GSK-3β(s9) was found to negative correlated with PMS2 in vivo. And transfected GSK-3β was found to be able to enhance PMS2 production, and increase cell apoptosis in CNE-2 cells in combination with cisplatin administration in vitro. Inactivation of GSK-3β might be important for NPC tumorgenesis through negatively regulating PMS2 production, and enhanced PMS2 production by GSK-3β is beneficial for understanding the NPC tumorgenesis and developing potential strategy for future therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    International Nuclear Information System (INIS)

    Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin

    2010-01-01

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy

  19. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. © 2016 AlphaMed Press.

  20. Synthesis and biological evaluation of glycogen synthase kinase 3 (GSK-3) inhibitors: an fast and atom efficient access to 1-aryl-3-benzylureas.

    Science.gov (United States)

    Monte, Fabio Lo; Kramer, Thomas; Boländer, Alexander; Plotkin, Batya; Eldar-Finkelman, Hagit; Fuertes, Ana; Dominguez, Juan; Schmidt, Boris

    2011-09-15

    The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of Alzheimer's disease (AD). In the course of our research topic we synthesized a library of potent GSK-3 inhibitors. We utilized the urea scaffold present in the potent and highly selective GSK-3 inhibitor AR-A014418 (AstraZeneca). This moiety suits both (a) a convergent approach utilizing readily accessible building blocks and (b) a divergent approach based on a microwave heating assisted Suzuki coupling. We established a chromatography-free purification method to generate products with sufficient purity for the biological assays. The structure-activity relationship of the library provided the rationale for the synthesis of the benzothiazolylurea 66 (IC(50)=140 nM) and the pyridylurea 62 (IC(50)=98 nM), which displayed two to threefold enhanced activity versus the reference compound 18 (AR-A014418: IC(50)=330 nM) in our assays. Copyright © 2011. Published by Elsevier Ltd.

  1. Hypoxic inactivation of glycogen synthase kinase-3β promotes gastric tumor growth and angiogenesis by facilitating hypoxia-inducible factor-1 signaling.

    Science.gov (United States)

    Ko, Young San; Cho, Sung Jin; Park, Jinju; Choi, Yiseul; Lee, Jae-Seon; Youn, Hong-Duk; Kim, Woo Ho; Kim, Min A; Park, Jong-Wan; Lee, Byung Lan

    2016-09-01

    Since the molecular mechanism of hypoxic adaptation in cancer cells is cell-type specific, we investigated whether glycogen synthase kinase-3β (GSK-3β) activation is involved in hypoxia-induced gastric tumor promotion. Stable gastric cancer cell lines (SNU-638, SNU-484, MKN1, and MKN45) were cultured under hypoxic conditions. Cells overexpressing wild-type GSK-3β (WT-GSK-3β) or kinase-dead mutant of GSK-3β (KD-GSK-3β) were generated and used for cell culture and animal studies. In cell culture experiments, hypoxia decreased GSK-3β activation in gastric cancer cells. Cell viability and the expressions of HIF-1α protein and VEGF mRNA in gastric cancer cells were higher in KD-GSK-3β transfectants than in WT-GSK-3β transfectants under hypoxic conditions, but not under normoxic conditions. Gastric cancer xenografts showed that tumor growth, microvessel area, HIF-1α activation, and VEGF expression were higher in KD-GSK-3β tumors than in WT-GSK-3β tumors in vivo. In addition, the expression of hypoxia-induced HIF-1α protein was regulated by GSK-3β at the translational level. Our data suggest that GSK-3β is involved in hypoxic adaptation of gastric cancer cells as an inhibitory upstream regulator of the HIF-1α/VEGF signaling pathway. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  2. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity

    Directory of Open Access Journals (Sweden)

    Karthi Shanmugam

    2018-01-01

    Full Text Available Acute myocardial infarction (AMI is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R injury (IRI using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3β (GSK3β, which was confirmed by a biochemical assay and molecular docking studies.

  3. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity.

    Science.gov (United States)

    Shanmugam, Karthi; Ravindran, Sriram; Kurian, Gino A; Rajesh, Mohanraj

    2018-01-01

    Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3 β (GSK3 β ), which was confirmed by a biochemical assay and molecular docking studies.

  4. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    Science.gov (United States)

    Zhou, Mingjie; Ren, Huanhuan; Wang, Wenjuan; Zheng, Qiusheng; Wang, Dong

    2015-01-01

    Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dt max) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dt max, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R. PMID:26265983

  5. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Science.gov (United States)

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  6. Maintained activity of glycogen synthase kinase-3β despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    International Nuclear Information System (INIS)

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-01-01

    Glycogen synthase kinase-3β (GSK3β) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3β. However, the inactive form of GSK3β which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3β substrates, such as β-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3β at serine-9 and other substrates including tau, β-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3β inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3β may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3β inhibitors could be a valuable drug candidate in AD.

  7. Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    Directory of Open Access Journals (Sweden)

    Hyo Jeong Kim

    2013-01-01

    Full Text Available Carbon monoxide (CO may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3 and phosphatidylinositol 3-kinase (PI3K-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  8. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β.

    Science.gov (United States)

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  9. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor

    Science.gov (United States)

    Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing

    2016-01-01

    Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944

  10. Glycogen synthase kinase-3β facilitates cell apoptosis induced by high fluence low-power laser irradiation through acceleration of Bax translocation

    Science.gov (United States)

    Huang, Lei; Wu, Shengnan; Xing, Da

    2011-03-01

    Glycogen synthase kinase-3β (GSK-3β) is a critical activator of cell apoptosis induced by a diverse array of insults. However, the effects of GSK-3β on the human lung adenocarcinoma cell (ASTC-a-1) apoptosis induced by high fluence low-power laser irradiation (HF-LPLI) are not clear. Here, we showed that GSK-3β was constantly translocated from cytoplasm to nucleus and activated during HF-LPLI-induced cell apoptosis. In addition, we found that co-overexpression of YFP-GSK-3β and CFP-Bax in ASTC-a-1 cells accelerated both Bax translocations to mitochondria and cell apoptosis, compared to the cells expressed CFP-Bax only under HF-LPLI treatment, indicating that GSK-3β facilitated ASTC-a-1 cells apoptosis through acceleration mitochondrial translocation of Bax. Our results demonstrate that GSK-3β exerts some of its pro-apoptotic effects in ASTC-a-1 cells by regulating the mitochondrial localization of Bax, a key component of the intrinsic apoptotic cascade.

  11. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  12. Presence of the glycogen synthase 1 (GYS1) mutation causing type 1 polysaccharide storage myopathy in continental European draught horse breeds.

    Science.gov (United States)

    Baird, J D; Valberg, S J; Anderson, S M; McCue, M E; Mickelson, J R

    2010-11-13

    The purpose of this study was to determine which continental European draught horse breeds harbour a mutation in the glycogen synthase 1 gene (GYS1) that is known to be responsible for type 1 polysaccharide storage myopathy in quarter horses and North American draught horses. Of a non-random selection of continental European draught horses belonging to 13 breeds, 62 per cent (250 of 403) tested were found to carry the mutant allele. The horses were located in Belgium, France, Germany, The Netherlands, Spain and Sweden. The mutation was identified in animals from each of the breeds examined. In the breeds in which more than 15 animals were available for testing, the highest percentages of GYS1-positive horses were found in the Belgian trekpaard (92 per cent; 35 of 38 horses tested), Comtois (80 per cent; 70 of 88), Netherlands trekpaard (74 per cent; 17 of 23), Rheinisch-Deutsches kaltblut (68 per cent; 30 of 44) and Breton (64 per cent; 32 of 51).

  13. Chronic inhibition of glycogen synthase kinase-3 protects against rotenone-induced cell death in human neuron-like cells by increasing BDNF secretion.

    Science.gov (United States)

    Giménez-Cassina, Alfredo; Lim, Filip; Díaz-Nido, Javier

    2012-12-07

    Mitochondrial dysfunction is a common feature of many neurodegenerative disorders. Likewise, activation of glycogen synthase kinase-3 (GSK-3) has been proposed to play an important role in neurodegeneration. This multifunctional protein kinase is involved in a number of cellular functions and we previously showed that chronic inhibition of GSK-3 protects neuronal cells against mitochondrial dysfunction-elicited cell death, through a mechanism involving increased glucose metabolism and the translocation of hexokinase II (HKII) to mitochondria. Here, we sought to gain deeper insight into the molecular basis of this neuroprotection. We found that chronic inhibition of GSK-3, either genetically or pharmacologically, elicited a marked increase in brain-derived neurotrophic factor (BDNF) secretion, which in turn conferred resistance to mitochondrial dysfunction through subcellular re-distribution of HKII. These results define a molecular pathway through which chronic inhibition of GSK-3 may protect neuronal cells from death. Moreover, they highlight the potential benefits of enhanced neurotrophic factor secretion as a therapeutic approach to treat neurodegenerative diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Lafora disease offers a unique window into neuronal glycogen metabolism.

    Science.gov (United States)

    Gentry, Matthew S; Guinovart, Joan J; Minassian, Berge A; Roach, Peter J; Serratosa, Jose M

    2018-05-11

    Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  16. Glucose dependence of glycogen synthase activity regulation by GSK3 and MEK/ERK inhibitors and angiotensin-(1-7) action on these pathways in cultured human myotubes.

    Science.gov (United States)

    Montori-Grau, Marta; Tarrats, Núria; Osorio-Conles, Oscar; Orozco, Anna; Serrano-Marco, Lucía; Vázquez-Carrera, Manuel; Gómez-Foix, Anna M

    2013-05-01

    Glycogen synthase (GS) is activated by glucose/glycogen depletion in skeletal muscle cells, but the contributing signaling pathways, including the chief GS regulator GSK3, have not been fully defined. The MEK/ERK pathway is known to regulate GSK3 and respond to glucose. The aim of this study was to elucidate the GSK3 and MEK/ERK pathway contribution to GS activation by glucose deprivation in cultured human myotubes. Moreover, we tested the glucose-dependence of GSK3 and MEK/ERK effects on GS and angiotensin (1-7) actions on these pathways. We show that glucose deprivation activated GS, but did not change phospho-GS (Ser640/1), GSK3β activity or activity-activating phosphorylation of ERK1/2. We then treated glucose-replete and -depleted cells with SB415286, U0126, LY294 and rapamycin to inhibit GSK3, MEK1/2, PI3K and mTOR, respectively. SB415286 activated GS and decreased the relative phospho-GS (Ser640/1) level, more in glucose-depleted than -replete cells. U0126 activated GS and reduced the phospho-GS (Ser640/1) content significantly in glucose-depleted cells, while GSK3β activity tended to increase. LY294 inactivated GS in glucose-depleted cells only, without affecting relative phospho-GS (Ser640/1) level. Rapamycin had no effect on GS activation. Angiotensin-(1-7) raised phospho-ERK1/2 but not phospho-GSK3β (Ser9) content, while it inactivated GS and increased GS phosphorylation on Ser640/1, in glucose-replete cells. In glucose-depleted cells, angiotensin-(1-7) effects on ERK1/2 and GS were reverted, while relative phospho-GSK3β (Ser9) content decreased. In conclusion, activation of GS by glucose deprivation is not due to GS Ser640/1 dephosphorylation, GSK3β or ERK1/2 regulation in cultured myotubes. However, glucose depletion enhances GS activation/Ser640/1 dephosphorylation due to both GSK3 and MEK/ERK inhibition. Angiotensin-(1-7) inactivates GS in glucose-replete cells in association with ERK1/2 activation, not with GSK3 regulation, and glucose

  17. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3.

    Science.gov (United States)

    Grieco, Steven F; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-09-01

    We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition. We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice. Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold). This up-regulation was abolished in GSK3 knockin mice that express mutant constitutively active GSK3. The GSK3 specific inhibitor L803-mts was antidepressant in the learned helplessness and novelty suppressed feeding depression-like behaviours and up-regulated the 5HTR2C miRNA cluster in mouse hippocampus. After administration of the learned helplessness paradigm mice were divided into cohorts that were resilient (non-depressed) or were susceptible (depressed) to learned helplessness. The resilient, but not depressed, mice displayed increased hippocampal levels of miRNAs 448-3p and 1264-3p. Administration of an antagonist to miRNA 448-3p diminished the antidepressant effect of ketamine in the learned helplessness paradigm, indicating that up-regulation of miRNA 448-3p provides an antidepressant action. These findings identify a new outcome of GSK3 inhibition by ketamine that may contribute to antidepressant effects.

  18. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    Science.gov (United States)

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Glycogen synthase kinase-3β inhibition in the medial prefrontal cortex mediates paradoxical amphetamine action in a mouse model of ADHD

    Directory of Open Access Journals (Sweden)

    Yi-Chun eYen

    2015-03-01

    Full Text Available Psychostimulants show therapeutic efficacy in the treatment of attention-deficit hyperactivity disorder (ADHD. It is generally assumed that they ameliorate ADHD symptoms via interfering with monoaminergic signaling. We combined behavioral pharmacology, neurochemistry and molecular analyses to identify mechanisms underlying the paradoxical calming effect of amphetamine in low trait anxiety behavior (LAB mice, a novel multigenetic animal model of ADHD. Amphetamine (1 mg/kg and methylphenidate (10 mg/kg elicited similar dopamine and norepinephrine release in the medial prefrontal cortex (mPFC and in the striatum of LAB mice. In contrast, amphetamine decreased, while methylphenidate increased locomotor activity. This argues against changes in dopamine and/or norepinephrine release as mediators of amphetamine paradoxical effects. Instead, the calming activity of amphetamine corresponded to the inhibition of glycogen synthase kinase3β (GSK3β activity, specifically in the mPFC. Accordingly, not only systemic administration of the GSK3β inhibitor TDZD-8 (20 mg/kg, but also local microinjections of TDZD-8 and amphetamine into the mPFC, but not into the striatum, decreased locomotor activity in LAB mice. Amphetamine effects seem to depend on NMDA receptor signaling, since pre- or co-treatment with MK-801 (0.3 mg/kg abolished the effects of amphetamine (1 mg/kg on the locomotion and on the phosphorylation of GSK3β at the level of the mPFC. Taken together, the paradoxical calming effect of amphetamine in hyperactive LAB mice concurs with a decreased GSK3β activity in the mPFC. This effect appears to be independent of dopamine or norepinephrine release, but contingent on NMDA receptor signaling.

  20. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan)

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E, a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.

  1. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C [UWASH

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  2. Inhibition of glycogen synthase kinase-3β counteracts ligand-independent activity of the androgen receptor in castration resistant prostate cancer.

    Directory of Open Access Journals (Sweden)

    Stefanie V Schütz

    Full Text Available In order to generate genomic signals, the androgen receptor (AR has to be transported into the nucleus upon androgenic stimuli. However, there is evidence from in vitro experiments that in castration-resistant prostate cancer (CRPC cells the AR is able to translocate into the nucleus in a ligand-independent manner. The recent finding that inhibition of the glycogen-synthase-kinase 3β (GSK-3β induces a rapid nuclear export of the AR in androgen-stimulated prostate cancer cells prompted us to analyze the effects of a GSK-3β inhibition in the castration-resistant LNCaP sublines C4-2 and LNCaP-SSR. Both cell lines exhibit high levels of nuclear AR in the absence of androgenic stimuli. Exposure of these cells to the maleimide SB216763, a potent GSK-3β inhibitor, resulted in a rapid nuclear export of the AR even under androgen-deprived conditions. Moreover, the ability of C4-2 and LNCaP-SSR cells to grow in the absence of androgens was diminished after pharmacological inhibition of GSK-3β in vitro. The ability of SB216763 to modulate AR signalling and function in CRPC in vivo was additionally demonstrated in a modified chick chorioallantoic membrane xenograft assay after systemic delivery of SB216763. Our data suggest that inhibition of GSK-3β helps target the AR for export from the nucleus thereby diminishing the effects of mislocated AR in CRPC cells. Therefore, inhibition of GSK-3β could be an interesting new strategy for the treatment of CRPC.

  3. Regulatory role of tumor necrosis factor receptor-associated factor 6 in breast cancer by activating the protein kinase B/glycogen synthase kinase 3β signaling pathway.

    Science.gov (United States)

    Shen, Hongyu; Li, Liangpeng; Yang, Sujin; Wang, Dandan; Zhou, Siying; Chen, Xiu; Tang, Jinhai

    2017-08-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an endogenous adaptor of innate and adaptive immune responses, and serves a crucial role in tumor necrosis factor receptor and toll‑like/interleukin‑1 receptor signaling. Although studies have demonstrated that TRAF6 has oncogenic activity, its potential contributions to breast cancer in human remains largely uninvestigated. The present study examined the expression levels and function of TRAF6 in breast carcinoma (n=32) and adjacent healthy (n=25) tissue samples. Compared with adjacent healthy tissues, TRAF6 protein expression levels were significantly upregulated in breast cancer tissues. Reverse transcription‑quantitative polymerase chain reaction analysis revealed a significant upregulation of the cellular proliferative marker Ki‑67 and proliferation cell nuclear antigen expression levels in breast carcinoma specimens. Furthermore, protein expression levels of the accessory molecule, transforming growth factor β‑activated kinase 1 (TAK1), were significantly increased in breast cancer patients, as detected by western blot analysis. As determined by MTT assay, TRAF6 exerted profoundly proliferative effects in the MCF‑7 breast cancer cell line; however, these detrimental effects were ameliorated by TAK1 inhibition. Notably, protein kinase B (AKT)/glycogen synthase kinase (GSK)3β phosphorylation levels were markedly upregulated in breast cancer samples, compared with adjacent healthy tissues. In conclusion, an altered TRAF6‑TAK1 axis and its corresponding downstream AKT/GSK3β signaling molecules may contribute to breast cancer progression. Therefore, TRAF6 may represent a potential therapeutic target for the treatment of breast cancer.

  4. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    Science.gov (United States)

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response.

    Science.gov (United States)

    Wang, Huizhi; Brown, Jonathan; Gu, Zhen; Garcia, Carlos A; Liang, Ruqiang; Alard, Pascale; Beurel, Eléonore; Jope, Richard S; Greenway, Terrance; Martin, Michael

    2011-05-01

    The PI3K pathway and its regulation of mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase 3 (GSK3) play pivotal roles in controlling inflammation. In this article, we show that mTORC1 and GSK3-β converge and that the capacity of mTORC1 to affect the inflammatory response is due to the inactivation of GSK3-β. Inhibition of mTORC1 attenuated GSK3 phosphorylation and increased its kinase activity. Immunoprecipitation and in vitro kinase assays demonstrated that GSK3-β associated with a downstream target of mTORC1, p85S6K, and phosphorylated GSK3-β. Inhibition of S6K1 abrogated the phosphorylation of GSK3-β while increasing and decreasing the levels of IL-12 and IL-10, respectively, in LPS-stimulated monocytes. In contrast, the direct inhibition of GSK3 attenuated the capacity of S6K1 inhibition to influence the levels of IL-10 and IL-12 produced by LPS-stimulated cells. At the transcriptional level, mTORC1 inhibition reduced the DNA binding of CREB and this effect was reversed by GSK3 inhibition. As a result, mTORC1 inhibition increased the levels of NF-κB p65 associated with CREB-binding protein. Inhibition of NF-κB p65 attenuated rapamycin's ability to influence the levels of pro- or anti-inflammatory cytokine production in monocytes stimulated with LPS. These studies identify the molecular mechanism by which mTORC1 affects GSK3 and show that mTORC1 inhibition regulates pro- and anti-inflammatory cytokine production via its capacity to inactivate GSK3.

  6. Glycogen synthase kinase 3β regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    International Nuclear Information System (INIS)

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-01-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 β (GSK3β) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3β has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3β (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3β delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3β is required for the activation of NFAT during wound repair

  7. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor signaling.

    Science.gov (United States)

    Beurel, Eléonore; Grieco, Steven F; Amadei, Celeste; Downey, Kimberlee; Jope, Richard S

    2016-09-01

    Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Convergence of the Mammalian Target of Rapamycin Complex 1- and Glycogen Synthase Kinase 3-β–Signaling Pathways Regulates the Innate Inflammatory Response

    Science.gov (United States)

    Wang, Huizhi; Brown, Jonathan; Gu, Zhen; Garcia, Carlos A.; Liang, Ruqiang; Alard, Pascale; Beurel, Eléonore; Jope, Richard S.; Greenway, Terrance; Martin, Michael

    2011-01-01

    The PI3K pathway and its regulation of mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase 3 (GSK3) play pivotal roles in controlling inflammation. In this article, we show that mTORC1 and GSK3-β converge and that the capacity of mTORC1 to affect the inflammatory response is due to the inactivation of GSK3-β. Inhibition of mTORC1 attenuated GSK3 phosphorylation and increased its kinase activity. Immunoprecipitation and in vitro kinase assays demonstrated that GSK3-β associated with a downstream target of mTORC1, p85S6K, and phosphorylated GSK3-β. Inhibition of S6K1 abrogated the phosphorylation of GSK3-β while increasing and decreasing the levels of IL-12 and IL-10, respectively, in LPS-stimulated monocytes. In contrast, the direct inhibition of GSK3 attenuated the capacity of S6K1 inhibition to influence the levels of IL-10 and IL-12 produced by LPS-stimulated cells. At the transcriptional level, mTORC1 inhibition reduced the DNA binding of CREB and this effect was reversed by GSK3 inhibition. As a result, mTORC1 inhibition increased the levels of NF-κB p65 associated with CREB-binding protein. Inhibition of NF-κB p65 attenuated rapamycin’s ability to influence the levels of pro- or anti-inflammatory cytokine production in monocytes stimulated with LPS. These studies identify the molecular mechanism by which mTORC1 affects GSK3 and show that mTORC1 inhibition regulates pro- and anti-inflammatory cytokine production via its capacity to inactivate GSK3. PMID:21422248

  9. Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains

    Science.gov (United States)

    Ye, Shoudong; Tan, Li; Yang, Rongqing; Fang, Bo; Qu, Su; Schulze, Eric N.; Song, Houyan; Ying, Qilong; Li, Ping

    2012-01-01

    Background Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. β-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of β-catenin and c-Myc protein levels. Stabilized β-catenin promoted ES self-renewal through two mechanisms. First, β-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, β-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. β-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cells with non-permissive genetic backgrounds by regulation of multiple signaling pathways. These findings would be useful to improve the availability of normally non-permissive mouse strains as research tools. PMID:22540008

  10. Up-Regulation of Excitatory Amino Acid Transporters EAAT3 and EAAT4 by Lithium Sensitive Glycogen Synthase Kinase GSK3ß

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-12-01

    Full Text Available Background: Cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs decreases excitation and thus participates in the regulation of neuroexcitability. Kinases impacting on neuronal function include Lithium-sensitive glycogen synthase kinase GSK3ß. The present study thus explored whether the activities of EAAT3 and/or EAAT4 isoforms are sensitive to GSK3ß. Methods: cRNA encoding wild type EAAT3 (SLC1A1 or EAAT4 (SLC1A6 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild type GSK3ß or the inactive mutant K85AGSK3ß. Dual electrode voltage clamp was performed in order to determine glutamate-induced current (IEAAT. Results: Appreciable IEAAT was observed in EAAT3 or EAAT4 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of GSK3ß but not by coexpression of K85AGSK3ß. Coexpression of GSK3ß increased significantly the maximal IEAAT in EAAT3 or EAAT4 expressing oocytes, without significantly modifying apparent affinity of the carriers. Lithium (1 mM exposure for 24 hours decreased IEAAT in EAAT3 and GSK3ß expressing oocytes to values similar to IEAAT in oocytes expressing EAAT3 alone. Lithium did not significantly modify IEAAT in oocytes expressing EAAT3 without GSK3ß. Conclusions: Lithium-sensitive GSK3ß is a powerful regulator of excitatory amino acid transporters EAAT3 and EAAT4.

  11. Glycogen phosphorylation and Lafora disease.

    Science.gov (United States)

    Roach, Peter J

    2015-12-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Glycogen synthase kinase-3 inhibitors suppress the AR-V7-mediated transcription and selectively inhibit cell growth in AR-V7-positive prostate cancer cells.

    Science.gov (United States)

    Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito

    2017-06-01

    Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.

  13. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  14. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    International Nuclear Information System (INIS)

    Mamaghani, Shadi; Patel, Satish; Hedley, David W

    2009-01-01

    Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-X L , and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be

  15. Inhibition of Glycogen Synthase Kinase or the Apoptotic Protein p53 Lowers the Threshold of Helium Cardioprotection In Vivo: The Role of Mitochondrial Permeability Transition

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    BACKGROUND Prosurvival signaling kinases inhibit glycogen synthase kinase-3β (GSK-3β) activity and stimulate apoptotic protein p53 degradation. Helium produces cardioprotection by activating prosurvival kinases, but whether GSK and p53 inhibition mediate this process is unknown. We tested the hypothesis that inhibition of GSK or p53 lowers the threshold of helium cardioprotection via a mitochondrial permeability transition pore (mPTP)-dependent mechanism. METHODS Rabbits (n = 85) instrumented for hemodynamic measurement and subjected to a 30 min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion received 0.9% saline (control), or 1, 3, or 5 cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture (fraction of inspired oxygen concentration = 0.30) before LAD occlusion. Other rabbits received the GSK inhibitor SB 216763 (SB21; 0.2 or 0.6 mg/kg), the p53 inhibitor pifithrin-α (PIF; 1.5 or 3.0 mg/kg), or SB21 (0.2 mg/kg) or PIF (1.5 mg/kg) plus helium (1 cycle) before LAD occlusion in the presence or absence of the mPTP opener atractyloside (5 mg/kg). RESULTS Helium reduced (P < 0.05) myocardial infarct size (35 ± 6 [n = 7], 25 ± 4 [n = 7], and 20 ± 3% [n = 6] of area at risk, 1, 3, and 5 cycles, respectively) compared with control (44 ± 6% [n = 7]). SB21 (0.6 [n = 7] but not 0.2 mg/kg [n = 6]) and PIF (3.0 [n = 6] but not 1.5 mg/kg [n = 7]) also reduced necrosis. SB21 (0.2 mg/kg) or 1.5 mg/kg PIF (1.5 mg/kg) plus helium (1 cycle; n = 6 per group) decreased infarct size to an equivalent degree as three cycles of helium alone, and this cardioprotection was blocked by atractyloside (n = 7 per group). CONCLUSIONS Inhibition of GSK or p53 lowers the threshold of helium-induced preconditioning via a mPTP-dependent mechanism in vivo. PMID:18713881

  16. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  17. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  18. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3β

    International Nuclear Information System (INIS)

    Choi, Cheol-Hee; Lee, Byung-Hoon; Ahn, Sang-Gun; Oh, Seon-Hee

    2012-01-01

    Highlights: ► MG132 induces the phosphorylation of GSK3β Ser9 and, to a lesser extent, of GSK3β Thr390 . ► MG132 induces dephosphorylation of p70S6K Thr389 and phosphorylation of p70S6K Thr421/Ser424 . ► Inactivation of p38 dephosphorylates GSK3β Ser9 and phosphorylates GSK3β Thr390 . ► Inactivation of p38 phosphorylates p70S6K Thr389 and increases the phosphorylation of p70S6K Thr421/Ser424 . ► Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser 9 and, to a lesser extent, Thr 390 , the dephosphorylation of p70S6K at Thr 389 , and the phosphorylation of p70S6K at Thr 421 and Ser 424 . The specific p38 inhibitor SB203080 reduced the p-GSK3β Ser9 and autophagy through the phosphorylation of p70S6K Thr389 ; however, it augmented the levels of p-ERK, p-GSK3β Thr390 , and p-70S6K Thr421/Ser424 induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK Ser9 /p70S6K Thr380 and ERK/GSK3β Thr390 /p70S6K Thr421/Ser424 kinase signaling, which is involved in cell survival and cell death.

  19. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN, one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65 at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor. Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus.

  20. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  1. Muscle glycogen synthesis before and after exercise.

    Science.gov (United States)

    Ivy, J L

    1991-01-01

    The importance of carbohydrates as a fuel source during endurance exercise has been known for 60 years. With the advent of the muscle biopsy needle in the 1960s, it was determined that the major source of carbohydrate during exercise was the muscle glycogen stores. It was demonstrated that the capacity to exercise at intensities between 65 to 75% VO2max was related to the pre-exercise level of muscle glycogen, i.e. the greater the muscle glycogen stores, the longer the exercise time to exhaustion. Because of the paramount importance of muscle glycogen during prolonged, intense exercise, a considerable amount of research has been conducted in an attempt to design the best regimen to elevate the muscle's glycogen stores prior to competition and to determine the most effective means of rapidly replenishing the muscle glycogen stores after exercise. The rate-limiting step in glycogen synthesis is the transfer of glucose from uridine diphosphate-glucose to an amylose chain. This reaction is catalysed by the enzyme glycogen synthase which can exist in a glucose-6-phosphate-dependent, inactive form (D-form) and a glucose-6-phosphate-independent, active form (I-form). The conversion of glycogen synthase from one form to the other is controlled by phosphorylation-dephosphorylation reactions. The muscle glycogen concentration can vary greatly depending on training status, exercise routines and diet. The pattern of muscle glycogen resynthesis following exercise-induced depletion is biphasic. Following the cessation of exercise and with adequate carbohydrate consumption, muscle glycogen is rapidly resynthesised to near pre-exercise levels within 24 hours. Muscle glycogen then increases very gradually to above-normal levels over the next few days. Contributing to the rapid phase of glycogen resynthesis is an increase in the percentage of glycogen synthase I, an increase in the muscle cell membrane permeability to glucose, and an increase in the muscle's sensitivity to insulin

  2. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  3. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen

    2008-01-01

    CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We...... metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS: Reduced insulin-mediated glucose disposal (P .... No significant abnormalities in GSK-3alpha or -3beta were found in PCOS subjects. Pioglitazone treatment improved insulin-stimulated glucose metabolism and GS activity in PCOS (all P

  4. Glycogen and its metabolism: some new developments and old themes

    Science.gov (United States)

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  5. Brain glycogen in health and disease.

    Science.gov (United States)

    Duran, Jordi; Guinovart, Joan J

    2015-12-01

    Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Deleterious effects of neuronal accumulation of glycogen in flies and mice

    OpenAIRE

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-01-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form...

  7. Reduced plasma adiponectin concentrations may contribute to impaired insulin activation of glycogen synthase in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, K.; Frystyk, J.; Levin, K.

    2006-01-01

    AIMS/HYPOTHESIS: Circulating levels of adiponectin are negatively associated with multiple indices of insulin resistance, and the concentration is reduced in humans with insulin resistance and type 2 diabetes. However, the mechanisms by which adiponectin improves insulin sensitivity remain unclear...... (ten lean, 21 obese and 20 with type 2 diabetes). RESULTS: Plasma adiponectin was significantly reduced in type 2 diabetic compared with obese and lean subjects. In lean and obese subjects, insulin significantly reduced plasma adiponectin, but this response was blunted in patients with type 2 diabetes...... by improving the capacity to switch from lipid to glucose oxidation and to store glucose as glycogen in response to insulin, and that low adiponectin may contribute to impaired insulin activation of GS in skeletal muscle of patients with type 2 diabetes....

  8. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    Science.gov (United States)

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  9. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  10. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine.

    Directory of Open Access Journals (Sweden)

    Fiona Hey

    Full Text Available The WNT signalling pathway controls many developmental processes and plays a key role in maintenance of intestine renewal and homeostasis. Glycogen Synthase Kinase 3 (GSK3 is an important component of the WNT pathway and is involved in regulating β-catenin stability and expression of WNT target genes. The mechanisms underpinning GSK3 regulation in this context are not completely understood, with some evidence suggesting this occurs through inhibitory N-terminal serine phosphorylation in a similar way to GSK3 inactivation in insulin signaling. To investigate this in a physiologically relevant context, we have analysed the intestinal phenotype of GSK3 knockin mice in which N-terminal serines 21/9 of GSK3α/β have been mutated to non-phosphorylatable alanine residues. We show that these knockin mutations have very little effect on overall intestinal integrity, cell lineage commitment, β-catenin localization or WNT target gene expression although a small increase in apoptosis at villi tips is observed. Our results provide in vivo evidence that GSK3 is regulated through mechanisms independent of N-terminal serine phosphorylation in order for β-catenin to be stabilised.

  11. Biomarker for Glycogen Storage Diseases

    Science.gov (United States)

    2017-07-03

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  12. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    Science.gov (United States)

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  13. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Mechanisms of Pharmacological Preconditioning of the Brain and the Comparative Efficacy of the Drugs — Direct- and Indirect-Acting Glycogen Synthase Kinase-3β Inhibitors: Experimental Study

    Directory of Open Access Journals (Sweden)

    V. V. Likhvantsev

    2012-01-01

    Full Text Available Objective: to investigate the activity of sevoflurane, dalargin, and lithium chloride in protecting the rat brain from total ischemia/reperfusion and to define whether the GSK=3^ deposphorylation contributes to the mechanism of pharmacological preconditioning. Materials and methods. Experiments were carried out on 80 male albino rats in which temporary circulatory arrest (CA was simulated by ligating the cardiovascular fascicle for 10 and 20 minutes. The animals were revived by mechanical ventilation external cardiac massage, and the intratracheal injection of adrenaline (epinephrine, Moscow Endocrinology Plant at a dose of 0.1 mg/kg. Animals were divided into 9 groups and sevorane (sevoflurane, Abbott Laboratories, dalargin (Microgen Research-and-Production Association, or lithium chloride (Sigma Chemical Co. were separately given with and without CA. Brain tissue homogenate specimens were obtained from euthanized animals. The concentration of total glycogen synthase kinase-3^ (GSK-3^ was colorimetrically determined using a Hitachi-557 spectrophotometer (Hitachi Ltd., Japan. The content of phosphorylated GSK-3/3 (pGSK-3^ in brain homogenate was estimated by Western blotting. Results. The total level of GSK-3^ in each group was similar (80—90 relative units and remained unchanged throughout each experiment. Twenty-minute ischemia maximally activated GSK-30 through dephosphorylation. Ten-minute ischemia elevated pGSK-3^ levels by more than 5 times as compared to the baseline value revealing the «training» effect. The quantity of pGSK-3^ was unchanged in the ischemia/perfusion group during sevoflurane insufflation and was decreased by 27% during dalargin administration. Conclusion. The experimental model of total ischemia provided evidence that the test drugs had a pharmacological preconditioning effect on brain neurons. According to their increasing effect, the drugs were arranged in the following order: dalargin < sevoflurane < lithium

  15. Synthesis of glycogen from fructose in the presence of elevated levels of glycogen phosphorylase a in rat hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Massagué, J; Salavert, A; Guinovart, J J

    1980-03-20

    Incubation of hepatocytes with glucose promoted the increase in the glycogen synthase (-glucose 6-phosphate/+glucose 6-phosphate) activity ratio, the decrease in the levels of phosphorylase a and a marked increase in the intracellular glycogen level. Incubation with fructose alone promoted the simultaneous activation of glycogen synthase and increase in the levels of phosphorylase a. Strikingly, glycogen deposition occurred in spite of the elevated levels of phosphorylase a. When glucose and fructose were added to the media the activation of glycogen synthase was always higher than when the hexoses were added separately. On the other hand the effects on glycogen phosphorylase were a function of the relative concentrations of both sugars. Inactivation of glycogen phosphorylase occurred when the fructose to glucose ratio was low while activation took place when the ratio was high. The simultaneous presence of glucose and fructose resulted, in all cases, in an enhancement in the deposition of glycogen. The effects described were not limited to fructose as D-glyceraldehyde, dihydroxyacetone, L-sorbose, D-tagatose and sorbitol, compounds metabolically related to fructose, provoked the same behaviour.

  16. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    Science.gov (United States)

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  17. Glycogen Synthase Kinase 3α Is the Main Isoform That Regulates the Transcription Factors Nuclear Factor-Kappa B and cAMP Response Element Binding in Bovine Endothelial Cells Infected with Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Octavio Silva-García

    2018-01-01

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutive enzyme implicated in the regulation of cytokine expression and the inflammatory response during bacterial infections. Mammals have two GSK3 isoforms named GSK3α and GSK3β that plays different but often overlapping functions. Although the role of GSK3β in cytokine regulation during the inflammatory response caused by bacteria is well described, GSK3α has not been found to participate in this process. Therefore, we tested if GSK3α may act as a regulatory isoform in the cytokine expression by bovine endothelial cells infected with Staphylococcus aureus because this bacterium is one of the major pathogens that cause tissue damage associated with inflammatory dysfunction. Interestingly, although both isoforms were phosphorylated–inactivated, we consistently observed a higher phosphorylation of GSK3α at Ser21 than that of GSK3β at Ser9 after bacterial challenge. During a temporal course of infection, we characterized a molecular switch from pro-inflammatory cytokine expression (IL-8, promoted by nuclear factor-kappa B (NF-κB, at an early stage (2 h to an anti-inflammatory cytokine expression (IL-10, promoted by cAMP response element binding (CREB, at a later stage (6 h. We observed an indirect effect of GSK3α activity on NF-κB activation that resulted in a low phosphorylation of CREB at Ser133, a decreased interaction between CREB and the co-activator CREB-binding protein (CBP, and a lower expression level of IL-10. Gene silencing of GSK3α and GSK3β with siRNA indicated that GSK3α knockout promoted the interaction between CREB and CBP that, in turn, increased the expression of IL-10, reduced the interaction of NF-κB with CBP, and reduced the expression of IL-8. These results indicate that GSK3α functions as the primary isoform that regulates the expression of IL-10 in endothelial cells infected with S. aureus.

  18. Neuronal glycogen synthesis contributes to physiological aging.

    Science.gov (United States)

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-10-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Glycogen metabolism in humans

    OpenAIRE

    Adeva-Andany, María M.; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-01-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through...

  20. Deleterious effects of neuronal accumulation of glycogen in flies and mice.

    Science.gov (United States)

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-08-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration. Copyright © 2012 EMBO Molecular Medicine.

  1. Investigation and management of the hepatic glycogen storage diseases.

    Science.gov (United States)

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease.

  2. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    Science.gov (United States)

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  3. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    Science.gov (United States)

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; PGlycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (Pglycogen debranching enzyme expression 24 hours post-stroke was 77% (Pglycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity. PMID:24858129

  4. Novel method for detection of glycogen in cells.

    Science.gov (United States)

    Skurat, Alexander V; Segvich, Dyann M; DePaoli-Roach, Anna A; Roach, Peter J

    2017-05-01

    Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  5. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    Science.gov (United States)

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  6. Abnormal metabolism of glycogen phosphate as a cause for Lafora disease.

    Science.gov (United States)

    Tagliabracci, Vincent S; Girard, Jean Marie; Segvich, Dyann; Meyer, Catalina; Turnbull, Julie; Zhao, Xiaochu; Minassian, Berge A; Depaoli-Roach, Anna A; Roach, Peter J

    2008-12-05

    Lafora disease is a progressive myoclonus epilepsy with onset in the teenage years followed by neurodegeneration and death within 10 years. A characteristic is the widespread formation of poorly branched, insoluble glycogen-like polymers (polyglucosan) known as Lafora bodies, which accumulate in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual specificity protein phosphatase family that is able to release the small amount of covalent phosphate normally present in glycogen. In studies of Epm2a(-/-) mice that lack laforin, we observed a progressive change in the properties and structure of glycogen that paralleled the formation of Lafora bodies. At three months, glycogen metabolism remained essentially normal, even though the phosphorylation of glycogen has increased 4-fold and causes altered physical properties of the polysaccharide. By 9 months, the glycogen has overaccumulated by 3-fold, has become somewhat more phosphorylated, but, more notably, is now poorly branched, is insoluble in water, and has acquired an abnormal morphology visible by electron microscopy. These glycogen molecules have a tendency to aggregate and can be recovered in the pellet after low speed centrifugation of tissue extracts. The aggregation requires the phosphorylation of glycogen. The aggregrated glycogen sequesters glycogen synthase but not other glycogen metabolizing enzymes. We propose that laforin functions to suppress excessive glycogen phosphorylation and is an essential component of the metabolism of normally structured glycogen.

  7. Glycogen depletion and resynthesis during 14 days of chronic low-frequency stimulation of rabbit muscle

    DEFF Research Database (Denmark)

    Prats, C; Bernal, C; Cadefau, J A

    2002-01-01

    Electro-stimulation alters muscle metabolism and the extent of this change depends on application intensity and duration. The effect of 14 days of chronic electro-stimulation on glycogen turnover and on the regulation of glycogen synthase in fast-twitch muscle was studied. The results showed that...

  8. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    Science.gov (United States)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  9. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    Science.gov (United States)

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  10. Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States

    Science.gov (United States)

    Chen, Richard J.; Zhang, Guofeng; Garfield, Susan H.; Shi, Yi-Jun; Chen, Kevin G.; Robey, Pamela G.; Leapman, Richard D.

    2015-01-01

    Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions. PMID:26565809

  11. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    Science.gov (United States)

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  12. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica.

    Science.gov (United States)

    Bhutada, Govindprasad; Kavšcek, Martin; Ledesma-Amaro, Rodrigo; Thomas, Stéphane; Rechberger, Gerald N; Nicaud, Jean-Marc; Natter, Klaus

    2017-05-01

    Triacylglycerol (TAG) and glycogen are the two major metabolites for carbon storage in most eukaryotic organisms. We investigated the glycogen metabolism of the oleaginous Yarrowia lipolytica and found that this yeast accumulates up to 16% glycogen in its biomass. Assuming that elimination of glycogen synthesis would result in an improvement of lipid accumulation, we characterized and deleted the single gene coding for glycogen synthase, YlGSY1. The mutant was grown under lipogenic conditions with glucose and glycerol as substrates and we obtained up to 60% improvement in TAG accumulation compared to the wild-type strain. Additionally, YlGSY1 was deleted in a background that was already engineered for high lipid accumulation. In this obese background, TAG accumulation was also further increased. The highest lipid content of 52% was found after 3 days of cultivation in nitrogen-limited glycerol medium. Furthermore, we constructed mutants of Y. lipolytica and Saccharomyces cerevisiae that are deleted for both glycogen and TAG synthesis, demonstrating that the ability to store carbon is not essential. Overall, this work showed that glycogen synthesis is a competing pathway for TAG accumulation in oleaginous yeasts and that deletion of the glycogen synthase has beneficial effects on neutral lipid storage. © FEMS 2017.

  13. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison).

    Science.gov (United States)

    Bowman, Kole; Rose, Jack

    2017-01-01

    Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E 2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P 4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E 2 , P 4 or vehicle (controls) for 3 days and uteri collected 24 h (E 2 , P 4 and vehicle) and 96 h (E 2 ) later. To evaluate E 2 priming, mink were treated with E 2 for 3 days, then P 4 for an additional 3 days (E 2 →P 4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E 2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E 2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E 2 →P 4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E 2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P 4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation. © 2016 Japanese Society of Animal Science.

  14. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica.

    Science.gov (United States)

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2016-12-01

    Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.

  15. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  16. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu

    2016-02-01

    Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    International Nuclear Information System (INIS)

    Richter, E.A.; Hansen, S.A.; Hansen, B.F.

    1988-01-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 μU/ml insulin and 11-13 mM glucose increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased from 34.9 μmol·g -1 ·h -1 at 0 h to 7.5 after 7 h of perfusion. During the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-[ 14 C]methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal

  18. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai

    2010-08-04

    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  19. Inhibition of autophagic proteolysis by inhibitors of phosphoinositide 3-kinase can interfere with the regulation of glycogen synthesis in isolated hepatocytes

    NARCIS (Netherlands)

    Dubbelhuis, Peter F.; van Sluijters, Daphne A.; Blommaart, Edward F. C.; Gustafson, Lori A.; van Woerkom, George M.; Herling, Andreas W.; Burger, Hans-Joerg; Meijer, Alfred J.

    2002-01-01

    Amino acid-induced cell swelling stimulates conversion of glucose into glycogen in isolated hepatocytes. Activation of glycogen synthase (GS) phosphatase, caused by the fall in intracellular chloride accompanying regulatory volume decrease, and activation of phosphoinositide 3-kinase (PI 3-kinase),

  20. POST-EXERCISE MUSCLE GLYCOGEN REPLETION IN THE EXTREME: EFFECT OF FOOD ABSENCE AND ACTIVE RECOVERY

    Directory of Open Access Journals (Sweden)

    Paul A. Fournier

    2004-09-01

    Full Text Available Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses

  1. Green Tea Polyphenol Epigallocatechin-3-Gallate Enhance Glycogen Synthesis and Inhibit Lipogenesis in Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jane J. Y. Kim

    2013-01-01

    Full Text Available The beneficial effects of green tea polyphenols (GTP against metabolic syndrome and type 2 diabetes by suppressing appetite and nutrient absorption have been well reported. However the direct effects and mechanisms of GTP on glucose and lipid metabolism remain to be elucidated. Since the liver is an important organ involved in glucose and lipid metabolism, we examined the effects and mechanisms of GTP on glycogen synthesis and lipogenesis in HepG2 cells. Concentrations of GTP containing 68% naturally occurring (−-epigallocatechin-3-gallate (EGCG were incubated in HepG2 cells with high glucose (30 mM under 100 nM of insulin stimulation for 24 h. GTP enhanced glycogen synthesis in a dose-dependent manner. 10 μM of EGCG significantly increased glycogen synthesis by 2fold (P<0.05 compared with insulin alone. Western blotting revealed that phosphorylation of Ser9 glycogen synthase kinase 3β and Ser641 glycogen synthase was significantly increased in GTP-treated HepG2 cells compared with nontreated cells. 10 μM of EGCG also significantly inhibited lipogenesis (P<0.01. We further demonstrated that this mechanism involves enhanced expression of phosphorylated AMP-activated protein kinase α and acetyl-CoA carboxylase in HepG2 cells. Our results showed that GTP is capable of enhancing insulin-mediated glucose and lipid metabolism by regulating enzymes involved in glycogen synthesis and lipogenesis.

  2. Putative role of glycogen as a peripheral biomarker of GSK3β activity.

    Science.gov (United States)

    Frizzo, Marcos Emilio

    2013-09-01

    Glycogen synthase kinase 3-β (GSK3β) has a pivotal role in several intracellular signaling cascades that are involved in gene transcription, cytoskeletal reorganization, energy metabolism, cell cycle regulation, and apoptosis. This kinase has pleiotropic functions, and the importance of its activity has recently been shown in neurons and platelets. In addition to its regulatory function in several physiological events, changes in GSK3β activity have been associated with many psychiatric and neurodegenerative illnesses, such as Alzheimer's disease, schizophrenia and autism-spectrum disorders. Beside the reports of its involvement in several pathologies, it has become increasingly apparent that GSK3β might be a common therapeutic target for different classes of psychiatric drugs, and also that the GSK3β ratio may be a useful parameter to determine the biochemical changes that might occur during antidepressant treatment. Although GSK3β is commonly described as a key enzyme in a plethora of signaling cascades, originally it was identified as playing an important role in the regulation of glycogen synthesis, given its ability to inactivate glycogen synthase (GS) by phosphorylation. Acting as a constitutively active kinase, GSK3β phosphorylates GS, which results in a decrease of glycogen production. GSK3β phosphorylation increases glycogen synthesis and storage, while its dephosphorylation decreases glycogen synthesis. Inactivation of GSK3β leads to dephosphorylation of GS and increase in glycogen synthesis in the adipose tissue, muscle and liver. Glycogen levels are reduced by antidepressant treatment, and this effect seems to be related to an effect of drugs on GSK3β activity. Peripherally, glycogen is also abundantly found in platelets, where it is considered a major energy source, required for a variety of its functions, including the release reaction. Recently, analysis of platelets from patients with late-life major depression showed that active forms of

  3. Glycogen Storage Disease Type IV

    DEFF Research Database (Denmark)

    Bendroth-Asmussen, Lisa; Aksglaede, Lise; Gernow, Anne B

    2016-01-01

    molecular genetic analyses confirmed glycogen storage disease Type IV with the finding of compound heterozygosity for 2 mutations (c.691+2T>C and c.1570C>T, p.R524X) in the GBE1 gene. We conclude that glycogen storage disease Type IV can cause early miscarriage and that diagnosis can initially be made...

  4. Insights into Brain Glycogen Metabolism

    Science.gov (United States)

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  5. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

      Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle...... function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from...

  6. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    Science.gov (United States)

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (Pglycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (PGlycogen synthase activity was 12% higher (Pglycogen branching enzyme activity was 70% lower (Pglycogen breakdown, glycogen phosphorylase, had 62% lower activity (Pglycogen debranching enzyme expression was 50% higher (Pglycogen (Pglycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; Pglycogen but reduced amounts of liver glycogen. PMID:24626262

  7. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.

    Science.gov (United States)

    Santiago-Martínez, Michel Geovanni; Encalada, Rusely; Lira-Silva, Elizabeth; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Reyes-García, Marco Antonio; Saavedra, Emma; Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Jasso-Chávez, Ricardo

    2016-05-01

    Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental

  8. FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores.

    Directory of Open Access Journals (Sweden)

    Elite Possik

    2015-10-01

    Full Text Available Mechanisms of adaptation to environmental changes in osmolarity are fundamental for cellular and organismal survival. Here we identify a novel osmotic stress resistance pathway in Caenorhabditis elegans (C. elegans, which is dependent on the metabolic master regulator 5'-AMP-activated protein kinase (AMPK and its negative regulator Folliculin (FLCN. FLCN-1 is the nematode ortholog of the tumor suppressor FLCN, responsible for the Birt-Hogg-Dubé (BHD tumor syndrome. We show that flcn-1 mutants exhibit increased resistance to hyperosmotic stress via constitutive AMPK-dependent accumulation of glycogen reserves. Upon hyperosmotic stress exposure, glycogen stores are rapidly degraded, leading to a significant accumulation of the organic osmolyte glycerol through transcriptional upregulation of glycerol-3-phosphate dehydrogenase enzymes (gpdh-1 and gpdh-2. Importantly, the hyperosmotic stress resistance in flcn-1 mutant and wild-type animals is strongly suppressed by loss of AMPK, glycogen synthase, glycogen phosphorylase, or simultaneous loss of gpdh-1 and gpdh-2 enzymes. Our studies show for the first time that animals normally exhibit AMPK-dependent glycogen stores, which can be utilized for rapid adaptation to either energy stress or hyperosmotic stress. Importantly, we show that glycogen accumulates in kidneys from mice lacking FLCN and in renal tumors from a BHD patient. Our findings suggest a dual role for glycogen, acting as a reservoir for energy supply and osmolyte production, and both processes might be supporting tumorigenesis.

  9. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    Science.gov (United States)

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  10. Is Glycogenin Essential for Glycogen Synthesis?

    Science.gov (United States)

    Oldfors, Anders

    2017-07-05

    Glycogen synthesis requires a priming oligosaccharide, formed by autoglucosylation of glycogenin, a core protein in glycogen particles. In this edition of Cell Metabolism, Testoni et al. (2017) challenge this generally accepted concept by demonstrating that glycogenin inactivation in mice results in an increased amount of glycogen and not glycogen depletion. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Glycogen synthase kinase 3 (GSK3) inhibitor 6-bromoindirubin-3 ...

    African Journals Online (AJOL)

    ... male germline stem cells (mGSCs) under serum- and feeder-free conditions. ... to maintain the pluripotency of human and mouse embryonic stem cells (ESCs). ... capacity of mGSC-induced embryoid bodies (EBs) were examined as well.

  12. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... Legacy Society Make Gifts of Stock Donate Your Car Personal Fundraising Partnership & Support Share Your Story Spread the Word Give While You Shop Contact Us Donate Now Glycogen Storage Disease Type ...

  13. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... the most common form of glycogen storage disease, accounting for 25% of all cases. It is an ... Links Videos Webinars About ALF OVERVIEW Programs About Liver Disease Ask the Experts People ALF ...

  14. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.; Roach, P.J.; DePaoli-Roach, A.A.; Magistretti, Pierre J.; Allaman, I.

    2016-01-01

    to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin

  15. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  16. Identification and Functional Characterization of the Glycogen Synthesis Related Gene Glycogenin in Pacific Oysters (Crassostrea gigas).

    Science.gov (United States)

    Li, Busu; Meng, Jie; Li, Li; Liu, Sheng; Wang, Ting; Zhang, Guofan

    2017-09-06

    High glycogen levels in the Pacific oyster (Crassostrea gigas) contribute to its flavor, quality, and hardiness. Glycogenin (CgGN) is the priming glucosyltransferase that initiates glycogen biosynthesis. We characterized the full sequence and function of C. gigas CgGN. Three CgGN isoforms (CgGN-α, β, and γ) containing alternative exon regions were isolated. CgGN expression varied seasonally in the adductor muscle and gonadal area and was the highest in the adductor muscle. Autoglycosylation of CgGN can interact with glycogen synthase (CgGS) to complete glycogen synthesis. Subcellular localization analysis showed that CgGN isoforms and CgGS were located in the cytoplasm. Additionally, a site-directed mutagenesis experiment revealed that the Tyr200Phe and Tyr202Phe mutations could affect CgGN autoglycosylation. This is the first study of glycogenin function in marine bivalves. These findings will improve our understanding of glycogen synthesis and accumulation mechanisms in mollusks. The data are potentially useful for breeding high-glycogen oysters.

  17. Glycogen synthesis in glycogenin 1-deficient patients

    DEFF Research Database (Denmark)

    Krag, Thomas O.; Ruiz-Ruiz, Cristina; Vissing, John

    2017-01-01

    Context: Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup....... A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. Objective: We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Design, Setting, and Patients: Two patients with mutations...... in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Results: Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients...

  18. Inhibitory properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives acting on glycogen metabolising enzymes.

    Science.gov (United States)

    Díaz-Lobo, Mireia; Concia, Alda Lisa; Gómez, Livia; Clapés, Pere; Fita, Ignacio; Guinovart, Joan J; Ferrer, Joan C

    2016-09-26

    Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.

  19. CHEMICAL CHARACTERIZATION OF A HYPOGLYCEMIC EXTRACT FROM CUCURBITA FICIFOLIA BOUCHE THAT INDUCES LIVER GLYCOGEN ACCUMULATION IN DIABETIC MICE.

    Science.gov (United States)

    Jessica, Garcia Gonzalez; Mario, Garcia Lorenzana; Alejandro, Zamilpa; Cesar, Almanza Perez Julio; Ivan, Jasso Villagomez E; Ruben, Roman Ramos; Javier, Alarcon-Aguilar Francisco

    2017-01-01

    The aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit has demonstrated hypoglycemic effect, which may be attributed to some components in the extract. However, the major secondary metabolites in this fruit have not yet been identified and little is known about its extra-pancreatic action, in particular, on liver carbohydrate metabolism. Therefore, in addition to the isolation and structural elucidation of the principal components in the aqueous extract of C. ficifolia , the aim of this study was to determine whether or not the hypoglycemic effect of the aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit is due to accumulation of liver glycogen in diabetic mice. The aqueous extract from fruit of C. ficifolia was fractionated and its main secondary metabolites were purified and chemically characterized (NMR and GC-MS). Alloxan-induced diabetic mice received daily by gavage the aqueous extract (30 days). The liver glycogen content was quantified by spectroscopic method and by PAS stain; ALT and AST by spectrometric method; glycogen synthase, glycogen phosphorylase and GLUT2 by Western blot; the mRNA expression of GLUT2 and glucagon-receptor by RT-PCR; while serum insulin was quantified by ELISA method. A liver histological analysis was also performed by H&E stain. Chemical fingerprint showed five majoritarian compounds in the aqueous extract of C. ficifolia : p -coumaric acid, p-hydroxybenzoic acid, salicin, stigmast-7,2,2-dien-3-ol and stigmast-7-en-3-ol. The histological analysis showed accumulation of liver glycogen. Also, increased glycogen synthase and decreased glycogen phosphorylase were observed. Interestingly, the histological architecture evidenced a liver-protective effect due the extract. Five compounds were identified in C. ficifolia aqueous extract. The hypoglycemic effect of this extract may be partially explained by liver glycogen accumulation. The bioactive compound responsible for the hypoglycemic effect of this extract will be

  20. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  1. Lowering Temperature is the Trigger for Glycogen Build-Up and Winter Fasting in Crucian Carp (Carassius carassius).

    Science.gov (United States)

    Varis, Joonas; Haverinen, Jaakko; Vornanen, Matti

    2016-02-01

    Seasonal changes in physiology of vertebrate animals are triggered by environmental cues including temperature, day-length and oxygen availability. Crucian carp (Carassius carassius) tolerate prolonged anoxia in winter by using several physiological adaptations that are seasonally activated. This study examines which environmental cues are required to trigger physiological adjustments for winter dormancy in crucian carp. To this end, crucian carp were exposed to changing environmental factors under laboratory conditions: effects of declining water temperature, shortening day-length and reduced oxygen availability, separately and in different combinations, were examined on glycogen content and enzyme activities involved in feeding (alkaline phosphatase, AP) and glycogen metabolism (glycogen synthase, GyS; glycogen phosphorylase, GP). Lowering temperature induced a fall in activity of AP and a rise in glycogen content and rate of glycogen synthesis. Relative mass of the liver, and glycogen concentration of liver, muscle and brain increased with lowering temperature. Similarly activity of GyS in muscle and expression of GyS transcripts in brain were up-regulated by lowering temperature. Shortened day-length and oxygen availability had practically no effects on measured variables. We conclude that lowering temperature is the main trigger in preparation for winter anoxia in crucian carp.

  2. Glycogen resynthesis rate following cross-country skiing is closely correlated to skeletal muscle glycogen content

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    on an optimal glycogen resynthesis rate before a subsequent exercise session. The purpose of present study was to evaluate the glycogen resynthesis rate in elite cross-country (cc) skiers, following exhaustive exercise, and to examine the role of muscular glycogen content on the resynthesis rate. METHOD: Ten...... as 4h and 22h after the race and analyzed for glycogen content. Figure 1. Correlation between muscle glycogen resynthesis rate and glycogen content after and in the rocery period after exercise. Line indicate best fit of all the data points (r2 = 0.41, p

  3. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  4. Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons.

    Science.gov (United States)

    Pfeiffer-Guglielmi, Brigitte; Dombert, Benjamin; Jablonka, Sibylle; Hausherr, Vanessa; van Thriel, Christoph; Schöbel, Nicole; Jansen, Ralf-Peter

    2014-06-04

    Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.

  5. Ultrastructure and cytochemistry of cardiac intramitochondrial glycogen.

    Science.gov (United States)

    Sótonyi, P; Somogyi, E; Nemes, A; Juhász-Nagy, S

    1976-01-01

    Authors have observed abnormalities of glycogen localization in cardiac muscle, after normothermic cardiac arrest. The identification of these intramitrochondrial particles as glycogen was confirmed by selective staining with periodic acid-lead citrat, periodic acid-thiosemicarbazide protein methods and by their selective removal from tissue sections by alfa-amylase. The intramitochondrial glycogen particles were of beta-type. Some intramitochondrial particles were surrounded by paired membranes which resulted from protrusion of parts of mitochondrial membrane.

  6. Determination of the Glycogen Content in Cyanobacteria.

    Science.gov (United States)

    De Porcellinis, Alice; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-07-17

    Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.

  7. Postexercise muscle glycogen resynthesis in humans.

    Science.gov (United States)

    Burke, Louise M; van Loon, Luc J C; Hawley, John A

    2017-05-01

    Since the pioneering studies conducted in the 1960s in which glycogen status was investigated using the muscle biopsy technique, sports scientists have developed a sophisticated appreciation of the role of glycogen in cellular adaptation and exercise performance, as well as sites of storage of this important metabolic fuel. While sports nutrition guidelines have evolved during the past decade to incorporate sport-specific and periodized manipulation of carbohydrate (CHO) availability, athletes attempt to maximize muscle glycogen synthesis between important workouts or competitive events so that fuel stores closely match the demands of the prescribed exercise. Therefore, it is important to understand the factors that enhance or impair this biphasic process. In the early postexercise period (0-4 h), glycogen depletion provides a strong drive for its own resynthesis, with the provision of CHO (~1 g/kg body mass) optimizing this process. During the later phase of recovery (4-24 h), CHO intake should meet the anticipated fuel needs of the training/competition, with the type, form, and pattern of intake being less important than total intake. Dietary strategies that can enhance glycogen synthesis from suboptimal amounts of CHO or energy intake are of practical interest to many athletes; in this scenario, the coingestion of protein with CHO can assist glycogen storage. Future research should identify other factors that enhance the rate of synthesis of glycogen storage in a limited time frame, improve glycogen storage from a limited CHO intake, or increase muscle glycogen supercompensation. Copyright © 2017 the American Physiological Society.

  8. Genetics Home Reference: glycogen storage disease type VII

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type VII Glycogen storage disease type VII Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type VII (GSDVII) is an inherited ...

  9. Genetics Home Reference: glycogen storage disease type IV

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type IV Glycogen storage disease type IV Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type IV (GSD IV) is an ...

  10. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.

    Science.gov (United States)

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-10-15

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge. © 2014 The Authors. The Journal of Physiology © 2014

  11. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  12. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure.

    Science.gov (United States)

    Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz

    2017-09-01

    Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Initiation of glycogen biosynthesis in rat heart. Studies with a purified preparation

    International Nuclear Information System (INIS)

    Blumenfeld, M.L.; Krisman, C.R.

    1985-01-01

    Two fractions of glycogen synthase were isolated from rat cardiac muscle on the basis of a different affinity for DEAE-cellulose and omega-aminobutyl-agarose. One of these fractions was able to transfer glucosyl residues from UDP-glucose not only to glycogen (GS-1 activity) but also to an endogenous acceptor. The latter reaction (GS-2 activity) occurred in the absence of added glycogen, and its reaction product was insoluble in trichloroacetic acid. This compound was degraded by amylolytic enzymes, thus showing that the product synthesized on the endogenous acceptor was an alpha 1,4-glucan. After incubation with alpha-amylase-free proteolytic enzyme, the compound was rendered trichloroacetic acid-soluble. Polyacrylamide gel electrophoresis, under both native and denaturing conditions, showed that GS-2 reaction products moved electrophoretically associated to protein. The results give further evidence for the association between an alpha 1,4-glucan and protein, which the authors postulate is related to the initiation of glycogen biosynthesis

  14. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  15. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues.

    Science.gov (United States)

    Honda, Kotaro; Tomooka, Yasuhiro

    2016-10-01

    An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.

  16. Carcass glycogen repletion on carbohydrate re-feeding after starvation.

    OpenAIRE

    Cox, D J; Palmer, T N

    1987-01-01

    In mice, the response of carcass glycogen to glucose re-feeding after starvation is biphasic. The initial repletive phase is followed by partial (greater than 50%) glycogen mobilization. This turnover of carcass glycogen in response to carbohydrate re-feeding may play an important role in the provision of C3 precursors for hepatic glycogen synthesis.

  17. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  18. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG)

    OpenAIRE

    Worby, Carolyn A.; Gentry, Matthew S.; Dixon, Jack E.

    2007-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual-specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PT...

  20. The modulation of the symbiont/host interaction between Wolbachia pipientis and Aedes fluviatilis embryos by glycogen metabolism.

    Directory of Open Access Journals (Sweden)

    Mariana da Rocha Fernandes

    Full Text Available Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+ and Wolbachia-negative (W- mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3 levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism.

  1. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    Science.gov (United States)

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  2. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    International Nuclear Information System (INIS)

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-01-01

    The effect of fructose on glycogen degradation was examined by measuring flux of [ 14 C] from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of [U 14 C] galactose (0.1 mg and 0.02 μCi/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 μmoles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 μmoles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P

  3. Dietary Methionine Restriction Alleviates Hyperglycemia in Pigs with Intrauterine Growth Restriction by Enhancing Hepatic Protein Kinase B Signaling and Glycogen Synthesis.

    Science.gov (United States)

    Ying, Zhixiong; Zhang, Hao; Su, Weipeng; Zhou, Le; Wang, Fei; Li, Yue; Zhang, Lili; Wang, Tian

    2017-10-01

    Background: Individuals with intrauterine growth restriction (IUGR) are prone to developing type 2 diabetes mellitus (T2DM). Dietary methionine restriction (MR) improves insulin sensitivity and glucose homeostasis in individuals with normal birth weight (NBW). Objective: This study investigated the effects of MR on plasma glucose concentration and hepatic and muscle glucose metabolism in pigs with IUGR. Methods: Thirty female NBW and 60 same-sex spontaneous IUGR piglets (Landrace × Yorkshire) were selected. After weaning (day 21), the piglets were fed diets with adequate methionine (NBW-CON and IUGR-CON) or 30% less methionine (IUGR-MR) ( n = 6). At day 180, 1 pig with a body weight near the mean of each replication was selected for biochemical analysis. Results: The IUGR-CON group showed 41.6%, 68.6%, and 67.1% higher plasma glucose concentration, hepatic phosphoenolpyruvate carboxykinase activity, and glucose-6-phosphatase activity, respectively, than the NBW-CON group ( P glycogen content and glycogen synthase activity were 36.9% and 38.8% lower, respectively, in the IUGR-CON than the NBW-CON group ( P glycogen content and glycogen synthase activity of the IUGR-MR pigs were 62.9% and 50.8% higher than those of the IUGR-CON pigs ( P glycogen synthesis, implying a potential nutritional strategy to prevent type 2 diabetes mellitus in IUGR offspring. © 2017 American Society for Nutrition.

  4. Hyper-hippocampal glycogen induced by glycogen loading with exhaustive exercise.

    Science.gov (United States)

    Soya, Mariko; Matsui, Takashi; Shima, Takeru; Jesmin, Subrina; Omi, Naomi; Soya, Hideaki

    2018-01-19

    Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity. Although the effect of HCD on the brain remains unknown, brain supercompensation occurs following exhaustive exercise (EE), a component of GL. We thus employed a rat model of GL and examined whether GL increases glycogen levels in the brain as well as in muscle, and found that GL increased glycogen levels in the hippocampus and hypothalamus, as well as in muscle. We further explored the essential components of GL (exercise and/or diet conditions) to establish a minimal model of GL focusing on the brain. Exercise, rather than a HCD, was found to be crucial for GL-induced hyper-glycogen in muscle, the hippocampus and the hypothalamus. Moreover, EE was essential for hyper-glycogen only in the hippocampus even without HCD. Here we propose the EE component of GL without HCD as a condition that enhances brain glycogen stores especially in the hippocampus, implicating a physiological strategy to enhance hippocampal functions.

  5. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated...

  6. Exercise in muscle glycogen storage diseases.

    Science.gov (United States)

    Preisler, Nicolai; Haller, Ronald G; Vissing, John

    2015-05-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

  7. Muscle Glycogen Remodeling and Glycogen Phosphate Metabolism following Exhaustive Exercise of Wild Type and Laforin Knockout Mice*

    Science.gov (United States)

    Irimia, Jose M.; Tagliabracci, Vincent S.; Meyer, Catalina M.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2015-01-01

    Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. PMID:26216881

  8. Exercise in muscle glycogen storage diseases

    DEFF Research Database (Denmark)

    Preisler, Nicolai Rasmus; Haller, Ronald G; Vissing, John

    2015-01-01

    exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies...... that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.......Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase...

  9. Regulation of glycogen metabolism by the CRE-1, RCO-1 and RCM-1 proteins in Neurospora crassa. The role of CRE-1 as the central transcriptional regulator.

    Science.gov (United States)

    Cupertino, Fernanda Barbosa; Virgilio, Stela; Freitas, Fernanda Zanolli; Candido, Thiago de Souza; Bertolini, Maria Célia

    2015-04-01

    The transcription factor CreA/Mig1/CRE-1 is a repressor protein that regulates the use of alternative carbon sources via a mechanism known as Carbon Catabolite Repression (CCR). In Saccharomyces cerevisiae, Mig1 recruits the complex Ssn6-Tup1, the Neurospora crassa RCM-1 and RCO-1 orthologous proteins, respectively, to bind to promoters of glucose-repressible genes. We have been studying the regulation of glycogen metabolism in N. crassa and the identification of the RCO-1 corepressor as a regulator led us to investigate the regulatory role of CRE-1 in this process. Glycogen content is misregulated in the rco-1(KO), rcm-1(RIP) and cre-1(KO) strains, and the glycogen synthase phosphorylation is decreased in all strains, showing that CRE-1, RCO-1 and RCM-1 proteins are involved in glycogen accumulation and in the regulation of GSN activity by phosphorylation. We also confirmed the regulatory role of CRE-1 in CCR and its nuclear localization under repressing condition in N. crassa. The expression of all glycogenic genes is misregulated in the cre-1(KO) strain, suggesting that CRE-1 also controls glycogen metabolism by regulating gene expression. The existence of a high number of the Aspergillus nidulans CreA motif (5'-SYGGRG-3') in the glycogenic gene promoters led us to analyze the binding of CRE-1 to some DNA motifs both in vitro by DNA gel shift and in vivo by ChIP-qPCR analysis. CRE-1 bound in vivo to all motifs analyzed demonstrating that it down-regulates glycogen metabolism by controlling gene expression and GSN phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. No effect of glycogen level on glycogen metabolism during high intensity exercise

    DEFF Research Database (Denmark)

    Vandenberghe, Katleen; Hespel, P.; Eynde, Bart Vanden

    1995-01-01

    , either for 1 min 45 s (protocol 1; N = 18) or to exhaustion (protocol 2; N = 14). The exercise tests were preceded by either 5 d on a controlled normal (N) diet, or by 2 d of glycogen-depleting exercise accompanied by the normal diet followed by 3 d on a carbohydrate-rich (CHR) diet. In protocol 1......This study examined the effect of glycogen supercompensation on glycogen breakdown, muscle and blood lactate accumulation, blood-pH, and performance during short-term high-intensity exercise. Young healthy volunteers performed two supramaximal (125% of VO2max) exercise tests on a bicycle ergometer...

  11. Glycogen metabolism in aerobic mixed cultures

    DEFF Research Database (Denmark)

    Dircks, Klaus; Beun, J.J.; van Loosdrecht, M.C.M.

    2001-01-01

    In this study, the metabolism of glycogen storage and consumption in mixed cultures under aerobic conditions is described. The experimental results are used to calibrate a metabolic model, which as sole stoichiometric variables has the efficiency of oxidative phosphorylation (delta) and maintenance...... of glycogen and subsequent growth occur without significant loss of energy, as compared with direct growth on glucose. For kinetic modeling, Monod kinetics is used most commonly in activated sludge models to describe the rate of microbial transformation. Monod kinetics, however, does not provide a good...

  12. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose.

    Science.gov (United States)

    Parrou, J L; Teste, M A; François, J

    1997-06-01

    It is well known that glycogen and trehalose accumulate in yeast under nutrient starvation or entering into the stationary phase of growth, and that high levels of trehalose are found in heat-shocked cells. However, effects of various types of stress on trehalose, and especially on glycogen, are poorly documented. Taking into account that almost all genes encoding the enzymes involved in the metabolism of these two reserve carbohydrates contain between one and several copies of the stress-responsive element (STRE), an investigation was made of the possibility of a link between the potential transcriptional induction of these genes and the accumulation of glycogen and trehalose under different stress conditions. Using transcriptional fusions, it was found that all these genes were induced in a similar fashion, although to various extents, by temperature, osmotic and oxidative stresses. Experiments performed with an msn2/msn4 double mutant proved that the transcriptional induction of the genes encoding glycogen synthase (GSY2) and trehalose-6-phosphate synthase (TPS1) was needed for the small increase in glycogen and trehalose upon exposure to a mild heat stress and salt shock. However, the extent of transcriptional activation of these genes upon stresses in wild-type strains was not correlated with a proportional rise in either glycogen or trehalose. The major explanation for this lack of correlation comes from the fact that genes encoding the enzymes of the biosynthetic and of the biodegradative pathways were almost equally induced. Hence, trehalose and glycogen accumulated to much higher levels in cells lacking neutral trehalose or glycogen phosphorylase exposed to stress conditions, which suggested that one of the major effects of stress in yeast is to induce a wasteful expenditure of energy by increasing the recycling of these molecules. We also found that transcriptional induction of STRE-controlled genes was abolished at temperatures above 40 degree C, while

  13. Glycogen Shunt Activity and Glycolytic Supercompensation in Astrocytes May Be Distinctly Mediated via the Muscle Form of Glycogen Phosphorylase

    DEFF Research Database (Denmark)

    Jakobsen, Emil; Bak, Lasse K; Walls, Anne B

    2017-01-01

    Glycogen is the main storage form of glucose in the brain. In contrast with previous beliefs, brain glycogen has recently been shown to play important roles in several brain functions. A fraction of metabolized glucose molecules are being shunted through glycogen before reentering the glycolytic ...

  14. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Determination of the glycogen content in cyanobacteria

    DEFF Research Database (Denmark)

    Porcellinis, Alice De; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-01-01

    of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover...

  16. Pregnancies in glycogen storage disease type Ia

    NARCIS (Netherlands)

    Martens, Danielle H. J.; Rake, Jan Peter; Schwarz, Martin; Ullrich, Kurt; Weinstein, David A.; Merkel, Martin; Sauer, Pieter J. J.; Smit, G. Peter A.

    OBJECTIVE: Reports on pregnancies in women with glycogen storage disease type Ia (GSD-Ia) are scarce. Because of improved life expectancy, pregnancy is becoming an important issue. We describe 15 pregnancies by focusing on dietary treatment, biochemical parameters, and GSD-Ia complications. STUDY

  17. Molecular Structure of Human-Liver Glycogen.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets.

  18. Why does the brain (not) have glycogen?

    Science.gov (United States)

    DiNuzzo, Mauro; Maraviglia, Bruno; Giove, Federico

    2011-05-01

    In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve. Copyright © 2011 WILEY Periodicals, Inc.

  19. Can glycogen be measured by in vivo neutron activation analysis?

    International Nuclear Information System (INIS)

    Sutcliffe, J.F.; Smith, A.H.; King, R.F.G.H.; Smith, M.A.

    1992-01-01

    The object of this note is to examine the feasibility of measuring liver glycogen using in vivo neutron activation analysis. The authors present equations which allow the mass of glycogen to be expressed in terms of the masses of oxygen, hydrogen, carbon and nitrogen. Using the most precise, published measurements of these elements, the standard deviation in the estimate of liver glycogen was 34 g. The magnitude of this error precluded observing changes in liver glycogen which are normally in the range 16 g to 72 g. However, this technique might be useful in detecting transient high concentrations of liver glycogen.(UK)

  20. Glycogen with short average chain length enhances bacterial durability

    Science.gov (United States)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  1. In vivo effects of diabetes, insulin and oleanolic acid on enzymes of glycogen metabolism in the skin of streptozotocin-induced diabetic male Sprague-Dawley rats.

    Science.gov (United States)

    Mukundwa, Andrew; Langa, Silvana O; Mukaratirwa, Samson; Masola, Bubuya

    2016-03-04

    The skin is the largest organ in the body and diabetes induces pathologic changes on the skin that affect glucose homeostasis. Changes in skin glycogen and glucose levels can mirror serum glucose levels and thus the skin might contribute to whole body glucose metabolism. This study investigated the in vivo effects of diabetes, insulin and oleanolic acid (OA) on enzymes of glycogen metabolism in skin of type 1 diabetic rats. Diabetic and non-diabetic adult male Sprague-Dawley rats were treated with a single daily dose of insulin (4 IU/kg body weight), OA (80 mg/kg body weight) and a combination of OA + insulin for 14 days. Glycogen phosphorylase (GP) expression; and GP, glycogen synthase (GS) and hexokinase activities as well glycogen levels were evaluated. The results suggest that diabetes lowers hexokinase activity, GP activity and GP expression with no change in GS activity whilst the treatments increased GP expression and the activities of hexokinase, GP and GS except for the GS activity in OA treated rats. Glycogen levels were increased slightly by diabetes as well as OA treatment. In conclusion diabetes, OA and insulin can lead to changes in GS and GP activities in skin without significantly altering the glycogen content. We suggest that the skin may contribute to whole body glucose homeostasis particularly in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  3. Glycogen dynamics of crucian carp (Carassius carassius) in prolonged anoxia.

    Science.gov (United States)

    Vornanen, Matti; Haverinen, Jaakko

    2016-12-01

    Mobilization of glycogen stores was examined in the anoxic crucian carp (Carassius carassius Linnaeus). Winter-acclimatized fish were exposed to anoxia for 1, 3, or 6 weeks at 2 °C, and changes in the size of glycogen deposits were followed. After 1 week of anoxia, a major part of the glycogen stores was mobilized in liver (79.5 %) and heart (75.6 %), and large decreases occurred in gill (46.7 %) and muscle (45.1 %). Brain was an exception in that its glycogen content remained unchanged. The amount of glycogen degraded during the first anoxic week was sufficient for the anaerobic ethanol production for more than 6 weeks of anoxia. After 3 and 6 weeks of anoxia, there was little further degradation of glycogen in other tissues except the brain where the stores were reduced by 30.1 and 49.9 % after 3 and 6 weeks of anoxia, respectively. One week of normoxic recovery following the 6-week anoxia was associated with a complete replenishment of the brain glycogen and partial recovery of liver, heart, and gill glycogen stores. Notably, the resynthesis of glycogen occurred at the expense of the existing energy reserves of the body in fasting fish. These findings indicate that in crucian carp, glycogen stores are quickly mobilized after the onset of anoxia, with the exception of the brain whose glycogen stores may be saved for putative emergency situations.

  4. Patterns of glycogen turnover in liver characterized by computer modeling

    International Nuclear Information System (INIS)

    Youn, J.H.; Bergman, R.N.

    1987-01-01

    The authors used a computer model of liver glycogen turnover to reexamine the data of Devos and Hers, who reported the time course of accumulation in and loss from glycogen of label originating in [1- 14 C]galactose injected at different times after the start of refeeding of 40-h fasted mice or rats. In the present study computer representation of individual glycogen molecules was utilized to account for growth and degradation of glycogen according to specific hypothetical patterns. Using this model they could predict the accumulation and localization within glycogen of labeled glucose residues and compare the predictions with the previously published data. They considered three specific hypotheses of glycogen accumulation during refeeding: (1) simultaneous, (2) sequential, and (3) accelerating growth. Hypothetical patterns of glycogen degradation were (1) ordered and (2) random degradation. The pattern of glycogen synthesis consistent with experimental data was a steadily increasing number of growing glycogen molecules, whereas during degradation glycogen molecules are exposed to degrading enzymes randomly, rather than in a specific reverse order of synthesis. These patterns predict the existence of a specific mechanism for the steadily increasing seeding of new glycogen molecules during synthesis

  5. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  6. Introduction to the Thematic Minireview Series: Brain glycogen metabolism.

    Science.gov (United States)

    Carlson, Gerald M; Dienel, Gerald A; Colbran, Roger J

    2018-05-11

    The synthesis of glycogen allows for efficient intracellular storage of glucose molecules in a soluble form that can be rapidly released to enter glycolysis in response to energy demand. Intensive studies of glucose and glycogen metabolism, predominantly in skeletal muscle and liver, have produced innumerable insights into the mechanisms of hormone action, resulting in the award of several Nobel Prizes over the last one hundred years. Glycogen is actually present in all cells and tissues, albeit at much lower levels than found in muscle or liver. However, metabolic and physiological roles of glycogen in other tissues are poorly understood. This series of Minireviews summarizes what is known about the enzymes involved in brain glycogen metabolism and studies that have linked glycogen metabolism to multiple brain functions involving metabolic communication between astrocytes and neurons. Recent studies unexpectedly linking some forms of epilepsy to mutations in two poorly understood proteins involved in glycogen metabolism are also reviewed. © 2018 Carlson et al.

  7. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    Science.gov (United States)

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ordered synthesis and mobilization of glycogen in the perfused heart

    International Nuclear Information System (INIS)

    Brainard, J.R.; Hutson, J.Y.; Hoekenga, D.E.; Lenhoff, R.

    1989-01-01

    The molecular order of synthesis and mobilization of glycogen in the perfused heart was studied by 13 C NMR. By varying the glucose isotopomer ([1- 13 C]glucose or [2- 13 C]glucose) supplied to the heart, glycogen synthesized at different times during the perfusion was labeled at different carbon sites. Subsequently, the in situ mobilization of glycogen during ischemia was observed by detection of labeled lactate derived from glycolysis of the glucosyl monomers. When [1- 13 C]glucose was given initially in the perfusion and [2- 13 C]glucose was given second, [2- 13 C]lactate was detected first during ischemia and [3- 13 C]lactate second. This result, and the equivalent result when the glucose labels were given in the reverse order, demonstrates that glycogen synthesis and mobilization are ordered in the heart, where glycogen is found morphologically only as β particles. Previous studies of glycogen synthesis and mobilization in liver and adipocytes have suggested that the organization of β particles into α particles was partially responsible for ordered synthesis and mobilization. The observations reported here for cardiac glycogen suggest that another mechanism is responsible. In addition to examine the ordered synthesis and mobilization of cardiac glycogen, the authors have selectively monitored the NMR properties of 13 C-labeled glycogen synthesized early in the perfusion during further glycogen synthesis from a second, differently labeled substrate. During synthesis from the second labeled glucose monomer, the glycogen resonance from the first label decreased in integrated intensity and increased in line width. These results suggest either that there is significant isotopic exchange of glucosyl monomers in glycogen during net synthesis or that glucosyl residues incorporated into glycogen undergo motional restrictions as further glycogen synthesis occurs

  9. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission.

    Science.gov (United States)

    Sickmann, Helle M; Walls, Anne B; Schousboe, Arne; Bouman, Stephan D; Waagepetersen, Helle S

    2009-05-01

    The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present unclear. The significance of glycogen in fueling glutamate uptake into astrocytes was specifically addressed in cultured astrocytes. Moreover, the objective was to elucidate whether glycogen derived energy is important for maintaining glutamatergic neurotransmission, induced by repetitive exposure to NMDA in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue D-[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important for the astrocytic compartment. By inhibiting glycogen degradation in co-cultures it was evident that glycogen provides energy to sustain glutamatergic neurotransmission, i.e. release and uptake of glutamate. The relocation of glycogen derived lactate to the neuronal compartment was investigated by employing d-lactate, a competitive substrate for the monocarboxylate transporters. Neurotransmitter release was affected by the presence of d-lactate indicating that glycogen derived energy is important not only in the astrocytic but also in the neuronal compartment.

  10. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Amanda Fraga

    Full Text Available Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3 and hexokinase (HexA genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  11. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  12. In vivo hepatic glycogen metabolism in the baboon

    International Nuclear Information System (INIS)

    Jehenson, P.; Canioni, P.; Hantraye, P.; Gueron, M.; Syrota, A.

    1988-01-01

    This paper describes hepatic glycogen synthesis from glucose studied in the baboon by C-13 MR spectroscopy at 2 T. Glycogen synthesis was followed for 3 hours on natural abundance spectra during glucose infusion. (1-C-13)-glucose (3g) was then injected. It produced a ten times larger rate of increase of glycogen-C 1 , which is much lower than expected, suggesting that glycogen synthesis mainly occurred from unlabeled gluconeogenic substrates. Signal-to-noise ratio was 50 for glycogen-C 1 on 2-minute H-1 decoupled spectra. Labeling of C 1 but also C 2 , C 5 and C 6 of glycogen indicated a 15% contribution of indirect pathways to its synthesis from glucose

  13. Analysis of genes involved in glycogen degradation in Escherichia coli.

    Science.gov (United States)

    Strydom, Lindi; Jewell, Jonathan; Meier, Michael A; George, Gavin M; Pfister, Barbara; Zeeman, Samuel; Kossmann, Jens; Lloyd, James R

    2017-02-01

    Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Qualitative and Quantitative Analyses of Glycogen in Human Milk.

    Science.gov (United States)

    Matsui-Yatsuhashi, Hiroko; Furuyashiki, Takashi; Takata, Hiroki; Ishida, Miyuki; Takumi, Hiroko; Kakutani, Ryo; Kamasaka, Hiroshi; Nagao, Saeko; Hirose, Junko; Kuriki, Takashi

    2017-02-22

    Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.

  15. Glycogen distribution in adult and geriatric mice brains

    KAUST Repository

    Alrabeh, Rana

    2017-05-01

    Astrocytes, the most abundant glial cell type in the brain, undergo a number of roles in brain physiology; among them, the energetic support of neurons is the best characterized. Contained within astrocytes is the brain’s obligate energy store, glycogen. Through glycogenolysis, glycogen, a storage form of glucose, is converted to pyruvate that is further reduced to lactate and transferred to neurons as an energy source via MCTs. Glycogen is a multi-branched polysaccharide synthesized from the glucose uptaken in astrocytes. It has been shown that glycogen accumulates with age and contributes to the physiological ageing process in the brain. In this study, we compared glycogen distribution between young adults and geriatric mice to understand the energy consumption of synaptic terminals during ageing using computational tools. We segmented and densely reconstructed neuropil and glycogen granules within six (three 4 month old old and three 24 month old) volumes of Layer 1 somatosensory cortex mice brains from FIB-SEM stacks, using a combination of semi-automated and manual tools, ilastik and TrakEM2. Finally, the 3D visualization software, Blender, was used to analyze the dataset using the DBSCAN and KDTree Nearest neighbor algorithms to study the distribution of glycogen granules compared to synapses, using a plugin that was developed for this purpose. The Nearest Neighbors and clustering results of 6 datasets show that glycogen clusters around excitatory synapses more than inhibitory synapses and that, in general, glycogen is found around axonal boutons more than dendritic spines. There was no significant accumulation of glycogen with ageing within our admittedly small dataset. However, there was a homogenization of glycogen distribution with age and that is consistent with published literature. We conclude that glycogen distribution in the brain is not a random process but follows a function distribution.

  16. Functional consequences of brain glycogen deficiency on the sleep-wake cycle regulation in PTG-KO mice

    KAUST Repository

    Burlet-Godinot, S.

    2017-12-31

    Introduction: In the CNS, glycogen is mainly localized in astrocytes where its levels are linked to neuronal activity. Astrocytic glycogen synthesis is regulated by glycogen synthase (GS) activity that is positively controlled by protein targeting to glycogen (PTG) expression levels. Although the role of glycogen in sleep/wake regulation is still poorly understood, we have previously demonstrated that, following a 6 hour gentle sleep deprivation (GSD), PTG mRNA expression and GS activity increased in the brain in mice while glycogen levels were paradoxically maintained and not affected. In order to gain further insight on the role of PTG in this process, we studied the sleep/wake cycle parameters in PTG knockout (PTG-KO) mice under baseline conditions and after a 6 hour GSD. Glycogen levels as well as mRNAs expression of genes related to energy metabolism were also determined in several brain areas. Materials and methods: Adult male C57BL/6J (WT) and PTG-KO mice were sleep-recorded under baseline conditions (24 h recordings, 12 h light/dark cycle) and following 6 hours GSD from ZT00 to ZT06. Vigilance states were visually scored (4 s temporal window). Spectral analysis of the EEG signal was performed using a discrete Fourier transformation. Glycogen measurements and gene expression analysis were assessed using a biochemical assay and quantitative RT-PCR respectively, on separate cohorts in WT vs PTG-KO mice at the end of the 6 hours GSD or in control animals (CTL) in different brain structures. Results: Quantitative analysis of the sleep/wake cycle under baseline conditions did not reveal major differences between the WT and the PTG-KO mice. However, during the dark period, the PTG-KO mice showed a significant increase in the number of wake and slow wave sleep episodes (respectively +26.5±8% and +26.1±8%; p< 0.05) together with a significant shortening in their duration (-21.6±7.2% and -14.3±2.8%; p< 0.01). No such quantitative changes were observed during

  17. High glycogen levels in the hippocampus of patients with epilepsy

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Madsen, Flemming F; Secher, Niels H

    2006-01-01

    During intense cerebral activation approximately half of the glucose plus lactate taken up by the human brain is not oxidized and could replenish glycogen deposits, but the human brain glycogen concentration is unknown. In patients with temporal lobe epilepsy, undergoing curative surgery, brain......, glycogen was similarly higher than in grey and white matter. Consequently, in human grey and white matter and, particularly, in the hippocampus of patients with temporal lope epilepsy, glycogen constitutes a large, active energy reserve, which may be of importance for energy provision during sustained...

  18. Tyrosine glycosylation is involved in muscle-glycogen synthesis

    International Nuclear Information System (INIS)

    Rodriguez, I.R.; Tandecarz, J.S.; Kirkman, B.R.; Whelan, W.J.

    1986-01-01

    Rabbit-muscle glycogen contains a covalently bound protein having Mr 37,000 that the authors will henceforth refer to as glycogenin. It is completely insoluble in water at pH 5, and may be generated as a precipitate as a result of the combined action on glycogen of α-amylase and glucoamylase, or by treatment with anhydrous hydrogen fluoride. In the former case the protein still carries some of the glucose residues of glycogen (10-30 per mole of glycogenin). The linkage between glycogen and glycogenin has been identified as a novel glycosidic-amino acid bond. The authors demonstrated glucosylation with UDP[/sup 14/C]glucose by a muscle extract of two rabbit-muscle proteins contained in the same extract. The relation of these proteins to glycogenin, and whether the amino acid undergoing glucosylation is tyrosine, remains to be explored. The discovery of glycogenin is, the authors believe, an important clue to the mechanism of biogenesis of glycogen and may represent a previously unsuspected means of metabolic control of the glycogen content of the cell and the location of glycogen within the cell. The facts that the linkage between glycogen and glycogenin is via tyrosine, that insulin stimulates glycogen synthesis, and acts on its receptor by causing it to become an active tyrosine kinase, may be linked by a common thread

  19. Drug induced exocytosis of glycogen in Pompe disease.

    Science.gov (United States)

    Turner, Christopher T; Fuller, Maria; Hopwood, John J; Meikle, Peter J; Brooks, Doug A

    2016-10-28

    Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca 2+ -dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules. Copyright © 2016. Published by Elsevier Inc.

  20. Extraction of glycogen on mild condition lacks AIG fraction.

    Science.gov (United States)

    Ghafouri, Z; Rasouli, M

    2016-12-01

    Extraction of animal tissues with cold water or perchloric acid yields less glycogen than is obtained with hot-alkaline. Extraction with acid and alkaline gives two fractions, acid soluble (ASG) and insoluble glycogen (AIG). The aim of this work is to examine the hypothesis that not all liver glycogen is extractable by Tris-buffer using current techniques. Rat liver was homogenized with Tris-buffer pH 8.3 and extracted for the glycogen fractions, ASG and AIG. The degree of homogenization was changed to remove all glycogen. The content of glycogen was 47.7 ± 1.2 and 11.6 ± 0.8 mg/g wet liver in the supernatant and pellet of the first extraction respectively. About 24% of total glycogen is lost through the first pellet. Increasing the extent of homogenization from 30 to 180 sec and from 15000 to 20000 rpm followed with 30 sec ultrasonication did not improve the extraction. ASG and AIG constitute about 77% and 23% of the pellet glycogen respectively. Extraction with cold Tris-buffer failed to extract glycogen completely.  Increasing the extent of homogenization followed with ultrasonication also did not improve the extraction. Thus it is necessary to re-examine the previous findings obtained by extraction with cold Tris-buffer.

  1. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13 C metabolic flux analysis.

    Science.gov (United States)

    Hendry, John I; Prasannan, Charulata; Ma, Fangfang; Möllers, K Benedikt; Jaiswal, Damini; Digmurti, Madhuri; Allen, Doug K; Frigaard, Niels-Ulrik; Dasgupta, Santanu; Wangikar, Pramod P

    2017-10-01

    Cyanobacteria, which constitute a quantitatively dominant phylum, have attracted attention in biofuel applications due to favorable physiological characteristics, high photosynthetic efficiency and amenability to genetic manipulations. However, quantitative aspects of cyanobacterial metabolism have received limited attention. In the present study, we have performed isotopically non-stationary 13 C metabolic flux analysis (INST- 13 C-MFA) to analyze rerouting of carbon in a glycogen synthase deficient mutant strain (glgA-I glgA-II) of the model cyanobacterium Synechococcus sp. PCC 7002. During balanced photoautotrophic growth, 10-20% of the fixed carbon is stored in the form of glycogen via a pathway that is conserved across the cyanobacterial phylum. Our results show that deletion of glycogen synthase gene orchestrates cascading effects on carbon distribution in various parts of the metabolic network. Carbon that was originally destined to be incorporated into glycogen gets partially diverted toward alternate storage molecules such as glucosylglycerol and sucrose. The rest is partitioned within the metabolic network, primarily via glycolysis and tricarboxylic acid cycle. A lowered flux toward carbohydrate synthesis and an altered distribution at the glucose-1-phosphate node indicate flexibility in the network. Further, reversibility of glycogen biosynthesis reactions points toward the presence of futile cycles. Similar redistribution of carbon was also predicted by Flux Balance Analysis. The results are significant to metabolic engineering efforts with cyanobacteria where fixed carbon needs to be re-routed to products of interest. Biotechnol. Bioeng. 2017;114: 2298-2308. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  3. Diurnal variation in glycogen phosphorylase activity in rat liver. A quantitative histochemical study

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; Bosch, K. S.

    1987-01-01

    The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase

  4. Volume I. Glycogen: A historical overview, an adjunct to thesis. Volume II. Non-glucose components of glycogen

    International Nuclear Information System (INIS)

    Kirkman, B.R.

    1988-01-01

    Investigations have been carried out on three non-glucose components of native glycogen: protein, glucosamine, and phosphate. The protein, glycogenin, appears to serve as the primer upon which new molecules of glycogen are synthesized. When cell extracts are incubated with ( 14 C)UDPG, ( 14 C)glucose becomes transferred onto pre-existing chains of alpha-1,4 linked glucose associated with free glycogenin. The transferase and glycogenin remain associated during various purification steps. Liver glycogen appears to contain less than 0.02% protein which may correspond to the presence of one molecule of glycogenin (37 kDa) per alpha particle of liver glycogen. The core beta particle within each alpha particle may be synthesized upon glycogenin, while the remaining 20-40 beta particles may arise from each other. The author has demonstrated the natural occurrence of glucosamine in liver glycogen (but not muscle glycogen) from various species in an amount of about one molecule per molecule of glycogen. The glucosamine is underivatized, appears to be randomly scattered in the glycogen, and may be derived from dietary galactosamine. Similar to Fontana (1980), the author observed that native liver glycogen could be fractionated on DEAE-cellulose apparently on the basis of phosphate content. The more strongly bound glycogen possessed a greater molecular weight and content of glucosamine and phosphate. Possible explanations for these subfractions are considered. The phosphate appears to be concentrated near the center of the glycogen molecules. About 30% appears to be associated with glucose-6P and the remainder with an unidentified phosphodiester. The phosphate may stimulate glycogen synthesis. How the phosphate becomes incorporated is unknown

  5. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Science.gov (United States)

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  6. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  7. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  8. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  9. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  10. Muscular glycogen storage diseases without increased glycogen content on histoplathological examination

    NARCIS (Netherlands)

    Hoeksma, M.; den Dunnen, W. F. A.; Niezen-Koning, K. E.; van Diggelen, O. P.; van Spronsen, F. J.

    Histopathological findings of muscle biopsies from five patients with two different muscular glycogen storage diseases (mGSD) were presented. From these investigations it emerged that the yield of histopathology in mGSD is low. In only one of five patients histopathological findings gave a clue

  11. GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Jørgensen, Stine Ringholm; Kiilerich, Kristian

    2012-01-01

    To elucidate the molecular mechanisms behind physical inactivity-induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both...... than before bed rest. This bed rest-induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate....... The present findings demonstrate that physical inactivity-induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage....

  12. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Tao, Shixin; Nilsson, Line

    2015-01-01

    vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting......KO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li(+) in LiCl-induced nephrogenic diabetes insipidus....

  13. Glycogen synthase kinase-3β activity and cognitive functioning in patients with bipolar I disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Miskowiak, Kamilla Woznica; Jacoby, Anne Sophie

    2018-01-01

    but the relation between GSK-3 activity, cognition and lithium treatment is unknown. We therefore investigated the possible association between GSK-3 activity and cognition and whether lithium treatment moderates this association in patients with BD. In a prospective 6-12 month follow-up study, GSK- 3β activity...... in peripheral blood mononuclear cells was measured concurrently with cognitive performance assessed using a comprehensive test battery in 27 patients with BD-I in early and late remission following a manic or mixed episode. The GSK-3β activity, measured as serine-9 phosphorylated GSK-3β (pGSK-3β) and the GSK-3β...... ratio (serine-9-pGSK-3β /total GSK-3β), was negatively associated with sustained attention (p = 0.009 and p = 0.042, respectively), but not with other cognitive domains or global cognition. A crossover interaction between lithium treatment and the GSK activity was observed, indicating that lower pGSK-3β...

  14. Effect of Preconditioning with Desflurane on Phosphorylated Glycogen Synthase Kinase 3β Contents in an Experiment

    OpenAIRE

    V. V. Likhvantsev; O. A. Grebenchikov; R. A. Cherpakov; Yu. V. Skripkin; K. Yu. Borisov

    2016-01-01

    The purpose of this study is to determine and evaluate if the preconditioning with desflurane depends on level of phosphoGSK3β.Material and methods. White outbred male rats (56) were randomly allocated to 6 groups. Ischemia/reperfusion modeling was performed using V. G.Korpachev's technique. The reference group consisted of sham (falselyoperated) animals. The second group underwent global ischemia/reperfusion after anesthesia with chloral hydrate. The next two groups were treated with either ...

  15. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Walls, Anne B; Schousboe, Arne

    2009-01-01

    The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present u...

  16. Glycogen metabolism and the homeostatic regulation of sleep

    KAUST Repository

    Petit, Jean-Marie; Burlet-Godinot, Sophie; Magistretti, Pierre J.; Allaman, Igor

    2014-01-01

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which

  17. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  18. Muscle glycogen and cell function--Location, location, location.

    Science.gov (United States)

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Glycogen synthesis from lactate in a chronically active muscle

    International Nuclear Information System (INIS)

    Talmadge, R.J.; Scheide, J.I.; Silverman, H.

    1989-01-01

    In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A [ 14 C]lactate intraperitoneal injection leads to preferential 14 C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM [ 14 C]lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates [14C] lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers

  20. Exercise intolerance in Glycogen Storage Disease Type III

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Pradel, Agnès; Husu, Edith

    2013-01-01

    Myopathic symptoms in Glycogen Storage Disease Type IIIa (GSD IIIa) are generally ascribed to the muscle wasting that these patients suffer in adult life, but an inability to debranch glycogen likely also has an impact on muscle energy metabolism. We hypothesized that patients with GSD IIIa can...

  1. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status......, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates...

  2. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  3. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  4. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  5. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  6. Glycogen metabolism and the homeostatic regulation of sleep

    KAUST Repository

    Petit, Jean-Marie

    2014-11-16

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named “glycogenetic” hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.

  7. Heteropoly acid catalyzed hydrolysis of glycogen to glucose

    International Nuclear Information System (INIS)

    Klein, Miri; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2015-01-01

    Complete conversion of glycogen to glucose is achieved by using H 3 PW 12 O 40 ·nH 2 O (HPW) and H 4 SiW 12 O 40 ·nH 2 O (HSiW) as catalysts for the hydrolysis under optimized hydrothermal conditions (mass fraction of catalyst 2.4%, 373 K and 2 h reaction time). The reusability of the catalyst (HPW) was demonstrated. In addition to carrying out the glycogen hydrolysis in an autoclave, other novel methods such as microwave irradiation and sonication have also been investigated. At higher mass fraction of the heteropoly acids (10.5%), glycogen could be completely converted to glucose under microwave irradiation. Sonication of an aqueous solution of glycogen in the presence of HPW and HSiW also yielded glucose. Thus, heteropoly acids are efficient, environmentally friendly and reusable catalysts for the conversion of glycogen to glucose. - Highlights: • Hydrothermal, microwave and sonication based methods of hydrolysis. • Heteropoly acids are green catalysts for glycogen hydrolysis. • Glycogen from cyanobacteria is demonstrated as a potential feedstock for glucose

  8. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV.

    Science.gov (United States)

    Ward, Tara L; Valberg, Stephanie J; Adelson, David L; Abbey, Colette A; Binns, Matthew M; Mickelson, James R

    2004-07-01

    Comparative biochemical and histopathological evidence suggests that a deficiency in the glycogen branching enzyme, encoded by the GBE1 gene, is responsible for a recently identified recessive fatal fetal and neonatal glycogen storage disease (GSD) in American Quarter Horses termed GSD IV. We have now derived the complete GBE1 cDNA sequences for control horses and affected foals, and identified a C to A substitution at base 102 that results in a tyrosine (Y) to stop (X) mutation in codon 34 of exon 1. All 11 affected foals were homozygous for the X34 allele, their 11 available dams and sires were heterozygous, and all 16 control horses were homozygous for the Y34 allele. The previous findings of poorly branched glycogen, abnormal polysaccharide accumulation, lack of measurable GBE1 enzyme activity and immunodetectable GBE1 protein, coupled with the present observation of abundant GBE1 mRNA in affected foals, are all consistent with the nonsense mutation in the 699 amino acid GBE1 protein. The affected foal pedigrees have a common ancestor and contain prolific stallions that are likely carriers of the recessive X34 allele. Defining the molecular basis of equine GSD IV will allow for accurate DNA testing and the ability to prevent occurrence of this devastating disease affecting American Quarter Horses and related breeds.

  9. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery.

    Science.gov (United States)

    Perrone, Mara; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Douglas, Justin; Franco, Massimo; Liberati, Elisa; Russo, Vincenzo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas

    2017-10-01

    The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems. Copyright © 2017 Elsevier B.V. All rights

  10. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, S A; Hansen, B F

    1988-01-01

    increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased (mean +/- SE) from 34.9 +/- 1.2 mumol.g-1.h-1 at 0 h to 7.5 +/- 0.7 after 7 h of perfusion. During...... compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal....

  11. Hepatic glycogen synthesis in the fetal mouse: An ultrastructural, morphometric, and autoradiographic investigation of the relationship between the smooth endoplasmic reticulum and glycogen

    International Nuclear Information System (INIS)

    Breslin, J.S.

    1989-01-01

    Fetal rodent hepatocytes undergo a rapid and significant accumulation of glycogen prior to birth. The distinct association of the smooth endoplasmic reticulum (SER) with glycogen during glycogen synthesis documented in the adult hepatocyte has not been clearly demonstrated in the fetus. The experiments described in this dissertation tested the hypothesis that SER is present and functions in the synthesis of fetal hepatic glycogen. Biochemical analysis, light microscopic (LM) histochemistry and electron microscope (EM) morphometry demonstrated that fetal hepatic glycogen synthesis began on day 15, with maximum accumulation occurring between days 17-19. Glycogen accumulation began in a small population of cells. Both the number of cells containing glycogen and the quantity of glycogen per cell increased as glycogen accumulated. Smooth endoplasmic reticulum (SER) was observed on day 14 of gestation and throughout fetal hepatic glycogen synthesis, primarily as dilated ribosome-free terminal extensions of rough endoplasmic reticulum (RER), frequently associated with glycogen. SER was in close proximity to isolated particles of glycogen and at the periphery of large compact glycogen deposits. Morphometry demonstrated that the membrane surface of SER in the average fetal hepatocyte increased as glycogen accumulated through day 18 and dropped significantly as glycogen levels peaked on day 19. Parallel alterations in RER membrane surface, indicated overall increases in ER membrane surface. Autoradiography following administration of 3 H-galactose demonstrated that newly synthesized glycogen was deposited near profiles of SER at day 16 and at day 18; however, at day 18 the majority of label was uniformly distributed over glycogen remote from profiles of SER

  12. Genetics Home Reference: glycogen storage disease type 0

    Science.gov (United States)

    ... skeletal muscle, glycogen stored in muscle cells is broken down to supply the cells with energy. The ... that is stored in the liver can be broken down rapidly when glucose is needed to maintain ...

  13. Genetics Home Reference: glycogen storage disease type VI

    Science.gov (United States)

    ... or elevated levels of ketones in the blood (ketosis). Ketones are molecules produced during the breakdown of ... and may use fats for energy, resulting in ketosis. Glycogen accumulates within liver cells, causing these cells ...

  14. Genetics Home Reference: glycogen storage disease type IX

    Science.gov (United States)

    ... or elevated levels of ketones in the blood (ketosis). Ketones are molecules produced during the breakdown of ... down glycogen for glucose contributes to hypoglycemia and ketosis. Reduced energy production in muscle cells leads to ...

  15. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  16. Genetics Home Reference: glycogen storage disease type V

    Science.gov (United States)

    ... with GSDV experience mild symptoms such as poor stamina; others do not experience any symptoms. Related Information ... myophosphorylase. This enzyme is found only in muscle cells, where it breaks down glycogen into a simpler ...

  17. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  18. The effect of glycogen phosphorolysis on basal glutaminergic transmission.

    Science.gov (United States)

    Mozrzymas, Jerzy; Szczęsny, Tomasz; Rakus, Darek

    2011-01-14

    Astrocytic glycogen metabolism sustains neuronal activity but its impact on basal glutamatergic synaptic transmission is not clear. To address this issue, we have compared the effect of glycogen breakdown inhibition on miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal pure neuronal culture (PNC) and in astrocyte-neuronal co-cultures (ANCC). Amplitudes of mEPSC in ANCC were nearly twice as large as in PNC with no difference in current kinetics. Inhibition of glycogen phosphorylase reduced mEPSC amplitude by roughly 40% in ANCC being ineffective in PNC. Altogether, these data indicate that astrocyte-neuronal interaction enhances basal mEPSCs in ANCC mainly due to astrocytic glycogen metabolism. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

    OpenAIRE

    Skórko, R; Osipiuk, J; Stetter, K O

    1989-01-01

    Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing ...

  20. Inadequate Brain Glycogen or Sleep Increases Spreading Depression Susceptibility

    KAUST Repository

    Kilic, Kivilcim; Karatas, Hulya; Donmez-Demir, Buket; Eren-Kocak, Emine; Gursoy-Ozdemir, Yasemin; Can, Alp; Petit, Jean-Marie; Magistretti, Pierre J.; Dalkara, Turgay

    2017-01-01

    Glycogen in astrocyte endfeet contributes to maintenance of low extracellular glutamate and K+ concentrations around synapses. Sleep deprivation (SD), a common migraine trigger induces transcriptional changes in astrocytes reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches.We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD.DAB caused neuronal pannexin-1 large-pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking-down neuronal lactate transporter, MCT2 with an anti-sense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly given phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, APG-4 disclosed that DAB treatment or SD caused significant rise in extracellular K+ during whisker-stimulation, illustrating the critical role of glycogen in extracellular K+ clearance.Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lowering the CSD threshold. Therefore, conditions that limit energy supply to synapse (e.g. SD) may predispose to migraine attacks as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. This article is protected by copyright. All rights reserved.

  1. Inadequate Brain Glycogen or Sleep Increases Spreading Depression Susceptibility

    KAUST Repository

    Kilic, Kivilcim

    2017-12-16

    Glycogen in astrocyte endfeet contributes to maintenance of low extracellular glutamate and K+ concentrations around synapses. Sleep deprivation (SD), a common migraine trigger induces transcriptional changes in astrocytes reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches.We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD.DAB caused neuronal pannexin-1 large-pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking-down neuronal lactate transporter, MCT2 with an anti-sense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly given phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, APG-4 disclosed that DAB treatment or SD caused significant rise in extracellular K+ during whisker-stimulation, illustrating the critical role of glycogen in extracellular K+ clearance.Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lowering the CSD threshold. Therefore, conditions that limit energy supply to synapse (e.g. SD) may predispose to migraine attacks as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. This article is protected by copyright. All rights reserved.

  2. In vitro variation of glycogen content in three sheep nematodes.

    Science.gov (United States)

    Premvati, G; Chopra, A K

    1979-06-01

    In vitro variation of glycogen content under aerobic conditions was measured on fresh weight basis in 3 sheep nematodes inhabiting different niches; Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis. The parasites were saparated into species and then sexes and starved for varying periods of time up to 24 h in glucose-free physiological saline. The differences between females and males and among the species with respect to glycogen content and its rate of change with time are discussed.

  3. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  4. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  5. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  6. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-06-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.

  7. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  8. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  9. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Glycogen storage disease type Ia: linkage of glucose, glycogen, lactic acid, triglyceride, and uric acid metabolism.

    Science.gov (United States)

    Sever, Sakine; Weinstein, David A; Wolfsdorf, Joseph I; Gedik, Reyhan; Schaefer, Ernst J

    2012-01-01

    A female presented in infancy with hypotonia, undetectable serum glucose, lactic acidosis, and triglycerides >5000 mg/dL. The diagnosis of type 1A glycogen storage disease was made via the result of a liver biopsy, which showed increased glycogen and absent glucose-6-phosphatase enzyme activity. The patient was treated with dextrose administered orally, which was replaced by frequent feedings of cornstarch, which resulted in an improvement of her metabolic parameters. At age 18 years of age, she had marked hypertriglyceridemia (3860 mg/dL) and eruptive xanthomas and was treated with fenofibrate, atorvastatin, and fish oil. At age 29 years she was noted to have multiple liver adenomas, severe anemia, and hyperuricemia. Aggressive cornstarch therapy was commenced with a goal of maintaining her blood glucose levels >75 mg/dL and lactate levels triglycerides 179, high-density lipoprotein cholesterol 32, and calculated low-density lipoprotein cholesterol 154. Her weight was stable with a body mass index of 24.8 kg/m(2). Her liver adenomas had decreased in size, and her anemia and hyperuricemia had improved. She was homozygous for the R83C missense mutation in G6PC. Our data indicate that optimized metabolic control to maintain blood glucose levels >75 mg/dL is critical in the management of this disease. Copyright © 2012. Published by Elsevier Inc.

  11. Glycogen metabolism in radiation induced hepatocellular carcinoma in Swiss albino mice

    International Nuclear Information System (INIS)

    Gupta, N.K.; Kumar, Ashok

    1988-01-01

    Glycogen content and the activities of phosphorylase, glycogen sythetase (GS), glucose 6-phosphatase (G6Pase), phosphohexose isomerase (PHI), glucose 6-phosphodehydrogenase were biochemically determined in the heparocellular carcinoma induced in swiss albino mice following radiocalcium internal irradiation. The content glycogen and the activities of phosphorylase, glycogen synthetase, G6Pase, PHI, GPT and GOT are considerably reduced in the hepatocellular carcinoma compared to that in control liver. However, the activity of G6PDH shows an increased activity. Results indicate that the decreas ed glycogen content in the hepatocellular carcinoma is due to the reduced glycogen synthetase activity and utilization of glucose by HMP pathway. (author). 2 tabs., 24 refs

  12. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    D'Hulst Christophe

    2008-09-01

    Full Text Available Abstract Background The biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS, whereas glycogen biosynthesis typically requires only one class of glycogen synthase. Results Null mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes. Conclusion SSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between

  13. Characterization of the growth and degradation of glycogen in the liver

    International Nuclear Information System (INIS)

    Youn, J.; Bergman, R.

    1986-01-01

    The patterns of the growth and degradation of hepatic glycogen were studied using a computer model. The database was that of Devos and Hers on the distribution of label in glycogen from [1- 14 C] galactose injected at different times after the start of refeeding 40 h fasted mice. The data was simulated to examine the following hypotheses (H): Glycogen Synthesis H.S1: all glycogen molecules grow simultaneously. H.S2: at each moment of synthesis only a fixed number of molecules grow. H.S3: the number of growing molecules increases linearly with respect to time. H.S4: increase in the number of growing molecules is accelerated as glycogen is synthesized. Glycogen Degradation H.D1: glycogen molecules to be attacked by degrading enzymes are randomly chosen. H.D2: glycogen molecules are degraded sequentially in the reverse order of synthesis. H.D3: glycogen molecules have different probabilities of degradation depending upon the time of synthesis. The growth and degradation according to hypotheses S4 and D3, respectively, could best account for the data. The modelling study predicts that, at the beginning of refeeding, only a small number of molecules grow. But, as glycogen is synthesized, the rate of seeding of new glycogen molecules increases with time, causing a nonlinear proliferation of the number of growing molecules. During degradation glycogen molecules synthesized later have a greater chance to be degraded first, a characteristic which may be explained by the rosette structure of liver glycogen

  14. Somatomedin-C stimulates glycogen synthesis in fetal rat hepatocytes

    International Nuclear Information System (INIS)

    Freemark, M.; D'Ercole, A.J.; Handwerger, S.

    1985-01-01

    The effects of somatomedin-C/insulin-like growth factor I (Sm-C) on glycogen metabolism in cultured hepatocytes from 20-day-old rat fetuses have been examined and compared with the effects of insulin. Sm-C (25-375 ng/ml; 3.25-50 nM) stimulated dose-dependent increases in [ 14 C]glucose incorporation into glycogen (14.4-72.9% and total cell glycogen content (10.6-34.3%. Maximal stimulation of glycogen synthesis by Sm-C occurred at 2-4 h of incubation. Insulin (10 nM to 10 microM) also stimulated [ 14 C]glucose incorporation but its potency was only 1/20th that of Sm-C. The time course of stimulation of glucose incorporation by insulin was identical to that of Sm-C, the dose-response curves of the two hormones were parallel, and the maximal effects of insulin were not enhanced by simultaneous exposure of cells to Sm-C. These findings suggest that Sm-C and insulin stimulate glycogenesis in fetal liver through similar or identical mechanisms. Since the potency of Sm-C was 20 times greater than that of insulin, the glycogenic action of insulin in fetal liver may be mediated through binding to a hepatic receptor which also binds Sm-C. In addition to having mitogenic effects on fetal tissues, Sm-C may have direct anabolic effects on fetal carbohydrate metabolism

  15. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  16. A new non-degradative method to purify glycogen.

    Science.gov (United States)

    Tan, Xinle; Sullivan, Mitchell A; Gao, Fei; Li, Shihan; Schulz, Benjamin L; Gilbert, Robert G

    2016-08-20

    Liver glycogen, a complex branched glucose polymer containing a small amount of protein, is important for maintaining glucose homeostasis (blood-sugar control) in humans. It has recently been found that glycogen molecular structure is impaired in diabetes. Isolating the carbohydrate polymer and any intrinsically-attached protein(s) is an essential prerequisite for studying this structural impairment. This requires an effective, non-degradative and efficient purification method to exclude the many other proteins present in liver. Proteins and glycogen have different ranges of molecular sizes. Despite the plethora of proteins that might still be present in significant abundance after other isolation techniques, SEC (size exclusion chromatography, also known as GPC), which separates by molecular size, should separate those extraneous to glycogen from glycogen with any intrinsically associated protein(s). A novel purification method is developed for this, based on preparative SEC following sucrose gradient centrifugation. Proteomics is used to show that the new method compares favourably with current methods in the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tissue glycogen and blood glucose in irradiated rats. I

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Paulikova, E.; Praslicka, M.

    1980-01-01

    Fed and starved (overnight) male rats of the Wistar strain were exposed to whole-body irradiation with 14.35 Gy (1500 R) of X-rays. After irradiation and sham-irradiation all animals were starved until examination performed 1, 6, 24, 48 and 72 h after treatment. The concentration of glucose in the blood and the concentration of glycogen in the liver, heart, skeletal muscle, brown and white adipose tissue were determined. The concentrations of blood glucose and liver glycogen were found to increase between 1 and 6 h after irradiation of the starved animals. The most pronounced increase in glycogen concentration in the liver and heart muscle was observed 24 and 48 h after irradiation. A similar increase in the concentration of blood glucose was found between 48 and 72 h after irradiation. The fed and starved irradiated rats reacted differently, particularly between 48 and 72 h; the liver glycogen concentration decreased in the fed animals and remained elevated in the starved ones. Very high values of terminal glycemia were observed in both groups. The accumulation of glycogen in the heart muscle indicates that this organ is sensitive to ionizing radiation. (author)

  18. Tissue glycogen and blood glucose in irradiated rats. II

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Praslicka, M.

    1980-01-01

    Male rats of the Wistar strain were continuously irradiated with 0.57 Gy (60 R) of gamma rays from a 60 Co source. Irradiation lasted from 1 to 50 days in an experimental field where also control animals shielded from radiation were placed. After a 16 h starvation, the concentration of glucose in the blood and of glycogen in the liver and the heart was determined 1, 3, 7, 14, 21, 25, 32, 39 and 50 days after the beginning of irradiation. The concentration of blood glucose in irradiated rats did not practically differ from that of control animals during the whole period of investigation. The concentration of liver glycogen in irradiated animals was higher than that in the controls during all time intervals, except for day 1. The values of glycogen in the heart muscle were approximately identical in the irradiated and control rats, except for day 21 when they sharply increased in the irradiated animals. In addition to the investigation of blood glucose and tissue glycogen during continuous irradiation, these parameters were studied immediately, and 1, 6 and 12 months after continuous irradiation with a daily exposure of 0.57 Gy (60 R) up to a total exposure of 14.35 Gy (1500 R) of gamma rays. Considerably higher values of liver glycogen were detected in the irradiated rats immediately, and 1 and 6 months after the end of irradiation. (author)

  19. The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, Ruben [William K. Warren Medical Research Institute, University of Oklahoma Medical Health Science Center, Tulsa, OK 74107 (United States); Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States); schechter@okstate edu, E-mail: ruben; Beju, Delia [William K. Warren Medical Research Institute, University of Oklahoma Medical Health Science Center, Tulsa, OK 74107 (United States); Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States); Miller, Kenneth E [Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States)

    2005-09-09

    Complications of diabetes mellitus within the nervous system are peripheral and central neuropathy. In peripheral neuropathy, defects in neurofilament and microtubules have been demonstrated. In this study, we examined the effects of insulin deficiency within the brain in insulin knockout mice (I(-/-)). The I(-/-) exhibited hyperphosphorylation of tau, at threonine 231, and neurofilament. In addition, we showed hyperphosphorylation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 {beta} (GSK-3 {beta}) at serine 9. Extracellular signal-regulated kinase 1 (ERK 1) showed decrease in phosphorylation, whereas ERK 2 showed no changes. Ultrastructural examination demonstrated swollen mitochondria, endoplasmic reticulum, and Golgi apparatus, and dispersion of the nuclear chromatin. Microtubules showed decrease in the number of intermicrotubule bridges and neurofilament presented as bunches. Thus, lack of insulin brain stimulation induces JNK hyperphosphorylation followed by hyperphosphorylation of tau and neurofilament, and ultrastructural cellular damage, that over time may induce decrease in cognition and learning disabilities.

  20. Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application.

    Science.gov (United States)

    Watkins, C C; Sawa, A; Pomper, M G

    2014-01-21

    Bipolar disorder (BD) is a debilitating mental illness characterized by severe fluctuations in mood, sleep, energy and executive functioning. Pharmacological studies of selective serotonin reuptake inhibitors and the monoamine system have helped us to clinically understand bipolar depression. Mood stabilizers such as lithium and valproic acid, the first-line treatments for bipolar mania and depression, inhibit glycogen synthase kinase-3 beta (GSK-3β) and regulate the Wnt pathway. Recent investigations suggest that microglia, the resident immune cells of the brain, provide a physiological link between the serotonin system and the GSK-3β/Wnt pathway through neuroinflammation. We review the pharmacological, translational and brain imaging studies that support a role for microglia in regulating neurotransmitter synthesis and immune cell activation. These investigations provide a model for microglia involvement in the pathophysiology and phenotype of BD that may translate into improved therapies.

  1. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    Science.gov (United States)

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. © 2015

  2. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise

    NARCIS (Netherlands)

    Knuiman, Pim; Hopman, Maria T.E.; Mensink, Marco

    2015-01-01

    It is well established that glycogen depletion affects endurance exercise performance negatively. Moreover, numerous studies have demonstrated that post-exercise carbohydrate ingestion improves exercise recovery by increasing glycogen resynthesis. However, recent research into the effects of

  3. Mountain-bike racing – the influence of prior glycogen- reducing ...

    African Journals Online (AJOL)

    bout of glycogen-reducing exercise on the general stress and immune response to ..... interaction effect of glutamine supplementation and glycogen reduction on the .... Hammarqvist F, Ejesson B, Wernerman J. Stress hormones initiate pro-.

  4. Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease.

    Science.gov (United States)

    Raththagala, Madushi; Brewer, M Kathryn; Parker, Matthew W; Sherwood, Amanda R; Wong, Brian K; Hsu, Simon; Bridges, Travis M; Paasch, Bradley C; Hellman, Lance M; Husodo, Satrio; Meekins, David A; Taylor, Adam O; Turner, Benjamin D; Auger, Kyle D; Dukhande, Vikas V; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil L; Li, Sheng; Vander Kooi, Craig W; Gentry, Matthew S

    2015-01-22

    Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Modified glycogen as construction material for functional biomimetic microfibers.

    Science.gov (United States)

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-05

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Serum glucose and liver glycogen in gamma irradiated rats

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Molcanova, A.

    1988-01-01

    Overnight fasted male rats of Wistar strain were irradiated with single whole-body doses of 4.78-7.17-9.57 and 14.35 Gy of gamma rays. After decapitation at intervals 1-28 d (4.78 and 7.17 Gy), 1-7 d (9.57 Gy) and 1-3 d (14.35 Gy) glucose concentration in serum and glycogen concentration in liver of irradiated and non-irradiated animals were determined. The higher was radiation dose the more expressive extent and depth of changes (hyperglycemia, accumulation of glycogen) occured. Blood glucose and liver glycogen may serve as a reliable and dose-dependent biological indicators of metabolic changes in irradiated rats. (author)

  7. Muscle glycogen depletion and lactate concentration during downhill skiing.

    Science.gov (United States)

    Tesch, P; Larsson, L; Eriksson, A; Karlsson, J

    1978-01-01

    Skilled and unskilled skiers were studied during downhill skiing. Muscle glycogen and muscle lactate concentrations in the vastus lateralis muscle were determined following different skiing conditions. Heavy glycogen utilization was found in the groups studied during a day of skiing. The skilled and unskilled skiers differed with respect to selective glycogen depletion pattern and the skilled subjects demonstrated greater depletion of slow twitch fibers than the unskilled subjects. Lactate concentrations ranged from approximately 5-26 mmoles x kg-1 wet muscle after approximately one minute of maximal skiing. This wide range was not found to be related to the level of skiing proficiency. However, skiing with varyingly angled boots, resulting in different knee angles, did affect lactate concentration. Lactate concentration was positively correlated to individual muscle fiber composition expressed as a percent of fast twitch fibers. The results suggest more pronounced involvement of aerobic energy metabolism in skilled skiers than in unskilled skiers.

  8. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    OpenAIRE

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L.?acidophilus?NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP - amy - pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and gro...

  9. Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

    Science.gov (United States)

    Skórko, R; Osipiuk, J; Stetter, K O

    1989-09-01

    Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing it separated into several spots in the pH range of 5.6 to 6.7.

  10. Glycogen storage disease type III. A case report.

    Science.gov (United States)

    de Waal, A; Röhm, G F; Hoek, B B; Potgieter, G M; Oosthuysen, W T

    1984-01-07

    A 5-year-old Black boy presented with massive hepatomegaly and muscle weakness. Liver biopsy revealed the presence of glycogen pools in the cytoplasm and nuclei of hepatocytes. Erythrocyte glycogen levels, identified as limit dextrin, were grossly increased. The galactose tolerance test as well as the two-stage glucagon stimulation test suggested a decrease in activity of both amylo-1,6-glucosidase and glucose-6-phosphatase enzymes. This was confirmed by direct assays performed on liver tissue and erythrocytes. The decrease in glucose-6-phosphatase activity was attributed to a secondary effect of limit dextrin.

  11. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red...... possessed all enzymes needed for conversion of glycogen to APP, an a-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed. Keywords: Anhydrofructose pathway; Anthracobia...

  12. Differences between glycogen biogenesis in fast- and slow-twitch rabbit muscle

    DEFF Research Database (Denmark)

    Cussó, R; Lerner, L R; Cadefau, J

    2003-01-01

    Skeletal muscle glycogen is an essential energy substrate for muscular activity. The biochemical properties of the enzymes involved in de novo synthesis of glycogen were analysed in two types of rabbit skeletal muscle fiber (fast- and slow-twitch). Glycogen concentration was higher in fast...

  13. Glycogen metabolism in Schistosoma mansoni worms after their isolation from the host

    NARCIS (Netherlands)

    Tiolens, A.G.M.; Bergh, S.G. van den

    Adult Schistosoma mansoni worms rapidly degrade their endogenous glycogen stores immediately after isolation from the host. In NCTC 109 or in a diphasic culture medium the glycogen levels slowly recovered again after the initial decrease. The rapid degradation of glycogen could be prevented, even in

  14. Examination of liver and muscle glycogen and blood glucose levels ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... changes in fish affect the conversion of liver glycogen into blood ... province, altitude 1248 m and surface area of 86 km2, 20 km in length 4.5 km in width ... alcohol (95% pure) were added, followed by boiling for a further 15 min. ..... water temperature on the blood glucose level of chub (Leuciscus cephalus ...

  15. Regulation of glucose and glycogen metabolism during and after exercise

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Richter, Erik

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport...

  16. Mountain bike racing - the influence of prior glycogen-inducing ...

    African Journals Online (AJOL)

    Objective. To investigate the effect of pre-exercise glutamine supplementation and the influence of a prior acute bout of glycogen-reducing exercise on the general stress and immune response to acute high-intensity cycling. Design. Randomised, double-blind, cross-over supplementation study. Setting and intervention.

  17. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...

  18. Muscle glycogen depletion patterns during draught work in Standardbred horses.

    Science.gov (United States)

    Gottlieb, M

    1989-03-01

    Muscle fibre recruitment was investigated during draught loaded exercise by studying glycogen depletion patterns from histochemical stains of muscle biopsies from the gluteus and semitendinosus muscles. Three Standardbred trotters performed several intervals of draught loaded exercise on a treadmill with 34 kp at a trot (7 m/sec) and with 34 and 80 kp, respectively at a walk (2m/sec). Exercise was continued until the horses were unwilling to continue. Glycogen depletion was seen in all three fibre types when trotting with 34 kp for 5 or 10 mins. When an equal weight resistance was pulled at a walk, glycogen depletion was first seen in type I fibres only, then followed by a small percentage of type IIA fibres after at least 1 h. When 80 kp was pulled at a walk both type I and IIA fibres showed glycogen depletion, and after at least 30 mins exercise a small percentage of type IIB fibres was also depleted. These results indicate that the muscle fibres are depleted, in order, from type I through IIA to IIB as the intensity or duration of draught work increases.

  19. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes

    DEFF Research Database (Denmark)

    Madsen, K; Pedersen, P K; Rose, P

    1990-01-01

    regimen (Norm), the other after a diet and training programme intended to increase muscle glycogen levels (Carb). Muscle glycogen concentration in the gastrocnemius muscle increased by 25% (P less than 0.05) from 581 mmol.kg-1 dry weight, SEM 50 to 722 mmol.kg-1 dry weight, SEM 34 after Carb. Running time...... (0.92, SEM 0.01 vs 0.89, SEM 0.01; P less than 0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion...

  20. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    2011-01-01

    Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated...... with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal...

  1. Effect of carbon tetrachloride on glycogen metabolism in fasted and refed mice

    International Nuclear Information System (INIS)

    Pushpendran, C.K.; Shenoy, B.V.; Eapen, J.

    1977-01-01

    Hepatic glycogen was depleted rapidly in fasted mice treated with CCl 4 . Glycogen breakdown was slow when CCl 4 was administered after 1 hr of refeeding. There was an initial increase and then a reduction in liver glycogen of mice refed for 2 hr prior to CCl 4 injection. The incorporation of glucose-U- 14 C into glycogen was higher in mice which were refed before CCl 4 administration than in fasted mice treated with the hepatotoxin. The specific activity of lactate was higher in CCl 4 treated mice. The data suggested differences in glycogen metabolism of fasted and refed mice in response to CCl 4 treatment. (author)

  2. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    Science.gov (United States)

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  3. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle.

    Science.gov (United States)

    Krag, Thomas O; Ruiz-Ruiz, Cristina; Vissing, John

    2017-08-01

    Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup. A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Two patients with mutations in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients with GSD type XV. We found that glycogenin 1 was absent, but glycogenin 2 was present in the patients, whereas the opposite was the case in healthy controls. Electron microscopy revealed that glycogen was present between and not inside myofibrils in type II fibers, compromising the ultrastructure of these fibers, and only type I fibers contained PG bodies. We also found significant changes to the expression levels of several enzymes directly involved in glycogen and glucose metabolism. To our knowledge, this is the first report demonstrating expression of glycogenin 2 in glycogenin 1-deficient patients, suggesting that glycogenin 2 rescues the formation of glycogen in patients with glycogenin 1 deficiency. Copyright © 2017 Endocrine Society

  4. Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1997-01-01

    Full Text Available Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock.

  5. Glycogen in the Nervous System. I; Methods for Light and Electron Microscopy

    Science.gov (United States)

    Estable, Rosita F. De; Estable-Puig, J. F.; Miquel, J.

    1964-01-01

    'l'he relative value of different methods for combined light and electron microscopical studies of glycogen in the nervous tissue was investigated. Picroalcoholic fixatives preserve glycogen in a considerable amount but give an inadequate morphological image of glycogen distribution and are unsuitable for ultrastructural studies. Fixation by perfusion, with Dalton's chromeosmic fluid seems adequate for ultrastructural cytochemistry of glycogen. Furthermore it permits routine paraffin embedding of brain slices adjacent to those used for electron microscopy. Dimedone blocking is a necessary step for a selective staining of glycogen with PAS after osmic fixation. Enzymatic removal of glycogen in osmic fixed nervous tissue can be done In paraffin-embedded tissue. It can also be performed in glycolmethacrylate-embedded tissue without removal of the embedding medium. Paraphenylenediamine stains glycogen following periodic acid oxidation.

  6. Consensus guidelines for management of glycogen storage disease type 1b - European Study on Glycogen Storage Disease Type 1

    NARCIS (Netherlands)

    Visser, G; Rake, JP; Labrune, P; Leonard, JV; Moses, S; Ullrich, K; Wendel, U; Smit, GPA

    2002-01-01

    Life expectancy in glycogen storage disease type 1 (GSD-1) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and therefore experience with long-term management and follow-up at each centre is limited. There is wide variation in

  7. Guidelines for management of glycogen storage disease type I - European study on glycogen storage disease type I (ESGSD I)

    NARCIS (Netherlands)

    Rake, JP; Visser, G; Labrune, P; Leonard, JV; Ullrich, K; Smit, GPA

    2002-01-01

    Life-expectancy in glycogen storage disease type I (GSD I) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and experience with long-term management and follow-up at each centre is limited. There is wide variation in methods

  8. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp ( Carassius carassius L.)

    Science.gov (United States)

    Vornanen, Matti; Asikainen, Juha; Haverinen, Jaakko

    2011-03-01

    Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp ( Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish ( p glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.

  9. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  10. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    Science.gov (United States)

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    Science.gov (United States)

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; pglycogen versus those with low glycogen (median = 0.97 vs. 0.05, pglycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  12. Cerebral glycogen in humans following acute and recurrent hypoglycemia: Implications on a role in hypoglycemia unawareness.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Khowaja, Ameer; Kubisiak, Kristine; Eberly, Lynn E; Seaquist, Elizabeth R

    2017-08-01

    Supercompensated brain glycogen levels may contribute to the development of hypoglycemia-associated autonomic failure (HAAF) following recurrent hypoglycemia (RH) by providing energy for the brain during subsequent periods of hypoglycemia. To assess the role of glycogen supercompensation in the generation of HAAF, we estimated the level of brain glycogen following RH and acute hypoglycemia (AH). After undergoing 3 hyperinsulinemic, euglycemic and 3 hyperinsulinemic, hypoglycemic clamps (RH) on separate occasions at least 1 month apart, five healthy volunteers received [1- 13 C]glucose intravenously over 80+ h while maintaining euglycemia. 13 C-glycogen levels in the occipital lobe were measured by 13 C magnetic resonance spectroscopy at ∼8, 20, 32, 44, 56, 68 and 80 h at 4 T and glycogen levels estimated by fitting the data with a biophysical model that takes into account the tiered glycogen structure. Similarly, prior 13 C-glycogen data obtained following a single hypoglycemic episode (AH) were fitted with the same model. Glycogen levels did not significantly increase after RH relative to after euglycemia, while they increased by ∼16% after AH relative to after euglycemia. These data suggest that glycogen supercompensation may be blunted with repeated hypoglycemic episodes. A causal relationship between glycogen supercompensation and generation of HAAF remains to be established.

  13. Glycogenolysis during short-term fasting in malaria and healthy subjects - the potential regulatory role of glycogen content on glycogen breakdown: a hypothesis

    NARCIS (Netherlands)

    Sprangers, F.; Thien, H. V.; Ackermans, M. T.; Endert, E.; Sauerwein, H. P.

    2004-01-01

    Background & aims: During short-term starvation ( <24h), glucose production decreases 10-20% due to a decrease in glycogenolysis. In the fed state glycogen regulates its rate of breakdown, in order to limit glycogen accumulation. Whether in the fasted state a similar mechanism exists to preserve

  14. Impaired glycogen breakdown and synthesis in phosphoglucomutase 1 deficiency

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Cohen, Jonathan; Vissing, Christoffer Rasmus

    2017-01-01

    contracture. Comparable to patients with McArdle disease, the patient developed a 'second wind' with a spontaneous fall in exercise heart rate and perceived exertion. Like in McArdle disease, this was attributable to an increase in muscle oxidative capacity. Carbohydrate oxidation was blocked during exercise......, and the patient had exaggerated oxidation of fat to fuel exercise. Exercise heart rate and perceived exertion were lower after IV glucose and oral sucrose. Muscle glycogen level was low normal. CONCLUSIONS: The second wind phenomenon has been considered to be pathognomonic for McArdle disease, but we demonstrate...... that it can also be present in PGM1 deficiency. We show that severe loss of PGM1 activity causes blocked muscle glycogenolysis that mimics McArdle disease, but may also limit glycogen synthesis, which broadens the phenotypic spectrum of this disorder....

  15. Muscle glycogen storage after different amounts of carbohydrate ingestion.

    Science.gov (United States)

    Ivy, J L; Lee, M C; Brozinick, J T; Reed, M J

    1988-11-01

    The purpose of this study was to determine whether the rate of muscle glycogen storage could be enhanced during the initial 4-h period postexercise by substantially increasing the amount of the carbohydrate consumed. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. Immediately and 2 h after exercise they consumed either 0 (P), 1.5 (L), or 3.0 g glucose/kg body wt (H) from a 50% glucose polymer solution. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately, 2 h, and 4 h after exercise. Blood glucose and insulin declined significantly during exercise in each of the three treatments. They remained below the preexercise concentrations during recovery in the P treatment but increased significantly above the preexercise concentrations during the L and H treatments. By the end of the 4 h-recovery period, blood glucose and insulin were still significantly above the preexercise concentrations in both treatments. Muscle glycogen storage was significantly increased above the basal rate (P, 0.5 mumol.g wet wt-1.h-1) after ingestion of either glucose polymer supplement. The rates of muscle glycogen storage, however, were not different between the L and H treatments during the first 2 h (L, 5.2 +/- 0.9 vs. H, 5.8 +/- 0.7 mumol.g wet wt-1.h-1) or the second 2 h of recovery (L, 4.0 +/- 0.9 vs. H, 4.5 +/- 0.6 mumol.g wet wt-1. h-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Dietary Management of the Ketogenic Glycogen Storage Diseases

    Directory of Open Access Journals (Sweden)

    Kaustuv Bhattacharya MBBS, MRCPCH, FRACP, MD

    2016-08-01

    Full Text Available The glycogen storage diseases (GSDs comprise a group of rare inherited disorders of glycogen metabolism. The hepatic glycogenolytic forms of these disorders are typically associated with hypoglycemia and hepatomegaly. For GSD I, secondary metabolic disturbances include fasting hyperlactatemia, hyperuricemia, and hyperlipidemia. Glycogen storage disease III is caused by reduced activity of the debrancher enzyme, GSD VI by phosphorylase, and GSD IX by phosphorylase kinase. It has often been reported that the non-GSD I group of disorders have a benign course. However, myopathy, cardiomyopathy, and cirrhosis have been reported significant clinical morbidities associated with GSD III and IX in particular. There have been a range of reports indicating high-protein diets, high-fat diets, medium chain triglyceride (MCT, modified Atkins diet, and therapeutic ketones as rescuing severe phenotypes of GSD III in particular. The etiology of these severe phenotypes has not been defined. Cases presented in this report indicate potential harm from excessive simple sugar use in GSD IX C. Review of the literature indicates that most interventions have reduced the glycemic load and provide alternate substrates for energy in rescue situations. Prevention of complications is most likely to occur with a mixed balanced low glycemic index diet potentially with relative increases in protein.

  17. Labeling of hepatic glycogen after short- and long-term stimulation of glycogen synthesis in rats injected with 3H-galactose

    International Nuclear Information System (INIS)

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1990-01-01

    The effects of short- and long-term stimulation of glycogen synthesis elicited by dexamethasone were studied by light (LM) and electron (EM) microscopic radioautography (RAG) and biochemical analysis. Adrenalectomized rats were fasted overnight and pretreated for short- (3 hr) or long-term (14 hr) periods with dexamethasone prior to intravenous injection of tracer doses of 3H-galactose. Analysis of LM-RAGs from short-term rats revealed that about equal percentages (44%) of hepatocytes became heavily or lightly labeled 1 hr after labeling. The percentage of heavily labeled cells increased slightly 6 hr after labeling, and unlabeled glycogen became apparent in some hepatocytes. The percentage of heavily labeled cells had decreased somewhat 12 hr after labeling, and more unlabeled glycogen was evident. In the long-term rats 1 hr after labeling, a higher percentage of heavily labeled cells (76%) was observed compared to short-term rats, and most glycogen was labeled. In spite of the high amount of labeling seen initially, the percentage of heavily labeled hepatocytes had decreased considerably to 55% by 12 hr after injection; and sparsely labeled and unlabeled glycogen was prevalent. The EM-RAGs of both short- and long-term rats were similar. Silver grains were associated with glycogen patches 1 hr after labeling; 12 hr after labeling, the glycogen patches had enlarged; and label, where present, was dispersed over the enlarged glycogen clumps. Analysis of DPM/mg tissue corroborated the observed decrease in label 12 hr after administration in the long-term animals. The loss of label observed 12 hr after injection in the long-term pretreated rats suggests that turnover of glycogen occurred during this interval despite the net accumulation of glycogen that was visible morphologically and evident from biochemical measurement

  18. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  19. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-01-01

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means

  20. Reduction in cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across human brain cerebral microvascular endothelial cells.

    Science.gov (United States)

    Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M

    2016-10-01

    Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial

  1. Structural Injury after Lithium Treatment in Human and Rat Kidney involves Glycogen Synthase Kinase-3β Positive Epithelium

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2011-01-01

    Lithium is reabsorbed by distal nephron segments in sodium depleted states. It was hypothesized that lithium causes permanent injury to the developing kidney particularly in the sodium-retaining phase around weaning through entry into epithelial cells of the distal nephron and inhibition of glyco....... Lithium causes proliferation, structural injury and increases inactive pGSK-3β abundance in these segments. The data are compatible with epithelial entry of lithium and a causal role for GSK-3β in postnatal developing cortical collecting duct epithelium....

  2. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    Science.gov (United States)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  3. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH.

    Directory of Open Access Journals (Sweden)

    Paria Mirmonsef

    Full Text Available Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH.Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8-11 years.Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4 than those with low glycogen (pH 5.8; p<0.001. The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001. In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners.These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization.

  4. Glycogen Phosphomonoester Distribution in Mouse Models of the Progressive Myoclonic Epilepsy, Lafora Disease*

    Science.gov (United States)

    DePaoli-Roach, Anna A.; Contreras, Christopher J.; Segvich, Dyann M.; Heiss, Christian; Ishihara, Mayumi; Azadi, Parastoo; Roach, Peter J.

    2015-01-01

    Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500–2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a−/− and Epm2b−/− mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease. PMID:25416783

  5. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  6. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  7. Glycogen accumulation in normal and irradiated minced muscle autografts on frog gastrocnemius

    International Nuclear Information System (INIS)

    Malhotra, R.K.; Kaul, R.; Malhotra, N.

    1989-01-01

    Alterations induced in glycogen content and phosphorylase activity have been studied in normal and irradiated minced muscle autografts on frog gastrocnemius at days 1, 3, 5, 7, 10, 15 and 30 postgrafting. The changes observed in the glycogen content and phosphorylase activity conform to the degeneration and regeneration phases of muscle repair. An attempt has been made to explain the altered glycogen utilizing capacities of the frog skeletal muscle during its repair and regeneration. (author)

  8. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  9. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.

    Science.gov (United States)

    Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim

    2017-05-01

    Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg -1  min -1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0

  10. Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns

    Science.gov (United States)

    Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C.

    2016-01-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532–1545 PMID:27353480

  11. Metformin normalizes the structural changes in glycogen preceding prediabetes in mice overexpressing neuropeptide Y in noradrenergic neurons.

    Science.gov (United States)

    Ailanen, Liisa; Bezborodkina, Natalia N; Virtanen, Laura; Ruohonen, Suvi T; Malova, Anastasia V; Okovityi, Sergey V; Chistyakova, Elizaveta Y; Savontaus, Eriika

    2018-04-01

    Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPY D βH ) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPY D βH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPY D βH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPY D βH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.

  12. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  13. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  14. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Fiona K., E-mail: fdavies@mines.edu [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO (United States); Work, Victoria H. [Civil and Environmental Engineering Division, Colorado School of Mines, Golden, CO (United States); Beliaev, Alexander S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA (United States); Posewitz, Matthew C. [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO (United States)

    2014-06-19

    The plant terpenoids limonene (C{sub 10}H{sub 16}) and α-bisabolene (C{sub 15}H{sub 24}) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L{sup −1} limonene and 0.6 mg L{sup −1} α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  15. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Fiona K.; Work, Victoria H.; Beliaev, Alex S.; Posewitz, Matthew C.

    2014-06-19

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially-relevant chemicals. High-titer microbial synthesis of limonene and α- bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L-1 limonene and 0.6 mg L-1 α-bisabolene through heterologous expression of the Mentha spicata L-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene and α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate and acetate) during nitrogen deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6 to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  16. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Davies, Fiona K; Work, Victoria H; Beliaev, Alexander S; Posewitz, Matthew C

    2014-01-01

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L(-1) limonene and 0.6 mg L(-1) α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  17. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002

    International Nuclear Information System (INIS)

    Davies, Fiona K.; Work, Victoria H.; Beliaev, Alexander S.; Posewitz, Matthew C.

    2014-01-01

    The plant terpenoids limonene (C 10 H 16 ) and α-bisabolene (C 15 H 24 ) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L −1 limonene and 0.6 mg L −1 α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  18. Glycogen storage disease type II (Pompe disease in children

    Directory of Open Access Journals (Sweden)

    A. N. Semyachkina

    2014-01-01

    Full Text Available The paper gives the data available in the literature, which reflect the manifestations, diagnosis, and current treatments of the rare (orphan inherited disease glycogen storage disease type II or Pomp disease in children, as well as its classification. The infant form is shown to be most severe, resulting in death from cardiovascular or pulmonary failure generally within the first year of a child’s life. Emphasis is laid on major difficulties in the differential and true diagnosis of this severe disease. Much attention is given to the new pathogenetic treatment — genetically engineered enzyme replacement drug Myozyme®. The authors describe their clinical case of a child with the juvenile form of glycogen storage disease type II (late-onset Pompe disease. Particular emphasis is laid on the clinical symptoms of the disease and its diagnostic methods, among which the morphological analysis of a muscle biopsy specimen by light and electron microscopies, and enzyme and DNA diagnoses are of most importance. The proband was found to have significant lysosomal glycogen accumulation in the muscle biopsy specimen, reduced lymphocyte acid α-1,4-glucosidase activity to 4,2 nM/mg/h (normal value, 13,0—53,6 nM/mg/h, described in the HGMD missense mutation database from 1000 G>A p.Gly334er of the GAA in homozygous state, which verified the diagnosis of Pompe disease. 

  19. Muscle glycogen storage postexercise: effect of mode of carbohydrate administration.

    Science.gov (United States)

    Reed, M J; Brozinick, J T; Lee, M C; Ivy, J L

    1989-02-01

    The primary purpose of this study was to determine whether gastric emptying limits the rate of muscle glycogen storage during the initial 4 h after exercise when a carbohydrate supplement is provided. A secondary purpose was to determine whether liquid (L) and solid (S) carbohydrate (CHO) feedings result in different rates of muscle glycogen storage after exercise. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. After each exercise bout they received 3 g CHO/kg body wt in L (50% glucose polymer) or S (rice/banana cake) form or by intravenous infusion (I; 20% sterile glucose). The L and S supplements were divided into two equal doses and administered immediately after and 120 min after exercise, whereas the I supplement was administered continuously during the first 235 min of the 240-min recovery period. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately after and 120 and 240 min after exercise. Blood glucose and insulin declined during exercise and increased significantly above preexercise levels during recovery in all treatments. The increase in blood glucose during the I treatment, however, was three times greater than during the L or S treatments. The average insulin response of the L treatment (61.7 +/- 4.9 microU/ml) was significantly greater than that of the S treatment (47.5 +/- 4.2 microU/ml) but not that of the I (55.3 +/- 4.5 microU/ml) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    Directory of Open Access Journals (Sweden)

    Marin de Mas Igor

    2011-10-01

    Full Text Available Abstract Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate. The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose

  1. Glycogen as a biodegradable construction nanomaterial for in vivo use

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Sedláček, Ondřej; Bogomolova, Anna; Vetrík, Miroslav; Jirák, D.; Kovář, J.; Kučka, Jan; Bals, S.; Turner, S.; Štěpánek, Petr; Hrubý, Martin

    2012-01-01

    Roč. 12, č. 12 (2012), s. 1731-1738 ISSN 1616-5187 R&D Projects: GA ČR GA202/09/2078; GA ČR GAP108/12/0640; GA ČR GAP208/10/1600; GA ČR GPP207/10/P054 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : nanoparticles * in vivo imaging * glycogen Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.742, year: 2012

  2. Modified glycogen as construction material for functional biomimetic microfibers

    Czech Academy of Sciences Publication Activity Database

    Rabyk, Mariia; Hrubý, Martin; Vetrík, Miroslav; Kučka, Jan; Proks, Vladimír; Pařízek, Martin; Konefal, Rafal; Krist, Pavel; Chvátil, David; Bačáková, Lucie; Šlouf, Miroslav; Štěpánek, Petr

    2016-01-01

    Roč. 152, 5 November (2016), s. 271-279 ISSN 0144-8617 R&D Projects: GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A; GA MZd(CZ) NV15-32497A; GA MŠk(CZ) LM2015064 Institutional support: RVO:61389013 ; RVO:67985823 ; RVO:61389005 Keywords : glycogen * fibers * irradiation crosslinking Subject RIV: FR - Pharmacology ; Medidal Chemistry; FJ - Surgery incl. Transplants (FGU-C); BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 4.811, year: 2016

  3. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); A.J.J. Reuser (Arnold); H. van Hirtum (Hans); M.A. Kroos (Marian); E.H. van de Kamp; O. Schoneveld; P. Visser (Pim); J.P. Brakenhoff (Just); M. Weggeman (Miranda); E.J.J.M. van Corven (Emiel); A.T. van der Ploeg (Ans)

    1999-01-01

    textabstractPompe's disease or glycogen storage disease type II (GSDII) belongs to the family of inherited lysosomal storage diseases. The underlying deficiency of acid alpha-glucosidase leads in different degrees of severity to glycogen storage in heart, skeletal

  4. Partly ordered synthesis and degradation of glycogen in cultured rat myotubes

    DEFF Research Database (Denmark)

    Elsner, Peter; Quistorff, Bjørn; Hansen, Gert H

    2001-01-01

    The following questions concerning glycogen synthesis and degradation were examined in cultured rat myotubes. 1) Is synthesis and degradation of the individual glycogen molecule a strictly ordered process, with the last glucosyl unit incorporated into the molecule being the first to be released...

  5. Effects of gamma-irradiation on the glycogen and lipid contents of the rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Nahed, R H.A.; Al-Zahaby, Al-Ahmmady, S.; Sanad, S M.K.; Roushdy, H M

    1986-01-01

    Histochemical changes in the glycogen and lipid contents of the rat liver cells were studied at different intervals following whole body gamma-irradiation at the exposure dose level of 600 rads. The glycogen and lipid contents were significantly altered, the changes were time-dependent.

  6. Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery.

    Science.gov (United States)

    Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf

    2017-06-01

    Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.

  7. Glycogen serves as an energy source that maintains astrocyte cell proliferation in the neonatal telencephalon.

    Science.gov (United States)

    Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko

    2017-06-01

    Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.

  8. Is Type-2 Diabetes a Glycogen Storage Disease of Pancreatic β-Cells?

    Science.gov (United States)

    Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F

    2018-01-01

    Elevated plasma glucose leads to pancreatic β-cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this ‘glucotoxicity’ via dysregulated biochemical pathways promoting β-cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β-cells in normoglycaemia and in diabetes. PMID:28683284

  9. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    Science.gov (United States)

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P glycogen synthesis.

  10. Muscle Glycogen Content Modifies SR Ca2 + Release Rate in Elite Endurance Athletes

    DEFF Research Database (Denmark)

    Gejl, Kasper Degn; Hvid, Lars G; Frandsen, Ulrik

    2014-01-01

    The aim of the present study was to investigate the influence of muscle glycogen content on sarcoplasmic reticulum (SR) function and peak power output (Wpeak) in elite endurance athletes.......The aim of the present study was to investigate the influence of muscle glycogen content on sarcoplasmic reticulum (SR) function and peak power output (Wpeak) in elite endurance athletes....

  11. Changing shapes of glycogen-autophagy nexus in neurons: perspective from a rare epilepsy.

    Science.gov (United States)

    Singh, Pankaj Kumar; Singh, Sweta

    2015-01-01

    In brain, glycogen metabolism is predominantly restricted to astrocytes but it also indirectly supports neuronal functions. Increased accumulation of glycogen in neurons is mysteriously pathogenic triggering neurodegeneration as seen in "Lafora disease" (LD) and in other transgenic animal models of neuronal glycogen accumulation. LD is a fatal neurodegenerative disorder with excessive glycogen inclusions in neurons. Autophagy, a pathway for bulk degradation of obsolete cellular constituents also degrades metabolites like lipid and glycogen. Recently, defects in this pathway emerged as a plausible reason for glycogen accumulation in neurons in LD, although some contradictions prevail. Albeit surprising, a reciprocal regulation of autophagy by glycogen in neurons has also just been proposed. Notably, increasing evidences of interaction between proteins of autophagy and glycogen metabolism from diverse model systems indicate a conserved, dynamic, and regulatory cross-talk between these two pathways. Concerning these findings, we herein provide certain models for the molecular basis of this cross-talk and discuss its potential implication in the pathophysiology of LD.

  12. Contribution of glycogen in supporting axon conduction in the peripheral and central nervous systems: the role of lactate

    OpenAIRE

    Angus M Brown; Angus M Brown; Tom W Chambers; Timothy P Daly; Adam eHockley

    2014-01-01

    The role of glycogen in the central nervous system is intimately linked with the glycolytic pathway. Glycogen is synthesized from glucose, the primary substrate for glycolysis, and degraded to glucose-6-phosphate. The metabolic cost of shunting glucose via glycogen exceeds that of simple phosphorylation of glucose to glucose-6-phosphate by hexokinase; thus, there must be a metabolic advantage in utilizing this shunt pathway. The dogmatic view of glycogen as a storage depot persists, based on ...

  13. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    OpenAIRE

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemys?aw; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, s...

  14. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  15. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  16. Effect of carbon tetrachloride on glycogen metabolism in fasted and refed mice

    Energy Technology Data Exchange (ETDEWEB)

    Pushpendran, C K; Shenoy, B V; Eapen, J [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1977-11-01

    Hepatic glycogen was depleted rapidly in fasted mice treated with CCl/sub 4/. Glycogen breakdown was slow when CCl/sub 4/ was administered after 1 hr of refeeding. There was an initial increase and then a reduction in liver glycogen of mice refed for 2 hr prior to CCl/sub 4/ injection. The incorporation of glucose-U-/sup 14/C into glycogen was higher in mice which were refed before CCl/sub 4/ administration than in fasted mice treated with the hepatotoxin. The specific activity of lactate was higher in CCl/sub 4/ treated mice. The data suggested differences in glycogen metabolism of fasted and refed mice in response to CCl/sub 4/ treatment.

  17. Direct observation of glycogen synthesis in human muscle with 13C NMR

    International Nuclear Information System (INIS)

    Jue, T.; Rothman, D.L.; Shulman, G.I.; Tavitian, B.A.; DeFronzo, R.A.; Shulman, R.G.

    1989-01-01

    On the basis of previous indirect measurements, skeletal muscle has been implicated as the major site of glucose uptake and it has been suggested that muscle glycogen formation is the dominant pathway. However, direct measurements of the rates of glycogen synthesis have not been possible by previous techniques. The authors have developed 13 C NMR methods to measure directly the rate of human muscle glycogen formation from infused, isotopically labeled [1- 13 C]glucose. They show that under conditions of imposed hyperglycemia and hyperinsulinemia, a majority of the infused glucose was converted to muscle glycogen in a normal man. This directly shows that muscle is the major site of glucose disposal under these conditions, and provides quantitation of the glucose flux to muscle glycogen

  18. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  19. Glycogen storage disease type I: clinical and laboratory profile

    Directory of Open Access Journals (Sweden)

    Berenice L. Santos

    2014-12-01

    Full Text Available OBJECTIVES: To characterize the clinical, laboratory, and anthropometric profile of a sample of Brazilian patients with glycogen storage disease type I managed at an outpatient referral clinic for inborn errors of metabolism. METHODS: This was a cross-sectional outpatient study based on a convenience sampling strategy. Data on diagnosis, management, anthropometric parameters, and follow-up were assessed. RESULTS: Twenty-one patients were included (median age 10 years, range 1-25 years, all using uncooked cornstarch therapy. Median age at diagnosis was 7 months (range, 1-132 months, and 19 patients underwent liver biopsy for diagnostic confirmation. Overweight, short stature, hepatomegaly, and liver nodules were present in 16 of 21, four of 21, nine of 14, and three of 14 patients, respectively. A correlation was found between height-for-age and BMI-for-age Z-scores (r = 0.561; p = 0.008. CONCLUSIONS: Diagnosis of glycogen storage disease type I is delayed in Brazil. Most patients undergo liver biopsy for diagnostic confirmation, even though the combination of a characteristic clinical presentation and molecular methods can provide a definitive diagnosis in a less invasive manner. Obesity is a side effect of cornstarch therapy, and appears to be associated with growth in these patients.

  20. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa.

    Science.gov (United States)

    Li, Xin-Hua; Gong, Qi-Ming; Ling, Yun; Huang, Chong; Yu, De-Min; Gu, Lei-Lei; Liao, Xiang-Wei; Zhang, Dong-Hua; Hu, Xi-Qi; Han, Yue; Kong, Xiao-Fei; Zhang, Xin-Xin

    2014-12-05

    We studied two patients from a nonconsanguineous family with life-long abnormal liver function, hepatomegaly and abnormal fatty acid profiles. Abnormal liver function, hypoglycemia and muscle weakness are observed in various genetic diseases, including medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and glycogen storage diseases. The proband showed increased free fatty acids, mainly C8 and C10, resembling fatty acid oxidation disorder. However, no mutation was found in ACADM and ACADL gene. Sequencing of theamylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) gene showed that both patients were compound heterozygotes for c.118C > T (p.Gln40X) and c.753_756 del CAGA (p.Asp251Glufsx29), whereas their parents were each heterozygous for one of these mutations. The AGL protein was undetectable in EBV-B cells from the two patients. Transcriptome analysis demonstrated a significant different pattern of gene expression in both of patients’ cells, including genes involving in the PPAR signaling pathway, fatty acid biosynthesis, lipid synthesis and visceral fat deposition and metabolic syndrome. This unique gene expression pattern is probably due to the absence of AGL, which potentially accounts for the observed clinical phenotypes of hyperlipidemia and hepatocyte steatosis in glycogen storage disease type IIIa.

  1. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    International Nuclear Information System (INIS)

    Ritchie, D.G.

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with [ 14 C]glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant [ 14 C]glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, [ 14 C]glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6

  2. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthe...

  3. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.

    Science.gov (United States)

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki

    2017-06-13

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

  4. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  5. Terpene synthases from Cannabis sativa.

    Directory of Open Access Journals (Sweden)

    Judith K Booth

    Full Text Available Cannabis (Cannabis sativa plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E-β-ocimene, (--limonene, (+-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  6. Terpene synthases from Cannabis sativa.

    Science.gov (United States)

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  7. Activation of Basal Gluconeogenesis by Coactivator p300 Maintains Hepatic Glycogen Storage

    Science.gov (United States)

    Cao, Jia; Meng, Shumei; Ma, Anlin; Radovick, Sally; Wondisford, Fredric E.

    2013-01-01

    Because hepatic glycogenolysis maintains euglycemia during early fasting, proper hepatic glycogen synthesis in the fed/postprandial states is critical. It has been known for decades that gluconeogenesis is essential for hepatic glycogen synthesis; however, the molecular mechanism remains unknown. In this report, we show that depletion of hepatic p300 reduces glycogen synthesis, decreases hepatic glycogen storage, and leads to relative hypoglycemia. We previously reported that insulin suppressed gluconeogenesis by phosphorylating cAMP response element binding protein-binding protein (CBP) at S436 and disassembling the cAMP response element-binding protein-CBP complex. However, p300, which is closely related to CBP, lacks the corresponding S436 phosphorylation site found on CBP. In a phosphorylation-competent p300G422S knock-in mouse model, we found that mutant mice exhibited reduced hepatic glycogen content and produced significantly less glycogen in a tracer incorporation assay in the postprandial state. Our study demonstrates the important and unique role of p300 in glycogen synthesis through maintaining basal gluconeogenesis. PMID:23770612

  8. Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease.

    Science.gov (United States)

    Nitschke, Felix; Sullivan, Mitchell A; Wang, Peixiang; Zhao, Xiaochu; Chown, Erin E; Perri, Ami M; Israelian, Lori; Juana-López, Lucia; Bovolenta, Paola; Rodríguez de Córdoba, Santiago; Steup, Martin; Minassian, Berge A

    2017-07-01

    Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans

    Science.gov (United States)

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R.; Öz, Gülin

    2015-01-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of 13C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the 13C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness. PMID:24676563

  10. Technical note: A method for isolating glycogen granules from ruminal protozoa for further characterization.

    Science.gov (United States)

    Hall, Mary Beth

    2016-03-01

    Evaluation of physical, chemical, and enzymatic hydrolysis characteristics of protozoal glycogen is best performed on a pure substrate to avoid interference from other cell components. A method for isolating protozoal glycogen granules without use of detergents or other potentially contaminating chemicals was developed. Rumen inoculum was incubated anerobically in vitro with glucose. Glycogen-laden protozoa produced in the fermentation, primarily isotrichids, were allowed to sediment in a separatory funnel and were dispensed. The protozoa were processed through repeated centrifugations and sonication to isolate glycogen granules largely free of feed and cellular debris. The final water-insoluble lyophilized product analyzed as 98.3% α-glucan with very rare starch granules and 1.9% protein. Observed losses of glycogen granules during the clean-up process indicate that this procedure should not be used for quantitative assessment of protozoal glycogen from fermentations. Further optimization of this procedure to enhance the amount of glycogen obtained per fermentation may be possible. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. [3H] glycogen hydrolysis in brain slices: responses to meurotransmitters and modulation of noradrenaline receptors

    International Nuclear Information System (INIS)

    Quach, T.T.; Rose, C.; Schwartz, J.C.

    1978-01-01

    Different agents have been investigated for their effects on [ 3 H] glycogen synthesized in mouse cortical slices. Of these noradrenaline, serotonin and histamine induced clear concentration-dependent glycogenesis. [ 3 H] glycogen hydrolysis induced by noradrenaline appears to be mediated by beta-adrenergic receptors because it is completely prevented by timolol, while phentolamine is ineffective. It seems to involve cyclic AMP because it is potentiated in the presence of isobutylmethylxanthine; in addition dibutyryl cyclic AMP (but not dibutyryl cyclic GMP) promotes glycogenolysis. Lower concentrations of noradrenaline were necessary for [ 3 H] glycogen hydrolysis (ECsub(50) 0.5μM) than for stimulation of cyclic AMP accumulation (ECsub(50) = 8μM). After subchronic reserpine treatment the concentration-response curve to noradrenaline was significantly shifted to the left (ECsub(50) = 0.09 +- 0.02 μM as compared with 0.49 +- 0.08μM in saline-pretreated mice) without modifications of either the basal [ 3 H] glycogen level, maximal glycogenolytic effect, or the dibutyryl cAMP-induced glycogenolytic response. In addition to noradrenaline, clear concentration-dependent [ 3 H] glycogen hydrolysis was observed in the presence of histamine or serotonin. In contrast to the partial [ 3 H] glycogen hydrolysis elicited by these biogenic amines, depolarization of the slices by 50 mM K + provoked a nearly total [ 3 H] glycogen hydrolysis. (author)

  12. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila.

    Science.gov (United States)

    Yamada, Takayuki; Habara, Okiko; Kubo, Hitomi; Nishimura, Takashi

    2018-03-14

    Adapting to changes in food availability is a central challenge for survival. Glucose is an important resource for energy production, and therefore many organisms synthesize and retain sugar storage molecules. In insects, glucose is stored in two different forms: the disaccharide trehalose and the branched polymer glycogen. Glycogen is synthesized and stored in several tissues, including in muscle and the fat body. Despite the major role of the fat body as a center for energy metabolism, the importance of its glycogen content remains unclear. Here, we show that glycogen metabolism is regulated in a tissue-specific manner under starvation conditions in the fruit fly Drosophila The mobilization of fat body glycogen in larvae is independent of Adipokinetic hormone (Akh, the glucagon homolog) but is regulated by sugar availability in a tissue-autonomous manner. Fat body glycogen plays a crucial role in the maintenance of circulating sugars, including trehalose, under fasting conditions. These results demonstrate the importance of fat body glycogen as a metabolic safeguard in Drosophila . © 2018. Published by The Company of Biologists Ltd.

  13. Pluralistic roles for glycogen in the central and peripheral nervous systems.

    Science.gov (United States)

    Fryer, Kirsty L; Brown, Angus M

    2015-02-01

    Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K(+)]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K(+)]o, the resulting increase in intracellular bicarbonate alkalizing the cell's interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.

  14. A glycogene mutation map for discovery of diseases of glycosylation

    DEFF Research Database (Denmark)

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J

    2015-01-01

    homologous families. However, Genome-Wide-Association Studies (GWAS) have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole exome sequencing (WES) provides access to mutations in e.g. glycosyltransferase genes...... in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a Functional Mutational Map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2,000 Danes. We catalogued all missense mutations and used prediction algorithms, manual...... inspection, and in case of CAZy family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs....

  15. Pulmonary Arterial Hypertension in Glycogen Storage Disease Type I

    Directory of Open Access Journals (Sweden)

    Rachel D. Torok MD

    2017-05-01

    Full Text Available Pulmonary arterial hypertension (PAH is a rare and highly fatal disease that has been reported in 8 patients with glycogen storage disease type I (GSDI. We describe an additional case of an acute presentation of PAH in a 14-year-old patient with GSDI, which was successfully treated with inhaled nitric oxide and sildenafil. We investigated the incidence of PAH in 28 patients with GSDI on routine echocardiography and found no evidence of PAH and no significant cardiac abnormalities. This study highlights that PAH is a rare disease overall, but our case report and those previously described suggest an increased incidence in patients with GSDI. Should cardiopulmonary symptoms develop, clinicians caring for patients with GSDI should have a high degree of suspicion for acute PAH and recognize that prompt intervention can lead to survival in this otherwise highly fatal disease.

  16. Glycogen storage disease type III: modified Atkins diet improves myopathy.

    Science.gov (United States)

    Mayorandan, Sebene; Meyer, Uta; Hartmann, Hans; Das, Anibh Martin

    2014-11-28

    Frequent feeds with carbohydrate-rich meals or continuous enteral feeding has been the therapy of choice in glycogen storage disease (Glycogenosis) type III. Recent guidelines on diagnosis and management recommend frequent feedings with high complex carbohydrates or cornstarch avoiding fasting in children, while in adults a low-carb-high-protein-diet is recommended. While this regimen can prevent hypoglycaemia in children it does not improve skeletal and heart muscle function, which are compromised in patients with glycogenosis IIIa. Administration of carbohydrates may elicit reactive hyperinsulinism, resulting in suppression of lipolysis, ketogenesis, gluconeogenesis, and activation of glycogen synthesis. Thus, heart and skeletal muscle are depleted of energy substrates. Modified Atkins diet leads to increased blood levels of ketone bodies and fatty acids. We hypothesize that this health care intervention improves the energetic balance of muscles. We treated 2 boys with glycogenosis IIIa aged 9 and 11 years with a modified Atkins diet (10 g carbohydrate per day, protein and fatty acids ad libitum) over a period of 32 and 26 months, respectively. In both patients, creatine kinase levels in blood dropped in response to Atkins diet. When diet was withdrawn in one of the patients he complained of chest pain, reduced physical strength and creatine kinase levels rapidly increased. This was reversed when Atkins diet was reintroduced. One patient suffered from severe cardiomyopathy which significantly improved under diet. Patients with glycogenosis IIIa benefit from an improved energetic state of heart and skeletal muscle by introduction of Atkins diet both on a biochemical and clinical level. Apart from transient hypoglycaemia no serious adverse effects were observed.

  17. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  18. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  19. Adiponectin levels correlate with the severity of hypertriglyceridaemia in glycogen storage disease Ia

    NARCIS (Netherlands)

    Bandsma, R. H. J.; Smit, G. P. A.; Reijngoud, D. -J.; Kuipers, F.

    2009-01-01

    Glycogen storage disease type Ia (GSD Ia) is characterized by severe hypercholesterolaemia and hypertriglyceridaemia. Little is known about the aetiology of the hyperlipidaemia in GSD Ia. Adipokines play an important regulatory role in lipid metabolism. We investigated whether adipokine

  20. Glycogen synthesis in liver and skeletal muscle after exercise: participation of the gluconeogenic pathway

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1986-01-01

    Hepatic glycogenesis occurs by both the uptake of plasma glucose (direct pathway) as well as from gluconeogenesis (indirect pathway). In vitro studies suggest that skeletal muscle can also synthesize glycogen from lactate. The purpose of the present studies was to assess the contribution of the indirect pathway to liver and muscle glycogen synthesis after exercise with various substrata infusions. The authors hypothesis was the contribution of the indirect pathway of hepatic glycogenesis would increase after exercise. To this end, fasted rats were depleted of glycogen by exhaustive exercise; a second group of fasted rats remained rested. Both groups were then infused intravenously with glucose containing tracer quantities of [6- 3 H] and [U- 14 C] glucose for 4 hrs. The ensuing hyperglycemic response was exaggerated in post-exercised rats; whereas, plasma lactate levels were lower than those of nonexercised rats. The percent of hepatic glycogen synthesized from gluconeogenic precursors did not differ between exercised (39%) and nonexercised (36%) rats

  1. Physiological aspects of the subcellular localization of glycogen in skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Ørtenblad, Niels

    2013-01-01

    Glucose is stored in skeletal muscle fibers as glycogen, a branched-chain polymer observed in electron microscopy images as roughly spherical particles (known as β-particles of 10-45 nm in diameter), which are distributed in distinct localizations within the myofibers and are physically associated...... investigated the role and regulation of these distinct deposits of glycogen. In this report, we review the available literature regarding the subcellular localization of glycogen in skeletal muscle as investigated by electron microscopy studies and put this into perspective in terms of the architectural......, topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility...

  2. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  3. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses.

    Science.gov (United States)

    Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal

    2017-09-05

    Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Glucose balance and muscle glycogen during TPN in the early post-operative phase

    DEFF Research Database (Denmark)

    Henneberg, S; Stjernström, H; Essén-Gustavsson, B

    1985-01-01

    In order to study how muscle glycogen is influenced by different nutritional regimens in the early post-operative period we took muscle biopsies from 20 patients preoperatively and on the fourth post-operative day after abdominal aortic surgery. Ten patients received 93% of non-protein energy......-production) were performed and from these data glucose balance was calculated as the difference between glucose intake and glucose expenditure. Muscle biopsies were analysed for glycogen, adenosine triphosphate, glucose-6-phosphate, lactate and citrate. We found that it was possible to maintain muscle...... glycogen stores at pre-operative levels with a glucose-insulin regimen. With the fat regimen t