WorldWideScience

Sample records for glycoconjugate production utilizing

  1. Report on the results of research and development under a consignment from NEDO of glycoconjugate production utilizing technologies. Development of technologies to fix and effectively utilize carbon dioxide by applying glycoconjugates; 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Fukugo toshitsu seisan riyo gijutsu no kenkyu kaihatsu (fukugo toshitsu oyo nisanka tanso koteika yuko riyo gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper reports research results in fiscal 1997 for the `research and development of glycoconjugate production utilizing technologies`. In synthesizing, utilizing and remodeling technologies for glycoconjugates by means of chemical synthesis, studies were performed on developing methods to synthesize Gal {beta}1-3Gal NA(c {alpha})1-0-Serine in preparative scale, synthesizing high mannose type sugars of natural type without protection groups, and linking GlcNA or GalNAc onto partial peptide of fibroblast growth factor (FGF). In synthesizing, utilizing and remodeling technologies for glycoconjugates by using biological methods, studies were carried out, with regard to glycoconjugate synthesizing, utilizing and remodeling technologies utilizing animal cells, on identifying sugar structures of IFN-{gamma} produced from CHO cell line, and isolating CHO cell lines introduced with genes of sugar transferred enzyme GnTIV and/or GnTV. Furthermore, studies were conducted on glycoconjugate synthesizing, utilizing and remodeling technologies utilizing microorganisms, and glycoconjugate structure analyzing technologies. In addition, overall investigation was made on glycoconjugate production utilizing technologies. 113 refs., 76 figs., 18 tabs.

  2. Industrial science and technology research and development business for fiscal 1998. Research and development achievement report on glycoconjugate production and utilization technologies (Development of technologies of glycoconjugate-aided CO{sub 2} fixation and utilization); 1998 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo. Fukugo toshitsu seisan riyo gijutsu no kenkyu kaihatsu seika hokokusho (fukugo toshitsu oyo nisanka tanso koteika yuko riyo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Enzymatic and chemical methods were combined and methods were developed for synthesizing mucin type sugar chains and glycopeptides. The influence of sugar chain positions and structures on glycoconjugate stereo structures and physiological activities was analyzed, and glycopeptide structural activities and glycoconjugate remodelling were studied. To create an industrial advantage in a glycoprotein production system by use of zooblasts, sugar chain structure control through sugar transfase occurrence control was studied. For the production of man-adaptive sugar chains using yeast, new yeast variations were subjected to molecular breeding, and tested for the resultant improvement on productivity. Sugar chain marking and refining techniques and various responding mechanisms on the solid surface were elucidated, which enabled structure analyses using sugar chain recognition molecules such as lectins and antibodies. A database on interactions between sugar chains and sugar chain recognition molecules was constructed using the said findings. An analyzing program was also formulated tentatively. This paper also covers general surveys and studies on technologies of producing and utilizing glycoconjugates. (NEDO)

  3. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins.

    Science.gov (United States)

    Cuccui, Jon; Wren, Brendan

    2015-03-01

    Glycosylation or the modification of a cellular component with a carbohydrate moiety has been demonstrated in all three domains of life as a basic post-translational process important in a range of biological processes. This review will focus on the latest studies attempting to exploit bacterial N-linked protein glycosylation for glycobiotechnological applications including glycoconjugate vaccine and humanised glycoprotein production. The challenges that remain for these approaches to reach full biotechnological maturity will be discussed. Oligosaccharyltransferase-dependent N-linked glycosylation can be exploited to make glycoconjugate vaccines against bacterial pathogens. Few technical limitations remain, but it is likely that the technologies developed will soon be considered a cost-effective and flexible alternative to current chemical-based methods of vaccine production. Some highlights from current glycoconjugate vaccines developed using this in-vivo production system include a vaccine against Shigella dysenteriae O1 that has passed phase 1 clinical trials, a vaccine against the tier 1 pathogen Francisella tularensis that has shown efficacy in mice and a vaccine against Staphylococcus aureus serotypes 5 and 8. Generation of humanised glycoproteins within bacteria was considered impossible due to the distinct nature of glycan modification in eukaryotes and prokaryotes. We describe the method used to overcome this conundrum to allow engineering of a eukaryotic pentasaccharide core sugar modification within Escherichia coli. This core was assembled by combining the function of the initiating transferase WecA, several Alg genes from Saccharomyces cerevisiae and the oligosaccharyltransferase function of the Campylobacter jejuni PglB. Further exploitation of a cytoplasmic N-linked glycosylation system found in Actinobacillus pleuropneumoniae where the central enzyme is known as N-linking glycosyltransferase has overcome some of the limitations demonstrated by the

  4. Glycoconjugate vaccines: an update.

    Science.gov (United States)

    Vella, Mairi; Pace, David

    2015-04-01

    Globally, the three main pathogens causing serious infections are Haemophilus influenzae type b, Streptococcus pneumoniae and Neisseria meningitidis. Over the last 5 years, new vaccines protecting against these bacteria have been developed and introduced in various countries. This review describes the recently licensed glycoconjugates being used to protect against these encapsulated bacteria. Immunogenicity and safety data that led to licensure or licensure expansion of these glycoconjugates are discussed in addition to the resultant impact on the disease burden. The maintenance of robust immunisation programmes with high uptake rates is important in maintaining low rates of disease. Epidemiological surveillance systems are essential in monitoring any changes in infectious disease trends and in identifying emerging infections such as from non-typeable H. influenzae, pneumococcal serotype replacement disease and changes in the epidemiology of meningococcal serogroups. This is important to guide future vaccine development. Accessibility of these glycoconjugate vaccines in resource poor regions, which bear the highest disease burden from these pathogens, remains challenging largely due to high vaccine pricing. Recent aids from public and private funding, tiered vaccine pricing and the transfer of vaccine technology have helped in introducing these vaccines where they are most needed.

  5. Effect of nonpathogenic Escherichia coli monoassociation on small intestinal brush-border glycoconjugate moieties and cytokine production after colonization in ex-germ-free rats and pigs

    Czech Academy of Sciences Publication Activity Database

    Kolínská, Jiřina; Zákostelecká, Marie; Schwarzer, Martin; Štěpánková, Renata; Hudcovic, Tomáš; Kozáková, Hana

    2010-01-01

    Roč. 2, - (2010), s. 73-84 ISSN 1179-139X R&D Projects: GA MŠk(CZ) ME10017 Grant - others:GA AV ČR(CZ) IAA500200710; GA ČR(CZ) GA303/09/0449 Program:IA; GA Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : nonpathogenic E. coli * glycoconjugates * brush-border vesicles Subject RIV: CE - Biochemistry

  6. Production and utilization of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Toshiaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuoka, Hiromitsu

    1999-03-01

    A plan of developing radioisotopes with a high power proton accelerator of the Neutron Science Project is presented. The status of production and utilization of radioisotopes in Japan is briefly discussed. The radioisotopes to be produced for biomedical use are discussed together with the facility for production of those radioisotopes and for research with the products. (author)

  7. Supramolecular assemblies based on glycoconjugated dyes

    NARCIS (Netherlands)

    Schmidt, B.

    2016-01-01

    Supramolecular assemblies of glycoconjugated dyes can be tailored with properties that make them attractive for use in biomedical applications. For example, when assemblies of glycoconjugated dyes are displaying carbohydrates on their periphery in a polyvalent manner, these assemblies can be used to

  8. Glycoconjugates of Quinolines: Application in Medicinal Chemistry.

    Science.gov (United States)

    Oliveri, Valentina; Vecchio, Graziella

    2016-09-02

    Compounds with the quinoline scaffold are widely investigated and offer a variety of therapeutical properties. A number of quinoline derivatives have been synthesized and among these there are glycoconjugated derivatives. Based on the interest for this family of compounds, we reviewed the different biological activities (molecular probes, antiinfective, antiproliferative, antiaggregant and antioxidant) and the potential applications in medicinal chemistry of quinoline glycoconjugates. This review wants to show an example of the glycoconjugation strategy which arose not only to modify the water solubility of the quinolines but also to influence their activity and targeting properties.

  9. Uronic Acids in Oligosaccharide and Glycoconjugate Synthesis

    NARCIS (Netherlands)

    Codee, Jeroen D. C.; Christina, Alphert E.; Walvoort, Marthe T. C.; Overkleeft, Herman S.; Van der Marel, Gijsbert A.; FraserReid, B; Lopez, JC

    2011-01-01

    This chapter describes the assembly of uronic acid containing oligosaccharides and glycoconjugates. Two strategies are available to access these target molecules, namely a pre-glycosylation oxidation approach, in which uronic acid building blocks are used, and a post-glycosylation oxidation

  10. Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites.

    Science.gov (United States)

    Möginger, Uwe; Resemann, Anja; Martin, Christopher E; Parameswarappa, Sharavathi; Govindan, Subramanian; Wamhoff, Eike-Christian; Broecker, Felix; Suckau, Detlev; Pereira, Claney Lebev; Anish, Chakkumkal; Seeberger, Peter H; Kolarich, Daniel

    2016-02-04

    Production of glycoconjugate vaccines involves the chemical conjugation of glycans to an immunogenic carrier protein such as Cross-Reactive-Material-197 (CRM197). Instead of using glycans from natural sources recent vaccine development has been focusing on the use of synthetically defined minimal epitopes. While the glycan is structurally defined, the attachment sites on the protein are not. Fully characterized conjugates and batch-to-batch comparisons are the key to eventually create completely defined conjugates. A variety of glycoconjugates consisting of CRM197 and synthetic oligosaccharide epitopes was characterised using mass spectrometry techniques. The primary structure was assessed by combining intact protein MALDI-TOF-MS, LC-MALDI-TOF-MS middle-down and LC-ESI-MS bottom-up approaches. The middle-down approach on CNBr cleaved glycopeptides provided almost complete sequence coverage, facilitating rapid batch-to-batch comparisons, resolving glycan loading and identification of side products. Regions close to the N- and C-termini were most efficiently conjugated.

  11. Utilization of Cocoyam Production Technologies among Women ...

    African Journals Online (AJOL)

    User

    random sampling technique was used to select sixty (60) .... computed by dividing the total utilization score by the number of respondents ..... Pseudo R2. 0.7076. Log likelihood. -144.9756. P≤ 10, ** P≤ 0.5 and ***P P≤ 0.1. Source: Field survey, 2014. Constraints Militating Against the Utilization of Cocoyam Production.

  12. Surface glycoconjugates of Lyme borreliosis spirochetes

    Czech Academy of Sciences Publication Activity Database

    Vancová, Marie; Nebesářová, Jana; Grubhoffer, Libor

    2003-01-01

    Roč. 9, Supplement 03 (2003), s. 506-507 ISSN 1431-9276. [Microscopy Conference 2003, Conference of Deutsche Gesellschaft für Elektronenmikroskopie /31./. Dresden, 07.09.2003-12.09.2003] R&D Projects: GA ČR GA206/03/1323 Institutional research plan: CEZ:AV0Z6022909 Keywords : borreliosis * surface glycoconjugates * spirochete Subject RIV: EE - Microbiology, Virology Impact factor: 1.648, year: 2003

  13. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    Science.gov (United States)

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  14. Evaluation of isotope utilizations in consumer products

    International Nuclear Information System (INIS)

    Sato, Otomaru

    1980-01-01

    Consumer products are generally divided into three groups, according to the state of radioactive material or radiation used. First, there are those intentionally added with radioactive materials, such as self-luminous paints and ionization type smoke detectors, utilizing the ionization and excitation by radiation. Second, there are those utilizing natural radioactive materials like glaze. Third, there are those materials containing intrinsically natural radioactive materials. In the first group, the safety evaluation of self-luminous watches and clocks and the risk-benefit evaluation of ionization type smoke detectors are described, and the approval standards for the consumer products and the R/B evaluation method are explained. There are variety of consumer products utilizing radiation, by the exposure dose caused by them is extremely insignificant, far lower than that due to natural radiation. (J.P.N.)

  15. Glycoconjugates in normal and abnormal secondary neurulation.

    Science.gov (United States)

    Griffith, C M; Hsieh, T; Smith, C; Sanders, E J

    1995-11-01

    In chick embryos, the anterior greater portion of the neural tube develops by the folding, apposition, and fusion of the neuroectoderm. The smaller caudal portion that forms the secondary neural tube (lumbosacral and coccygeal regions) is derived from the tail bud, an aggregate of mesenchymal cells located at the caudal limit of the body. Tail bud mesenchyme, arranged in a solid cord, undergoes mesenchymal-epithelial transformation to form the secondary neural tube. Previous evidence suggests that this transformation is accompanied by modulation of cell surface glycoconjugates in the differentiating tissues. In this study, we show by lectin histochemistry and lectin blotting of proteins isolated by SDS-PAGE, that Datura stramonium agglutinin (DSA) binds preferentially to differentiating tail bud cells. This lectin is specific for beta 1-4-linked N-acetylglucosamine oligomers, such as the oligosaccharides of the poly-N-acetyllactosamine series that have been previously implicated in cell differentiation. Ultrastructural lectin cytochemistry indicates that at least some of the proteins binding DSA are localized extracellularly. The use of DSA as a teratogen resulted in embryos showing a variety of neural tube and notochord defects. We have also examined the binding of DSA to embryos that were treated with teratogenic doses of retinoic acid by sub-blastodermal injection, and find that the DSA-binding patterns are perturbed. Analysis of DSA-treated embryos using the TUNEL technique indicated that cell death was not a factor in DSA teratogenesis. This strongly suggests that the glycoconjugates of the cell surface have a role in the normal differentiation of tail bud mesenchyme into the neuroepithelium of the secondary neural tube. Perturbations of glycoconjugate activity results in defects of the secondary neural tube and associated tail bud derivatives.

  16. Utilization of cocoyam production technologies among women ...

    African Journals Online (AJOL)

    The study analysed utilization of improved cocoyam production technologies among women in Abia State, Nigeria. A multistage random sampling technique was used to select sixty (60) women. Data for the study were collected using a structured questionnaire and analysed with descriptive statistics and inferential statistics ...

  17. Glycoconjugates as target antigens in peripheral neuropathies

    Directory of Open Access Journals (Sweden)

    Ljubica Suturkova

    2014-12-01

    Full Text Available Identification and characterization of antigens present at the human peripheral nerve is a great challenge in the field of neuroimmunology. The latest investigations are focused on the understanding of the biology of glycoconjugates present at the peripheral nerve, and their immunological reactivity. Increased titers of antibodies that recognize carbohydrate determinants of glycoconjugates (glycolipids and glycoproteins are associated with distinct neuropathic syndromes. There is considerable cross-reactivity among anti-ganglioside antibodies, resulting from shared oligosaccharide epitopes, possibly explaining the overlap in syndromes observed in many affected patients. Sera from patients with neuropathies (GBS, chronic inflammatory demielynating polyneuropathy - CIDP, multifocal motor neuropathy - MMN, cross-react with glycoproteins isolated from human peripheral nerve and from Campylobacter jejuni O:19. The frequency of occurrence of antibodies against these glycoproteins is different, depending of the type of neuropathy. Identification of the cross-reactive glycoproteins and possible additional auto antigens could be useful in laboratory evaluation of peripheral neuropathies and help to develop a more effective therapeutic approach.

  18. Utilization of cellulosic waste for energy production

    Science.gov (United States)

    Deshpande, V.; Mishra, C.; Rao, M.; Seeta, R.; Srinivasan, M. C.; Jagannathan, V.

    1980-01-01

    Bioconversion of cellulose for the production of food or alcohol is of importance for the utilization of a renewable and abundant resource. The hydrolysis of different cellulosic materials by the cellulolytic enzymes produced by Penicillium funiculosum was studied. Fifty to 70% saccharification was obtained from pretreated bagasse, cotton and wood. The effect of different pretreatments to make the cellulose more susceptible to enzyme breakdown was also studied. Alkali pretreatment was found to be effective for most of the substrates. The production of alcohol from the hydrolysates by yeast fermentation without isolation of glucose was studied.

  19. Utilization of Natural Products as Functional Feed

    Directory of Open Access Journals (Sweden)

    Stella Magdalena

    2013-03-01

    Full Text Available The use of antibiotics as feed additive improves performance in livestock. However, scientific data related to the use of antibiotics in feed merge spreading of bacterial resistance in animal and human bodies, therefore the usage of antibiotics in animal production is restricted. This condition raise the utilization of natural antibiotic as functional feed such as phytogenics (essential oil, flavonoid, saponin, and tannin, enzyme, probiotic, and prebiotic to improve the livestock’s performance, quality, and health. Functional feeds increase profitability in animal husbandry production and its use is feeds are expected to be functional foods that may have positive effects in human nutrition.

  20. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates

    DEFF Research Database (Denmark)

    Villadsen, Klaus; Martos Maldonado, Manuel Cristo; Jensen, Knud Jørgen

    2017-01-01

    Glycobiology is the comprehensive biological investigation of carbohydrates. The study of the role and function of complex carbohydrates often requires the attachment of carbohydrates to surfaces, their tagging with fluorophores, or their conversion into natural or non-natural glycoconjugates......, such as glycopeptides or glycolipids. Glycobiology and its “omics”, glycomics, require easy and robust chemical methods for the construction of these glycoconjugates. This review gives an overview of the rapidly expanding field of chemical reactions that selectively convert unprotected carbohydrates...

  1. Effect of bitter gourd and spent turmeric on glycoconjugate metabolism in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Vijayalakshmi, B; Kumar, G Suresh; Salimath, P V

    2009-01-01

    Changes in glycoconjugate metabolism during the development of diabetic complications and their modulation by feeding bitter gourd and spent turmeric as fiber-rich source. This was studied by measuring the contents of total sugar, uronic acid, amino sugar, and sulfate in the streptozotocin-induced diabetic rats. Total sugar content decreased in liver, spleen, and brain, while an increase was observed in heart and lungs. Uronic acid content in liver, spleen, and brain decreased, and marginal increase was observed in testis. Amino sugar content decreased in liver, spleen, lungs and heart during diabetes, and augmentation was observed to different extents. Decrease in sulfation of glycoconjugates was observed in liver, spleen, lungs and heart during diabetes and was significantly ameliorated by bitter gourd and spent turmeric, except brain. Protein content decreased in liver, while an increase was observed in brain. The studies clearly showed alteration in glycoconjugate metabolism during diabetes and amelioration to different extents by feeding bitter gourd and spent turmeric. Improvement is due to slow release of glucose by fiber in the gastrointestinal track and short-chain fatty acid production from fiber by colon microbes.

  2. Utilization of agricultural waste in power production

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.C. [ELSAMPROJEKT A/S, Fredericia (Denmark); Rasmussen, I. [MIDTKRAFT Power Co., Aarhus (Denmark)

    1993-12-31

    It is a goal of the Danish energy policy for the last decade to reduce energy consumption and to introduce fuels for power production with less CO{sub 2} emission than coal. This measure has caused a considerable effort by the Danish utilities to develop technologies that reduce CO{sub 2} emissions without causing heavy cost increases of power. Agricultural waste in the form of surplus straw is available in an amount equivalent to 20% of the annual coal imports to Denmark. Straw firing is difficult due to its significant contents of alkaline components. Consequently, its utilization presupposes the development of new technologies. The biomass development program is concentrated on two ways which are (1) co-firing of existing coal fired power station with a modest amount of straw and (2) development of CFB technology that allows a high share of biomass as well as coal only. These options were tested in a coal fired 70 MW spreader stoker unit and a 125 MW PF unit. Approx. 4000 t of straw were burned. Additional tests will be launched this autumn, burning 35,000 t of straw at rates up to 20% straw. The CFB option is pursued from the platform of a 80 MWth unit, operational early `92. This plant burns a mix of 50% straw and 50% coal and consumes annually 70.000 t of straw. Future development is aiming towards CFBs of 250 MW(e), burning in excess of 50% biomass.

  3. Multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides.

    Science.gov (United States)

    Chen, Mingsheng; Hu, Mei; Wang, Dali; Wang, Guojian; Zhu, Xinyuan; Yan, Deyue; Sun, Jian

    2012-06-20

    Multifunctional gene vectors with high transfection, low cytotoxicity, and good antitumor and antibacterial activities were prepared from natural aminoglycosides. Through the Michael-addition polymerization of gentamycin and N,N'-methylenebisacrylamide, cationic hyperbranched glycoconjugated polymers were synthesized, and their physical and chemical properties were analyzed by FTIR, (1)H NMR, (13)C NMR, GPC, ζ-potential, and acid-base titration techniques. The cytotoxicity of these hyperbranched glycoconjugated polycations was low because of the hydrolysis of degradable glycosidic and amide linkages in acid conditions. Owing to the presence of various primary, secondary, and tertiary amines in the polymers, hyperbranched glycoconjugated polymers showed high buffering capacity and strong DNA condensation ability, resulting in the high transfection efficiency. In the meantime, due to the introduction of natural aminoglycosides into the polymeric backbone, the resultant hyperbranched glycoconjugated polymers inhibited the growth of cancer cells and bacteria efficiently. Combining the gene transfection, antitumor, and antibacterial abilities together, the multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides may play an important role in protecting cancer patients from bacterial infections.

  4. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The

  5. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  6. Review: Utilization of Waste From Coffee Production

    Science.gov (United States)

    Blinová, Lenka; Sirotiak, Maroš; Bartošová, Alica; Soldán, Maroš

    2017-06-01

    Coffee is one of the most valuable primary products in the world trade, and also a central and popular part of our culture. However, coffees production generate a lot of coffee wastes and by-products, which, on the one hand, could be used for more applications (sorbent for the removal of heavy metals and dyes from aqueous solutions, production of fuel pellets or briquettes, substrate for biogas, bioethanol or biodiesel production, composting material, production of reusable cups, substrat for mushroom production, source of natural phenolic antioxidants etc.), but, on the other hand, it could be a source of severe contamination posing a serious environmental problem. In this paper, we present an overview of utilising the waste from coffee production.

  7. Review: Utilization of Waste From Coffee Production

    Directory of Open Access Journals (Sweden)

    Blinová Lenka

    2017-06-01

    Full Text Available Coffee is one of the most valuable primary products in the world trade, and also a central and popular part of our culture. However, coffees production generate a lot of coffee wastes and by-products, which, on the one hand, could be used for more applications (sorbent for the removal of heavy metals and dyes from aqueous solutions, production of fuel pellets or briquettes, substrate for biogas, bioethanol or biodiesel production, composting material, production of reusable cups, substrat for mushroom production, source of natural phenolic antioxidants etc., but, on the other hand, it could be a source of severe contamination posing a serious environmental problem. In this paper, we present an overview of utilising the waste from coffee production.

  8. Glycoconjugates in human milk: protecting infants from disease.

    Science.gov (United States)

    Peterson, Robyn; Cheah, Wai Yuen; Grinyer, Jasmine; Packer, Nicolle

    2013-12-01

    Breastfeeding is known to have many health benefits for a newborn. Not only does human milk provide an excellent source of nutrition, it also contains components that protect against infection from a wide range of pathogens. Some of the protective properties of human milk can be attributed to the immunoglobulins. Yet, there is another level of defense provided by the "sweet" protective agents that human milk contains, including free oligosaccharides, glycoproteins and glycolipids. Sugar epitopes in human milk are similar to the glycan receptors that serve as pathogen adhesion sites in the human gastrointestinal tract and other epithelial cell surfaces; hence, the milk glycans can competitively bind to and remove the disease-causing microorganisms before they cause infection. The protective value of free oligosaccharides in human milk has been well researched and documented. Human milk glycoconjugates have received less attention but appear to play an equally important role. Here, we bring together the breadth of research that has focused on the protective mechanisms of human milk glycoconjugates, with a particular focus on the glycan moieties that may play a role in disease prevention. In addition, human milk glycoconjugates are compared with bovine milk glycoconjugates in terms of their health benefits for the human infant.

  9. Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with diatoms.

    Science.gov (United States)

    Bennke, Christin M; Neu, Thomas R; Fuchs, Bernhard M; Amann, Rudolf

    2013-09-01

    The degradation of diatoms is mainly catalyzed by Bacteroidetes and this process is of global relevance for the carbon cycle. In this study, a combination of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) and fluorescent lectin binding analysis (FLBA) was used to identify and map glycoconjugates involved in the specific interactions of Bacteroidetes and diatoms, as well as detritus, at the coastal marine site Helgoland Roads (German Bight, North Sea). The study probed both the presence of lectin-specific extracellular polymeric substances (EPS) of Bacteroidetes for cell attachment and that of glycoconjugates on diatoms with respect to binding sites for Bacteroidetes. Members of the clades Polaribacter and Ulvibacter were shown to form microcolonies within aggregates for which FLBA indicated the presence of galactose containing slime. Polaribacter spp. was shown to bind specifically to the setae of the abundant diatom Chaetoceros spp., and the setae were stained with fucose-specific lectins. In contrast, Ulvibacter spp. attached to diatoms of the genus Asterionella which bound, among others, the mannose-specific lectin PSA. The newly developed CARD-FISH/FLBA protocol was limited to the glycoconjugates that persisted after the initial CARD-FISH procedure. The differential attachment of bacteroidetal clades to diatoms and their discrete staining by FLBA provided evidence for the essential role that formation and recognition of glycoconjugates play in the interaction of bacteria with phytoplankton. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the ce...

  11. Utilization of agricultural by-products in healthful food products: Organogelators, antioxidants, and spreadable products

    Science.gov (United States)

    It was found that several agricultural by-products could be utilized for healthful food products. Three major applications that our research group has been focusing on will be discussed: 1) plant waxes for trans-fat free, low saturated fat-containing margarine and spread products, 2) extracts of cor...

  12. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  13. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications

    Science.gov (United States)

    Garrido, Daniel; Dallas, David C.

    2013-01-01

    Human milk is a rich source of nutrients and energy, shaped by mammalian evolution to provide all the nutritive requirements of the newborn. In addition, several molecules in breast milk act as bioactive agents, playing an important role in infant protection and guiding a proper development. While major breast milk nutrients such as lactose, lipids and proteins are readily digested and consumed by the infant, other molecules, such as human milk oligosaccharides and glycosylated proteins and lipids, can escape intestinal digestion and transit through the gastrointestinal tract. In this environment, these molecules guide the composition of the developing infant intestinal microbiota by preventing the colonization of enteric pathogens and providing carbon and nitrogen sources for other colonic commensals. Only a few bacteria, in particular Bifidobacterium species, can gain access to the energetic content of milk as it is displayed in the colon, probably contributing to their predominance in the intestinal microbiota in the first year of life. Bifidobacteria deploy exquisite molecular mechanisms to utilize human milk oligosaccharides, and recent evidence indicates that their activities also target other human milk glycoconjugates. Here, we review advances in our understanding of how these microbes have been shaped by breast milk components and the strategies associated with their consumption of milk glycoconjugates. PMID:23460033

  14. Industrial production, capacity utilization, and electric power tape. Data file

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The industrial production index is a measure of the physical output of the nation's factories, mines, and electric and gas utilities expressed as a percentage of production in a base period, currently 1987. Capacity indexes, based on the Federal Reserve's industrial production indexes, are estimated for total industry, which covers manufacturing, mining, and utilities industries. Both the capacity and output indexes are expressed as a percentage of 1987 output. Utilization rates are then derived by dividing the capacity index into the associated production indexes.

  15. MOET Utility in Beef Production Strategies

    Directory of Open Access Journals (Sweden)

    Marcel Theodor Paraschivescu

    2012-10-01

    Full Text Available The paper presents the reason of beef production for human food security and the necessity of special dairy and beefbreeds in order to balance the milk and the meat production in cattle farming. That is a difficult target for manycountries since they don’t dispose of large natural pastures to extensively feed the beef cattle herds. At the same timemany European countries breed only dual purpose cattle breeds. So the idea of intensive farming with beef breeds orcrosses is developed. To speed up this kind of programs Open MOET (Multiple Ovulation Embryo Transfer Farmtechnology is proposed and it is completed with the needed facilities for production and preservation of embryos.Concerning the MOET Farm which confers directly pure bred beef calves, emphases is put on veterinary quarantineand heifer receptors conditioning. Concerning embryo conservation the direct transfer (DT technique isrecommended. Modalities of integrating dairy farms and beef cattle farms are finally discussed as recommendedstrategy for Romanian Agriculture.

  16. SOLID BIOFUEL UTILIZATION IN VEGETABLE OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Slusarenko V.

    2016-08-01

    Full Text Available The paper deals with questions of creating at JSC “Alimentarmash "in the last 20 years the technological equipment for the production of vegetable oils from oilseeds: from the press for the final spin to mini oilfactory, using as an energy source for heating the liquid coolant (Thermal oil "Arian" of solid biofuels - husk of sunflower seeds.

  17. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  18. Plutonium production and utilization forecasts in Europe

    International Nuclear Information System (INIS)

    Haijtink, B.

    1976-01-01

    The planned accelerated growth of nuclear energy generation in the near future will lead to a large production of plutonium in the thermal reactors. Therefore, up to 1985, the major part of the available plutonium will be plutonium recovered from spent uranium-metal, particularly in the United Kingdom and in France. Because of the low demand for fuelling the fast breeder reactors within the near future, a surplus of fissile plutonium will be accumulated in Europe. Even if the planned availability of the oxide reprocessing capacity will be delayed with two or three years, a plutonium surplus will still exist in Europe, e.g.; in 1985: 25-20 tons. On longer term, up to 2000, the plutonium production in thermal reactors will be sufficient to meet the estimated demand for fast breeder reactors at their commercial introduction foreseen for the nineties. That means that all the plutonium surplus needs not to be stocked for use in fast breeder reactors later on but could be recycled in thermal reactors. The magnitude of the available fissionable materials give an idea of the importance to promote, on an industrial scale, the plutonium recycling technology

  19. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  20. The Histochemical Characterization of the Glycoconjugates in the Epidermal Mucous Cells of the Red Californian Earthworm, Eisenia foetida

    Directory of Open Access Journals (Sweden)

    Kenan Çinar

    2014-01-01

    Full Text Available The aim of this study was to characterize the nature and regional distribution of the glycoconjugates secreted by epidermal mucous cells in Eisenia foetida (Annelida. Specimens were divided into six regions from anterior to posterior. The histochemistry was carried out by using standard histochemical methods. Histochemical staining properties of glycoconjugates in epidermal mucous cells were determined regionally. The epidermis of all regions contained strong to stronger PAS (+ cells in various degrees. The epidermis of the first, fourth, fifth, and sixth regions had strong to stronger AB pH 2.5 (+ cells. On the contrary, all regions contained weak to moderate AB pH 0.5 and AB pH 1.0 (+ cells. Most of mucous cells in epidermis of the first region contained both PAS (+ and AB (+ mucosubstances. All regions included weaker to weak AF (+ cells. All regions featured KOH/PAS (+ cells, with a slight reduction in reaction intensity in the epidermis of the last three regions. In this context, the different staining patterns observed in epidermal mucous cells hinted at their functional roles with respect to production of mucus with different physical properties. This study provided comprehensive information about the regional distribution patterns of the glycoconjugates and an opportunity to compare their distributional patterns in other annelids.

  1. N-O linkage in carbohydrates and glycoconjugates.

    Science.gov (United States)

    Chen, N; Xie, J

    2016-11-29

    The importance of oligosaccharides and their conjugates in various biological and pathological processes has stimulated growing interest in the development of (neo)glycoconjugates. Thanks to its high nucleophilicity, hydroxylamine has been employed as a powerful chemoselective ligation tool. Great effort has been focused on carbohydrates bearing aminooxy or N-hydroxy amino groups for organic synthesis, glycobiology and drug discovery. This review provides an overview of N-O linked carbohydrates and glycoconjugates, focusing particularly on the synthetic methodologies and chemical and physicochemical properties as well as biological and medical applications of N-glycosyl and O-glycosyl hydroxylamines, N-hydroxy amino and O-amino sugar as well as sugar aminooxy acid derivatives.

  2. Glycoconjugates and Glycomimetics as Microbial Anti-Adhesives.

    Science.gov (United States)

    Sattin, Sara; Bernardi, Anna

    2016-06-01

    Microbial adhesion is an essential step in infection and is mediated primarily by protein-carbohydrate interactions. Antagonists of such interactions have become a promising target for anti-adhesive therapy in several infective diseases. Monovalent protein-sugar interactions are often weak, and most successful anti-adhesive materials consist of multivalent glycoconjugates. Although often very effective in hampering microbial adhesion, natural epitopes often show limited resistance to enzymatic degradation. The use of carbohydrate mimics (glycomimetics) as a replacement for natural sugars potentially allows higher metabolic stability and also higher selectivity towards the desired protein target. In this review we describe the state of the art in the design and synthesis of glycoconjugates and glycomimetics employed for the construction of anti-adhesive biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles.

    Science.gov (United States)

    Latxague, Laurent; Gaubert, Alexandra; Barthélémy, Philippe

    2018-01-02

    Glyconanoparticles essentially result from the (covalent or noncovalent) association of nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis. Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.

  4. Synthesis of Bifunctional Azobenzene Glycoconjugates for Cysteine-Based Photosensitive Cross-Linking with Bioactive Peptides.

    Science.gov (United States)

    Müller, Anne; Kobarg, Hauke; Chandrasekaran, Vijayanand; Gronow, Joana; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2015-09-21

    Azobenzene linker molecules can be utilized to control peptide/protein function when they are ligated to appropriately spaced amino acid side chains of the peptide. This is because the photochemical E/Z isomerization of the azobenzene N=N double bond allows to switch peptide conformation between folded and unfolded. In this context, we have introduced carbohydrate-functionalized azobenzene derivatives in order to advance the biocompatible properties of azobenzene peptide linkers. Chloroacetamide-functionalized and O-allylated carbohydrate derivatives were synthesized and conjugated with azobenzene to achieve new bifunctional cross-linkers, in order to allow ligation to cysteine side chains by nucleophilic substitution or thiol-ene reaction, respectively. The photochromic properties of the new linker glycoconjugates were determined and first ligation reactions performed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Utilization of Biodiesel By-Products for Biogas Production

    Science.gov (United States)

    Kolesárová, Nina; Hutňan, Miroslav; Bodík, Igor; Špalková, Viera

    2011-01-01

    This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple of studies have demonstrated the possibility of biogas production, using g-phase as a single substrate, and it has also shown a great potential as a cosubstrate by anaerobic treatment of different types of organic waste or energy crops. Oil cakes or oil meals are solid residues obtained after oil extraction from the seeds. Another possible by-product is the washing water from raw biodiesel purification, which is an oily and soapy liquid. All of these materials have been suggested as feasible substrates for anaerobic degradation, although some issues and inhibitory factors have to be considered. PMID:21403868

  6. Utilization of red mud in cement production: a review.

    Science.gov (United States)

    Liu, Xiaoming; Zhang, Na

    2011-10-01

    Red mud is a solid waste residue of the digestion of bauxite ores with caustic soda for alumina production. Its disposal remains a worldwide issue in terms of environmental concerns. During the past decades, extensive work has been done by a lot of researchers to develop various economic ways for the utilization of red mud. One of the economic ways is using red mud in cement production, which is also an efficient method for large-scale recycling of red mud. This paper provides a review on the utilization of red mud in cement production, and it clearly points out three directions for the use of red mud in cement production, namely the preparation of cement clinkers, production of composite cements as well as alkali-activated cements. In the present paper, the chemical and mineralogical characteristics of red mud are summarized, and the current progresses on these three directions are reviewed in detail.

  7. The sustainable utilization of human resources in global product development

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2010-01-01

    This empirical paper investigates the challenges global product development faces in regard to a sustainable utilization of resources through case studies and interviews in six Danish multinational corporations. Findings revealed 3 key challenges, which relates to increased rework in product...... development and production, overlapping work and a lack of utilization of knowledge and information at the supplier or subsidiary. The authors suggest the use of strategic simulation in order to gain greater transparency in the global network and thus utilize resources better. Strategic simulation...... is the combination of numerical and narrative simulation and can be used as a tool to support strategic decisions regarding different scenarios. The use of this method promotes an ongoing iterative process to constantly clarify points of uncertainty and enhance adaptability in order to promote a sustainable process....

  8. Synthesis of aromatic glycoconjugates. Building blocks for the construction of combinatorial glycopeptide libraries

    Directory of Open Access Journals (Sweden)

    Markus Nörrlinger

    2014-10-01

    Full Text Available New aromatic glycoconjugate building blocks based on the trifunctional 3-aminomethyl-5-aminobenzoic acid backbone and sugars linked to the backbone by a malonyl moiety were prepared via peptide coupling. The orthogonally protected glycoconjugates, bearing an acetyl-protected glycoside, were converted into their corresponding acids which are suitable building blocks for combinatorial glycopeptide synthesis.

  9. Production, control and utilization of radioisotopes including radiopharmaceuticals

    International Nuclear Information System (INIS)

    Muenze, R.

    1985-05-01

    From April 29th to May 5th, 1984 27 participants from 21 developing countries stayed within an IAEA Study Tour ('Production, Control and Utilization of Radioisotopes including Radiopharmaceuticals') in the GDR. In the CINR, Rossendorf the reactor, the cyclotron, the technological centre as well as the animal test laboratory were visited. The participants were made familiar by 10 papers with the development, production and control of radiopharmaceuticals in the CINR, Rossendorf. (author)

  10. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  11. Utilization Of Improved Root And Tuber Crops Production ...

    African Journals Online (AJOL)

    The utilization of improved Root and Tuber Crops Production Technologies among Extension Agents in Kogi State was assessed in 2007. The data were collected sing structured questionnaire and analyzed using simple descriptive statistics (frequency and percentages) and linear regression analysis. Results showed that ...

  12. Gender analysis of non-timber forest products utilization by ...

    African Journals Online (AJOL)

    This study examines gender roles in Non-Timber Forest Products (NTFPs) utilization by adjoining communities to Cross River National Park (CRNP), Oban Division. Data were collected using semi-structured questionnaire administered on 110 respondents randomly selected from these communities. These were ...

  13. Prospective of biodiesel production utilizing microalgae as the cell ...

    African Journals Online (AJOL)

    Microalgae are sunlight-driven miniature factories that convert atmospheric CO2 to polar and neutral lipids which after esterification can be utilized as an alternative source of petroleum. Further, other metabolic products such as bioethanol and biohydrogen produced by algal cells are also being considered for the same ...

  14. Maximizing Utilization of Energy from Crop By-products

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2014-03-01

    Full Text Available The availability of crop by-products is huge during harvesting times as related to the vast agricultural land area; however, their utilization is still limited due to lack of knowledge and handling problem. Seasonal effect is obvious especially during wet season when high rainfall hinders proper management of crop by-products. Crop by-products are energy rich feedstuffs in the form of chemical substance such as cellulose and hemicellulose. The utilization of cellulose and hemicellulose as sources of energy can be maximized by the application of technologies to increase the digestibility. Cellulose is polymer of glucose while hemicellulose is polymer of xylose which both can be converted to volatile fatty acids by rumen microbial enzyme activities and subsequently used by the host animal as source of energy. In addition, cellulose and hemicellulose can also be used as substrates for bioethanol production leaving behind residual matter with higher concentration of protein which is also appropriate for ruminant feeds. The fat content of crop by-products such as those in rice bran and corn germ can be extracted for oil production that can be used for human consumption with concomitant production of high nutritive value of residues for ruminant feeds. The oil extraction technologies are available; however the high cost of ethanol and oil production should obtain high attention to make the technologies more applicable at farmers’ level.

  15. Productivity growth and price regulation of Slovenian water distribution utilities

    Directory of Open Access Journals (Sweden)

    Jelena Zorić

    2010-06-01

    Full Text Available This paper aims to analyse the price regulation method and performance of thewater industry in Slovenia. A stochastic cost frontier model is employed to estimate and decompose the total factor productivity (TFP growth of water distribution utilities in the 1997-2003 period. The main goal is to find out whether the lack of proper incentives to improve performance has resulted in the low TFP growth of Slovenian water distribution utilities. The evidence suggests that cost inefficiencies are present in water utilities, which indicates considerable cost saving potential in the analysed industry. Technical change is found to have positively affected the TFP growth over time, while cost inefficiency levels remained essentially unchanged. Overall, the average annual TFP growth in the analysed period is estimated to be only slightly above zero, which is a relatively poor result. This can largely be contributed to the present institutional and regulatory setting that does not stimulate utilities to improve productivity. Therefore, the introduction of an independent regulatory agency and an incentive-based price regulation scheme should be seriously considered in order to enhance the performance of Slovenian water distribution utilities.

  16. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and

  17. Ruminant production systems in developing countries: Resource utilization

    International Nuclear Information System (INIS)

    Devendra, C.

    1989-01-01

    Ruminant production systems are discussed with specific reference to the resource utilization required to support them. Particular focus is placed on the main production resources (animals and feeds) and their underutilization. The ruminant animals include buffaloes, cattle, goats, sheep and camels. With the exception of cattle and sheep, their numbers in developing countries account for between 94 and 100% of total world population. Their biological attributes, including inherent characteristics, feeding behaviour and metabolism, are summarized. The extent and availability of feed resources are considered; resources include permanent pastures, crop residues, agroindustrial by-products and non-conventional feeds. The prevailing ruminant production systems are classified into three main categories: extensive systems, systems incorporating arable cropping (roadside, communal and arable grazing systems; tethering and cut-and-carry feeding), and systems integrated with tree cropping. Their genesis and endurance with patterns of crop production and farming systems are discussed. Integrated systems, involving animals and tree crops, are potentially important. Prevailing ruminant production systems are unlikely to change in the foreseeable future, unless there are major shifts in resource use and the proposed new systems are demonstrably superior. Factors likely to influence future ruminant production systems are market requirements, available feed resources and growth in human populations. Two associated strategies for improvement are proposed: increased priority to buffaloes, goats, sheep and camels, consistent with their potential contribution to meat, milk and fibre supplies and draught power; and more complete utilization of the available feed ingredients and increased feed supplies

  18. Utilization of low temperature heat for environmentally friendly electricity production

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Elmegaard, Brian; Haglind, Fredrik

    2014-01-01

    and industrial processes orfrom geothermal and solar heat sources. Utilization of such heat sources makes it possible to produce electricity with no additional burning of fossil fuel, and does therefore represent an environmentally friendly alternative to fossil fuel based electricity production. Utilization......The focus on reduction of fossil fuelled electricity generation has increased the attention on exploitation of low grade heat as the energy source for electricity producing power plants. Low grade heat is heat, which isavailable at a low temperature, e.g. from waste heat from marine diesel engines...

  19. Current utilization of research reactor on radioisotopes production in China

    International Nuclear Information System (INIS)

    Liu Yishu

    2000-01-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, γ-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, 90 Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  20. Effect of anesthesia on glucose production and utilization in rats

    International Nuclear Information System (INIS)

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-01-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using [3- 3 H] glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-[1- 3 H] deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain

  1. Effect of anesthesia on glucose production and utilization in rats

    Energy Technology Data Exchange (ETDEWEB)

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-03-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using (3-/sup 3/H) glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-(1-/sup 3/H) deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain.

  2. UTILIZATION OF CINEMATOGRAPHIC ELEMENTS FOR PRODUCTION OF EDUCATIONAL FILMS

    Directory of Open Access Journals (Sweden)

    Ozcan Demir

    2017-01-01

    Full Text Available Educational films are productions aiming to inform target audience about designated issues. Educational films are distributed via television, cinema, computers (CD, DVD and Internet environment with technological developments. Films are produced by means of digital technologies. Despite the means for film presentation and distribution go through a change, the cinematography concept systemizing artistic and technical principles of film production has been continuing to exist as a valid assessment criterion for all films. Cinematographic agreements, which encompass precise organization of images and sounds for films, ensure conveying the message of productions. In this study, conventions that could be affective on preparation of educational films at the utilization environments of cinematographic principles and on sustaining interest on the productions have been scrutinized, and the usage purposes of these conventions in educational films have been discussed.

  3. Utilization of By-products of Acacia processing for Biogas Production

    OpenAIRE

    Lehkonen, Katja

    2016-01-01

    Acacia is a widely used raw material in South America, South Africa and Australia. Acacia is processed for different purposes e.g.in manufacturing barbeque char and tannin extracts which are further refined as biopolymers. By-products generated in processing are poorly utilized. Processing residues are mostly landfilled instead of considering them as a value added raw material. Thus, utilization of these by-products is an important new research subject due to increasing use of acacia tree wor...

  4. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  5. Strategies to reduce blood product utilization in obstetric practice.

    Science.gov (United States)

    Neb, Holger; Zacharowski, Kai; Meybohm, Patrick

    2017-06-01

    Patient blood management (PBM) aims to improve patient outcome and safety by reducing the number of unnecessary RBC transfusions and vitalizing patient-specific anemia reserves. Although PBM is increasingly recognized as best clinical practice in elective surgery, implementation of PBM is restrained in the setting of obstetrics. This review summarizes recent findings to reduce blood product utilization in obstetric practice. PBM-related evidence-based benefits should be urgently adopted in the field of obstetric medicine. Intravenous iron can be considered a safe, effective strategy to replenish iron stores and to correct both pregnancy-related and hemorrhage-related iron deficiency anemia. In addition to surgical techniques and the use of uterotonics, recent findings support early administration of tranexamic acid, fibrinogen and a coagulation factor concentrate-based, viscoelastically guided practice in case of peripartum hemorrhage to manage coagulopathy. In patients with cesarean section, autologous red cell blood salvage may reduce blood product utilization, although its use in this setting is controversial. Implementation of PBM in obstetric practice offers large potential to reduce blood loss and transfusion requirements of allogeneic blood products, even though large clinical trials are lacking in this specific field. Intravenous iron supplementation may be suggested to increase peripartum hemoglobin levels. Additionally, tranexamic acid and point-of-care-guided supplementation of coagulation factors are potent methods to reduce unnecessary blood loss and blood transfusions in obstetrics.

  6. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.

    Science.gov (United States)

    Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan

    2017-07-01

    Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.

  7. The utilization of renewable resources in German industrial production.

    Science.gov (United States)

    Busch, Rainer; Hirth, Thomas; Liese, Andreas; Nordhoff, Stefan; Puls, Jürgen; Pulz, Otto; Sell, Dieter; Syldatk, Christoph; Ulber, Roland

    2006-01-01

    Renewable resources will be an increasingly important issue for the chemical industry in the future. In the context of white biotechnology, they represent the intersection point of agriculture and the chemical industry. The scarcity and related increase in the price of fossil resources make renewable resources an interesting alternative. If one considers the production of bulk chemicals, it is evident that for this area besides the C sources, sugar and starch, new sources of raw materials must be opened up. One possible solution is to utilize lignocellulose both for materials and energy. This article discusses this interesting prospective for the future, particularly from the point of view of the German industry.

  8. UTILIZATION OF IMPROPER APPLES FOR HUMAN CONSUMPTION FOR BIOETANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Guilherme Martello

    2010-08-01

    Full Text Available In spite of a national preference, a big percentage of apple is discarded daily by many factors, such as rot and some aspects not acceptable for market. As this fruit presents a significant concentration of sugar, it can be utilized in the production of fermented products, like vinegar and especially ethanol. In Brazil, much attention has been given to the production of bioethanol as renewable energy, not only relieving dependence on oil as working to mitigate the effects of global warming, by the way, this project is based on an initial assessment of bioethanol production from improper apples for human consumption that are discarded in the market of Xanxerê – SC. The percentages of bioetanol produced by the apples discarded presented equivalent values to them found inside the literature, between 4.2 and 9.2%. Based on these results, the improper apples for consumption are great raw materials for the production of biofuel – bioethanol, since evaluated his level of rottenness previously on the process.

  9. Separation and utilization of fission products considering economic aspects

    International Nuclear Information System (INIS)

    Beer, M.; Gorski, B.; Hennrich, M.; Pfrepper, G.; Richter, M.

    1982-01-01

    The quantity of usable fission products which will be obtained by nuclear fission till the year 2000 is estimated on the basis of prognostics for the development of nuclear energy in the world considering especially the development in the U.S.S.R. and the CMEA. The possibilities of utilization of cesium as gamma-ray source are discussed, and the present fields of application of palladium and the development of its price on the world market are shown. The fields of application of technetium, which wasn't available as artificial element in a greater quantity till now, have to be developed. The economic estimations base on data of a project for the separation of fission products in connection with a reprocessing plant, which was developed in the U.S.A. in 1978. The data show, that it is possible to produce the platinum metals and cesium with profit, the same can be expected for technetium. (author)

  10. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  11. Nisin Production Utilizing Skimmed Milk Aiming to Reduce Process Cost

    Science.gov (United States)

    Jozala, Angela Faustino; de Andrade, Maura Sayuri; de Arauz, Luciana Juncioni; Pessoa, Adalberto; Penna, Thereza Christina Vessoni

    Nisin is a natural additive for conservation of food, pharmaceutical, and dental products and can be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Gram-negative bacteria. This study was performed to optimize large-scale nisin production in skimmed milk and subproducts aiming at low-costs process and stimulating its utilization. Lactococcus lactis American Type Culture Collection (ATCC) 11454 was developed in a rotary shaker (30°C/36 h/100 rpm) in diluted skimmed milk and nisin activity, growth parameters, and media components were also studied. Nisin activity in growth media was expressed in arbitrary units (AU/mL) and converted to standard nisin concentration (Nisaplin®, 25 mg of pure nisin is 1.0×106 AU/mL). Nisin activity in skimmed milk 2.27 gtotal solids was up to threefold higher than transfers in skimmed milk 4.54 gtotal solids and was up to 85-fold higher than transfers in skimmed milk 1.14 gtotal solids. L. lactis was assayed in a New Brunswick fermentor with 1.5 L of diluted skimmed milk (2.27 gtotal solids) and airflow of 1.5 mL/min (30°C/36/200 rpm), without pH control. In this condition nisin activity was observed after 4 h (45.07 AU/mL) and in the end of 36 h process (3312.07 AU/mL). This work shows the utilization of a low-cost growth medium (diluted skimmed milk) to nisin production with wide applications. Furthermore, milk subproducts (milk whey) can be exploited in nisin production, because in Brazil 50% of milk whey is disposed with no treatment in rivers and because of high organic matter concentrations it is considered an important pollutant. In this particular case an optimized production of an antimicrobial would be lined up with industrial disposal recycling.

  12. Utilization of steam treated agricultural by -product as ruminant feed

    International Nuclear Information System (INIS)

    Naeem, M.; Rajput, N.; Lili, Z.; Su, Z.; Rui, Y.; Tian, W.

    2014-01-01

    Shortage of animal food is a burning issue of the recent time, whereas the agricultural by -products are readily available to be used as ruminants feed. However, the low protein and digestibility are the hindrances in utilization of these low quality crop residues as a feed. In order to utilize rice straw as animal feed this study was conducted to investigate the influence of steam explosion treatment on its composition and in vitro degradability. The samples, I (untreated rice straw), II (rice straw exposed to 15.5 kgf/cm/ sub2/ steam pressure for 90 sec) and III (rice straw exposed to 15.5 kgf/cm/sup 2/steam pressure for 120 sec) were prepared. The results revealed that the crude protein (CP), ether extract (EE) and acid detergent lignin (ADL) contents of rice straw were improved after treatment with steam explosion in time dependent manner (P<0.05). The neutral detergent fiber (NDF), acid detergent fiber (ADF) and organic matter (OM) were higher, while dry matter (DM) and ash contents were lower (P<0.05) in II as compared to group I and III; however, after increasing the time at same pressure these parameters decreased. Furthermore, group III showed higher concentration of propionate, acetate, butyrate, and total VFA (P<0.05). While, group I exhibited higher concentration of iso-butyrate and iso-valerate (P<0.05). The concentration of valeric acid and acetate to propionate ratio were not affected by steam explosion treatment. Moreover, group III showed the higher in vitro DM degradability, OM degradability, DNDF and gas production (P<0.05); while, lower DADF and pH (P<0.05) compared with groups I and II. These findings suggest that the steam explosion treatment at 15.5 kgf/cm/sup 2/ pressure for 120 sec, may be used to enhance the nutritive value and digestibility of rice straw. (author)

  13. Portuguese pellets market: Analysis of the production and utilization constrains

    International Nuclear Information System (INIS)

    Monteiro, Eliseu; Mantha, Vishveshwar; Rouboa, Abel

    2012-01-01

    As opposite in Portugal, the wood pellets market is booming in Europe. In this work, possible reasons for this market behavior are foreseen according to the key indicators of biomass availability, costs and legal framework. Two major constrains are found in the Portuguese pellets market: the first one is the lack of an internal consumption, being the market based on exportations. The second one is the shortage of raw material mainly due to the competition with the biomass power plants. Therefore, the combination of the biomass power plants with pellet production plants seems to be the best option for the pellets production in the actual Portuguese scenario. The main constrains for pellets market has been to convince small-scale customers that pellets are a good alternative fuel, mainly due to the investment needed and the strong competition with natural gas. Besides some benefits in the acquisition of new equipment for renewable energy, they are insufficient to cover the huge discrepancy of the investment in pellets heating. However, pellets are already economic interesting for large utilizations. In order cover a large amount of households, additional public support is needed to cover the supplementary costs of the pellets heating systems. - Highlights: ► There is a lack of internal consumption being the pellets market based on exportation. ► The shortage of raw material is mainly due to the biomass power plants. ► Combining pellet plants with biomass power plants seems to be a wise solution. ► The tax benefits of renewable energy equipments are not enough to cover the higher investment. ► Pellets are already economic interesting for large utilizations in the Portuguese scenario.

  14. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    of a mobile juice harvester is not economically viable due to low sugar recovery. The addition of front-end stalk processing/pressing equipment into existing ethanol facilities was found to be economically viable when combined with the plants' use of residuals as a natural gas fuel replacement. Because of high loss of fermentable carbohydrates during ensilage, storage of sweet sorghum in bunkers was not found to be economically viable. The fourth section looks at double cropping winter triticale with late-planted summer corn and compares these scenarios to traditional single cropped corn. Double cropping systems show particular promise for co-production of grain and biomass feedstocks and potentially can allow for greater utilization of grain crop residues. However, additional costs and risks associated with producing two crops instead of one could make biomass-double crops less attractive for producers despite productivity advantages. Detailed evaluation and comparisons show double cropped triticale-corn to be at a significant economic disadvantage relative to single crop corn. The cost benefits associated with using less equipment combined with availability of risk mitigating crop insurance and government subsidies will likely limit farmer interest and clearly indicate that traditional single-crop corn will provide greater financial returns to management. To evaluate the various sweet sorghum, single crop corn and double cropped triticale-corn production scenarios, a detailed but generic model was developed. The primary goal of this generic approach was to develop a modeling foundation that can be rapidly adapted, by an experienced user, to describe new and existing biomass and crop production scenarios that may be of interest to researchers. The foundation model allows input of management practices, crop production characteristics and utilizes standardized machinery performance and cost information, including farm-owned machinery and implements, and machinery and

  15. Lectin histochemical evaluation of glycoconjugates in dog efferent ductules.

    Science.gov (United States)

    Wakui, S; Furusato, M; Takahashi, H; Motoya, M; Ushigome, S

    1996-06-01

    Glycoconjugates in the epithelial cells of the efferent ductules in the dog were investigated using lectin histochemistry. These ductules connect the extratesticular rete with the epididymis. The epithelium of the ductules consisted both of ciliated and nonciliated cells. Whereas the apical zone of ciliated cells showed selective binding with WGA, SWGA, SNA, MAA and neuraminidase-PNA, that of nonciliated cells bound to all lectins used in the present study: WGA, SWGA, SNA, MAA, PNA, neuraminidase-PNA, RCA1, DBA and SBA. The nonciliated cells were divided into 3 types: type A cells which lacked both specific granules and vacuoles, type B cells which were characterised by a few specific apical vacuoles and many large specific granules, and type C cells which were characterised by some specific apical vacuoles and small basal granules. The specific granules and vacuoles of type B cells showed binding with WGA, SWGA and MAA. The specific granules of type C cells showed binding with WGA, SWGA, SNA, MAA, PNA and neuraminidase-PNA, while their specific vacuoles showed binding with WGA, SWGA, SNA and MAA. The Golgi zone both of ciliated and type A cells did not bind with any lectins used in this study, while type B and C cells showed similar lectin binding patterns between the Golgi zone and their specific granules. Specific lectin binding patterns revealed a different carbohydrate composition of each type of cell, indicating a biological difference between the ciliated cells and the 3 types of nonciliated cells in dog efferent ductules.

  16. Preclinical studies on new proteins as carrier for glycoconjugate vaccines.

    Science.gov (United States)

    Tontini, M; Romano, M R; Proietti, D; Balducci, E; Micoli, F; Balocchi, C; Santini, L; Masignani, V; Berti, F; Costantino, P

    2016-07-29

    Glycoconjugate vaccines are made of carbohydrate antigens covalently bound to a carrier protein to enhance their immunogenicity. Among the different carrier proteins tested in preclinical and clinical studies, five have been used so far for licensed vaccines: Diphtheria and Tetanus toxoids, the non-toxic mutant of diphtheria toxin CRM197, the outer membrane protein complex of Neisseria meningitidis serogroup B and the Protein D derived from non-typeable Haemophilus influenzae. Availability of novel carriers might help to overcome immune interference in multi-valent vaccines containing several polysaccharide-conjugate antigens, and also to develop vaccines which target both protein as well saccharide epitopes of the same pathogen. Accordingly we have conducted a study to identify new potential carrier proteins. Twenty-eight proteins, derived from different bacteria, were conjugated to the model polysaccharide Laminarin and tested in mice for their ability in inducing antibodies against the carbohydrate antigen and eight of them were subsequently tested as carrier for serogroup meningococcal C oligosaccharides. Four out of these eight were able to elicit in mice satisfactory anti meningococcal serogroup C titers. Based on immunological evaluation, the Streptococcus pneumoniae protein spr96/2021 was successfully evaluated as carrier for serogroups A, C, W, Y and X meningococcal capsular saccharides. Copyright © 2016. Published by Elsevier Ltd.

  17. Microbial utilization of crude glycerol for the production of value-added products.

    Science.gov (United States)

    Dobson, Rosemary; Gray, Vincent; Rumbold, Karl

    2012-02-01

    Energy fuels for transportation and electricity generation are mainly derived from finite and declining reserves of fossil hydrocarbons. Fossil hydrocarbons are also used to produce a wide range of organic carbon-based chemical products. The current global dependency on fossil hydrocarbons will not be environmentally or economically sustainable in the long term. Given the future pessimistic prospects regarding the complete dependency on fossil fuels, political and economic incentives to develop carbon neutral and sustainable alternatives to fossil fuels have been increasing throughout the world. For example, interest in biodiesel has undergone a revival in recent times. However, the disposal of crude glycerol contaminated with methanol, salts, and free fatty acids as a by-product of biodiesel production presents an environmental and economic challenge. Although pure glycerol can be utilized in the cosmetics, tobacco, pharmaceutical, and food industries (among others), the industrial purification of crude glycerol is not economically viable. However, crude glycerol could be used as an organic carbon substrate for the production of high-value chemicals such as 1,3-propanediol, organic acids, or polyols. Microorganisms have been employed to produce such high-value chemicals and the objective of this article is to provide an overview of studies on the utilization of crude glycerol by microorganisms for the production of economically valuable products. Glycerol as a by-product of biodiesel production could be used a feedstock for the manufacture of many products that are currently produced by the petroleum-based chemical industry.

  18. Utilizing Satellite-derived Precipitation Products in Hydrometeorological Applications

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Teng, W. L.; Kempler, S. J.; Huffman, G. J.

    2012-12-01

    Each year droughts and floods happen around the world and can cause severe property damages and human casualties. Accurate measurement and forecast are important for preparedness and mitigation efforts. Through multi-satellite blended techniques, significant progress has been made over the past decade in satellite-based precipitation product development, such as, products' spatial and temporal resolutions as well as timely availability. These new products are widely used in various research and applications. In particular, the TRMM Multi-satellite Precipitation Analysis (TMPA) products archived and distributed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) provide 3-hourly, daily and monthly near-global (50° N - 50° S) precipitation datasets for research and applications. Two versions of TMPA products are available, research (3B42, 3B43, rain gauge adjusted) and near-real-time (3B42RT). At GES DISC, we have developed precipitation data services to support hydrometeorological applications in order to maximize the TRMM mission's societal benefits. In this presentation, we will present examples of utilizing TMPA precipitation products in hydrometeorological applications including: 1) monitoring global floods and droughts; 2) providing data services to support the USDA Crop Explorer; 3) support hurricane monitoring activities and research; and 4) retrospective analog year analyses to improve USDA's world agricultural supply and demand estimates. We will also present precipitation data services that can be used to support hydrometeorological applications including: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC; 3) Simple Subset Wizard (http://disc.sci.gsfc.nasa.gov/SSW/ ) for data subsetting and format conversion; 4) Data

  19. An Update on Ethanol Production and Utilization in Thailand, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bloyd, Cary N.; Foster, Nikolas A.F.

    2014-09-01

    In spite of the recent political turmoil, Thailand has continued to develop its ethanol based alternative fuel supply and demand infrastructure. Its support of production and sales of ethanol contributed to more than doubling the production over the past five years alone. In April 2014, average consumption stood at 3.18 million liter per day- more than a third on its way to its domestic consumption goal of 9 million liters per day by 2021. Strong government incentives and the phasing out of non-blended gasoline contributed substantially. Concurrently, exports dropped significantly to their lowest level since 2011, increasing the pressure on Thai policy makers to best balance energy independency goals with other priorities, such as Thailand’s trade balance and environmental aspirations. Utilization of second generation biofuels might have the potential to further expand Thailand’s growing ethanol market. Thailand has also dramatically increased its higher ethanol blend vehicle fleet, with all new vehicles sold in the Thai market now being E20 capable and the number of E85 vehicles increasing three fold in the last year from 100,000 in 2013 to 300,000 in 2014.

  20. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization?

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Reis, Cristiano E.; Hu, Bo, E-mail: bhu@umn.edu [Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN (United States)

    2017-04-10

    Ethanol production from sugarcane in Brazil is a well-established industry, with relatively simple operations and high yield. The ethanol primarily serves as a renewable fuel blending with gasoline and diesel to increase the energy security in Brazil. Several environmental concerns are emerged around the by-products from this industry. Vinasse, the liquid fraction generated from the rectification and distillation operations of ethanol, is a sulfur-rich, low pH, dark-colored, and odorous effluent, produced at volumes as high as 20-fold of ethanol. Traditional wastewater treatments, such as bioprocessing, advanced oxidative processes, anaerobic digestion (AD), and chemical-based processes, have been applied to vinasse management. Despite most of its utilization being in fertirrigation practices, vinasse may represent a key factor in enhancing profitability and environmental outcomes of a sugarcane-to-ethanol plant. The application of some upgrade solutions to sugarcane-derived vinasse may represent additional sources of energy, production of animal feed components, and reduction in water consumption within a plant. The use of mature technologies, yet not widespread in the sugarcane-to-ethanol industry, could help attenuate environmental concerns. Oxidation and chemical processes, AD, and microbial fermentation have been presented as alternative impactful alternatives to (i) reduce its organic and mineral load, converting it to a feedstock with fewer environmental applications when applied as fertilizer and (ii) to convert organic matter and nutrients to a nutritious biomass, simultaneously increasing water reclamation potential by plants. This mini-review article provides a critical and comprehensive summary of the alternatives developed or under development to vinasse management.

  1. Sweetness and light: design and applications of photo-responsive glycoconjugates.

    Science.gov (United States)

    Hu, Yingxue; Tabor, Rico F; Wilkinson, Brendan L

    2015-02-28

    Carbohydrate-protein binding is a supramolecular recognition process that underpins myriad biological events. However, the precise conformational and configurational requirements for biomolecular recognition are often poorly understood, since such phenomena often occur in a strongly spatiotemporal manner. Photoswitchable glycoconjugates have emerged as promising investigational tools for probing carbohydrate-protein recognition and for controlling bacterial adhesion. Reversible photoisomerisation, in particular that of azobenzene glycoconjugates, has also been exploited as a promising strategy for controlling supramolecular self-assembly and macroscopic properties, thereby facilitating the development of light responsive carbohydrate-based materials. The following review will highlight the recent advances in the design and applications of photoswitchable glycoconjugates, paying particular attention to the application of light as a stimulus for modulating protein and cellular adhesion, amphiphilicity and supramolecular assembly of carbohydrate-based materials.

  2. Lectins Labelled with Digoxin as a Novel Tool to Study Glycoconjugates

    Directory of Open Access Journals (Sweden)

    Jerka Dumić

    2002-01-01

    Full Text Available In recent years it has become clear that carbohydrate portions of glycoconjugates are performing numerous vital physiological functions in higher organisms. However, since glycobiology is a relatively new science, and carbohydrate structures are highly complex, the continuous development of novel analytical techniques is necessary to support the process of understanding the intricate nature of glycoconjugate structure and function. The introduction of digoxin as a novel tag for labelling of lectins that are being used to analyse glycoconjugates in immunoassay-like techniques is described. Lectins labelled with digoxin have significant advantages over biotin- or digoxigenin-labelled lectins and will hopefully prove to be a useful addition to the repertoire of glycobiological tools.

  3. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  4. Molecular design and synthesis of novel salicyl glycoconjugates as elicitors against plant diseases.

    Directory of Open Access Journals (Sweden)

    Zining Cui

    Full Text Available A new series of salicyl glycoconjugates containing hydrazide and hydrazone moieties were designed and synthesized. The bioassay indicated that the novel compounds had no in vitro fungicidal activity but showed significant in vivo antifungal activity against the tested fungal pathogens. Some compounds even had superior activity than the commercial fungicides in greenhouse trial. The results of RT-PCR analysis showed that the designed salicyl glycoconjugates could induce the expression of LOX1 and Cs-AOS2, which are the specific marker genes of jasmonate signaling pathway, to trigger the plant defense resistance.

  5. The production and utilization of by-product agricultural fertilizer from flue gases

    International Nuclear Information System (INIS)

    Frank, N.W.; Hirano, S.

    1992-01-01

    The electron-beam process is one of the most effective methods for removing SO 2 and NO X from industrial flue gases and producing a usable by-product. This paper surveys the potential for production and consumption of alternative, usable, commercial by-products, in conjunction with major reductions in the inventory of emissions of SO 2 and NO X . An examination is made of the important limitations in the annual consumptive use or price of and/or net revenues from commonplace, electric utility, by-product types such as gypsum, sulfuric acid, etc. A principal focus of the work is an analysis and quantification of the major large-scale, growing and profitable markets for utility solid wastes that can be generated in agricultural fertilizer forms, including ammonium sulfate and other compounds that are available through stack-gas cleaning operations at large, coal-fired boilers. Cost study data is arranged to define the impact of commercial by-product yield and revenue on the economics of full scale SO 2 and NO X emission reduction activity. (author)

  6. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  7. Development of novel O-polysaccharide based glycoconjugates for immunization against glanders

    Directory of Open Access Journals (Sweden)

    Mary N Burtnick

    2012-11-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, causes severe disease in humans and animals and is a potential agent of biological warfare and terrorism. Diagnosis and treatment of glanders can be challenging, and in the absence of chemotherapeutic intervention, acute human disease is invariably fatal. At present, there are no human or veterinary vaccines available for immunization against disease. One of the goals of our research, therefore, is to identify and characterize protective antigens expressed by B. mallei and use them to develop efficacious glanders vaccine candidates. Previous studies have demonstrated that the O-polysaccharide (OPS expressed by B. mallei is both a virulence factor and a protective antigen. Recently, we demonstrated that Burkholderia thailandensis, a closely related but non-pathogenic species, can be genetically manipulated to express OPS antigens that are recognized by B. mallei OPS-specific monoclonal antibodies. As a result, these antigens have become important components of the various OPS-based subunit vaccines that we are currently developing in our laboratory. In this study, we describe a method for isolating B. mallei-like OPS antigens from B. thailandensis oacA mutants. Utilizing these purified OPS antigens, we also describe a simple procedure for coupling the polysaccharides to protein carriers such as cationized bovine serum albumin, diphtheria toxin mutant CRM197 and cholera toxin B subunit. Additionally, we demonstrate that high titer IgG responses against purified B. mallei LPS can be generated by immunizing mice with the resulting constructs. Collectively, these approaches provide a rational starting point for the development of novel OPS-based glycoconjugates for immunization against glanders.

  8. Utilization of agro-based industrial by-products for biogas production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ngoc, U.N.; Schnitzer, H. [Graz Univ. of Technology, (Austria). Inst. for Resource Efficient and Sustainable Systems; Berghold, H. [Joanneum Research Inst. for Sustainable Techniques and Systems (Austria)

    2007-07-01

    Due to the rapid rates of urbanization occurring in many countries in the world, the importance of an efficient and effective solid waste management system and the utilization/reuse of waste are more critical than ever before, especially for agricultural residues and agro-based industrial by-products. Over the past decade, the amount of solid waste generated in Vietnam has been increasing steadily. Numbers are predicted to continue to increase as well. There is significant potential to use the large amount of wastes for biogas conversion processes and for further production of commercial energy. This paper presented starts with estimation and analysis of the amounts of organic waste, agricultural residues, and agro-based industrial by-products generated from food industrial processes using general data sources for Vietnam. A laboratory study examined the use of agro-based industrial by-products and agricultural residues from cassava, sweet potato, pineapple residues, organic wastes, manures as input materials for biogas production in the anaerobic process. This paper provided an overview of Vietnam as a country, as well as a general overview of the amount of organic waste generated in the country. It also discussed the fermentation tests that were conducted to find out the potential of biogas production from some residues. It was concluded that a significant portion of waste could be reused as an environmentally sound source of energy. The utilization of agricultural residues and industrial byproducts as input materials for biogas production will not only reduce the quantity of organic waste thrown into landfills, but also reduce the negative impact on the environment. 10 refs., 7 tabs., 7 figs.

  9. Possibilities of utilization of co-products from corn grain ethanol and starch production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina V.

    2013-01-01

    Full Text Available In recent decades, the expansion of alternative fuels production from crops traditionally used for food and animal feed has led to significant changes in the field of energy production, agriculture and food industry. Starch and sugar feedstocks for ethanol production (corn, wheat, sugar beet, sugar cane, etc. require increasing arable land to meet market demands for the biofuel production. Although intensive studies are being carried out in order to identify improved and more cost-effective methods for the utilization of lignocellulosic and communal waste in the production of alcohol fuel, the possibility of using dry distillers’ grains with solubles (DDGS, by-product of bioethanol production from corn and wheat as well as alcoholic beverages industry, is now in focus. Application of DDGS in livestock and poultry diets in concentrations greater than traditional could positively affect the economic viability of this biofuel production, but also stabilize the current imbalance in the food and animal feed market. However, DDGS feedstuff should not be treated as a perfect substitute for corn because the complexity of ration formulation determined at the farm or feedlot level is driven by energy and protein and other nutrient requirements, as well as their relative costs in the ration. Nevertheless, processing of corn by wet milling provides a multitude of co-products suitable for feedstuffs, food industry, pharmaceuticals, chemistry etc. Some of the most important wet milling co-products that have their use in feedstuffs are corn gluten feed and corn gluten meal. The use of DDGS as a substitute for traditional feed could prevent indirect land-use changes associated with biofuel production, and therefore preserve the environmental destruction by saving the forests and permanent pastures. The use of distiller’s grains can be beneficial to biofuel growth as this is an additional, the second largest, source of income accounting of 10-20% total

  10. Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates.

    Science.gov (United States)

    Cervantes-Sandoval, Isaac; Jesús Serrano-Luna, José; Pacheco-Yépez, Judith; Silva-Olivares, Angélica; Tsutsumi, Víctor; Shibayama, Mineko

    2010-02-01

    Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis, a rapidly fatal parasitic disease of humans. The adherence of Naegleria trophozoites to the host cell is one of the most important steps in the establishment and invasiveness of this infectious disease. Currently, little is known about the surface molecules that may participate in the interaction of N. fowleri with their target cells. In the present study, we investigated the composition of glycoconjugates present on the surface of trophozoites of the pathogenic N. fowleri and the nonpathogenic Naegleria gruberi. With the use of biotinylated lectins in western blot and flow cytometric analysis, we showed that N. fowleri trophozoites present high levels of surface glycoconjugates that contain alpha-D-mannose, alpha-D-glucose, and terminal alpha-L-fucose residues. A significant difference in the expression of these glycoconjugates was observed between N. fowleri and the nonpathogenic N. gruberi. Furthermore, we suggest that glycoconjugates that contain D-mannose and L-fucose residues participate in the adhesion of N. fowleri and subsequent damage to MDCK cells.

  11. Modern technologies of waste utilization from industrial tire production

    Science.gov (United States)

    Azimov, Yusuf; Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    The innovative technology of waste tire production recovery from JSC "Nizhnekamskshina", which determines the possibility of obtaining a new type of composite material in the form fiber filled rubber compound (FFRC) as the raw material, production of rubber products with high technical and operational characteristics.

  12. How Thai businesses utilize English in their product names

    Directory of Open Access Journals (Sweden)

    Navaporn Sanprasert Snodin

    2017-05-01

    Full Text Available This paper investigated the names given to Thai local community products and provides a description of the use of the English language in naming products in Thailand. The business names of Thai local products under the program One Tambon One Product (OTOP were selected for analysis, focusing on language characteristics and semantic appropriateness by using onomastics to some extent. The data consisted of 1,304 names from five product categories—food, drinks, clothing and accessories, handicrafts and ornaments, and inedible herbs, as provided in the database of tambons and OTOP products. Thai product names in English, some of which only Thais can understand, show language creativity, reflecting Thai identity within English usage in the local setting. One problematic area concerns the lack of semantic appropriateness of some English names, as the names are sometimes not relevant to the product type. Thai entrepreneurs need support in naming their products to achieve international intelligibility if their products are to be marketed to international customers.

  13. Comparative analysis of production practices and utilization of ...

    African Journals Online (AJOL)

    Study was carried out in 2007 in four districts of Lake Victoria Basin: Busia, Gucha, Tarime and Jinja. Rapid participatory appraisal approaches were used to assess the socio-economic, cultural, gender and environmental aspects related to cultivation, storage and utilization of pumpkins by the native communities living in ...

  14. The Utilization of the Cobb-Douglas Production Function for Analyzing Indonesia's and Malaysia's Economic Growth

    Directory of Open Access Journals (Sweden)

    Elis Ratna Wulan

    2014-06-01

    Full Text Available This paper presents the utilization Cobb-Douglas production function in its classical form for analyzing Indonesia's and Malaysia's economic growth in relation to the intensity of using capital and labour as determinants of the production.

  15. Pigment Production from Immobilized Monascus sp. Utilizing Polymeric Resin Adsorption

    OpenAIRE

    Evans, Patrick J.; Wang, Henry Y.

    1984-01-01

    Pigment production by the fungus Monascus sp. was studied to determine why Monascus sp. provides more pigment in solid culture than in submerged culture. Adding a sterilized nonionic polymeric adsorbent resin directly to the growing submerged culture did not enhance the pigment production, thus indicating that pigment extraction is probably not a factor. Monascus cells immobilized in hydrogel were studied and exhibited decreased pigment production as a result of immobilization. This result is...

  16. Information logistics usage necessity within the context of utility providing of tourist product

    OpenAIRE

    Самойленко, Катерина Володимирівна

    2014-01-01

    The features of formation and utility providing of the tourist product are discussed in the article. The main aim of investigation is the objective determination of consumer characteristics (assembly of characteristics) that should be inherent in the tourism product on the perception and evaluation of consumers. It is determined that the creation and provision of utility providing of tourist product is a complex and multifactorial. Product usefulness problem is considered in the context of co...

  17. CONSIDERATIONS IN UTILIZING BY-PRODUCT CARBOHYDRATES IN RUMINANT NUTRITION

    Science.gov (United States)

    By-product feeds provide a variety of carbohydrates that can vary greatly in their content, digestibility, and physical effects. Variation in the composition and quality of by-product feeds needs to be evaluated to assess whether the variation poses an acceptable risk for inclusion of small or larg...

  18. Utilization of papaya waste and oil production by Chlorella protothecoides

    Science.gov (United States)

    Algae derived oils have outstanding potential for use in biodiesel production. Chlorella protothecoides has been shown to accumulate lipid up to 60% of its cellular dry weight with glucose supplementation under heterotrophic growth conditions. To reduce production costs, alternative carbon feedstock...

  19. Utilization and cost of log production from animal loging operations

    Science.gov (United States)

    Suraj P. Shrestha; Bobby L. Lanford; Robert B. Rummer; Mark Dubois

    2006-01-01

    Forest harvesting with animals is a labor-intensive operation. It is expensive to use machines on smaller woodlots, which require frequent moves if mechanically logged. So, small logging systems using animals may be more cost effective. In this study, work sampling was used for five animal logging operations in Alabama to measure productive and non-productive time...

  20. Carbon dioxide utilization and hydrogen production by photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Katsuhiro [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan); Takasaki, Koichi [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan)]|[RITE, Project Center for CO2 Fixation and Utilization, Minato, Tokyo (Japan); Miyake, Jun; Asada, Yasuo [National Institute of Bioscience and Human-Technology, AIST/MITI, Tsukuba, Ibaraki (Japan)

    1999-07-01

    The solar energy is the largest energy source in the world. Using the photosynthesis, we will be able utilise the huge amount of carbon dioxide. Microalgae, cyanobacteria, photosynthetic bacteria belong to photosynthetic microorganisms, which assimilate carbon dioxide during the photosynthesis. One of the cyanobacteria, Spirulina platensis accumulates carbohydrate photoautotrophically up to 50% of the dry cell weight in the nitrogen-deficient condition. Under an anaerobic condition in the dark, it is degraded into organic compounds such as organic acids, alcohol and sugar. As the hydrogen gas is also evolved in this process, the participation of hydrogenase (Hydrogen producing enzyme) has been suggested in this metabolism. We have investigated several conditions of evolution of hydrogen and production of organic compounds. The bacterial concentration initial pH and temperature had significant effects on hydrogen evolution as well as production of organic compounds. When the bacterial cell concentration was high, the pH of fermentation products was reduced to acidic and the evolution of hydrogen tended to be inhibited. The profiles of fermentation products varied according to the culture condition. The increase of organic acids were remarkable in the inhibitory condition for hydrogen production, such as acidic pH and high temperature. Furthermore these fermentation products were converted into hydrogen gas by using photosynthetic bacterium Rhodobacter sphaeroides RV with light energy. The composition of evolved gas was mainly hydrogen and carbon dioxide, and their contents were 78% and 10%, respectively. The total amount of evolved hydrogen was nearly equal to the estimated, value which was calculated by the degradation of each organic acid. Combining this system with the photosynthesis of cyanobacteria, we could accomplish the production of hydrogen by solar energy, carbon dioxide and water. And we demonstrated that the evolved gas could be directly supplied to the

  1. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Chi; Xiong, Wei; Paddock, Troy; Carrieri, Damian; Chang, Ing-Feng; Chiu, Hui-Fen; Ungerer, Justin; Hank Juo, Suh-Hang; Maness, Pin-Ching; Yu, Jianping

    2015-06-12

    Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introducing xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogen-synthesis mutant enhanced production of keto acids. Moreover, isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation.

  2. Utilization of by-products in ruminant diets in Cyprus

    International Nuclear Information System (INIS)

    Economides, S.; Hadjipanayiotou, M.

    1987-01-01

    Five experiments were carried out with the objective of studying the nutritive value of crop residues and agro-industrial by-products, either alone or in combination with non-protein nitrogen, and the use of these by-products in ruminant diets. The intake and nutritive value of poor quality roughages and other by-products (cereal straw, peanut hulls and waste paper) were improved considerably by supplements that provide nitrogen (soybean meal or urea) and energy (barley grain). Partial replacement of soybean meal in diets of fattening lambs by urea was possible and dry mature sheep could be maintained on cereal straw diets supplemented with small quantities of barley grain, urea, minerals and vitamins. Silage was made from citrus peels or grape marc and poultry litter. It replaced successfully part of the concentrate mixture in the diets of lactating cows and growing heifers. (author)

  3. Seaweed utilization for integrated bioenergy and fish feed production

    DEFF Research Database (Denmark)

    Seghetta, Michele

    2016-01-01

    Linear production systems are not environmentally sustainable since they produce waste at a higher rate than nature is able to absorb. Creation of closed-loop production processes aiming at generating zero-waste is the foundation for a circular economy. Offshore seaweed cultivation can play a key...... role to transform linear production systems into biobased circular flows. Seaweed can absorb manmade emissions to water, while producing valuable compounds that can re-enter the economic system. In the thesis, Life Cycle Assessment (LCA) methodology is used to analyze the environmental performance...... of different seaweed exploitation strategies. The main objectives are to identify and quantify the engineered ecosystems services delivered by circular management strategies and propose solutions to improve their environmental performance. Improvement of Life Cycle Impact Assessment (LCIA) methodologies...

  4. Advances in utilization of renewable substrates for biosurfactant production

    Science.gov (United States)

    2011-01-01

    Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production. PMID:21906330

  5. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2007-03-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. Phase 1 was completed successfully, but the project did not continue on to Phase 2 due to withdrawal of CEMEX from the project. Attempts at replacing CEMEX were not successful. Problematic to the continuation of the project was its location in the Ohio Valley which is oversupplied and has low prices for fly ash and the change in CEMEX priorities due to merger and acquisitions. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007.

  6. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Enterobacter aerogenes ADH-43 is a hydrogen gas (H2) producing mutant bacterium and a facultative anaerobic microbe. This double mutant was obtained by classical mutagenetically treated in order to enhance H2 production. In addition, this mutant has ability to degrade molasses from sugar factory as well as other ...

  7. Wood products utilization : a call for reflection and innovation

    Science.gov (United States)

    John A. Youngquist; Thomas E. Hamilton

    1999-01-01

    It is hard to imagine a world without forests. Forests provide a wide range of benefits at the local, national, and global levels. Some of these benefits depend on leaving the forest alone or subjecting it to only minimal interference. Other benefits can only be realized by harvesting the forest for wood and other products. The shrinking land base and growing human...

  8. Prospective of biodiesel production utilizing microalgae as the cell ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... unwanted microalgae and fungi, bacteria and protozoa that feed on algae. Recently, some work has ... discussion about the potential of microalgae for the production of valuable lipid compounds that can be further used for ... methane, sulfur dioxide and volatile organic compounds. (Gavrilescu and Chisti ...

  9. utilization of some non-edible oil for biodiesel production

    African Journals Online (AJOL)

    Ogunjo Samuel

    Abstract: In this work, the production of biodiesel from four sources of non-edible oils, namely jatropha, animal fat, waste vegetable oil and castor oil was carried out. It was done using an acid esterification process followed by alkali transesterification in the laboratory. Subsequently the physicochemical properties for four ...

  10. Utilization of some non-edible oil for biodiesel production ...

    African Journals Online (AJOL)

    In this work, the production of biodiesel from four sources of non-edible oils, namely jatropha, animal fat, waste vegetable oil and castor oil was carried out. It was done using an acid esterification process followed by alkali transesterification in the laboratory. Subsequently the physicochemical properties for four blends B100 ...

  11. The production potential of an Acacia karroo community utilized by ...

    African Journals Online (AJOL)

    An investigation was undertaken to determine the relationship between bush density and animal production/ha as well as between bush density and profitability/ha. Boer goat farming was found to be more profitable in the short term than beef ranching. The best long term strategy is a combination of goats and cattle in an ...

  12. Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads

    Directory of Open Access Journals (Sweden)

    T Yasui

    2009-06-01

    Full Text Available The distribution and selectivity of complex carbohydrates in the eccrine glands of the digital pads in the North American raccoon (Procyon lotor were studied using light and electron microscopic histochemical methods, particularly lectin histochemistry. In the eccrine glands, the dark cells exhibited neutral and acidic glycoconjugates with different saccharide residues (a-L-fucose, b-D-galactose, b-N-acetyl-D-glucosamine and N-acetyl-neuraminic acid; the clear cells contained numerous glycogen particles and showed a distinct reaction of a-L-fucose. The presence of complex carbohydrates with various terminal sugars was evident in the excretory duct cells. In addition, b-D-galactose and N-acetylneuraminic acid residues were mainly observed in the luminal secretion. The glycoconjugates produced by the eccrine glands of the raccoon digital pads may protect the epidermis against physical damage or microbial contamination. In this way, the normal functioning of the sensory apparatus of the foot pads is ensured.

  13. Slags from steel production: Properties and their utilization

    Directory of Open Access Journals (Sweden)

    J. Vlcek

    2013-07-01

    Full Text Available During steel production a considerable amount of slags is produced. In addition to its usual processing, as recycling in device for steel production and preparation of aggregates, it is also possible to apply less common slag processing ways. Depending on cooling mode of the steel slags these may show some binding properties. Geopolymer type binders can be prepared from the slag using alkali activators or the hydraulic properties of the dicalciumsilicate present in the slag can be induced by water. The paper summarizes present state of material utilisation of the steel slags with focus on emphasize of the possible sources of the slag volume instability. The influence of process of slag cooling on its phase composition is documented. It was also found that slags from real sources show different parameters compared to samples obtained for laboratory examination.

  14. Utilization of geothermal energy for drying fish products

    International Nuclear Information System (INIS)

    Arason, S.; Arnason, H.

    1992-01-01

    This paper is about industrial uses of geothermal energy for drying of fish products. Drying is an ancient method for preservation of foods, the main purpose of which is to increase the preservation time. For drying, an external source of energy is needed to extract water. In this paper an emphasis is placed on drying fish and associated processes, and how geothermal energy can be used to substitute oil or electricity. The Icelandic Fisheries Laboratories have been experimenting with different methods of drying, and several drying stations have been designed for indoor drying of fish products. Today there are more than a dozen companies in this country which are drying fish indoors using for that purpose electricity and/or geothermal energy. Further possibilities are available when fish processing plants are located in geothermal areas

  15. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  16. Production, characterization and utilization of the biomass from various sources

    OpenAIRE

    Gojkovic, Živan

    2014-01-01

    Biomass management is one of the most important issues in modern natural science as it is the basic category which spans through various disciplines of biotechnology. Whether animal, plant or microbial by its origin, biomass presents a vast source of food components, fine chemicals and bioactive molecules, which extraction, characterization and formulation can result in interesting new products destined for human consumption or as new materials in biomedicine. In the scope of t...

  17. World statistics on natural gas reserves, production and utilization

    International Nuclear Information System (INIS)

    Raikaslehto, S.

    2001-01-01

    By reviewing the statistics of BP Amoco on natural gas reserves, production and usage, it is easy to see that Russia and USA, both being large natural gas producers, differ significantly from each other. The natural gas reserves of USA are 6th largest in the world, simultaneously the natural gas consumption and import are largest in the world. About one third of the known natural gas reserves of the world are in Russia. The known natural gas reserves of both USA and Canada have decreases, but they have potential gas reserves left. Known natural gas reserves of the USA have been calculated to be sufficient for 9 years consumption at present usage and those of Canada for 11 years. The reserves of Algeria correspond to the usage of 55 years, and the Russian reserves for are about 83 years. Annual production figures of both Russia and the USA are nearly the same. Russia is the largest exporter (125.5 billion m 3 ) of natural gas and the USA the largest importer (96 billion m 3 ). The natural gas reserves of the largest European producers, the Netherlands and Norway have been estimated to be sufficient for use of about 20 years, but those of Great Britain only for about 10 years. The annual production of Russia has varied in the 1990s between nearly 600 billion m 3 and present 550 billion m 3 , the minimum being in 1997 only about 532 billion m 3 . Ten largest natural gas consumers use 67% of the natural gas consumed annually in the world. USA consumes about 27% of the total natural gas produced in the world, the amount of Russia being 364 billion m 3 (16%). Other large natural gas consumers are Great Britain, Germany, Japan, Ukraine, Canada, Italy, Iran and Uzbekistan. The share of these countries of the total consumption varied in between 2-4%. Only Japan has no natural gas production of its own. The foreign trade between Japan and Indonesia is trade on LNG. On the other hand the natural gas consumption of the world's 10th largest producer Norway is nearly zero, so

  18. Glucose Utilization and Production by the Dog Kidney In Vivo in Metabolic Acidosis and Alkalosis

    Science.gov (United States)

    Costello, J.; Scott, J. M.; Wilson, P.; Bourke, E.

    1973-01-01

    Using D-[1-14C]glucose as a tracer, renal glucose utilization and production was measured in chronic metabolic acidosis and alkalosis in dog kidney in vivo. In six experiments in acidosis, mean total renal glucose production was 4.447±1.655 SE μmol/min and glucose utilization was 4.187±0.576 SE μmol/min. In five alkalotic experiments it was found that mean total glucose production was 12.227±2.026 SE μmol/min and glucose utilization was 18.186±2.054 SE μmol/min. Renal glucose utilization and production are therefore significantly higher in alkalosis than in acidosis in vivo. Since glucose production is maximal under conditions when glutamine extraction is minimal (i.e. alkalosis), it is apparent that in alkalosis glutamine is not a major precursor of glucose. PMID:4685085

  19. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Jackura; John Groppo; Thomas Robl

    2006-12-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The market study for the products of the processing plant (Subtask 1.6), conducted by Cemex, is reported herein. The study incorporated simplifying assumptions and focused only on pozzolan and ultra fine fly ash (UFFA). It found that the market for pozzolan in the Ghent area was oversupplied, with resultant poor pricing structure. Reachable export markets for the Ghent pozzolan market were mostly locally served with the exception of Florida. It was concluded that a beneficiated material for that market may be at a long term disadvantage. The market for the UFFA was more complex as this material would compete with other beneficiated ash and potential metakaolin and silica fume as well. The study concluded that this market represented about 100,000 tons of sales per year and, although lucrative, represented a widely dispersed niche market.

  20. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization

    Directory of Open Access Journals (Sweden)

    Mengpei Liu

    2018-04-01

    Full Text Available The phytonutrient concentrations of broccoli (Brassica oleracea var. italica florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.

  1. Effect of spent turmeric on kidney glycoconjugates in streptozotocin-induced diabetic rats

    OpenAIRE

    Kumar, Gurusiddaiah Suresh; Salimath, Paramahans Veerayya

    2014-01-01

    Background Curcumin known to have number of medicinal use and masked the fiber containing ukonan like active polysaccharide in turmeric and its pharmacological effect will be addressed on diabetic nephropathy particularly the glycoconjugates of extracellular components viz., glycoproteins and glycosaminoglycans - heparan sulfate (HS). Methods Male Wistar rats were maintained on AIN-76 diet containing 10% spent turmeric and were grouped into control and STZ induced diabetes SFC/TFC and SFD/TFD...

  2. Histochemical Analysis of Glycoconjugates in the Skin of a Catfish (Arius Tenuispinis, Day)

    OpenAIRE

    Al-Banaw, Anwar G.; Kenngott, Rebecca; Al-Hassan, J. M.; Mehana, N.; Sinowatz, Fred

    2010-01-01

    A histochemical study using conventional carbohydrate histochemistry (periodic-acid staining including diastase controls, alcian blue staining at pH 1 and 2.5) as well as using a battery of 14 fluorescein isothiocyanate (FITC)-labelled lectins to identify glycoconjugates present in 10 different areas of the skin of a catfish (Arius tenuispinis) was carried out. The lectins used were: mannose-binding lectins (Con A, LCA and PSA), galactose-binding lectins (PNA, RCA), N-acetylgalactosamine-bind...

  3. Reducing power production costs by utilizing petroleum coke. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Galbreath, K.C.

    1998-07-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  4. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  5. Power production and environmental protection: a utility's perspective

    International Nuclear Information System (INIS)

    Wald, Gerhard

    1990-01-01

    The Commonwealth Edison Company in the USA is a large electric utility. Over 50% of the company's power generation in recent years has been from nuclear power plants. The main environmental problem associated with these plants is the disposal of radioactive wastes. Currently spent fuel is being stored in pools at the nuclear stations pending the completion of a high level nuclear waste repository by the US Department of the Environment to which the company is making a financial contribution. The use of dry containers for older spent fuel is being considered if required by delays in the construction of the Federal repository. Low level waste, after appropriate processing, packaging and classification, is shipped to three operating disposal facilities in other states. From 1993, however, legislation will require the provision of more local waste sites. Radioactive waste disposal is not, however, the principle environmental problem in the day to day operation of the company's power plants. The majority of problems are related to emissions and discharges from fossil fueled and nuclear plant alike. These include the duty to comply with regulations on cooling water outlet temperature and water quality, and emissions of carbon dioxide, carbon monoxide, volatile organics, nitrogen oxides and sulphur dioxide. The background of public opinion on environmental issues related to power generation is outlined. (3 figures) (UK)

  6. NASA Products to Enhance Energy Utility Load Forecasting

    Science.gov (United States)

    Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.

    2012-01-01

    Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.

  7. Cytochemical localization of small intestinal glycoconjugates by lectin histochemistry in controls and subjects with cystic fibrosis.

    Science.gov (United States)

    Jacobs, L R; De Fontes, D; Cox, K L

    1983-05-01

    Human mucosal glycoconjugates were examined in normal small intestinal biopsies from five control subjects using six different fluorescein-conjugated lectins: Triticum vulgare agglutinin (WGA), Ulex europaeus agglutinin I (UEA1), Ricinus communis agglutinin I (RCA1), glycin max-soy bean agglutinin (SBA), Dolichus biflorus agglutinin (DBA), and Arachis hypogaea peanut agglutinin (PNA). These plant agglutinins bind to specific nonreducing end-terminal carbohydrate residues. Only the lectins derived from WGA, which produced the strongest staining, and UEA1 consistently bound to both intestinal goblet cell mucin and epithelial cell microvillar membranes. The intensity of lectin binding was greatest in the upper villus and diminished down towards the crypt, being weakest in the crypt base. Similar histochemical studies carried out on small bowel biopsies from five patients with cystic fibrosis revealed no major qualitative differences between the intestinal glycoconjugates in normal subjects and those with cystic fibrosis. These results suggest that glycoconjugate biosynthesis of human intestinal goblet cell mucin and epithelial cell membranes may be complete and hence full differentiation achieved only when these cells have migrated out of the crypt and onto the villus.

  8. Glycoconjugate localization in larval and adult skin of the bullfrog, Rana catesbeiana: a lectin histochemical study.

    Science.gov (United States)

    Kaltenbach, Jane C; Faszewski, Ellen E; Nytch, Karen E; Potter, Christine H; Shanthakumar, Narmatha; Fakin, Alina

    2004-08-01

    This study investigates whether or not the distribution of specific glycoconjugates within the skin is related to the regulation of water balance in the aquatic larvae and semiaquatic adults of the bullfrog, Rana catesbeiana. A lectin histochemical study was carried out on paraffin sections of dorsal and ventral skin from tadpoles in representative stages as well as from adult frogs. Sections were stained with the following horseradish peroxidase (HRP)-conjugated lectins, which bind to specific terminal sugar residues of glycoconjugates: UEA 1 for alpha-L-fucose, SBA for N-acetyl-D-galactosamine, WGA for N-acetyl-B-D-glucosamine, and PNA for beta-galactose. Results indicate that lectins serve as markers for specific skin components (e.g., a second ground substance layer within the dermis was revealed by positive UEA 1 staining). Moreover, each lectin has a specific binding pattern that is similar in dorsal and ventral skin; the larval patterns change as the skin undergoes extensive histological and physiological remodeling during metamorphic climax. These findings enhance our understanding of glycoconjugates and their relationship to skin structure and function-in particular, to the regulation of water balance in R. catesbeiana. Copyright 2004 Wiley-Liss, Inc.

  9. Effect of spent turmeric on kidney glycoconjugates in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kumar, Gurusiddaiah Suresh; Salimath, Paramahans Veerayya

    2014-01-01

    Curcumin known to have number of medicinal use and masked the fiber containing ukonan like active polysaccharide in turmeric and its pharmacological effect will be addressed on diabetic nephropathy particularly the glycoconjugates of extracellular components viz., glycoproteins and glycosaminoglycans - heparan sulfate (HS). Male Wistar rats were maintained on AIN-76 diet containing 10% spent turmeric and were grouped into control and STZ induced diabetes SFC/TFC and SFD/TFD, respectively. Diabetic status was monitored using blood and urine, and at the end, harvested kidneys were used to study the amelioration of glycoprotiens (collagen) and HS by enzymatic digestion, spectrophotometric, hydroxyproline and agarose electrophoretic methods. In the present study spent turmeric (10%) fed diabetic rats showed improved glomerular filtration rate (50%), kidney enlargement (60%) and other glycoconjugate metabolism in kidney. Increased collagen content in diabetic group was observed by hydroxyproline estimation (24%) and periodic acid-Schiff's (PAS) staining. Furthermore, elevated activities of enzymes involved in the synthesis and degradation of glycosaminoglycans (GAGs) were significantly lowered in spent turmeric fed diabetic group. Improvement in total GAGs (43%) and sulfate content (18%) followed by fractionation of GAGs using specific enzymes led to HS (28%) in the spent turmeric fed diabetic group, when compared to starch fed diabetic group and was further confirmed by electrophoresis of GAG. These results clearly indicate beneficial role of spent turmeric in controlling glycoconjugates such as glycoproteins and heparan sulfate related kidney complications during diabetes.

  10. Utility and performance relative to consumer product energy efficiency standards. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Coggins, J.L.

    1979-12-14

    An investigation of the relative utility and performance of nine major household consumer products covered by the Energy Policy and Conservation Act is summarized. The objective was to define the terms utility and performance, to recommend methods for quantifying these two concepts, and to recommend an approach for dealing with utility and performance issues in the energy efficiency standards program. The definitions developed are: performance of a consumer product is the objective measure of how well, with the expected level of consumer input (following the manufacturer's instructions for installation and operation), the product does its intended job; and utility of a consumer product is a subjective measure, based on the consumer's perception, of the capability of the product to satisfy human needs. Quantification is based on test procedures and consumer survey methods which are largely already in use by industry. Utility and performance issues are important in product classification for prescribing energy efficiency standards. The recommended approach to utility and performance issues and classification is: prior to setting standards, evaluate utility and performance issues in the most quantitative way allowed by resources and schedules in order to develop classification guidelines. This approach requires no changes in existing Department of Energy test procedures.

  11. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    A.M. HEIN; J.Y. HWANG; M.G. MCKIMPSON; R.C. GREENLUND; X. HUANG

    1998-10-01

    Potomac Electric Power Company (PEPCo) Class F fly ash is the first material to be worked on in this project. A head sample was taken and a screen analysis performed. Each size fraction was evaluated for LOI content. Table 1 shows the distribution of the as-received material by size and LOI content. From the data, 80% of the as-received material is finer than 400 mesh and the LOI content goes from high at coarse fractions and decreases to a low at the finest size fraction. SEM chemical analysis identified the as-received fly ash to mainly consist of silica (46%), aluminum oxide (21%), and iron in various forms (16%). The high iron content presents an extreme case as compared to other fly ash samples we have evaluated previously. Its effect on product testing applications could identify physical and chemical limitations as product testing progresses. Because of the high iron content, it was realized that magnetic separation would be incorporated into the early part of the pilot plant flowsheet to remove magnetic iron and, hopefully, reduce the total iron content. More analytical data will be presented in the next reporting period.

  12. Ethanol production using xylitol synthesis mutant of xylose-utilizing zymomonas

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Paul V.; McCutchen, Carol M.; Emptage, Mark; Caimi, Perry G.; Zhang, Min; Chou, Yat-Chen

    2010-06-22

    Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.

  13. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i

  14. PRODUCTION OF MANGIUM (Acacia mangium) WOOD VINEGAR AND ITS UTILIZATION

    OpenAIRE

    Nurhayati Tjutju; Roliadi Han; Bermawie Nurliani

    2005-01-01

    Production  of  wood vinegar from mangium (Acacia  mangium) wood bolts/pieces  with their diameter of 3  17 cm, length of 30  67 cm, moisture content of 84.4%, and specific gravity of 0.52 conducted in a dome-shaped kiln with 1.2 m'-capacity afforded a yield of 40.3%.   The mangium wood vinegar was produced  through condensation  (cooling) of  smoke/gas fractions released during the charcoaling (carbonization) process  of  mangium wood.    The  process  could be regarded  as an integrated pro...

  15. PRODUCTION OF MANGIUM (Acacia mangium WOOD VINEGAR AND ITS UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tjutju Nurhayati

    2005-03-01

    Full Text Available Production  of  wood vinegar from mangium (Acacia  mangium wood bolts/pieces  with their diameter of 3  17 cm, length of 30  67 cm, moisture content of 84.4%, and specific gravity of 0.52 conducted in a dome-shaped kiln with 1.2 m'-capacity afforded a yield of 40.3%.   The mangium wood vinegar was produced  through condensation  (cooling of  smoke/gas fractions released during the charcoaling (carbonization process  of  mangium wood.    The  process  could be regarded  as an integrated production of wood vinegar and charcoal.  The yield of wood vinegar combined with the resulting charcoal was 73.9%  based on  the dry weight of  inputed  mangium wood.    Results of chromatography analysis on mangium wood vinegar as conducted in Japan revealed its organic acid content at 73.9 ppm, phenol content 8.09 ppm, methanol 3.34 ppm, acidity degree 4.91  ppm, and pH 3.89.   Similar analysis on the mangium wood vinegar was conducted in Indonesia's laboratories, and the results were comparable with  those  of  Japan.     Results of  inhibition  testings  on  particular microorganisms   (i.e.  Pseudomonas  aerogjnosa,  Stafi/ococms   attreus,  and  Candidi   albicans  fimgz indicated that the mangium wood vinegar could inflict antirnicrobe action on those microorganism with its effectiveness somewhat below that of  liquid betel soap which could be purchased  from drugstores.  The experimental use of mangium wood vinegar at 3-5% concentration on ginger (Zingiber officinale var. white ginger plants revealed significantly positive growth responses/  characteristics with respect to their height, leaf length, and sprout/ shoot development, in comparison with the untreated ginger plants (control.   Such responses/characteristics were not significantly different from those using atonik's growth hormone.  Likewise, the preliminary use of mangium wood vinegar at 2-percent concentration on teak

  16. Utilization of pion production accelerators in biomedical applications

    International Nuclear Information System (INIS)

    Rosen, L.

    1979-01-01

    A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed

  17. Utilization of bacteriocin-producing bacteria in dairy products

    Directory of Open Access Journals (Sweden)

    Matěj Patrovský

    2016-07-01

    Full Text Available Lactic acid bacteria have been used since ancient times for food preparation and for bio-conservation by fermentation. Selected strains are capable of producing antimicrobial peptides - bacteriocins, which can be natural preservatives, especially in products with short shelf lives. The present study is focused on inhibitory effects of the bacteriocin-producing bacteria strains Enterococcus faecium, Pediococccus acidilactici and Lactobacillus plantarum against Listeria innocua as an indicator microorganism. Freeze-dried preparations of bacterial strains producing particular bacteriocins were tested by agar well-diffusion assay and by the traditional spread plate method. Plantaricin exhibited the highest anti-listerial effect among the tested bacteriocins. Pediocin also demonstrated a distinct inhibitory effect, but enterocin appeared to be heat labile and its efficiency was also suppressed under cold storage conditions. Plantaricin reduced Listeria innocua counts by 1 log in dairy spread made from cheese and quark. The formation of bacteriocins by various Lactobacillus plantarum strains were substantially influenced by the cultivation conditions of the mother culture and by the microbial preparation process before freeze-drying. Bacteriocins introduced into foodstuffs via protective cultures in situ offer new perspectives on enhancing food quality and safety.

  18. Development of Novel Textile Bioreactor for Anaerobic Utilization of Flocculating Yeast for Ethanol Production

    OpenAIRE

    Osadolor, Osagie; Lennartsson, Patrik; Taherzadeh, Mohammad

    2015-01-01

    Process development, cheaper bioreactor cost, and faster fermentation rate can aid in reducing the cost of fermentation. In this article, these ideas were combined in developing a previously introduced textile bioreactor for ethanol production. The bioreactor was developed to utilize flocculating yeast for ethanol production under anaerobic conditions. A mixing system, which works without aerators, spargers, or impellers, but utilizes the liquid content in the bioreactor for suspending the fl...

  19. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  20. Rational chemical design of the carbohydrate in a glycoconjugate vaccine enhances IgM-to-IgG switching.

    Science.gov (United States)

    Guttormsen, Hilde-Kari; Paoletti, Lawrence C; Mansfield, Keith G; Jachymek, Wojcieck; Jennings, Harold J; Kasper, Dennis L

    2008-04-15

    Many pathogens are sheltered from host immunity by surface polysaccharides that would be ideal as vaccines except that they are too similar to host antigens to be immunogenic. The production of functional IgG is a desirable response to vaccines; because IgG is the only isotype that crosses the placenta, it is of particular importance in maternal vaccines against neonatal disease due to group B Streptococcus (GBS). Clinical studies found a substantially lower proportion of IgG-relative to IgM-among antibodies elicited by conjugates prepared with purified GBS type V capsular polysaccharide (CPS) than among those evoked by CPSs of other GBS serotypes. The epitope specificity of IgG elicited in humans by a conjugate prepared with type V CPS is for chemically desialylated type V CPS (dV CPS). We studied desialylation as a mechanism for enhancing the ability of type V CPS to induce IgM-to-IgG switching. Desialylation did not affect the structural conformation of type V CPS. Rhesus macaques, whose isotype responses to GBS conjugates match those of humans, produced functionally active IgG in response to a dV CPS-tetanus toxoid conjugate (dV-TT), and 98% of neonatal mice born to dams vaccinated with dV-TT survived lethal challenge with viable GBS. Targeted chemical engineering of a carbohydrate to create a molecule less like host self may be a rational approach for improving other glycoconjugates.

  1. Xylitol synthesis mutant of xylose-utilizing zymomonas for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Paul V.; Chou, Yat-Chen; McCutchen, Carol M.; Zhang, Min

    2010-06-22

    A strain of xylose-utilizing Zymomonas was engineered with a genetic modification to the glucose-fructose oxidoreductase gene resulting in reduced expression of GFOR enzyme activity. The engineered strain exhibits reduced production of xylitol, a detrimental by-product of xylose metabolism. It also consumes more xylose and produces more ethanol during mixed sugar fermentation under process-relevant conditions.

  2. Utilization possibilites of waste products from fishing and hunting to biogas and bio-oil production in Uummannaq County

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Jørgensen, Marianne Willemoes

    2008-01-01

    the specific conditions that apply in Uummannaq County. The best alternatives were evaluated to be biogas production and utilization of fat from the fish waste to produce bio-oil. The results showed that with the price of energy in Greenland in 2009 of 3,71 DKR per kWh, the waste in Uummannaq County would......In spring 2007 a project was carried out at the Arctic Technology Centre in which research of various possibilities of utilizing waste products from fishing and hunting generated in Uummannaq County was performed. Numerous alternatives were identified in the project, which were weighed against...... amount to approximately 6 million DKR when using biogas production and 5,7 million DKR when using bio-oil. Compared with the energy used in Uummannaq County today, the biogas production would be able to supply 17 percent of the energy and bio-oil production would cover approximately 16 percent....

  3. The utility of N-15 nuclear magnetic resonance spectroscopy for the study of natural products

    International Nuclear Information System (INIS)

    Randall, E.W.

    1978-01-01

    The utility of 15 N NMR spectroscopy for the study of natural products and the difficulties which must be overcome arte discussed. The widespread use of pulse Fourier techniques, decouplings, larger magnetic fields and large tube sizes allows a large number of 15 N studies of natural products, the more recent and important of these being peptides, nucleosides and nucleotides. Sites of protonation, tautomerism, sites of nitrosation and proton exchange behaviour for some of these natrual products have been studied. (A.G.)

  4. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy.

    Science.gov (United States)

    Daskhan, Gour Chand; Tran, Hanh-Thuc Ton; Meloncelli, Peter J; Lowary, Todd L; West, Lori J; Cairo, Christopher W

    2018-02-21

    The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the

  5. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis.

    Science.gov (United States)

    Damerow, Sebastian; Hoppe, Carolin; Bandini, Giulia; Zarnovican, Patricia; Buettner, Falk F R; Ferguson, Michael A J; Routier, Françoise H

    2015-10-01

    Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania whose severity ranges from self-healing cutaneous lesions to fatal visceral infections. Leishmania parasites synthesise a wide array of cell surface and secreted glycoconjugates that play important roles in infection. These glycoconjugates are particularly abundant in the promastigote form and known to be essential for establishment of infection in the insect midgut and effective transmission to the mammalian host. Since they are rich in galactose, their biosynthesis requires an ample supply of UDP-galactose. This nucleotide-sugar arises from epimerisation of UDP-glucose but also from an uncharacterised galactose salvage pathway. In this study, we evaluated the role of the newly characterised UDP-sugar pyrophosphorylase (USP) of Leishmania major in UDP-galactose biosynthesis. Upon deletion of the USP encoding gene, L. major lost the ability to synthesise UDP-galactose from galactose-1-phosphate but its ability to convert glucose-1-phosphate into UDP-glucose was fully maintained. Thus USP plays a role in UDP-galactose activation but does not significantly contribute to the de novo synthesis of UDP-glucose. Accordingly, USP was shown to be dispensable for growth and glycoconjugate biosynthesis under standard growth conditions. However, in a mutant seriously impaired in the de novo synthesis of UDP-galactose (due to deficiency of the UDP-glucose pyrophosphorylase) addition of extracellular galactose increased biosynthesis of the cell surface lipophosphoglycan. Thus under restrictive conditions, such as those encountered by Leishmania in its natural habitat, galactose salvage by USP may play a substantial role in biosynthesis of the UDP-galactose pool. We hypothesise that USP recycles galactose from the blood meal within the midgut of the insect for synthesis of the promastigote glycocalyx and thereby contributes to successful vector infection. Copyright

  6. Optimizing adjuvants for intradermal delivery of MenC glycoconjugate vaccine.

    Science.gov (United States)

    Donadei, Agnese; Balocchi, Cristiana; Romano, Maria R; Panza, Luigi; Adamo, Roberto; Berti, Francesco; O'Hagan, Derek T; Gallorini, Simona; Baudner, Barbara C

    2017-07-13

    Intradermal vaccine delivery is a promising alternative to the conventional intramuscular route. The skin layer is immunologically supported by a densely network of antigen presenting cells, while the skeletal muscle is loaded with a relatively sparse population of APCs. Nevertheless, the vaccine to be suitable for intradermal delivery needs a new formulation to facilitate either smaller injection volumes or the introduction into new delivery devises as micro-needles. This study presents a proof of concept for intradermal delivery of the MenC-CRM 197 glycoconjugate vaccine using a mouse model. Tangential flow filtration allowed obtaining a 20-fold concentrated vaccine formulation suitable for intradermal injection. Importantly the intradermal delivery of non-adjuvanted MenC glycoconjugate vaccine showed a quicker on-set and superiority in terms of immunogenicity compared to intramuscular administration of the respective vaccine and comparable immunogenicity to the aluminum adjuvanted vaccine formulation given intramuscular. Subsequently, the use of adjuvants allowed to further increase the immunogenicity and to modulate the quality of the immune response towards a more beneficial Th1 response. As adjuvants two Toll like receptor agonists (TLR4a and TLR7a), a mutant of the heat-labile enterotoxin from Escherichia coli (LT), a α-GalactosylCeramide analogue and an oil in water emulsion were investigated in order to target skin-resident antigen-presenting cells. This approach has the potential to be extended to other meningococcal serogroups, representing a promising strategy for the development of dermally administered multivalent glycoconjugate vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine

    Science.gov (United States)

    Calzas, Cynthia; Shiao, Tze Chieh; Neubauer, Axel; Kempker, Jennifer; Roy, René; Gottschalk, Marcelo

    2016-01-01

    Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo. In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 μg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections. PMID:27113360

  8. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  9. Synthesis by reverse microemulsion of nano structured ferrite to be utilized in hydrogen production by water

    International Nuclear Information System (INIS)

    Bellusci, M.; Annunziatini, C.; Alvani, C.; Colella, C.; La Barbera, A.; Padella, F.; Seralessandri, L.

    2005-10-01

    Micelle and reverse micelle microemulsions can be favourably utilized in producing nano sized particles. The paper reports a general description of microemulsions systems, as well as their application in materials synthesis. By using one of the described methods, nano structured manganese ferrite, to be utilized in hydrogen production. was synthesized and the produced material was characterized in terms of morphological, microstructure and thermal properties [it

  10. An acidic glycoconjugate from Lythrum salicaria L. with controversial effects on haemostasis.

    Science.gov (United States)

    Pawlaczyk, Izabela; Czerchawski, Leszek; Kańska, Justyna; Bijak, Joanna; Capek, Peter; Pliszczak-Król, Aleksandra; Gancarz, Roman

    2010-08-19

    Lythrum salicaria L. belongs to the small Lythraceae family of 22 genera, which range in habit from herbs to shrubs and trees found with worldwide distribution (Heywood, 1993). The generic name of Lythrum derived from Greek "luthron"--blood, possibly referring to the color of the flowers or to the one of its herbal use as an astringent to stop bleeding (Thompson et al., 1987; Mountain, 1994; Pawlaczyk and Pacula, 2002). The flowering parts and the flowering branch tips are used in traditional medicine and pharmaceuticals internally in a form of decoctions or as extracts for treatment of diarrhea, chronic intestinal catarrhs, hemorrhoids and eczema, or externally to treat varicose veins, venous insufficiency and gums (Mantle et al., 2000; Rauha et al., 2000). The aim of this study was to isolate the plant glycoconjugate from flowering parts of Lythrum salicaria, and to verify its influence on blood coagulation process. From the air-dried flowering parts of this plant a water-soluble glycoconjugate has been isolated by hot alkaline extraction followed by neutralization and purification by multi-steps extraction with organic solvents, dialysis and concentration. The plant isolate was tested in vitro on anticoagulant activity on human plasma, and on Wistar rats blood system in vivo as well as ex vivo. A dark brown isolate was obtained in the yield of 8% of starting material (w/w) as a macromolecular compound with M(w) approximately 12,500. Chemical analysis revealed the presence of carbohydrates (30%), phenolics (1g contained 1.2mM of gallic acid equivalent) and proteins (0.8%). The result of compositional analyses of carbohydrate part revealed the predominance of uronic acids (approximately 66%), galactose (approximately 12%), rhamnose (approximately 10%) and arabinose (approximately 9%) residues indicating thus the presence of pectic type of polymers, i.e. galacturonan and/or rhamnogalacturonan associated with arabinogalactan in Lythrum glycoconjugate. In vitro and

  11. Histochemical analysis of glycoconjugates in the skin of a catfish (arius tenuispinis, day).

    Science.gov (United States)

    Al-Banaw, A; Kenngott, R; Al-Hassan, J M; Mehana, N; Sinowatz, F

    2010-02-01

    A histochemical study using conventional carbohydrate histochemistry (periodic-acid staining including diastase controls, alcian blue staining at pH 1 and 2.5) as well as using a battery of 14 fluorescein isothiocyanate (FITC)-labelled lectins to identify glycoconjugates present in 10 different areas of the skin of a catfish (Arius tenuispinis) was carried out. The lectins used were: mannose-binding lectins (Con A, LCA and PSA), galactose-binding lectins (PNA, RCA), N-acetylgalactosamine-binding lectins (DBA, SBA, SJA and GSL I), N-acetylglucosamine-binding lectins (WGA and WGAs), fucose-binding lectins (UEA) and lectins which bind to complex carbohydrate configurations (PHA E, PHA L). Conventional glycoconjugate staining (PAS staining, alcian blue at pH 1 and 2.5) showed that the mucous goblet cells contain a considerable amount of glycoconjugates in all locations of the skin, whereas the other unicellular gland type, the club cells, lacked these glycoconjugates. The glycoproteins found in goblet cells are neutral and therefore stain magenta when subjected to PAS staining. Alcian blue staining indicating acid glycoproteins was distinctly positive at pH 1, but gave only a comparable staining at pH 2.5. The mucus of the goblet cells therefore also contains acid glycoproteins rich in sulphate groups. Using FITC-labelled lectins, the carbohydrate composition of the glycoproteins of goblet cells could be more fully characterized. A distinct staining of the mucus of goblet cells was found with the mannose-binding lectins LCA and PSA; the galactosamine-binding lectins DBA, SBA and GLS I; the glucosamine-binding lectin WGA; and PHA E which stains glycoproteins with complex carbohydrate configurations. No reaction occurred with the fucose-binding lectin UEA and the sialic acid-specific lectin SNA. In addition, the galactose-binding lectins PNA and RCA showed only a weak or completely negative staining of the mucus in the goblet cells. The specificity of the lectin staining

  12. Three essays on productivity and research and development in United States investor-owned electric utilities

    Science.gov (United States)

    Connolly, Haru

    Although productivity of major U.S. investor-owned utilities is an oft researched topic, the impact of research and development (R&D) on productivity has not been explored. Using a data set spanning from 1983 to 1994 and gathered from FERC Form 1 and publications from EPRI, the U.S. Energy Information Administration, and investment banks, I estimate total factor productivity, efficiency, and the impacts of regulation and other utility characteristics on R&D. Throughout the analysis, R&D is disaggregated into two categories, R&D at the industry's research consortium, the Electric Power Research Institute (EPRT) and R&D carried out by the utility itself. No published research on this industry has made such a distinction. In the first chapter, I use parametric methods to estimate an average production function and a production frontier that include both types of R&D as an input. The contributions of R&D of both types are small, which is expected given the low level of expenditures in the industry (about one percent of revenues). Total factor productivity is steady between 1984 and 1994. In chapter 2, I use data envelopment analysis (DEA) to estimate measures of efficiency for each utility. DEA is a nonparametric, linear programming method, and I compute estimates under the assumptions of constant and variable returns to scale (CRS and VRS, respectively). The VRS results are more plausible; under VRS, more utilities in a greater range of sizes are considered efficient than under CRS. The DEA efficiency measures are regressed on R&D, regulation (measured as investment bank Merrill Lynch's ratings of state commission's investor-friendliness), and other utility features, including the age of the generation plant and proportion of nuclear generation. Efficiency rises with both own R&D and spending at EPRI, and it decreases with the increasing age of the generation plant. Regulation has no effect. Finally, in chapter 3, I use a maximum likelihood Tobit to determine the

  13. Investigation of Effect of Machine Layout on Productivity and Utilization Level: What If Simulation Approach

    Directory of Open Access Journals (Sweden)

    Islam Faisal Bourini

    2018-03-01

    Full Text Available Designing and selecting the material handling system is a vital factor for any production line, and as result for the whole manufacturing system. Poor design and unsuitable handling equipment may increase the risk of having bottlenecks, longer production time and as a result the higher total production cost. One of the useful and effective tools are using “what if” simulation techniques. However, this technique needs effective simulation software. The main objective for this research is to simulate different types of handling system using what if scenario. To achieve the objective of the research, Delmia Quest software has been used to simulate two different systems: manual system and conveyers system for the same production line and analyses the differences in terms of utilization and production rate. The results obtained have been analysed and appraised to induce the bottleneck locations, productivity and utilizations of the machines and material handling systems used in the design system. Finally, the best model have been developed to increase the productivity, utilizations of the machines, material handling systems and to minimize the bottleneck locations.

  14. PHOBINS: an index file of photon production cross section data and its utility code system

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Koyama, Kinji; Ido, Masaru; Hotta, Masakazu; Miyasaka, Shun-ichi

    1978-08-01

    The code System PHOBINS developed for reference of photon production cross sections is described in detail. The system is intended to grasp the present status of photon production data and present the information of available data. It consists of four utility routines, CREA, UP-DT, REF and BACK, and data files. These utility routines are used for making an index file of the photon production cross sections, updating the index file, searching the index file and producing a back-up file of the index file. In the index file of the photon production cross sections, a data base system is employed for efficient data management in economical storage, ease of updating and efficient reference. The present report is a reference manual of PHOBINS. (author)

  15. Grain production, nutrient concentration and utilization in response to the increase of coffee plant density

    OpenAIRE

    Lana Braccini, Maria do Carmo; UNIOESTE; Braccini, Alessandro de Lucca e; Editor Chefe - UEM; Scapim, Carlos Alberto; UEM; Vidigal Filho, Pedro Soares; UEM; Zabini, André Vinicius; UEM

    2008-01-01

    The most efficient means of improving coffee production in the first years is by mean of increasing plant density. This work had the objective of evaluating the fertilizer utilization, nutrients absorption and coffee production in relation to different plant densities. The experiment was implanted in october 1997 using coffee plants, Coffea Arabica L. (Rubiaceae), of ‘IAPAR 59’ variety. The plant densities evaluated were: 3333; 5000; 6666; 10000 and 20000 plants per hectare. The experimental ...

  16. A Semi-Synthetic Glycoconjugate Vaccine Candidate for Carbapenem-Resistant Klebsiella pneumoniae.

    Science.gov (United States)

    Seeberger, Peter H; Pereira, Claney L; Khan, Naeem; Xiao, Guozhi; Diago-Navarro, Elizabeth; Reppe, Katrin; Opitz, Bastian; Fries, Bettina C; Witzenrath, Martin

    2017-11-06

    Hospital-acquired infections are an increasingly serious health concern. Infections caused by carpabenem-resistant Klebsiella pneumoniae (CR-Kp) are especially problematic, with a 50 % average survival rate. CR-Kp are isolated from patients with ever greater frequency, 7 % within the EU but 62 % in Greece. At a time when antibiotics are becoming less effective, no vaccines to protect from this severe bacterial infection exist. Herein, we describe the convergent [3+3] synthesis of the hexasaccharide repeating unit from its capsular polysaccharide and related sequences. Immunization with the synthetic hexasaccharide 1 glycoconjugate resulted in high titers of cross-reactive antibodies against CR-Kp CPS in mice and rabbits. Whole-cell ELISA was used to establish the surface staining of CR-Kp strains. The antibodies raised were found to promote phagocytosis. Thus, this semi-synthetic glycoconjugate is a lead for the development of a vaccine against a rapidly progressing, deadly bacterium. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates.

    Science.gov (United States)

    Nishiyama, Keita; Ueno, Shintaro; Sugiyama, Makoto; Yamamoto, Yuji; Mukai, Takao

    2016-06-01

    Lactobacillus rhamnosus GG (LGG) is a well-established probiotic strain. The beneficial properties of this strain are partially dependent on its prolonged residence in the gastrointestinal tract, and are likely influenced by its adhesion to the intestinal mucosa. The pilin SpaC subunit, located within the Spa pili structure, is the most well studied LGG adhesion factor. However, the binding epitopes of SpaC remain largely unknown. The aim of this study was to evaluate the binding properties of SpaC to the carbohydrate moieties of intestinal glycoconjugates using a recombinant SpaC protein. In a competitive enzyme-linked immunosorbent assay, SpaC binding was markedly reduced by addition of purified mucin and the mucin oligosaccharide fraction. Histochemical staining revealed that the binding of SpaC was drastically reduced by periodic acid treatment. Moreover, in the surface plasmon resonance-based Biacore assay, SpaC bound strongly to the carbohydrate moieties containing β-galactoside at the non-reducing terminus of glycolipids. We here provide the first demonstration that SpaC binds to the oligosaccharide chains of mucins, and that the carbohydrate moieties containing β-galactoside at the non-reducing termini of glycoconjugates play a crucial role in this binding. Our results demonstrate the importance of carbohydrates of SpaC for mucus interactions. © 2015 Japanese Society of Animal Science.

  18. MAIZE UTILIZATION PATTERNS IN DOMESTIC PRODUCTION UNITS OF THE PUEBLA VALLEY, MEXICO

    Directory of Open Access Journals (Sweden)

    Cresencia Emma Viveros Flores

    2010-08-01

    Full Text Available The objective of this research was to describe the maize utilization patterns (corn and byproducts in production units of the District for Rural Development (DDR of Cholula, Puebla, Mexico, and to analyze whether such utilization satisfies their consumption needs. During 2008, 113 questionnaires were applied at three locations; those included variables dealing with social, productive and maize use aspects. The study of 26 variables by cluster analysis and analysis of variance on ranks indicated the presence of five groups of production units. All groups allotted 83 to 100 % of their cropping area to maize, used the harvested grain for both human and animal consumption, sold a part of the production and used the stubber (packed or standing. Groups 1 and 2 performed a more integral utilization of maize (grain, stubber and husks, using it to satisfy their self-consumption needs and selling only 4 to 16 % of their production. Groups 4 and 5 focused on production and commercialization of maize as grain, selling up to 47 to 64 % of it. Group 3 had important livestock activity. All groups were self-sufficient in terms of maize for human consumption.

  19. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  20. MenACWY-CRM, a novel quadrivalent glycoconjugate vaccine against Neisseria meningitidis for the prevention of meningococcal infection.

    Science.gov (United States)

    Pace, David

    2009-12-01

    Invasive meningococcal disease remains a major public health concern, with infants, children younger than 4 years and adolescents bearing the majority of the global disease burden. Protecting the vulnerable individuals in these age groups through vaccination remains the most rational strategy for the prevention of meningococcal disease. The formulation of polysaccharide-protein conjugate vaccines has been a major breakthrough in vaccinology, and has extended protection against pathogenic encapsulated bacteria to younger age groups. The dramatic decline in the incidence of Neisseria meningitidis serogroup C disease, observed following the introduction of glycoconjugate meningococcal C vaccines, demonstrates that vaccination can control disease at a population level. The development of quadrivalent glycoconjugate meningococcal ACWY vaccines has broadened protection against meningococcal disease. A novel meningococcal MenACWY-CRM (Menveo) glycoconjugate vaccine, formulated by selective conjugation chemistry of intermediate-chain-length meningococcal saccharides, was immunogenic in individuals aged 2 months to 65 years. The reactogenicity of MenACWY-CRM was similar to that of other licensed meningococcal glycoconjugates, yet the vaccine has the potential to extend protection against meningococcal serogroups A, Y and W-135 to children younger than 2 years of age - a need that remains unmet.

  1. Utilization of oleo-chemical industry by-products for biosurfactant production

    Science.gov (United States)

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  2. Utilization of oleo-chemical industry by-products for biosurfactant production.

    Science.gov (United States)

    Bhardwaj, Garima; Cameotra, Swaranjit Singh; Chopra, Harish Kumar

    2013-11-21

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc.

  3. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine

    Science.gov (United States)

    Meiswinkel, Tobias M; Gopinath, Vipin; Lindner, Steffen N; Nampoothiri, K Madhavan; Wendisch, Volker F

    2013-01-01

    Summary Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes were tested in C. glutamicum. The gene originating from Xanthomonas campestris was shown to have the highest effect, resulting in growth rates of 0.14 h−1, followed by genes from Bacillus subtilis, Mycobacterium smegmatis and Escherichia coli. To further increase xylose utilization different xylulokinase genes were expressed combined with X. campestris xylose isomerase gene. All combinations further increased growth rates of the recombinant strains up to 0.20 h−1 and moreover increased biomass yields. The gene combination of X. campestris xylose isomerase and C. glutamicum xylulokinase was the fastest growing on xylose and compared with the previously described strain solely expressing E. coli xylose isomerase gene delivered a doubled growth rate. Productivity of the amino acids glutamate, lysine and ornithine, as well as the diamine putrescine was increased as well as final titres except for lysine where titres remained unchanged. Also productivity in medium containing rice straw hydrolysate as carbon source was increased. Funding Information No funding information provided. PMID:23164409

  4. UTILIZATION OF MINERAL FIBER WASTE IN THE PRODUCTION OF GYPSUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Solov'ev Vitaliy Nikolaevich

    2018-01-01

    Full Text Available Subject: the effectiveness of using compositions with the use of basalt fibers is proven, but the composition must be selected depending on the binder and additives chosen. Research objectives: we examine the possibility of waste recycling of basalt fiber production during manufacturing of modified gypsum composite material with improved characteristics. Materials and methods: as a raw material, a gypsum binder of Samara production was used. As a reinforcement additive, a disperse waste of basalt fiber production of Tver region was used. Studying characteristics of the gypsum binder and modified mixture, and also comparative analysis of these characteristics by average density, total porosity, strength in compression and flexure of the gypsum composite were carried out using standard techniques. Results: dependence of physical and mechanical properties of the modified gypsum material on the content of the basalt fiber additive is established. It was found that an increase in concentration of the additive requires an increased water content or additional use of plasticizer. Conclusions: modification of gypsum stone with a mineral basalt additive will increase the strength, density and durability of thin-walled gypsum products, and, consequently, the demand for products due to ensuring their high quality in transportation and installation.

  5. Gross domestic product estimation based on electricity utilization by artificial neural network

    Science.gov (United States)

    Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.

    2018-01-01

    The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.

  6. Partial characterisation of high-molecular weight glycoconjugates in the trail mucus of the freshwater pond snail Lymnaea stagnalis.

    Science.gov (United States)

    Ballance, Simon; Howard, Marj; White, Keith N; McCrohan, Catherine R; Thornton, David J; Sheehan, John K

    2004-04-01

    We have studied the glycoconjugates in trail mucus of the pond snail Lymnaea stagnalis. The mucus was dissolved with 6 M guanidinium hydrochloride (GuHCl) and the major component was comprised of very high-M(r) glycoconjugates that were eluted in the void volume of a Sepharose CL-4B gel-filtration column. This high-M(r) material was pooled and thereafter subjected to density gradient centrifugation first in 4 M GuHCl/CsCl and subsequently 0.2 M GuHCl/CsCl to further remove non-glycosylated proteins and DNA. The harvested glycoconjugate pool chromatographed in the void volume of Sepharose CL-2B. However, reduction of disulfide bonds lowered the molecular size of approximately 80% of the void material yielding a major fragment and some minor smaller fragments in gel chromatography. The reduced glycoconjugates were digested with papain and yielded high molecular weight, proteinase-resistant glycopeptides. This fragmentation pattern is similar to that found for oligomeric gel-forming mucins in mammals and the amino acid composition (60% Ser/Thr) and sugar analysis of the glycopeptides is consistent with mucin-like molecules, there being no significant amounts of xylose or uronic acids. The residual 20% of the preparation, which apparently resisted reduction and protease digestion, had a similar amino acid composition to the bulk, but was somewhat different in sugar composition, containing some xylose and a significant amount of glucuronic acid. The two groups of molecules had very different morphologies in the electron microscope. Taken together, these data suggest that trail mucus is a complex mixture of at least two families of protein-glycoconjugate molecules based upon the gel-forming mucin and proteoglycan families, though we cannot rule out that polysaccharides may also be present.

  7. Dereplication of Flavonoid Glycoconjugates from Adenocalymma imperatoris-maximilianii by Untargeted Tandem Mass Spectrometry-Based Molecular Networking.

    Science.gov (United States)

    de Oliveira, Gibson Gomes; Carnevale Neto, Fausto; Demarque, Daniel Pecoraro; de Sousa Pereira-Junior, José Antônio; Sampaio Peixoto Filho, Rômulo César; de Melo, Sebastião José; da Silva Almeida, Jackson Roberto Guedes; Lopes, João Luiz Callegari; Lopes, Norberto Peporine

    2017-05-01

    The interpretation of large datasets acquired using high performance liquid chromatography coupled with tandem mass spectrometry represents one of the major challenges in natural products research. Here we propose the use of molecular networking to rapid identify the known secondary metabolites from untargeted MS/MS analysis of Adenocalymma imperatoris-maximilianii plant extracts. The leaves, stems and roots of A. imperatoris-maximilianii were extracted using different solvents according to Snyder selectivity triangle. The samples were analyzed by HPLC coupled with ion trap mass spectrometer in a collision-induced dissociation MS/MS configuration in both positive and negative electrospray ionization modes. Molecular networking simultaneously organized the spectra by cosine similarity. The chemical identification was performed based on the systematic study of the main fragmentation pathways observed for the resulting network. The untargeted tandem mass spectrometry-based molecular networking allowed for the identification of 63 metabolites, mainly mono-, di- and tri-, C - and/or O -glycosyl flavones. Molecular networking was capable not only to dereplicate known flavonoids, but also to point out related prenyl derivatives, described for the first time in Adenocalymma species. The gas-phase reaction route to form the characteristic [M-H 2 O-(30/60/90)] + fragments in C -glycosyl flavones was suggested as sequential sugar ring opening followed by retro-aldol elimination involving aldose-ketose isomerization. The use of molecular networking with LC-CID-MS/MS assisted the identification of various isomeric and isobaric flavonoid glycoconjugates by establishing clusters according to the fragmentation similarities. Additionally, the proposed cross-ring sugar cleavages can contribute to the identification of C -glycosides by MS/MS analysis. Georg Thieme Verlag KG Stuttgart · New York.

  8. Utilizing the phenol byproducts of coke production: 3. Phenols as coinhibitors of thermopolymerization during styrene production

    Energy Technology Data Exchange (ETDEWEB)

    I.I. Batura; A.F. Gogotov; V.I. Cherepanov; O.I. Baranov; A.A. Levchuk; M.V. Parilova [Irkutsk State Technical University, Irkutsk (Russian Federation)

    2009-01-15

    A new oligomerization procedure for phenol byproducts from coke production is experimentally studied. This method, oxidative combination, is intended to produce an effective coinhibitor of styrene thermopolymerization. When combined with a Mannich base, the new oligomer exhibits excellent inhibiting properties in the heat treatment of styrene and matches the effectiveness of imported inhibitors based on nitroxyl radicals. 15 refs., 1 tab.

  9. Utilization of agricultural by-products to partially replace gelatin in preparation of products for leather

    Science.gov (United States)

    When polyphenolic-modified gelatin-products were used as fillers, improvements were seen in the subjective properties of the leather. When the treated samples were compared to control samples, there were no significant changes in mechanical properties. At the present time, gelatin is in short supp...

  10. Utilization of agricultural by-products to supplement gelatin in preparation of products for leather

    Science.gov (United States)

    When polyphenolic-modified gelatin-products were used as fillers, improvements were seen in the subjective properties of the leather. When the treated samples were compared to control samples, there were no significant changes in mechanical properties. Gelatin is in high demand and short supply, a...

  11. Small-scale production and utilization of wood fuels; Puupolttoaineen pientuotanto ja -kaeyttoe - katsaus tutkimus- projekteihin

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, S. [Work Efficiency Inst., Rajamaeki (Finland)

    1996-12-31

    The objective of the research on small-scale production of wood fuels was to promote the forest owners` own utilization and procurement of firewood. The profitability of firewood was improved by developing new farm-tractor mountable equipment and methods for forest owners and small-entrepreneurs for harvesting of first-thinning wood and other small-dimeter wood. Totally new solution for machine felling of small trees and chopwood production were developed to serial production level. Recyclable processing and delivery units were developed for delivery of chopwood. A calculation model for analysing the costs of small-scale production of firewood became ready. A guide on the development of heating-entrepreneur activities, serving the entrepreneurs, was published. The objective of the firewood utilization research was to reduce the technical barriers of the utilization of firewood in small-house and real-estate scales. The main aim was to reduce the flue-gas emissions. The emissions of the fireplaces were reduced by developing the construction of fireplaces, catalytic combustion and heating methods. An automatic stoker-burner was developed for real-estate scale and a boiler series was designed for biofuels

  12. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates.

    Science.gov (United States)

    Obruca, Stanislav; Petrik, Sinisa; Benesova, Pavla; Svoboda, Zdenek; Eremka, Libor; Marova, Ivana

    2014-07-01

    Spent coffee grounds (SCG), an important waste product of the coffee industry, contain approximately 15 wt% of coffee oil. The aim of this work was to investigate the utilization of oil extracted from SCG as a substrate for the production of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16. When compared to other waste/inexpensive oils, the utilization of coffee oil resulted in the highest biomass as well as PHB yields. Since the correlation of PHB yields and the acid value of oil indicated a positive effect of the presence of free fatty acids in oil on PHB production (correlation coefficient R (2) = 0.9058), superior properties of coffee oil can be probably attributed to the high content of free fatty acids which can be simply utilized by the bacteria culture. Employing the fed-batch mode of cultivation, the PHB yields, the PHB content in biomass, the volumetric productivity, and the Y P/S yield coefficient reached 49.4 g/l, 89.1 wt%, 1.33 g/(l h), and 0.82 g per g of oil, respectively. SCG are annually produced worldwide in extensive amounts and are disposed as solid waste. Hence, the utilization of coffee oil extracted from SCG is likely to improve significantly the economic aspects of PHB production. Moreover, since oil extraction decreased the calorific value of SCG by only about 9 % (from 19.61 to 17.86 MJ/kg), residual SCG after oil extraction can be used as fuel to at least partially cover heat and energy demands of fermentation, which should even improve the economic feasibility of the process.

  13. Clinical utility of marketing terms used for over-the-counter dermatologic products.

    Science.gov (United States)

    Boozalis, Emily; Patel, Shivani

    2018-04-19

    Cosmetic products are commonly marketed using dermatologic terms such as "hypoallergenic," "non-comedogenic," "fragrance-free," etc. The clinical relevance of these claims can be confusing to both patients and clinicians. A systematic review was performed from via a PubMed search of published articles from January 1985 to October 2017 to further describe and elucidate the clinical utility of a predefined list of common dermatologic terms used by pharmaceutical companies to market over the counter products. The terms "fragrance-free," "hypoallergenic," "non-comedogenic," and "oil-free" on cosmetic product labels are not regulated by any governing body and provide varied clinical utility. Products labeled as having "natural ingredients" are not necessarily safer or less irritating to patients with atopy or a history of allergic contact dermatitis. Despite the increasing popularity of "paraben-free" cosmetics, parabens are safe for patients in the quantities used in cosmetic products and can be safely used in patients who don't exhibit contact dermatitis to this preservative. A working knowledge of common cosmetic ingredients may help dermatologists counsel patients on which products to avoid for their specific dermatologic conditions.

  14. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    Full Text Available Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin.

  15. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    Directory of Open Access Journals (Sweden)

    Mofoluwake M. Ishola

    2015-12-01

    Full Text Available Integrated permeate channel (IPC flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936, a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF. The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches.

  16. Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production.

    Science.gov (United States)

    Li, Pengfei; Sun, Hongbing; Chen, Zao; Li, Yin; Zhu, Taicheng

    2015-02-21

    Cellulosic biomass especially agricultural/wood residues can be utilized as feedstock to cost-effectively produce fuels, chemicals and bulk industrial enzymes, which demands xylose utilization from microbial cell factories. While previous works have made significant progress in improving microbial conversion of xylose into fuels and chemicals, no study has reported the engineering of efficient xylose utilizing protein expression systems for the purpose of producing industrial enzymes. In this work, using Pichia pastoris as an example, we demonstrated the successful engineering of xylose metabolizing ability into of protein expression systems. A heterologous XI (xylose isomerase) pathway was introduced into P. pastoris GS115 by overexpressing the Orpinomyces spp. XI or/and the endogenous XK (xylulokinase) gene, and evolutionary engineering strategies were also applied. Results showed that the XI pathway could be functionally expressed in P. pastoris. After 50 generation of sequential batch cultivation, a set of domesticated recombinant P. pastoris strains with different performance metrics on xylose were obtained. One evolved strain showed the highest xylose assimilation ability, whose cell yield on xylose can even be comparable to that on glucose or glycerol. This strain also showed significantly increased β-mannanase production when cultured on xylose medium. Furthermore, transcription analysis of xylose pathway genes suggested that overexpression of XI and XK might be the key factors affecting effective xylose assimilation. To our best knowledge, this study is the first work demonstrating the construction of efficient xylose utilizing P. pastoris strains, thus providing a basis for using cellulosic biomass for bulk industrial enzyme production.

  17. Sociodemographics, Comorbidities, Healthcare Utilization and Work Productivity in Japanese Patients with Adult ADHD

    OpenAIRE

    Kirino, Eiji; Imagawa, Hideyuki; Goto, Taro; Montgomery, William

    2015-01-01

    Objectives This study compared the sociodemographic characteristics, comorbidities, healthcare resource utilization, and work productivity among Japanese adults who reported being diagnosed with attention-deficit/hyperactivity disorder (ADHD) to those of a non-ADHD control population. Methods Data for this study were captured from an online survey of adults in Japan conducted by Kantar Health using consumer panels. A total of 84 survey participants reported they had received a diagnosis of AD...

  18. Analysis of the Utilization of Machinery in the Production Process Using Computer Simulation

    Directory of Open Access Journals (Sweden)

    Fedorko Gabriel

    2017-01-01

    Full Text Available For the efficient operation of each production process, individual machines and equipment must be used in the maximal possible measure. For this reason, it is necessary to know their utilization and to take measures to ensure their effective use. For performing such an analysis and to design subsequent measures, the use of the computer simulation method is very effective, e.g. simulation in Tecnomatix Plant Simulation program.

  19. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  20. The Utilization of Fungi and Their Products to Increase Livestock Production

    Directory of Open Access Journals (Sweden)

    Riza Zainuddin Ahmad

    2011-06-01

    Full Text Available Fungi as part of eukaryotic organisms play an important role for livestock. Some fungi are detrimental because they cause animal diseases, and some fungi are beneficial because they can improve animal productivity. The use of fungi that benefit from starting he has done as agents of biological control and to be as probiotics.Within the fungi, the use of simple technologies to high level degree for the benefit of cattle is developed. This paper describes some fungi that are beneficial and direction and suggestion to develop research on veterinary micology in Indonesia.

  1. Sustainable Utilization of Traditional Chinese Medicine Resources: Systematic Evaluation on Different Production Modes

    Directory of Open Access Journals (Sweden)

    Xiwen Li

    2015-01-01

    Full Text Available The usage amount of medicinal plant rapidly increased along with the development of traditional Chinese medicine industry. The higher market demand and the shortage of wild herbal resources enforce us to carry out large-scale introduction and cultivation. Herbal cultivation can ease current contradiction between medicinal resources supply and demand while they bring new problems such as pesticide residues and plant disease and pests. Researchers have recently placed high hopes on the application of natural fostering, a new method incorporated herbal production and diversity protecting practically, which can solve the problems brought by artificial cultivation. However no modes can solve all problems existing in current herbal production. This study evaluated different production modes including cultivation, natural fostering, and wild collection to guide the traditional Chinese medicine production for sustainable utilization of herbal resources.

  2. Productivity, utilization efficiency and sward targets for mixed pastures of marandugrass, forage peanut and tropical kudzu

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Soares de Andrade

    2012-03-01

    Full Text Available This study was carried out to evaluate the productivity and utilization efficiency of a mixed marandugrass (Brachiaria brizantha cv. Marandu, forage peanut (Arachis pintoi cv. Mandobi and tropical kudzu (Pueraria phaseoloides pasture, rotationally stocked at four daily forage allowance levels (6.6, 10.3, 14.3 and 17.9% of live weight, in order to define sward management targets for these mixtures. In each stocking cycle, dry matter (DM accumulation rates, defoliation intensity (%, grazing depth (% and grazed horizon (cm were evaluated. Sward targets were defined according to the sward condition that best conciliated the grass-legume balance and the equilibrium between forage production and utilization. Pastures submitted to higher forage allowance levels showed higher productivity, but were less efficiently utilized. It was not possible to establish sward management targets for marandugrass-tropical kudzu pastures. For marandugrass-forage peanut pastures the best sward state was set with forage allowance of 10.3% of live weight. Under rotational stocking, the following sward targets were suggested for these pastures in the Western Amazon: pre-grazing height of 30-35 cm (June to September or 45-50 cm (October to May and post-grazing sward height of 20-25 cm (June to September or 25-30 cm (October to May.

  3. A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato fruit discovered using a metabolic data fusion approach.

    NARCIS (Netherlands)

    Tikunov, Y.M.; Vos, de C.H.; Gonzalez Paramas, A.M.; Hall, R.D.; Bovy, A.G.

    2010-01-01

    A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from ripening tomato fruit (Solanum lycopersicum) upon fruit tissue disruption has been discovered in this study. Application of a multiinstrumental analytical platform for metabolic profiling of fruits from a

  4. Potential protective immunogenicity of tetanus toxoid, diphtheria toxoid and Cross Reacting Material 197 (CRM197) when used as carrier proteins in glycoconjugates.

    Science.gov (United States)

    Bröker, Michael

    2016-03-03

    When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that the conjugate carriers TT and DT can induce a protective immune response against a lethal challenge by toxins in animals, while glycoconjugates based on CRM197 failed to induce a protective immune response. Opportunities for new applications of glycoconjugates are discussed.

  5. Production and Utilization of Hemicelluloses from Renewable Resources for Sustainable Advanced Products

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa

    to the possibility of using hemicelluloses for special polysaccharide film applications in the packaging sector, starting from hemicellulose isolations from a side product of agricultural processes, hemicellulose characterization and assessing material properties and the potential use of hemicellulose films in later...... applications. First, water-soluble hemicelluloses of rye bran were extracted with a high-temperature treatment combined with enzymatic starch removal. After the hot water extraction, nonsoluble fibers and protein fractions were separated and the washed fiber fraction was further treated with alkali (Na.......35, while the waterextracted material had an Ara/Xyl ratio of 0.54. In order to analyse the monosaccharide composition of the isolated hemicelluloses, a method based on gas chromatography-mass spectrometry analysis of acetylated methyl glycosides was developed. The derivatives of the monosaccharides...

  6. Utilization of lignite power generation residues for the production of lightweight aggregates.

    Science.gov (United States)

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.

  7. Utilization of tropical crop residues and agroindustrial by-products in animal nutrition. Constraints and perspectives

    International Nuclear Information System (INIS)

    Preston, T.R.; Parra, R.

    1983-01-01

    The importance of by-products and crop residues as animal feeds is increasing steadily. This is a consequence of the increasing demand for cereal grains as both human and animal (chiefly poultry) food, and the increasing demand for energy coupled with decreasing availability of fossil fuels. The effects of these two trends are that primary use of land for livestock production (usually grazing systems) will steadily diminish; at the same time, sources of biomass will increase in importance as renewable energy sources, and greater emphasis will be placed on draught animal power. Most by-products and crop residues are fibrous and therefore of only low to moderate nutritive value, or have special physical and chemical characteristics making them difficult to incorporate in conventional ''balanced'' rations. Such feed raw materials may need special processing and/or special forms of supplementation if they are to be used efficiently. It is hypothesized that industrial by-products and crop residues will be more efficiently utilized if they are incorporated in diversified and integrated production systems, i.e. (a) livestock production is integrated with production of cash crops both for food and fuel; (b) different livestock species are utilized in the same enterprise in a complementary way; (c) livestock feeding is based on crop residues (energy) supplemented with protein-rich forages and aquatic plants; and (d) animal wastes are recycled and used for food, fertilizer and fuel. This strategy is particularly suitable for the conditions in (i) tropical countries, whose climate favours high crop/biomass yields per unit area and ease of fermentation of organic wastes, and (ii) family farms, for which diversification means greater opportunity for self-sufficiency and increased possibilities for use of family resources. (author)

  8. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources.

    Science.gov (United States)

    Luthfi, Abdullah Amru Indera; Manaf, Shareena Fairuz Abdul; Illias, Rosli Md; Harun, Shuhaida; Mohammad, Abdul Wahab; Jahim, Jamaliah Md

    2017-04-01

    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.

  9. Productivity, carbon utilization, and energy content of mass in scalable microalgae systems.

    Science.gov (United States)

    Murray, Kyle E; Shields, Jeremy A; Garcia, Nicholas D; Healy, Frank G

    2012-06-01

    This study was designed to examine carbon utilization within scalable microalgae production systems. Neochloris oleoabundans was produced in replicated troughs containing BG11 nutrient formulation. Atmospheric CO(2) was supplemented with ∼5% CO(2) or with NaHCO(3), and the pH of troughs receiving NaHCO(3) was adjusted with HCl or H(3)PO(4). Peak biomass concentrations reached 950, 1140, or 850 mg L(-1) and biomass productivities of 109, 96, and 74 mg L(-1) day(-1) were achieved in the CO(2), NaHCO(3):HCl and NaHCO(3):H(3)PO(4) troughs, respectively. The highest productivity is expected in a scaled-up continuous batch process of the CO(2) supplemented system, which was projected to yield 8948 L lipids ha(-1)yr(-1). Carbon utilization in the CO(2), NaHCO(3):HCl and NaHCO(3):H(3)PO(4) systems was ∼0.5, 15.5, and 12.9%, while the energy content of the combustible biomass was 26.7, 13.2, and 15.4 MJ kg(-1), respectively. Techno-economic analyses of microalgal production systems should consider efficiencies and cost-benefit of various carbon sources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. UN-ECE task force: 'by-product utilization from stationary installations'

    International Nuclear Information System (INIS)

    Hackl, A. E.; Zehetner, G.

    1996-09-01

    The task force has concluded as followed: Major sources of by-products considered in this report from stationary installations are large scale firing installations, waste incineration, upgrading processes and utilization in iron and steel, aluminium and copper industry, and the pulp and paper industry. The share of each sector source to the total amount of by-products generated differs significantly in the participating countries. State of the art processes as described in the report take account of the need for integrated pollution prevention and control. In particular the requirements set out in the Convention on Long Range Transboundary Air Pollution can still be satisfied when applying these state of the art processes. The report shows that a number of techniques for avoidance, reduction and/or utilization of by-products are in commercial operation in the branches discussed. They can therefore be considered to be best available. For some special by-products technical processes for the treatment are still in development and are not yet state-of-the-art. The implementation of the already proven techniques varies considerably in the different ECE-countries. This is mainly due to the following circumstances: differences in the design and stringency of legal regulations, availability of landfilling sites, costs of disposal, differences in industrial structure. Problems with by-product utilization originate mainly from: a) from a loss of international competitiveness of the respective industrial sector, if the reduction of the amount of by-products or their utilization leads to higher costs than conventional processes; b) from quality standards for materials which are inadequate for secondary raw materials thus creating acceptance problems of these materials. C) In some cases incineration and/or thermal recycling processes generate PCDD/F. quantities produces may be capable of reduction by means of process modification. If, however PCDD/F is released to the

  12. Production of Jet Fuels from Coal Derived Liquids. Volume 10. Jet Fuels Production By-Products, Utility and Sulfur Emissions Control Integration Study

    Science.gov (United States)

    1989-06-01

    the H2S removal efficiency of the Stretford /Sulfolin process . 20.33 Commereial Experience All the equipment has been used In commercial processes ...Content Definition ........... 12 6.3 Process and Intermediate Stream Definition .................. 15 6.4 Replacement Fuel Requirements...20 6.5 Jet Fuels/Chemical Production Facility Investment, Operating Costs, and Utility Consumption .................. 32 7.0 Process

  13. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility

    Science.gov (United States)

    Wang, Zhaoli; Zhong, Ruida; Lai, Chengguang; Chen, Jiachao

    2017-11-01

    Pre-occupation evaluation of latest generation satellite-based precipitation products (SPPs) is an essential step before the massive scale use. Taking the Beijiang River Basin as the case study, we used nine statistical evaluation indices and the Variable Infiltration Capacity (VIC) distributed hydrological model to quantitatively evaluate the performance and the hydrological utility of three Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) products: the near-real-time ;Early; run and ;Late; run IMERG products (IMERG-E and IMERG-L), and the post-real-time ;Final; run IMERG product (IMERG-F) over south China during 2014-2015, with the last-generation Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42-V7 product as comparison. The IMERG-F presents satisfactory accuracy with high correlation coefficient (CC = 0.63) and low relative bias (0.92%), while the IMERG-E and IMERG-L performs relatively poorly featuring low correlation (with CC of 0.49 and 0.52 respectively) with the ground observations. All of the three IMERG products present apparently higher probability of detection (POD, 0.64-0.67) but have higher false alarm ratio (FAR, ≧ 0.14) than the 3B42-V7. The hydrological simulation under scenario I (model calibrated by the gauge observations) shows that, the IMERG-F, with a high Nash-Sutcliffe coefficient of efficiency (NSCE) of 0.742, presents better hydrological performance than the 3B42-V7; the IMERG-E and IMERG-L perform poorly for the whole simulation period with NSCE lower than 0.35 and relative bias higher than 28% while perform satisfactorily during the flood season with apparently higher NSCE of 0.750 and 0.733 respectively. The hydrological simulation under scenario II (model calibrated by the 3B42-V7) shows that the performance of all the IMERG products was significantly improved. Generally, the IMERG-F has high accuracy and good hydrological utility, while the

  14. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel thermodyn......Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel.......Both power production and heat pumps may benefit from the development as both technologies utilize a heat source. This makes it possible to cover the complete temperature range of low temperature sources. The development may contribute to significantly lower energy consumption in Danish industry and shipping....... This will provide the scientific basis and devise potential innovations needed for implementation of technologies utilizing lowtemperature energy sources in Denmark. Thereby, contributing to the development of the future society with no use of fossil fuels and with high shares of intermittent, renewable energy...

  15. Assessing the Utility of and Improving USGS Earthquake Hazards Program Products

    Science.gov (United States)

    Gomberg, J. S.; Scott, M.; Weaver, C. S.; Sherrod, B. L.; Bailey, D.; Gibbons, D.

    2010-12-01

    A major focus of the USGS Earthquake Hazards Program (EHP) has been the development and implementation of products and information meant to improve earthquake hazard assessment, mitigation and response for a myriad of users. Many of these products rely on the data and efforts of the EHP and its partner scientists who are building the Advanced National Seismic System (ANSS). We report on a project meant to assess the utility of many of these products and information, conducted collaboratively by EHP scientists and Pierce County Department of Emergency Management staff. We have conducted focus group listening sessions with members of the engineering, business, medical, media, risk management, and emergency response communities as well as participated in the planning and implementation of earthquake exercises in the Pacific Northwest. Thus far we have learned that EHP and ANSS products satisfy many of the needs of engineers and some planners, and information is widely used by media and the general public. However, some important communities do not use these products despite their intended application for their purposes, particularly county and local emergency management and business communities. We have learned that products need to convey more clearly the impact of earthquakes, in everyday terms. Users also want products (e.g. maps, forecasts, etc.) that can be incorporated into tools and systems they use regularly. Rather than simply building products and posting them on websites, products need to be actively marketed and training provided. We suggest that engaging users prior to and during product development will enhance their usage and effectiveness.

  16. Blood Product Utilization Among Trauma and Nontrauma Massive Transfusion Protocols at an Urban Academic Medical Center.

    Science.gov (United States)

    Patel, Eshan U; Ness, Paul M; Marshall, Christi E; Gniadek, Thomas; Efron, David T; Miller, Peter M; Zeitouni, Joseph A; King, Karen E; Bloch, Evan M; Tobian, Aaron A R

    2017-09-01

    Hospital-wide massive transfusion protocols (MTPs) primarily designed for trauma patients may lead to excess blood products being prepared for nontrauma patients. This study characterized blood product utilization among distinct trauma and nontrauma MTPs at a large, urban academic medical center. A retrospective study of blood product utilization was conducted in patients who required an MTP activation between January 2011 and December 2015 at an urban academic medical center. Trauma MTP containers included 6 red blood cell (RBC) units, 5 plasma units, and 1 unit of apheresis platelets. Nontrauma MTP containers included 6 RBC and 3 plasma units. There were 334 trauma MTP activations, 233 nontrauma MTP activations, and 77 nontrauma MTP activations that subsequently switched to a trauma MTP ("switched activations"). All nontrauma MTP activations were among bleeding patients who did not have a traumatic injury (100% [233/233]). Few patients with a nontrauma activation required ad hoc transfusion of RBC units (1.3% [95% confidence interval {CI}, 0.3%-3.7%]) or plasma (3.4% [95% CI, 1.5%-6.7%]), and only 45.5% (95% CI, 39.0%-52.1%) required ad hoc transfusion of apheresis platelets. Compared to trauma and switched activations, nontrauma activations transfused a lower median number of RBC, plasma, and apheresis platelet units (P use of hospital-wide nontrauma MTPs are warranted since an MTP designed for nontrauma patient populations may yield a key strategy to optimize blood product utilization in comparison to a universal MTP for both trauma and nontrauma patients.

  17. Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review

    Directory of Open Access Journals (Sweden)

    Yasuaki Maeda

    2012-03-01

    Full Text Available More than 10 million tons of biodiesel fuel (BDF have been produced in the world from the transesterification of vegetable oil with methanol by using acid catalysts (sulfuric acid, H2SO4, alkaline catalysts (sodium hydroxide, NaOH or potassium hydroxide, KOH, solid catalysts and enzymes. Unfortunately, the price of BDF is still more expensive than that of petro diesel fuel due to the lack of a suitable raw material oil. Here, we review the best selection of BDF production systems including raw materials, catalysts and production technologies. In addition, glycerol formed as a by-product needs to be converted to useful chemicals to reduce the amount of glycerol waste. With this in mind, we have also reviewed some recent studies on the utilization of glycerol.

  18. NEW APPROACH TO OIL PALM WOOD UTILIZATION FOR WOODWORKING PRODUCTION Part 1: Basic Properties

    Directory of Open Access Journals (Sweden)

    Jamal Balfas

    2006-03-01

    Full Text Available An explosive development in oil palm plantations in the country has produced a consequence in the generation of  plantation wastes. The  disposal of these wastes  has created  an  enormous environmental problem that some practical solution to their economic utilization has to  be sought.  A series of experiments have been accomplished to observe the possibility of converting the oil palm stem into valuable woodworking products. The  first stage of  this effort was determining basic characteristics of oil palm wood.  Results in general showed that the wood has a great characteristic variation across and along the stem, which may develop problems in its utilization. Characteristics of this wood also vary according to species variety.  Quality degradations of oil palm wood were mostly happened during drying process; hence, modifications to upgrade quality should be undertaken before or within the drying process.

  19. Industrial waste utilization in the panels production for high buildings facade and socle facing

    Science.gov (United States)

    Vitkalova, Irina; Torlova, Anastasiya; Pikalov, Evgeniy; Selivanov, Oleg

    2018-03-01

    The research presents comprehensive utilization of such industrial waste as galvanic sludge, broken window glass as functional additives for producing ceramics for facade and socle paneling in high-rise construction. The basic charge component is low-plasticity clay, which does not allow producing high-quality products if used without any functional additives. The application of the mentioned above components broadens the resource base, reduces production cost and the mass of the products in comparison with the currently used facing ceramics. The decrease of product mass helps to reduce the load on the basement and to use ceramic material in high-rise construction more effectively. Additional advantage of the developed composition is the reducing of production energy intensity due to comparatively low pressing pressure and firing temperature thus reducing the overall production cost. The research demonstrates the experimental results of determining density, compressive strength, water absorption, porosity and frost resistance of the produced ceramic material. These characteristics prove that the material can be applied for high buildings outdoor paneling. Additional research results prove ecologic safety of the produced ceramic material.

  20. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues.

    Science.gov (United States)

    Al-Abdallah, Wahib; Dahman, Yaser

    2013-11-01

    The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62-64 % that affected final BC production.

  1. Modeling and Optimizing Energy Utilization of Steel Production Process: A Hybrid Petri Net Approach

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available The steel industry is responsible for nearly 9% of anthropogenic energy utilization in the world. It is urgent to reduce the total energy utilization of steel industry under the huge pressures on reducing energy consumption and CO2 emission. Meanwhile, the steel manufacturing is a typical continuous-discrete process with multiprocedures, multiobjects, multiconstraints, and multimachines coupled, which makes energy management rather difficult. In order to study the energy flow within the real steel production process, this paper presents a new modeling and optimization method for the process based on Hybrid Petri Nets (HPN in consideration of the situation above. Firstly, we introduce the detailed description of HPN. Then the real steel production process from one typical integrated steel plant is transformed into Hybrid Petri Net model as a case. Furthermore, we obtain a series of constraints of our optimization model from this model. In consideration of the real process situation, we pick the steel production, energy efficiency and self-made gas surplus as the main optimized goals in this paper. Afterwards, a fuzzy linear programming method is conducted to obtain the multiobjective optimization results. Finally, some measures are suggested to improve this low efficiency and high whole cost process structure.

  2. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source.

    Science.gov (United States)

    Mohandas, S P; Balan, L; Lekshmi, N; Cubelio, S S; Philip, R; Bright Singh, I S

    2017-03-01

    Production and characterization of polyhydroxybutyrate (PHB) from moderately halophilic bacterium Vibrio harveyi MCCB 284 isolated from tunicate Phallusia nigra. Twenty-five bacterial isolates were obtained from tunicate samples and three among them exhibited an orange fluorescence in Nile red staining indicating the presence of PHB. One of the isolates, MCCB 284, which showed rapid growth and good polymer yield, was identified as V. harveyi. The optimum conditions of the isolate for the PHB production were pH 8·0, sodium chloride concentration 20 g l -1 , inoculum size 0·5% (v/v), glycerol 20 g l -1 and 72 h of incubation at 30°C. Cell dry weight (CDW) of 3·2 g l -1 , PHB content of 2·3 g l -1 and final PHB yield of 1·2 g l -1 were achieved. The extracted PHB was characterized by FTIR, NMR and DSC-TGA techniques. An isolate of V. harveyi that could effectively utilize glycerol for growth and PHB accumulation was obtained from tunicate P. nigra. PHB produced was up to 72% based on CDW. This is the first report of an isolate of V. harveyi which utilizes glycerol as the sole carbon source for PHB production with high biomass yield. This isolate could be of use as candidate species for commercial PHB production using glycerol as the feed stock or as source of genes for recombinant PHB production or for synthetic biology. © 2016 The Society for Applied Microbiology.

  3. Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

    Directory of Open Access Journals (Sweden)

    Ryan S. Renslow

    2017-06-01

    Full Text Available In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U. In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS. The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS and loosely associated EPS (laEPS, respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material. The input variables of the model were the lactate, fumarate, cell, and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental

  4. Diel production and microheterotrophic utilization of dissolved free amino acids in waters off southern California

    International Nuclear Information System (INIS)

    Carlucci, A.F.; Craven, D.B.; Henrichs, S.M.

    1984-01-01

    Diel patterns of dissolved free amino acid (DFAA) concentration and microheterotrophic utilization were examined in the spring and fall of 1981 in euphotic waters from the base of the mixed layer off the southern California coast. The average depths of the isotherms sampled were 19.2 m for spring and 9.0 for fall. Total DFAA levels were generally higher in the spring than in the fall, 18 to 66 nM and 14 to 20 nM, respectively. Two daily concentration maxima and minima were observed for total DFAAs as well as for most individual DFAAs. Maxima were usually measured in the mid-dark period and in the early afternoon; minima were typically observed in early morning and late afternoon. Bacterial cell numbers reached maximal values near midnight in both seasons. The increases coincided with one of the total DFAA maxima. The second total DFAA maximum occurred in early to midafternoon, during the time of maximum photosynthetic carbon production and rapid dissolved amino acid utilization. Microbial metabolism (incorporation plus respiration) of selected 3 H-amino acids was 2.7 to 4.1 times greater during the daylight hours. DFAA turnover times, based on these metabolic measurements, ranged between 11 and 36 h for the amino acids tested, and rates were 1.7 to 3.7 times faster in the daylight hours than at night. DFAA distributions were related to primary production and chlorophyll a concentrations. Amino acids were estimated to represent 9 to 45% of the total phytoplankton exudate. Microheterotrophic utilization or production of total protein amino acids was estimated as 3.6 μg of C liter -1 day -1 in spring and 1.9 μg of C liter -1 day -1 in the fall. Assimilation efficiency for dissolved amino acids averaged 65% for marine microheterotrophs

  5. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.

    Science.gov (United States)

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Sticklen, Mariam

    2016-06-01

    Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Environmental effects of energy production and utilization in the U. S. Volume 2. Public health effects

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W. (comp.)

    1976-06-01

    While health hazards from air pollution are observed there is little documenting research for specific toxicity levels. This volume is an attempt to compile all relevant information in one place as a data bank of information that will aid in the required cost-benefit analysis for an energy production or utilization project. Sources include textbooks, journal articles, technical reports, memoranda, letters, and personal communications. The compilation is organized into air pollution, water pollution and land use considerations and cover both radioactive and chemical pollutants. (PCS)

  7. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    OpenAIRE

    Leonard D. Holmes; Floyd L. Inman III; Sivanadane Mandjiny; Rinu Kooliyottil; Devang Upadhyay

    2013-01-01

    The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process s...

  8. Characterization and Utilization of castor bean seed oil extract for production of medicated soap.

    OpenAIRE

    Abdulrasheed A; Aroke U. O; Muazu M.T.

    2015-01-01

    The research work is to investigate the potential utilization of castor bean seed oil extract in the production of medicated soap. The oil was extracted via soxhlet extractor using hexane as solvent. The characterization analysis reveals the acid value and saponification value of the oil which were between the ranges of values specified by ASTM. The soap produced gave a pH of (8.9), foam height (16cm), alcohol insoluble (3.45%), moisture content (4.2%) and free acidity of (0.10). The antibact...

  9. Efficiency of utilization of dietary energy for milk production in lactating crossbred cattle (Bos Indicus

    Directory of Open Access Journals (Sweden)

    Debashis Saha

    2012-09-01

    Full Text Available The present study was conducted on efficiency of utilization of dietary energy for milk production in lactating crossbred cattle. 18 lactating crossbred cattle of early to mid-lactation, approximate body weight (375.39±23.43 kg, milk yield, parity and stage of lactation were divided into three groups of six animals each and were fed 0, 50 and 100% diammonium phosphate (DAP in the mineral mixture of concentrates for 120 days. The chaffed mixed roughage (berseem + wheat straw and concentrate mixture was fed to supply about nearly 18:82 concentrate to roughage ratio on dry matter basis. Tap water was available to the animals twice daily. A metabolism trial of seven days was conducted at the end of experiment to study digestibility of organic nutrients and balances of energy. DAP did not affect the nutrient intake, body weight changes, digestibility of Dry matter (DM, Crude protein (CP, Ether extract (EE, Crude fiber (CF, Nitrogen free extract (NFE and daily milk yield. It was concluded that the at 46.07 Mcal Gross energy intake level the losses in feces, urine, methane and heat production was 45.82%, 5.40%, 4.31% and 33.01%, respectively, and net energy retention for milk production was 11.43%. The gross efficiency of conversion of metabolic energy ME for milk production was 35.69% and the net efficiency of conversion of ME for milk production was 39.56%.

  10. Prospects of sugarcane milling waste utilization for hydrogen production in India

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2007-01-01

    Cane-sugar producing countries also generate sufficient waste (bagasse) that is mostly utilized ''on-site'' as a replacement to coal in specialized boilers. In addition to sugar and molasses, about 25% by-product of the cane milling is bagasse that still retains 2.5% sugar on dry wt. basis.This paper deals with the prospects of bagasse fermentation for hydrogen production. It seems relevant, as India and Brazil are the major sugarcane producers in the world. The results obtained confirm bagasse, annually generated to a tune of 40 Mt (million tons) in India, can be diverted from the conventional burning or composting to fermentative hydrogen production in a cost-effective way. The processing cost of bagasse for hydrogen production (3Nm 3 ) equivalent to 1L petrol is about half. The system optimization for accessibility of polysaccharides in bagasse and the use of genetically efficient bacterial strains for agrowaste-based hydrogen production seems the ideal option for clean energy generation

  11. Greening Industrial Production through Waste Recovery: "Comprehensive Utilization of Resources" in China.

    Science.gov (United States)

    Zhu, Junming; Chertow, Marian R

    2016-03-01

    Using nonhazardous wastes as inputs to production creates environmental benefits by avoiding disposal impacts, mitigating manufacturing impacts, and conserving virgin resources. China has incentivized reuse since the 1980s through the "Comprehensive Utilization of Resources (CUR)" policy. To test whether and to what extent environmental benefits are generated, 862 instances in Jiangsu, China are analyzed, representing eight industrial sectors and 25 products that qualified for tax relief through CUR. Benefits are determined by comparing life cycle inventories for the same product from baseline and CUR-certified production, adjusted for any difference in the use phase. More than 50 million tonnes of solid wastes were reused, equivalent to 51% of the provincial industrial total. Benefits included reduction of 161 petajoules of energy, 23 million tonnes of CO2 equivalent, 75 000 tonnes of SO2 equivalent, 33 000 tonnes of NOX, and 28 000 tonnes of PM10 equivalent, which were 2.5%-7.3% of the provincial industrial consumption and emissions. The benefits vary substantially across industries, among products within the same industry, and when comparing alternative reuse processes for the same waste. This first assessment of CUR results shows that CUR has established a firm foundation for a circular economy, but also suggest additional opportunities to refine incentives under CUR to increase environmental gain.

  12. Efficient utilization of cassava pulp for succinate production by metabolically engineered Escherichia coli KJ122.

    Science.gov (United States)

    Sawisit, Apichai; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn; Jantama, Kaemwich

    2015-01-01

    A metabolically engineered Escherichia coli KJ122 was efficiently utilized for succinate production from cassava pulp during batch separate hydrolysis and fermentation (SHF) under simple anaerobic conditions. Succinate concentration of 41.46 ± 0.05 g/L with yield and productivity of 82.33 ± 0.14 g/100 g dry pulp and 0.84 ± 0.02 g/L/h was obtained. In batch simultaneous saccharification and fermentation (SSF), hydrolysis of 12 % (w/v) cassava pulp with an enzyme loading of 2 % AMG + 3 % Cel (v/w) at pH 6.5 was optimized at 39 °C. Succinate concentration of 80.86 ± 0.49 g/L with a yield of 70.34 ± 0.37 g/100 g dry pulp and a productivity of 0.84 ± 0.01 g/L/h was attained using E. coli KJ122. Fed-batch SSF significantly enhanced succinate concentration to 98.63 ± 0.12 g/L at yield and productivity of 71.64 ± 0.97 g/100 g dry pulp and 1.03 ± 0.01 g/L/h. This result indicated an efficient and economical succinate production from cassava pulp using SHF and SSF by the use of E. coli KJ122.

  13. Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment.

    Science.gov (United States)

    Wang, San-Lang; Wu, Pei-Chen; Liang, Tzu-Wen

    2009-05-26

    We have developed a culture system for efficient production of chitosanase by Bacillus sp. TKU004. TKU004 was cultivated by using squid pen powder as the sole carbon/nitrogen source. The effects of autoclave treatments of the medium on the production of chitosanase were investigated. Autoclave treatment of squid pen powder for 45 min remarkably promoted enzyme productivity. When the culture medium containing an initial squid pen powder concentration of 3% was autoclaved for 45 min, the chitosanase activity was optimal and reached 0.14-0.16 U/mL. In addition, extracellular surfactant-stable chitosanase was purified from the TKU004 culture supernatant. The antioxidant activity of TKU004 culture supernatant was determined through the scavenging ability of DPPH, with 70% per mL. With this method, we have shown that marine wastes can be utilized efficiently through prolonged autoclave treatments to generate a high value-added product, and have revealed its hidden potential in the production of functional foods.

  14. Utilization of rapeseed pellet from fatty acid methyl esters production as an energy source.

    Science.gov (United States)

    Ciunel, Krzysztof; Klugmann-Radziemska, Ewa

    2014-01-01

    Rapeseed pellet - crushed seed residue from oil extraction is a by-product of fatty acid methyl esters production process. As other types of biomass, it can either be burned directly in furnaces or processed to increase its energetic value. Biomass is renewable, abundant and has domestic usage; the sources ofbiomass can help the world reduce its dependence on petroleum products, fossil coal and natural gas. Energetically effective utilization of rapeseed pellet could substantially improve the economic balance of an individual household in which biodiesel for fulfilling the producer's own energetic demand is obtained. In this article, the experimental results of combusting rapeseed pellet in a calorimeter, combustion in a boiler heater and the analysis of the emissions level of different pollutants in exhaust fumes during different stages of biomass boiler operation are presented. It has been proved that the pellet, a by-product of biodiesel production, is not only a valuable substitute of animal fodder, but also an excellent renewable and environmentally friendly energy source, viable for use in household tap water heating installations.

  15. Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk.

    Science.gov (United States)

    Navya, P N; Pushpa, S Murthy

    2013-08-01

    Coffee cherry husk (CH) is one of the major by-products obtained from coffee processing industry and accounts to 43 ± 5.9% of cellulose. Screening of fungal organism for cellulase production was carried out and the potential organism was identified as Rhizopus stolonifer by internal transcribed spacer's (ITS)-5.8S rDNA analysis. A systematic study with response surface methodology (RSM) based on CCRD was used to study the interactions among the variables such as pH (3-7), moisture (40-80%) and progression duration (72-168 h) of the fermentation process to maximize the enzyme production. Under the optimized cultivation condition, R. stolonifer synthesized 22,109 U/gds. Model validations at optimum operating conditions showed excellent agreement between the experimental results and the predicted responses with a confidence level of 95%. Endoglucanase thus produced was utilized for ethanol production by simultaneous saccharification and fermentation and maximum of 65.5 g/L of ethanol was obtained. This fungal cellulase has also reported to be efficient detergent additives and promising for commercial use. The present study demonstrates coffee husk as a significant bioprocess substrate. Statistical optimization with major parameters for cellulase production can be highly applicable for industrial scale. Furthermore, value addition to coffee husk with sustainable waste management leading to environment conservation can be achieved.

  16. Well-to-Wheel Analysis of Solar Hydrogen Production and Utilization for Passenger Car Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.; Meier, A.

    2006-07-01

    A well-to-wheel analysis is conducted for solar hydrogen production, transport, and usage in future passenger car transportation. Solar hydrogen production methods and selected conventional production Technologies are examined using a life cycle assessment (LCA). Utilization of hydrogen in fuel cells is compared with advanced gasoline and diesel power trains. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced fossil fuel power trains and by more than 90% if car and road infrastructure are not considered. Solar hydrogen production allows a reduction of fossil energy requirements by a factor of up to 10 compared to using conventional Technologies. Major environmental impacts are associated with the construction of the steel-intensive infrastructure for solar energy collection due to mineral and fossil resource consumption as well as discharge of pollutants related to today's steel production technology. (Author)

  17. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2

    Science.gov (United States)

    Kong, Lingbing; Vijayakrishnan, Balakumar; Kowarik, Michael; Park, Jin; Zakharova, Alexandra N.; Neiwert, Larissa; Faridmoayer, Amirreza; Davis, Benjamin G.

    2016-03-01

    Certain non-mammalian cell wall sugars are conserved across a variety of pathogenic bacteria. This conservation of structure, combined with their structural differences when compared with mammalian sugars, make them potentially powerful epitopes for immunization. Here, we report the synthesis of a glycoconjugate that displays the so-called ‘inner core’ sugars of Gram-negative bacterial cell walls. We also describe an antibacterial vaccination strategy based on immunization with the glycoconjugate and the subsequent administration of an inhibitor that uncovers the corresponding epitope in pathogenic bacteria. The core tetrasaccharide, Hep2Kdo2, a common motif in bacterial lipopolysaccharides, was synthesized and attached via a chain linker to a diphtheria toxin mutant carrier protein. This glycoconjugate generated titres of antibodies towards the inner core tetrasaccharide of the lipopolysaccharide, which were capable of binding the cell-surface sugars of bacterial pathogenic strains including Neisseria meningitidis, Pseudomonas aeruginosa and Escherichia coli. Exposure of bacterial lipopolysaccharide in in vitro experiments, using an inhibitor of capsular polysaccharide transport, enabled potent bacterial killing with antiserum.

  18. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa.

    Science.gov (United States)

    Carrasco-Yepez, Maricela; Campos-Rodriguez, Rafael; Godinez-Victoria, Marycarmen; Rodriguez-Monroy, Marco Aurelio; Jarillo-Luna, Adriana; Bonilla-Lemus, Patricia; De Oca, Arturo Contis-Montes; Rojas-Hernandez, Saul

    2013-10-01

    We analyzed the possible role of glycoconjugates containing α-D-mannose and α-D-glucose residues in adherence of trophozoites to mouse nasal epithelium. Trophozoites incubated with 20 μg of one of three different lectins which preferentially recognized these residues were inoculated intranasally in Balb/c mice. Mouse survival was 40% with Pisum sativum and Canavalia ensiformis and 20% with Galanthus nivalis amebic pretreatment, compared with 0% survival for control animals administered trophozoites without pretreatment. Possibly some of the glycoproteins found in Naegleria fowleri represent an adherence factor. Differences in the saccharide sequences of the Naegleria species, even on the same glycoconjugate structure, could explain the different results corresponding to the distinct pretreatments (C. ensiformis, G. nivalis, and P. sativum). We found a higher expression of glycoconjugates recognized by P. sativum in Naegleria lovaniensis than N. fowleri, probably due to the higher number of oligosaccharides containing an α-1,6-linked fucose moiety expressed on the former species.

  19. Solution conformation and flexibility of capsular polysaccharides from Neisseria meningitidis and glycoconjugates with the tetanus toxoid protein

    Science.gov (United States)

    Abdelhameed, Ali Saber; Morris, Gordon A.; Almutairi, Fahad; Adams, Gary G.; Duvivier, Pierre; Conrath, Karel; Harding, Stephen E.

    2016-10-01

    The structural integrity of meningococcal native, micro-fluidized and activated capsular polysaccharides and their glycoconjugates - in the form most relevant to their potential use as vaccines (dilute solution) - have been investigated with respect to their homogeneity, conformation and flexibility. Sedimentation velocity analysis showed that the polysaccharide size distributions were generally bimodal with some evidence for higher molar mass forms at higher concentration. Weight average molar masses Mw where lower for activated polysaccharides. Conjugation with tetanus toxoid protein however greatly increased the molar mass and polydispersity of the final conjugates. Glycoconjugates had an approximately unimodal log-normal but broad and large molar mass profiles, confirmed by sedimentation equilibrium “SEDFIT MSTAR” analysis. Conformation analysis using HYDFIT (which globally combines sedimentation and viscosity data), “Conformation Zoning” and Wales-van Holde approaches showed a high degree of flexibility - at least as great as the unconjugated polysaccharides, and very different from the tetanus toxoid (TT) protein used for the conjugation. As with the recently published finding for Hib-TT complexes, it is the carbohydrate component that dictates the solution behaviour of these glycoconjugates, although the lower intrinsic viscosities suggest some degree of compaction of the carbohydrate chains around the protein.

  20. A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate.

    Science.gov (United States)

    Abdelhameed, Ali Saber; Adams, Gary G; Morris, Gordon A; Almutairi, Fahad M; Duvivier, Pierre; Conrath, Karel; Harding, Stephen E

    2016-02-26

    Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 10(6) g.mol(-1)) compared to the native (Mw ~ 1.2 × 10(6) g.mol(-1)). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 10(6) g.mol(-1)), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution.

  1. Utilization of cast seaweed and waste from pectin production for anaerobic digestion

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Christensen, Thomas Budde; Kjær, Tyge

    2011-01-01

    The paper describes a preliminary study on the environmental consequences of realizing a biogas plant using locally available biomass fractions in Solrød, Denmark. The biomass, which will be used at the plant, will consist of: cast seaweed (app. 20,000 tons year-1), waste from pectin production...... and cast seaweed (winter sample): 118 ml CH4 g VS-1. The predicted annual biogas production of the plant was 5.4 million m3 CH4. An environmental assessment concluded that a biogas plant using the aforementioned organic materials will reduce greenhouse gas emissions between 25,000 tons CO2 year-1 and 40......,000 tons CO2 year-1 depending on the type of energy utilization. Reduction of nutrients in the coastal zone by removal of seaweed was found to be of high value....

  2. Non-protein and agro-industrial by-products utilization by ruminants in Bangladesh

    International Nuclear Information System (INIS)

    Tareque, A.M.M.

    1987-01-01

    A series of experiments were designed to (1) investigate mixtures of locally available feedstuffs, particularly agro-industrial by-products with or without non-protein nitrogen supplementation as production rations for local and imported breeds of ruminants, (2) formulate rations based on locally available feedstuffs which can be compounded either on a large scale or at the village level for local animals, (3) determine the nutritive value of some non-conventional feedstuffs in terms of their digestibility and their ability to promote microbial synthesis. Rice straw, constituting about 85% of the total available feed dry matter in Bangladesh, is considered a basal, or sometimes the sole, feed for ruminant animals. The efficiency of utilization of rice straw could be improved by adding non-conventional feed resources, such as azolla, banana plant, sweet potato leaves and other legumes and grasses. Rates of growth and feed efficiency by local animals were found to be higher in those fed with urea treated rice straw or bagasse, with or without the addition of concentrates, than in animals fed untreated straw. Rations were also found to be satisfactory when rice straw was fed in combination with urea, legumes such as cowpea hay, azolla and sweet potato leaves or concentrates. It is concluded that the utilization of rice straw by ruminants can be improved by suitable supplementation with non-conventional feed resources. Research is needed to evaluate the use of molasses as a feed ingredient for ruminants in Bangladesh. (author)

  3. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.

    Science.gov (United States)

    Patowary, Rupshikha; Patowary, Kaustuvmani; Kalita, Mohan Chandra; Deka, Suresh

    2016-10-01

    The present study aimed at isolating rhamnolipid biosurfactant-producing bacteria that could utilize paneer whey, an abundant waste source as sole medium for the production purpose. Pseudomonas aeruginosa strain, SR17, was isolated from hydrocarbon-contaminated soil that could efficiently utilize paneer whey for rhamnolipid production and reduce surface tension of the medium from 52 to 26.5 mN/m. The yield of biosurfactant obtained was 2.7 g/l, upgraded to 4.8 g/l when supplemented with 2 % glucose and mineral salts. Biochemical, FTIR, and LC-MS analysis revealed that extracted biosurfactant is a combination of both mono and di-rhamnolipid congeners. The critical micelle concentration (CMC) was measured to be 110 mg/l. Emulsification activity of the biosurfactant against n-hexadecane, olive oil, kerosene, diesel oil, engine oil, and crude oil were found to be 83, 88, 81, 92, 86, and 100 %, respectively. The rhamnolipid was detected to be non-toxic against mouse fibroblastic cell line L292.

  4. Production of Solar Cells in Space from Non Specific Ores by Utilization of Electronically Enhanced Sputtering

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    An ideal method of construction in space would utilize some form of the Universal Differentiator and Universal Constructor as described by Von Neumann (1). The Universal Differentiator is an idealized non ore specific extractive device which is capable of breaking any ore into its constituent elements, and the Universal Constructor can utilize these elements to build any device with controllability to the nanometer scale. During the Human Exploration Initiative program in the early 1990s a conceptual study was done (2) to understand whether such devices were feasible with near term technology for the utilization of space resources and energy. A candidate system was proposed which would utilize electronically enhanced sputtering as the differentiator. Highly ionized ions would be accelerated to a kinetic energy at which the interaction between them and the lattice elections in the ore would be at a maximum. Experiments have shown that the maximum disintegration of raw material occurs at an ion kinetic energy of about 5 MeV, regardless of the composition and structure of the raw material. Devices that could produce charged ion beams in this energy range in space were being tested in the early 1990s. At this energy, for example an ion in a beam of fluorine ions yields about 8 uranium ions from uranium fluoride, 1,400 hydrogen and oxygen atoms from ice, or 7,000 atoms from sulfur dioxide ice. The ions from the disintegrated ore would then be driven by an electrical field into a discriminator in the form of a mass spectrometer, where the magnetic field would divert the ions into collectors for future use or used directly in molecular beam construction techniques. The process would require 10-7 Torr vacuum which would be available in space or on the moon. If the process were used to make thin film silicon solar cells (ignoring any energy inefficiency for beam production), then energy break even for solar cells in space would occur after 14 days.

  5. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    of environmental compatibility of energy efficiency pathways in biogas production and utilization, including management of spent digestate.

  6. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum

    Directory of Open Access Journals (Sweden)

    Jin Guojie

    2011-08-01

    Full Text Available Abstract Background Biochemical conversion of lignocellulose hydrolysates remains challenging, largely because most microbial processes have markedly reduced efficiency in the presence of both hexoses and pentoses. Thus, identification of microorganisms capable of efficient and simultaneous utilization of both glucose and xylose is pivotal to improving this process. Results In this study, we found that the oleaginous yeast strain Trichosporon cutaneum AS 2.571 assimilated glucose and xylose simultaneously, and accumulated intracellular lipid up to 59 wt% with a lipid coefficient up to 0.17 g/g sugar, upon cultivation on a 2:1 glucose/xylose mixture in a 3-liter stirred-tank bioreactor. In addition, no classic pattern of diauxic growth behavior was seen; the microbial cell mass increased during the whole culture process without any lag periods. In shake-flask cultures with different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. Simultaneous utilization of glucose and xylose was also seen during fermentation of corn-stover hydrolysate with a lipid content and coefficient of 39.2% and 0.15 g/g sugar, respectively. The lipid produced had a fatty-acid compositional profile similar to those of conventional vegetable oil, indicating that it could have potential as a raw material for biodiesel production. Conclusion Efficient lipid production with simultaneous consumption of glucose and xylose was achieved in this study. This process provides an exciting opportunity to transform lignocellulosic materials into biofuel molecules, and should also encourage further study to elucidate this unique sugar-assimilation mechanism.

  7. Sociodemographics, Comorbidities, Healthcare Utilization and Work Productivity in Japanese Patients with Adult ADHD.

    Directory of Open Access Journals (Sweden)

    Eiji Kirino

    Full Text Available This study compared the sociodemographic characteristics, comorbidities, healthcare resource utilization, and work productivity among Japanese adults who reported being diagnosed with attention-deficit/hyperactivity disorder (ADHD to those of a non-ADHD control population.Data for this study were captured from an online survey of adults in Japan conducted by Kantar Health using consumer panels. A total of 84 survey participants reported they had received a diagnosis of ADHD from a physician. Survey responses pertaining to functional status and resource utilization from this ADHD group were compared to those from a non-ADHD control group of 100 participants. Comparisons between the ADHD and non-ADHD groups were made using chi-square tests for categorical variables and t-tests for continuous variables.Participants in the ADHD group were on average slightly younger with a higher proportion of males. ADHD respondents reported significantly more comorbid depression, sleep difficulties, headaches, and anxiety than non-ADHD controls. Over the previous 6 months, the ADHD group made more visits to healthcare providers and the emergency room, and had more hospitalizations than non-ADHD controls. The ADHD group also rated their overall health status lower than the non-ADHD control group. Respondents with ADHD reported a significantly higher degree of health-related work impairment compared to non-ADHD, with greater absenteeism and decreased work productivity. The ADHD group indicated their symptoms negatively impacted relationships, self-esteem, and regular daily activities.Japanese adults with ADHD face a substantial burden of illness, including lower overall health status, increased number of comorbidities, greater healthcare utilization, and significant health-related occupational impairment compared to those without ADHD. Additional research is needed to develop a better understanding of both the consequences and treatment approaches for Japanese

  8. The effect of hyperactive bladder severity on healthcare utilization and labor productivity.

    Science.gov (United States)

    Angulo, J C; Brenes, F J; Ochayta, D; Lizarraga, I; Arumí, D; Trillo, S; Rejas, J

    2014-05-01

    To explore the relationship between the severity of urinary urge incontinence (UUI) on healthcare resources utilization (HRU) and loss of labor productivity of subjects with overactive bladder (OAB) in the general population in Spain. Secondary analysis of a cross-sectional web-based study conducted in the general population >18 years, through a battery of HRU questions asked using an online method. Probable OAB subjects were identified using a previously validated algorithm and a score >8 in the OAB-V8 questionnaire. HRU questions included an assessment of concomitant medication used as a consequence of OAB/UUI, pad utilization, and medical office visits. Patients were grouped according to the number of UUI episodes into 0, 1, 2-3 or 4+ episodes. Of a total of 2,035 subjects participating from the general population, 396 patients [52.5% women, mean age: 55.3 (11.1) years, OAB-V8 mean score: 14.5 (7.9)] were analyzed; 203 (51.3%) with 0 episodes, 119 (30.1%) with 1, 52 (13.1%) with 2 or 3, and 22 (5.6%) with 4 or more episodes. A linear and significant adjusted association was observed between the number of UUI episodes and HRU; the higher the number of daily episodes the higher the HRU. Subjects with more episodes had medical visits more frequently at the primary care (P = .001) and specialist (P = .009) level as well. Consumption of day (P < .001) and night (P < .001) urinary absorbents, anxiolytic medicines (P = .021) and antibiotics (P = .05) was higher in patients with more UUI episodes. The severity of OAB in terms of frequency of daily urge incontinence episodes was significantly and linearly associated with higher healthcare resources utilization and a decrease in labor productivity in subjects with probable OAB in Spain. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  9. Sociodemographics, Comorbidities, Healthcare Utilization and Work Productivity in Japanese Patients with Adult ADHD.

    Science.gov (United States)

    Kirino, Eiji; Imagawa, Hideyuki; Goto, Taro; Montgomery, William

    2015-01-01

    This study compared the sociodemographic characteristics, comorbidities, healthcare resource utilization, and work productivity among Japanese adults who reported being diagnosed with attention-deficit/hyperactivity disorder (ADHD) to those of a non-ADHD control population. Data for this study were captured from an online survey of adults in Japan conducted by Kantar Health using consumer panels. A total of 84 survey participants reported they had received a diagnosis of ADHD from a physician. Survey responses pertaining to functional status and resource utilization from this ADHD group were compared to those from a non-ADHD control group of 100 participants. Comparisons between the ADHD and non-ADHD groups were made using chi-square tests for categorical variables and t-tests for continuous variables. Participants in the ADHD group were on average slightly younger with a higher proportion of males. ADHD respondents reported significantly more comorbid depression, sleep difficulties, headaches, and anxiety than non-ADHD controls. Over the previous 6 months, the ADHD group made more visits to healthcare providers and the emergency room, and had more hospitalizations than non-ADHD controls. The ADHD group also rated their overall health status lower than the non-ADHD control group. Respondents with ADHD reported a significantly higher degree of health-related work impairment compared to non-ADHD, with greater absenteeism and decreased work productivity. The ADHD group indicated their symptoms negatively impacted relationships, self-esteem, and regular daily activities. Japanese adults with ADHD face a substantial burden of illness, including lower overall health status, increased number of comorbidities, greater healthcare utilization, and significant health-related occupational impairment compared to those without ADHD. Additional research is needed to develop a better understanding of both the consequences and treatment approaches for Japanese adults with ADHD.

  10. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase.

    Science.gov (United States)

    Runquist, David; Hahn-Hägerdal, Bärbel; Bettiga, Maurizio

    2010-12-01

    Baker's yeast (Saccharomyces cerevisiae) has been genetically engineered to ferment the pentose sugar xylose present in lignocellulose biomass. One of the reactions controlling the rate of xylose utilization is catalyzed by xylose reductase (XR). In particular, the cofactor specificity of XR is not optimized with respect to the downstream pathway, and the reaction rate is insufficient for high xylose utilization in S. cerevisiae. The current study describes a novel approach to improve XR for ethanol production in S. cerevisiae. The cofactor binding region of XR was mutated by error-prone PCR, and the resulting library was expressed in S. cerevisiae. The S. cerevisiae library expressing the mutant XR was selected in sequential anaerobic batch cultivation. At the end of the selection process, a strain (TMB 3420) harboring the XR mutations N272D and P275Q was enriched from the library. The V(max) of the mutated enzyme was increased by an order of magnitude compared to that of the native enzyme, and the NADH/NADPH utilization ratio was increased significantly. The ethanol productivity from xylose in TMB 3420 was increased ∼40 times compared to that of the parent strain (0.32 g/g [dry weight {DW}] × h versus 0.007 g/g [DW] × h), and the anaerobic growth rate was increased from ∼0 h(-1) to 0.08 h(-1). The improved traits of TMB 3420 were readily transferred to the parent strain by reverse engineering of the mutated XR gene. Since integrative vectors were employed in the construction of the library, transfer of the improved phenotype does not require multicopy expression from episomal plasmids.

  11. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  12. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions.

    Science.gov (United States)

    Omae, Iwao

    2016-04-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO 2 and H 2 , and hydrogen production from the formic acid. This formic acid can be a useful agent for H 2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g. , dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO 2 . 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N , N -dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds.

  13. Prospects for utilization of Electron Beam Accelerators (EBAs) for processing of food products

    International Nuclear Information System (INIS)

    Sarma, K.S.

    2014-01-01

    Radiation processing using gamma radiation and high energy electron beams has been in practice for more than three decades in the industry. Since gamma radiation has the ability of higher penetration in the material, large scale irradiators (mainly based on mega curies of 60 Co radioactive source) are successfully employed for treating bulk products in sterilization and food preservation applications. Electron beam, due to its low penetration, has been exploited exclusively for applications involving polymer modifications to irradiate thin finished end products like electrical cable insulations, heat shrinkable sheets, tubes, automobile tyres etc using high power EBAs (energies 0.5 MeV-4 MeV and powers around ∼100 kW). Out of around 2500 industrial EB units currently employed worldwide (with total installed power above 150 MWL 90% are in the low to medium energy range (0.5 MeV to 4 MeV) being used for polymer modifications. However, recent technological advances in the manufacturing sector of industrial high energy EBAs and product handling systems resulted in widening utilization of EB technology for applications involving bulk product irradiation

  14. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    Science.gov (United States)

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  15. Dry fermentation technology for utilization of Bio-energy crops/crop residues for biogas production

    Directory of Open Access Journals (Sweden)

    Sooch S. S.

    2015-04-01

    Full Text Available Indian state Punjab produces 160 lakh tones of paddy every year. More than this quantity of paddy, straw is also produced which is not properly utilized. Paddy is burnt in the farmer’s fields itself, which produces lot of smoke and atmospheric pollution. Farmers have their own difficulty for burning this valuable straw as they have to vacate the fields for the next crop. Biogas production is one alternative for the individual farmer, for individual village or on the regional basis. In our opinion, it is possible to digest paddy straw anaerobically for biogas production and the digested humus would be utilized as crop manure. Anaerobic digestion of crop waste cannot be done by conventional anaerobic process for biogas production because of the floating characteristics of paddy straw in water. New process of anaerobic digestion has to be followed with small quantity of water to avoid floating of paddy straw. This process is commonly known as dry fermentation. This technique is well known in United States, Taiwan, German and Sri Lanka. In these countries, steel containers are being used as digester for anaerobic digestion. Digester of steel is ideal but the cost involved is very huge. Attempts have been made at PAU to construct masonry structure as digester but lot of difficulties were being faced to make it gas tight. The PAU has found suitable method to make the digester strong and gas tight. The life of structure will be more than 15 years. The advantage of the masonry structure is that the whole structure will be underground on which cold would have little effect in winter. This process of Dry Fermentation is a batch process, once the digester is loaded and activated, would produce sufficient gas for a period of 3 - 4 months. Therefore, 2 sets of digester are required to meet the whole year demand.

  16. Total Syntheses of Polycyclic Polyprenylated Acylphloroglucinol Natural Products and Analogs Utilizing Alkylative Dearomatizations and Cationic Cyclizations

    Science.gov (United States)

    Boyce, Jonathan H.

    Polycyclic polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. These compounds have interesting anticancer and anti-HIV properties as well as other biological activities making them highly attractive synthetic targets. We report a stereodivergent, asymmetric total synthesis of (-)-clusianone in six steps from commercial materials. We have implemented a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbon atoms. Mechanistic studies point to the unique ability of formic acid to mediate the cyclization forming the clusianone framework. We also present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via palladium-catalyzed dearomative conjunctive allylic alkylation (DCAA). These efficient palladium-catalyzed protocols construct the [3.3.1]-bicyclic PPAP core in a single step from their stable aromatic precursors. The first syntheses of 13,14-didehydroxyisogarcinol and garcimultiflorone A stereoisomers are reported in six steps from a commercially available phloroglucinol. Lewis acid-controlled, diastereoselective cationic oxycyclizations enabled asymmetric syntheses of (-)-6-epi-13,14-didehydroxyisogarcinol and (+)-30-epi-13,14-didehydroxyisogarcinol. A similar strategy enabled production of the meso-derived isomers (+/-)-6,30- epi-13,14-didehydroxyisogarcinol and (+/-)-6,30-epi -garcmultiflorone A. A convenient strategy for gram scale synthesis of these stereoisomers was developed utilizing diastereomer separation at a later stage in the synthesis that minimized the number of necessary synthetic operations to access all possible stereoisomers. Finally, we report cationic rearrangements of dearomatized acylphloroglucinols leading to the formation of unprecedented PPAP scaffolds. A novel type A [3.3.1]-bicyclic PPAP was produced as a major product and the structure confirmed by X-ray crystallographic

  17. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kevin [Dravo Technology Center, Pittsburgh, PA (United States); Beeghly, Joel H. [Dravo Technology Center, Pittsburgh, PA (United States)

    2000-11-30

    About 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the solids for compaction in a landfill also consumes fly ash that otherwise may be marketable. This Executive Summary describes efforts to dewater the magnesium hydroxide and gypsum slurries and then process the solids into a more user friendly and higher value form. To eliminate the cost of solids disposal in its first generation Thiosorbic® system, the Dravo Lime Company developed the ThioClear® process that utilizes a magnesium based absorber liquor to remove S02 with minimal suspended solids. Magnesium enhanced lime is added to an oxidized bleed stream of thickener overflow (TOF) to produce magnesium hydroxide [Mg(OH)2] and gypsum (CaS04 • 2H20), as by-products. This process was demonstrated at the 3 to 5 MW closed loop FGD system pilot plant at the Miami Fort Station of Cinergy, near Cincinnati, Ohio with the help of OCDO Grant Agreement CDO/D-91-6. A similar process strictly for'recovery and reuse of Mg(OH)2 began operation at the Zimmer Station of Cinergy in late 1994 that can produce 900 pounds of Mg(OH)2 per hour and 2,600 pounds of gypsum per hour. This by-product plant, called the Zimmer Slipstream Magnesium Hydroxide Recovery Project Demonstration, was conducted with the help of OCDO Grant Agreement CDO/D-921-004. Full scale ThioClear® plants began operating in 1997 at the 130 MW Applied Energy Services plant, in Monaca, PA, and in year 2000 at the 1,330 MW Allegheny Energy Pleasants Station at St. Marys, WV.

  18. Temporary Conversion of Protein Amino Groups to Azides: A Synthetic Strategy for Glycoconjugate Vaccines.

    Science.gov (United States)

    Lipinski, Tomasz; Bundle, David R

    2015-01-01

    Conjugation of synthetic oligosaccharides and native polysaccharides to proteins is an important tool in glycobiology to create vaccines and antigens to screen lectins, toxins, and antibodies. A novel approach to potentiate and profile the immune response to vaccines involves targeting antigens directly to dendritic cells (DCs), the key cells engaged in the immunization process. Inclusion of a carbohydrate ligand recognized by C-type lectins expressed on their cell surface ensures targeting of vaccines to DCs and improved immunological responses. Here we describe a strategy that permits three sequential orthogonal conjugation reactions to prepare glycoconjugates and apply them to the synthesis of a conjugate vaccine that is targeted for uptake by DCs. The carrier protein is treated with an azo-transfer reagent to convert accessible amino groups to azide and then amide bond formation via reaction with carboxylic acid side chains is used to attach amino tether groups of a ligand to the protein. Azide-alkyne Huisgen cycloaddition conjugation, "click chemistry" is used to attach a second ligand equipped with a propargyl group or an analogous terminal alkyne, and following reduction of protein azide groups back to amine, these amino acid side chains can be subjected to amide formation such as reaction with succinimide esters or homobifunctional coupling reagents such as dialkyl squarate.

  19. Patterns of Glycoconjugate Distribution during Molar Tooth Germ Development in Mice

    Directory of Open Access Journals (Sweden)

    AR. Varasteh

    2007-09-01

    Full Text Available Objective: The aim of the present study was to evaluate the structure and distribution of Glycoconjugates during molar tooth germ development in mice.Materials and Methods: Sixteen tooth germs were obtained from BALB/c mice embryos 15 to 18 days post-gestation and fixed in 10% formalin. After routine tissue processing, 5μm sections were cut and stained with BSA1-B4 and PNA using the lectin histochemical method. All slides were evaluated by light microscopy.Results: Both lectins showed positive reaction in the tooth germ but with spatiotemporal differences. During bell stage, the reaction was strong with BSA1-B4 but moderate with PNA. Strong PNA uptake was observed in the odontoblastic and ameloblastic nuclei alongwith the apical cytoplasm of the ameloblasts.Conclusion: Although the lectins that were used in the present study recognize the same terminal sugar residue, they reacted with different disaccharide sequences with various penaltomer sugars. Therefore it may be assumed that the pattern of affinity for different parts of the developing tooth germ such as ameloblasts and odontoblasts is different in various lectins.

  20. Development of an in vitro photosafety evaluation method utilizing intracellular ROS production in THP-1 cells.

    Science.gov (United States)

    Toyoda, Akemi; Itagaki, Hiroshi

    2018-01-01

    Photoreactive compounds that may experience exposure to ultraviolet (UV) radiation can lead to the intracellular production of reactive oxygen species (ROS), which may cause phototoxic and photoallergenic responses. Here, we developed a novel in vitro photosafety assay and investigated whether it could be used to predict phototoxicity and photosensitivity by measuring changes in intracellular ROS production. THP-1 cells that had previously taken up 5-(and-6)-carboxy-2',7'-difluorodihydrofluorescein diacetate (carboxy-H 2 DFFDA), a ROS-sensitive fluorescent reagent, were exposed to photoreactive substances such as phototoxic and photoallergenic materials and then subjected to with UV-A irradiation (5 J/cm 2 ). The fluorescence intensity was subsequently measured using a flow cytometer, and the intracellular ROS production was calculated. A statistically significant increase in ROS following treatment with photoreactive substances was observed in cells irradiated with UV-A. In contrast, no significant increase was observed for non-photoreactive substances in comparison to the control solution. Next, to confirm the impact of intracellular ROS on the photosensitive response, changes in CD86 and CD54 expression were measured following quencher addition during the photo human cell line activation test (photo h-CLAT). The results confirmed the reduction of CD86 and CD54 expression in response to photoallergenic substances following quencher addition. Together, these findings suggest that intracellular ROS production is involved in photosensitizing reactions. Therefore, we suggest that the developed method utilizing intracellular ROS production as an index may be useful as a novel in vitro evaluation tool for photoreactive substances.

  1. Contaminant Removal from Oxygen Production Systems for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Santiago-Maldonado, Edgardo; Captain, James G.; Pawate, Ashtamurthy S.; Kenis, Paul J. A.

    2012-01-01

    The In Situ Resource Utilization (ISRU) project has been developing technologies to produce oxygen from lunar regolith to provide consumables to a lunar outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloic and hydrofluoric acids are byproducts of the reduction processes, as halide minerals are also reduced at oxide reduction conditions. Because of the stringent water quality requirements for electrolysis, there is a need for a contaminant removal process. The Contaminant Removal from Oxygen Production Systems (CROPS) team has been developing a separation process to remove these contaminants in the gas and liquid phase that eliminates the need for consumables. CROPS has been using Nafion, a highly water selective polymeric proton exchange membrane, to recover pure water from the contaminated solution. Membrane thickness, product stream flow rate, and acid solution temperature and concentration were varied with the goal of maximizing water permeation and acid rejection. The results show that water permeation increases with increasing solution temperature and product stream flow rate, while acid rejection increases with decreasing solution temperature and concentration. Thinner membranes allowed for higher water flux and acid rejection than thicker ones. These results were used in the development of the hardware built for the most recent Mars ISRU demonstration project.

  2. Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development.

    Science.gov (United States)

    Khedkar, Manisha A; Nimbalkar, Pranhita R; Chavan, Prakash V; Chendake, Yogesh J; Bankar, Sandip B

    2017-10-01

    Efficient yet economic production of biofuel(s) using varied second-generation feedstock needs to be explored in the current scenario to cope up with global fuel demand. Hence, the present study was performed to reveal the use of cauliflower waste for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum NRRL B 527. The proximate analysis of cauliflower waste demonstrated to comprise 17.32% cellulose, 9.12% hemicellulose, and 5.94% lignin. Drying of cauliflower waste was carried out in the temperature range of 60-120 °C to investigate its effect on ABE production. The experimental drying data were simulated using moisture diffusion control model. The cauliflower waste dried at 80 °C showed maximum total sugar yield of 26.05 g L -1 . Furthermore, the removal of phenolics, acetic acid, and total furans was found to be 90-97, 10-40, and 95-97%, respectively. Incidentally, maximum ABE titer obtained was 5.35 g L -1 with 50% sugar utilization.

  3. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  4. Utilizing Iron Residues from Zinc Production in the U.S.S.R.

    Science.gov (United States)

    Piskunov, V. M.; Matveev, A. F.; Yaroslavtsev, A. S.

    1988-08-01

    When zinc calcine leach residues are subjected to conventional hydro-metallurgical treatment, iron is removed from the production circuit in the form of jarosite or goethite. A combined hydrometallurgical treatment of zinc calcine and zinc oxide fume leach residues applied at a zinc plant in the U.S.S.R. produces potassium jarosite containing undesirable impurities of 1.5-2.0 wt.% Zn, 0.2-0.3 wt.% Cu, 0.2-0.6 wt.% Pb, 0.005-0.01 wt. % Cd and 27-29 wt. % Fe. After some study, it was found that low-contaminant jarosite can be used in iron-oxide pigments and in cement clinker production. Methods for manufacturing such products have been developed and tested on a pilot-plant scale, and commercial tests are in progress. The investigations carried out for low-contaminantjarosite utilization resulted not only in the development of a wasteless and environmentally acceptable technology for zinc calcine treatment, but made it possible to recover one more valuable component—iron—from zinc raw materials.

  5. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sandra M Carvalho

    Full Text Available Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  6. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Science.gov (United States)

    Carvalho, Sandra M; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P; Neves, Ana R; Bijlsma, Jetta J E

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps) transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  7. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  8. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Abstract- Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  9. Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review

    Directory of Open Access Journals (Sweden)

    Marwa M. El-Dalatony

    2017-12-01

    Full Text Available Biomass is a crucial energy resource used for the generation of electricity and transportation fuels. Microalgae exhibit a high content of biocomponents which makes them a potential feedstock for the generation of ecofriendly biofuels. Biofuels derived from microalgae are suitable carbon-neutral replacements for petroleum. Fermentation is the major process for metabolic conversion of microalgal biocompounds into biofuels such as bioethanol and higher alcohols. In this review, we explored the use of all three major biocomponents of microalgal biomass including carbohydrates, proteins, and lipids for maximum biofuel generation. Application of several pretreatment methods for enhancement the bioavailability of substrates (simple sugar, amino acid, and fatty acid was discussed. This review goes one step further to discuss how to direct these biocomponents for the generation of various biofuels (bioethanol, higher alcohol, and biodiesel through fermentation and transesterification processes. Such an approach would result in the maximum utilization of biomasses for economically feasible biofuel production.

  10. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  11. Production of Spirulina sp by utilization of wastewater from the powder type energy drinks

    Science.gov (United States)

    Sumantri, Indro; Priyambada, Ika Bagus

    2015-12-01

    Wastewater of energy drink type of powder produced when the the production equipment required cleaning treatment to produce one taste to others. These equipments washed by water, so that, it produced wastewater. It contains high organic substances and classified as high degradable due to food product. The content of wastewater is high carbon and nitrogen substances. Microalgae is an autotrophic microorganism, live without carbon presence, utilized to digest the substances in wastewater especially for nitrogen substances. Spirulina sp is the type of microalgae selected to utilize the wastewater of energy drink, the selection criteria is the size of Spirulina sp is relatively large and easy to separated from its solution. The experiment conducted by cultivate the seeding microalgae with certain nutrients until the certain volume. The synthetic wastewater obtained from one of energy drink type of powder with commercial brand as Kuku Bima Ener-G, the wastewater concentration selected under the close to the real condition of wastewater as basis of COD measurement (6 sachet/L or COD of 12.480mg/L) and aqueous concentration (1 sachet/L or COD of 2080mg/L). The batch experiments with 1L volume conducted and with variable of percent volume of wastewater added in order to observe the growth of microlagae. The response of the microalgae growth obtained by increasing the optical density of the microalgae solution and continued by calculation for the growth rate of microalgae. The result of the experiments indicated that for the aqueous concentration (1 sachet/L or COD of 2080mg/L) the optimum added of wastewater is 40 % with growrate of 0.55/day while for the concentrated wastewater (6 sachet/L or COD of 12.480mg/L), the optimum condition is 25 % wastewater added with growth rate of 0.43/day.

  12. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.

    Science.gov (United States)

    Wang, Xi; Goh, Ee-Been; Beller, Harry R

    2018-01-27

    We previously developed an E. coli strain that overproduces medium-chain methyl ketones for potential use as diesel fuel blending agents or as flavors and fragrances. To date, the strain's performance has been optimized during growth with glucose. However, lignocellulosic biomass hydrolysates also contain a substantial portion of hemicellulose-derived xylose, which is typically the second most abundant sugar after glucose. Commercialization of the methyl ketone-producing technology would benefit from the increased efficiency resulting from simultaneous, rather than the native sequential (diauxic), utilization of glucose and xylose. In this study, genetic manipulations were performed to alleviate carbon catabolite repression in our most efficient methyl ketone-producing strain. A strain engineered for constitutive expression of xylF and xylA (involved in xylose transport and metabolism) showed synchronized glucose and xylose consumption rates. However, this newly acquired capability came at the expense of methyl ketone titer, which decreased fivefold. Further efforts were made to improve methyl ketone production in this strain, and we found that two strategies were effective at enhancing methyl ketone titer: (1) chromosomal deletion of pgi (glucose-6-phosphate isomerase) to increase intracellular NADPH supply and (2) downregulation of CRP (cAMP receptor protein) expression by replacement of the native RBS with an RBS chosen based upon mutant library screening results. Combining these strategies resulted in the most favorable overall phenotypes for simultaneous glucose-xylose consumption without compromising methyl ketone titer at both 1 and 2% total sugar concentrations in shake flasks. This work demonstrated a strategy for engineering simultaneous utilization of C 6 and C 5 sugars in E. coli without sacrificing production of fatty acid-derived compounds.

  13. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy.

    Science.gov (United States)

    Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa

    2017-04-24

    Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis.

  14. The Potential for Electrofuels Production in Sweden Utilizing Fossil and Biogenic CO2 Point Sources

    International Nuclear Information System (INIS)

    Hansson, Julia; Hackl, Roman; Taljegard, Maria; Brynolf, Selma; Grahn, Maria

    2017-01-01

    This paper maps, categorizes, and quantifies all major point sources of carbon dioxide (CO 2 ) emissions from industrial and combustion processes in Sweden. The paper also estimates the Swedish technical potential for electrofuels (power-to-gas/fuels) based on carbon capture and utilization. With our bottom-up approach using European databases, we find that Sweden emits approximately 50 million metric tons of CO 2 per year from different types of point sources, with 65% (or about 32 million tons) from biogenic sources. The major sources are the pulp and paper industry (46%), heat and power production (23%), and waste treatment and incineration (8%). Most of the CO 2 is emitted at low concentrations (<15%) from sources in the southern part of Sweden where power demand generally exceeds in-region supply. The potentially recoverable emissions from all the included point sources amount to 45 million tons. If all the recoverable CO 2 were used to produce electrofuels, the yield would correspond to 2–3 times the current Swedish demand for transportation fuels. The electricity required would correspond to about 3 times the current Swedish electricity supply. The current relatively few emission sources with high concentrations of CO 2 (>90%, biofuel operations) would yield electrofuels corresponding to approximately 2% of the current demand for transportation fuels (corresponding to 1.5–2 TWh/year). In a 2030 scenario with large-scale biofuels operations based on lignocellulosic feedstocks, the potential for electrofuels production from high-concentration sources increases to 8–11 TWh/year. Finally, renewable electricity and production costs, rather than CO 2 supply, limit the potential for production of electrofuels in Sweden.

  15. Environmental impact assessment of the charcoal production and utilization system in central Zambia

    International Nuclear Information System (INIS)

    Serenje, W.; Chidumayo, E.N.; Chipuwa, J.H.; Egneus, H.; Ellegaard, A.

    1994-01-01

    The present study is the outcome of the Zambia Charcoal Utilization Programme, which is based on cooperation that started in 1989 between the Department of Energy, Ministry of Energy and Water Development (then Ministry of Power, Transport and Communications) and the Stockholm Environmental Institute (SEI). The programme, which is funded by the Swedish International Development Authority (SIDA), consists of a number of studies focusing on different aspects of the wood and charcoal industry in Zambia. Selection of this energy system for detailed study was based on the fact that wood provides the largest contribution to total energy supply in Zambia, and the fact that wood is a renewable resource that could be exploited on a sustainable basis if properly managed. The studies therefore range from those that look at sustainability of the natural forests exploited for charcoal, to those that deal with transportation and health aspects of charcoal production and use. The present report focuses on the environmental and socio-economic effects of charcoal production and use. 72 refs., 20 figs., 38 tabs

  16. Radiation exposure estimates on production and utilization of recycled items using dismantling waste

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Nakashima, Mikio

    2002-03-01

    Radiation exposure was estimated on production and utilization of recycled items using dismantling wastes by assuming that their usage are restricted to nuclear facilities. The radiation exposure attributed to production of a steel-plate cast iron waste container, a receptacle for slag, and a drum reinforcement was calculated to be in the range of several μSv to several tens of μSv even in recycling contaminated metal waste of which radioactivity concentration of Co-60 is higher than the clearance level by a factor of two figures. It is also elucidated that casting of a multiple casting waste package meets the standards of dose equivalent rate for the transport of a radioactive package and the weight of the package will be able to kept around 20 tons for the convenience of the handling, in case of disposal of metal waste less than 37 MBq/g with the steel-plate cast iron waste container. As the results, from the radiological exposure's point of view, it should be possible to use slightly contaminated metal for recycled items in waste management. (author)

  17. The most important structures utilizing primary and secondary hydroenergetic potential for electric energy production

    International Nuclear Information System (INIS)

    Zacharovsky, M.

    1997-01-01

    In this paper the construction, technological parameters and operation of Gabcikovo (primary hydro energy power) and Cierny Vah (secondary hydro energy power) are described. Construction of the hydroelectric power plant (HPP) Gabcikovo started in 1978 as a part of a system of hydro power projects Gabcikovo-Nagymaros. Basic technical data are: installed capacity 8 x 90 MW, production in an average aqueous year 2.650 GWh, number of hydroelectric generating sets (HGS) 8, turbine flow 8 x 413-636 m 3 /s, head 12.9-24 m.The Gabcikovo plant produced 9.163 GWh of electricity from the beginning of its operation till the end of 1966. The construction of the pumped storage plant (PSP) Cierny Vah started in 1976 and it was put into operation at the end of 1980. The main goal of the PSP Cierny Vah is to meet the control functions of an electrification system of the Slovak Republic, a substitute function in the cases of unexpected power outages and a planned electricity production from re-pumping. Technological parts are: six re-pumping vertical HGS in a three machine arrangement - a motor-generator, a turbine, a pump - are located in three double-blocks. Basic technical data: installed capacity 6 x 122.4 MW + 0.768 MW, yearly production 1,281 GWh, number of HGS 6, number of domestic hydroelectric generating sets 1, turbine flow 3 x 30 m / s, pump flow 6 x 22 m 3 /s, upper reservoir volume 3.7 mil. m 3 , max. head 434 m, peak time 5.71 hour, pumping time 7.78 hour, re-pumping cycle efficiency 74.36%. From putting the PSP into operation till the end of 1996, the HGS in operation 145,269 hours in total, including 53,332 hours in a turbine mode of operation, 70,293 hours in a pumping mode operation and 21,644 hours in a compensation mode operation. Whereas they supplied 5,346 GWh in the mains and the consumed 6,933 GWh of electricity for pumping. Hydroenergetic potential is a primary source of energy which is recyclable, i.e. unexhaustible and also ecologically the most tolerable

  18. Sustainable options for the utilization of solid residues from wine production.

    Science.gov (United States)

    Zhang, Nansen; Hoadley, Andrew; Patel, Jim; Lim, Seng; Li, Chao'en

    2017-02-01

    The efficient use of solid organic waste materials is an issue of particular importance for the wine industry. This paper focuses on the valorization of grape marc, the major component of winery organic waste (60-70%). Two methods were designed and compared: combustion to generate electricity, and the pyrolysis for the production of bio-char, bio-oil, and bio-gas. Each of these processes was analysed to determine their economic and environmental viability. The flow-sheeting software, ASPEN PLUS, was used to model the two cases. Data from the simulations was used to inform techno-economic and environmental analyses. Pyrolysis was found to be the superior method of utilizing grape marc from both economic and environmental perspectives. Both pyrolysis and combustion exploit the energy content of the waste, which is not recovered by the traditional treatments, composting or distillation. In addition to the production of energy, pyrolysis yielded 151kg of bio-char and 140kg of bio-oil per tonne of grape marc. These products may be used in place of fossil fuels, resulting in a net reduction of carbon dioxide emissions. However, the potential deleterious effects resulting from the replacement of the traditional treatments was not considered. Investment in either pyrolysis or combustion had a negligible impact on the price of the wine produced for wineries with an annual grape crush larger than 1000 tonnes. Composting has significant economic advantages in wineries with a small grape crush of less than 50 tonnes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. UTILIZATION OF CANDEIA (Eremanthus erythropappus WOOD RESIDUES IN THE PRODUCTION OF PARTICLEBOAD WITH ADDITION OF PET

    Directory of Open Access Journals (Sweden)

    Rosimeire Cavalcante dos Santos

    2011-03-01

    Full Text Available This work aimed to evaluate, through the physical and mechanical properties, the panels production viability with inclusion of candeia (Eremanthus erythropappus wood residues and the influence of different percentages of PET (polyethylene terephthalate, as well as the presence and absence of paraffin on the properties of particleboard. There were used candeia wood residues, after oil extraction, in association with eucalypt wood in the proportion of 25:75 and urea-formaldehyde adhesive (12% for panels production; besides the PET incorporation in particle form, which were originated from soft drink bottles and included in three percentages (0%, 25% e 50% in treatments in the presence (1% and absence of paraffin emulsion. The panels pressing cycle occurred under electric heating at 160°C, 0.4 MPa of pressure, during 8 minutes. The experimental design was entirely randomized with three repetitions. The properties evaluated, according to DIN (1971, ASTM D 1037-93 (1995 and CS 236-66 (1968 standards, were: internal bonding; static bending (modulus of elasticity – MOE and rupture – MOR; compression parallel to the panel surface; water absorption and thickness swelling, after 2 and 24 hours water immersion. The panel mechanical properties decreased with increasing in PET level; in general, paraffin addition did not improve the wood/plastic panels resistance and higroscopicity; the utilization of candeia wood residues is viable, in association with eucalypt wood, for the wood/plastic panel production, since the properties attended the minimum demands of the standards, except static bending.

  20. Comparison of CRM197, diphtheria toxoid and tetanus toxoid as protein carriers for meningococcal glycoconjugate vaccines.

    Science.gov (United States)

    Tontini, M; Berti, F; Romano, M R; Proietti, D; Zambonelli, C; Bottomley, M J; De Gregorio, E; Del Giudice, G; Rappuoli, R; Costantino, P; Brogioni, G; Balocchi, C; Biancucci, M; Malito, E

    2013-10-01

    Glycoconjugate vaccines are among the most effective and safest vaccines ever developed. Diphtheria toxoid (DT), tetanus toxoid (TT) and CRM197 have been mostly used as protein carriers in licensed vaccines. We evaluated the immunogenicity of serogroup A, C, W-135 and Y meningococcal oligosaccharides conjugated to CRM197, DT and TT in naïve mice. The three carriers were equally efficient in inducing an immune response against the carbohydrate moiety in immunologically naïve mice. The effect of previous exposure to different dosages of the carrier protein on the anti-carbohydrate response was studied using serogroup A meningococcal (MenA) saccharide conjugates as a model. CRM197 showed a strong propensity to positively prime the anti-carbohydrate response elicited by its conjugates or those with the antigenically related carrier DT. Conversely in any of the tested conditions TT priming did not result in enhancement of the anti-carbohydrate response elicited by the corresponding conjugates. Repeated exposure of mice to TT or to CRM197 before immunization with the respective MenA conjugates resulted in a drastic suppression of the anti-carbohydrate response in the case of TT conjugate and only in a slight reduction in the case of CRM197. The effect of carrier priming on the anti-MenA response of DT-based conjugates varied depending on their carbohydrate to protein ratio. These data may have implications for human vaccination since conjugate vaccines are widely used in individuals previously immunized with DT and TT carrier proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Intelligent products for enhancing the utilization of tracking technology in transportation

    NARCIS (Netherlands)

    Meyer, Gerben G.; Buijs, Paul; Szirbik, Nick B.; Wortmann, J.C.

    2014-01-01

    Purpose – Many transportation companies struggle to effectively utilize the information provided by tracking technology for performing operational control. The research as presented in this paper aims to identify the problems underlying the inability to utilize tracking technology within this

  2. Utilization of Ancillary Data Sets for Conceptual SMAP Mission Algorithm Development and Product Generation

    Science.gov (United States)

    O'Neill, P.; Podest, E.

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond [1]. Scheduled to launch late in 2014, the proposed SMAP mission would provide high resolution and frequent revisit global mapping of soil moisture and freeze/thaw state, utilizing enhanced Radio Frequency Interference (RFI) mitigation approaches to collect new measurements of the hydrological condition of the Earth's surface. The SMAP instrument design incorporates an L-band radar (3 km) and an L band radiometer (40 km) sharing a single 6-meter rotating mesh antenna to provide measurements of soil moisture and landscape freeze/thaw state [2]. These observations would (1) improve our understanding of linkages between the Earth's water, energy, and carbon cycles, (2) benefit many application areas including numerical weather and climate prediction, flood and drought monitoring, agricultural productivity, human health, and national security, (3) help to address priority questions on climate change, and (4) potentially provide continuity with brightness temperature and soil moisture measurements from ESA's SMOS (Soil Moisture Ocean Salinity) and NASA's Aquarius missions. In the planned SMAP mission prelaunch time frame, baseline algorithms are being developed for generating (1) soil moisture products both from radiometer measurements on a 36 km grid and from combined radar/radiometer measurements on a 9 km grid, and (2) freeze/thaw products from radar measurements on a 3 km grid. These retrieval algorithms need a variety of global ancillary data, both static and dynamic, to run the retrieval models, constrain the retrievals, and provide flags for indicating retrieval quality. The choice of which ancillary dataset to use for a particular SMAP product would be based on a number of factors

  3. The Utilization of Blue Swimming Crab (Portunus pelagicus) Waste Product, Lemi, as a Food Flavor

    Science.gov (United States)

    Sasongko, A. Y.; Dewi, E. N.; Amalia, U.

    2018-01-01

    Lemi is a wasted product that resulted from the meating process of blue swim crab. One of the utilization of blue swim crab lemi is processed it into a food flavor. The aim of this research was to know the value of glutamic acid in blue swim crab lemi flavor with the addition of dextrin using different concentration and know the level of consumer preference of lemi flavor by using hedonic test. The research was using a Completely Randomized research Design (CRD) with a factor of 0%, 1%, 2%, and 3% dextrin concentration. The treatment that was tested was the additions of 0%, 1%, 2%, and 3% dextrin. The nonparametric data (panelist hedonic level) was analyzed by Kruskal-Wallis and further analysis using Mann-Whitney. The parametric data (glutamic acid content, protein content, moisture content, and solubility level) were analyzed by analysis of varians and further analysis using Honestly Significant Difference. The results showed that flavor with 1% dextrin addition has the highest hedonic score (7,07 processing waste so that it can optimalized any further.

  4. Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan

    International Nuclear Information System (INIS)

    Kung, Chih-Chun; McCarl, Bruce A.; Cao, Xiaoyong

    2013-01-01

    Pyrolysis is an alternative form of renewable energy production and a potential source of greenhouse gas emissions mitigation. This study examines how poplar-based biochar can be applied in Taiwan for electricity generation and for soil improvement and to what extent it brings economic and environmental benefits. It is a preliminary study and focuses on the balances of different economic and environmental items. This paper reports on a case study examination of the economic and greenhouse gas implications of pyrolysis plus biochar utilization. The case study involves using poplar grown on set-aside land in Taiwan with the biochar applied to rice fields. We examine both fast and slow forms of pyrolysis and find how the profitability varies under different price structures. The results show that fast pyrolysis is more profitable than slow pyrolysis under current electricity price, GHG price and crop yield as the slow pyrolysis generates relatively less electricity but lower value product—biochar. We also find that fast pyrolysis and slow pyrolysis offset about 1.4 t and 1.57 t of CO 2 equivalent per ton of raw material, respectively. - Highlights: • Profitability varies due to sales revenue from electricity generation. • Neither fast pyrolysis nor slow pyrolysis is profitable under current electricity price. • Both systems offset about 1.4 t to 1.57 t of CO 2 equivalent per ton of raw material

  5. Utilization of Sandy Soil as the Primary Raw Material in Production of Unfired Bricks

    Directory of Open Access Journals (Sweden)

    Guilan Tao

    2018-01-01

    Full Text Available In this study, attempts were made to use sandy soil as the main raw material in making unfired bricks. The sprayed-cured brick specimens were tested for compressive and flexural strength, rate of water absorption, percentage of voids, bulk density, freezing/thawing, and water immersion resistance. In addition, the microstructures of the specimens were also studied using scanning electron microscope (SEM and X-ray diffraction (XRD technique. The test results show that unfired brick specimens with the addition of ground-granulated blast-furnace slag (GGBS tend to achieve better mechanical properties when compared with the specimens that added cement alone, with GGBS correcting particle size distribution and contributing to the pozzolanic reactions and the pore-filling effects. The test specimens with the appropriate addition of cement, GGBS, quicklime, and gypsum are dense and show a low water absorption rate, a low percentage of voids, and an excellent freezing/thawing and water immersion resistance. The SEM observation and XRD analysis verify the formation of hydrate products C–S–H and ettringite, providing a better explanation of the mechanical and physical behavior and durability of the derived unfired bricks. The results obtained suggest that there is a technical approach for the high-efficient comprehensive utilization of sandy soil and provide increased economic and environmental benefits.

  6. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.

    1980-05-01

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

  7. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    Science.gov (United States)

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  9. Utilization of red mud and bagasse for production of gas absorption materials

    Science.gov (United States)

    Thang, Nguyen Hoc; Quyen, Pham Vo Thi Ha; Nhung, Le Thuy; Phong, Dang Thanh; Tuyen, Nguyen Ngoc Kim

    2018-04-01

    Gas treatment or/and gas absorption is field which has more investigation from researchers. They are finding optimal solutions from catalyst or synthesized materials to obtain the best benefit for factories and community. This study would like to introduce a method to synthesis the gas absorption materials responding requirements for the process of gas treatment. More specially, raw materials used to produce the materials are industrial waste impacting negatively on the environment. In which, red mud is solid waste of Bayer process from bauxite mining which is being the hard problem to have solutions for its management and utilization, and bagasse is industrial waste of sugar factories. Both red mud and bagasse were dried, ground, and sieved and then mixed with bentonite and water for forming by wet pressing method. Continuously, the mixtures were passed processes of heat treatment at 400°C. The final samples were tested physic-chemical properties and characterized for microstructure. The productions were also tested for gas absorption capacity with data obtained very positive in comparison with others.

  10. Utilization of CO2 in High Performance Building and Infrastructure Products

    Energy Technology Data Exchange (ETDEWEB)

    DeCristofaro, Nicholas [Solidia Technologies Inc., Piscataway, NJ (United States)

    2015-11-01

    -core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects

  11. Construction of energy-conserving sucrose utilization pathways for improving poly-γ-glutamic acid production in Bacillus amyloliquefaciens.

    Science.gov (United States)

    Feng, Jun; Gu, Yanyan; Quan, Yufen; Gao, Weixia; Dang, Yulei; Cao, Mingfeng; Lu, Xiaoyun; Wang, Yi; Song, Cunjiang; Wang, Shufang

    2017-06-06

    Sucrose is an naturally abundant and easily fermentable feedstock for various biochemical production processes. By now, several sucrose utilization pathways have been identified and characterized. Among them, the pathway consists of sucrose permease and sucrose phosphorylase is an energy-conserving sucrose utilization pathway because it consumes less ATP when comparing to other known pathways. Bacillus amyloliquefaciens NK-1 strain can use sucrose as the feedstock to produce poly-γ-glutamic acid (γ-PGA), a highly valuable biopolymer. The native sucrose utilization pathway in NK-1 strain consists of phosphoenolpyruvate-dependent phosphotransferase system and sucrose-6-P hydrolase and consumes more ATP than the energy-conserving sucrose utilization pathway. In this study, the native sucrose utilization pathway in NK-1 was firstly deleted and generated the B. amyloliquefaciens 3Δ strain. Then four combination of heterologous energy-conserving sucrose utilization pathways were constructed and introduced into the 3Δ strain. Results demonstrated that the combination of cscB (encodes sucrose permease) from Escherichia coli and sucP (encodes sucrose phosphorylase) from Bifidobacterium adolescentis showed the highest sucrose metabolic efficiency. The corresponding mutant consumed 49.4% more sucrose and produced 38.5% more γ-PGA than the NK-1 strain under the same fermentation conditions. To our best knowledge, this is the first report concerning the enhancement of the target product production by introducing the heterologous energy-conserving sucrose utilization pathways. Such a strategy can be easily extended to other microorganism hosts for reinforced biochemical production using sucrose as substrate.

  12. Radiolabelled {sup 153}Sm-chelates of glycoconjugates: multivalence and topology effects on the targeting of the asialoglycoprotein receptor

    Energy Technology Data Exchange (ETDEWEB)

    Torres, S. [Centro de Quimica, Campus de Gualtar, Univ. do Minho, Braga (Portugal); Martins, J.A.; Andre, J.P.; Neves, M. [Inst. Tecnologico e Nuclear, Sacavem (Portugal); Santos, A.C.; Prata, M.I.M. [Servico de Biofisica, IBILI, Univ. de Coimbra (Portugal); Geraldes, C.F.G.C. [Dept. de Bioquimica, Centro de Espectroscopia RMN e Centro de Neurociencias e Biologia Celular, Univ. de Coimbra (Portugal)

    2007-07-01

    In this paper we report and discuss the biodistribution studies with Wistar rats of a series of {sup 153}Sm(III)-glycoconjugates, based on DO3A and DO2A(cis) scaffolds (DO3A = 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane; DO2A(cis) = 1,4-bis(carboxymethyl)-1,4,7,10-tetraazacyclododecane). The effects of changing the sugar type (galactose, lactose and glucose), valency (mono and divalent) and topology on the targeting ability of the liver asialoglycoprotein receptor (ASGPR) are evaluated. Divalent glycoconjugates with different topologies were generated by a pendant glycodendrimeric (generation 1) architecture on a DO3A scaffold and by a linear DO2A(cis)-bis derivative. The results show that the galactose conjugates are more target efficient than the lactose analogues, while the glucose conjugates have no liver targeting ability. Divalent galactose conjugates are more efficiently targeted to the liver than the monovalent ones, while the dendrimeric topology of DO3A-Gal{sub 2} has higher targeting efficiency than that of the DO2A(cis)-Gal{sub 2}. (orig.)

  13. Distribution of some Glycoconjugates in the Notochord and Developing Gut during Early Morphogenesis in Balb/c Mouse Embryos

    Directory of Open Access Journals (Sweden)

    Mohammad M. Hassanzadeh-Taheri

    2012-03-01

    Full Text Available Background: Embryonic endoderm germinal layer, affected by notochord inductions, forms the primary gut epithelium and parenchyma of its derived organs. This study aims to determine some expressed glycoconjugates and their potential function in notochord and developing gut.Materials and Methods : In this descriptive-analytical study, 9 and 10 embryonic days (ED of Balb/c mouse embryos were fixed in formalin and microscopic sections were prepared from them. These sections were processed for histochemical studies and then they were incubated with 6 different HRP conjugated lectins, including VVA, SBA, and PNA specific to identify terminal sugar (N-acetylgalactosamine (GalNac and lectins of GSA1-B4, LTA and WGA were respectively to identify the terminal sugars of galactose, fructose and sialic acid.Results: The study results showed that the reactions of notochord and developing gut to VVA lectin were moderate on the 9ED and on the 10ED, they showed a significant difference (p < 0.001 from the day before and were severely assessed. Other GalNac specific lectins react severely and almost similarly to notochord and developing gut on the studied days. The other lectins in these two organs did not react similarly.Conclusion: According to the findings of this study, it seems that glycoconjugates with GalNac-terminal sugar probably have played a key role in differentiations of notochord and developing gut and may be involved in the interactions between these two organs.

  14. Strontium isotope study of coal utilization by-products interacting with environmental waters.

    Science.gov (United States)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2012-01-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ((87)Sr/(86)Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-(87)Sr/(86)Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Fermentative utilization of glycerol residue for the production of acetic acid

    Science.gov (United States)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  16. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  17. Energy utilization and heat production of embryos from eggs originating from young and old broiler breeder flocks

    NARCIS (Netherlands)

    Nangsuay, A.; Meijerhof, R.; Ruangpanit, Y.; Kemp, B.; Brand, van den H.

    2013-01-01

    Two experiments were conducted to study the interaction between breeder age and egg size on the energy utilization (experiment 1) and heat production (experiment 2) of broiler embryos. In experiment 1, a total of 4,800 Ross-308 hatching eggs from 2 breeder ages (29 and 53 wk of age, or young and

  18. Can portable pyrolysis units make biomass utilization affordable while using bio-char to enhance soil productivity and sequester carbon?

    Science.gov (United States)

    Mark Coleman; Deborah Page-Dumroese; Jim Archuleta; Phil Badger; Woodum Chung; Tyron Venn; Dan Loeffler; Greg Jones; Kristin McElligott

    2010-01-01

    We describe a portable pyrolysis system for bioenergy production from forest biomass that minimizes long-distance transport costs and provides for nutrient return and long-term soil carbon storage. The cost for transporting biomass to conversion facilities is a major impediment to utilizing forest biomass. If forest biomass could be converted into bio-oil in the field...

  19. Nutritional, technological and managerial parameters for precision feeding to enhance feed nutrient utilization and productivity in different dairy cattle production systems

    NARCIS (Netherlands)

    Empel, van Mireille; Makkar, H.P.S.; Dijkstra, J.; Lund, Peter

    2016-01-01

    Increased future demand of animal products as well as competition between food, feed and fuel, require efficient utilization of feed resources to strengthen environmental, economic and social sustainability of livestock systems. The objective of this review is to summarize current knowledge on

  20. Literature survey of mild gasification processes, co-products upgrading and utilization, and market assessment: Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Wootten, J.M.; Nawaz, M.; Duthie, R.G.; Knight, R.A.; Onischak, M.; Babu, S.P.; Bair, W.G.

    1988-01-01

    The primary objective of this DOE-sponsored project is to develop an advanced mild gasification process to produce coal-derived co- products that can readily open new markets for coal in both the utility and nonutility sectors. The study will incorporate novel and innovative concepts for process development and for co-products utilization. The former includes the development of a means to promote the rapid, continuous devolatilization of caking coals, the use of inexpensive reactor additives for capturing sulfur compounds, and the use of inexpensive reaction gases to produce co-products of optimal quality and quantity. It is the ultimate goal of this project to commercialize the advanced mild gasification technology in the next 5 to 10 years. 109 refs., 86 figs., 45 tabs.

  1. Development of a Low Input and sustainable Switchgrass Feedstock Production System Utilizing Beneficial Bacterial Endophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Chuansheng [IALR; Nowak, Jerzy [VPISU; Seiler, John [VPISU

    2014-10-24

    Switchgrass represents a promising feedstock crop for US energy sustainability. However, its broad utilization for bioenergy requires improvements of biomass yields and stress tolerance. In this DOE funded project, we have been working on harnessing beneficial bacterial endophytes to enhance switchgrass performance and to develop a low input feedstock production system for marginal lands that do not compete with the production of food crops. We have demonstrated that one of most promising plant growth-promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize roots and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, greenhouse, as well as field conditions. Furthermore, PsJN bacterization improved growth and development of switchgrass seedlings, significantly stimulated plant root and shoot growth, and tiller number in the field, and enhanced biomass accumulation on both poor (p<0.001) and rich (p<0.05) soils, with more effective stimulation of plant growth in low fertility soil. Plant physiology measurements showed that PsJN inoculated Alamo had consistently lower transpiration, lower stomatal conductance, and higher water use efficiency in greenhouse conditions. These physiological changes may significantly contribute to the recorded growth enhancement. PsJN inoculation rapidly results in an increase in photosynthetic rates which contributes to the advanced growth and development. Some evidence suggests that this initial growth advantage decreases with time when resources are not limited such as in greenhouse studies. Additionally, better drought resistance and drought hardening were observed in PsJN inoculated switchgrass. Using the DOE-funded switchgrass EST microarray, in a collaboration with the Genomics Core Facility at the Noble Foundation, we have determined gene expression profile changes in both responsive switchgrass cv. Alamo and non-responsive cv. Cave-in-Rock (CR) following Ps

  2. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    Science.gov (United States)

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  3. Some economic implications of the utilization of alcohol for the production of energy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M.C.

    1980-01-01

    The production rate of ethanol per unit of land was examined for different crops and the order of magnitude of the costs was calculated. Alcohol production programs in Brazil, Thailand and Sudan are described.

  4. Utilization of sweet sorghum juice for the production of astaxanthin as a biorefinery co-product by phaffia rhodozyma

    Science.gov (United States)

    Co-product generation in a biorefinery process is crucial to allow ethanol production from agricultural feedstocks to be economically viable. One feedstock that has underutilized potential in the U.S. is sweet sorghum. The stalks of sweet sorghum can be crushed to produce a juice rich in soluble sug...

  5. UTILIZATION OF BY-PRODUCT OF CHEESEMAKING AGRIBUSINESS INDUSTRY FOR DEVELOPMENT OF FOOD PRODUCTS AND REDUCTION OF THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Becker Rohlfes

    2014-05-01

    Full Text Available The uses of by-products of cheese industry is still not significant in Brazil, since about 15% of liquid whey is used as raw material in food industry technology. The liquid whey has excellent technological properties, making it an alternative to minimize environmental impacts, besides it enables the use of the same nutritional properties in the production of new food products or adding value to the existing ones. The present study aimed to use liquid whey as an ingredient in the formulation of ice cream, hard candies, ham and breads, as well as to evaluate the influence of it in technological characteristics of the products and to quantify the volume of whey used. In order to evaluate the use of liquid whey, the products were developed with partial or total replacement of milk or water by whey, being the substitution accompanied by the determination of centesimal composition, as well as evaluating the visual characteristics of each product. The results show that the preparation of the products under study with substitution of raw milk or water is viable, proving that using liquid whey is a technological possibility of using a by-product considered to be an environmental pollutant. It was concluded that the use of liquid whey in the food industry reduces the environmental impact, since there is a reduction in the volume of whey discharged into the environment.

  6. Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity.

    Science.gov (United States)

    Oncel, S; Kose, A

    2014-01-01

    Two different photobioreactor designs; tubular and panel, were investigated for the biohydrogen production utilizing a green microalgae Chlamydomonas reinhardtii strain CC124 following the two stage protocol. Mixing time and light intensity of the systems were adjusted to compare the productivity of both aerobic culture phase and the following anaerobic biohydrogen production phase. The results showed there was an effect on both phases related with the design. During the aerobic phase bigger illumination area serving more energy, tubular photobioreactor reached higher biomass productivity of 31.8±2.1 mg L(-1) h(-1) which was about 11% higher than the panel photobioreactor. On the other hand biohydrogen productivity in the panel photobioreactor reached a value of 1.3±0.05 mL L(-1) h(-1) based on the efficient removal of biohydrogen gas. According to the results it would be a good approach to utilize tubular design for aerobic phase and panel for biohydrogen production phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Social Factors Affecting Wetlands Utilization for Agriculture in Nigeria: A case study of sawah rice production

    Directory of Open Access Journals (Sweden)

    Oladimeji Idowu Oladele

    2008-06-01

    Full Text Available Wetlands have immense poverty-fighting potentials and in Nigeria, more and more people are dependent on wetlands for their livelihoods. To examine the social factors affecting the current status of the wetlands utilization for agriculture in Nigeria, a simple random sampling technique was used to select 200 farmers cultivating wetlands and a structured questionnaire was applied to elicit the information on the social factors. Data collected were described using frequency and percentage and a multiple regression analysis was used to identify significant variables that are determinants of wetland utilization. The results of the analysis showed that significant variables included crop preferences, farming system, culture, taste, land tenure, knowledge of wetland cultivation, perceived suitability, farmers' tribe, location of wetland, and farmers' age. It was concluded with suggestions for the right combination of policies, public awareness, and appropriate farming methods in order to improve wetland utilization in Nigeria.

  8. Accounting utility for determining individual usage of production level software systems

    Science.gov (United States)

    Garber, S. C.

    1984-01-01

    An accounting package was developed which determines the computer resources utilized by a user during the execution of a particular program and updates a file containing accumulated resource totals. The accounting package is divided into two separate programs. The first program determines the total amount of computer resources utilized by a user during the execution of a particular program. The second program uses these totals to update a file containing accumulated totals of computer resources utilized by a user for a particular program. This package is useful to those persons who have several other users continually accessing and running programs from their accounts. The package provides the ability to determine which users are accessing and running specified programs along with their total level of usage.

  9. Lectin cytochemical localisation of glycoconjugates in the olfactory system of the lizards Lacerta viridis and Podarcis sicula.

    Science.gov (United States)

    Franceschini, V; Lazzari, M; Ciani, F

    2000-07-01

    To investigate the presence of defined carbohydrate moieties on the cell surface of the olfactory and vomeronasal receptor cells and the projections of the latter into the olfactory bulbs, a lectin binding study was performed on the olfactory system of the lizards: Lacerta viridis and Podarcis sicula. Both lizards showed a high lectin binding for N-acetyl-glucosamine in the sensory neurons. The lectin binding patterns in Lacerta indicated that the main olfactory system possessed a moderate density of N-acetyl-galactosamine residues and detectable levels of galactose ones. The vomeronasal system on the other hand contained a high density of N-acetyl-galactosamine moieties and a moderate density of glucosamine ones. In Podarcis the main olfactory system and vomeronasal organ contained respectively detectable and moderate levels of galactose residues. The expression of specific glycoconjugates may be associated with outgrowth, guidance and fasciculation of olfactory and vomeronasal axons.

  10. New product testing and the utilization of user expertise: Evidence from the Pharmaceutical industry

    DEFF Research Database (Denmark)

    Smed, Marie; Salomo, Søren; Schultz, Carsten

    2012-01-01

    A significant and often neglected obstacle in new product development is the testing and approval process in the late stages of development. The testing process has primarily been observed as an in-house decision process, however, in many industries products undergo extensive testing before market...... the knowledge generated and shared by medical sites and Pharmaceutical producers in late stage product development. The results show, that information regarding usage patterns and product related services are more difficult to transfer between user and developer, than issues directly related to the product...

  11. Formation and utilization of acetoin, an unusual product of pyruvate metabolism by Ehrlich and AS30-D tumor mitochondria.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-07-15

    [14C]Pyruvate was rapidly non-oxidatively decarboxylated by Ehrlich tumor mitochondria at a rate of 40 nmol/min/mg of protein in the presence or absence of ADP. A search for decarboxylation products led to significant amounts of acetoin formed when Ehrlich tumor mitochondria were incubated with 1 mM [14C] pyruvate in the presence of ATP. Added acetoin to aerobic tumor mitochondria was rapidly utilized in the presence of ATP at a rate of 65 nmol/min/mg of protein. Citrate has been found as a product of acetoin utilization and was exported from the tumor mitochondria. Acetoin has been found in the ascitic liquid of Ehrlich and AS30-D tumor-bearing animals. These unusual reactions were not observed in control rat liver mitochondria.

  12. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  13. The next century of wood products utilization : a call for reflection and innovation

    Science.gov (United States)

    John A. Youngquist; Thomas E. Hamilton

    1999-01-01

    Sustainable development has become the umbrella objective for forest management in many countries of the world, and managers are increasingly faced with the challenges of balancing environmental and economic health in their forest management and resource utilization decisions. It can no longer be assumed that abundant raw materials are available simply for the taking....

  14. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    Science.gov (United States)

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  15. UTILIZATION OF SECONDARY COMBUSTIBLE POWER RESOURCES FOR PRODUCTION OF MUNICIPAL AND HOUSEHOLD FUEL

    Directory of Open Access Journals (Sweden)

    N. I. Berezovsky

    2005-01-01

    Full Text Available The paper shows an advantage to utilize secondary power resources (lignin, wastes of fine coal with its dressing, sawdust in mixture with local types of fuel (peat in order to fulfill power supply purpose, namely: obtaining hot water in boilers of small capacity and obtaining household fuel.

  16. Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides

    Science.gov (United States)

    Mun Su Rhee; Lusha Wei; Neha Sawhney; John D. Rice; Franz J. St. John; Jason C. Hurlbert; James F. Preston

    2014-01-01

    Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and...

  17. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization

    International Nuclear Information System (INIS)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger

    2017-01-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  18. Depuration by bio-conversion: Utilization of milk derivatives from milk factory as substrates for yeasts production

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, C.; Puglisi, P.P.; Buschini, A.M.; Poli, P.; Curti, G. (Parma Univ. (Italy). Ist. di Genetica U.S.L. 4, Parma (Italy))

    1989-10-01

    This paper describes an alternative method of depuration of processing waters from milk and dairy factories by micro-organisms able to utilize as a substrate the wastes themselves. The selection of micro-organisms able to hyperproduce high added value substances (S-Adenosyl-methionine) allow the extraction of the potential biochemical qualities of wastes and to add value to by-products (e.g., yeasts) through the oriented microbial metabolism. Moreover, it obviously reduces the polluting charge of processing waters.

  19. Evolving electric utility regulatory policy: Internalizing the social costs of production

    Energy Technology Data Exchange (ETDEWEB)

    Michelfelder, R.A. (Atlantic Electric, Pleasantville, NJ (United States))

    1993-04-01

    Current electric utility pricing methods understate the margin social costs of electricity. Electricity prices are set to cover the utility's average cost rather than the higher marginal social cost. This mispricing hides from consumers the true cost their consumption imposes on society and, thereby, encourages them to ignore efficient conservation opportunities. Additionally, the conservation market suffers from a number of imperfections such as barriers to the acquisition of information, high upfront capital costs and the lack of conservation equipment availability. The electricity and conservation multi-market equilibrium is not achieved. The result is that society overconsumes (excess demand) electricity, overinvests in electric generating plants and underinvests (excess supply) in conservation resources. The large, yet uncertain, level of foregone conservation investment offers new opportunities for regulator and electric utility managers to improve economic efficiency with regulatory and planning policies that appropriately encourage the cost-effective use of conservation resources. In the absence of the most efficient policy, marginal social cost pricing, integrated resource planning (IRP) is being adopted as a potential second-best regulatory policy and utility resource planning framework to improve energy efficiency. IRP uses mathematical optimization methods to search among many alternate resource portfolios of electricity-creating and -saving technologies. These methods identify the mix that best meets society's needs with the least social cost, where the social external costs and benefits of generating plant and conservation, respectively, are considered. Such a goal requires the choice of a resource portfolio that optimizes a complex objective function. As a result, the solution offers a resource action plan for electric utilities that may be Pareto-improving.

  20. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

    Science.gov (United States)

    Saratale, Ganesh D; Kshirsagar, Siddheshwar D; Sampange, Vilas T; Saratale, Rijuta G; Oh, Sang-Eun; Govindwar, Sanjay P; Oh, Min-Kyu

    2014-12-01

    Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.

  1. Utilizing artificial neural networks to predict demand for weather-sensitive products at retail stores

    OpenAIRE

    Taghizadeh, Elham

    2017-01-01

    One key requirement for effective supply chain management is the quality of its inventory management. Various inventory management methods are typically employed for different types of products based on their demand patterns, product attributes, and supply network. In this paper, our goal is to develop robust demand prediction methods for weather sensitive products at retail stores. We employ historical datasets from Walmart, whose customers and markets are often exposed to extreme weather ev...

  2. Utilization of various industrial wastes for the production of poly-b ...

    African Journals Online (AJOL)

    PHB production in various industrial waste based medium and nitrogen limited minimal agar synthetic medium was studied by crotonic acid method. The pure form of PHB was collected and qualitatively analyzed by infrared and nuclear magnetic resonance methods. Highest PHB production was found in nitrogen limited ...

  3. Design For Utility, Sustainability And Societal Virtues: Developing Product Service Systems

    DEFF Research Database (Denmark)

    McAloone, Timothy Charles; Andreasen, Mogens Myrup

    2004-01-01

    , a factor 20 improvement in our environmental performance. One attempt, however, has recently emerged, which combines the product as an artefact with the service that the product provides to the user. Through the combination of these two facets, the company retains ownership of the physical artefact......There are a number of theories that describe the necessary improvements in global environmental performance in order to maintain status quo in our ecosystem. These theories are far reaching in their ambitions, and it is not immediately apparent as to how we should be able to achieve, for example...... and adds a responsibility and influence upon everything that the product gives rise to in its life; its usability, environmental and social virtues. This enables a series of potential improvements to the product¿s performance throughout its lifecycle. The ideal of product service system (PSS) development...

  4. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  5. Impact of the utilization of a product configuration system on product’s life cycle complexity

    DEFF Research Database (Denmark)

    Myrodia, Anna; Kristjansdottir, Katrin; Shafiee, Sara

    The purpose of this paper is to identify areas throughout a product’s lifecycle processes where complexity can be reduced by implementing a product configuration system (PCS). As discussed in the literature, several benefits are realized by using a PCS in terms of product and process standardizat...... for the company in several life cycle processes.......The purpose of this paper is to identify areas throughout a product’s lifecycle processes where complexity can be reduced by implementing a product configuration system (PCS). As discussed in the literature, several benefits are realized by using a PCS in terms of product and process...... standardization. This also leads to control and reduce of complexity both in products and processes. To this end, this research attempts to quantify and assess these benefits and is supported by empirical evidence. A case study of an engineering company is used and the results indicate significant improvements...

  6. Forecasting return products in an integrated forward/reverse supply chain utilizing an ANFIS

    DEFF Research Database (Denmark)

    Kumar, D. T.; Soleimani, H.; Kannan, G.

    2014-01-01

    Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts...... of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies' capabilities in collecting End-of-Life (EOL) products, customers' interests in returning (and current incentives), and other independent collectors. The aim of this paper...... is to deal with the important gap of the uncertainties of return products. Therefore, we discuss the forecasting method of return products which have their own open-loop supply chain. We develop an integrated two-phase methodology to cope with the closed-loop supply chain design and planning problem...

  7. Analysis of the national scientific production on the utilization of digital technologies for nurses’ education

    Directory of Open Access Journals (Sweden)

    Viviane Rolim de Holanda

    2013-12-01

    Full Text Available The objective of this study was to seek evidence available in the national scientific literature regarding the utilization of digital teaching technologies in nurses’ education. The adopted research method was integrative literature review. The articles were selected on PubMed, LILACS, Medline, IBECS, and SciELO databases guided by the following question: what digital teaching technologies are used in nursing courses in Brazil? Eleven articles were selected. Results showed that the following were utilized: virtual learning environments, education software, interactive multimedia (CD-ROM, virtual simulations, hypertexts, digital games, websites, and virtual discussion groups (e-group/listservers. The evidence, in this study, shows that digital technologies are materials capable of optimizing knowledge acquisition complementary to traditional education, encouraging students to learning to learn. Descriptors: Education, Nursing; Teaching; Educational Technology; Nursing.

  8. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  9. PRODUCTION OF PROTEASE AND UREASE BY KEROSENE UTILIZING FLUORESCENT PSEUDOMONADS ISOLATED FROM LOCAL RED LATIRITE SOIL

    OpenAIRE

    V. UMAMAHESWARA RAO; N. JYOTHI

    2013-01-01

    The present work relates to a simple, safe, and efficient process for the complete utilization of kerosene usingfluorescent pseudomonads. Fluorescent pseudomonads used in this study were isolated from local red soilcollected at Acharya Nagarjuna University Campus, Guntur Dt., (AP) India. The isolates were identified asPseudomonas aeruginosa, Pseudomonas aureofaciens, Pseudomonas putida and Pseudomonas fluorescens onthe basis of biochemical characteristics. The isolates were screened for their...

  10. Hamilton Utilities Corporation annual report 2002 : people, performance, productivity : the business of public service

    International Nuclear Information System (INIS)

    2002-01-01

    A brief overview of the municipally-owned Hamilton Utilities Corporation was provided. When Ontario's electricity market opened to competition, it allowed wholesale and retail electricity marketers to operate on a competitive basis. This report describes how Hamilton Hydro, the largest subsidiary, successfully faced the challenges brought about by the open market. The strategy of growth as a multi-utility corporation progressed significantly. Major financial restructuring was completed, income level was maintained, as well as a strong balance sheet. The construction of Hamilton's first district energy system was effected by Hamilton Community Energy, another subsidiary. This project is expected to provide heat to 10 buildings in the downtown area, producing 3.5 megawatts of electricity for the City. The third subsidiary, FibreWired, applied its vast communications expertise to the health care sector. It offered Virtual Private Network (VPN) services to area hospitals and other health care providers in pharmaceutical and biotechnology. A major study was undertaken jointly with the City of Hamilton. It examined the feasibility of restructuring water and wastewater services into a municipally owned corporation under the umbrella of Hamilton Utilities Corporation. Various examples were provided throughout the report to better illustrate how corporate vision was translated into reality. tabs

  11. Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review.

    Science.gov (United States)

    Sharma, Satish Kumar; Bansal, Sangita; Mangal, Manisha; Dixit, Anil Kumar; Gupta, Ram K; Mangal, A K

    2016-07-26

    Fast growing food processing industry in most countries across the world, generates huge quantity of by-products, including pomace, hull, husk, pods, peel, shells, seeds, stems, stalks, bran, washings, pulp refuse, press cakes, etc., which have less use and create considerable environmental pollution. With growing interest in health promoting functional foods, the demand of natural bioactives has increased and exploration for new sources is on the way. Many of the food processing industrial by-products are rich sources of dietary, functional, and novel fibers. These by-products can be directly (or after certain modifications for isolation or purification of fiber) used for the manufacture of various foods, i.e. bread, buns, cake, pasta, noodles, biscuit, ice creams, yogurts, cheese, beverages, milk shakes, instant breakfasts, ice tea, juices, sports drinks, wine, powdered drink, fermented milk products, meat products and meat analogues, synthetic meat, etc. A comprehensive literature survey has been carried on this topic to give an overview in the field dietary fiber from food by-products. In this article, the developments in the definition of fiber, fiber classification, potential sources of dietary fibers in food processing by-products, their uses, functional properties, caloric content, energy values and the labelling regulations have been discussed.

  12. Utilization of sludge palm oil as a novel substrate for biosurfactant production.

    Science.gov (United States)

    Wan Nawawi, Wan Mohd Fazli; Jamal, Parveen; Alam, Md Zahangir

    2010-12-01

    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range. 2010 Elsevier Ltd. All rights reserved.

  13. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7.

    Directory of Open Access Journals (Sweden)

    Guillaume Bruant

    Full Text Available Increasing demand for the production of renewable fuels has recently generated a particular interest in microbial production of butanol. Anaerobic bacteria, such as Clostridium spp., can naturally convert carbohydrates into a variety of primary products, including alcohols like butanol. The genetics of microorganisms like Clostridium acetobutylicum have been well studied and their solvent-producing metabolic pathways characterized. In contrast, less is known about the genetics of Clostridium spp. capable of converting syngas or its individual components into solvents. In this study, the type of strain of a new solventogenic Clostridium species, C. carboxidivorans, was genetically characterized by genome sequencing. C. carboxidivorans strain P7(T possessed a complete Wood-Ljungdahl pathway gene cluster, involving CO and CO(2 fixation and conversion to acetyl-CoA. Moreover, with the exception of an acetone production pathway, all the genetic determinants of canonical ABE metabolic pathways for acetate, butyrate, ethanol and butanol production were present in the P7(T chromosome. The functionality of these pathways was also confirmed by growth of P7(T on CO and production of CO(2 as well as volatile fatty acids (acetate and butyrate and solvents (ethanol and butanol. P7(T was also found to harbour a 19 Kbp plasmid, which did not include essential or butanol production related genes. This study has generated in depth knowledge of the P7(T genome, which will be helpful in developing metabolic engineering strategies to improve C. carboxidivorans's natural capacity to produce potential biofuels from syngas.

  14. Utilization of gamma rays in the selection of Aspergillus niger for acid production

    International Nuclear Information System (INIS)

    Silva, J.C. da; Azevedo, J.L.

    1978-01-01

    Selection of Aspergillus niger for acid production was studied by the method of Foster and Davis with the use of gamma rays. Three selection cycles were carried out, and the acid production character of each population was analyzed quantitatively by the unitage acid factor. Isolates with high unitage values in relation to the paternal strain were assayed in a liquid fermentation medium. No correlation was found that would indicate unlimited use of Foster and Davis' method in the selection of more productive strains. (Author) [pt

  15. Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    A smooth transition from gasoline-powered internal combustion engine vehicles to ecologically clean hydrogen fuel cell vehicles depends on the process used for hydrogen production. Three technologies for hydrogen production are considered here: traditional hydrogen production via natural gas reforming, and the use of two renewable technologies (wind and solar electricity generation) to produce hydrogen via water electrolysis. It is shown that a decrease of environmental impact (air pollution and greenhouse gas emissions) as a result of hydrogen implementation as a fuel is accompanied by a decline in the economic efficiency (as measured by capital investments effectiveness). A mathematical procedure is proposed to obtain numerical estimates of environmental and economic criteria interactions in the form of sustainability indexes. On the basis of the obtained sustainability indexes, it is concluded that hydrogen production from wind energy via electrolysis is more advantageous for mitigating greenhouse gas emissions and traditional natural gas reforming is more favorable for reducing air pollution.

  16. Interpreting forest and grassland biome productivity utilizing nested scales of image resolution and biogeographical analysis

    Science.gov (United States)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas; Ke, Ying; Treworgy, Colin; Risser, Paul G.

    1987-01-01

    This report summarizes progress made in our investigation of forest productivity assessment using TM and other biogeographical data during the third six-month period of the grant. Data acquisition and methodology hurdles are largely complete. Four study areas for which the appropriate TM and ancillary data were available are currently being intensively analyzed. Significant relationships have been found on a site by site basis to suggest that forest productivity can be qualitatively assessed using TM band values and site characteristics. Perhaps the most promising results relate TM unsupervised classes to forest productivity, with enhancement from elevation data. During the final phases of the research, multi-temporal and regional comparisons of results will be addressed, as well as the predictability of forest productivity patterns over a large region using TM data and/or TM nested within AVHRR data.

  17. Utilization of crop residues and Agro-industrial by-products as ...

    African Journals Online (AJOL)

    Nigerian Journal of Animal Production. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 23 (1996) >. Log in or Register to get access to full text downloads.

  18. Production of alien chromosome additions and their utility in plant genetics

    NARCIS (Netherlands)

    Chang, S.B.; Jong, de J.H.S.G.M.

    2005-01-01

    Breeding programs aiming at transferring desirable genes from one species to another through interspecific hybridization and backcrossings often produce monosomic and disomic additions as intermediate crossing products. Such aneuploids contain alien chromosomes added to the complements of the

  19. Survey on pigeon pea production systems, utilization and marketing in semi-arid lands of Kenya

    Directory of Open Access Journals (Sweden)

    Baudoin J.P.

    2001-01-01

    Full Text Available In order to assess the status of pigeonpea (Cajanus cajan (L. Millsp. production in Kenya, two surveys were carried out in Makueni and Mbeere Districts in areas representative of the main agro-ecological pigeonpea producing zone of the country : (Mid-altitude ASAL. Participatory Rural Appraisal (PRA approach was chosen as research method and was completed by household interviews based on a semi-structured questionnaire. The main points developed are the presentation of the different farming systems in which pigeonpea is considered as an important legume crop, the identification of the factors explaining pigeonpea production variations, the quantification of the use of improved varieties and improved production practices, and the analysis of the major patterns and trends in pigeonpea production, consumption and marketing.

  20. Utilization of expeller pressed partially defatted peanut cake meal in the preparation of bakery products.

    Science.gov (United States)

    Chavan, J K; Shinde, V S; Kadam, S S

    1991-07-01

    Expeller pressed partially defatted peanut cake obtained from skin-free kernels was used as graded supplements in the preparation of breads, sweet buns, cupcakes and yeast-raised doughnuts. Incorporation of cake meal lowered the specific volume and sensory properties, but improved the fresh weight, water holding capacity and protein content of the products. The products containing 10% peanut cake meal were found to be acceptable.

  1. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana.

    Science.gov (United States)

    Shamloul, Moneim; Trusa, Jason; Mett, Vadim; Yusibov, Vidadi

    2014-04-19

    Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).

  2. Forecasting return products in an integrated forward/reverse supply chain utilizing an ANFIS

    Directory of Open Access Journals (Sweden)

    Kumar D. Thresh

    2014-09-01

    Full Text Available Interests in Closed-Loop Supply Chain (CLSC issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies’ capabilities in collecting End-of-Life (EOL products, customers’ interests in returning (and current incentives, and other independent collectors. The aim of this paper is to deal with the important gap of the uncertainties of return products. Therefore, we discuss the forecasting method of return products which have their own open-loop supply chain. We develop an integrated two-phase methodology to cope with the closed-loop supply chain design and planning problem. In the first phase, an Adaptive Network Based Fuzzy Inference System (ANFIS is presented to handle the uncertainties of the amounts of return product and to determine the forecasted return rates. In the second phase, and based on the results of the first one, the proposed multi-echelon, multi-product, multi-period, closed-loop supply chain network is optimized. The second-phase optimization is undertaken based on using general exact solvers in order to achieve the global optimum. Finally, the performance of the proposed forecasting method is evaluated in 25 periods using a numerical example, which contains a pattern in the returning of products. The results reveal acceptable performance of the proposed two-phase optimization method. Based on them, such forecasting approaches can be applied to real-case CLSC problems in order to achieve more reliable design and planning of the network

  3. UTILIZATION OF MUSTARD OIL FOR THE PRODUCTION OF POLYHYDROXYALKANOATES BY Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hasnain Javed

    2015-04-01

    Full Text Available With the unnecessary use of plastics and cumulative pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Bioplastic production from mustard oil was considered relatively cheap, easily available, included in vegetable oil and don’t having much volatile characteristics. Total of 67 bacterial strains were isolated and purified from different regions of the Pakistan, and were checked for Polyhydroxyalkanoates (PHA production by Sudan black and Nile blue staining. Quantitative analysis for biodegradable plastic produced by different bacterial species was performed by Modified surfactant hypochlorite method. High PHA production was detected in 35 strains belonging to different genera including Pseudomonas, Staphylococcus, Escherichia and Enterobacter. Fermentation and PHA production was done in batch culture. The PHA production of P. aeruginosa by mustered oil cultivation was studied under six experimental conditions, such as air flow rates, pH, Temperature, optical density, substrates concentration and cell dry weight. PHA production of Pseudomonas species were subsequently authenticated at molecular level by PCR amplifications and sequence analysis. PHA polymerase 1 (PhaC1 and PHA polymerase 2 (PhaC2 from Pseudomonas aeruginosa were amplified, sequenced and submitted to gene bank.

  4. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-11-01

    Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

  5. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    Science.gov (United States)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  6. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney.

    Science.gov (United States)

    Laustsen, Christoffer; Lipsø, Kasper; Ostergaard, Jakob Appel; Nørregaard, Rikke; Flyvbjerg, Allan; Pedersen, Michael; Palm, Fredrik; Ardenkjær-Larsen, Jan Henrik

    2014-12-01

    Good glycemic control is crucial to prevent the onset and progression of late diabetic complications, but insulin treatment often fails to achieve normalization of glycemic control to the level seen in healthy controls. In fact, recent experimental studies indicate that insufficient treatment with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which did not restore glycemic control, to streptozotocin (STZ)-diabetic rats using noninvasive hyperpolarized (13)C-pyruvate magnetic resonance imaging (MRI) and blood oxygenation level-dependent (BOLD) (1)H-MRI to determine renal metabolic flux and oxygen availability, respectively. Suboptimal insulin administration increased pyruvate utilization and metabolic flux via both anaerobic and aerobic pathways in diabetic rats even though insulin did not affect kidney oxygen availability, HbA1c, or oxidative stress. These results imply direct effects of insulin in the regulation of cellular substrate utilization and metabolic fluxes during conditions of poor glycemic control. The study demonstrates that poor glycemic control in combination with suboptimal insulin administration accelerates metabolic alterations by increasing both anaerobic and aerobic metabolism resulting in increased utilization of energy substrates. The results demonstrate the importance of tight glycemic control in insulinopenic diabetes, and that insulin, when administered insufficiently, adds an additional burden on top of poor glycemic control. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  8. CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production.

    Science.gov (United States)

    Ampelli, Claudio; Perathoner, Siglinda; Centi, Gabriele

    2015-03-13

    CO(2) conversion will be at the core of the future of low-carbon chemical and energy industry. This review gives a glimpse into the possibilities in this field by discussing (i) CO(2) circular economy and its impact on the chemical and energy value chain, (ii) the role of CO(2) in a future scenario of chemical industry, (iii) new routes for CO(2) utilization, including emerging biotechnology routes, (iv) the technology roadmap for CO(2) chemical utilization, (v) the introduction of renewable energy in the chemical production chain through CO(2) utilization, and (vi) CO(2) as a suitable C-source to move to a low-carbon chemical industry, discussing in particular syngas and light olefin production from CO(2). There are thus many stimulating possibilities offered by using CO(2) and this review shows this new perspective on CO(2) at the industrial, societal and scientific levels. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  10. Integrated Utilization of Sewage Sludge and Coal Gangue for Cement Clinker Products: Promoting Tricalcium Silicate Formation and Trace Elements Immobilization

    Science.gov (United States)

    Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400

  11. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds.

    Science.gov (United States)

    Bonilla-Hermosa, Verónica Alejandra; Duarte, Whasley Ferreira; Schwan, Rosane Freitas

    2014-08-01

    The semi-dry processing of coffee generates significant amounts of coffee pulp and wastewater. This study evaluated the production of bioethanol and volatile compounds of eight yeast strains cultivated in a mixture of these residues. Hanseniaspora uvarum UFLA CAF76 showed the best fermentation performance; hence it was selected to evaluate different culture medium compositions and inoculum size. The best results were obtained with 12% w/v of coffee pulp, 1 g/L of yeast extract and 0.3 g/L of inoculum. Using these conditions, fermentation in 1 L of medium was carried out, achieving higher ethanol yield, productivity and efficiency with values of 0.48 g/g, 0.55 g/L h and 94.11% respectively. Twenty-one volatile compounds corresponding to higher alcohols, acetates, terpenes, aldehydes and volatile acids were identified by GC-FID. Such results indicate that coffee residues show an excellent potential as substrates for production of value-added compounds. H. uvarum demonstrated high fermentative capacity using these residues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. UTILIZATION OF POULTRY, COW AND KITCHEN WASTES FOR BIOGAS PRODUCTION: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Animasahun

    2007-09-01

    Full Text Available The amount of solid wastes generated in developing countries such as Nigeria has steadily increased over the last two decades as a result of population explosion and continuous growth of industries and agricultural practices. In agriculture, particularly cattle rearing, large quantities of cow wastes are generated, which could be used as biogas inputs to compliment the fuel usage alternative. In addition, a large number of families generate heavy wastes in the kitchen on a daily basis, which could be converted to economic benefits. In this work, a comparative study of biogas production from poultry droppings, cattle dung, and kitchen wastes was conducted under the same operating conditions. 3kg of each waste was mixed with 9L of water and loaded into the three waste reactors. Biogas production was measured for a period of 40 days and at an average temperature of 30.5oC. Biogas production started on the 7th day, and attained maximum value on the 14th days for reactor 1. Production reached its peak on the 14th day with 85´10-3dm3 of gas produced in reactor 2. For reactor 3, biogas production started on the 8th day and production reached a peak value on the 14th day. The average biogas production from poultry droppings, cow dung and kitchen waste was 0.0318dm3/day, 0.0230dm3/day and 0.0143dm3/day, respectively. It is concluded that the wastes can be managed through conversion into biogas, which is a source of income generation for the society.

  13. Investigation of possibilities for high heavy metal content sludges utilization by incorporating them in concrete products

    Directory of Open Access Journals (Sweden)

    Simeonova A.

    2006-01-01

    Full Text Available The safe removal of sludge, obtained during the surface treatment of different metal products, is a serious environmental problem. These sludges are usually characterized by a high content of heavy metals (Pb, Cu, Ni, Zn, Cr, Cd, Mn, low quality and are obtained in many small industrial units in the whole country, which makes their centralized treatment difficult. In world practice, different methods are used for component fixation of such sludge, in the aim to prevent leaching of the metals causing pollution of the soil and underground water. The aim of the recent work is to prepare the sludge in a form of light (keramzit fillers by preliminary treatment with binding substances and to introduce them in non supporting concrete products - curbs, stakes and similar products. The investigation was made with two types of sludge - from a production line for thermal treatment and hardening of different parts used in machine building and from a production line for surface decoration treatment (nickel-plating and chromium-plating of consumer products. The sludge were dried and ground and then granulated with a solution of water glass. After their solidifying the air dried granules with a size of 5 to 15 mm were treated with cement milk and air dried again. With the obtained granules, standard percolation test for leaching metals like Pb, Cu, Zn, Ni and Cr was carried out. After a preliminary calculation of concrete mixtures, these granules were mixed with Portland cement and concrete sample products were made. These molded concrete samples were characterized by their density, water absorption, and mechanical strength for defined standard periods of time. The samples were subjected to a modified percolation test for leaching metals. The metal concentration in eluates was determined by Atomic Spectral Analysis.

  14. A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization

    International Nuclear Information System (INIS)

    Orfield, Nolan D.; Keoleian, Gregory A.; Love, Nancy G.

    2014-01-01

    The high theoretical productivity of microalgae makes it a promising energy crop, but economically viable large-scale production facilities have yet to emerge. Coupling algae cultivation ponds with flue gas emissions from power utilities to provide carbon dioxide and municipal wastewater to provide nutrients has been recommended as a solution. This flue gas and wastewater co-utilization (FWC) strategy not only reduces the upstream impacts and costs associated with providing inputs, but also provides a credit for wastewater treatment, a service currently required to reduce production costs to a viable level. This study provides the first national assessment of the potential for producing algal bio-oil in the United States using FWC. Spatial-temporal algae growth was simulated using solar radiation and temperature data to calculate the average annual algae yield for any location, which significantly impacts feasibility. The results of this model were integrated into a geospatial analysis which establishes the economically viable bio-oil production potential of FWC by accounting for the relative abundance of the input resources and their proximity. At most, 1.7 billion liters of bio-oil could be produced annually in a manner economically competitive with crude oil prices of $80 per barrel. The amount of nutrients in wastewater limits yields to 20.5 L of bio-oil per capita annually, and climatic constraints further reduce this potential by nearly 60%. Carbon dioxide constraints play a negligible role. Although the bio-oil production potential of FWC is relatively small, it does provide an opportunity to increase national biofuel output while providing a needed service. - Highlights: • Spatial-temporal algae growth was simulated using historical climate data. • A geospatial overlay analysis was used to assess national production potential. • Nutrient availability in wastewater is most limiting. • At most, 1.7 billion liters of algal biofuel per year could be

  15. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change.

    Science.gov (United States)

    Aspinwall, Michael J; Loik, Michael E; Resco de Dios, Victor; Tjoelker, Mark G; Payton, Paxton R; Tissue, David T

    2015-09-01

    Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions. © 2014 John Wiley & Sons Ltd.

  16. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  17. Utilization of by-products and locally available feedstuffs in buffalo rations in Bangladesh

    International Nuclear Information System (INIS)

    Akbar, M.A.; Tareque, A.M.

    1990-01-01

    A series of experiments was conducted to investigate methods of urea incorporation into rice straw based rations, and to determine the optimum level of wheat bran, rice polishings, fish meal and/or broken rice supplementation of rice straw/urea based diets for growing buffaloes. The results indicate that the utilization of rice straw can be improved by ensiling with urea, soaking with urea-water, or supplementing with urea/molasses blocks, fish meal, rice polishings, or a combination of other bypass protein and energy feeds. For example, ensiling with urea increased the dry matter (DM) intake and body weight gain by 25 and 45%, respectively, compared with untreated straw. Fish meal, in combination with wheat bran, rice polishings or broken rice as supplementary sources of protein and energy, gave varying levels of body weight gain and DM intake, although, in general, all supplements improved straw utilization. Soaking of straw in urea-water is an easy and suitable method of incorporating urea into straw based rations. Supplementation of soaked straw with fish meal or rice polishings increased the live weight gain in buffalo heifers. However, the economic feasibility of using fish meal and broken rice as supplementary sources of protein and energy should be considered before these results are extended to the small farmers. (author). 12 refs, 5 tabs

  18. Power Production Losses Study by Frequency Regulation in Weak-Grid-Connected Utility-Scale Photovoltaic Plants

    Directory of Open Access Journals (Sweden)

    Jesús Muñoz-Cruzado-Alba

    2016-04-01

    Full Text Available Nowadays, an increasing penetration of utility-scale photovoltaic plants (USPVPs leads to a change in dynamic and operational characteristics of the power distribution system. USPVPs must help to maintain the system stability and reliability while implementing minimum technical requirements (MTRs imposed by the utility grid. One of the most significant requirements is about frequency regulation (FR. Overall production of USPVPs is reduced significantly by applying FR curves, especially in weak grids with high rate of frequency faults. The introduction of a battery energy storage system (BESS reduces losses and improves the grid system reliability. Experimental frequency and irradiance data of several weak grids have been used to analyse USPVPs losses related to FR requirements and benefits from the introduction of a BESS. Moreover, its economic viability is showen without the need for any economic incentives.

  19. Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level.

    Science.gov (United States)

    Barroso, Albert; Giménez, Estela; Konijnenberg, Albert; Sancho, Jaime; Sanz-Nebot, Victoria; Sobott, Frank

    2018-02-20

    The study of protein glycosylation can be regarded as an intricate but very important task, making glycomics one of the most challenging and interesting, albeit under-researched, type of "omics" science. Complexity escalates remarkably when considering that carbohydrates can form severely branched structures with many different constituents, which often leads to the formation of multiple isomers. In this regard, ion mobility (IM) spectrometry has recently demonstrated its power for the separation of isomeric compounds. In the present work, the potential of traveling wave IM (TWIMS) for the separation of isomeric glycoconjugates was evaluated, using mouse transferrin (mTf) as model glycoprotein. Particularly, we aim to assess the performance of this platform for the separation of isomeric glycoconjugates due to the type of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. Straightforward separation of isomers was achieved with the analysis of released glycans, as opposed to the glycopeptides which showed a more complex pattern. Finally, the developed methodology was applied to serum samples of mice, to investigate its robustness when analyzing real complex samples. Ion mobility mass spectrometry is a promising analytical technique for the separation of glycoconjugate isomers due to type of sialic acid linkage. The impact of such a small modification in the glycan structure is more evident in smaller analytes, reason why the analysis of free glycans was easier compared to the intact protein or the glycopeptides. The established methodology could be regarded as starting point in the separation of highly decorated glycoconjugates. This is an important topic nowadays, as differences in the abundance of some glycan isomers could be the key for the early diagnosis, control or differentiation of certain diseases, such as inflammation or cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Utilizing Anaerobically Digested Dairy Manure for the Cultivation of Duckweed for Biomass Production, Nutrient Assimilation, and Sugar Production

    Science.gov (United States)

    Kruger, Kevin C.

    Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0

  1. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  2. Survey of hydrogen production and utilization methods. Volume 1: Executive summary

    Science.gov (United States)

    Gregory, D. P.; Pangborn, J. B.; Gillis, J. C.

    1975-01-01

    The use of hydrogen as a synthetic fuel is considered. Processes for the production of hydrogen are described along with the present and future industrial uses of hydrogen as a fuel and as a chemical feedstock. Novel and unconventional hydrogen-production techniques are evaluated, with emphasis placed on thermochemical and electrolytic processes. Potential uses for hydrogen as a fuel in industrial and residential applications are identified and reviewed in the context of anticipated U.S. energy supplies and demands. A detailed plan for the period from 1975 to 1980 prepared for research on and development of hydrogen as an energy carrier is included.

  3. Isolations of biogas products and effective utilization of biomass in a tropical environment

    International Nuclear Information System (INIS)

    Dioha, I.J.; Nwagbo, E.E.; Gulma, M.A.

    1990-12-01

    This paper has compared two types (Indian and Chinese) of biogas producing facilities designed and built in Birnin-Kebbi, Nigeria. Available local input for the plants are identified and the isolations of the resultant output (products) and their economic viabilities are emphasized. The importance and the uses of the secondary products are highlighted. Ways of maintaining the PH in the digester for optimum gas yield are reported. The difficulties encountered in on the site operation of the two models are stated. On the whole the Chinese model is considered most responsive to the environmental conditions of the study location. (author). 11 refs, 2 figs

  4. Utilizing product configuration systems for supporting the critical parts of the engineering processes

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Hvam, Lars

    2016-01-01

    Engineering-To-Order (ETO) companies have to respond to increasing demands to provide highly customized and complex products with high quality at competitive prices. In order to respond to those challenges ETO companies have started to implement product configuration systems (PCS) to increase...... to be supported with the PCSs is not described in the current literature. This paper aims to pursue that research opportunity by presenting a framework, which aims to identifying the critical parts of the engineering processes in order to identify where it most beneficial to implement a PCSs and how to prioritize...

  5. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    OpenAIRE

    Damaso, M?nica Caramez Triches; Passianoto, Mois?s Augusto; de Freitas, Sidin?a Cordeiro; Freire, Denise Maria Guimar?es; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation test...

  6. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    International Nuclear Information System (INIS)

    Elam, Carolyn C.

    2001-01-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen

  7. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  8. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  9. 76 FR 36961 - Standards and Specifications for Timber Products Acceptable for Use by Rural Utilities Service...

    Science.gov (United States)

    2011-06-24

    ...: McFarland Cascade questioned the limiting of butt treated poles to arid regions. Agency Response: Since butt treated poles have shown to have good durability in areas other than arid regions the final rule is revised to limit their use to low to moderate decay zones. Comment: McFarland Cascade and Timber Products...

  10. Development of a method for estimating emissions from oil and gas production sites utilizing remote observations

    Science.gov (United States)

    There is a lack of information on emissions of ozone precursors, hazardous air pollutants, and greenhouse gases from oil and gas production operations, and measurement of these emissions presents many challenges. Assessment is complicated by the fugitive nature ofthe emissions, v...

  11. 77 FR 29537 - Standards and Specifications for Timber Products Acceptable for Use by Rural Utilities Service...

    Science.gov (United States)

    2012-05-18

    ... contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... laminated), transmission timbers and pole keys, and for quality control and inspection of timber products...

  12. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    into ethanol, simultaneous saccharification and fermentation of S. cerevisiae was performed under semi-anaerobic conditions. The highest ethanol production efficiency of 65-66% was obtained following pretreatment at 200°C without the catalytic action of acetic acid, and at 195 and 200°C respectively...

  13. Dead western white pine: characteristics, product recovery, and problems associated with utilization.

    Science.gov (United States)

    Thomas A. Snellgrove; James M. Cahill

    1980-01-01

    When a western white pine (Pinus monticola Dougl. ex D. Don) tree dies, it undergoes a series of physical changes. The effects of these changes on product recovery are evaluated. Tabular information and prediction equations provide the tools necessary for using this resource.

  14. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  15. Utilization of agroindustrial residues for lipase production by solid-state fermentation.

    Science.gov (United States)

    Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia

    2008-10-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively.

  16. Advanced sorting technologies for optimal wood products and woody biomass utilization

    Science.gov (United States)

    Xiping Wang

    2012-01-01

    Forest materials represent great potential for advancing our goals in the 21st century for sustainable building, energy independence, and carbon sequestration. A critical component of an improved system for producing bioproducts and bioenergr from forest materials is the ability to sort trees, stems, and logs into end-product categories that represent their highest...

  17. Utilizing High Pressure Processing to Induce Structural Changes in Dairy and Meat Products

    DEFF Research Database (Denmark)

    Orlien, Vibeke

    2017-01-01

    . In this article the HP modification of milk and meat proteins is evaluated in relation to the changed molecular functionality and product texture. The underlying mechanisms of the pressure-induced molecular changes are surveyed and related to practical applications in the view of HP-produced milk and meat...

  18. Present status of production and utilization of rare earth metals and their compounds

    International Nuclear Information System (INIS)

    Al'perina, E.M.; Tsygankova, G.V.

    1983-01-01

    The status of raw material sources and production of rare earth metals and their compounds abroad is considered. Prices for rare earth raw materials, metals and their compounds are discussed. Special attention is paid to consumption of rare earth metals and their compounds and to perspectives of consumption growth

  19. Utilization and optimization of a waste stream cellulose culture medium for pigment production by Penicillium spp.

    Science.gov (United States)

    Sopandi, T; Wardah, A; Surtiningsih, T; Suwandi, A; Smith, J J

    2013-03-01

    This research sought to determine optimal corn waste stream-based fermentation medium C and N sources and incubation time to maximize pigment production by an indigenous Indonesian Penicillium spp., as well as to assess pigment pH stability. A Penicillium spp. was isolated from Indonesian soil, identified as Penicillium resticulosum, and used to test the effects of carbon and nitrogen type and concentrations, medium pH, incubation period and furfural on biomass and pigment yield (PY) in a waste corncob hydrolysate basal medium. Maximum red PY (497.03 ± 55.13 mg l(-1)) was obtained with a 21 : 1 C : N ratio, pH 5.5-6.0; yeast extract-, NH(4) NO(3)-, NaNO(3)-, MgSO(4) ·7H(2) O-, xylose- or carboxymethylcellulose (CMC)-supplemented medium and 12 days (25 °C, 60-70% relative humidity, dark) incubation. C source, C, N and furfural concentration, medium pH and incubation period all influenced biomass and PY. Pigment was pH 2-9 stable. Penicillium resticulosum demonstrated microbial pH-stable-pigment production potential using a xylose or CMC and N source, supplemented waste stream cellulose culture medium. Corn derived, waste stream cellulose can be used as a culture medium for fungal pigment production. Such application provides a process for agricultural waste stream resource reuse for production of compounds in increasing demand. © 2012 The Society for Applied Microbiology.

  20. Productivity and Utilization of Leguminous Tree Indigofera zollingeriana on Dry Land

    Directory of Open Access Journals (Sweden)

    Iwan Herdiawan

    2014-06-01

    Full Text Available Indigofera is well known as tarum plant, has about 700 species, including Indigofera zollingeriana. These plants are leguminous species that have high nutrient content and production as well as tolerant to abiotic stresses. This plant originated in tropical Africa, Asia, Australia, and North and South America, then spread to arid zone of Africa and Asia. In early 1900, it was brought by Europeans colonial to Indonesia. Indigofera can grow well at altitudes between 0-2200 m above sea level, with rainfall between 600-3000 mm/year. It can be used as a fodder crop because it has high nutrient content and production. It can be harvested at the age of eight months with an average production of 2,595 kg of fresh biomass/tree, with a total production of fresh approximately 52 tons/ha. Indigofera zollingeriana has crude protein content of 27.60%; neutral detergent fiber (NDF 43.56%; acid detergent fiber (ADF 35.24%; calcium (Ca 1.16%; phosphorous (P 0.26%; in vitro-dry matter digestibility (IVDMD 67.50%; organic matter digestibility (IVOMD 60.32%; 0.08% tannins and 0.41% saponin. Additionally I. zollingeriana is often used as green manure, cover crop in plantation areas, fabric dyeing and therapeutic herbs.

  1. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Urbaniec, K.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile

  2. Utilization of citrus crops processing by-products in the preparation of tarhana

    Directory of Open Access Journals (Sweden)

    Michal Magala

    2015-05-01

    Full Text Available After processing of citrus fruits (e.g. lemon, orange, grapefruit, mandarin for juice and essential oils production, approximately 50% of the original fruit mass is left as waste material. Citrus crops processing by-products are valuable components as they contain nutrients such as pectins, saccharides, carotenoids, some vitamins, minerals, polyphenols and substances with antioxidant activity. Utilisation of these kind of side products in the recipe of various cereal product led to enhancement of final product nutritional value and better sensory attributes as well as improvement of product functional properties. In this work was studied the effect of orange and mandarin dietary fibre application at level 5 and 10% (w/w in tarhana preparation and the influence on tarhana fermentation process. Chemical analysis showed, that dietary fibre preparations reached higher concentration of ash, fat and total dietary fibre compared to wheat flour. Wheat flour exhibited higher moisture content and protein concentration than citrus dietary fibre preparations. Orange and mandarin dietary fibre preparations showed higher values of water and oil absorption capacity, swelling capacity and least gellation concentration compared to wheat flour. Application of fruit dietary fibre preparations to tarhana recipe caused a rapid decrease in pH from 4.70 - 5.02 to values 4.31 - 4.51 during fermentation process. Reducing saccharides served as an available source of energy for fermenting microbiota and their concentration decreased from 24.5 - 32.8 to 2.2 - 0.2 g/kg after 144 h incubation. Fermentation also led to lactic acid (1.67 - 2.09 g/kg and acetic acid (1.91 - 2.53 g/kg production as a consequence of present microorganisms metabolic activity. Sensory evaluation of samples showed, that higher proportion of citrus dietary fibre preparations (10% negatively affected taste, odour, consistency and sourness. Among all prepared tarhana samples with proportion of citrus

  3. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lipsø, Hans Kasper Wigh; Østergaard, Jakob Appel

    2014-01-01

    with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which...... and metabolic fluxes during conditions of poor glycemic control. The study demonstrates that poor glycemic control in combination with suboptimal insulin administration accelerates metabolic alterations by increasing both anaerobic and aerobic metabolism resulting in increased utilization of energy substrates......Good glycemic control is crucial to prevent the onset and progression of late diabetic complications, but insulin treatment often fails to achieve normalization of glycemic control to the level seen in healthy controls. In fact, recent experimental studies indicate that insufficient treatment...

  4. Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products.

    Science.gov (United States)

    Gharibzahedi, Seyed Mohammad Taghi; Chronakis, Ioannis S

    2018-04-15

    Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three-dimensional structure of yogurt. Yogurts treated with MTGase showed decreased syneresis, increased water-holding capacity and viscosity, homogeneous structure, desired texture, and physicochemical high stability during storage time. The utilization of MTGase does not affect negatively the sensory attributes of yogurt. Inclusion of MTGase into acidified yogurt drinks reduces the serum separation with an improved viscoelasticity. This multi-functional enzyme also protects the viable starter and probiotic cells in yogurts. Further studies are required to assess the viability of probiotics in yogurts protected using MTGase-mediated microcapsules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  6. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products

    International Nuclear Information System (INIS)

    Douskova, Irena; Kastanek, Frantisek; Maleterova, Ywette; Kastanek, Petr; Doucha, Jiri; Zachleder, Vilem

    2010-01-01

    The aim of the study was the experimental verification of a proposed novel technology of energy and materials production, consisting of the following process steps: production of biogas from agricultural waste (distillery stillage), presumed utilization of biogas for electricity and heat production (cogeneration) in association with its use as a source of carbon dioxide for microalgae cultivation. The microalgal biomass can be hereafter processed to valuable products such as food and feed supplements. A part of the process wastewater can be utilized as a nitrogen source (ammonium ions) for microalgae cultivation, so the whole process is technologically closed. The tests were performed in a pilot-scale device. Optimization of biogas production from distillery stillage is described. The growth kinetics of microalgae Chlorella sp. consuming biogas or mixture of air and carbon dioxide in the concentration range of 2-20% (v/v) (simulating a flue gas from biogas incineration) in laboratory-scale photo-bioreactors are presented. It was proven that the raw biogas (even without the removal of hydrogen sulphide) could be used as a source of carbon dioxide for growth of microalgae. The growth rate of microalgae consuming biogas was the same as the growth rate of the culture grown on a mixture of air and food-grade carbon dioxide. Using biogas as a source of carbon dioxide has two main advantages: the biomass production costs are reduced and the produced biomass does not contain harmful compounds, which can occur in flue gases. The microalgal growth in bubbled cylinders was typically linear with time. The growth rate dependence on the diameter of the photobioreactor can be correlated using an empirical formula M = 2.2 D -0.8 (valid for the linear bubbling velocities in the range of w = 0.1-0.3 cm/s), where M is the growth rate in g/L/h, and D is the photobioreactor diameter in mm. Processing of the fermenter wastewater was also quantified. Particularly the removal of ammonia

  7. A case study in technology utilization: Industrial products and practices. [summary of benefits to national economy resulting from space programs

    Science.gov (United States)

    1973-01-01

    In pursuit of such missions as Apollo, the National Aeronautics and Space Administration has called into being unique equipment that obviously has little direct application beyond the achievement of mission objectives. Yet, to assume that further direct application of space program hardware is somehow a measure of the industrial benefits accruing to the nation is to misunderstand how the creation of new technology affects modern industrial capability. This document presents a profile of the significant ways in which technological developments in response to aerospace mission requirements have been coupled into industrial practice, with the result being that improved products and processes are now being utilized to benefit the nation.

  8. Environmental effects of energy production and utilization in the U.S. Volume 2. Public health effects

    International Nuclear Information System (INIS)

    Newkirk, H.W.

    1976-01-01

    While health hazards from air pollution are observed there is little documenting research for specific toxicity levels. This volume is an attempt to compile all relevant information in one place as a data bank of information that will aid in the required cost-benefit analysis for an energy production or utilization project. Sources include textbooks, journal articles, technical reports, memoranda, letters, and personal communications. The compilation is organized into air pollution, water pollution and land use considerations and cover both radioactive and chemical pollutants

  9. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.

    Science.gov (United States)

    Huang, Xiaoqiang; Luo, Shipeng; Burghaus, Olaf; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2017-10-01

    We report an unusual reaction design in which a chiral bis-cyclometalated rhodium(iii) complex enables the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same time catalyzes an enantioselective sulfonyl radical addition to an alkene. Specifically, employing inexpensive and readily available Hantzsch esters as the photoredox mediator, Rh-coordinated prochiral radicals generated by a selective photoinduced single electron reduction are trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl radicals are utilized via an enantioselective radical addition to form chiral sulfones, which minimizes waste generation.

  10. Production of field biomass on the fields and mires and its utilization in energy production; Biomassan tuotanto pelloilla ja soilla sekae kaeyttoe energiantuotantoon

    Energy Technology Data Exchange (ETDEWEB)

    Mela, T.; Hoemmoe, L.; Suokangas, A. [Agricultural Research Centre, Helsinki (Finland)

    1997-12-01

    The research will be carried out as five sub-projects. The first sub-project `Breeding of reed canary grass and it`s nutrient balance` is concentrated in the development of new reed canary grass cultivars as well as new fertilization practices for non food production. In sub-project no. 2 `Cultivation of reed canary grass at the mire and the drying of peat production area` the evaporation potential of reed canary grass in connection with the drying of peat production area as well as the use of reed canary grass in purifying the runoff coming from the peat production areas was studied. In sub-project no. 3 `Development of a new efficient harvesting method and technology for straw biomass` various harvesting-transport chains based on different balers and choppers as well as economics of these chains were studied. The economics of the production-utilization chains were studied under the sub-project no. 4 `The economics of-reed canary grass and straw production- harvesting-transport-chains and their availability for bioenergy production`. The availability of reed canary grass and straw for energy production was studied by determining the amount of potential production area near the power plants capable of biomass combustion. In the sub-project no. 5 `Fuel and combustion properties of reed canary grass` the combustion quality of spring harvested reed canary grass turned out to be much better than the quality of autumn harvested grass. The full scale combustion experiments with efficiency and emission determinations were carried out at Kiuruvesi using the mixture of reed canary grass and wood chips (and bark) as a fuel

  11. Utilization of spent agro-residues from mushroom cultivation for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Bisaria, R.; Vasudevan, P. (Indian Inst. of Tech., New Delhi (India). Centre for Rural Development and Appropriate Technology); Bisaria, V.S. (Indian Inst. of Tech., New Delhi (India). Biochemical Engineering Research Centre)

    1990-08-01

    Various spent agro-residues obtained after cultivation of the edible mushroom Pleurotus sajor-caju were used in anaerobic digestors for production of biogas. The changes that take place in the residues during bioconversion were quantified in terms of composition of cellulose, hemicellulose, lignin, carbon and nitrogen. These 'mycostraws' resulted in increased biogas production over the untreated ones, which varied from 21.5% in the case of spent bagasse to 38.8% in the case of spent paddy straw. The increased biogas generation by the spent residues seems to be due to the increased susceptibility to digestion and more favourable C/N ratio of the residues. (orig.).

  12. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1.

    Science.gov (United States)

    Gowthami, Palanisamy; Muthukumar, Karuppan; Velan, Manickam

    2015-01-01

    The overproduction of enzymes was performed by manipulating the medium components. In our study, solvent-tolerant thermophilic lipase-producing Bacillus coagulans was isolated from soil samples and a stepwise optimization strategy was employed to increase the lipase production using coconut oil cake basal medium. In the first step, the influence of pH, temperature, carbon source, nitrogen source and inducers on lipase activity was investigated by the One-Factor-At-A-Time (OFAT) method. In the second step, the three significant factors resulted from OFAT were optimized by the statistical approach (CCD).The optimum values of olive oil (0.5%), Tween 80 (0.6%) and FeSO4 (0.05%) was found to be responsible for a 3.2-fold increase in the lipase production identified by Central Composite Design.

  13. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U 233 in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U 233 , Pu 239 , and H 3 production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m -2 ) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids

  14. Geothermal source potential and utilization for methane generation and alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

  15. Materials and Coatings for Extreme Performances: Investigations, Applications, Ecologically Safe Technologies for Their Production and Utilization

    Science.gov (United States)

    2004-11-16

    V., Frolova E.G. В346 PHASE EQUILIBRIA IN THE TERNARY SYSTEM ZrO2-HfO2- CeO2 AT 1500 °C Andrievskaya Elena R., Gerasimyk Galina I., Lopato Lidiya M...technology of reclamation of grinding slurries of bearing production is one of such urgent directions. Scientific schools of academic institutes and...recycling of grinding slurries are offered. Powders obtained with application of these technical solutions are used for friction and antifriction

  16. Recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis

    International Nuclear Information System (INIS)

    Carlin, W.W.; Darlington, W.B.

    1975-01-01

    Fission products, e.g., palladium, rhodium and technetium, are recovered from aqueous waste solutions thereof, e.g., aged Purex alkaline waste solutions. The metal values from the waste solutions are extracted by ion exchange techniques. The metals adsorbed by the ion exchange resin are eluted and selectively recovered by controlled cathodic potential electrolysis. The metal values deposited on the cathode are recovered and, if desired, further purified

  17. Enhanced fuel production in thorium fusion hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.; Chapin, D.L.; Klevans, E.

    1979-01-01

    The multiplication of 14 MeV D-T fusion neutrons via (n,2n), (n,3n), and fission reactions by 238 U is well known and established. This study consistently evaluates the effectiveness of a depleted (tails) UO 2 multiplier on increasing the production of 233 U and tritium in a thorium/lithium fusion--fission hybrid blanket. Nuclear performance is evaluated as a function of exposure and zone thickness

  18. The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Yan, Beibei; Zhang, Ying; Chen, Guanyi; Shan, Rui; Ma, Wenchao; Liu, Changye

    2016-01-01

    Highlights: • Hydroxyapatite derived from waste animal bones was served as the support for bimetallic CaO-CeO 2 catalyst. • The 30%CaO-CeO 2 /HAP-650 catalyst exhibited excellent performance on biodiesel production. • The yield of FAME was 84.4 % after eight cycles. • Minor leaching concentrations of cerium and calcium species were detected in the product. - Abstract: The study investigated the effect of a bimetallic supported catalyst in biodiesel production. Calcined waste bone derived hydroxyapatite (HAP), a solid waste from animal, was served as the support for CaO-CeO 2 catalyst. Various characterization techniques such as FT-IR, BET, SEM-EDS, CO 2 -TPD and XRD analysis were used to analyse the activity of this heterogeneous catalyst. The effect of main parameters in preparation process such as calcination temperature and active component loading on catalyst performance were discussed to obtain the optimal preparation conditions. Under the optimal reaction conditions (11 wt.% dosage of 30%CaO-CeO 2 /HAP-650 catalyst and 9:1 methanol to oil molar ratio at 65 °C for 3 h) the highest biodiesel yield of 91.84% was obtained. Stability test indicated that the yield (84.4%) of fatty acid methyl ester was produced after 8 re-used cycles due to the low leaching of catalyst components. The experimental results showed that biodiesel production cost might be lowered while producing relatively high yield at the present of long life-span catalyst.

  19. Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 cells.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Fu, Fenggen; Li, Guixiang; Feng, Xiaohai; Xu, Hong; Ouyang, Pingkai

    2012-02-01

    D-tagatose is a ketohexose that can be used as a novel functional sweetener in foods, beverages, and dietary supplements. This study was aimed at developing a high-yielding D-tagatose production process using alginate immobilized Lactobacillus fermentum CGMCC2921 cells. For the isomerization from D-galactose into D-tagatose, the immobilized cells showed optimum temperature and pH at 65 °C and 6.5, respectively. The alginate beads exhibited a good stability after glutaraldehyde treatment and retained 90% of the enzyme activity after eight cycles (192 h at 65 °C) of batch conversion. The addition of borate with a molar ratio of 1.0 to D-galactose led to a significant enhancement in the D-tagatose yield. Using commercial β-galactosidase and immobilized L. fermentum cells, D-tagatose was successfully obtained from lactose after a two-step biotransformation. The relatively high conversion rate and productivity from D-galactose to D-tagatose of 60% and 11.1 g l⁻¹ h⁻¹ were achieved in a packed-bed bioreactor. Moreover, lactobacilli have been approved as generally recognized as safe organisms, which makes this L. fermentum strain an attracting substitute for recombinant Escherichia coli cells among D-tagatose production progresses.

  20. Selection of Thai starter components for ethanol production utilizing malted rice from waste paddy

    Directory of Open Access Journals (Sweden)

    Sirilux Chaijamrus

    2011-04-01

    Full Text Available The use of mixed herbs in Thai rice wine starter (Loog-pang were investigated in order to directly maintain theefficiency of the microbial community (Saccharomycopsis fibuligera, Amylomyces sp., Gluconobacter sp. and Pediocccuspentosaceus. The optimum formula was galanga, garlic, long pepper, licorice, and black pepper at the ratio of 0.5:8:1:4:1,respectively. Previously, waste paddy has been used directly as a renewable resource for fuel ethanol production using solidstate fermentation (SSF with Loog-pang. In this study, hydrolyzed malted rice starch was used as the sole nutrient source insubmerged fermentation (SmF to enhance the process yield. The maximum ethanol productivity (4.08 g/kg waste paddy h-1and the highest ethanol concentration (149±7.0 g/kg waste paddy were obtained after 48 hrs of incubation. The resultsindicated that starch saccharification provided a higher ethanol yield (48.38 g/100g sugar consumed than SSF. In addition,the efficiency of ethanol fermentation was 67% which is similar to that of the malted rice made from normal paddy (68%.This result suggests that waste paddy could be used as an alternative raw material for ethanol production.

  1. Utilization of cast seaweed and waste from pectin production for anaerobic digestion

    DEFF Research Database (Denmark)

    Fredenslund, A M; Christensen, T B; Kjær, T

    2011-01-01

    The paper describes a preliminary study on the environmental consequences of realizing a biogas plant using locally available biomass fractions in Solrød, Denmark. The biomass, which will be used at the plant, will consist of: cast seaweed (app. 20,000 tons year-1), waste from pectin production...... (app. 80,000 tons year-1) and manure (app. 50,000 tons year-1) and other materials in lesser amounts. Methane potentials of the two “new” biomass fractions were measured to predict their contribution to the biogas production. Measured methane potentials were: Pectin waste: 370 to 460 ml CH4 g VS-1...... and cast seaweed (winter sample): 118 ml CH4 g VS-1. The predicted annual biogas production of the plant was 5.4 million m3 CH4. An environmental assessment concluded that a biogas plant using the aforementioned organic materials will reduce greenhouse gas emissions between 25,000 tons CO2 year-1 and 40...

  2. Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology.

    Science.gov (United States)

    Kavitha, Ganapathy; Kurinjimalar, Chidambaram; Sivakumar, Krishnan; Kaarthik, Muthukumar; Aravind, Rajamani; Palani, Perumal; Rengasamy, Ramasamy

    2016-12-01

    Investigations have been made to optimize various factors including pH, temperature, and substrate for enhanced polyhydroxybutyrate (PHB) production in Botryococcus braunii which serves as a pioneer for production of bioplastic (PHB). Polyhydroxybutyrate is a natural, decomposable polymers accumulated by the microorganism under different nutritional condition. Strain selection was done by staining method using Sudan black and Nile red dye. Using response surface methodology (RSM), three level- three variables Box Behnken design (BBD), the best potential combination of pH (4-11), temperature (30-50°C) and sewage waste water as substrate fed at different concentrations at 20%-100% for maximum PHB production was investigated. Maximum yield (247±0.42mg/L) of PHB dry weight was achieved from the 60% concentration of sewage waste water as a growth medium at pH 7.5 at 40°C. It was well in close agreement with the value predicted by RSM model yield (246± 0.32mg/L). Thus the study shows the production of PHB by B. braunii along with the basic characterization of PHB by using FTIR and TEM analysis. These preliminary studies indicated that PHB can also be produced by B. braunii utilizing waste water. There is no report on the optimization of PHB production in this microalgae have been documented. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Utilization of Waste Clay from Boron Production in Bituminous Geosynthetic Barrier (GBR-B Production as Landfill Liner

    Directory of Open Access Journals (Sweden)

    Müfide Banar

    2016-01-01

    Full Text Available Bituminous geomembranes, one type of geosynthetics, include a hot bituminous mixture with mineral filler and reinforcement. In this study, boron production waste clay (CW was used as filler to produce a geosynthetic barrier with bentonite, waste tire, and bitumen. Bentonite and waste tires were used as auxiliary fillers and bitumen as the binder. CW/bitumen, CW/bentonite/bitumen, and CW/waste tire/bitumen mixtures were prepared by using a laboratory mixer at 100°C. Hot mixtures were extruded into strips by using a lab-scale corotating twin screw extruder (L/D: 40 followed by die casting (2 mm × 100 mm. Glass fleece or nonwoven polyester was used as reinforcement material and while die casting, both sides of the reinforcement materials were covered with bituminous mixture. Thickness, mass per unit area, tensile strength, elongation at yield, and hydraulic conductivity were used to characterize the geomembranes. Among all geomembranes, nonwoven polyester covered with 30% bitumen-70% boron waste clay mixture (PK-BTM30CW70 was found to be the most promising in terms of structure and mechanical behaviour. After that, consequences of its exposure to distilled water (DW, municipal solid waste landfill leachate (L-MSW, and hazardous waste landfill leachate (L-HW were examined to use for an innovative impermeable liner on solid waste landfills.

  4. Production, purification and utilization of biogas as fuel for internal combustion engine

    Science.gov (United States)

    Hernandez, Noel M.; Villanueva, Eliseo P.

    2018-03-01

    This study attempts to modify a 4-cylinder gasoline engine to run with a purified compressed biogas as substitute for fossil fuels. Water scrubbing method was used as the easiest purification technique to remove CO2 and iron filing for H2S. The pressurized raw biogas was fed in a low cost made portable floating type gas holder with volume capacity of 0.74 m3. The purified biogas was compressed using a reciprocating compressor through a two stage series of enrichment and moisture removal process using activated alumina into the steel cylinder to improve the quality of the methane content. The enriched biogas was filled in the LPG tank for 20 minutes at 10 bars at an average of 73.67% CH4 with no traces of H2S as storage for engine utilization. The modification involved the installation and mounting of LPG conversion kit. A comparative analysis of the performance and combustion characteristics of the engine was evaluated separately with gasoline and purified compressed biogas using electro-dynamometer as variable loads. The findings show that power output deterioration in compressed biogas was mainly due to high percentage of CO2 and other gases impurities. It also shows that because of the calorific value of biogas, the thermal efficiency is lesser than that of gasoline. It implies that the overall engine performance can be improved by removing undesirable gases in the mixture.

  5. Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products

    DEFF Research Database (Denmark)

    Gharibzahedi, Seyed Mohammad Taghi; Chronakis, Ioannis S.

    2018-01-01

    Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three-dimensional......Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three......-dimensional structure of yogurt. Yogurts treated with MTGase showed decreased syneresis, increased water-holding capacity and viscosity, homogeneous structure, desired texture, and physicochemical high stability during storage time. The utilization of MTGase does not affect negatively the sensory attributes of yogurt....... Inclusion of MTGase into acidified yogurt drinks reduces the serum separation with an improved viscoelasticity. This multi-functional enzyme also protects the viable starter and probiotic cells in yogurts. Further studies are required to assess the viability of probiotics in yogurts protected using MTGase...

  6. Utilization of silica coated waste paper fibre in plastic composite production

    Directory of Open Access Journals (Sweden)

    Emrah Peşman

    2016-04-01

    Full Text Available In this study, utilization of silica coated waste paper fibers as filler in high density polyethylene matrix were investigated. The effects of silica coating pigment in paper on physical, thermal and some mechanical properties of cellulose fiber-plastic composite were examined. The filler used in this study were uncoated cellulose, 6.68%, 12.38%, 18.21% and 24.32% mineral contented cellulose fibers. Each filler type was mixed with high density polyethylene (HDPE at 40% by weight fiber loading. In this case, the ratio of SiO2-CaCO3 in plastic composites were calculated as 0%, 2.67%, 4.95%, 7.28% and 9.73% respectively. Water absorption and thickness swelling of fiber-plastic composites were significantly decreased with the silica and filler concentrations. With increased mineral content, thermal properties of fiber-plastic composites increased slightly. In addition, fibers and fiber-plastic composites were characterized with FTIR-ATR and SEM-EDS.

  7. Environmental effects of energy production and utilization in the U.S. Volume I. Sources, trends, and costs of control

    International Nuclear Information System (INIS)

    Newkirk, H.W.

    1976-01-01

    Volume I deals with sources (what the emissions are and where they come from), trends (quantities of emissions and their dispersion with time), and costs of control (what it takes in time, energy, and money to meet minimum standards). Volume II concerns itself with the public health effects of energy production and utilization. Volume III summarizes the various techniques for controlling emissions, technological as well as economic, social, and political. Each volume is divided into sections dealing with the atmosphere, water, land, and social activities--each division indicating a particular sphere of man's environment affected by energy production and use. The sources of information that were used in this study included textbooks, journal articles, technical reports, memoranda, letters, and personal communications. These are cited in the text at the end of each subsection and on the applicable tables and figures

  8. Environmental effects of energy production and utilization in the U. S. Volume I. Sources, trends, and costs of control

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W. (comp.)

    1976-05-01

    Volume I deals with sources (what the emissions are and where they come from), trends (quantities of emissions and their dispersion with time), and costs of control (what it takes in time, energy, and money to meet minimum standards). Volume II concerns itself with the public health effects of energy production and utilization. Volume III summarizes the various techniques for controlling emissions, technological as well as economic, social, and political. (For abstracts of Vols. II and III, see ERDA Energy Research Abstracts, Vol. 2, Absts. 5764 and 5670, respectively) Each volume is divided into sections dealing with the atmosphere, water, land, and social activities--each division indicating a particular sphere of man's environment affected by energy production and use. The sources of information that were used in this study included textbooks, journal articles, technical reports, memoranda, letters, and personal communications. These are cited in the text at the end of each subsection and on the applicable tables and figures.

  9. Energy resources' utilization in organic and conventional vineyards: Energy flow, greenhouse gas emissions and biofuel production

    International Nuclear Information System (INIS)

    Kavargiris, Stefanos E.; Mamolos, Andreas P.; Nikolaidou, Anna E.; Kalburtji, Kiriaki L.; Tsatsarelis, Constantinos A.

    2009-01-01

    An energy analysis, in conventional and organic vineyards, combined with ethanol production and greenhouse gas emissions, is useful in evaluating present situation and deciding best management strategies. The objective of this study was to evaluate the differences in the energy flow between organic and conventional vineyards in three locations, to calculate CO 2 , CH 4 and N 2 O-emissions based on the used fossil energy and to explore if wine industry wastes can be used to extract bioethanol. The data were collected through personal interviews with farmers during 2004-2005. Eighteen farmers, who owned vineyards about 1 ha each, were randomly selected to participate in this study [(3 conventional and 3 organic) x 3 locations]. The means averaged over all locations for fertilizer application, plant protection products application, transportation, harvesting, labor, machinery, fuels, plant protections products and tools energy inputs, total energy inputs, outputs (grapes), outputs (grapes + shoots), grape yield, man hour, pomace and ethanol from pomace were significantly higher in conventional than in organic vineyards, while the opposite occurred for the pruning. Means averaged over two farming systems for harvesting, tools energy inputs, energy outputs (grapes), grape yield, pomace and ethanol from pomace were significantly higher at location A, followed by location C and location B. Finally, for irrigation, the means averaged over the two farming systems were significantly lower at location C. Greenhouse gas emissions were significant lower in organic than in conventional vineyards. The results show a clear response of energy inputs to energy outputs that resulted from the farming system and location. (author)

  10. CHARACTERIZATION AND SELECTION OF CEREALS FOR PREPARATION AND UTILIZATION OF FERMENTED FIBER-BETAGLUCAN PRODUCT

    Directory of Open Access Journals (Sweden)

    Lenka Duchoňová

    2013-02-01

    Full Text Available Whole grains flours of diverse colored wheat species (Triticum sp. and various varieties of barley (Hordeum vulgare and oat (Avena sativa were analysed for their nutritional composition. The highest protein values were observed in wheat yellow variety BONA DEA (14% and also in blue variety UC 66049 (13%. Lower content of starch was determined in barley and oat varieties in compared to wheat varieties. The lowest levels of betaglucans were observed in wheat (0.3 – 0.6% and the highest content was assessed in barley and oat (2.5 – 3.8%. Variation in dietary fiber was considerable in barley and oat varieties. Barley varieties possessed significantly the highest content of total dietary fiber among all monitored cereals (≈17%, while oat grains showed significantly the lowest values (≤7%. Knowledge of the composition of healthy substances was used to select the best variety for the development of fermented product which was developed using specially prepared oat flour and potentially probiotic lactic acid bacteria Lactobacillus plantarum. The series of fermentation experiments resulted in a final gelatinous product with vital bacterial cell count about 1010 CFU.g-1, significantly reduced level of starch (1.7% and following nutritional characteristics: dry matter of 12.91%, water activity of 0.977, pH value 4.6 and lactic acid content of 2.95 g/l. Final product was added into the dough in different quantities and served also as a starter culture. Rheological properties of dough were evaluated for the purpose of finding a suitable recipe.

  11. Production of ethyl alcohol by fermentation and its utilization as automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.E.

    1980-03-01

    Alcohol has an excellent future as a fuel, and its large-scale production from sugar-bearing feedstocks should definitely be a stabilizing factor in the economics of the international sugar industry. This article approaches the subject from the sugar industry viewpoint, with emphasis on the underdeveloped countries. The economic data presented here are only approximations so as to give some idea as to the order of magnitude of the capital and operating costs involved. All economic projections are based on conditions prevailing during the third quarter of 1979.

  12. Production, collection, and utilization of very-long-lived heavy charged leptons

    Science.gov (United States)

    Goity, J. L.; Kossler, W. J.; Sher, Marc

    1993-12-01

    If a fourth generation of leptons exists, both the neutrino and its charged partner must be heavier than 45 GeV. We suppose that the neutrino is the heavier of the two, and that a global or discrete symmetry prohibits intergenerational mixing. In that case, nonrenormalizable Planck scale interactions will induce a very small mixing; dimension-five interactions will lead to a lifetime for the heavy charged lepton ~(1-100) yr. Production of such particles is discussed, and it is shown that a few thousand can be produced and collected at a linear collider. The possible uses of these heavy leptons are also briefly discussed.

  13. Utilization of by-products from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves.

    Science.gov (United States)

    Iñiguez-Covarrubias, G; Díaz-Teres, R; Sanjuan-Dueñas, R; Anzaldo-Hernández, J; Rowell, R M

    2001-04-01

    The leaves of the agave plant are left in the field after harvesting the heads for tequila production. Different types of agave leaves were isolated, classified, and their content in the total plant determined. The usable fractions were collected and their properties determined. Of the total wet weight of the agave plant, 54% corresponds to the agave head, 32% corresponds to materials which could be usable for sugar and fiber production which leaves 14% of the wet plant without apparent utility. The fractions with higher total reducing sugars (TRS) content were the fresh fraction of partially dry leaves stuck to the head and the leaf bases with a TRS content of 16.1% and 13.1%, respectively. The highest TRS concentration (16-28%) is in the agave head which is used for tequila production. The leaves are 90-120 cm long and 8-12 cm wide and contain fiber bundles that are 23-52 cm long and 0.6-13 mm wide. The ultimate fiber length is approximately 1.6 mm with an average width of 25 microns. There are several types of leaf fibers that can be utilized depending on what part of the plant they come from and what product is desired. Agave leaf fibers were pulped using a soda pulping process and the pulp was hand formed into test sheets. Test sheets made from pulped agave leaf fibers had a breaking length comparable to paper made from both pine and eucalyptus fibers, but the tear index and burst index were lower than the other two papers.

  14. Effects of hypopituitarism and growth hormone replacement therapy on the production and utilization of glucose in childhood.

    Science.gov (United States)

    Bougneres, P F; Artavia-Loria, E; Ferre, P; Chaussain, J L; Job, J C

    1985-12-01

    Glucose metabolism during fasting was investigated in 10 children aged 1.5 month-11.5 yr with deficiency of GH with or without other pituitary hormone deficiencies. After 10-16 h of fasting, mean plasma glucose was 56 +/- 4 (SEM) mg/dl, the result of decreased hepatic production of glucose (3.3 +/- 0.3 mg kg-1 min-1) insufficient to match glucose utilization (3.6 +/- 0.4 mg kg-1 min-1). The diminution of plasma glucose and of glucose production was similar whether ACTH deficiency was present (3.2 +/- mg kg-1 min-1) or not (3.5 +/- 0.6 mg kg-1 min-1). These results indicate that the lack of GH was the primary cause of hypoglycemia. Fasting plasma alanine (212 +/- 41 mumol/liter) and lactate (1222 +/- 136 mumol/liter), the main gluconeogenic substrates, were normal and did not correlate with the decrease of hepatic glucose release. Both plasma FFA (552 +/- 35 microM) and beta-hydroxybutyrate (654 +/- 158 microM) were in the low normal range, and neither correlated with the rate of glucose utilization. hGH replacement therapy resulted in a normalization of fasting plasma glucose concentration (78.5 +/- 6 mg/dl, P less than 0.005) and hepatic glucose production (6.1 +/- 1.2 mg kg-1 min-1). No significant changes occurred in the plasma concentrations of gluconeogenic or lipid substrates. These results, together with the known stimulatory effects of GH on carbohydrate-induced insulin secretion and storage of hepatic glycogen, suggest that the changes in glucose production in untreated and GH treated patients reflect the degree of hepatic glycogen replenishment.

  15. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea

    Directory of Open Access Journals (Sweden)

    Jong Pil Kim

    2016-07-01

    Full Text Available Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM multi-satellite precipitation analysis (TMPA version 6 (TMPAv6 and version 7 (TMPAv7, the global satellite mapping of precipitation (GSMaP, and the climate prediction center (CPC morphing technique (CMORPH were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM mission.

  16. Utilization of okara, a byproduct from soymilk production, through the development of soy-based snack food.

    Science.gov (United States)

    Katayama, M; Wilson, L A

    2008-04-01

    This study was conducted to develop a new soy-based food product that could utilize okara (a byproduct from soymilk production) and maximize the health benefits of okara for the consumer. A Japanese commercial okara snack product was used as a standard reference. Two types of dried okara powder, a commercially dried okara powder with 7.7% moisture content made from regular (lipoxygenase-present) soybeans and a partially dried okara with 44.3% moisture content made from lipoxygenase-free (LOX-null) soybeans, were used in this study. Commercial low saturated soybean oil and commercial low linolenic acid soybean oil were also used in the same formulation to compare and find the best formulation for a baked or deep-fat-fried soy-based food product. Two descriptive analysis studies were performed with a minimum of 15 trained panelists. Instrumental analyses with a Hunter Lab system and a TA.XT2i texture analyzer and chemical analysis were performed to compare with the sensory results. All the results were statistically analyzed. The baked product made from commercial low saturated soybean oil and the partially dried LOX-null okara powder gave the closest flavor, texture, and appearance to the reference standard. The final product contained 11.4% protein and 7.4% dietary fiber, which were, respectively, 1.5 and 2.0 times higher than the reference. The calcium content was also 4.3 times higher than the reference. The objectives of this study were achieved by developing a new soy-based snack food, which has more health benefits with an enjoyable flavor and texture than the existing commercial product.

  17. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    2016-01-01

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  18. Xylanolytic activities of Streptomyces sp. 1--taxonomy, production, partial purification and utilization of agricultural wastes.

    Science.gov (United States)

    Kansoh, A L; M-Ali, A; A-el-Gammal, A

    2001-01-01

    Twenty-four different strains of Streptomyces spp. isolated from Egyptian soil were tested for their ability to produce extracellular xylanases. Of all these isolates a Streptomyces sp. that had the highest potential for xylanolytic activity was chosen. From various morphological, physiological and antagonistic properties, this isolate was found to belong to Streptomyces lividans. Factors affecting xylanase production by this organism in a basal salt medium containing purified sugar-cane bagasse xylan as a sole carbon source were examined. A noticeable increase in enzyme activity was observed in the presence of peptone or soyabean meal. However, a slight increase was noticed with ammonium sulphate. Optimum production for xylanase was achieved after five days incubation on a rotary shaker (180 rpm) at 30 degrees C. The initial pH values were around neutrality. In addition, this organism has high potential for xylanolytic activity when grown on lignocellulosic wastes including corn cobs, wheat bran, peanut shells, sawdust, wheat straw and sugar-cane-bagasse. Partial purification of the enzyme in the culture supernatant was achieved by salting out at 50-80% ammonium sulphate saturation with a purification of 9.03-fold and 57.9% recovery.

  19. Animals and their products utilized as medicines by the inhabitants surrounding the Ranthambhore National Park, India

    Directory of Open Access Journals (Sweden)

    Jaroli DP

    2006-11-01

    Full Text Available Abstract The present ethnozoological study describes the traditional knowledge related to the use of different animals and animal-derived products as medicines by the inhabitants of villages surrounding the Ranthambhore National Park of India (Bawaria, Mogya, Meena, which is well known for its very rich biodiversity. The field survey was conducted from May to July 2005 by performing interviews through structured questionnaires with 24 informants (16 men and 8 women, who provided information regarding therapeutic uses of animals. A total of 15 animals and animal products were recorded and they are used for different ethnomedical purposes, including tuberculosis, asthma, paralysis, jaundice, earache, constipation, weakness, snake poisoning. The zootherapeutic knowledge was mostly based on domestic animals, but some protected species like the collared dove (Streptopelia sp., hard shelled turtle (Kachuga tentoria, sambhar (Cervus unicolor were also mentioned as important medicinal resources. We would suggest that this kind of neglected traditional knowledge should be included into the strategies of conservation and management of faunistic resources in the investigated area.

  20. Utilization of agroindustrial waste for biosurfactant production by native bacteria from chiapas

    Directory of Open Access Journals (Sweden)

    Yañez-Ocampo Gustavo

    2017-02-01

    Full Text Available In this work, two agro-industrial wastes, namely Waste Cooking Oil (WCO and Coffee Wastewater (CW have been used as the carbon source for the production of biosurfactants, due to their low cost and high availability. Biosurfactant-producing bacterial isolates from the Mexican state of Chiapas were used. The selected biosurfactant-producer strains were evaluated in a liquid medium with 2% (v/v of WCO as the carbon source. The assay was conducted in an Erlenmeyer flask containing 300 mL aliquots of mineral salt media (MSM + residue and incubated at 100 rpm at room temperature for 96 hours. The biosurfactant produced in the samples reduced the surface tension from 50 to 30-29 mN/m. Strains A and 83 showed the maximum emulsification index at 58-59%. Strain A showed the highest biosurfactant yield with a production of 3.7 g/L in comparison with strains B, 83 and Pseudomonas aeruginosa ATCC27853. Our results suggest that the biosurfactant produced by strain A has great potential in the treatment of wastewater with a high content of fatty acids, and of soils contaminated by pesticides or oil hydrocarbons.

  1. Utilization potential of wood clones of Eucalyptus urophylla in the production of wood-cement panels

    Directory of Open Access Journals (Sweden)

    Lourival Marin Mendes

    2011-03-01

    Full Text Available The objective of this study was to evaluate the potential of using clones of Eucalyptus urophylla in the production of wood-cement panels. The study used six clones of Eucalyptus urophylla with 8 years of age, from the Companhia Mineira de Metais, located in Paracatu - MG. For the formation of the panels it was used Portland cement CP V - ARI / Plus, possessing high initial resistance to mineral binder and calcium chloride (CaCl2 as accelerator for the cement curing. The panels were produced with the following parameters: dimensions of 49.5 x 49.5 x 1.5 cm, nominal density of 1.2 g/cm ³, relation wood: cement (1:2.5 and relation water: cement (1:1.5. The results can showed that: (1 for thickness swelling in two and twenty-four hours, only clones 19.28 and 58 attended the specifications, (2 for water absorption, clone 62 showed the best results, (3 to internal bond, only clone 58 didn`t attend specifications, (4 for the compression, clones 19.36 and 58 showed the best results, (5 for MOE and MOR, none of the clones presented values compatible to the bison process. It is suggested the continuation of this line of research, including the manipulation of variables of production, so that all properties be compatible to the minimum required standards.

  2. Efficient double-stranded RNA production methods for utilization in plant virus control.

    Science.gov (United States)

    Voloudakis, Andreas E; Holeva, Maria C; Sarin, L Peter; Bamford, Dennis H; Vargas, Marisol; Poranen, Minna M; Tenllado, Francisco

    2015-01-01

    Double-stranded RNA (dsRNA) is an inducer molecule of the RNA silencing (RNA interference, RNAi) pathway that is present in all higher eukaryotes and controls gene expression at the posttranscriptional level. This mechanism allows the cell to recognize aberrant genetic material in a highly sequence specific manner. This ultimately leads to degradation of the homologous target sequence, rendering the plant cell resistant to subcellular pathogens. Consequently, dsRNA-mediated resistance has been exploited in transgenic plants to convey resistance against viruses. In addition, it has been shown that enzymatically synthesized specific dsRNA molecules can be applied directly onto plant tissue to induce resistance against the cognate virus. This strongly implies that dsRNA molecules are applicable as efficacious agents in crop protection, which will fuel the demand for cost-effective dsRNA production methods. In this chapter, the different methods for dsRNA production-both in vitro and in vivo-are described in detail.

  3. The utilization of biochemically modified microfibers from grain by-products as reinforcement for polypropylene biocomposite

    Directory of Open Access Journals (Sweden)

    A. K. Bledzki

    2014-10-01

    Full Text Available The presented research study aims to evaluate microfibers from grain by-products as a substitute for wood flour in wood-thermoplastic composites. Grain husks are an abundant and cheap source of annual, renewable raw material, which besides lignocellulose, may also contain substantial amounts of starch, proteins and fats. These grain residues may negatively affect the mechanical properties of their composites, and generate an odor when decomposition occurs at higher temperatures during plastics processing. Such odors may also be present in the end-product. In order to overcome this drawback, in this research study, a simple and effective enzymatic treatment is proposed. This environmental friendly process removed protein, starch and fats in selective manner. Treated microfibers have shown enhanced thermal stability for ca. 20°C at 1% of weight loss. This correlates with lower amount of odor emission during plastics processing as well as in the final, injection molded parts (25–65% decrease. The mechanical properties of composites were either preserved, or slightly improved. All results were compared to standard injection molded softwood WPC.

  4. Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

    1999-07-01

    ;'Federal Acquisition, Recycling and Waste Prevention,'' in October 1993 was a positive step toward getting CCBs accepted in the marketplace. Industry needs to continue to work with EPA to develop additional procurement guidelines for products containing CCBs--and to take advantage of existing guidelines to encourage the use of CCBs in high-profile projects. (6) Accelerated progress toward increased utilization of CCBs can be made only if there is an increased financial commitment and technical effort by industry and government. The framework for this has been set by the successful cooperation of industry and government under DOE leadership. Cooperation should continue, with DOE fulfilling its lead role established in the RTC. It is clear that the RTC recommendations continue to have validity with respect to increasing CCB utilization and continue to provide guidance to industry and government agencies.

  5. Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers.

    Science.gov (United States)

    Lee, C; Araujo, R C; Koenig, K M; Beauchemin, K A

    2015-05-01

    The objective of this study was to investigate effects of encapsulated nitrate (EN) on enteric methane emission and N and energy utilization in beef heifers. Eight ruminally-cannulated beef heifers (451 ± 21 kg BW) were used in a replicated 4 × 4 Latin square design. Four experimental diets were prepared and fed once daily for ad libitum intake: control, 1%, 2%, and 3% EN (0.15, 0.9, 1.5, and 2.5% NO3(-) in dietary DM, respectively). The control diet (55% forage and 45% concentrate) included encapsulated urea, which was gradually replaced with EN for the EN diets (iso-nitrogenous; 12.5% CP). In each period, EN was increased stepwise by 1% every 4 d during adaptation. A 7-d washout period (control diet offered to all heifers) was provided between experimental periods. Dry matter intake tended to decrease (10.4 to 10.1 kg/d; linear, P = 0.06) with EN levels. Enteric methane yield was linearly decreased (21.3 to 17.4 g/kg DMI; P excretion as proportions of N intake were linearly decreased (46.3 to 41.4%, = 0.09 and 37.1 to 29.9%, P = 0.01, respectively) with EN addition. However, NO3(-)-N excretion in urine increased linearly (P excretion was not affected (P = 0.47) by EN, although fecal NO-N excretion increased linearly (P excretion was lowered for EN due to lower urinary urea-N excretion.

  6. EURO-MED-STAT: monitoring expenditure and utilization of medicinal products in the European Union countries: a public health approach.

    Science.gov (United States)

    2003-09-01

    There is uncertainty about the level of utilization and expenditure for medicines in the European Union (EU), making assessment of their impact on public health difficult. Our aim is to develop indicators to monitor price, expenditure and utilization of medicinal products in the EU, so as to facilitate comparisons. There are four major tasks. Task 1: To catalogue data sources and available data in each EU Member State. Task 2: To assess the reliability and comparability of data among the EU Member States by ATC/DDD on country coverage, reimbursement, prescriptions, price category (e.g. wholesale, hospital, retail) and private versus public spending. Task 3: To develop Standard Operating Procedures for data management and to define clearly the proposed indicators in terms of objective, definition, description, rationale, and data collection. Task 4: To pool, compare and report the validated data according to the established indicators, using cardiovascular medicines as an example. Preliminary results from Tasks 1 and 2 are available and demonstrate the methodological difficulties in comparing data from different countries. Multiple data sources must be used. These cover different populations, and refer to different prices or costs. Nevertheless, useful data can be derived, illustrated by the example of lipid lowering medicines. The data shows that only five products are commonly available in all countries. Even when a medicine is available in all countries, there may be substantial differences in packages, which can hinder comparison. Data on utilization of statins shows high usage in Scandinavian countries and least in Italy. The preliminary results of EURO-MED-STAT show wide differences in availability, and use of medicines across Europe that may have substantial implications for public health.

  7. Utilization of agro-resources by radiation treatment -production of animal feed and mushroom from oil palm wastes

    Science.gov (United States)

    Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji; Awang, Mat Rasol; Hamdini, Hassan; Saitoh, Hideharu

    1993-10-01

    The production of animal feeds and mushrooms from oil palm cellulosic wasres by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EFB) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13 % and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30°C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran.

  8. Utilization of Yatagan Power Plant Fly Ash in Production of Building Bricks

    Science.gov (United States)

    Önel, Öznur; Tanriverdi, Mehmet; Cicek, Tayfun

    2017-12-01

    Fly ash is a by-product of coal combustion, which accumulates in large quantities near the coal-fired power plants as waste material. Fly ash causes serious operational and environmental problems. In this study, fly ash from Yatağgan thermal power plant was used to produce light-weight building bricks. The study aimed to reduce the problems related to fly ash by creating a new area for their use. The optimum process parameters were determined for the production of real size bricks to be used in construction industry. The commercial size bricks (200 × 200 × 90-110 mm) were manufactured using pilot size equipment. Mechanical properties, thermal conductivity coefficients, freezing and thawing strengths, water absorption rates, and unit volume weights of the bricks were determined. Etringite (Ca6Al2 (SO4)3 (OH)12 25(H2O)) and Calcium Silicate Hydrate (2CaO.SiO2.4H2O) were identified as the binding phases in the real size brick samples after 2 days of pre-curing and 28 days curing at 50° C and 95% relative moisture. The water absorption rate was found to be 27.7 % in terms of mass. The mechanical and bending strength of the brick samples with unit volume weight of 1.29 g.cm-3 were determined as 6.75 MPa and 1,56 MPa respectively. The thermal conductivity of the fly ash bricks was measured in average as 0,340 W m-1 K-1. The fly ash sample produced was subjected to toxic leaching tests (Toxic Property Leaching Procedure (EPA-TCLP 1311), Single-step BATCH Test and Method-A Disintegration Procedure (ASTM)). The results of these tests suggested that the materials could be classified as non-hazardous wastes / materials.

  9. Utilizing Satellite Precipitation Products to Understand the Link Between Climate Variability and Malaria

    Science.gov (United States)

    Maggioni, V.; Mousam, A.; Delamater, P. L.; Cash, B. A.; Quispe, A.

    2015-12-01

    Malaria is a public health threat to people globally leading to 198 million cases and 584,000 deaths annually. Outbreaks of vector borne diseases such as malaria can be significantly impacted by climate variables such as precipitation. For example, an increase in rainfall has the potential to create pools of water that can serve as breeding locations for mosquitos. Peru is a country that is currently controlling malaria, but has not been able to completely eliminate the disease. Despite the various initiatives in order to control malaria - including regional efforts to improve surveillance, early detection, prompt treatment, and vector management - malaria cases in Peru have risen between 2011 and 2014. The purpose of this study is to test the hypothesis that climate variability plays a fundamental role in malaria occurrence over a 12-year period (2003-2014) in Peru. When analyzing climate variability, it is important to obtain high-quality, high-resolution data for a time series long enough to draw conclusion about how climate variables have been and are changing. Remote sensing is a powerful tool for measuring and monitoring climate variables continuously in time and space. A widely used satellite-based precipitation product, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), available globally since 1998, was used to obtain 3-hourly data with a spatial resolution of 0.25° x 0.25°. The precipitation data was linked to weekly (2003-2014) malaria cases collected by health centers and available at a district level all over Peru to investigate the relationship between precipitation and the seasonal and annual variations in malaria incidence. Further studies will incorporate additional climate variables such as temperature, humidity, soil moisture, and surface pressure from remote sensing data products and climate models. Ultimately, this research will help us to understand if climate variability impacts malaria incidence

  10. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    Science.gov (United States)

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  11. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells

    International Nuclear Information System (INIS)

    Tanaka, Mamoru; Kamiya, Takeshi; Joh, Takashi; Kataoka, Hiromi; Yano, Shigenobu; Ohi, Hiromi; Kawamoto, Keisuke; Shibahara, Takashi; Mizoshita, Tsutomu; Mori, Yoshinori; Tanida, Satoshi

    2013-01-01

    Cisplatin (CDDP) is the most frequently used chemotherapeutic agent for various types of advanced cancer, including gastric cancer. However, almost all cancer cells acquire resistance against CDDP, and this phenomenon adversely affects prognosis. Thus, new chemotherapeutic agents that can overcome the CDDP-resistant cancer cells will improve the survival of advanced cancer patients. We synthesized new glycoconjugated platinum (II) and palladium (II) complexes, [PtCl 2 (L)] and [PdCl 2 (L)]. CDDP-resistant gastric cancer cell lines were established by continuous exposure to CDDP, and gene expression in the CDDP-resistant gastric cancer cells was analyzed. The cytotoxicity and apoptosis induced by [PtCl 2 (L)] and [PdCl 2 (L)] in CDDP-sensitive and CDDP-resistant gastric cancer cells were evaluated. DNA double-strand breaks by drugs were assessed by evaluating phosphorylated histone H2AX. Xenograft tumor mouse models were established and antitumor effects were also examined in vivo. CDDP-resistant gastric cancer cells exhibit ABCB1 and CDKN2A gene up-regulation, as compared with CDDP-sensitive gastric cancer cells. In the analyses of CDDP-resistant gastric cancer cells, [PdCl 2 (L)] overcame cross-resistance to CDDP in vitro and in vivo. [PdCl 2 (L)] induced DNA double-strand breaks. These results indicate that [PdCl 2 (L)] is a potent chemotherapeutic agent for CDDP-resistant gastric cancer and may have clinical applications

  12. Computational investigation of enthalpy-entropy compensation in complexation of glycoconjugated bile salts with β-cyclodextrin and analogs.

    Science.gov (United States)

    Tidemand, Kasper D; Schönbeck, Christian; Holm, René; Westh, Peter; Peters, Günther H

    2014-09-18

    The inclusion complexes of glycoconjugated bile salts with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrins (HP-β-CD) in aqueous solution were investigated by molecular dynamics simulations to provide a molecular explanation of the experimentally observed destabilizing effect of the HP substituents. Good agreement with experimental data was found with respect to penetration depths of CDs. An increased degree of HP substitution (DS) resulted in an increased probability of blocking the cavity opening, thereby hindering the bile salt from entering CD. Further, the residence time of water molecules in the cavity increased with the DS. Release of water from the cavity resulted in a positive enthalpy change, which correlates qualitatively with the experimentally determined increase in complexation enthalpy and contributes to the enthalpy-entropy compensation. The positive change in complexation entropy with DS was not able to compensate for this unfavorable change in enthalpy induced by the HP substituents, resulting in a destabilizing effect. This was found to originate from fixation of the HP substituents and decreased free rotation of the bile salts within the CD cavities.

  13. Assessing the techno-environmental performance of CO2 utilization via dry reforming of methane for the production of dimethyl ether

    NARCIS (Netherlands)

    Schakel, Wouter; Oreggioni, Gabriel; Singh, Bhawna; Strømman, Anders; Ramírez, Andrea

    2016-01-01

    Abstract CO2 utilization is gaining attention as a greenhouse gas abatement strategy complementary to CO2 storage. This study explores the techno-environmental performance of CO2 utilization trough dry reforming of methane into syngas for the production of dimethyl ether (DME). The CO2 source is a

  14. Utilization of bagasse from the beer industry in clay brick production for building

    Directory of Open Access Journals (Sweden)

    Martínez, M. L.

    2012-06-01

    Full Text Available This study analyzes bricks manufactured from bagasse, a by-product of the brewing industry. Raw materials (clay and bagasse were characterized to determine their chemical composition, mineralogical composition and thermal behaviour. Mixtures were prepared with amounts of 0, 2.5, 5, 7.5 and 10 wt% of bagasse incorporated into the clay body. Rectangular test pieces were obtained by application of 54.5 MPa pressure, they were dried at 110 °C and fired at 950 ºC in a laboratory furnace for 1 hour. Ceramic properties related to weight loss on ignition, linear shrinkage, bulk and absolute density, water absorption, water suction and compressive strength were analyzed in order to evaluate the suitability of using this wastes in ceramic matrix to the production of building bricks. The results indicate that the incorporation of the bagasse decreases the absolute and bulk density, increases the water absorption and reduces the compressive strength of the brick.

    Este estudio analiza ladrillos fabricados a partir de bagazo, un subproducto del sector cervecero. Las materias primas (arcilla y bagazo fueron caracterizadas para determinar la composición química, la composición mineralógica y el comportamiento térmico. Las mezclas fueron preparadas adicionando cantidades del 0; 2,5; 5; 7,5 y 10 % en peso de bagazo a la arcilla. Se obtuvieron piezas rectangulares por aplicación de una presión de 54,5 MPa, secadas a 110 ºC y sinterizadas a 950 ºC en un horno mufla durante 1 hora. Las propiedades cerámicas relativas a la pérdida de peso por calcinación, contracción lineal, densidad aparente, densidad absoluta, absorción de agua, succión del agua y resistencia a la compresión, fueron analizadas para evaluar la conveniencia de utilizar estos residuos en matrices cerámicas para la producción de ladrillos para construcción. Los resultados indican que, la incorporación de bagazo disminuye las densidades aparente y absoluta, incrementa la

  15. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  16. Viability of utilization of waste materials from ceramic products in precast concretes

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-12-01

    Full Text Available The recycled and re-valuation process of waste materials involves studies lead to a deep acknowledges of them, finding applications for their intended use. The waste materials from ceramic products can be recycled into the construction sector, as arid or pozzolanic materials. The current work deals with the incorporation of ceramic materials in these two different ways, checking the behaviour of the elaborated mortar by mean of laboratory tests. Also, tests are developed in factory, using these as components for precast concrete tiles.

    Todo proceso de reciclado y revalorización de residuos implica estudios encaminados a un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. Los materiales de desecho procedentes de productos cerámicos pueden ser reciclados dentro del sector de la construcción, ya sea como áridos o como materiales puzolánicos. El presente trabajo aborda la incorporación de materiales cerámicos desde estas dos vertientes, comprobando, en cada caso, el comportamiento de los morteros elaborados mediante ensayos de laboratorio. También se llevan a cabo pruebas en fábrica, siendo utilizados como componentes en prefabricados de hormigón.

  17. Recovery and Utilization of Palm Oil Mill Effluent Source as Value-Added Food Products.

    Science.gov (United States)

    Teh, Soek Sin; Hock Ong, Augustine Soon; Mah, Siau Hui

    2017-01-01

    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13 C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.

  18. Pyrolysis oil production, properties, and utilization; Pyrolyysioeljyn valmistus, ominaisuudet ja kaeyttoe

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Oasmaa, A.; Arpiainen, V.; Kuoppala, E.; Leppaemaeki, E.; Solantausta, Y.; Levander, J. VTT Energia

    1995-12-31

    The main tasks for 1995 were: design and assembling of experimental reactors, and physical and chemical characterisation of pyrolysis oils. A PDU-unit (20 kg/h) has been designed and it will be assembled in April 1996. A 1 kg/h pyrolyzer has been constructed with a hot-filtration system (a ceramic candle filter) and direct quenching with a hydrocarbon oil. The equipment has worked well. Pine saw dust has been used as a feed and a good-quality solids-free product oil has been obtained. In addition to this, a smaller (150 g/h) pyrolyzer has been bought from Canada (University of Waterloo). The small equipment will be used for example for catalytic upgrading of pyrolysis vapours. Chemical characterisation of pyrolysis oil has been carried out 1995. Water extraction has been developed for a fractionation method. Pyrolysis oil samples produced from mixed hardwood, eucalyptus and straw have been employed. The objective of the study has been to develop a simple characterisation method for comparison of different pyrolysis oils. For example reactive compounds have been identified. Main analytical method for analysing the water-soluble fraction has been GC-MS. The research will be continued 1996. A literature review of chemical and physical characterization of pyrolysis oils has been published 1995. Testing of fuel oil analyses has been continued within the IEA pyrolysis project. VTT Energy is responsible for fuel oil analytical methods

  19. Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis

    Science.gov (United States)

    Witantri, R. G.; Purwoko, T.; Sunarto; Mahajoeno, E.

    2017-07-01

    Cassava peels waste contains, cellulose which is quite high at 43.626%, this is a potential candidate as a raw for bioethanol production. The purpose of this study was to determine the performance of the enzymatic hydrolysis, microbiological (Effective microbe) and fermentation in cassava peel waste is known from the results of quantitative measurement of multiple ethanol parameters (DNS Test, pH, ethanol concentration). This research was carried out in stages, the first stage is hydrolysis with completely randomized design with single factor variation of the catalyst, consisting of three levels ie cellulase enzymes, multienzyme and effective microbial EM4. The second stage is fermentation with factorial randomized block design, consisting of three groups of variations of catalyst, and has two factors: variations of fermipan levels 1, 2, 3% and the duration of fermentation, 2,4,6 days. The parameters in the test is a reducing sugar, pH and concentration of ethanol. The results showed that variation of hydrolysis treatment, fermentation time, and fermipan levels has real effect on the fermentation process. On average the highest ethanol content obtained from the treatment with multienzyme addition, with the addition of 2% fermipan levels and on the 2nd day of fermentation that is equal to 3.76%.

  20. Sustainable vegetable greenhouse production through bio-conversion of greenhouse solid wastes and re-utilization

    Energy Technology Data Exchange (ETDEWEB)

    Cheuk, W.W.L.

    2004-07-01

    In recognition that sustainable practices to conserve agricultural lands and ground waters are not currently implemented, this study proposed a sustainable growing practice for the vegetable greenhouse industry. Waste handling and biodegradable plastics were examined along with different composting control algorithms. Bench-scale and pilot scale composting studies were performed to test substrate recipes. It was shown that with a good control algorithm, composting of greenhouse wastes could reach the requirement for Process to Reduce Further Pathogens (PRFP) at 55 degrees C for 3 days. Although ammonia emissions present a challenge, they can be minimized by using air-recirculation. Ammonia emissions can also be removed by a biofilter. Recirculation cooling control was found to be the most effective method in keeping the process temperature below the set point. Fewer leachate and condensates were found within reactors with air recirculation control for cooling and aeration. These systems contributed to higher degradation rates and more consistent moisture content of the final product. Alder bark was a better bulking agent than hemlock bark because of its better substrate structure, more carbon loss , less nitrogen loss and higher process temperature. Although it was not necessary to shred prunings before composting, the addition of alder bark as a bulking agent was necessary. The best waste composting ratio recommended for in-vessel composting was presented along with results for vegetable yields for the different mixtures. Amendments to greenhouse compost also contributed to a reduction in diseased tomatoes.

  1. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  2. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization

    Science.gov (United States)

    2014-01-01

    Background Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Results Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains

  3. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    Science.gov (United States)

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  4. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Fourth Quarter 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    At the end of 1983, the number of signed contracts and letter agreements for cogeneration and small power production projects was 305, with a total estimated nominal capacity of 2,389 MW. Of these totals, 202 projects, capable of producing 566 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration, solid waste, or biomass projects had signed 101 contracts with a potential of 1,408 MW. In total, 106 contracts and letter agreements had been signed with projects capable of producing 1,479 MW. PG and E also had under active discussion 29 cogeneration projects that could generate a total of 402 MW to 444 MW, and 13 solid waste or biomass projects with a potential of 84 MW to 89 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 28, with a generating capability of 618 MW. Also, discussions were being conducted with 14 wind farm projects, totaling 365 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 8 other small wind projects under active discussion. There were 59 hydroelectric projects with signed contracts and a potential of 146 MW, as well as 72 projects under active discussion for 169 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E was planning to construct. Table B displays the above information. In tabular form, in Appendix A, are status reports of the projects as of December 31, 1983.

  5. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-01-01

    At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

  6. Utilization of Bagasse Cellulose for Ethanol Production through Simultaneous Saccharification and Fermentation by Xylanase

    Directory of Open Access Journals (Sweden)

    M Samsuri

    2010-10-01

    Full Text Available Bagasse is a solid residue from sugar cane process, which is not many use it for some product which have more added value. Bagasse, which is a lignosellulosic material, be able to be use for alternative energy resources like bioethanol or biogas. With renewable energy resources a crisis of energy in Republic of Indonesia could be solved, especially in oil and gas. This research has done the conversion of bagasse to bioethanol with xylanase enzyme. The result show that bagasse contains of 52,7% cellulose, 20% hemicelluloses, and 24,2% lignin. Xylanase enzyme and Saccharomyces cerevisiae was used to hydrolyse and fermentation in SSF process. Variation in this research use pH (4, 4,5, and 5, for increasing ethanol quantity, SSF process was done by added chloride acid (HCl with concentration 0.5% and 1% (v/v and also pre-treatment with white rot fungi such as Lentinus edodes (L.edodes as long 4 weeks. The SSF process was done with 24, 48, 72, and 96 hour's incubation time for fermentation. Variation of pH 4, 4,5, and 5 can produce ethanol with concentrations 2,357 g/L, 2,451 g/L, 2,709 g/L. The added chloride acid (HCl with concentration 0.5% and 1% (v/v and L. edodes can increase ethanol yield, The highest ethanol concentration with added chloride acid (HCl concentration 0.5% and 1% consecutively is 2,967 g/L, 3,249 g/L. The highest ethanol concentration with pre-treatment by L. edodes is 3,202 g/L.

  7. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-02-01

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  8. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 2, Product development of magnesium hydroxide, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kevin [Dravo Technology Center, Pittsburgh, PA (United States); Beeghly, Joel H. [Dravo Technology Center, Pittsburgh, PA (United States)

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compaction in a landfill also consumes fly ash that otherwise may be marketable.

  9. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 3, Product development of gypsum, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kevin [Dravo Technology Center, Pittsburgh, PA (United States); Beeghly, Joel H. [Dravo Technology Center, Pittsburgh, PA (United States)

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in Figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compunction in a landfill also consumes fly ash that otherwise may be marketable.

  10. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-01-01

    At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

  11. Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility.

    Science.gov (United States)

    Sinclair, K D; Garnsworthy, P C; Mann, G E; Sinclair, L A

    2014-02-01

    In light of increasing global protein prices and with the need to reduce environmental impact of contemporary systems of milk production, the current review seeks to assess the feasibility of reducing levels of dietary CP in dairy cow diets. At CP levels between 140 and 220 g/kg DM there is a strong positive relationship between CP concentration and dry matter intake (DMI). However, such effects are modest and reductions in DMI when dietary CP is below 180 g/kg DM can be at least partially offset by improving the digestibility and amino acid profile of the undegradable protein (UDP) component of the diet or by increasing rumen fermentable energy. Level and balance of intestinally absorbable amino acids, in particular methionine and lysine, may become limiting at lower CP concentrations. In general the amino acid composition of microbial protein is superior to that of UDP, so that dietary strategies that aim to promote microbial protein synthesis in the rumen may go some way to correcting for amino acid imbalances in low CP diets. For example, reducing the level of NDF, while increasing the proportion of starch, can lead to improvements in nitrogen (N) utilisation as great as that achieved by reducing dietary CP to below 150 g/kg. A systematic review and meta-analysis of responses to rumen protected forms of methionine and lysine was conducted for early/mid lactation cows fed diets containing ⩽150 g CP/kg DM. This analysis revealed a small but significant (P=0.002) increase in milk protein yield when cows were supplemented with these rumen protected amino acids. Variation in milk and milk protein yield responses between studies was not random but due to differences in diet composition between studies. Cows fed low CP diets can respond to supplemental methionine and lysine so long as DMI is not limiting, metabolisable protein (MP) is not grossly deficient and other amino acids such as histidine and leucine do not become rate limiting. Whereas excess dietary protein

  12. Fostering triacylglycerol accumulation in novel oleaginous yeast Cryptococcus psychrotolerans IITRFD utilizing groundnut shell for improved biodiesel production.

    Science.gov (United States)

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2017-10-01

    The investigation was carried out to examine the potential of triacylglycerol (TAG) accumulation by novel oleaginous yeast isolate Cryptococcus psychrotolerans IITRFD on utilizing groundnut shell acid hydrolysate (GSH) as cost-effective medium. The maximum biomass productivity and lipid productivity of 0.095±0.008g/L/h and 0.044±0.005g/L/h, respectively with lipid content 46% was recorded on GSH. Fatty acid methyl ester (FAME) profile obtained by GC-MS analysis revealed oleic acid (37.8%), palmitic (29.4%) and linoleic (32.8%) as major fatty acids representing balance between oxidative stability (OS) and cold flow filter properties (CFFP) for improved biodiesel quality. The biodiesel property calculated were correlated well with the fuel standards limits of ASTM D6751, EN 14214 and IS 15607. The present findings raise the possibility of using agricultural waste groundnut shell as a substrate for production of biodiesel by novel oleaginous yeast isolate C. psychrotolerans IITRFD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.

    Science.gov (United States)

    Sabet-Azad, Ramin; Sardari, Roya R R; Linares-Pastén, Javier A; Hatti-Kaul, Rajni

    2015-03-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical for the biobased chemical industry. Lactobacillus reuteri produces 3-HP from glycerol via 3-hydroxypropionaldehyde (3-HPA) through a CoA-dependent propanediol utilization (Pdu) pathway. This study was performed to verify and evaluate the pathway comprising propionaldehyde dehydrogenase (PduP), phosphotransacylase (PduL), and propionate kinase (PduW) for formation of 3-HP from 3-HPA. The pathway was confirmed using recombinant Escherichia coli co-expressing PduP, PduL and PduW of L. reuteri DSM 20016 and mutants lacking expression of either enzyme. Growing and resting cells of the recombinant strain produced 3-HP with a yield of 0.3mol/mol and 1mol/mol, respectively, from 3-HPA. 3-HP was the sole product with resting cells, while growing cells produced 1,3-propanediol as co-product. 3-HP production from glycerol was achieved with a yield of 0.68mol/mol by feeding recombinant E. coli with 3-HPA produced by L. reuteri and recovered using bisulfite-functionalized resin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Utilization of orange peel, a food industrial waste, in the production of exo-polygalacturonase by pellet forming Aspergillus sojae.

    Science.gov (United States)

    Buyukkileci, Ali Oguz; Lahore, Marcello Fernandez; Tari, Canan

    2015-04-01

    The production of exo-polygalacturonase (exo-PG) from orange peel (OP), a food industrial waste, using Aspergillus sojae was studied in submerged culture. A simple, low-cost, industrially significant medium formulation, composed of only OP and (NH4)2SO4 (AS) was developed. At an inoculum size of 2.8 × 10(3) spores/mL, growth was in the form of pellets, which provided better mixing of the culture broth and higher exo-PG activity. These pellets were successfully used as an inoculum for bioreactors and 173.0 U/mL exo-PG was produced. Fed-batch cultivation further enhanced the exo-PG activity to 244.0 U/mL in 127.5 h. The final morphology in the form of pellets is significant to industrial fermentation easing the subsequent downstream processing. Furthermore, the low pH trend obtained during this fermentation serves an advantage to fungal fermentations prone to contamination problems. As a result, an economical exo-PG production process was defined utilizing a food industrial by-product and producing high amount of enzyme.

  15. Effects of the utilization term and additional sowing of Festuca arundinacea and Festulolium on the production of winter pasture

    Directory of Open Access Journals (Sweden)

    Jiří Skládanka

    2006-01-01

    Full Text Available The work was carried out to study the influence of additional sowing and differentiated systems of use in the summer period on the production of grass sward in the autumn and winter period. An additional sowing of Festuca arundinacea and Festulolium was made into the grass stand with dominating Festuca rubra, Taraxacum officinale, Agropyron repens, Dactylis glomerata, Trisetum flavescens, Agrostis stolonifera and Phleum pratense. In summer (preparatory cut, the grass stand was utilized in June, July and August. In the autumn (main use, it was utilized in November, December and January. The additional sowing, the preparatory cut and the main use were monitored for their influence on the yield of dry matter. Another assessment was made of the share of Festuca arundinacea and Festulolium in the harvested herbage. In June 2001, the share of additionally sown herb species in the harvested herbage did not exceed 2%. However, their proportion increased to more than 20% in four years of the study. In the summer period, the additional sowing did not show any significant effect on dry matter yields. The additionally sown herb species exhibited a pronounced dominance in November. The shares of Festuca arundinacea and Festulolium in the harvested herbage were 80.1% and 71.3%, respectively. Yields from the additionally sown grass stands were higher from the third year of the study (by 1.07–1.26 t.ha–1 than those from the grass stand with no additional sowing (0.66–0.97 t.ha–1 the variance being insignificant. In the autumn and in winter, a significant decrease (P < 0.05 was seen in yields from the grass stand utilized until the beginning of August and the yields further decreased with the proceeding winter.

  16. Productive performance and efficiency of utilization of the diet components in dairy cows fed castor meal treated with calcium oxide

    Directory of Open Access Journals (Sweden)

    Juliana Variz Cobianchi

    2012-10-01

    Full Text Available The effect of replacing of 0; 0.33; 0.67 and 1.0 (kg/kg of soybean meal (SBM by undecorticated castor seed meal treated with calcium oxide (CMT - 60 g/kg was evaluated on performance and efficiency of nutrient utilization in dairy cows. Sixteen Holstein and crossbred cows were distributed in four 4 × 4 latin squares. Animals received concentrated feed at a ratio of 1 kg for 3 kg of milk produced, in the natural matter. The diets had the same amount of nitrogen (150.4 g crude protein/kg DM, containing 325.6 g of concentrated feed/kg DM. There was no effect on the serum concentration of transaminase and the animals showed no clinical symptoms of intoxication by ricin. The intake of DM, crude protein (CP and non-fibrous carbohydrates (NFC reduced from 0.67 replacement of SBM by CMT. The intake of neutral detergent fibers corrected for ash and protein (NDFap increased from 0.33 replacement of SBM with CMT. Although the digestibility of dietary components decreased from 0.33 replacement, the intake of digestible components only reduced from 0.67 replacement. Because of the reduction of digestible energy, the synthesis of microbial CP and the utilization efficiency of rumen-degradable protein for the synthesis of microbial CP reduced with full replacement of SBM by CMT. Milk yield, milk composition, daily variation of body weight and the efficiency of utilization of the nutrients for the synthesis of N in milk reduced from 0.67 replacement of SBM by CMT. Castor seed meal treated with calcium oxide can replace up to 0.33 of SBM (50 g/kg DM diet DM in the diet of dairy cows with an average milk production of 20 kg/day.

  17. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production

    Science.gov (United States)

    Wang, Yujiao; Lv, Min; Zhang, Yingxin; Xiao, Xieyue; Jiang, Tianyi; Zhang, Wen; Hu, Chunhui; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-01-01

    As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent d-lactate dehydrogenase activity was prepared and used in l-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent l-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important l-2-hydroxy-carboxylates (l-lactate and l-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination. PMID:25373400

  18. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. Copyright © 2015. Published by Elsevier Ltd.

  19. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Cyd E. [Dept. of Energy (DOE), Washington DC (United States).

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  20. Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production.

    Science.gov (United States)

    Vichaphund, S; Intiya, W; Kongkaew, A; Loykulnant, S; Thavorniti, P

    2012-12-01

    The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing clay ceramics was investigated. To prepared clay-based ceramic, the mixtures of traditional clay and sludge waste (10-30 wt%) were milled, uniaxilly pressed and sintered at a temperature between 1000 and 1200 degrees C. The effect of sludge waste on the properties of clay-based ceramic products was examined. The results showed that the amount of sludge waste addition had an effect on both sinterability and properties of the clay ceramics. Up to 30 wt% of sludge waste can be added into the clay ceramics, and the sintered samples showed good properties.

  1. Control of greenhouse gases emission by radiation-induced formation of useful products. Utilization of CO 2

    Science.gov (United States)

    Getoff, Nikola

    2006-04-01

    Carbon dioxide (CO 2) is produced in enormous quantities by combustion of fossil fuels in power plants and heavy industries. It is strongly influencing the environment and the climate. However, it can be separated from the exhaust gases and utilized as row material for making value-added products by irradiation. Results of experiments in laboratory scale showed, e.g. that amino acids and short chain proteins can be produced by carboxylation of amines, whereas salicylic acid results from phenol and malonic acid formation is observed from acetic acid. The yield dependence from various experimental factors as well as the reaction mechanisms of the studied systems are discussed and an outlook of future developments is given.

  2. Control of greenhouse gases emission by radiation-induced formation of useful products. Utilization of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola [Ludwig Boltzmann Institute for Radiation Chemistry and Radiation Biology, c/o University of Vienna, Althanstrasse 14, UZA II, Ebene 5B, A-1090 Vienna (Austria)]. E-mail: nikola.getoff@univie.ac.at

    2006-04-15

    Carbon dioxide (CO{sub 2}) is produced in enormous quantities by combustion of fossil fuels in power plants and heavy industries. It is strongly influencing the environment and the climate. However, it can be separated from the exhaust gases and utilized as row material for making value-added products by irradiation. Results of experiments in laboratory scale showed, e.g. that amino acids and short chain proteins can be produced by carboxylation of amines, whereas salicylic acid results from phenol and malonic acid formation is observed from acetic acid. The yield dependence from various experimental factors as well as the reaction mechanisms of the studied systems are discussed and an outlook of future developments is given.

  3. Interim storage of solidified fission products from fuel element reprocessing with utilization of obtaining post-decay heat

    International Nuclear Information System (INIS)

    Kelm, W.

    1983-01-01

    It is noted that the out-lined interim store for HRW with industrial utilization of decay heat (production of saturated steam and hydrogen) does include a certain risk potential like any technical plant but that it does not represent a danger to the population living nearby. All internal and external impacts on the store result in safely triggering natural convection cooling. A further emergency cooling system is provided by the water irrigation facility so that obtaining after-heat can be safely removed under all circumstances. Therefore, there are no safety-technology arguments against any realization of the concept presented for interim storage of solidified high-level radio-active wastes. An interim store of this type may be built and operated even in densely populated regions and urban agglomerations. (orig./HP) [de

  4. Metal-Binding Ability of Leu-Enkephalin, Related Glycoconjugates and Peptidomimetics

    Directory of Open Access Journals (Sweden)

    Zsuzsa Majer

    2015-12-01

    Full Text Available Both the chemistry and consequences of the nonenzymatic reaction between reducing sugars and reactive amino groups of amino acids, peptides and proteins (known as the Maillard reaction, have received considerable attention in food and health science fields. This initial reaction results in Amadori and similar products formation, followed by degradation to advanced glycation end products (AGEs. It is well established that AGEs are associated with color and odor of thermally processed or stored food, as well as with pathogen products in a number of diseases. The model systems of early stage Maillard reaction products (MRP were prepared between endogenous opioid peptide leucine enkephalin (1 and D-glucose / D-glucuronic acid. The complexation ability of prepared MRP with metal ions (Ca2+, Zn2+, Al3+, Pb2+ and Cu2+ was investigated and compared to the complexation ability of parent peptide using ECD and FTIR spectroscopic measurements.

  5. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Cvengros, J. Jan; Cvengrosova, Zuzana [Slovak Univ. of Technology, Faculty of Chemical and Food Technology, Bratislava (Slovakia)

    2004-08-01

    From the point of view price and available capacity used frying oils or fats (UFO) represent an attractive raw material for the production of methyl esters (ME) of higher fatty acids as alternative fuels for diesel engines. If they are treated such that the required quality, with an acidity number up to 3.0 mg KOH/g and a water content up to 0.1 wt%, is achieved they can be processed to ME using standard techniques of alkali-catalysed transesterification with methanol which are utilized for production of the ME from new oils/fats. The problematic waste can thus be converted to an ecologically friendly fuel. Vacuum distillation of free fatty acids in a film evaporator is an effective method for simultaneously decreasing the content of FFA and water in UFO. Final distillation of raw ME in a film vacuum evaporator results in practically all parameters required by the standard, in the final ME being achieved. Undesirable low-temperature properties of ME derived from UFO, due to higher fraction of saturated acyls, can be adjusted by the addition of depressants-flow improvers for winterization. Some simplified methods for the quality control of UFO and ME are discussed. The conversion of acylglycerols to ME is monitored by GLC with a packed column, where the peak areas of ME in the sample before and after the reaction with an effective methylation agent are compared. The method for the determination of the water content in esters utilizes the reaction of calcium carbide with water, the volume of acetylene being measured. (Author)

  6. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  7. Influence of Condensed Tannins from Ficus bengalensis Leaves on Feed Utilization, Milk Production and Antioxidant Status of Crossbred Cows.

    Science.gov (United States)

    Dey, Avijit; De, Partha Sarathi

    2014-03-01

    This study was conducted to examine the effects of condensed tannins (CT) from Ficus bengalensis leaves on the feed utilization, milk production and health status of crossbred cows. Eighteen crossbred dairy cows at their second and mid lactation (avg. BW 351.6±10.6 kg) were randomly divided into two groups of nine each in a completely randomized block design and fed two iso-nitrogenous supplements formulated to contain 0% and 1.5% CT through dried and ground leaves of Ficus bengalensis. The diets were designated as CON and FBLM, respectively and fed to cows with a basal diet of rice straw to meet requirements for maintenance and milk production. The daily milk yield was significantly (pmilk yield was also significantly (pmilk fat in cows under diet FBLM as compared to CON. The inclusion of CT at 1.5% in the supplement did not interfere with the feed intake or digestibility of DM, OM, CP, EE, NDF, and ADF by lactating cows. Digestible crude protein (DCP) and total digestible nutrients (TDN) values of the composite diets were comparable between the groups. The blood biochemical parameters remained unaltered except significantly (pcondensed tannins. The total thiol group (T-SH) was found to be higher with reduction in lipid peroxidation (LPO) in cows of FBLM group. The cost of feeding per kg milk production was also reduced due to supplementation of Ficus bengalensis leaves. Therefore, a perceptible positive impact was evident on milk production and antioxidant status in crossbred cows during mid-lactation given supplement containing 1.5% CT through Ficus bengalensis leaves.

  8. The Potential for Electrofuels Production in Sweden Utilizing Fossil and Biogenic CO{sub 2} Point Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Julia, E-mail: julia.hansson@ivl.se [Climate and Sustainable Cities, IVL Swedish Environmental Research Institute, Stockholm (Sweden); Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of Technology, Göteborg (Sweden); Hackl, Roman [Climate and Sustainable Cities, IVL Swedish Environmental Research Institute, Stockholm (Sweden); Taljegard, Maria [Division of Energy Technology, Department of Energy and Environment, Chalmers University of Technology, Göteborg (Sweden); Brynolf, Selma; Grahn, Maria [Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of Technology, Göteborg (Sweden)

    2017-03-13

    This paper maps, categorizes, and quantifies all major point sources of carbon dioxide (CO{sub 2}) emissions from industrial and combustion processes in Sweden. The paper also estimates the Swedish technical potential for electrofuels (power-to-gas/fuels) based on carbon capture and utilization. With our bottom-up approach using European databases, we find that Sweden emits approximately 50 million metric tons of CO{sub 2} per year from different types of point sources, with 65% (or about 32 million tons) from biogenic sources. The major sources are the pulp and paper industry (46%), heat and power production (23%), and waste treatment and incineration (8%). Most of the CO{sub 2} is emitted at low concentrations (<15%) from sources in the southern part of Sweden where power demand generally exceeds in-region supply. The potentially recoverable emissions from all the included point sources amount to 45 million tons. If all the recoverable CO{sub 2} were used to produce electrofuels, the yield would correspond to 2–3 times the current Swedish demand for transportation fuels. The electricity required would correspond to about 3 times the current Swedish electricity supply. The current relatively few emission sources with high concentrations of CO{sub 2} (>90%, biofuel operations) would yield electrofuels corresponding to approximately 2% of the current demand for transportation fuels (corresponding to 1.5–2 TWh/year). In a 2030 scenario with large-scale biofuels operations based on lignocellulosic feedstocks, the potential for electrofuels production from high-concentration sources increases to 8–11 TWh/year. Finally, renewable electricity and production costs, rather than CO{sub 2} supply, limit the potential for production of electrofuels in Sweden.

  9. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw.

    Science.gov (United States)

    Erdei, Borbála; Frankó, Balázs; Galbe, Mats; Zacchi, Guido

    2012-03-12

    The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol

  10. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  11. Production of glycoprotein vaccines in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ihssen Julian

    2010-08-01

    Full Text Available Abstract Background Conjugate vaccines in which polysaccharide antigens are covalently linked to carrier proteins belong to the most effective and safest vaccines against bacterial pathogens. State-of-the art production of conjugate vaccines using chemical methods is a laborious, multi-step process. In vivo enzymatic coupling using the general glycosylation pathway of Campylobacter jejuni in recombinant Escherichia coli has been suggested as a simpler method for producing conjugate vaccines. In this study we describe the in vivo biosynthesis of two novel conjugate vaccine candidates against Shigella dysenteriae type 1, an important bacterial pathogen causing severe gastro-intestinal disease states mainly in developing countries. Results Two different periplasmic carrier proteins, AcrA from C. jejuni and a toxoid form of Pseudomonas aeruginosa exotoxin were glycosylated with Shigella O antigens in E. coli. Starting from shake flask cultivation in standard complex medium a lab-scale fed-batch process was developed for glycoconjugate production. It was found that efficiency of glycosylation but not carrier protein expression was highly susceptible to the physiological state at induction. After induction glycoconjugates generally appeared later than unglycosylated carrier protein, suggesting that glycosylation was the rate-limiting step for synthesis of conjugate vaccines in E. coli. Glycoconjugate synthesis, in particular expression of oligosaccharyltransferase PglB, strongly inhibited growth of E. coli cells after induction, making it necessary to separate biomass growth and recombinant protein expression phases. With a simple pulse and linear feed strategy and the use of semi-defined glycerol medium, volumetric glycoconjugate yield was increased 30 to 50-fold. Conclusions The presented data demonstrate that glycosylated proteins can be produced in recombinant E. coli at a larger scale. The described methodologies constitute an important step

  12. Inactivation of Francisella tularensis Gene Encoding Putative ABC Transporter Has a Pleiotropic Effect upon Production of Various Glycoconjugates

    Czech Academy of Sciences Publication Activity Database

    Daňková, V.; Balonová, L.; Link, M.; Strašková, Adéla; Sheshko, V .; Stulík, J.

    2016-01-01

    Roč. 15, č. 2 (2016), s. 510-524 ISSN 1535-3893 Institutional support: RVO:61388971 Keywords : Francisella tularensis * glycosylation * lipopolysaccharide Subject RIV: EE - Microbiology, Virology Impact factor: 4.268, year: 2016

  13. Efficient Production of Pyruvate from DL-Lactate by the Lactate-Utilizing Strain Pseudomonas stutzeri SDM

    Science.gov (United States)

    Gao, Chao; Qiu, Jianhua; Ma, Cuiqing; Xu, Ping

    2012-01-01

    Background The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis. Methodology/Principal Findings It was established that whole cells of Pseudomonas stutzeri SDM catalyze lactate oxidation with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) through the inherent electron transfer chain. Unlike the lactate oxidation processes observed in previous reports, the mechanism underlying lactate oxidation described in the present study excluded the costliness of the cofactor regeneration step and production of the byproduct hydrogen peroxide. Conclusions/Significance Biocatalysis conditions were optimized by using the cheap dl-lactate as the substrate and whole cells of the lactate-utilizing P. stutzeri SDM as catalyst. Under optimal conditions, the biocatalytic process produced pyruvate at a high concentration (48.4 g l−1) and a high yield (98%). The bioconversion system provides a promising alternative for the green production of pyruvate. PMID:22792404

  14. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates

    Directory of Open Access Journals (Sweden)

    Dupuy Fabrice

    2009-10-01

    Full Text Available Abstract Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries, providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis.

  15. Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.

    Directory of Open Access Journals (Sweden)

    John S Cho

    2009-09-01

    Full Text Available The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha. How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.

  16. Optimal A-Train Data Utilization: A Use Case of Aura OMI L2G and MERRA-2 Aerosol Products

    Science.gov (United States)

    Zeng, Jian; Shen, Suhung; Wei, Jennifer; Meyer, David J.

    2017-01-01

    Ozone Monitoring Instrument (OMI) aboard NASA's Aura mission measures ozone column and profile, aerosols, clouds, surface UV irradiance, and the trace gases including NO2, SO2, HCHO, BrO, and OClO using UltraViolet electromagnetic spectrum (280 - 400 nm) with a daily global coverage and a pixel spatial resolution of 13 km × 24 km at nadir, and it's been one of the key instruments to study the Earth's atmospheric composition and chemistry. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. Compared to its predecessor MERRA, MERRA-2 is enhanced with more aspects of the Earth system among which is aerosol assimilation. When comparing between satellite pixel measurements and modeled grid data, how to properly handle counterpart pairing is critical considering their spatial and temporal variations. The comparison between satellite and model data by simply using Level 3 (L3) products may result biases due to lack of detailed temporal information. It has been preferred to inter-compare or implement satellite derived physical quantity (i.e., Level 2 (L2) Swath type) directly with/to model measurements with higher temporal and spatial resolution as possible. However, this has posed a challenge in the community to handle. Rather than directly handling the L2 or L3 data, there is a Level 2G (L2G) product conserving L2 pixel scientific data quality but in Grid type with the global coverage. In this presentation, we would like to demonstrate the optimal utilization of OMI L2G daily aerosol products by comparing with MERRA-2 hourly aerosol simulations matched well in both space and time.

  17. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Brian [Touchstone Research Laboratory Ltd, Triadelphia, WV (United States)

    2014-03-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were

  18. Energy utilization and heat production of embryos from eggs originating from young and old broiler breeder flocks.

    Science.gov (United States)

    Nangsuay, A; Meijerhof, R; Ruangpanit, Y; Kemp, B; van den Brand, H

    2013-02-01

    Two experiments were conducted to study the interaction between breeder age and egg size on the energy utilization (experiment 1) and heat production (experiment 2) of broiler embryos. In experiment 1, a total of 4,800 Ross-308 hatching eggs from 2 breeder ages (29 and 53 wk of age, or young and old) and, within each age, 2 egg sizes (57 to 61 g and 66 to 70 g, or small and large) were used. In experiment 2, a total of 240 Ross-308 hatching eggs from 2 breeder flocks at 29 (young) and 53 (old) wk of age, and which were selected from the same egg weight range (58 to 61 g), were tested in 2 replicate chambers. In experiment 1, it was shown that the amount of yolk relative to albumen was higher in the old flock eggs, and this effect was more pronounced in the large eggs. The old flock eggs, especially the larger egg size, contained more energy as a result of a greater yolk size. Energy utilization of the embryos was positively related to yolk size and the amount of energy transferred to yolk-free body (YFB) was largely determined by the available egg energy. The efficiency of converting egg energy into chick body energy (E(YFB)) was equal for both egg sizes and both breeder age groups. Chick YFB weight of young and old flock eggs was equal. However, dry YFB weight of chicks from old flock eggs was higher than in chicks from young flock eggs, which was associated with more protein and fat content and thus more energy accumulated into YFB. As a consequence, embryos derived from old flock eggs produced more heat from d 16 of incubation onward than those of the young flock eggs. In conclusion, the higher energy deposition into chick YFB of old flock eggs, leading to higher embryonic heat production, is the result of a higher amount of available energy in the egg and is not due to changes in E(YFB).

  19. The Prospect of Using Complete Feed in Goat Production: A Review on its Utility and Physical Form and Animal Responses

    Directory of Open Access Journals (Sweden)

    Simon P Ginting

    2009-06-01

    Full Text Available Complete feed is a strategic feeding system that has been widely adopted by the dairy cattle industry, but it has been rarely practised in goat enterprises. The prospect of using complete feed for goat production could be considered from two aspects, namely 1 its relevancy to the goat metabolic requirement, and 2 its potential as an effective means for maximal utilization of crop residues and agro-industrial byproducts as alternative feeds. Metabolically, the higher energy requirement and the lower gut capacity of goats due to its relatively smaller body size make this animal more adapted to feedstuffs with denser nutrient contents as typified by the complete feed. As complete feed is characteristically dry, it has potential to cause hypovolemia and induce later a lower feed consumption when fed to goats. But, this event occurs only during the initial meal and the condition returns to the normal state thereafter. Total saliva secretion tend to decrease by consuming dry feed which can cause parakeratosis, laminitis or acidosis. However, these metabolic disorder could be prevented by formulating complete feed with optimal roughage/concentrate ratio. Review from literatures showed that, when used in complete feed, the inclusion rate of several low palatability crop residues or agro-industrial ranged from 15 to 60%. The roughage/concentrate ratio was in the range of 0.25 to 3.0. Some physical characteristics are important for effective complete feed such as the particle size of roughage, the content of physically effective fibre and the form of the complete feed. Complete feed processed into pellet generally resulted in better performances. The ME and CP content of complete feed used ranged from 1800 to 2800 kcal/kg DM and from 15 to 20%, respectively. The rate of feed intake by goats receiving complete feed ranged from 2.0 to 4.9% BW, the ADG ranged from 40 to 145 g, FCR ranged from 5.2 to 13.0 and DM digestibility ranged from 62 to 81%. These

  20. Production of α-1,4-glucosidase from Bacillus licheniformis KIBGE-IB4 by utilizing sweet potato peel.

    Science.gov (United States)

    Nawaz, Muhammad Asif; Bibi, Zainab; Karim, Asad; Rehman, Haneef Ur; Jamal, Muhsin; Jan, Tour; Aman, Afsheen; Qader, Shah Ali Ul

    2017-02-01

    In the current study, sweet potato peel (Ipomoea batatas) was observed as the most favorable substrate for the maximum synthesis of α-1,4-glucosidase among various agro-industrial residues. Bacillus licheniformis KIBGE-IB4 produced 6533.0 U ml -1 of α-1,4-glucosidase when growth medium was supplemented with 1% dried and crushed sweet potato peel. It was evident from the results that bacterial isolate secreted 6539.0 U ml -1 of α-1,4-glucosidase in the presence of 0.4% peptone and meat extract with 0.1% yeast extract. B. licheniformis KIBGE-IB4 released 6739.0 and 7190.0 U ml -1 of enzyme at 40 °C and pH 7.0, respectively. An improved and cost-effective growth medium design resulted 8590.0 U ml -1 of α-1,4-glucosidase with 1.3-fold increase as compared to initial amount from B. licheniformis KIBGE-IB4. This enzyme can be used to fulfill the accelerating demand of food and pharmaceutical industries. Further purification and immobilization of this enzyme can also enhance its utility for various commercial applications. Graphical abstract Pictorial representation of maltase production from sweet potato peel.

  1. Characterizing Global Flood Wave Travel Times to Optimize the Utility of Near Real-Time Satellite Remote Sensing Products

    Science.gov (United States)

    Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.

    2017-12-01

    USGS gauge stations located along a diverse collection of river reaches. These results provide a scientific rationale for optimizing the utility of existing and future NRT river-observation products.

  2. Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture.

    Science.gov (United States)

    Baur, Daniel; Angarita, Monica; Müller-Späth, Thomas; Morbidelli, Massimo

    2016-01-01

    Multi-column chromatographic processes have recently been developed for protein A affinity chromatography to efficiently capture monoclonal antibodies from cell culture supernatant. In this work, the novel twin-column CaptureSMB process was compared to a batch capture process with dual loading flow rate to identify performance gains. As a case study, the isolation of a monoclonal antibody with the Amsphere JWT-203 protein A resin was investigated. Using model based optimization, both processes were optimized and compared over a wide range of operating conditions. A trade-off between productivity and capacity utilization was found, and the resulting pareto-curves showed that CaptureSMB dominates batch, except at very low productivity values. With a feed titer of 1.2 mg mL(-1) , CaptureSMB could reach a productivity of up to 19.5 mg mL(-1) h(-1) experimentally, while maintaining relatively high capacity utilization of 63.8%. On the other hand, at maximum capacity utilization of 95.5%, a productivity of 10.2 mg mL(-1) h(-1) could be reached. This corresponds to a performance improvement with respect batch operation of about 25% in capacity utilization and 40% in productivity, for given yield and purity. CaptureSMB therefore offers a greatly increased performance over batch capture. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microbial Characteristics of Nosocomial Infections and Their Association with the Utilization of Hand Hygiene Products: A Hospital-Wide Analysis of 78,344 Cases.

    Science.gov (United States)

    Liu, Song; Wang, Meng; Wang, Gefei; Wu, Xiuwen; Guan, Wenxian; Ren, Jianan

    Nosocomial infections are the main adverse events during health care delivery. Hand hygiene is the fundamental strategy for the prevention of nosocomial infections. Microbial characteristics of nosocomial infections in the Asia-Pacific region have not been investigated fully. Correlation between the use of hand hygiene products and the incidence of nosocomial infections is still unknown. This study investigates the microbial characteristics of nosocomial infections in the Asia-Pacific region and analyzes the association between the utilization of hand hygiene products and the incidence of nosocomial infections. A total of 78,344 patients were recruited from a major tertiary hospital in China. Microbial characteristics of major types of nosocomial infections were described. The association between the utilization of hand hygiene products and the incidence of nosocomial infections was analyzed using correlation and regression models. The overall incidence of nosocomial infections was 3.04%, in which the incidence of surgical site infection was 1%. Multi-drug resistance was found in 22.8% of all pathogens, in which multi-drug-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus were 56.6% and 54.9%, respectively. The utilization of hand hygiene products (including hand sanitizer, soap and paper towel) was associated negatively with the incidence of surgical site infection in surgical departments and the incidence of nosocomial infections in non-intensive care unit (ICU) departments (especially in surgical departments). Regression analysis further identified that higher utilization of hand hygiene products correlated with decreased incidence of major types of nosocomial infections. Multi-drug-resistant organisms are emerging in Asia-Pacific health care facilities. Utilization of hand hygiene products is associated with the incidence of nosocomial infections.

  4. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Science.gov (United States)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  5. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization.

    Science.gov (United States)

    Fu, Hongxin; Yang, Shang-Tian; Wang, Minqi; Wang, Jufang; Tang, I-Ching

    2017-06-01

    Clostridium tyrobutyricum can utilize glucose and xylose as carbon source for butyric acid production. However, xylose catabolism is inhibited by glucose, hampering butyric acid production from lignocellulosic biomass hydrolysates containing both glucose and xylose. In this study, an engineered strain of C. tyrobutyricum Ct-pTBA overexpressing heterologous xylose catabolism genes (xylT, xylA, and xylB) was investigated for co-utilizing glucose and xylose present in hydrolysates of plant biomass, including soybean hull, corn fiber, wheat straw, rice straw, and sugarcane bagasse. Compared to the wild-type strain, Ct-pTBA showed higher xylose utilization without significant glucose catabolite repression, achieving near 100% utilization of glucose and xylose present in lignocellulosic biomass hydrolysates in bioreactor at pH 6. About 42.6g/L butyrate at a productivity of 0.56g/L·h and yield of 0.36g/g was obtained in batch fermentation, demonstrating the potential of C. tyrobutyricum Ct-pTBA for butyric acid production from lignocellulosic biomass hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ethanol production with simultaneous utilization of raw materials containing starch and lignocellulose-containing; Ethanolproduktion mit simultanem Einsatz von staerke- und lignocellulosehaltigen Rohstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Sven; Buck, Michael; Senn, Thomas [Hohenheim Univ., Stuttgart (Germany). Fachgebiet Gaerungstechnologie

    2010-07-01

    Ethanol production from cellulose-rich raw materials has again been the subject of much discussion during the past few years. Some new processes were developed during that time, all of which are more or less based on the acid hydrolysis process developed in the thirties of the past century. This technology is not suited for biogas plants because of the sulphuric acid involved. However, ethanol production combined with biogas production offers a chance in principle to make use of the cellulose and hemicellulose that are not converted in the ethanol process; these could be converted into biogas in the biogas plant. This would also ensure energetic utilization of pentoses from lignocellulose. The authors describe a process for utilization of cellulose-rich material which works without acid and requires very moderate hydrothermal process conditions (70 minutes at 150 degC). With straw, efficiencies up to 15 percent were achieved; with maize, efficiencies were up to 21.5 percent.

  7. Ammonia Nitrogen Added to Diets Deficient in Dispensable Amino Acid Nitrogen Is Poorly Utilized for Urea Production in Growing Pigs.

    Science.gov (United States)

    Mansilla, Wilfredo D; Silva, Kayla E; Zhu, Cuilan L; Nyachoti, Charles M; Htoo, John K; Cant, John P; de Lange, Cornelis Fm

    2017-12-01

    Background: Including ammonia in low-crude protein (CP) diets deficient in dispensable amino acid (DAAs) increases nitrogen retention in growing pigs. Objective: We investigated the absorption and metabolism of dietary ammonia nitrogen in the portal-drained viscera (PDV) and liver of pigs fed a diet deficient in DAA nitrogen. Methods: Eight pigs with an initial mean ± SD body weight (BW) of 26.5 ± 1.4 kg were surgically fitted with 4 catheters each (portal, hepatic and mesenteric veins, and carotid artery). The pigs were fed (2.8 × 191 kcal/kg BW 0.60 ), for 7 d and every 8 h, a diet deficient in DAA nitrogen supplemented with increasing amounts of ammonia nitrogen (CP: 7.76%, 9.27%, and 10.77%; indispensable amino acid nitrogen:total nitrogen ratio: 0.71, 0.59, and 0.50 for control and low- and high-ammonia diets, respectively). The treatment sequence was based on a Latin square design with 3 consecutive periods. On the last day of each period, blood flows in the portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Serial blood samples were taken to determine ammonia and urea nitrogen concentration. Net balances of ammonia and urea nitrogen were calculated for the PDV and liver. Results: Cumulative (8 h) ammonia nitrogen appearance in the portal vein increased ( P ≤ 0.05) with ammonia intake (433, 958, and 1629 ± 60 mg ammonia nitrogen/meal for control and low- and high-ammonia diets, respectively). The cumulative hepatic uptake of ammonia nitrogen increased ( P ≤ 0.05) with ammonia nitrogen supply. The cumulative urea nitrogen appearance in the hepatic vein tended to increase ( P ≤ 0.10) only in high-ammonia treatment (-92.5, -59.4, and 209.7 ± 92 mg urea nitrogen/meal for control and low- and high-ammonia diets, respectively) and, relative to the control diet, represented -6.0% and 11% of ammonia nitrogen intake. Conclusion: Dietary ammonia nitrogen is poorly utilized for urea

  8. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows.

    Science.gov (United States)

    Lee, C; Hristov, A N; Heyler, K S; Cassidy, T W; Long, M; Corl, B A; Karnati, S K R

    2011-11-01

    The objective of this study was to investigate the effect of metabolizable protein (MP) deficiency and coconut oil supplementation on N utilization and production in lactating dairy cows. The hypothesis of the study was that a decrease in ruminal protozoal counts with coconut oil would increase microbial protein synthesis in the rumen, thus compensating for potential MP deficiency. The experiment was conducted for 10 wk with 36 cows (13 primiparous and 23 multiparous), including 6 ruminally cannulated cows. The experimental period, 6 wk, was preceded by 2-wk adaptation and 2-wk covariate periods. Cows were blocked by parity, days in milk, milk yield, and rumen cannulation and randomly assigned to one of the following diets: a diet with a positive MP balance (+44 g/d) and 16.7% dietary crude protein (CP) concentration (AMP); a diet deficient in MP (-156 g/d) and 14.8% CP concentration (DMP); or DMP supplemented with approximately 500 g of coconut oil/head per day (DMPCO). Ruminal ammonia tended to be greater and plasma urea N (20.1, 12.8, and 13.1 mg/dL, for AMP, DMP, and DMPCO diets, respectively) and milk urea N (12.5, 8.3, and 9.5mg/dL, respectively) were greater for AMP compared with DMP and DMPCO. The DMPCO diet decreased total protozoa counts (by 60%) compared with DMP, but had no effect on the methanogens profile in the rumen. Total tract apparent digestibility of dry matter and CP was decreased by DMP compared with AMP. Fiber digestibility was lower for both DMP and DMPCO compared with AMP. Urinary N excretion was decreased (by 37%) by both DMP and DMPCO compared with AMP. The DMP and DMPCO diets resulted in greater milk N efficiency compared with AMP (32.0 and 35.1 vs. 27.6%, respectively). Milk yield was decreased by both DMP and DMPCO compared with AMP (36.2, 34.4, and 39.3 kg/d, respectively) and coconut oil supplementation suppressed feed intake and caused milk fat depression. Coconut oil supplementation decreased short-chain fatty acid (C4:0, C6:0, and

  9. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010.

    Science.gov (United States)

    Harvey, David J

    2015-01-01

    This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. © 2014 Wiley Periodicals, Inc.

  10. Carrier priming with CRM 197 or diphtheria toxoid has a different impact on the immunogenicity of the respective glycoconjugates: biophysical and immunochemical interpretation.

    Science.gov (United States)

    Pecetta, S; Lo Surdo, P; Tontini, M; Proietti, D; Zambonelli, C; Bottomley, M J; Biagini, M; Berti, F; Costantino, P; Romano, M R

    2015-01-03

    Glycoconjugate vaccines play an enormous role in preventing infectious diseases. The main carrier proteins used in commercial conjugate vaccines are the non-toxic mutant of diphtheria toxin (CRM197), diphtheria toxoid (DT) and tetanus toxoid (TT). Modern childhood routine vaccination schedules include the administration of several vaccines simultaneously or in close sequence, increasing the concern that the repeated exposure to conjugates based on these carrier proteins might interfere with the anti-polysaccharide response. Extending previous observations we show here that priming mice with CRM197 or DT does not suppress the response to the carbohydrate moiety of CRM197 meningococcal serogroup A (MenA) conjugates, while priming with DT can suppress the response to DT-MenA conjugates. To explain these findings we made use of biophysical and immunochemical techniques applied mainly to MenA conjugates. Differential scanning calorimetry and circular dichroism data revealed that the CRM197 structure was altered by the chemical conjugation, while DT and the formaldehyde-treated form of CRM197 were less impacted, depending on the degree of glycosylation. Investigating the binding and avidity properties of IgGs induced in mice by non-conjugated carriers, we found that CRM197 induced low levels of anti-carrier antibodies, with decreased avidity for its MenA conjugates and poor binding to DT and respective MenA conjugates. In contrast, DT induced high antibody titers able to bind with comparable avidity both the protein and its conjugates but showing very low avidity for CRM197 and related conjugates. The low intrinsic immunogenicity of CRM197 as compared to DT, the structural modifications induced by glycoconjugation and detoxification processes, resulting in conformational changes in CRM197 and DT epitopes with consequent alteration of the antibody recognition and avidity, might explain the different behavior of CRM197 and DT in a carrier priming context. Copyright © 2014

  11. Glycoconjugate with terminal alpha galactose. A property common to basal cells and a subpopulation of columnar cells of numerous epithelia in mouse and rat.

    Science.gov (United States)

    Flint, F F; Schulte, B A; Spicer, S S

    1986-01-01

    Glycoconjugates associated with the basal cell layer of various types of epithelia in the mouse and rat were examined histochemically with a battery of lectin-horseradish peroxidase (HRP) conjugates of differing sugar binding specificities. Basal cells in paraffin sections of composite tissue blocks stained with an isolectin from Griffonia simplicifolia (GSA I-B4) specific for terminal alpha-galactose residues but failed to react with the other lectins. Basal cells in epithelium lining striated and excretory ducts of salivary and lacrimal glands, tongue, esophagus, trachea, renal calyx, ureter, urinary bladder, urethra, epididymis and vas deferens stained selectively and intensely for content of a glycoconjugate with terminal alpha-galactose. This galacto-conjugate appeared associated with the plasmalemma of basal cells. Basal cells with a galactocalyx formed an intermittent to continuous layer generally increasing in prevalence distally in glandular duct systems. A minor population of pyramido-columnar cells with cytosolic GSA I-B4 reactivity occurred in striated ducts and appeared less numerous in intralobular excretory ducts and more prevalent in extraglandular ducts. In trachea and renal pelvis, the GSA I-B4 positive cell profiles ranged from low cuboidal to tall pyramidal in contour, but the latter appeared not to reach the lumen. In contrast, no GSA I-B4 positive basal cells were seen in any segment of the pancreatic or bile ducts or in the epithelium of the gastrointestinal tract. These findings suggest that the basal cells found in similar sites in different epithelia and possessing in common a unique alpha-galactoconjugate may function in a manner common to all and not simply in providing progenitor cells for epithelial renewal.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Waste utilization in the wood products industry. Intern gebruik van houtafval in hout- en meubelbranche; Perspectieven voor verbranding en vingerlassen

    Energy Technology Data Exchange (ETDEWEB)

    Wassink, G.J. (Reststoffencentrum Nederland BV, Bois-le-Duc (Netherlands))

    1990-02-01

    A number of waste products in the wood products industry like sawdust, shavings, and wood chips can be combusted or gasified for energy production. Another possibility is to reuse rejected pieces or remainings. Conditions for cost-effective operation are discussed. Recommendations are given. 1 fig., 3 ills., 4 tabs.

  13. Acute Responses of Functional Electrical Stimulation Cycling on the Ventilation-to-CO2 Production Ratio and Substrate Utilization After Spinal Cord Injury.

    Science.gov (United States)

    Gorgey, Ashraf S; Lawrence, Justin

    2016-03-01

    Ventilation-to-carbon dioxide ratio is comparable with peak oxygen uptake in the prognosis of cardiovascular disorders. Currently, there are no established indices to determine the submaximal effects of functional electrical stimulation on cardiovascular performance in persons with spinal cord injury. To determine the effects of an acute bout of functional electrical stimulation-lower extremity cycling on ventilation, carbon dioxide production, ventilation-to-carbon dioxide ratio, and substrate utilization in people with motor complete spinal cord injury. Observational cross-sectional design. Clinical laboratory setting. Ten individuals with motor complete spinal cord injury. Participants were allowed to cycle until fatigue. The effects of functional electrical stimulation on ventilation, carbon dioxide production, ventilation-to-carbon dioxide ratio, and substrate utilization were measured with a portable metabolic cart (COSMED K4b2). Body composition was determined with bioelectrical impedance. Resting and warm-up ventilation were 8.15 ± 3.5 L/min and 8.15 ± 2.8 L/min, respectively. Functional electrical stimulation increased ventilation significantly (14.5 ± 6.4 L/min), which remained significantly elevated (13.3 ± 4.3 L/min) during the recovery period. During resting and warm-up phases, the ventilation-to-carbon dioxide ratios were 41 ± 4.8 and 38 ± 5.4, respectively. Functional electrical stimulation decreased the ventilation-to-carbon dioxide ratio significantly to 31.5 ± 4, which remained significantly reduced during the recovery period (34.4 ± 3). Functional electrical stimulation relied primarily on carbohydrate utilization (188 ± 160 g/day to 574 ± 324 g/day; P = .001) with no changes in fat utilization (77.5 ± 28 g/day to 93.5 ± 133.6 g/day; P = .7) from resting to exercise periods. Significant relationships were noted between carbohydrate utilization during functional electrical stimulation and carbon dioxide (r = 0.98; P = .00010

  14. Utilization of geothermal energy for methane production for J. A. Albertson Land and Cattle Company. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    The feasibility of an integrated system to utilize a geothermal resource for a bioconversion plant. This integrated facility would use the manure from approximately 30,000 head of feedlot cattle as a feedstock for an anaerobic digestion plant. The findings on engineering design, geological assessment, environmental, economic, and institutional requirements of the proposed project are summarized. (MHR)

  15. Simultaneous utilization of soju industrial waste for silica production and its residue ash as effective cationic dye adsorbent

    Science.gov (United States)

    Soju industrial waste is an important biomass resource. The present study is aimed to utilize soju industrial waste for silica extraction, and residual ash as a low cost adsorbent for the removal of Methylene Blue (MB) from aqueous solution. High percentage of pure amorphous nanosilica was obtained ...

  16. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production.

    Science.gov (United States)

    Zhu, Jia-Qing; Li, Xia; Qin, Lei; Li, Wen-Chao; Li, Hui-Ze; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-10-01

    Co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae was developed for bioethanol production from undetoxified pretreated biomass in simultaneously saccharification and co-fermentation (SSCF) process. Glucose accumulation during late fermentation phase in SSCF using xylose-utilizing strain can be eliminated by the introduction of inhibitor-tolerant strain. Effect of different ratios of two strains was investigated and xylose-utilizing strain to inhibitor-tolerant strain ratio of 10:1 (w/w) showed the best xylose consumption and the highest ethanol yield. Inoculating of xylose-utilizing strain at the later stage of SSCF (24-48h) exhibited lower ethanol yield than inoculating at early stage (the beginning 0-12h), probably due to the reduced enzymatic efficiency caused by the unconsumed xylose and oligomeric sugars. Co-culture SSCF increased ethanol concentration by 21.2% and 41.0% comparing to SSCF using individual inhibitor-tolerant and xylose-utilizing strain (increased from 48.5 and 41.7g/L to 58.8g/L), respectively, which suggest this co-culture system was very promising. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1979-02-01

    The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

  18. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  19. Guide biogas. From production to utilization. 5. compl. rev. ed.; Leitfaden Biogas. Von der Gewinnung zur Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book under consideration is a guide for biogas and consists of the following contributions: (a) Targets of the guide (M. Kaltschmitt); (b) Fundamentals of anaerobic fermentation (J. Friehe); (c) Systems engineering for supplying biogas (J. Postel); (d) Description of selected substrates (J. Friehe); (e) Operation of biogas plants (J. Liebetrau); (f) Gas processing and possibilities of utilization (M. Wetthaeuser); (g) Legal and administrative framework conditions (H. von Bredow); (g) Economy (S. Hartmann); (h) Company organisation (G. Reinhold); (i) Quality and utilization of fermentation residues (H. Doehler); (j) Implementation of a project (E. Fischer); (k) Position and significance of biogas as a renewable energy resource in Germany (M. Kaltschmitt); (l) Project examples (J. Friehe).

  20. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect.

    Science.gov (United States)

    Damiani, Chiara; Colombo, Riccardo; Gaglio, Daniela; Mastroianni, Fabrizia; Pescini, Dario; Westerhoff, Hans Victor; Mauri, Giancarlo; Vanoni, Marco; Alberghina, Lilia

    2017-09-01

    Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth.

  1. Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2013-04-01

    Full Text Available This paper introduces palm oil mill effluent as a promising substrate for biosurfactant production. Potential strains ofbacteria were isolated from various hydrocarbon-contaminated soils and screened for biosurfactant production with the helpof the drop collapse method and surface tension measurements. Out of 26 isolates of bacteria, the strain NA3 showed thehighest bacterial growth with the highest surface tension reduction of 27.2 mN/m. It was then identified as Nevskia ramosaNA3 by biochemical and 16S rRNA sequence analysis. The Plackett-Burman experimental design was employed to determinethe important nutritional requirements for biosurfactant production by N. ramosa NA3 under controlled conditions. Six outof 11 factors of the production medium were found to significantly affect the production of biosurfactant. FeCl2 and NaNO3had a direct proportional correlation with the biosurfactant production. Commercial sugar, glucose, K2HPO4 and MgCl2showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  2. An environmentally friendly method to remove and utilize the highly toxic strychnine in other products based on proton-transfer complexation

    Science.gov (United States)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.; Hegab, Mohamed S.

    2015-12-01

    The study of toxic and carcinogenic substances represents one of the most demanding areas in human safety, due to their repercussions for public health. There is great motivation to remove and utilize these substances in other products instead of leaving them contaminate the environment. One potentially toxic compound for humans is strychnine (Sy). In the present study, we attempted to establish a quick, simple, direct and efficient method to remove and utilize discarded Sy in other products based on proton-transfer complexation. First, Sy was reacted with the acido organic acceptors PA, DNBA and CLA. Then, the resultant salts were direct carbonized into carbon materials. Also, this study provides an insight into the structure and morphology of the obtained products by a range of physicochemical techniques, such as UV-visible, IR, 1H NMR and 13C NMR spectroscopies; XRD; SEM; TEM; and elemental and thermal analyses. Interestingly, the complexation of Sy with the PA or DNBA acceptor leads to a porous carbon material, while its complexation with CLA acceptor forms non-porous carbon product.

  3. Compositional changes during grain-based fuel ethanol production and method modifications to recover co-products for human or pet food utilization

    Science.gov (United States)

    The surge in global supply of distillers dried grains with solubles (DDGS) in recent years has stimulated many new investigations into this important co-product of grain-based fuel ethanol production. Compositional changes during the entire dry grind process has been one of them, since DDGS is char...

  4. Utilization of methanol in crude glycerol to assist lipid production in non-sterilized fermentation from Trichosporon oleaginosus.

    Science.gov (United States)

    Chen, Jiaxin; Zhang, Xiaolei; Tyagi, Rajeshwar Dayal; Drogui, Patrick

    2018-04-01

    In this work, methanol in crude glycerol solution was used to assist the lipid production with oleaginous yeast Trichosporon oleaginosus cultivated under non-sterilized conditions. The investigated methanol concentration was 0%, 1.4%, 2.2%, 3.3% and 4.4% (w/v). The results showed that methanol played a significant role in the non-sterilized fermentation for lipid production. The optimal methanol concentration was around 1.4% (w/v) in which the growth of T. oleaginosus was promoted and overcame that of the contaminants. The non-sterilized fed-batch fermentation with initial methanol concentration of 1.4% (w/v) was then performed and high biomass production (43.39 g/L) and lipid production (20.42 g/L) were achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Utilization of low-cost substrates for the production of nystose by Bacillus subtilis natto cct 7712

    Directory of Open Access Journals (Sweden)

    Dieyssi Alves dos Santos

    2016-08-01

    Full Text Available Current analysis describes the capacity of Bacillus subtilis natto CCT 7712 to produce high amounts of nystose by low-cost substrates available in Brazil, such as commercial sucrose, sugarcane molasses and sugarcane juice. Optimization resulted in a maximum production of 179.77 g L-1 of nystose, averaging 7.49 g L-1 hour-1 of productivity and a 71.73% yield in a medium with 400 g L-1of commercial sucrose and 0.8 g L-1 of MnSO4. Fermentations with sugarcane molasses and sugarcane juice also resulted in a satisfactory production reaching 97.93 and 42.58 g L-1 nystose, respectively. High nystose production in a medium with sugarcane derivatives suggests submerged fermentation with Bacillus subtillis natto CT 7712 as a promising strategy to produce nystose at industrial level.

  6. Utilization of low NO{sub x} coal combustion by-products. Quarterly report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This project is studying a beneficiation process to make power plant fly ash a more useful by-product. The tasks include: (1) Laboratory characterization: Sample collection; Material characterization; and Lab testing of ash processing operations; (2) Pilot plant testing of the separation of carbon from fly ash; (3) Product testing: Concrete testing and Plastic fillers; and (4) Market and economic analysis. Appendices present information on material characterization, laboratory testing of a flotation process, pilot runs, and concrete testing results.

  7. Using program impact pathways to understand and improve program delivery, utilization, and potential for impact of Helen Keller International's homestead food production program in Cambodia.

    Science.gov (United States)

    Olney, Deanna K; Vicheka, Sao; Kro, Meng; Chakriya, Chhom; Kroeun, Hou; Hoing, Ly Sok; Talukder, Aminzzaman; Quinn, Victoria; Iannotti, Lora; Becker, Elisabeth; Roopnaraine, Terry

    2013-06-01

    Evidence of the impact of homestead food production programs on nutrition outcomes such as anemia and growth is scant. In the absence of information on program impact pathways, it is difficult to understand why these programs, which have been successful in increasing intake of micronutrient-rich foods, have had such limited documented impact on nutrition outcomes. To conduct a process evaluation of Helen Keller International's (HKI's) homestead food production program in Cambodia to assess whether the program was operating as planned (in terms of design, delivery, and utilization) and to identify ways in which the program might need to be strengthened in order to increase its potential for impact. A program theory framework, which laid out the primary components along the hypothesized program impact pathways, was developed in collaboration with HKI and used to design the research. Semistructured interviews and focus group discussions with program beneficiaries (n = 36 and 12, respectively), nonbeneficiaries (n = 12), and program implementers (n = 17 and 2, respectively) and observations of key program delivery points, including health and nutrition training sessions (n = 6), village model farms (n = 6), and household gardens of beneficiaries (n = 36) and nonbeneficiaries (n = 12), were conducted to assess the delivery and utilization of the primary program components along the impact pathways. The majority of program components were being delivered and utilized as planned. However, challenges with some of the key components posited to improve outcomes such as anemia and growth were noted. Among these were a gap in the expected pathway from poultry production to increased intake of eggs and poultry meat, and some weaknesses in the delivery of the health and nutrition training sessions and related improvements in knowledge among the village health volunteers and beneficiaries. Although the program has been successful in delivering the majority of the program

  8. Impact of physiologically based pharmacokinetic models on regulatory reviews and product labels: Frequent utilization in the field of oncology.

    Science.gov (United States)

    Yoshida, K; Budha, N; Jin, J Y

    2017-05-01

    Physiologically based pharmacokinetic (PBPK) modeling can be used to predict drug pharmacokinetics in virtual populations using models that integrate understanding of physiological systems. PBPK models have been widely utilized for predicting pharmacokinetics in clinically untested scenarios during drug applications and regulatory reviews in recent years. Here, we provide a comprehensive review of the application of PBPK in new drug application (NDA) review documents from the US Food and Drug Administration (FDA) in the past 4 years. © 2017 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  9. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  10. Exploring the Effect of Conjugation Site and Chemistry on the Immunogenicity of an anti-Group B Streptococcus Glycoconjugate Vaccine Based on GBS67 Pilus Protein and Type V Polysaccharide.

    Science.gov (United States)

    Nilo, Alberto; Passalacqua, Irene; Fabbrini, Monica; Allan, Martin; Usera, Aimee; Carboni, Filippo; Brogioni, Barbara; Pezzicoli, Alfredo; Cobb, Jennifer; Romano, Maria Rosaria; Margarit, Immaculada; Hu, Qi-Ying; Berti, Francesco; Adamo, Roberto

    2015-08-19

    We have recently described a method for tyrosine-ligation of complex glycans that was proven efficient for the site selective coupling of GBS capsular polysaccharides (PSs). Herein, we explored the effect of conjugation of type V polysaccharide onto predetermined lysine or tyrosine residues of the GBS67 pilus protein with the dual role of T-cell carrier for the PS and antigen. For the preparation of a conjugate at predetermined lysine residues of the protein, we investigated a two-step procedure based on microbial Transglutaminase (mTGase) catalyzed insertion of a tag bearing an azide for following copper-free strain-promoted azide-alkyne [3 + 2] cycloaddition (SPAAC) with the polysaccharide. Two glycoconjugates were obtained by tyrosine-ligation through the known SPAAC and a novel thiol-maleimide addition based approach. Controls were prepared by random conjugation of PSV to GBS67 and CRM197, a carrier protein present in many commercial vaccines. Immunological evaluation in mice showed that all the site-directed constructs were able to induce good levels of anti-polysaccharide and anti-protein antibodies inducing osponophagocytic killing of strains expressing individually PSV or GBS67. GBS67 randomly conjugated to PSV showed carrier properties similar to CRM197. Among the tested site-directed conjugates, tyrosine-directed ligation and thiol-malemide addition was elected as the best combination to ensure production of anti-polysaccharide and anti-protein functional antibodies (in vitro opsonophagocytic killing titers) comparable to the controls made by random conjugation, while avoiding anti-linker antibodies. Our findings demonstrate that (i) mTGase based conjugation at lysine residues is an alternative approach for the synthesis of large capsular polysaccharide-protein conjugates; (ii) GBS67 can be used with the dual role of antigen and carrier for PSV; and (iii) thiol-maleimide addition in combination with tyrosine-ligation ensures the production of anti

  11. Pareto utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2013-01-01

    In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility

  12. Animal-derived natural products of Sowa Rigpa medicine: Their pharmacopoeial description, current utilization and zoological identification.

    Science.gov (United States)

    Yeshi, Karma; Morisco, Paolo; Wangchuk, Phurpa

    2017-07-31

    The Bhutanese Sowa Rigpa medicine (BSM) uses animal parts in the preparation of numerous polyingredient traditional remedies. Our study reports the taxonomical identification of medicinal animals and the description of traditional uses in English medical terminologies. To taxonomically identify the medicinal animals and their derived natural products used as a zootherapeutic agents in BSM. First, the traditional textbooks were reviewed to generate a list of animal products described as ingredients. Second, animal parts that are currently used in Bhutan were identified. Third, the ethnopharmacological uses of each animal ingredients were translated into English medical terminologies by consulting Traditional Physicians, clinical assistants, pharmacognosists, and pharmacists in Bhutan. Fourth, the animal parts were taxonomically identified and their Latin names were confirmed by crosschecking them with online animal databases and relevant scientific literature. The study found 73 natural products belonging to 29 categories derived from 45 medicinal animals (36 vertebrates and 9 invertebrates), comprising of 9 taxonomic categories and 30 zoological families. Out of 116 formulations currently produced, 87 of them contain one or more extracts and products obtained from 13 medicinal animals to treat more than 124 traditionally classified illnesses. Only five animal ingredients were found available in Bhutan and rest of the animal parts are being imported from India. Out of 73 natural products described in the traditional textbooks, only 13 of them (some omitted and few substituted by plants) are currently included in 87 formulations of BSM. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    Science.gov (United States)

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  14. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.

    Science.gov (United States)

    Dishisha, Tarek; Pereyra, Luciana P; Pyo, Sang-Hyun; Britton, Robert A; Hatti-Kaul, Rajni

    2014-05-27

    Lactobacillus reuteri converts glycerol to 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO) via 3-hydroxypropionaldehyde (3HPA) as an intermediate using enzymes encoded in its propanediol-utilization (pdu) operon. Since 3HP, 1,3PDO and 3HPA are important building blocks for the bio-based chemical industry, L. reuteri can be an attractive candidate for their production. However, little is known about the kinetics of glycerol utilization in the Pdu pathway in L. reuteri. In this study, the metabolic fluxes through the Pdu pathway were determined as a first step towards optimizing the production of 3HPA, and co-production of 3HP and 1,3PDO from glycerol. Resting cells of wild-type (DSM 20016) and recombinant (RPRB3007, with overexpressed pdu operon) strains were used as biocatalysts. The conversion rate of glycerol to 3HPA by the resting cells of L. reuteri was evaluated by in situ complexation of the aldehyde with carbohydrazide to avoid the aldehyde-mediated inactivation of glycerol dehydratase. Under operational conditions, the specific 3HPA production rate of the RPRB3007 strain was 1.9 times higher than that of the wild-type strain (1718.2 versus 889.0 mg/gCDW.h, respectively). Flux analysis of glycerol conversion to 1,3PDO and 3HP in the cells using multi-step variable-volume fed-batch operation showed that the maximum specific production rates of 3HP and 1,3PDO were 110.8 and 93.7 mg/gCDW.h, respectively, for the wild-type strain, and 179.2 and 151.4 mg/gCDW.h, respectively, for the RPRB3007 strain. The cumulative molar yield of the two compounds was ~1 mol/mol glycerol and their molar ratio was ~1 mol3HP/mol1,3PDO. A balance of redox equivalents between the glycerol oxidative and reductive pathway branches led to equimolar amounts of the two products. Metabolic flux analysis was a useful approach for finding conditions for maximal conversion of glycerol to 3HPA, 3HP and 1,3PDO. Improved specific production rates were obtained with resting cells of

  15. Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE).

    Science.gov (United States)

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-09-01

    This investigation utilized sugarcane bagasse aqueous extract (SBAE), a nontoxic, cost-effective medium to boost triacylglycerol (TAG) accumulation in novel fresh water microalgal isolate Scenedesmus sp. IITRIND2. Maximum lipid productivity of 112 ± 5.2 mg/L/day was recorded in microalgae grown in SBAE compared to modified BBM (26 ± 3 %). Carotenoid to chlorophyll ratio was 12.5 ± 2 % higher than in photoautotrophic control, indicating an increase in photosystem II activity, thereby increasing growth rate. Fatty acid methyl ester (FAME) profile revealed presence of C14:0 (2.29 %), C16:0 (15.99 %), C16:2 (4.05 %), C18:0 (3.41 %), C18:1 (41.55 %), C18:2 (12.41), and C20:0 (1.21 %) as the major fatty acids. Cetane number (64.03), cold filter plugging property (-1.05 °C), and oxidative stability (12.03 h) indicated quality biodiesel abiding by ASTM D6751 and EN 14214 fuel standards. Results consolidate the candidature of novel freshwater microalgal isolate Scenedesmus sp. IITRIND2 cultivated in SBAE, aqueous extract made from copious, agricultural waste sugarcane bagasse to increase the lipid productivity, and could further be utilized for cost-effective biodiesel production.

  16. An integrated approach utilizing chemometrics and GC/MS for classification of chamomile flowers, essential oils and commerical products

    Science.gov (United States)

    As part of an ongoing research program on authentication, safety and biological evaluation of phytochemicals and dietary supplements, an in-depth chemical investigation of different types of chamomile was performed. A collection of chamomile samples including authenticated plants, commercial product...

  17. Cyclical productivity in Europe and the United States : Evaluating the evidence on returns to scale and input utilization

    NARCIS (Netherlands)

    Inklaar, Robert

    2007-01-01

    This paper studies procyclical productivity growth at the industry level in the United States and three European countries (France, Germany and the Netherlands). Industry-specific demand-side instruments are used to examine the prevalence of non-constant returns to scale and unmeasured input

  18. Utilizing NASA Earth Observations to Enhance Flood Impact Products and Mitigation in the Lower Mekong Water Basin

    Science.gov (United States)

    Doyle, C.; Gao, M.; Spruce, J.; Bolten, J. D.; Weber, S.

    2014-12-01

    This presentation discusses results of a project to develop a near real time flood monitoring capability for the Lower Mekong Water Basin (LMB), the largest river basin in Southeast Asia and home to more than sixty million people. The region has seen rapid population growth and socio-economic development, fueling unsustainable deforestation, agricultural expansion, and stream-flow regulation. The basin supports substantial rice farming and other agrarian activities, which heavily depend upon seasonal flooding. But, floods due to typhoons and other severe weather events can result in disasters that cost millions of dollars and cause hardships to millions of people. This study uses near real time and historical Aqua and Terra MODIS 250-m resolution Normalized Difference Vegetation Index (NDVI) products to map flood and drought impact within the LMB. In doing so, NDVI change products are derived by comparing from NDVI during the wet season to a baseline NDVI from the dry season. The method records flood events, which cause drastic decreases in NDVI compared to non-flooded conditions. NDVI change product computation was automated for updating a near real-time system, as part of the Committee on Earth Observing Satellites Disaster Risk Management Observation Strategy. The system is a web-based 'Flood Dashboard that will showcase MODIS flood monitoring products, along with other flood mapping and weather data products. This flood dashboard enables end-users to view and assess a variety of geospatial data to monitor floods and flood impacts in near real-time, as well provides a platform for further data aggregation for flood prediction modeling and post-event assessment.

  19. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Directory of Open Access Journals (Sweden)

    Deglesne PA

    2016-02-01

    Full Text Available Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15% and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.Keywords: mesotherapy, medical device, RRS, collagen, elastin, extracellular matrix

  20. Utility of routine evaluation of sterility of cellular therapy products with or without extensive manipulation: Best practices and clinical significance.

    Science.gov (United States)

    Golay, Josee; Pedrini, Olga; Capelli, Chiara; Gotti, Elisa; Borleri, Gianmaria; Magri, Mara; Vailati, Francesca; Passera, Marco; Farina, Claudio; Rambaldi, Alessandro; Introna, Martino

    2018-02-01

    We analyzed the results of routine sterility testing performed in our center over the last 10 years, in the context both hematopoietic stem cell transplantation (HSCT) and Advanced Therapeutic Medicinal Products (ATMPs). For sterility tests 14-day cultures were performed in culture media detecting aerobic and anaerobic microorganisms. In this study, 22/1643 (1.3%) of apheretic products for autologous or allogeneic HSCT were contaminated, whereas 14/73 bone marrow (BM) harvests (17.8%) were positive. In 22 cases, the contaminated HSCs were infused to patients, but there was no evidence of any adverse impact of contamination on the hematologic engraftment or on infections. Indeed none of the five positive hemocultures detected in patients following infusion could be linked to the contaminated stem cell product. Our Cell Factory also generated 286 ATMPs in good manufacturing practice (GMP) conditions since 2007 and all final products were sterile. In three cases of mesenchymal stromal cell expansions, the starting BM harvests were contaminated, but the cell products at the end of expansion were sterile, presumably thanks to the presence of an antibiotic in the culture medium. The decreased rate of contamination of cell harvests observed with time suggests that routine sterility testing and communication of the results to the collecting centers may improve clinical practices. Furthermore, we recommend the use of antibiotics in the medium for ATMP expansion, to decrease the likelihood of expanding microorganisms within clean rooms. Finally we discuss the costs of sterility testing of ATMPs by GMP-approved external laboratories. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.