WorldWideScience

Sample records for glycine max resistance

  1. 78 FR 9317 - Glycine max

    Science.gov (United States)

    2013-02-08

    ... exemption is ``safe.'' Section 408(c)(2)(A)(ii) of FFDCA defines ``safe'' to mean that ``there is a... endogenous GM-ALS I protein to GM-HRA protein yields an enzyme that is resistant to ALS-inhibiting herbicides... Glycine max (soybean), which has an endogenous gene (gm-als I) that encodes for acetolactate synthase I...

  2. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection.

    Science.gov (United States)

    Li, Shuang; Chen, Yu; Zhu, Xiaofeng; Wang, Yuanyuan; Jung, Ki-Hong; Chen, Lijie; Xuan, Yuanhu; Duan, Yuxi

    2018-01-01

    Glycine max (soybean) is an extremely important crop, representing a major source of oil and protein for human beings. Heterodera glycines (soybean cyst nematode, SCN) infection severely reduces soybean production; therefore, protecting soybean from SCN has become an issue for breeders. Black soybean has exhibited a different grade of resistance to SCN. However, the underlying mechanism of Huipizhi Heidou resistance against SCN remains elusive. The Huipizhi Heidou (ZDD2315) and race 3 of Heterodera glycines were chosen to study the mechanism of resistance via examination of transcriptomic changes. After 5, 10, and 15days of SCN infection, whole roots were sampled for RNA extraction, and uninfected samples were simultaneously collected as a control. 740, 1413, and 4925 genes were isolated by padj (p-value adjusted)<0.05 after 5, 10, and 15days of the infection, respectively, and 225 differentially expressed genes were overlapped at all the time points. We found that the differentially expressed genes (DEGs) at 5, 10, and 15days after infection were involved in various biological function categories; in particular, induced genes were enriched in defense response, hormone mediated signaling process, and response to stress. To verify the pathways observed in the GO and KEGG enrichment results, effects of hormonal signaling in cyst-nematode infection were further examined via treatment with IAA (indo-3-acetic acid), salicylic acid (SA), gibberellic acid (GA), jasmonic acid (JA), and ethephon, a precursor of ethylene. The results indicate that five hormones led to a significant reduction of J2 number in the roots of Huipizhi Heidou and Liaodou15, representing SCN-resistant and susceptible lines, respectively. Taken together, our analyses are aimed at understanding the resistance mechanism of Huipizhi Heidou against the SCN race 3 via the dissection of transcriptomic changes upon J2 infection. The data presented here will help further research on the basis of soybean and

  3. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  4. Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation.

    Science.gov (United States)

    Rojjanateeranaj, Pongsarun; Sangthong, Chirawee; Prapagdee, Benjaphorn

    2017-10-01

    This study examined the potential of three strains of cadmium-resistant bacteria, including Micrococcus sp., Pseudomonas sp. and Arthrobacter sp., to promote root elongation of Glycine max L. seedlings, soil cadmium solubility and cadmium phytoremediation in G. max L. planted in soil highly polluted with cadmium with and without nutrient biostimulation. Micrococcus sp. promoted root length in G. max L. seedlings under toxic cadmium conditions. Soil inoculation with Arthrobacter sp. increased the bioavailable fraction of soil cadmium, particularly in soil amended with a C:N ratio of 20:1. Pot culture experiments observed that the highest plant growth was in Micrococcus sp.-inoculated plants with nutrient biostimulation. Cadmium accumulation in the roots, stems and leaves of G. max L. was significantly enhanced by Arthrobacter sp. with nutrient biostimulation. A combined use of G. max L. and Arthrobacter sp. with nutrient biostimulation accelerated cadmium phytoremediation. In addition, cadmium was retained in roots more than in stems and leaves and G. max L. had the lowest translocation factor at all growth stages, suggesting that G. max L. is a phytostabilizing plant. We concluded that biostimulation-assisted bioaugmentation is an important strategy for improving cadmium phytoremediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification and mapping of resistance genes to Phakopsora pachyrhizi in soybean (Glycine max L.) accession PI 594767-A.

    Science.gov (United States)

    Rocha, G A F; Alves, D P; Oliveira, J C; Brommonschenke, S H

    2016-08-05

    The goal of this study was to study resistance inheritance in the soybean (Glycine max L.) accession PI 594767-A to the Phakopsora pachyrhizi isolate PPUFV02, and map the resistance gene(s) identified using microsatellite markers. Crosses between PI 594767-A and the susceptible cultivar 'Conquista' gave rise to the segregating subpopulations 26C-2 and 26C-5, which in the F2 generation were evaluated for their reactions to PPUFV02. In addition, analyses with microsatellite markers linked to the Rpp1-Rpp5 loci were also performed. The segregation pattern obtained in 26C-2 revealed that resistance was governed by a recessive gene; a 1:2:1 segregation pattern was observed in 26C-5, indicating control by a gene with partial dominance. This variability may have been caused because environmental conditions, particularly temperature, when 26C-5 was assessed were unfavorable for pathogen development, allowing the phenotypic expression of heterozygous alleles in PI 594767-A. A resistance gene was located in the soybean linkage group G, in the genomic region between Sct_187r2 and Sat_064 that contains the Rpp1 locus. Resistance in PI 594767-A is probably conferred by a new Rpp1 gene allele, because this accession has a haplotype for Sct_187r2 and Sat_064, which differs from haplotypes of accessions that also contain resistance alleles that map the Rpp1 locus. The use of Sct_187r2 and Sat_064 will facilitate the introgression of the resistance allele from PI 594767-A and its pyramiding with other resistance genes into genotypes with superior agronomic characteristics, in order to obtain cultivars with broad-spectrum resistance to P. pachyrhizi.

  6. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.).

    Science.gov (United States)

    Sun, Jutao; Guo, Na; Lei, Jun; Li, Lihong; Hu, Guanjun; Xing, Han

    2014-08-01

    Association mapping is a powerful high-resolution mapping tool for complex traits. The objective of this study was to identify QTLs for partial resistance to Phytophthora sojae. In this study, we evaluated a total of 214 soybean accessions by the hypocotyl inoculation method, and 175 were susceptible. The 175 susceptible accessions were then evaluated for P. sojae partial resistance using slant board assays. The 175 accessions were screened with 138 SSR markers that generated 730 SSR alleles. A subset of 495 SSR loci with minor allele frequency (MAF) ≥ 0.05 was used for association mapping by the Tassel general linear model (GLM) and mixed linear model (MLM) programmes. This soybean population could be divided into two subpopulations and no or weak relatedness was detected between pairwise accessions. Four SSR alleles, Satt634-133, Satt634-149, Sat_222-168 and Satt301-190, associated with partial resistance to P. sojae were detected by both GLM and MLM methods. Of these identified markers, one marker, Satt301, was located in regions where P. sojae resistance QTL have been previously mapped using linkage analysis. The identified markers will help to understand the genetic basis of partial resistance, and facilitate future marker-assistant selection aimed to improve resistance to P. sojae and reduce disease-related mortality in soybean.

  7. Impact of long-term cropping of glyphosate-resistant transgenic soybean [Glycine max (L.) Merr.] on soil microbiome.

    Science.gov (United States)

    Babujia, Letícia Carlos; Silva, Adriana Pereira; Nakatani, André Shigueyoshi; Cantão, Mauricio Egidio; Vasconcelos, Ana Tereza Ribeiro; Visentainer, Jesuí Vergilio; Hungria, Mariangela

    2016-08-01

    The transgenic soybean [Glycine max (L.) Merrill] occupies about 80 % of the global area cropped with this legume, the majority comprising the glyphosate-resistant trait (Roundup Ready(®), GR or RR). However, concerns about possible impacts of transgenic crops on soil microbial communities are often raised. We investigated soil chemical, physical and microbiological properties, and grain yields in long-term field trials involving conventional and nearly isogenic RR transgenic genotypes. The trials were performed at two locations in Brazil, with different edaphoclimatic conditions. Large differences in physical, chemical and classic microbiological parameters (microbial biomass of C and N, basal respiration), as well as in grain production were observed between the sites. Some phyla (Proteobacteria, Actinobacteria, Acidobacteria), classes (Alphaproteobacteria, Actinomycetales, Solibacteres) and orders (Rhizobiales, Burkholderiales, Myxococcales, Pseudomonadales), as well as some functional subsystems (clustering-based subsystems, carbohydrates, amino acids and protein metabolism) were, in general, abundant in all treatments. However, bioindicators related to superior soil fertility and physical properties at Londrina were identified, among them a higher ratio of Proteobacteria:Acidobacteria. Regarding the transgene, the metagenomics showed differences in microbial taxonomic and functional abundances, but lower in magnitude than differences observed between the sites. Besides the site-specific differences, Proteobacteria, Firmicutes and Chlorophyta were higher in the transgenic treatment, as well as sequences related to protein metabolism, cell division and cycle. Although confirming effects of the transgenic trait on soil microbiome, no differences were recorded in grain yields, probably due to the buffering capacity associated with the high taxonomic and functional microbial diversity observed in all treatments.

  8. Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate.

    Science.gov (United States)

    Nandula, Vijay K; Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Poston, Daniel H

    2007-05-02

    Experiments were conducted to determine (1) dose response of glyphosate-resistant (GR) and -susceptible (non-GR) soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.) to glyphosate, (2) if differential metabolism of glyphosate to aminomethyl phosphonic acid (AMPA) is the underlying mechanism for differential resistance to glyphosate among GR soybean varieties, and (3) the extent of metabolism of glyphosate to AMPA in GR canola and to correlate metabolism to injury from AMPA. GR50 (glyphosate dose required to cause a 50% reduction in plant dry weight) values for GR (Asgrow 4603RR) and non-GR (HBKC 5025) soybean were 22.8 kg ae ha-1 and 0.47 kg ha-1, respectively, with GR soybean exhibiting a 49-fold level of resistance to glyphosate as compared to non-GR soybean. Differential reduction in chlorophyll by glyphosate was observed between GR soybean varieties, but there were no differences in shoot fresh weight reduction. No significant differences were found between GR varieties in metabolism of glyphosate to AMPA, and in shikimate levels. These results indicate that GR soybean varieties were able to outgrow the initial injury from glyphosate, which was previously caused at least in part by AMPA. GR50 values for GR (Hyola 514RR) and non-GR (Hyola 440) canola were 14.1 and 0.30 kg ha-1, respectively, with GR canola exhibiting a 47-fold level of resistance to glyphosate when compared to non-GR canola. Glyphosate did not cause reduction in chlorophyll content and shoot fresh weight in GR canola, unlike GR soybean. Less glyphosate (per unit leaf weight) was recovered in glyphosate-treated GR canola as compared to glyphosate-treated GR soybean. External application of AMPA caused similar injury in both GR and non-GR canola. The presence of a bacterial glyphosate oxidoreductase gene in GR canola contributes to breakdown of glyphosate to AMPA. However, the AMPA from glyphosate breakdown could have been metabolized to nonphytotoxic metabolites before causing injury

  9. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  10. Identification of Rotylenchulus reniformis resistant Glycine lines

    Science.gov (United States)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  11. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance

    Science.gov (United States)

    Vidal, Ramon Oliveira; do Nascimento, Leandro Costa; Mondego, Jorge Maurício Costa; Pereira, Gonçalo Amarante Guimarães; Carazzolle, Marcelo Falsarella

    2012-01-01

    The legume Glycine max (soybean) plays an important economic role in the international commodities market, with a world production of almost 260 million tons for the 2009/2010 harvest. The increase in drought events in the last decade has caused production losses in recent harvests. This fact compels us to understand the drought tolerance mechanisms in soybean, taking into account its variability among commercial and developing cultivars. In order to identify single nucleotide polymorphisms (SNPs) in genes up-regulated during drought stress, we evaluated suppression subtractive libraries (SSH) from two contrasting cultivars upon water deprivation: sensitive (BR 16) and tolerant (Embrapa 48). A total of 2,222 soybean genes were up-regulated in both cultivars. Our method identified more than 6,000 SNPs in tolerant and sensitive Brazilian cultivars in those drought stress related genes. Among these SNPs, 165 (in 127 genes) are positioned at soybean chromosome ends, including transcription factors (MYB, WRKY) related to tolerance to abiotic stress. PMID:22802718

  12. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  13. Control of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifolia L. in Glufosinate-Resistant Soybean [Glycine max (L. Merr

    Directory of Open Access Journals (Sweden)

    Ethann R. Barnes

    2017-08-01

    Full Text Available Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1 evaluate the efficacy of preplant (PP herbicides followed by (fb glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor applied post-emergence (POST for control of GR common ragweed in glufosinate-resistant soybean; (2 their effect on common ragweed density, biomass, and soybean yield; and (3 the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90–99% control of common ragweed at 21 d after treatment (DAT. The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor controlled GR common ragweed 84–98% at soybean harvest, reduced common ragweed density (≤20 plants m−2 and biomass by ≥93%, and secured soybean yield 1,819–2,158 kg ha−1. The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373–US$506 compared to PP alone (US$91 or PRE fb POST programs (US$158. The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs.

  14. Resistance to Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae in transgenic soybean (Glycine max (L. Merrill Fabales, Fabaceae cultivar IAS5 expressing a modified Cry1Ac endotoxin

    Directory of Open Access Journals (Sweden)

    Milena Schenkel Homrich

    2008-01-01

    Full Text Available Somatic embryos of the commercial soybean (Glycine max cultivar IAS5 were co-transformed using particle bombardment with a synthetic form of the Bacillus thuringiensis delta-endotoxin crystal protein gene cry1Ac, the beta-glucuronidase reporter gene gusA and the hygromycin resistance gene hpt. Hygromycin-resistant tissues were proliferated individually to give rise to nine sets of clones corresponding to independent transformation events. The co-bombardment resulted in a co-transformation efficiency of 44%. Many histodifferentiated embryos and 30 well-developed plants were obtained. Twenty of these plants flowered and fourteen set seeds. The integration and expression of the cry1Ac, gusA and hpt transgenes into the genomes of a sample of transformed embryos and all T0, T1, T2 and T3 plants were confirmed by Gus activity, PCR, Southern and western blot, and ELISA techniques. Two T0 plants out of the seven co-transformed plants produced seeds and were analyzed for patterns of integration and inheritance until the T3 generation. Bioassays indicated that the transgenic plants were highly toxic to the velvetbean caterpillar Anticarsia gemmatalis, thus offering a potential for effective insect resistance in soybean.

  15. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  16. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    Science.gov (United States)

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.

  17. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    Science.gov (United States)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  18. Mapping of yellow mosaic virus (YMV) resistance in soybean (Glycine max L. Merr.) through association mapping approach.

    Science.gov (United States)

    Kumar, Bhupender; Talukdar, Akshay; Verma, Khushbu; Bala, Indu; Harish, G D; Gowda, Sarmrat; Lal, S K; Sapra, R L; Singh, K P

    2015-02-01

    Yellow Mosaic Virus (YMV) is a serious disease of soybean. Resistance to YMV was mapped in 180 soybean genotypes through association mapping approach using 121 simple sequence repeats (SSR) and four resistance gene analogue (RGA)-based markers. The association mapping population (AMP) (96 genotypes) and confirmation population (CP) (84 genotypes) was tested for resistance to YMV at hot-spot consecutively for 3 years (2007-2009). The genotypes exhibited significant variability for YMV resistance (P 0.15, and >0.25, respectively. The 4 RGA-based markers showed no association with YMV resistance. Two SSR markers, Satt301 and GMHSP179 on chromosome 17 were found to be in significant LD with YMV resistance. Contingency Chi-square test confirmed the association (P resistance in soybean. This is the first report of its kind in soybean.

  19. A Glycine max homolog of NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) alters defense gene expression while functioning during a resistance response to different root pathogens in different genetic backgrounds.

    Science.gov (United States)

    McNeece, Brant T; Pant, Shankar R; Sharma, Keshav; Niruala, Prakash; Lawrence, Gary W; Klink, Vincent P

    2017-05-01

    A Glycine max homolog of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene (Gm-NDR1-1) is expressed in root cells undergoing a defense response to the root pathogenic nematode, Heterodera glycines. Gm-NDR1-1 overexpression in the H. glycines-susceptible genotype G. max [Williams 82/PI 518671] impairs parasitism. In contrast, Gm-NDR1-1 RNA interference (RNAi) in the H. glycines-resistant genotype G. max [Peking/PI 548402] facilitates parasitism. The broad effectiveness of Gm-NDR1-1 in impairing parasitism has then been examined by engineering its heterologous expression in Gossypium hirsutum which is susceptible to the root pathogenic nematode Meloidogyne incognita. The heterologous expression of Gm-NDR1-1 in G. hirsutum effectively impairs M. incognita parasitism, reducing gall, egg mass, egg and juvenile numbers. In contrast to our prior experiments examining the effectiveness of the heterologous expression of a G. max homolog of the A. thaliana salicyclic acid signaling (SA) gene NONEXPRESSOR OF PR1 (Gm-NPR1-2), no cumulative negative effect on M. incognita parasitism has been observed in G. hirsutum expressing Gm-NDR1-1. The results indicate a common genetic basis exists for plant resistance to parasitic nematodes that involves Gm-NDR1. However, the Gm-NDR1-1 functions in ways that are measurably dissimilar to Gm-NPR1-2. Notably, Gm-NDR1-1 overexpression leads to increased relative transcript levels of its homologs of A. thaliana genes functioning in SA signaling, including NPR1-2, TGA2-1 and LESION SIMULATING DISEASE1 (LSD1-2) that is lost in Gm-NDR1-1 RNAi lines. Similar observations have been made regarding the expression of other defense genes. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  20. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  1. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    Science.gov (United States)

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  2. Soybean (Glycine max L. Merr.) sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease.

    Science.gov (United States)

    Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun

    2015-01-01

    Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650-660), far red (720-730) and blue (440-450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes.

  3. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Li, Lihong; Guo, Na; Niu, Jingping; Wang, Zili; Cui, Xiaoxia; Sun, Jutao; Zhao, Tuanjie; Xing, Han

    2016-06-01

    Phytophthora sojae is an oomycete soil-borne plant pathogen that causes the serious disease Phytophthora root rot in soybean, leading to great loss of soybean production every year. Understanding the genetic basis of this plant-pathogen interaction is important to improve soybean disease resistance. To discover genes or QTLs underlying naturally occurring variations in soybean P.sojae resistance, we performed a genome-wide association study using 59,845 single-nucleotide polymorphisms identified from re-sequencing of 279 accessions from Yangtze-Huai soybean breeding germplasm. We used two models for association analysis. The same strong peak was detected by both two models on chromosome 13. Within the 500-kb flanking regions, three candidate genes (Glyma13g32980, Glyma13g33900, Glyma13g33512) had SNPs in their exon regions. Four other genes were located in this region, two of which contained a leucine-rich repeat domain, which is an important characteristic of R genes in plants. These candidate genes could be potentially useful for improving the resistance of cultivated soybean to P.sojae in future soybean breeding.

  4. Soybean (Glycine max L. Merr. sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease.

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    Full Text Available Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs, including red (650-660, far red (720-730 and blue (440-450 nm or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes.

  5. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars.

    Science.gov (United States)

    Hussain, Reem M; Ali, Mohammed; Feng, Xing; Li, Xia

    2017-02-28

    The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such

  6. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).

    Science.gov (United States)

    Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E

    2017-07-26

    The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.

  7. Volume 10 No. 3 March 2010 2187 SOYBEAN (Glycine max ...

    African Journals Online (AJOL)

    2010-03-03

    Mar 3, 2010 ... March 2010. 2187. SOYBEAN (Glycine max) COMPLEMENTATION AND THE ZINC STATUS. OF HIV AND AIDS AFFECTED CHILDREN IN SUBA DISTRICT, KENYA. Were GM*. 1. , Ohiokpehai O. 2. , Okeyo-Owuor JB. 3. ,. Mbagaya GM. 4. , Kimiywe J. 5. , Mbithe D. 6 and MM Okello. 7. Gertrude Were.

  8. Genetic Variability in Soybean (Glycine max L.) for Low Soil ...

    African Journals Online (AJOL)

    Abush Tesfaye

    Genetic Variability in Soybean (Glycine max L.) for Low. Soil Phosphorus Tolerance. Abush Tesfaye1, Mwangi Githiri2, John Derera3 and Tolessa Debele4. 1Jimma Research Center, P.O.Box 192, Jimma, Ethiopia, 2Jomo Kenyatta University of and Technology,. Department of Horticulture, Nairobi, Kenya, 3Seed Co.

  9. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    A series of aliphatic and aromatic aldehydes and ketones were reduced using plant cell preparations of Glycine max seeds (soybean). The biotransformation of five aromatic aldehydes in water, at room temperature afforded the corresponding alcohols in excellent yields varying from 89 to 100%. Two prochiral aromatic ...

  10. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  11. Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages.

    Science.gov (United States)

    Sun, Yuzhe; Mui, Zeta; Liu, Xuan; Yim, Aldrin Kay-Yuen; Qin, Hao; Wong, Fuk-Ling; Chan, Ting-Fung; Yiu, Siu-Ming; Lam, Hon-Ming; Lim, Boon Leong

    2016-12-06

    Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max , contributes a great deal to food production, but, compared to its wild kin, Glycine soja , it may lose some genetic information during domestication. In this work, we analyzed the sRNA profiles of different tissues in both cultivated (C08) and wild soybeans (W05) at three stages of development. A total of 443 known miRNAs and 15 novel miRNAs showed varying abundances between different samples, but the miRNA profiles were generally similar in both accessions. Based on a sliding window analysis workflow that we developed, 50 PHAS loci generating 55 21-nucleotide phasiRNAs were identified in C08, and 46 phasiRNAs from 41 PHAS loci were identified in W05. In germinated seedlings, phasiRNAs were more abundant in C08 than in W05. Disease resistant TIR-NB-LRR genes constitute a very large family of PHAS loci. PhasiRNAs were also generated from several loci that encode for NAC transcription factors, Dicer-like 2 (DCL2), Pentatricopeptide Repeat (PPR), and Auxin Signaling F-box 3 (AFB3) proteins. To investigate the possible involvement of miRNAs in initiating the PHAS -phasiRNA pathway, miRNA target predictions were performed and 17 C08 miRNAs and 15 W05 miRNAs were predicted to trigger phasiRNAs biogenesis. In summary, we provide a comprehensive description of the sRNA profiles of wild versus cultivated soybeans, and discuss the possible roles of sRNAs during soybean germination.

  12. Control of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifoliaL.) in Glufosinate-Resistant Soybean [Glycine max(L.) Merr].

    Science.gov (United States)

    Barnes, Ethann R; Knezevic, Stevan Z; Sikkema, Peter H; Lindquist, John L; Jhala, Amit J

    2017-01-01

    Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR) common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1) evaluate the efficacy of preplant (PP) herbicides followed by (fb) glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S -metolachlor applied post-emergence (POST) for control of GR common ragweed in glufosinate-resistant soybean; (2) their effect on common ragweed density, biomass, and soybean yield; and (3) the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90-99% control of common ragweed at 21 d after treatment (DAT). The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S -metolachlor controlled GR common ragweed 84-98% at soybean harvest, reduced common ragweed density (≤20 plants m -2 ) and biomass by ≥93%, and secured soybean yield 1,819-2,158 kg ha -1 . The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373-US$506) compared to PP alone (US$91) or PRE fb POST programs (US$158). The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs.

  13. Formation of monofluorocarbon compounds by single cell cultures of Glycine max growing on inorganic fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.A.; Shorthouse, M.

    1972-01-01

    Single cell cultures of Glycine max were exposed to sodium fluoride to determine the capacity for synthesis of fluoroacetate and fluorocitrate. This capacity had previously been observed in soybean plants and alfalfa. The results show that cell cultures of Glycine max can also synthesize these fluoroacids.

  14. Antioxidant and Biological Activities of Proteinaceous Extract from Algerian Glycine max Plant.

    Science.gov (United States)

    Soussi, Nassima; Moulay, Saad; Bachari, Khaldoun; Benmiri, Yamina

    2017-01-01

    Glycine max is commonly used in Algeria for treatment of anemia deficiency and osteoporosis, it ranks first in terms of vegetal proteins. The experiment was aimed at characterizing the proteinaceous Glycine max extract and evaluating its antioxidant, biological and hematological potential. Extraction of proteinaceous materials from Glycine max plant was undertaken using water and n-hexane as extracting media. The isolation of proteins from the crude materials was done, providing the use of ammonium sulfate. The Glycine max proteins were characterized by UV-visible and FT-IR spectroscopy and analyzed by SEM micrograph and x-ray diffraction (XRD). Rheological parameters G' and G'' were assessed. The isolated proteins were tested for their antioxidant, antimicrobial and hemagglutination activities. There was a gelling effect of the protein extract which can be used as an alternative in principally made vaccines with its microbiological and antifungal activities. The proteinaceous extract from Algerian Glycine max would have a potential use in biomedical application.

  15. Genetic control of soybean (Glycine max) yield in the absence and presence of the Asian rust fungus (Phakopsora pachyrhizi)

    OpenAIRE

    Ribeiro, Aliny Simony; Toledo, José Francisco Ferraz de; Arias, Carlos Alberto Arrabal; Godoy, Cláudia Vieira; Soares, Rafael Moreira; Moreira, José Ubirajara Vieira; Pierozzi, Pedro Henrique Braga; Vidigal, Maria Celeste Gonçalves; Oliveira, Marcelo Fernandes de

    2008-01-01

    Soybean is one of the most important crops in Brazil and continuously generates demands for production technologies, such as cultivars resistant to diseases. In recent years, the Asian rust fungus (Phakopsora pachyrhizi Syd. & P. Syd 1914) has caused severe yield losses and the development of resistant cultivars is the best means of control. Understanding the genetic control and estimating parameters associated with soybean (Glycine max) resistance to P. pachyrhizi will provide essential ...

  16. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  17. Identificatoin and confirmation of resistance against soybean aphid (Aphis glycines) in eight wild soybean lines

    Science.gov (United States)

    The development and use of aphid-resistant soybean (Glycine max) cultivars has been complicated by the presence of multiple virulent biotypes of the soybean aphid (SA, Aphis glycines Matsumura). Ultimately, a variety of unique resistance sources may be needed to develop cultivars with a broad spectr...

  18. Anatomical Study of Somatic Embryogenesis in Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida Fernando

    2002-09-01

    Full Text Available A comparative anatomical analysis of somatic embryogenesis in two soybean (Glycine max (L. Merrill genotypes was carried out. The somatic embryos were originated from cotyledonary explants obtained from immature zygotic embryos. The medium used for somatic embryogenesis induction was Murashige and Skoog, 1962, salts and Gamborg et al., 1968, vitamins (MSB supplemented with 0.8 mg.L-1 of 2,4-D for genotype PI 123439 and 40 mg.L-1 of 2,4-D for ‘Williams 82’. Globular structures, constituted by meristematic cells, originated from subepidermal cell divisions of the cotyledonary mesophyll. In PI 123439, the globular structures presented tracheary differentiation among meristematic cells and they could follow distinct morphogenetic process depending on their location along the explant. For ‘Williams 82’ it was observed globular structures along the cotyledonary explant surface. They gave rise to somatic embryos. These embryos showed different morphologies and they were classified based on their shape and number of cotyledons. The ability of these morphological types to convert to plantlets was discussed.Realizou-se uma análise anatômica comparativa da embriogênese somática em dois genótipos de soja (Glycine max (L. Merrill. Os embriões somáticos foram obtidos a partir de explantes cotiledonares excisados de embriões zigóticos imaturos do genótipo PI 123439, adaptado às condições tropicais, e ‘Williams 82’. O meio utilizado para indução da embriogênese somática constituiu-se de sais de Murashige e Skoog,1962, e vitaminas de Gamborg et al., 1968 (MSB suplementado com 0,8 mg.L-1 de 2,4-D (PI 123439 e 40 mg.L-1 (‘Williams 82’. Estruturas globulares originaram-se a partir de divisões celulares nas camadas subepidérmicas do mesofilo cotiledonar e foram constituídas por células meristemáticas. No genótipo PI 123439, as estruturas globulares apresentaram diferenciação traqueal entre as células meristemáticas e

  19. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    2014-09-13

    SECURITY CLASSIFICATION OF: Soybean (Glycine max L.) is an important crop in the US and worldwide. It has numerous health benefits because of its...for protein, oil, and isoflavones contents in three recombinant inbred line (RIL) populations of soybean . We have achieved 100% of the goals. We have...Contents in Soybean [Glycine max (L.) Merr.] The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued

  20. Genome-wide association mapping of resistance to Phytophthora sojae in a soybean [Glycine max (L.) Merr.] germplasm panel from maturity groups IV and V.

    Science.gov (United States)

    Qin, Jun; Song, Qijian; Shi, Ainong; Li, Song; Zhang, Mengchen; Zhang, Bo

    2017-01-01

    Phytophthora sojae, an oomycete pathogen of soybean, causes stem and root rot, resulting in annual economic loss up to $2 billion worldwide. Varieties with P. sojae resistance are environmental friendly to effectively reduce disease damages. In order to improve the resistance of P. sojae and broaden the genetic diversity in Southern soybean cultivars and germplasm in the U.S., we established a P. sojae resistance gene pool that has high genetic diversity, and explored genomic regions underlying the host resistance to P. sojae races 1, 3, 7, 17 and 25. A soybean germplasm panel from maturity groups (MGs) IV and V including 189 accessions originated from 10 countries were used in this study. The panel had a high genetic diversity compared to the 6,749 accessions from MGs IV and V in USDA Soybean Germplasm Collection. Based on disease evaluation dataset of these accessions inoculated with P. sojae races 1, 3, 7, 17 and 25, which are publically available, five accessions in this panel were resistant to all races. Genome-wide association analysis identified a total of 32 significant SNPs, which were clustered in resistance-associated genomic regions, among those, ss715619920 was only 3kb away from the gene Glyma.14g087500, a subtilisin protease. Gene expression analysis showed that the gene was down-regulated more than 4 fold (log2 fold > 2.2) in response to P. sojae infection. The identified molecular markers and genomic regions that are associated with the disease resistance in this gene pool will greatly assist the U.S. Southern soybean breeders in developing elite varieties with broad genetic background and P. sojae resistance.

  1. Genome-wide association mapping of resistance to Phytophthora sojae in a soybean [Glycine max (L. Merr.] germplasm panel from maturity groups IV and V.

    Directory of Open Access Journals (Sweden)

    Jun Qin

    Full Text Available Phytophthora sojae, an oomycete pathogen of soybean, causes stem and root rot, resulting in annual economic loss up to $2 billion worldwide. Varieties with P. sojae resistance are environmental friendly to effectively reduce disease damages. In order to improve the resistance of P. sojae and broaden the genetic diversity in Southern soybean cultivars and germplasm in the U.S., we established a P. sojae resistance gene pool that has high genetic diversity, and explored genomic regions underlying the host resistance to P. sojae races 1, 3, 7, 17 and 25. A soybean germplasm panel from maturity groups (MGs IV and V including 189 accessions originated from 10 countries were used in this study. The panel had a high genetic diversity compared to the 6,749 accessions from MGs IV and V in USDA Soybean Germplasm Collection. Based on disease evaluation dataset of these accessions inoculated with P. sojae races 1, 3, 7, 17 and 25, which are publically available, five accessions in this panel were resistant to all races. Genome-wide association analysis identified a total of 32 significant SNPs, which were clustered in resistance-associated genomic regions, among those, ss715619920 was only 3kb away from the gene Glyma.14g087500, a subtilisin protease. Gene expression analysis showed that the gene was down-regulated more than 4 fold (log2 fold > 2.2 in response to P. sojae infection. The identified molecular markers and genomic regions that are associated with the disease resistance in this gene pool will greatly assist the U.S. Southern soybean breeders in developing elite varieties with broad genetic background and P. sojae resistance.

  2. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L.

    Science.gov (United States)

    Cai, Miaozhen; Wang, Ning; Xing, Chenghua; Wang, Fangmei; Wu, Kun; Du, Xing

    2013-12-01

    The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.

  3. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps.

    Science.gov (United States)

    Zhao, Xue; Han, Yingpeng; Li, Yinghui; Liu, Dongyuan; Sun, Mingming; Zhao, Yue; Lv, Chunmei; Li, Dongmei; Yang, Zhijiang; Huang, Long; Teng, Weili; Qiu, Lijuan; Zheng, Hongkun; Li, Wenbin

    2015-04-01

    Soybean white mold (SWM), caused by Sclerotinia sclerotiorum ((Lib.) W. Phillips), is currently considered to be the second most important cause of soybean yield loss due to disease. Research is needed to identify SWM-resistant germplasm and gain a better understanding of the genetic and molecular basis of SWM resistance in soybean. Stem pigmentation after treatment with oxaloacetic acid is an effective indicator of resistance to SWM. A total of 128 recombinant inbred lines (RILs) derived from a cross of 'Maple Arrow' (partial resistant to SWM) and 'Hefeng 25' (susceptible) and 330 diverse soybean cultivars were screened for the soluble pigment concentration of their stems, which were treated with oxalic acid. Four quantitative trait loci (QTLs) underlying soluble pigment concentration were detected by linkage mapping of the RILs. Three hundred and thirty soybean cultivars were sequenced using the whole-genome encompassing approach and 25 179 single-nucleotide polymorphisms (SNPs) were detected for the fine mapping of SWM resistance genes by genome-wide association studies. Three out of five SNP markers representing a linkage disequilibrium (LD) block and a single locus on chromosome 13 (Gm13) were significantly associated with the soluble pigment content of stems. Three more SNPs that represented three minor QTLs for the soluble pigment content of stems were identified on another three chromosomes by association mapping. A major locus with the largest effect on Gm13 was found both by linkage and association mapping. Four potential candidate genes involved in disease response or the anthocyanin biosynthesis pathway were identified at the locus near the significant SNPs (soybean breeding for improving resistance to SWM. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Sun, Jutao; Li, Lihong; Zhao, Jinming; Huang, Jing; Yan, Qiang; Xing, Han; Guo, Na

    2014-04-01

    We finely map a novel resistance gene ( RpsJS ) to Phytophthora sojae in soybean. RpsJS was mapped in 138.9 kb region, including three NBS-LRR type predicted genes, on chromosome 18. Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) has been reported in most soybean-growing regions throughout the world. Development of PRR resistance varieties is the most economical and environmentally safe method for controlling this disease. Chinese soybean line Nannong 10-1 is resistant to many P. sojae isolates, and shows different reaction types to P. sojae isolates as compared with those with known Rps (Resistance to P. sojae) genes, which suggests that the line may carry novel Rps genes or alleles. A mapping population of 231 F(2) individuals from the cross of Nannong 10-1 (Resistant, R) and 06-070583 (Susceptible, S) was used to map the Rps gene. The segregation fits a ratio of 3R:1S within F(2) plants, indicating that resistance in Nannong 10-1 is controlled by a single dominant gene (designated as RpsJS). The results showed that RpsJS was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by SSR (simple repeat sequences) markers BARCSOYSSR_18_1859 and SSRG60752K at a distance of 0.9 and 0.4 cm, respectively. Among the 14 genes annotated in this 138.9 kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950 and Glyma18g51960) are the nucleotide-binding site and a leucine-rich repeat (NBS-LRR) type gene, which may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on marker-assisted resistance spectrum analyses of RpsJS and the mapping results, we inferred that RpsJS was a novel gene or a new allele at the Rps4, Rps5 or Rps6 loci.

  5. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing.

    Science.gov (United States)

    Cheng, Yanbo; Ma, Qibin; Ren, Hailong; Xia, Qiuju; Song, Enliang; Tan, Zhiyuan; Li, Shuxian; Zhang, Gengyun; Nian, Hai

    2017-05-01

    Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao. Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F 2 individuals and 196 F 7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F 2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.

  6. Chemical and Mechanical Control of Soybean (Glycin max L. Weeds

    Directory of Open Access Journals (Sweden)

    Ebrahim Gholamalipour Alamdari

    2016-10-01

    Full Text Available To evaluate effects of the various concentrations of two herbicides of the trifluralin and Imazethapyr and weeding on weeds control, yield and yield components of soybean (Glycin max L., an experiment was carried out based on randomized complete block design with three replications at the Agriculture Land of Ghravolhaji Village in Kallale district of Golestan province in 2014. Treatments consisted of planting soybean under weeding, without weeding and application of trifluralin and Imazethapyr as 100% trifluralin, 75% trifluralin + 25% Imazethapyr, 50% trifluralin + 50% Imazethapyr, 25% trifluralin + 75% Imazethapyr, 100% pursuit, 100% Imazethapyr + 25% trifluralin, 25% Imazethapyr + 100% trifluralin, 100% Imazethapyr + 50% trifluralin and 50% Imazethapyr + 100% trifluralin. density of each weed, their total density and inhibition percentage were measured. Results showed that the effect of chemical weed control on all traits measured, except seed number per pot, 1000 seed weight, content of chlorophyll a and total chlorophyll, were significant. The highest leaf area, plant height, number of pods per plant, aerial plant dry weight, seed number per plant and seed weight per plant were observed in the treatment of the 100% Imazethapyr (238.67 cm2, weeding (57.69 cm, both treatments of weeding (33.10 and 25% Imazethapyr +100% trifluralin (28.3, both treatment of weeding (163.92 g and 100%  Imazethapyr (163.70 g, weeding (67.10 seed per plant, both treatment of weeding and 100%  Imazethapyr + 50% trifluralin (10.27 seed per plant respectively. The highest seed yield was obtained from weeding treatment (2383 kg/h. Based on the results, the highest content of protein and chlorophyll b in soybean were obtained from weeding treatment. The highest inhibition percentage of weeds was found in the additional treatment of 50% Imazethapyr + 100% trifluralin (75.19 and 100% Imazethapyr + 25% trifluralin (72.86. The lowest and highest total phenols content and

  7. Nutrient Management practices for enhancing Soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    FARID A. HELLAL

    2013-05-01

    La soya (Glycine max L., es el cultivo de legumbres más importante en el mundo. La magnitud de las pérdidas en el rendimientode la soya debido a deficiencias varía dependiendo de los nutrientes. Las deficiencias de N, P, Fe, B y S pueden causar pérdidas en rendimiento de hasta 10 %, 29-45 %, 22-90 %, 100 % y 16-30 %, respectivamente, en la soya dependiendo de la fertilidad del suelo, clima y factores intrínsecos a las plantas. La textura de los suelos utilizados en el cultivo de soya varía entre arenosa y arcillosa. La salinidad del suelo es uno de los mayores factores limitantes en la producción del cultivo en regiones semiáridas, y la salinidad por cloro tiene un mayor efecto en la disminución del rendimiento que la salinidad por sulfatos. Los granos de soya son una gran fuente de energía que contienen 40 % de proteína y 19 % de aceite. El éxito del manejo de nutrientes es maximizar la productividad del cultivo mientras se minimizan los impactos ambientales. Las prácticas de manejo de nutrientes balanceadas y reguladas en el tiempo contribuyen a un crecimiento sostenido del rendimiento y la calidad, influencian la salud de las plantas y reducen los riesgos ambientales. Una nutrición balanceada con fertilizantes minerales puede ayudar en el manejo integrado de plagas para reducir los daños causados por las infestaciones de pestes y enfermedades y reducir los insumos requeridos para su control. Una fertilización balanceada genera mayores ganancias para los agricultores, no necesariamente por reducción de los insumos. El papel de la educación y la extensión en la difusión del conocimiento actual sobre manejo de nutrientes es crucial, desafiante y continuo.

  8. A Novel Pathogenesis-Related Class 10 Protein Gly m 4l, Increases Resistance upon Phytophthora sojae Infection in Soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Fan, Sujie; Jiang, Liangyu; Wu, Junjiang; Dong, Lidong; Cheng, Qun; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Phytophthora root and stem rot of soybean, caused by Phytophthora sojae (P. sojae), is a destructive disease in many soybean planting regions worldwide. In a previous study, an expressed sequence tag (EST) homolog of the major allergen Pru ar 1 in apricot (Prunus armeniaca) was identified up-regulated in the highly resistant soybean 'Suinong 10' infected with P. sojae. Here, the full length of the EST was isolated using rapid amplification of cDNA ends (RACE). It showed the highest homology of 53.46% with Gly m 4 after comparison with the eight soybean allergen families reported and was named Gly m 4-like (Gly m 4l, GenBank accession no. HQ913577.1). The cDNA full length of Gly m 4l was 707 bp containing a 474 bp open reading frame encoding a polypeptide of 157 amino acids. Sequence analysis suggests that Gly m 4l contains a conserved 'P-loop' (phosphate-binding loop) motif at residues 47-55 aa and a Bet v 1 domain at residues 87-120 aa. The transcript abundance of Gly m 4l was significantly induced by P. sojae, salicylic acid (SA), NaCl, and also responded to methyl jasmonic acid (MeJA) and ethylene (ET). The recombinant Gly m 4l protein showed RNase activity and displayed directly antimicrobial activity that inhibited hyphal growth and reduced zoospore release in P. sojae. Further analyses showed that the RNase activity of the recombinant protein to degrading tRNA was significantly affected in the presence of zeatin. Over-expression of Gly m 4l in susceptible 'Dongnong 50' soybean showed enhanced resistance to P. sojae. These results indicated that Gly m 4l protein played an important role in the defense of soybean against P. sojae infection.

  9. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  10. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  11. Intersubgeneric hybridization between Glycine max and G. tomentella: production of F₁, amphidiploid, BC₁, BC₂, BC₃, and fertile soybean plants.

    Science.gov (United States)

    Singh, R J; Nelson, R L

    2015-06-01

    This paper describes methods for unlocking genetic treasure from wild perennial Glycine species of Australia for soybean improvement. The genetic resources of the ca. 26 species of the genus Glycine subgenus Glycine have not been exploited to broaden the genetic base of soybean (Glycine max; 2n = 40). The objectives of this study were to develop methods for producing F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants from crosses of soybean and the genus Glycine subgenus Glycine species, in order to utilize the subgenus Glycine germplasm in soybean breeding. Soybean cultivars were hybridized with six accessions of 78-chromosome G. tomentella as well as one accession each of 40-chromosome G. tomentella, G. argyrea and G. latifolia. They were chosen because they exhibit resistance to soybean rust. We were successful in producing fertile soybean from soybean cv. 'Dwight' and 78-chromosome G. tomentella accession PI 441001, while other hybrids were discontinued either at F1 or amphidiploid stage. The F1 seeds aborted prior to reaching maturity, so developing seeds from 19 to 21 day old pods were cultured aseptically in various media formulations. Seed maturation and multiple embryo generation media were developed. F1 plants with shoots and roots (2n = 59) were transplanted to pots in greenhouse. Amphidiploid (2n = 118) plants were backcrossed to 'Dwight'. BC1 (2n = 79) plants were propagated through in vitro and 43 mature BC2F1 seeds were harvested. Fifteen surviving BC2F1 plants were morphologically distinct, sterile, and had chromosome numbers ranging 2n = 56-59. Chromosome numbers of the BC3F1 plants ranged 2n = 40-49. Derived fertile soybeans were first planted in the field in 2008 and are being evaluated for yield, resistance to pathogens and pests and tolerance to salt through material transfer agreement.

  12. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines.

    Science.gov (United States)

    Pant, Shankar R; Krishnavajhala, Aparna; McNeece, Brant T; Lawrence, Gary W; Klink, Vincent P

    2015-01-01

    Experiments show the membrane fusion genes α soluble NSF attachment protein (α-SNAP) and syntaxin 31 (Gm-SYP38) contribute to the ability of Glycine max to defend itself from infection by the plant parasitic nematode Heterodera glycines. Accompanying their expression is the transcriptional activation of the defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and NONEXPRESSOR OF PR1 (NPR1) that function in salicylic acid (SA) signaling. These results implicate the added involvement of the antiapoptotic, environmental response gene LESION SIMULATING DISEASE1 (LSD1) in defense. Roots engineered to overexpress the G. max defense genes Gm-α-SNAP, SYP38, EDS1, NPR1, BOTRYTIS INDUCED KINASE1 (BIK1) and xyloglucan endotransglycosylase/hydrolase (XTH) in the susceptible genotype G. max[Williams 82/PI 518671] have induced Gm-LSD1 (Gm-LSD1-2) transcriptional activity. In reciprocal experiments, roots engineered to overexpress Gm-LSD1-2 in the susceptible genotype G. max[Williams 82/PI 518671] have induced levels of SYP38, EDS1, NPR1, BIK1 and XTH, but not α-SNAP prior to infection. In tests examining the role of Gm-LSD1-2 in defense, its overexpression results in ∼52 to 68% reduction in nematode parasitism. In contrast, RNA interference (RNAi) of Gm-LSD1-2 in the resistant genotype G. max[Peking/PI 548402] results in an 3.24-10.42 fold increased ability of H. glycines to parasitize. The results identify that Gm-LSD1-2 functions in the defense response of G. max to H. glycines parasitism. It is proposed that LSD1, as an antiapoptotic protein, may establish an environment whereby the protected, living plant cell could secrete materials in the vicinity of the parasitizing nematode to disarm it. After the targeted incapacitation of the nematode the parasitized cell succumbs to its targeted demise as the infected root region is becoming fortified.

  13. EFEITO DO ACIBENZOLAR-S-METHYL (BENZOTHIADIAZOLE, COMO INDUTOR DE RESISTÊNCIA SISTÊMICA EM SOJA (Glycine max cv. FTCRISTALINA, SOBRE Heterodera glycines EFFECT OF ACIBENZOLAR-S-METHYL (BENZOTHIADIAZOLE, AS A SOYBEAN SYSTEMIC RESISTANCE INDUCTOR, ON Heterodera glycines

    Directory of Open Access Journals (Sweden)

    André Luiz Martini

    2007-09-01

    Full Text Available

    A resistência sistêmica adquirida consiste em um importante mecanismo de defesa das plantas contra doenças e pode ocorrer naturalmente ou ser induzida através de tratamento químico. O objetivo do presente trabalho foi avaliar o efeito da aplicação do produto acibenzolar -S- methyl (benzothiadiazole, nome comercial: Bion 50 WG, na indução de resistência sistêmica ao nematóide de cisto da soja Heterodera glycines. O experimento foi conduzido, sob condições de casa de vegetação, na Escola de Agronomia da Universidade Federal de Goiás. Utilizaram-se vasos de cerâmica e um solo naturalmente infestado por H. glycines, raça 4, proveniente do município de Chapadão do Céu (GO, e como planta hospedeira a soja ‘FT-Cristalina’. O delineamento experimental foi inteiramente casualizado com cinco tratamentos (1. testemunha; 2. acybenzolar - S- methyl 0,15 g/l em pulverização foliar; 3. acybenzolar - S- methyl 0,30 g/l em pulverizaço foliar; 4. acybenzolar - S- methyl 0,15 g/l rega no solo; 5. acybenzolar - Smethyl 0,30 g/l rega no solo e seis repetições. As aplicações foram feitas aos 15, 30 e 45 dias após semeadura. No final do ciclo da cultura, foram avaliados o número de fêmeas de H. glycines no sistema radicular, o número de cistos por 100 cm3 de solo e o número de ovos por cisto. Não foram observadas diferenças significativas entre os tratamentos, para as variáveis avaliadas. Houve uma tendência de redução tanto do número de fêmeas quando o produto foi aplicado através de rega no solo, quanto do número de cistos, quando a aplicação foi através de rega no solo e na maior concentração do produto.

    PALAVRAS-CHAVE: Resistência sistêmica adquirida; benzothiadiazole; nematóide de cisto da soja.

  14. Quality and yield response of soybean ( Glycine max L. Merrill) to ...

    African Journals Online (AJOL)

    However, plants droughted during the vegetative stage of development produced the highest yield per unit of irrigation water applied (that is, irrigation water use efficiency). This research results will be useful for maximizing soybean production and/or seed quality when irrigation water is limited. Key words: Glycine max, ...

  15. Gamma radiation effect on the anatomical structure of soybean (Glycine max. Merr)

    International Nuclear Information System (INIS)

    Bhikuningputra, W.

    1976-01-01

    Gamma radiation effects on soybean plant (Glycine max. Merr) have been studied by using radiation doses of 0, 20, 25, 30, and 35 Krad. Investigation is carried out after each treatment. It proves that each treatment causes different morphological changes on leaves, stems, roots, and fibres of the treated plants. (SMN)

  16. Effets des cultures de soja ( Glycine max ) et de niébé ( Vigna ...

    African Journals Online (AJOL)

    Effets des cultures de soja ( Glycine max ) et de niébé ( Vigna unguiculata ) sur la densité apparente et la teneur en eau des sols et sur la productivité du riz pluvial de plateau sur ferralsol hyperdystrique.

  17. Production of peptone from soya beans ( Glycine max L merr ) and ...

    African Journals Online (AJOL)

    Production of peptone from soya beans (Glycine max L merr) and African locust beans (Parkia biglobosa). RE Uzeh, SO Akinola, SOA Olatope. Abstract. Peptone was produced from soya beans and African locust beans. The produced peptones were evaluated as component of microbiological media for the growth of some ...

  18. Pengaruh Pemberian Pyraclotrobin Terhadap Efisiensi Penyerapan Nitrogen Dan Kualitas Hasil Tanaman Kedelai (Glycine Max L. Merr.)

    OpenAIRE

    Mansur, Mansur; Ashari, Sumeru; Kuswanto, Kuswanto

    2015-01-01

    Kedelai (Glycine max (L.) Merr.) adalah tanaman kacang-kacangan (Leguminosae) yang menjadi komoditas tanaman pangan penting karena tingginya kandungan protein. Penelitian ini dilakukan untuk mengetahui pengaruh pemberian pyraclostrobin terhadap efisiensi penyerapan nitrogen, pertumbuhan tanaman dan hasil tanaman kedelai. Bahan penelitian yang digunakan adalah benih kedelai varietas wilis, pyraclostrobin dan pupuk urea 46% N. Rancangan yang digunakan adalah rancangan tersarang yang terdiri da...

  19. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  20. Screening Soybean ( Glycine max (L) Merril) lines for morphological ...

    African Journals Online (AJOL)

    A study was carried out during the first and second seasonsofl997 at Namnlonge Agricultural and Animal Production Research Institute {NAAR I) to determine whether there were some soybean varieties in the NAARI germplasm which were resistant to the southern green stink bug, Nezara viridula and to establish the basis ...

  1. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, Fozia [Department of Botany, Faculty of Science, Jamia Hamdard, New Delhi 110062 (India); Mahmooduzzafar [Department of Botany, Faculty of Science, Jamia Hamdard, New Delhi 110062 (India); Siddiqi, T.O. [Department of Botany, Faculty of Science, Jamia Hamdard, New Delhi 110062 (India); Iqbal, Muhammad [Department of Botany, Faculty of Science, Jamia Hamdard, New Delhi 110062 (India)]. E-mail: iqbalg5@yahoo.co.in

    2007-05-15

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max.

  2. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  3. Screening of Soybean (Glycine max L.) Advanced Lines under Organic Management in Turkey

    OpenAIRE

    Kir, Alev; Karagul, Eylem Tugay; Buyukkileci, Ceylan; Kalin, Ahmet

    2015-01-01

    The breeding research of soybean (Glycine max L.) began with advanced lines of “Soybean Breeding Project” supported by MFAL-GDAR in 2013 under organic management for comparing grain legume crops of organic breeding programme of COBRA (Coordinating Organic Plant Breeding Activities for Diversity) project because of priority for this species to be produced organically in Turkey for organic sector at Organic Open Field Experimental Area of AARI located in the Mediterranean Region. Main objective...

  4. Glycine max

    African Journals Online (AJOL)

    otoigiakih

    1Institute of Cereal and Oil crops, Hebei Academy of Agricultural and Forestry Sciences/ Shijiazhuang Branch Center of. National Center for Soybean Improvement / the Key Laboratory of Crop Genetics and Breeding, Shijiazhuang,. 050031, Peoples' ... In variance with previous reports that domestication- related traits are ...

  5. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring.

    Science.gov (United States)

    Lu, Yonghai; Lam, Honming; Pi, Erxu; Zhan, Qinglei; Tsai, Sauna; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-09-11

    Metabolomics is developing as an important functional genomics tool for understanding plant systems' response to genetic and environmental changes. Here, we characterized the metabolic changes of cultivated soybean C08 (Glycine max L. Merr) and wild soybean W05 (Glycine soja Sieb.et Zucc.) under salt stress using MS-based metabolomics, in order to reveal the phenotypes of their eight hybrid offspring (9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590). Total small molecule extracts of soybean seedling leaves were profiled by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Fourier transform mass spectrometry (LC-FT/MS). We found that wild soybean contained higher amounts of disaccharides, sugar alcohols, and acetylated amino acids than cultivated soybean, but with lower amounts of monosaccharides, carboxylic acids, and unsaturated fatty acids. Further investigations demonstrated that the ability of soybean to tolerate salt was mainly based on synthesis of compatible solutes, induction of reactive oxygen species (ROS) scavengers, cell membrane modifications, and induction of plant hormones. On the basis of metabolic phenotype, the salt-tolerance abilities of 9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590 were discriminated. Our results demonstrated that MS-based metabolomics provides a fast and powerful approach to discriminate the salt-tolerance characteristics of soybeans.

  6. Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis.

    Science.gov (United States)

    Natarajan, Savithiry S; Xu, Chenping; Bae, Hanhong; Caperna, Thomas J; Garrett, Wesley M

    2006-04-19

    A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of abundant and less-abundant storage proteins. Most of the subunits of beta-conglycinin were well-separated in the pH range 3.0-10.0, while acidic and basic glycinin polypeptides were well-separated in pH ranges 4.0-7.0 and 6.0-11.0, respectively. Although the overall distribution pattern of the protein spots was similar in both genotypes using pH 3.0-10.0, variations in number and intensity of protein spots were better resolved using a combination of pH 4.0-7.0 and pH 6.0-11.0. The total number of storage protein spots detected in wild and cultivated genotypes was approximately 44 and 34, respectively. This is the first study reporting the comparison of protein profiles of wild and cultivated genotypes of soybean seeds using proteomic tools.

  7. THE EFFECT OF SOME RHIZOBACTERIAN STRAINS ON SOLUBLE PROTEINS CONTENT IN SOYBEANS (GLYCINE MAX L. MERR.

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2007-08-01

    Full Text Available Now it is an accepted fact that plant growth-promoting rhizobacteria (PGPR can increase the productivity of several crops. The main objective of the present study was to find if there are any differences in protein content in the seeds of soybean (Glycine max L. MERR.. Using spectrophotometric methods for analyzing the protein contents and electrophoretic methods for qualitative analysis it was observed that no major modifications occur in protein spectrum. Looking at the quantitative side there was a small improvement in protein quantity.

  8. APLIKASI PEMBERIAN GOLDEN HARVEST DAN RHIZOBIUM BERPENGARUH TERHADAP PERTUMBUHAN DAN PRODUKSI TANAMAN KEDELAI (Glycine max L.)

    OpenAIRE

    Munar, Asritanarni; Mawar Tarigan, Dafni; Siregar, Ahmad Haris

    2015-01-01

    AbstractThis study to determine the effect of Golden Harvest fertilizer and Rhizobium on growth and production of soybean (Glycine max L.). Implemented using the design of Plots Divided  factorial with two factors. The results showed that administration of Golden Harvest Fertilizer real influence on plant height parameters (2 and 3 MST MST), the number of branch age (4 and 6 MST MST), the age of flowering, harvest age, number of pods per plant contains, dry weight of 100 seeds and production ...

  9. Enteromorpha intestinalis Derived Seaweed Liquid Fertilizers as Prospective Biostimulant for Glycine max

    Directory of Open Access Journals (Sweden)

    Chetna Mathur

    2015-12-01

    Full Text Available ABSTRACT In the present study, the potential of seaweed liquid fertilizer (SLF of marine algae Enteromorpha intestinalis was evaluated for its effect on seed germination, yield, biochemical parameters and pigment characteristics of Glycine maxE. intestinalis was collected form Mandapam coast of Gulf of Mannar, Tamil Nadu, and the dried seaweeds were used for the preparation of SLF. G. max seeds were germinated with four different concentrations (20, 40, 60, and 100% of SLF; its growth and yield parameters were evaluated and compared with chemical fertilizer and control. The morphological and bio-chemical parameters such as seed germination (100%, root (6.6cm and shoot length (5.4 cm, carbohydrates (0.098 mg/g, protein (0.56 mg/g, pigment (0.444 mg/g chl a; 1.073 mg/g chl b; 3.70 mg/g carotenoids of the plant was found maximum at a concentration of 60% SLF. The phenol content (3.25 mg/g was maximum in 40% SLF. The GC-MS analysis of SLF revealed the presence of notable benzoic compounds involved in plant growth promotion. Results showed thatE. intestinalis derived SLF was potential biostimulant forG. max. Thus, marine algae based fertilizer could be an effective and alternate to the chemical fertilizers emphasizing the need for systematic evaluation programme for SLF on various crops.

  10. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  11. Genetic control of soybean (Glycine max yield in the absence and presence of the Asian rust fungus (Phakopsora pachyrhizi

    Directory of Open Access Journals (Sweden)

    Aliny Simony Ribeiro

    2008-01-01

    Full Text Available Soybean is one of the most important crops in Brazil and continuously generates demands for production technologies, such as cultivars resistant to diseases. In recent years, the Asian rust fungus (Phakopsora pachyrhizi Syd. & P. Syd 1914 has caused severe yield losses and the development of resistant cultivars is the best means of control. Understanding the genetic control and estimating parameters associated with soybean (Glycine max resistance to P. pachyrhizi will provide essential information for cultivar selection. We investigated quantitative genetic control of P. pachyrhizi and estimated parameters associated to soybean yield in the absence and presence of this phytopathogen. Six cultivars and their 15 diallel derived F2 and F3 generations were assessed in experiments carried out in the absence and presence of P. pachyrhizi. The results indicated that soybean yield in the presence and absence of P. pachyrhizi is controlled by polygenes expressing predominantly additive effects that can be selected to develop new cultivars resistant or tolerant to P. pachyrhizi. These cultivars may prove to be a useful and more durable alternative than cultivars carrying major resistance genes.

  12. [Prediction of ETA oligopeptides antagonists from Glycine max based on in silico proteolysis].

    Science.gov (United States)

    Qiao, Lian-Sheng; Jiang, Lu-di; Luo, Gang-Gang; Lu, Fang; Chen, Yan-Kun; Wang, Ling-Zhi; Li, Gong-Yu; Zhang, Yan-Ling

    2017-02-01

    Oligopeptides are one of the the key pharmaceutical effective constituents of traditional Chinese medicine(TCM). Systematic study on composition and efficacy of TCM oligopeptides is essential for the analysis of material basis and mechanism of TCM. In this study, the potential anti-hypertensive oligopeptides from Glycine max and their endothelin receptor A (ETA) antagonistic activity were discovered and predicted based on in silico technologies.Main protein sequences of G. max were collected and oligopeptides were obtained using in silico gastrointestinal tract proteolysis. Then, the pharmacophore of ETA antagonistic peptides was constructed and included one hydrophobic feature, one ionizable negative feature, one ring aromatic feature and five excluded volumes. Meanwhile, three-dimensional structure of ETA was developed by homology modeling methods for further docking studies. According to docking analysis and consensus score, the key amino acid of GLN165 was identified for ETA antagonistic activity. And 27 oligopeptides from G. max were predicted as the potential ETA antagonists by pharmacophore and docking studies.In silico proteolysis could be used to analyze the protein sequences from TCM. According to combination of in silico proteolysis and molecular simulation, the biological activities of oligopeptides could be predicted rapidly based on the known TCM protein sequence. It might provide the methodology basis for rapidly and efficiently implementing the mechanism analysis of TCM oligopeptides. Copyright© by the Chinese Pharmaceutical Association.

  13. Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings

    Science.gov (United States)

    Jones, R. S.; Mitchell, C. A.

    1989-01-01

    A 40-50% reduction in soybean [Glycine max (L.) Merr. cv. Century 84] hypocotyl elongation occurred 24 h after application of mechanical stress. Exogenous Ca2+ at 10 mM inhibited growth by 28% if applied with the Ca2+ ionophore A23187 to the zone of maximum hypocotyl elongation. La3+ was even more inhibitory than Ca2+, especially above 5 mM. Treatment with ethyleneglycol-bis-(beta-aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA) alone had no effect on growth of non-stressed seedlings at the concentrations used but negated stress-induced growth reduction by 36% at 4 mM when compared to non-treated, stressed controls. Treatment with EDTA was ineffective in negating stress-induced growth inhibition. Calmodulin antagonists calmidazolium, chlorpromazine, and 48/80 also negated stress-induced growth reduction by 23, 50, and 35%, respectively.

  14. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome

    Directory of Open Access Journals (Sweden)

    Severin Andrew J

    2010-08-01

    Full Text Available Abstract Background Next generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation. Results The RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the Glycine max genome. Conclusions This RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of Glycine max can be explored at http://www.soybase.org/soyseq.

  15. NR2B GENE EXPRESSION CHANGE IN WISTAR RAT PRACTICING AEROBIC EXERCISE COMPARING TO SOYBEAN (GLYCINE MAX OR PHYLLANTHUS NIRURI INTAKES AND SOYBEAN AND PHYLLANTHUS NIRURI COMPOSITION INTAKE

    Directory of Open Access Journals (Sweden)

    Vita Murniati Tarawan

    2015-09-01

    Full Text Available Objective: To examine the relationship between nutrition and brain memory. Methods: This study was an experimental laboratory study conducted during the period of June 2011 to July 2012 at the Biomedical and Biochemistry laboratory, Faculty of Medicine, Universitas Padjadjaran. The subjects were 56 8-week-old male Wistar rats weighing approximately 200–250 grams which were divided into 8 groups with different treatments. The treatment groups received no exercise or exercise and soybean (Glycine max, Phyllanthus niruri, or combination of both. Results: NR2B gene expression changes found is described as follows: (1 without practicing exercise (3.8 and after exercise (4.6; (2 Glycine max minus exercise (2.86 and Glycine max and exercise (3.17; (3 Phyllanthus niruri minus exercises (4.7 and Phyllanthus niruri and exercise (4.9; and (4 Glycine max and Phyllanthus niruri combination minus exercise (3.14 and Glycine max and Phyllanthus niruri combination and exercise (4.83. Conclusions: This study determines that exercises and Phyllanthus niruri intake enhance NR2B gene expressions. Glycine max inhibits the NR2B gene expressions. Glycine max and Phyllanthus niruri combination, both with and without practicing exercises, enhance NR2B gene expressions. Therefore, practicing exercise and Phyllanthus niruri intake might cause brain cell apoptosis while Glycine max intake inhibits brain cell apoptosis.

  16. Minimal enhancer elements of the leghemoglobin lba and lbc3 gene promoters from Glycine max L. have different properties

    DEFF Research Database (Denmark)

    She, Q; Lauridsen, P; Stougaard, J

    1993-01-01

    The characteristics of the soybean leghemoglobin lba gene promoter were analyzed and important promoter elements from the lba and lbc3 promoters were compared using transgenic Lotus corniculatus plants. A 5' deletion analysis of the lba promoter delimited two cis-acting elements controlling expre...... function. This may reflect the differential expression of the two lb genes of Glycine max L....

  17. Nitrate and ammonium influxes in soybean (Glycine max) roots : Direct comparison of N-13 and N-15 tracing

    NARCIS (Netherlands)

    Clarkson, DT; Gojon, A; Saker, LR; Wiersema, PK; Purves, JV; Tillard, P; Arnold, GM; Paans, AJM; Vaalburg, W; Stulen, [No Value

    We compared influxes and internal transport in soybean plants (Glycine max cv. Kingsoy) of labelled N from external solutions where either ammonium or nitrate was labelled with the stable isotope N-15 and the radioactive isotope N-13. The objective was to see whether mass spectrometric

  18. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Science.gov (United States)

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on s...

  19. Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max.

    Science.gov (United States)

    Iñiguez, Luis P; Ramírez, Mario; Barbazuk, William B; Hernández, Georgina

    2017-08-22

    The vast diversification of proteins in eukaryotic cells has been related with multiple transcript isoforms from a single gene that result in alternative splicing (AS) of primary transcripts. Analysis of RNA sequencing data from expressed sequence tags and next generation RNA sequencing has been crucial for AS identification and genome-wide AS studies. For the identification of AS events from the related legume species Phaseolus vulgaris and Glycine max, 157 and 88 publicly available RNA-seq libraries, respectively, were analyzed. We identified 85,570 AS events from P. vulgaris in 72% of expressed genes and 134,316 AS events in 70% of expressed genes from G. max. These were categorized in seven AS event types with intron retention being the most abundant followed by alternative acceptor and alternative donor, representing ~75% of all AS events in both plants. Conservation of AS events in homologous genes between the two species was analyzed where an overrepresentation of AS affecting 5'UTR regions was observed for certain types of AS events. The conservation of AS events was experimentally validated for 8 selected genes, through RT-PCR analysis. The different types of AS events also varied by relative position in the genes. The results were consistent in both species. The identification and analysis of AS events are first steps to understand their biological relevance. The results presented here from two related legume species reveal high conservation, over ~15-20 MY of divergence, and may point to the biological relevance of AS.

  20. SoyNet: a database of co-functional networks for soybean Glycine max.

    Science.gov (United States)

    Kim, Eiru; Hwang, Sohyun; Lee, Insuk

    2017-01-04

    Soybean (Glycine max) is a legume crop with substantial economic value, providing a source of oil and protein for humans and livestock. More than 50% of edible oils consumed globally are derived from this crop. Soybean plants are also important for soil fertility, as they fix atmospheric nitrogen by symbiosis with microorganisms. The latest soybean genome annotation (version 2.0) lists 56 044 coding genes, yet their functional contributions to crop traits remain mostly unknown. Co-functional networks have proven useful for identifying genes that are involved in a particular pathway or phenotype with various network algorithms. Here, we present SoyNet (available at www.inetbio.org/soynet), a database of co-functional networks for G. max and a companion web server for network-based functional predictions. SoyNet maps 1 940 284 co-functional links between 40 812 soybean genes (72.8% of the coding genome), which were inferred from 21 distinct types of genomics data including 734 microarrays and 290 RNA-seq samples from soybean. SoyNet provides a new route to functional investigation of the soybean genome, elucidating genes and pathways of agricultural importance. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci.

    Science.gov (United States)

    Li, Ying-Hui; Li, Wei; Zhang, Chen; Yang, Liang; Chang, Ru-Zhen; Gaut, Brandon S; Qiu, Li-Juan

    2010-10-01

    • The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. • In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. • The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei's gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. • G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.

  2. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B.

    Science.gov (United States)

    Winter, Shawn M J; Shelp, Barry J; Anderson, Terry R; Welacky, Tom W; Rajcan, Istvan

    2007-02-01

    Soybean cyst nematode (Heterodera glycines Ichinohe; SCN) is the primary disease responsible for yield loss of soybean [Glycine max (L.) Merr.]. Resistant cultivars are an effective management tool; however, the sources currently available have common resistant genes. Glycine soja Sieb. and Zucc., the wild ancestor of domesticated soybean, represents a diverse germplasm pool with known SCN resistance. The objectives of this research were to: (1) determine the genetic variation and inheritance of SCN resistance in a G. max ('S08-80') x G. soja (PI464925B) F (4:5) recombinant inbred line (RIL) population; and (2) identify and evaluate quantitative trait loci (QTL) associated with SCN resistance. Transgressive segregation for resistance was observed, although neither parent was resistant to the Chatham and Ruthven SCN isolates. Broad sense heritability was 0.81 for the Ruthven and 0.91 for the Chatham isolate. Root dry weight was a significant covariate that influenced cyst counts. One RIL [female index (FI) = 5.2 +/- 1.11] was identified as resistant to the Chatham isolate (FI soja, were identified on linkage groups I, K, and O, and individually explained 8, 7 and 5% (LOD = 2.1-2.7) of the total phenotypic variation, respectively. Significant epistatic interactions were found between pairs of SSR markers that individually may or may not have been associated with SCN resistance, which explained between 10 and 15% of the total phenotypic variation. Best-fit regression models explained 21 and 31% of the total phenotypic variation in the RIL population to the Chatham and Ruthven isolates, respectively. The results of this study help to improve the understanding of the genetic control of SCN resistance in soybean caused by minor genes resulting in horizontal resistance. The incorporation of the novel resistance QTL from G. soja could increase the durability of SCN-resistance in soybean cultivars, especially if major gene resistance breaks down.

  3. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches.

    Science.gov (United States)

    Filiz, Ertugrul; Vatansever, Recep; Ozyigit, Ibrahim Ilker

    2016-03-01

    Urease (EC 3.5.1.5) is a nickel-dependent metalloenzyme catalyzing the hydrolysis of urea into ammonia and carbon dioxide. It is present in many bacteria, fungi, yeasts and plants. Most species, with few exceptions, use nickel metalloenzyme urease to hydrolyze urea, which is one of the commonly used nitrogen fertilizer in plant growth thus its enzymatic hydrolysis possesses vital importance in agricultural practices. Considering the essentiality and importance of urea and urease activity in most plants, this study aimed to comparatively investigate the ureases of two important legume species such as Glycine max (soybean) and Medicago truncatula (barrel medic) from Fabaceae family. With additional plant species, primary and secondary structures of 37 plant ureases were comparatively analyzed using various bioinformatics tools. A structure based phylogeny was constructed using predicted 3D models of G. max and M. truncatula, whose crystallographic structures are not available, along with three additional solved urease structures from Canavalia ensiformis (PDB: 4GY7), Bacillus pasteurii (PDB: 4UBP) and Klebsiella aerogenes (PDB: 1FWJ). In addition, urease structures of these species were docked with urea to analyze the binding affinities, interacting amino acids and atom distances in urease-urea complexes. Furthermore, mutable amino acids which could potentially affect the protein active site, stability and flexibility as well as overall protein stability were analyzed in urease structures of G. max and M. truncatula. Plant ureases demonstrated similar physico-chemical properties with 833-878 amino acid residues and 89.39-90.91 kDa molecular weight with mainly acidic (5.15-6.10 pI) nature. Four protein domain structures such as urease gamma, urease beta, urease alpha and amidohydro 1 characterized the plant ureases. Secondary structure of plant ureases also demonstrated conserved protein architecture, with predominantly α-helix and random coil structures. In

  4. Dietary Fibre Content in Lupine (Lupinus albus L. and Soya (Glycine max L. Seeds

    Directory of Open Access Journals (Sweden)

    Bohumila Písaříková

    2010-01-01

    Full Text Available The objective of this study was to determine the concentrations of total dietary fibre (TDF, insoluble dietary fibre (IDF and soluble dietary fibre (SDF in the samples of whole or dehulled seeds of Lupinus albus (L. and Glycine max (L., and to assess the effect of dehulling on the concentrations obtained. The results showed a higher content of TDF and IDF and a lower content of SDF in lupine seeds compared to soybeans. Lupine seed dehulling resulted in a lower content of TDF (P P P < 0.05 and decrease of IDF but no effect on TDF was reported. The proportion of IDF (90.4 vs. 96.0% and SDF (9.6 vs. 4.0% in TDF changed only slightly following lupine seed dehulling, whereas in soybeans, the proportion of IDF markedly decreased (91.8 vs. 73.0%, and SDF increased (8.2 vs. 27.0%. The effectiveness of dehulling with regard to soluble fibre was higher in soybeans compared to lupine seeds. In lupine, dehulling did not show any significant increase of nutritional value concerning the proportion of insoluble fibre in cotyledon. Due to the content of insoluble fibre in lupine seeds, their proportion in the ration of animals should be considered.

  5. Correlations between traits in soybean (Glycine max L.) naturally infected with Asian rust (Phakopsora pachyrhizi).

    Science.gov (United States)

    Rodrigues, B; Serafim, F; Nogueira, A P O; Hamawaki, O T; de Sousa, L B; Hamawaki, R L

    2015-12-22

    Soybean (Glycine max L.)-breeding programs aim to develop cultivars with high grain yields and high tolerance to Asian soybean rust (Phakopsora pachyrhizi). Considering that the traits targeted for breeding are mainly quantitative in nature, knowledge of associations between traits allows the breeder to formulate indirect selection strategies. In this study, we investigated phenotypic, genotypic, and environmental correlations between the agronomic traits of soybean plants naturally infected with P. pachyrhizi, and identified agronomic traits that would be useful in indirectly selecting soybean genotypes for high yields. The study was conducted on the Capim Branco Farm, Uberlândia, Brazil, with 15 soybean genotypes, which were cultivated in a completely randomized block design with four replications. Fourteen phenotypic traits were evaluated using the GENES software. The phenotypic and genotypic correlations were positive and of a high magnitude between the total number of pods and the number of pods with two or three grains, indicating that the total number of pods is a useful trait for the indirect selection of soybean genotypes for high grain yields. Strong environmental correlations were found between plant height at blooming and maturity and grain yield and yield components.

  6. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts. - Highlights: ► Investigated the germination rate and the sprouts length after irradiation. ► Indicated the effect of irradiation on the antioxidants of the soybean sprouts. ► Evaluated the visual and olfactory quality of irradiated samples.

  7. Major QTLs associated with green stem disorder insensitivity of soybean (Glycine max (L.) Merr.).

    Science.gov (United States)

    Yamada, Tetsuya; Shimada, Shinji; Hajika, Makita; Hirata, Kaori; Takahashi, Koji; Nagaya, Taiko; Hamaguchi, Hideo; Maekawa, Tomiya; Sayama, Takashi; Hayashi, Takeshi; Ishimoto, Masao; Tanaka, Junichi

    2014-12-01

    Green stem disorder (GSD) is one of the most serious syndromes affecting soybean (Glycine max) cultivation in Japan. In GSD, stems remain green even when pods mature. When soybean plants develop GSD, seed surfaces are soiled by tissue fluid and seed quality is deteriorated during machine harvesting. We performed quantitative trait locus (QTL) analyses for GSD insensitivity using recombinant inbred lines (RILs; n = 154) derived from a cross between an insensitive line ('Touhoku 129') and a sensitive leading cultivar ('Tachinagaha') during a 6-year evaluation. Three effective QTLs were detected. The influences of these QTLs were in the following order: qGSD1 (LG_H) > qGSD2 (LG_F) > qGSD3 (LG_L). At these three QTLs, 'Touhoku 129' genotypes exhibited more GSD insensitivity than 'Tachinagaha' genotypes. The lower incidence of GSD for 'Touhoku129' was attributable primarily to these three QTLs because RILs harboring a 'Touhoku 129' genotype at the three QTLs exhibited a GSD incidence similar to that of 'Touhoku 129.' Although a limitation of this study is that only one mapping population was evaluated, this QTL information and the flanking markers of these QTLs would be effective tools for resolving GSD in soybean breeding programs.

  8. Isoflavones profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with metabolic pathways.

    Science.gov (United States)

    Kim, Jae Kwang; Kim, Eun-Hye; Park, Inmyoung; Yu, Bo-Ra; Lim, Jung Dae; Lee, Young-Sang; Lee, Joo-Hyun; Kim, Seung-Hyun; Chung, Ill-Min

    2014-06-15

    The isoflavone diversity (44 varieties) of the soybean, Glycine max (L.) Merrill, from China, Japan, and Korea was examined by high-performance liquid chromatography. The profiles of 12 isoflavones identified from the grains were subjected to data-mining processes, including partial least-squares discriminant analysis (PLS-DA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA). Although PLS-DA did not reveal significant differences among extracts of soybean from 3 countries, the results clearly show that the variation between varieties was low. The CS02554 variety was separate from the others in the first 2 principal components of PLS-DA. HCA of these phytochemicals resulted in clusters derived from closely related biochemical pathways. Daidzin, genistin, and glycitin contents were significantly correlated with their respective malonyl glycoside contents. Daidzein content correlated positively with genistein content (r=0.8189, P<0.0001). The CS02554 variety appears to be a good candidate for future breeding programs, as it contains high levels of isoflavone compounds. These results demonstrate the use of metabolite profiling combined with chemometrics as a tool for assessing the quality of food and identifying metabolic links in biological systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparative phytochemical profiling of different soybean (Glycine max(L.) Merr) genotypes using GC-MS.

    Science.gov (United States)

    Alghamdi, Salem S; Khan, Muhammad A; El-Harty, Ehab H; Ammar, Megahed H; Farooq, Muhammad; Migdadi, Hussein M

    2018-01-01

    This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans ( Glycine max (L.) Merr) genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark) genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC-MS analysis resulted identification of 88 compounds categorized into aldehydes (5), ketones (13), alcohols (5), carboxylic acids (7), esters (13), alkanes (2), heterocyclic compounds (19), phenolic compound (9), sugar moiety (7) ether (4) and amide (3), one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1) had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.

  10. iTRAQ protein profile analysis of developmental dynamics in soybean [Glycine max (L.) Merr.] leaves.

    Science.gov (United States)

    Qin, Jun; Zhang, Jianan; Wang, Fengmin; Wang, Jinghua; Zheng, Zhi; Yin, Changcheng; Chen, Hao; Shi, Ainong; Zhang, Bo; Chen, Pengyin; Zhang, Mengchen

    2017-01-01

    Zao5241 is an elite soybean [Glycine max (L.) Merr.] line and backbone parent. In this study, we employed iTRAQ to analyze the proteomes and protein expression profiles of Zao5241 during leaf development. We identified 1,245 proteins in all experiments, of which only 45 had been previously annotated. Among overlapping proteins between three biological replicates, 598 proteins with 2 unique peptides identified were reliably quantified. The protein datasets were classified into 36 GO functional terms, and the photosynthesis term was most significantly enriched. A total of 113 proteins were defined as being differentially expressed during leaf development; 41 proteins were found to be differently expressed between two and four week old leaves, and 84 proteins were found to be differently expressed between two and six week old leaves, respectively. Cluster analysis of the data revealed dynamic proteomes. Proteins annotated as electron carrier activity were greatly enriched in the peak expression profiles, and photosynthesis proteins were negatively modulated along the whole time course. This dataset will serve as the foundation for a systems biology approach to understanding photosynthetic development.

  11. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    Science.gov (United States)

    Liu, Ruiqiang; Lal, Rattan

    2014-07-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 +/- 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  12. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max).

    Science.gov (United States)

    Tang, Xiaofei; Su, Tao; Han, Mei; Wei, Lai; Wang, Weiwei; Yu, Zhiyuan; Xue, Yongguo; Wei, Hongbin; Du, Yejie; Greiner, Steffen; Rausch, Thomas; Liu, Lijun

    2017-01-01

    Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.

  13. Effect of Drought Stress on Yield and Yield Components of Determinate Soybean (Glycine max (L Merrill

    Directory of Open Access Journals (Sweden)

    M. Abdipour

    2010-10-01

    Full Text Available The effect of drought Stress on branch and main stem yield and yield components of determinate soybean [Glycin max L. Merr], was evaluated in factorial experiment on completely randomized design with four replications at the Greenhouse of Agriculture Faculty of Shahr-e- Kord UniverSity in 2005. The experimental factors were three determinate soybean cultivars (Hutcheson, Brim and Stonewall and three drought stress levels; control; irrigate at 50% (S1; and at 25% available water (S2. Drought stress did not decrease grain yield of the main stem but decreased it in the branches severely. The highest grain yield of main stem and its contribution to total grain yield were obtained to be6.53gr, and 65.23%, for S2 and 6.21gr, 44.23% for S1 and 5.98gr, 36.04% for control treatments respectively. The highest grain yield of the branches and their contribution to total grain yield in control, S1 and S2  were obtained to be 10.61gr, 63.95%; 7.83gr, 55.76%; and 3.48gr, 34.76% respectively. Number of grains per branch was highly correlated with their grain yield , total grain yield , branch length and branch number (p

  14. EFFECTS OF ZEOLITE AND CADMIUM ON GROWTH AND CHEMICAL COMPOSITION OF SOYBEAN (Glycine max L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mahmoodabadi

    2009-04-01

    Full Text Available   There are areas in the world which are polluted by trace metals some of which may not be degraded by biotic process. Some of these metals might enter into surface and/or underground water resources thus causing serious human and animal health problems. In recent years, natural amendments, such as the use of zeolite, have been widely used to address trace metals contamination. In the present study the effect of zeolite on the growth and nodulation of soybean (Glycine max L. was evaluated. Treatments consisted on factorial combination of three levels of zeolite (0, 2 and 5 g kg-1 and three levels of cadmium (0, 10 and 50 mg kg-1. Cadmium application significantly decreased shoot and root dry weight while its concentration in plant parts was increased. In addition, cadmium application decreased number and dry weight of nodules, and N, K, and Mn concentrations. On the other hand, zeolite application markedly increased number and dry weight of nodules and N, P, K concentrations in shoot, Mn and Cu concentrations in shoot and root. The results from the present study can be used for predicting the efficiency of zeolite application for the remediation of contaminated soils.

  15. Comparative phytochemical profiling of different soybean (Glycine max (L. Merr genotypes using GC–MS

    Directory of Open Access Journals (Sweden)

    Salem S. Alghamdi

    2018-01-01

    Full Text Available This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L. Merr genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC–MS analysis resulted identification of 88 compounds categorized into aldehydes (5, ketones (13, alcohols (5, carboxylic acids (7, esters (13, alkanes (2, heterocyclic compounds (19, phenolic compound (9, sugar moiety (7 ether (4 and amide (3, one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1 had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.

  16. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.)

    Science.gov (United States)

    Zhang, Gaiyun; Chen, Ming; Chen, Xueping; Xu, Zhaoshi; Guan, Shan; Li, Lian-Cheng; Li, Aili; Guo, Jiaming; Mao, Long; Ma, Youzhi

    2008-01-01

    Members of the ERF transcription factor family play important roles in regulating gene expression in response to biotic and abiotic stresses. In soybean (Glycine max L.), however, only a few ERF genes have been studied so far. In this study, 98 unigenes that contained a complete AP2/ERF domain were identified from 63 676 unique sequences in the DFCI Soybean Gene Index database. The phylogeny, gene structures, and putative conserved motifs in soybean ERF proteins were analysed, and compared with those of Arabidopsis and rice. The members of the soybean ERF family were divided into 12 subgroups, similar to the case for Arabidopsis. AP2/ERF domains were conserved among soybean, Arabidopsis, and rice. Outside the AP2/ERF domain, many soybean-specific conserved motifs were detected. Expression analysis showed that nine unigenes belonging to six ERF family subgroups were induced by both biotic/abiotic stresses and hormone treatment, suggesting that they were involved in cross-talk between biotic and abiotic stress-responsive signalling pathways. Overexpression of two full-length genes from two different subgroups enhanced the tolerances to drought, salt stresses, and/or pathogen infection of the tobacco plants. These results will be useful for elucidating ERF gene-associated stress response signalling pathways in soybean. PMID:18832187

  17. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.

    Directory of Open Access Journals (Sweden)

    Seyed Z. Hosseini

    2016-03-01

    Full Text Available Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.. The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1 were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1 also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1.

  18. Physicochemical characteristics and functional properties of vitabosa (mucuna deeringiana and soybean (glycine max

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Chaparro Acuña

    2012-03-01

    Full Text Available Physicochemical characteristics and functional properties of vitabosa flour (Mucuna deeringiana and soybean flour (Glycine max were determined. Oil absorption capacity was higher in vitabosa. Water absorption capacity was higher in soy and it was affected by the change in the ionic strength of the medium. Emulsifying Activity (EA decreased with increasing concentration of flour, while Emulsifying Stability (ES showed an increased. EA and ES of flours have more ionic strength in the range between 0.0 and 0.4 M, but it is reduced afterwards with the higher concentration of NaCl. Foaming stability varied with the concentration of flour solution reaching maximum values of 39 and 33% for vitabosa and soybean, respectively at 10% flour concentration.Vitabosa had the best foaming capacity (56% to 0.6 M compared with soybeans (47% to 0.4 M. Maximum capacity of gelation was observed in vitabosa at 10% flour concentration. Increases in ionic strength of the flour solution, at low salt concentrations (<0.4 M, improved the gelation of flours.

  19. Germination and early growth response of glycine max varieties in textile and paper industry effluents

    International Nuclear Information System (INIS)

    Yousaf, I.; Ali, S.M.; Yasmin, A.

    2010-01-01

    Present investigation was carried out to assay the effects of industrial effluents on different varieties of soybean. For that purpose Textile effluent and Paper and Board effluent were chosen. Concentrations used for both the effluents were 0, 10, 20, 40 and 60%. On the other hand 5 varieties of Glycine max viz., PSC-82, NARC-2, NARC-5, NARC-7 and William-82 were used. Physicochemical characteristics of these effluents revealed that both of them contained high amounts of sulphates, nitrates, calcium, various heavy metals etc., while DO was very low, which confirms their highly polluted conditions. Maximum improvement in seedling length was found in 60% of textile effluent (NARC-2, NARC-7 and Williams-82), and in paper and board effluent (NARC-2, NARC-5 and NARC-7). For others varieties, lower concentrations enhanced the growth. Number of leaves was unaffected and remained same in all concentrations of the two effluents. Overall seedling lengths of PSC-62, NARC-2 and NARC-5 were comparatively longer in paper and board effluent as compared to textile effluent but it was other way round for the varieties NARC-7 and Williams-82, while there was no set pattern for the weight parameters. (author)

  20. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1 from Glycine max

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2014-03-01

    Full Text Available Brassinosteroids (BRs constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean.

  1. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  2. Pharmaceutical Wastewater Effluent-Source of Contaminants of Emerging Concern: Phytotoxicity of Metronidazole to Soybean (Glycine max).

    Science.gov (United States)

    Yakubu, Okhumode H

    2017-04-02

    Industrial discharge of active pharmaceutical ingredients (APIs) into the environment in some middle- and low-income countries is not sufficiently regulated. The phytotoxicity of metronidazole (FLAGYL)-one of the most commonly used over the counter (OTC) antibiotics, to soybean ( Glycine max ) is investigated. Relative growth rate (RGR) expressed in gram per gram per day (gg -1 d -1 ) was applied to plants destructively harvested at maturity (42 d), to determine the toxicological impact. Differences between mean RGR of the three groups were performed at 0.05 significance level. Multiple comparisons suggest that there was a statistical significant difference among mean RGR for all treatment groups. Metronidazole is toxic to soybean plants ( Glycine max ) based on dose-response criterion. There is a need to enforce treatment of pharmaceutical wastewater effluent by Pharmaceutical Manufacturing Companies (PMCs) before discharge into the environment.

  3. Effect of fungicides and bioagents on number of microorganisms in soil and yield of soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    GAURAV MISHRA

    2014-07-01

    Full Text Available Mishra G, Kumar N, Giri K, Pandey S, Kumar R. 2014. Effect of fungicides and bioagents on number of microorganisms in soil and yield of soybean (Glycine max. Nusantara Bioscience 6: 45-48. In field experiments, the effect of selected fungicides and bioagents on number of soil microorganisms and yield of soybean (Glycine max L. Merill was investigated. The results showed that some of the crop protections preparations applied in the experiment (as seed dressing increased the populations of the examined microorganisms after the harvest of crops. Maximum counts of bacteria were recorded with Thiomethaxam at 3 g kg-1 while Pseudomonas at 3 g kg-1 showed the highest population of fungi, Actinomycetes, B. japonicum, PSB and Pseudomonas. The highest straw and grain yields of 3241.6 and 1439.4 kg ha-1, respectively, were recorded with Pseudomonas at 3 g kg-1.

  4. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm

    OpenAIRE

    Zhang, Jiaoping; Song, Qijian; Cregan, Perry B; Nelson, Randall L; Wang, Xianzhi; Wu, Jixiang; Jiang, Guo-Liang

    2015-01-01

    Background Soybean (Glycine max) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. ...

  5. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max)

    OpenAIRE

    Zhang, Jiaoping; Song, Qijian; Cregan, Perry B.; Jiang, Guo-Liang

    2015-01-01

    Key message Twenty-two loci for soybean SW and candidate genes conditioning seed development were identified; and prediction accuracies of GS and MAS were estimated through cross-validation and validation with unrelated populations. Abstract Soybean (Glycine max) is a major crop for plant protein and oil production, and seed weight (SW) is important for yield and quality in food/vegetable uses of soybean. However, our knowledge of genes controlling SW remains limited. To better understand the...

  6. Pengaruh Pemberian Antioksidan Terhadap Pertumbuhan dan ProduksiTanaman Kedelai (Glycine max (L.) Merill) F3 Tahan Salin

    OpenAIRE

    Sinaga, Radinal Arief

    2017-01-01

    120301107 RADINAL ARIEF SINAGA: Pengaruh Pemberian Antioksidan terhadap Pertumbuhan dan Produksi Kedelai (Glycine max(L.) Merril) F3 Tahan Salin.Dibimbing olehLISA MAWARNI danNINI RAHMAWATI. Produksi kedelai yang semakin menurun tidak dapat memenuhi kebutuhan kedelai di Indonesia, salah satu penyebab utamanya yaitu semakin sempitnya lahan pertanian. Untuk meningkatkan produksi kedelai di Indonesia dapat ditempuh dengan cara perluasan areal tanam, yaitu dengan memanfaatkan tanah yang ber...

  7. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  8. Neuroprotective effects of triterpene glycosides from glycine max against glutamate induced toxicity in primary cultured rat cortical cells.

    Science.gov (United States)

    Moon, Hyung-In; Lee, Jai-Heon

    2012-01-01

    To examine the neuroprotective effects of Glycine max, we tested its protection against the glutamate-induced toxicity in primary cortical cultured neurons. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. From such fractionation, two triterpene glycosides, 3-O-[α-l-rhamnopyranosyl(1-2)-β-d-glucopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (1) and 3-O-[β-d-glucopyranosyl(1-2)-β-d-galactopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (2) were isolated with the methanol extracts with of air-dried Glycine max. Among these compounds, compound 2 exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50% at concentrations ranging from 0.1 μM to 10 μM. Therefore, the neuroprotective effect of Glycine max might be due to the inhibition of glutamate-induced toxicity by triterpene glycosides.

  9. Identification and colonization of endophytic fungi from soybean (Glycine max (L. Merril under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Ida Chapaval Pimentel

    2006-09-01

    Full Text Available A total of 297 endophytic fungi were isolated from 1728 leaf and stem fragments collected about twenty and forty days after germination from soybean (Glycine max (L. Merril plants grown in the field and a greenhouse. The fungi belonged to eight groups, six dematiaceous genera (Alternaria, Cladosporium, Chaetomium, Curvularia, Drechslera and Scopulariopsis and the non-dematiaceous genera Acremonium, Aspergillus, Colletotrichum, Fusarium, Paecilomyces and Penicillium along with some Mycelia sterilia.. There were qualitative and quantitative differences in the type and number of isolates obtained from greenhouse and field-grown plants, with more isolates being obtained from the latter. No difference was found in the number of fungi isolated from leaves and stems irrespective of where the plants was grown. For was field-grown plants, the number of isolates decreased as the plants aged and more fungi were found in tissues near the soil, while for greenhouse-grown plants the number of isolates increased as the plants aged but in this case no more fungi were isolated from those tissues nearer the soil. These results could have biotechnological relevance for the biological control of pests or plant growth promotion.A partir de 1728 fragmentos de hastes e folhas de soja (Glycine max (L. Merril. provenientes de plantas do campo e de casa de vegetação, coletadas cerca de 20 e 40 dias após a germinação das sementes, 297 fungos endofíticos foram isolados. Os gêneros encontrados foram: Alternaria, Cladosporium, Curvularia, Chaetomium, Scopulariopsis, Drechslera (todos dematiáceos além de Colletotrichum, Fusarium, Acremonium, Aspergillus, Penicillium, Paecilomyces e Mycelia sterilia. Foram detectadas diferenças qualitativas e quantitativas entre os isolados, em relação a micobiota de hospedeiros provenientes do campo e de casa de vegetação com maior frequência de fungos isolados de plantas no campo em comparação com as de casa de vegeta

  10. KARAKTER FENOTIP KEDELAI (Glycine max (L. Merr. HASIL POLIPLOIDISASI DENGAN KOLKISIN

    Directory of Open Access Journals (Sweden)

    Irma Nofitahesti

    2016-12-01

    Full Text Available Abstract - Soybean (Glycine max (L. Merr is one of the most important food commodity to fulfill the protein necessity in Indonesia. Although Indonesia has many prime soybean seeds, it cannot fulfill the whole need of soybean and always rely on soybean import. This problem can be solved by increasing the quality and productivity of prime soybean seed by polyploidization with colchicine. This research aimed to study ploidy level and phenotype characters of Anjasmoro soybean which was induced by colchicine. The phenotype characters in this research were stomata size, plant height, total pod in one plant, total seed in one plant, weight of 100 seeds, flowering time, and ripening time of soybean. The ploidy level was analyzed with flow cytometry methode. The data was analyzed with one way ANOVA and Duncan test in SPSS 22 program. The result of this research showed that Anjasmoro soybean did not successfully induced by colchicine using concentration 0.01%, 0.02%, 0.025%, 0.05%, 0.075%, 0.1%, 0.15%, 0.2%, and 0.25% with duration of treatment 6, 8, 10, 12, 16, 18, and 24 hours. The treatment with colchicine concentration 0.01% and 0.02% with duration of treatment 10 hours effected the increasing of stomata size, the plant height, and the weight of 100 seeds.Key words : Soybean, polyploidization, colchicine, phenotypeAbstrak - Kedelai (Glycine max (L. Merr merupakan salah satu komoditas pangan penting sebagai sumber protein nabati yang kebutuhannya selalu mengalami peningkatan di Indonesia. Meskipun saat ini Indonesia memiliki banyak varietas kedelai unggul, namun Indonesia masih belum mampu mencukupi kebutuhan kedelai nasional sehingga terus bergantung pada impor kedelai. Permasalahan ini dapat diatasi dengan meningkatkan kualitas dan produktivitas varietas kedelai unggul yang sudah ada melalui teknik poliploidisasi dengan kolkisin. Penelitian ini bertujuan untuk mengetahui derajat ploidi dan karakter fenotip pada kedelai Anjasmoro yang diinduksi dengan

  11. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes

    OpenAIRE

    Kovinich, Nik; Saleem, Ammar; Arnason, John T; Miki, Brian

    2011-01-01

    Abstract Background The R locus controls the color of pigmented soybean (Glycine max) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (iRT) and brown (irT) soybean (Glycine max) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identifie...

  12. Supraoptimal carbon dioxide effects on growth of soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Siegriest, L. M.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1993-01-01

    In tightly closed environments used for human life support in space, carbon dioxide (CO2) partial pressures can reach 500 to 1000 Pa, which may be supraoptimal or toxic to plants used for life support. To study this, soybeans [Glycine max (L.) Merr. cvs. McCall and Pixie] were grown for 90 days at 50, 100, 200, and 500 Pa partial pressure CO2 (500, 1000, 2000, and 5000 ppm). Plants were grown using recirculating nutrient film technique with a 12-h photoperiod, a 26 degrees C/20 degrees C thermoperiod, and approximately 300 micromoles m-2 s-1 photosynthetic photon flux (PPF). Seed yield and total biomass were greatest at 100 Pa for cv. McCall, suggesting that higher CO2 levels were supraoptimal. Seed yield and total biomass for cv. Pixie showed little difference between CO2 treatments. Average stomatal conductance of upper canopy leaves at 50 Pa CO2 approximately 500 Pa > 200 Pa > 100 Pa. Total water use over 90 d for both cultivars (combined on one recirculating system) equalled 822 kg water for 100 Pa CO2, 845 kg for 50 Pa, 879 kg for 200 Pa, and 1194 kg for 500 Pa. Water use efficiences for both cultivars combined equalled 3.03 (g biomass kg-1 water) for 100 Pa CO2, 2.54 g kg-1 for 200 Pa, 2.42 g kg-1 for 50 Pa, and 1.91 g kg-1 for 500 Pa. The increased stomatal conductance and stand water use at the highest CO2 level (500 Pa) were unexpected and pose interesting considerations for managing plants in a tightly closed system where CO2 concentrations may reach high levels.

  13. Differentiation of nodules of Glycine max : Ultrastructural studies of plant cells and bacteroids.

    Science.gov (United States)

    Werner, D; Mörschel, E

    1978-01-01

    Plants of Glycine max var. Caloria, infected as 14 d old seedlings with a defined titre of Rhizobium japonicum 3Il b85 in a 10 min inoculation test, develop a sharp maximum of nitrogenase activity between 17 and 25 d after infection. This maximum (14±3 nmol C2H4 h(-1) mg nodule fresh weight(-1)), expressed as per mg nodule or per plant is followed by a 15 d period of reduced nitrogen fixation (20-30% of peak activity). 11 d after infection the first bacteroids develop as single cells inside infection vacuoles in the plant cells, close to the cell wall and infection threads. As a cytological marker for peak multiplication of bacteroids and for peak N2-fixation a few days later the association of a special type of nodule mitochondria with amyloplasts is described. 20 d after inoculation, more than 80% of the volume of infected plant cells is occupied by infection vacuoles, mostly containing only one bacteroid. The storage of poly-β-hydroxybutyrate starts to accumulate at both ends of the bacteroids. Non infected plant cells are squeezed between infected cells (25d), with infection vacuoles containing now more than two (up to five) bacteroids per section. Bacteroid development including a membrane envelope is also observed in the intercellular space between plant cells. 35 d after infection, more than 50% of the bacteroid volume is occupied by poly-β-hydroxybutyrate. The ultrastructural differentiation is discussed in relation to some enzymatic data in bacteroids and plant cell cytoplasm during nodule development.

  14. Biochemical Responses of Two Soybean (Glycine max Varieties to Aluminum Stress in Nutrient Solution

    Directory of Open Access Journals (Sweden)

    Nafiseh Davarpanah Moghadam

    2016-09-01

    Full Text Available Aluminum toxicity is the most widespread form of metal toxicity to plants in soil acids, initially causing inhibition of root elongation and blocks absorption of water and nutrients. According to this fact that soybean has been widely used in industry, this study investigated the effects of aluminum toxicity on biochemical factors in two varieties of Williams and Katoul of soybean plant. The study was carried out in a randomized design with aluminium (0, 200, 500, 700 µM treatments and four replications in hydroponic culture. Results of biochemical tests showed that aluminum reduced the content of photosynthetic pigments, flavonoids, phenolic compounds, anthocyanins and reduced sugars in both cultivars of soybean. The proline content decreased with increasing aluminum in var. williams, but at var. katoul increased. It seems that G. max var. katoul suffers less than var. Williams. As regards, proline accumulation under Al stress to be generally higher in G. max var. katoul; hence, these results suggest that var. katoul is more resistant than var. Williams.

  15. QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja).

    Science.gov (United States)

    Oki, Nobuhiko; Kaga, Akito; Shimizu, Takehiko; Takahashi, Masakazu; Kono, Yuhi; Takahashi, Motoki

    2017-01-01

    The common cutworm (CCW; Spodoptera litura Fabricius) is a serious herbivorous insect pest of soybean (Glycine max) in Asia and Oceania. Previously, we identified quantitative trait loci (QTLs) for CCW-antibiosis-resistance, CCW-1 and CCW-2, and antixenosis-resistance, qRslx1 and qRslx2, in the cultivar 'Himeshirazu'. The effects of these QTLs are useful in the breeding of CCW-resistant cultivars. In this study, we conducted an antixenosis bioassay on CCW using recombinant inbred lines derived from a cross between a wild soybean (Glycine soja) and the leading cultivar 'Fukuyutaka' to identify CCW-resistance genes in G. soja. The QTL analysis revealed six and four novel antixenosis-resistance QTLs in 2012 and 2013, respectively. Among them, the QTLs on chromosomes 2 and 7, designated qRslx4 and qRslx3, respectively, were stably detected in both years. qRslx3 exhibited the largest effect in both years, suggesting that qRslx3 can be exploited in the breeding of CCW-resistant soybean. Furthermore, qRslx3 and qRslx4 can be used, along with previously reported QTLs from 'Himeshirazu', to enhance the CCW-resistance of soybean cultivars because their chromosomal positions are unique. These new CCW-resistance QTLs from G. soja should play important roles in the breeding of CCW-resistant soybean cultivars.

  16. Deteksi senyawa isoflavon daidzein dan genistein pada kultur invitro kalus kedelai Glycine max Merr

    Directory of Open Access Journals (Sweden)

    Tintrim Rahayu

    2013-10-01

    Full Text Available The aim of this research is to identify the isofl avon compounds in the in-vitro cultured callus of soybean (Glycine max Merr.. This is an explorative research, in which callus were cultured in the B5 medium supplemented with 2 ppm 2,4 D. The friable callus were found when it was cultured in the solid medium containing 8 g/l agar and 20 g/l sucrose. When the callus and soybean were extracted with ethanol, a yellow colored substance appeared. If further analysis was done with thin layer chromatography (TLC method employing 0,2 mm thin layer silica gel 60 F254 (DC-Plastikfolien Schicht-dicke, and eluent consisting n-Butanol - HCL 0.1 N (1:1, six light blue color nodes appeared under 366 nm UV light. The nodes have the following Rf: 0,14; 0,30; 0,52; 0,63; 0,79 and 0,92 respectively. This TLC result is comparable with the TLC result from soybeans since they have two nodes with the same Rf and color, namely blue color at Rf 0,81 and 0,92 respectively. Further confi rmation using HPLC (High Performance Liquid Chromatography equipped with UVvis detector and Lichrospher 100RP–18, (10 μm colom, as well as Hitachi D–2500 Chromato-integrator indicated that those similar two nodes identifi ed in the TLC were either daidzein or genistein. They can be detected by HPLC at 250 nm and 260 nm, when they were eluated at the 80% metanol. The HPLC quantitative calculation indicated that concentration of daidzein is four time higher as it was compared with the daidzein concentration in the bean. The concentration of daidzein in the callus remained high up to 4–5 weeks after plantation. It’s concentration will decrease when the callus reached 6 weeks after plantation. Genistein as another component of isofl avon is not appear upon callus, while on soybean seeds extracts, both daidzen and genistein are detected.

  17. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress.

    Science.gov (United States)

    Luo, Qingyun; Yu, Bingjun; Liu, Youliang

    2005-09-01

    High Na+ and Cl- concentrations in soil cause hyperionic and hyperosmotic stress effects, the consequence of which can be plant demise. Ion-specific stress effects of Na+ and Cl- on seedlings of cultivated (Glycine max (L.) Merr) and wild soybean (Glycine soja Sieb. Et Zucc.) were evaluated and compared in isoosmotic solutions of Cl-, Na+ and NaCl. Results showed that under NaCl stress, Cl- was more toxic than Na+ to seedlings of G. max. Injury of six G. max cultivars, including 'Jackson' (salt sensitive) and 'Lee 68' (salt tolerant), was positively correlated with the content of Cl- in the leaves, and negatively with that in the roots. In subsequent research, seedlings of two G. max cultivars (salt-tolerant Nannong 1138-2, and salt-sensitive Zhongzihuangdou-yi) and two G. soja populations (BB52 and N23232) were subjected to isoosmotic solutions of 150mM Na+, Cl- and NaCl, respectively. G. max cv. Nannong 1138-2 and Zhongzihuangdou-yi were damaged much more heavily in the solution of Cl- than in that of Na+. Their Leaves were found to be more sensitive to Cl- than to Na+, and salt tolerance of these two G. max cultivars was mainly due to successful withholding of Cl- in the roots and stems to decrease its content in the leaves. The reverse response to isoosmotic stress of 150 mM Na+ and Cl- was shown in G. soja populations of BB52 and N23232; their leaves were not as susceptible to toxicity of Cl- as that of Na+. Salt tolerance of BB52 and N23232 was mainly due to successful withholding of Na+ in the roots and stems to decrease its content in the leaves. These results indicate that G. soja have advantages over G. max in those traits associated with the mechanism of Cl-tolerance, such as its withholding in roots and vacuoles of leaves. It is possible to use G. soja to improve the salt tolerance of G. max.

  18. Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merril

    Directory of Open Access Journals (Sweden)

    Wainer César Chiari

    2005-05-01

    Full Text Available This research was carried out to evaluate the pollination by Africanized honeybees Apis mellifera, the floral biology and to observe the hoarding behavior in the soybean flowers (Glycine max Merril, var. BRS-133. The treatments were constituted of demarcated areas for free visitation of insects, covered areas by cages with a honeybee colony (A. mellifera and also covered areas by cage without insects visitation. All areas had 24 m² (4m x 6m. The soybean flowers stayed open for a larger time (82.82 ± 3.48 hours in covered area without honeybees. The stigma of the flowers was also more receptive (P=0.0021 in covered area without honeybees (87.3 ± 33.0% and at 10:42 o'clock was the schedule of greater receptivity. The pollen stayed viable in all treatments, the average was 99.60 ± 0.02%, which did not present differences among treatments. The percentage of abortion of the flowers was 82.91% in covered area without honeybees, this result was superior (P=0.0002 to the 52.66% and 53.95% of the treatments uncovered and covered with honeybees, respectively. Honeybees were responsible for 87.7% of the pollination accomplished by the insects. The medium amounts of total sugar and glucose measured in the nectar of the flowers were, 14.33 ± 0.96 mg/flower and 3.61 ± 0.36 mg/ flower, respectively, not showing differences (PEste experimento teve como objetivos avaliar a polinização realizada por abelhas Apis mellifera, estudar a biologia floral e observar o comportamento de coleta nas flores de soja (Glycine max L. Merril, variedade BRS-133 plantadas na região de Maringá-PR. Os tratamentos constituíram de áreas demarcadas de livre visitação por insetos, áreas cobertas por gaiolas, com uma colônia de abelhas (A. mellifera no seu interior e plantas também cobertas por gaiola que impedia a visitação por insetos. Todas as áreas possuíam 24 m² (4 m x 6 m. As flores de soja permaneceram abertas por um tempo maior (82,82 ± 3,48 horas no

  19. Characterization of an Acidic Chitinase from Seeds of Black Soybean (Glycine max (L) Merr Tainan No. 3)

    OpenAIRE

    Chang, Ya-Min; Chen, Li-Chun; Wang, Hsin-Yi; Chiang, Chui-Liang; Chang, Chen-Tien; Chung, Yun-Chin

    2014-01-01

    Using 4-methylumbelliferyl-β-D-N,N′,N″-triacetylchitotrioside (4-MU-GlcNAc3) as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3) by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain leng...

  20. Pseudomonas Aeruginosa: Resistance to the Max

    Science.gov (United States)

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  1. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    Science.gov (United States)

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Antiulcer activity of water soaked Glycine max L. grains in aspirin induced model of gastric ulcer in Wistar rats.

    Science.gov (United States)

    Kumar, Dushyant; Hegde, H V; Patil, P A; Roy, Subarna; Kholkute, S D

    2013-07-01

    Glycine max L. with Drakshasava, widely used by traditional healers as a formulation for the treatment of peptic ulcer in rural northern Karnataka in India, appears to be effective as assessed by patients and in our previously published research work of traditionally used formulation. The present study was undertaken to evaluate the safety and efficacy of the overnight water soaked G. max grains. This is one of the components of traditional formulation. The study, approved by Institutional Animal Ethics Committee was carried out in male Wistar rats after assessing its toxicity in mice. Four groups of rats (n = 6 in each group) were treated with aspirin 200 mg/kg oral. In addition to aspirin control group received normal saline, standard group received 20 mg/kg omeprazole and 3(rd) and 4(th) group received G. max 250 and 500 mg/kg, respectively. All treatments were administered orally every 24 h for 7 days. After 24 hours fasting, on the 8(th) day stomach contents were aspirated under anesthesia to estimate free and total acidity. Stomachs were opened along the greater curvature to calculate ulcer index and subjected to histopathology studies. The results were analyzed by one-way analysis of variance followed-by Dunnett's post hoc test. P ≤0.05 was considered as significant. The severity of aspirin induced ulceration was found significantly (P max was found to be effective against aspirin induced ulcers.

  3. Salt and cadmium stress tolerance caused by overexpression of the Glycine Max Na+/H+ Antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511).

    Science.gov (United States)

    Yang, Lin; Han, Yujie; Wu, Di; Yong, Wang; Liu, Miaomiao; Wang, Sutong; Liu, Wenxin; Lu, Meiyi; Wei, Ying; Sun, Jinsheng

    2017-11-01

    Cadmium (Cd) pollution has aroused increasing attention due to its toxicity. It has been proved that Na + /H + Antiporter (NHX1) encodes a well-documented protein in Na + /H + trafficking, which leads to salt tolerance. This study showed that Glycine max Na + /H + Antiporter (GmNHX1) improved short-term cadmium and salt resistance in Lemna turionifera 5511. Expression of GmNHX1 prevented root from abscission and cell membrane damage, which also can enhance antioxidant system, inhibited of reactive oxygen species (ROS) accumulation and cause a less absorption of Cd under cadmium and salt stress. The cadmium tolerance suggested that NHX1 was involved under the cadmium stress. Copyright © 2017. Published by Elsevier B.V.

  4. Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. et Zucc.) under field conditions in Japan.

    Science.gov (United States)

    Mizuguti, Aki; Ohigashi, Kentaro; Yoshimura, Yasuyuki; Kaga, Akito; Kuroda, Yosuke; Matsuo, Kazuhito

    2010-01-01

    Accumulation of information about natural hybridization between GM soybean (Glycine max) and wild soybean (Glycine soja) is required for risk assessment evaluation and to establish biosafety regulations in Japan. This is particularly important in areas where wild relatives of cultivated soybean are grown (i.e. East Asia including Japan). To collect information on temporal and spatial factors affecting variation in hybridization between wild and GM soybean, a two year hybridization experiment was established that included one wild soybean and five GM soybean cultivars with different maturity dates. Hybridization frequencies ranged from 0 to 0.097%. The maximum hybridization frequency (0.097%) was obtained from wild soybean crossed with GM soybean cv. AG6702RR, which were adjacently cultivated with wild soybean, with 25 hybrids out of 25 741 seedlings tested. Cultivar AG6702RR had the most synchronous flowering period with wild soybean. Ten hybrids out of 25 741 were produced by crossing with cv. AG5905RR, which had the second most synchronous flowering period with wild soybean. Most hybrids were found where GM and wild soybeans were adjacently cultivated, whereas only one hybrid was detected from wild soybean plants at 2 m, 4 m and 6 m from a pollen source (GM soybean). Differences in flowering phenology, isolation distance and presence of buffer plants accounted for half of the variation in hybridization frequency in this study. Temporal and spatial isolation will be effective strategies to minimize hybridization between GM and wild soybean. © ISBR, EDP Sciences.

  5. FT-IR Method for the Quantification of Isoflavonol Glycosides in Nutritional Supplements of Soy (Glycine max (L.) MERR.).

    Science.gov (United States)

    Mulsow, Katharina; Eidenschink, Juliane; Melzig, Matthias F

    2015-01-01

    Due to increasing health consciousness, a lot of food supplements are sold and used. Dietary supplements of Glycine max (L.) MERR. are used as an alternative treatment for menopausal complaints such as hot flashes. Thereby, the effective soy compounds are the isoflavones daidzin, genistin, and glycitin. However, only the total soy extract content of the nutritional supplements is indicated. The aim of this study is to introduce a fast, efficient, and economic Fourier transformation infrared (FT-IR) spectroscopy method to quantify the active ingredients in the complex matrix of soy-based supplements. Five different nutritional supplements of Glycine max (L.) MERR. were purchased from a German pharmacy and were extracted with 80% aqueous methanol. A high-performance liquid chromatography (HPLC) method was used for the separation. The samples were concentrated and measured with infrared spectroscopy. An FT-IR method was established to quantify the active ingredients in the complex matrix of soy-based nutritional supplements. The partial least-squares algorithm was used to develop the method, which enabled the estimation of the content of particular isoflavones (daidzin R(2) = 0.86, glycitin R(2) = 0.94, genistin R(2) = 0.96) and the quantification of the total isoflavone content (R(2) = 0.92) despite peak overlap in the infrared (IR) spectra. The method for the quantification of the isoflavonol glycosides is precise with the standard error of prediction being 13.54%.

  6. [Endophytic bacterial diversity of wild soybean (Glycine soja) varieties with different resistance to soybean cyst nematode (Heterodera glycines)].

    Science.gov (United States)

    Wu, Yunpeng; Shi, Fengyu; Hamid, M Imran; Zhu, Yingbo

    2014-08-04

    The aim of this study was to investigate endophytic bacterial diversity of wild soybean varieties with different resistance to soybean cyst nematode(Heterodera glycines) , for deciphering the interactions of soybean cyst nematode with endophytic bacteria. After screening wild soybean varieties against race 3 of H. glycines, we investigated endophytic bacterial diversity in root tissues of wild soybean varieties with different resistance to H. glycines using 16S rDNA cloning library and amplified ribosomal DNA restriction analysis. Endophytic bacteria of wild soybean root belonged to 6 bacterial groups, the clones belonging to group Proteobacteria and Firmicutes were the endophyte dominants in wild soybean with 46.8% and 13.6% of total clones, respectively. Actinobacteria, Bacteroidetes, Acidobacteria, Deincoccus-Thermus and Archaea were less represented. 18.8% of clone sequences were similar to those of uncultured bacteria in the environment. The bacterial diversity was higher in H. glycines-Resistant than -Susceptible wild soybean varieties, and the dominant group was different between H. glycines-Resistant and -Susceptible wild soybean varieties. Mesorhizobium tamadayense, Enterobacter ludwigii and Bacillus megaterium were the main bacterial groups in special operational taxonomic units (OTUs) of H. glycines-Resistant wild soybean variety. By 16S rDNA cloning library and amplified ribosomal DNA restriction analysis, the diversity of dominant group of endophytic bacteria in root tissues has difference among H. glycines-Resistant and -Susceptible wild soybean varieties.

  7. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja)

    Science.gov (United States)

    Zhang, Hengyou; Li, Chunying; Davis, Eric L.; Wang, Jinshe; Griffin, Joshua D.; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction. PMID:27582748

  8. Impact of Ag nanoparticle exposure on p,p'-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean).

    Science.gov (United States)

    De La Torre-Roche, Roberto; Hawthorne, Joseph; Musante, Craig; Xing, Baoshan; Newman, Lee A; Ma, Xingmao; White, Jason C

    2013-01-15

    The effect of nanoparticle (NP), bulk, or ionic Ag exposure on dichlorodiphenyldichloroethylene (p,p'-DDE; DDT metabolite) accumulation by Glycine max L. (soybean) and Cucurbita pepo L. (zucchini) was investigated. The plants were grown in 125-mL jars of vermiculite amended with 500 or 2000 mg/L of bulk or NP Ag; ion controls at 5 and 20 mg/L were established. During 19 d of growth, plants were amended with solution containing 100 ng/mL of p,p'-DDE. Total shoot p,p'-DDE levels in non-Ag exposed G. max and C. pepo were 500 and 970 ng, respectively; total root DDE content was 13,700 and 20,300 ng, respectively. Ag decreased the p,p'-DDE content of G. max tissues by up to 40%, with NP exposure resulting in less contaminant uptake than bulk Ag. Total Ag content of exposed G. max ranged from 50.5 to 373 μg; NP-exposed plants had 1.9-2.2 times greater overall Ag than corresponding bulk particle treatments and also significantly greater relative Ag transport to shoot tissues. Bulk and NP Ag at 500 mg/L suppressed DDE uptake by C. pepo by 21-29%, although Ag exposure at 2000 mg/L had no impact on contaminant uptake. Similar to G. max , C. pepo whole plant Ag content ranged from 50.5 to 182 μg, with tissue element content generally being greater for NP exposed plants. These findings show that the Ag may significantly alter the accumulation and translocation of cocontaminants in agricultural systems. Notably, the cocontaminant interactions vary both with Ag particle size (NP vs bulk) and plant species. Future investigations will be needed to clarify the mechanisms responsible for the cocontaminant interactions and assess the impact on overall exposure and risk.

  9. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    With the advent of the use of precise ion accelerators for medical purposes, it becomes ever more important to understand the interaction of biomolecules with fast ions.  Glycine is both a protein component and a model biomolecule, and is thus an important test system.    In this report, we discu...

  10. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  11. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  12. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  13. Gel-based and gel-free proteome data associated with controlled deterioration treatment of Glycine max seeds

    Directory of Open Access Journals (Sweden)

    Cheol Woo Min

    2017-12-01

    Full Text Available Data presented here are associated with the article: “In-depth proteomic analysis of soybean (Glycine max seeds during controlled deterioration treatment (CDT reveals a shift in seed metabolism” (Min et al., 2017 [1]. Seed deterioration is one of the major problems, affecting the seed quality, viability, and vigor in a negative manner. Here, we display the gel-based and gel-free proteomic data, associated with the CDT in soybean seeds. The present data was obtained from 2-DE, shotgun proteomic analysis (label-free quantitative proteomic analysis using Q-Exactive, and gene ontology analysis associated with CDT in soybean seeds (Min et al., 2017 [1].

  14. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    Science.gov (United States)

    The effects of cotton (Gossypium hirsutum L.):soybean [Glycine max (L.) Merr.] rotations on the soil fertility levels are limited. An irrigated soybean:cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, MS. Rotation sequences were; continuous soybean, continuous cotton...

  15. Effect of N fertilizer top-dressing at various reproductive stages on growth, N-2 fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes

    NARCIS (Netherlands)

    Gan, YB; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2003-01-01

    Soybean (Glycine max (L.) Merr.) is one of the most important food and cash crops in China and a key protein source for the farmers in northern China. Previous experiments in both the field and greenhouse have shown that N-2 fixation alone cannot meet the N requirement for maximizing soybean yield,

  16. High-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr

    Science.gov (United States)

    Bradyrhizobium elkanii USDA 76T (INSCD = ARAG00000000), the type strain for Bradyrhizobium elkanii, is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Glycine max (L. Merr) grown in the USA. Because of its significance as a ...

  17. Confidence interval estimation for an empirical model quantifying the effect of soil moisture and plant development on soybean (Glycine max (L.) Merr.) leaf conductance

    Science.gov (United States)

    In this work, we address uncertainty analysis for a model, presented in a companion paper, quantifying the effect of soil moisture and plant development on soybean (Glycine max (L.) Merr.) leaf conductance. To achieve this we present several methods for confidence interval estimation. Estimation ...

  18. Effect of N fertilizer top-dressing at various reproductive stages on growth, N2 fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes

    NARCIS (Netherlands)

    Gan, Y.B.; Stulen, I.; Kuiper, P.J.C.; Keulen, van H.

    2003-01-01

    Soybean (Glycine max (L.) Merr.) is one of the most important food and cash crops in China and a key protein source for the farmers in northern China. Previous experiments in both the field and greenhouse have shown that N2 fixation alone cannot meet the N requirement for maximizing soybean yield,

  19. Genome analysis methods: Glycine max [PGDBj Registered plant list, Marker list, QTL list, Plant DB link and Genome analysis methods[Archive

    Lifescience Database Archive (English)

    Full Text Available Glycine max Finished 2n=40 1,115 Mb 2010 Sanger (WGS) 7.53 Gb 937.32 Mb 8.04x Arac... from Arabidopsis, rice and grapevine 46,430 SoyBase; http://soybase.org Gm1.01 Gm1.01 10.1038/nature08670 20075913 ...

  20. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    Science.gov (United States)

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  1. A bacterial gene codA encoding cytosine deaminase is an effective conditional negative selectable marker in Glycine max.

    Science.gov (United States)

    Shao, Min; Michno, Jean-Michel; Hotton, Sara K; Blechl, Ann; Thomson, James

    2015-10-01

    Research describes the practical application of the codA negative selection marker in Soybean. Conditions are given for codA selection at both the shooting and rooting stages of regeneration. Conditional negative selection is a powerful technique whereby the absence of a gene product allows survival in otherwise lethal conditions. In plants, the Escherichia coli gene codA has been employed as a negative selection marker. Our research demonstrates that codA can be used as a negative selection marker in soybean, Glycine max. Like most plants, soybean does not contain cytosine deaminase activity and we show here that wild-type seedlings are not affected by inclusion of 5-FC in growth media. In contrast, transgenic G. max plants expressing codA and grown in the presence of more than 200 μg/mL 5-FC exhibit reductions in hypocotyl and taproot lengths, and severe suppression of lateral root development. We also demonstrate a novel negative selection-rooting assay in which codA-expressing aerial tissues or shoot cuttings are inhibited for root formation in media containing 5-FC. Taken together these techniques allow screening during either the regeneration or rooting phase of tissue culture.

  2. GmMYB58 and GmMYB205 are seed-specific activators for isoflavonoid biosynthesis in Glycine max.

    Science.gov (United States)

    Han, Xiaoyan; Yin, Qinggang; Liu, Jinyue; Jiang, Wenbo; Di, Shaokang; Pang, Yongzhen

    2017-12-01

    GmMYB58 and GmMYB205 are key positive regulators that are involved in isoflavonoid biosynthesis in seeds of Glycine max, and they activate the expression of several structural genes in the isoflavonoid pathway. MYB transcription factors (TFs) are major regulators involved in flavonoid/isoflavonoid biosynthesis in many plant species. However, functions of most MYB TFs remain unknown in flavonoid/isoflavonoid pathway in Glycine max. In this study, we identified 321 MYB TFs by genome-wide searching, and further isolated and functionally characterized two MYB TFs, GmMYB58 and GmMYB205. The deduced GmMYB58 and GmMYB205 proteins contain highly conserved R2R3 repeat domain at the N-terminal region that is the signature motif of R2R3-type MYB TFs. GmMYB58 and GmMYB205 were highly expressed in early seed development stages than in the other tested organs. GmMYB58 and GmMYB205 GFP fusion proteins were found to be localized in the nucleus when they were transiently expressed in Arabidopsis thaliana mesophyll protoplast. Both GmMYB58 and GmMYB205 can activate the promoter activities of GmCHS, GmIFS2, and GmHID in the transient trans-activation assays, and the activation of GmHID by both GmMYB58 and GmMYB205 was further confirmed by yeast one-hybrid assay. In addition, over-expression of GmMYB58 and GmMYB205 resulted in significant increases in expression levels of several pathway genes in soybean hairy roots, in particular, IFS2 by more than fivefolds in GmMYB205-over-expressing lines. Moreover, isoflavonoid contents were remarkably enhanced in the GmMYB58 and GmMYB205 over-expressing hairy roots than in the control. Our results suggest that GmMYB58 and GmMYB205 are seed-specific TFs, and they can enhance isoflavonoid biosynthesis mainly through the regulation of GmIFS2 and GmHID in G. max.

  3. Genome-Wide Identification and Functional Characterization of UDP-Glucosyltransferase Genes Involved in Flavonoid Biosynthesis in Glycine max.

    Science.gov (United States)

    Yin, Qinggang; Shen, Guoan; Di, Shaokang; Fan, Cunying; Chang, Zhenzhan; Pang, Yongzhen

    2017-09-01

    Flavonoids, natural products abundant in the model legume Glycine max, confer benefits to plants and to animal health. Flavonoids are present in soybean mainly as glycoconjugates. However, the mechanisms of biosynthesis of flavonoid glycosides are largely unknown in G. max. In the present study, 212 putative UDP-glycosyltransferase (UGT) genes were identified in G. max by genome-wide searching. The GmUGT genes were distributed differentially among the 20 chromosomes, and they were expressed in various tissues with distinct expression profiles. We further analyzed the enzymatic activities of 11 GmUGTs that are potentially involved in flavonoid glycosylation, and found that six of them (UGT72X4, UGT72Z3, UGT73C20, UGT88A13, UGT88E19 and UGT92G4) exhibited activity toward flavonol, isoflavone, flavone and flavanol aglycones with different kinetic properties. Among them, UGT72X4, UGT72Z3 and UGT92G4 are flavonol-specific UGTs, and UGT73C20 and UGT88E19 exhibited activity toward both flavonol and isoflavone aglycones. In particular, UGT88A13 exhibited activity toward epicatechin, but not for the flavonol aglycones kaempferol and quercetin. Overexpression of these six GmUGT genes significantly increased the contents of isoflavone and flavonol glucosides in soybean hairy roots. In addition, overexpression of these six GmUGT genes also affected flavonol glycoside contents differently in seedlings and seeds of transgenic Arabidopsis thaliana. We provide valuable information on the identification of all UGT genes in soybean, and candidate GmUGT genes for potential metabolic engineering of flavonoid compounds in both Escherichia coli and plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress.

    Science.gov (United States)

    Liu, Haoran; Song, Jinhui; Dong, Lijun; Wang, Di; Zhang, Shuling; Liu, Jianfeng

    2017-07-01

    Understanding the mechanism for salt tolerance in wild soybean (Glycine soja) can help researchers improve that trait in cultivated soybean lines. We analyzed the effects of excess NaCl on the growth, physiology, and ion distribution in three soybean species: wild G. soja (W8), semi-wild G. gracilis (SW18), and the cultivated salt-sensitive G. max (cv. Melrose). These comparisons revealed that, under salt stress, shoot and root lengths and biomass (either shoot or root dry weights) were significantly higher for the W8 genotype than for the other two. Most of the morphological parameters for roots from the W8 plants were also increased, including total length, specific root length, and surface area. However, the average root diameter for W8 was significantly lower than that of either SW18 or 'Melrose' soybeans. In response to salinity, photosynthesis was suppressed to a greater extent in 'Melrose' than in W8. The relatively higher tolerance shown by W8 plants was also associated with lower levels of malondialdehyde, hydrogen peroxide, and relative electrical conductivity, but higher activities by superoxide dismutase and peroxidase, as well as more free proline and glycine betaine. In addition, the W8 plants contained less Na + and Cl - , but more K + , and they had a higher K + /Na + ratio in their leaves and roots when compared with either SW18 or 'Melrose' plants. Therefore, the W8 genotype performs better in terms of seedling growth, photosynthetic characteristics, and physiological indexes. These findings provide guidance for developing new soybean cultivars with improved tolerance to salt stress. Our data also contribute to the knowledge base for plant salt tolerance as a tool for increasing the yields of other crops in high-salinity soils.

  5. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja).

    Science.gov (United States)

    Zhang, Hengyou; Li, Chunying; Davis, Eric L; Wang, Jinshe; Griffin, Joshua D; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30) were identified, with 10 SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  6. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines HG Type 2.5.7 in Wild Soybean (Glycine soja

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2016-08-01

    Full Text Available Soybean cyst nematode (SCN is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean (Glycine max (L. Merr. cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc. accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5, a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30 were identified, with ten SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  7. Ensifer shofinae sp. nov., a novel rhizobial species isolated from root nodules of soybean (Glycine max).

    Science.gov (United States)

    Chen, Wen Hao; Yang, Sheng Hui; Li, Zhao Hu; Zhang, Xiao Xia; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin; Chen, Wen Feng

    2017-04-01

    Two bacterial strains isolated from root nodules of soybean were characterized phylogenetically as members of a distinct group in the genus Ensifer based on 16S rRNA gene comparisons. They were also verified as a separated group by the concatenated sequence analyses of recA, atpD and glnII (with similarities ≤93.9% to the type strains for defined species), and by the average nucleotide identities (ANI) between the whole genome sequence of the representative strain CCBAU 251167 T and those of the closely related strains in Ensifer glycinis and Ensifer fredii (90.5% and 90.3%, respectively). Phylogeny of symbiotic genes (nodC and nifH) grouped these two strains together with some soybean-nodulating strains of E. fredii, E. glycinis and Ensifer sojae. Nodulation tests indicated that the representative strain CCBAU 251167 T could form root nodules with capability of nitrogen fixing on its host plant and Glycine soja, Cajanus cajan, Vigna unguiculata, Phaseolus vulgaris and Astragalus membranaceus, and it formed ineffective nodules on Leucaena leucocephala. Strain CCBAU 251167 T contained fatty acids 18:1 ω9c, 18:0 iso and 20:0, differing from other related strains. Utilization of l-threonine and d-serine as carbon source, growth at pH 6.0 and intolerance of 1% (w/v) NaCl distinguished strain CCBAU 251167 T from other type strains of the related species. The genome size of CCBAU 251167 T was 6.2Mbp, comprising 7,581 predicted genes with DNA G+C content of 59.9mol% and 970 unique genes. Therefore, a novel species, Ensifer shofinae sp. nov., is proposed, with CCBAU 251167 T (=ACCC 19939 T =LMG 29645 T ) as type strain. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Soybean Glycine Max L Merill Promiscuity Reaction To Indigenous Bradyrhizobia inoculation In Some Ghanaian Soils

    Directory of Open Access Journals (Sweden)

    Phanuel Y. Klogo

    2015-08-01

    Full Text Available ABSTRACT For many tropical countries particularly in Africa Biological Nitrogen Fixation BNF continues to be the most promising alternative or supplement to the use of chemical Nitrogen fertilizers for sustainable Agriculture. In contrast to cowpea that nodulate profusely in tropical soilswith the naturally occurring bradyrhizobia nodulation and nitrogen fixation in the American-type soybean in similar environments has largely depended on inoculating bradyrhizobia into the soil. The development of the Tropical Glycine Cross TGx soybean varieties by IITA has made it possible for these promiscuous varieties to nodulate with the naturally occurring strains belonging to the cowpea Bradyrhizobiumspp. The Most Probable Number MPN technique was used to determine the bradyrhizobial population in these soils. Eighty four Bradyrhizobium isolates obtained from randomly selected nodules on soybean were assessed for effectiveness in nitrogen fixation. Three of the most effective isolates were used in inoculation studies carried out in the greenhouse atthe University of Ghana-Legonon three promiscuous soybean varieties Anidaso TGx 813-6D TGx 1903-8F and TGx 1448-2E and a non- promiscuous genotype Davis in three Ghanaian soil series Toje Chromic cambisols Chichiwere Dystricfluvisol and Bekwai Ferric acrisols. There were tremendous inoculation responses in these soils for both the promiscuous and non-promiscuous cultivars with even the promiscuous ones responding better to inoculation than the non-promiscuous Davis. Inoculation gave rise to significant increases in nodule number nodule dry weight shoot dry weight and total nitrogen accumulation compared to the uninoculated control even intheChichiwere soil series which harboured the highestpopulation of indigenous bradyrhizobia suggesting that the populations of the naturally occurring bradyrhizobia in these soils were either not highly competitive or sufficient for optimum nodulation and nitrogen fixation. For

  9. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress.

    Science.gov (United States)

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Sharma, Poonam; Gill, Sarvajeet Singh; Kaur, Harpreet; Mushtaq, Ruquia

    2015-10-01

    Jasmonic acid (JA) is a very young candidate of plant growth regulators which is being explored for various antistress properties. Present study deals with the hypothesis that JA can modulate antioxidant mechanism of higher plants with tight regulation of biomembrane peroxidation, making plants tolerant to toxic Ni(2+). 2 mM NiCl2 as a source of Ni(2+) appeared as sub lethal dose for the growth of 15 days old Glycine max seedlings. Exogenous application of 1 μM and 1 nM JA prior to NiCl2 exposure, made seedlings of Glycine max more tolerant to Ni(2+)stress as compared to control untreated seedlings. Regulatory inhibition of MDA and H2O2 production by JA with or without Ni(2+) treatment made plants more resistant to Ni(2+) stress which may be associated with ameliorative activity of antioxidant enzymes system composed of SOD, POD, CAT and APOX. Ascorbate, a secondary metabolite synthesized from D-glucose act as an antioxidant in plant cells. Many fold enhancements in AsA content of Ni(2+) treated seedlings supplemented with different concentrations of JA was observed. Significant improvement in AsA levels by JA with or without Ni(2+) stress may involve two aspects, either denovo synthesis level regulation of AsA or recycling of AsA from an oxidized form. Improvement in total protein content showed the uplift modulation of transcriptional machinery by JA which was also maintained under Ni(2+) stress. Photosynthetic pigments as total chl, chl a and b showed inhibition in presence of Ni(2+) stress which was not found much effective under JA supplementation as compared to control. Present findings revealed that although JA was not helpful for protection of photosynthetic pigments but it modulates the other machinery of plants significantly including various antioxidants positively, while tightly inhibiting stress related processes responsible for lipid peroxidation to make plants tolerant to Ni(2+) stress.

  10. MDA and Histologic Profile of Pancreatic Diabetic-Rats Model Administered With Extract of Glycine max (L. Merr.

    Directory of Open Access Journals (Sweden)

    Luh Putu Gina

    2016-03-01

    Full Text Available Diabetes Mellitus is characterized by leveling up glucose in human blood and affects increasing of free radicals in body as well as leading to cellular oxidative stress. Experimentally, this condition is able to be characterized by increasing malondialdehyde (MDA level in cell and histological changing in pancreas appearance. Consumption of antioxidant substances was reported able to reduce the MDA quantity as free radicals. Black soybean or Glycine max (L Merr. was reported contains important antioxidant agents such as anthocyanin and isoflavone. This paper discloses recent investigation on application of black soybean water extract to reduce the MDA level on diabetes mellitus-rat model induced by STZ (DM and also reports the pancreas histological changing of the DM rats. Investigation revealed that black soybean water extract significantly affect decreasing of MDA level by 4.9%, 27.1% and 45.7% in three different doses theraphy (500, 750, and 1000 mg/kg BW. Histologically, it also clearly indicates repairing of pancreas tissue of the DM rats.

  11. Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Hala M. Abdelmigid

    2017-12-01

    Full Text Available Eucalyptus trees litter plays a crucial role in structuring plant populations and regulating crop quality. To help characterize the allelopathic impact of Eucalyptus plantations and understand the interactions between tree litter and understorey plant populations, we performed two different genomic approaches to determine soybean (Glycine max crop plant response to biotic stress induced by leaf residues of Eucalyptus globulus trees. For assessing cell death, a qualitative method of DNA fragmentation test (comet assay was employed to detect cleavage of the genomic DNA into oligonucleosomal fragments and help to characterize the apoptotic event among the experimental samples. In addition, quantitative method of genome analysis at the transcriptional level also was conducted to investigate the expression responses of soybean genome to allelochemicals. Expression of specific genes, which are responsible for the breakdown of proteins during programmed cell death PCD (cysteine proteases and their inhibitors, was examined using semi-quantitative RT-PCR (sqPCR. Results of both conducted analyses proved significant genetic effects of Eucalyptus leaf residues on soybean crop genome, revealed by steady increase in DNA damage as well as variation in the transcript levels of cysteine proteases and inhibitors. Further detailed studies using more sensitive methods are necessary for a comprehensive understanding of the allelopathic effects of Eucalyptus plantations on crops.

  12. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  13. Auxins action on Glycine max secretory phospholipase A2 is mediated by the interfacial properties imposed by the phytohormones.

    Science.gov (United States)

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-07-01

    Secretory phospholipase A2 (sPLA2) are soluble enzymes that catalyze the conversion of phospholipids to lysophospholipids and free fatty acids at membrane interfaces. The effect of IAA and IPA auxins over the activity of recombinant sPLA2 isoforms from Glycine max was studied using membrane model systems including mixed micelles and Langmuir lipid monolayers. Both phytohormones stimulate the activity of both plant sPLA2 using DLPC/Triton mixed micelles as substrate. To elucidate the mechanism of action of the phytohormones, we showed that both auxins are able to self-penetrate lipid monolayers and cause an increment in surface pressure and an expansion of lipid/phytohormone mixed interfaces. The stimulating effect of auxins over phospholipase A2 activity was still present when using Langmuir mixed monolayers as organized substrate regardless of sPLA2 source (plant or animal). All the data suggest that the stimulating effect of auxins over sPLA2 is due to a more favorable interfacial environment rather to a direct effect over the enzyme. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Vitamin E levels in soybean (Glycine max (L.) Merr.) expressing a p-hydroxyphenylpyruvate gene from oat (Avena sativa L.).

    Science.gov (United States)

    Kramer, Catherine M; Launis, Karen L; Traber, Maret G; Ward, Dennis P

    2014-04-16

    The enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD) is ubiquitous in plants and functions in the tyrosine catabolic pathway, resulting in the formation of homogentisate. Homogentisate is the aromatic precursor of all plastoquinones and tocochromanols, including tocopherols and tocotrienols. Soybean (Glycine max (L.) Merr.) has been genetically modified to express the gene avhppd-03 that encodes the protein AvHPPD-03 derived from oat (Avena sativa L.). The AvHPPD-03 isozyme has an inherent reduced binding affinity for mesotrione, a herbicide that inhibits the wild-type soybean HPPD enzyme. Expression of avhppd-03 in soybean plants confers a mesotrione-tolerant phenotype. Seeds from three different avhppd-03-expressing soybean events were quantitatively assessed for content of eight vitamin E isoforms. Although increased levels of two tocopherol isoforms were identified for each of the three soybean events, they were within, or not substantially different from, the ranges of these isoforms found in nontransgenic soybean varieties. The increases of these tocopherols in the avhppd-03-expressing soybean events may have a slight benefit with regard to vitamin E nutrition but, given the commercial processing of soybeans, are unlikely to have a material impact on human nutrition with regard to vitamin E concentrations in soybean oil.

  15. Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis.

    Science.gov (United States)

    Lee, Charles C; Dudonné, Stéphanie; Dubé, Pascal; Desjardins, Yves; Kim, Jong Hun; Kim, Ji Seung; Kim, Jong-Eun; Park, Jung Han Yoon; Lee, Ki Won; Lee, Chang Yong

    2017-11-01

    Yak-Kong (YK) (Glycine max), a small black soybean cultivar with a green embryo, was evaluated for functional constituents with a focus on atherosclerosis prevention. In comparison to common yellow and black soybean cultivars, YK contains significantly higher concentrations of antioxidants, particularly in its seed coat. A comprehensive phenolic composition analysis revealed that proanthocyanidins were the major phenolic group in YK. In contrast to other proanthocyanidin-rich foods, YK was rich in bioavailable proanthocyanidins (with a degree of polymerization ≤3) specifically with A-type dimers. Significant concentrations of phloridzin and coumestrol were also exclusively found in YK seed coat and the embryo, respectively. Extracts of both the proanthocyanidin-rich seed coat and isoflavonoid-rich embryo of YK attenuated adhesion of THP-1 to LPS-stimulated human umbilical vascular endothelial cells, suggesting that they are important sources of coronary heart disease-preventive phenolics. YK has promising potential for further development as a functional food source targeted at atherosclerosis prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Simultaneous Determination of Soyasaponins and Isoflavones in Soy (Glycine max L.) Products by HPTLC-densitometry-Multiple Detection.

    Science.gov (United States)

    Shawky, Eman; Sallam, Shaimaa M

    2017-11-01

    A new high-throughput method was developed for the simultaneous analysis of isoflavones and soyasaponnins in Soy (Glycine max L.) products by high-performance thin-layer chromatography with densitometry and multiple detection. Silica gel was used as the stationary phase and ethyl acetate:methanol:water:acetic acid (100:20:16:1, v/v/v/v) as the mobile phase. After chromatographic development, multi-wavelength scanning was carried out by: (i) UV-absorbance measurement at 265 nm for genistin, daidzin and glycitin, (ii) Vis-absorbance measurement at 650 nm for Soyasaponins I and III, after post-chromatographic derivatization with anisaldehyde/sulfuric acid reagent. Validation of the developed method was found to meet the acceptance criteria delineated by ICH guidelines with respect to linearity, accuracy, precision, specificity and robustness. Calibrations were linear with correlation coefficients of >0.994. Intra-day precisions relative standard deviation (RSD)% of all substances in matrix were determined to be between 0.7 and 0.9%, while inter-day precisions (RSD%) ranged between 1.2 and 1.8%. The validated method was successfully applied for determination of the studied analytes in soy-based infant formula and soybean products. The new method compares favorably to other reported methods in being as accurate and precise and in the same time more feasible and cost-effective. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties.

    Science.gov (United States)

    Zhao, LongFei; Xu, YaJun; Lai, XinHe

    2017-10-13

    A total of 276 endophytic bacteria were isolated from the root nodules of soybean (Glycine max L.) grown in 14 sites in Henan Province, China. The inhibitory activity of these bacteria against pathogenic fungus Phytophthora sojae 01 was screened in vitro. Six strains with more than 63% inhibitory activities were further characterized through optical epifluorescence microscopic observation, sequencing, and phylogenetic analysis of 16S rRNA gene, potential plant growth-promoting properties analysis, and plant inoculation assay. On the basis of the phylogeny of 16S rRNA genes, the six endophytic antagonists were identified as belonging to five genera: Enterobacter, Acinetobacter, Pseudomonas, Ochrobactrum, and Bacillus. The strain Acinetobacter calcoaceticus DD161 had the strongest inhibitory activity (71.14%) against the P. sojae 01, which caused morphological abnormal changes of fungal mycelia; such changes include fracture, lysis, formation of a protoplast ball at the end of hyphae, and split ends. Except for Ochrobactrum haematophilum DD234, other antagonistic strains showed the capacity to produce siderophore, indole acetic acid, and nitrogen fixation activity. Regression analysis suggested a significant positive correlation between siderophore production and inhibition ratio against P. sojae 01. This study demonstrated that nodule endophytic bacteria are important resources for searching for inhibitors specific to the fungi and for promoting effects for soybean seedlings. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max.

    Science.gov (United States)

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops.

  19. A plastidial localization and origin of L-glutamate dehydrogenase in a soybean cell culture. [Glycine max

    Energy Technology Data Exchange (ETDEWEB)

    Bhadula, S.K.; Shargool, P.D. (Univ. of Saskatchewan, Saskatoon (Canada))

    1991-01-01

    The subcellular distribution of L-glutamate dehydrogenase (GDH, EC 1.4.1.3.) was studied in SB3 soybean (Glycine max) cells using subcellular fractionation techniques. Compounds that inhibit protein synthesis either on 80s or 70s ribosomes were also used to give a preliminary idea of which subcellular fraction is involved in GDH synthesis. It was found that whereas cycloheximide and puromycin considerably reduced the total amount of protein synthesized by the cells, they did not appear to inhibit the synthesis of GDH. In the presence of chloramphenicol, both GDH activity and protein level in the cells were considerably reduced, suggesting that this enzyme was synthesized in organelles and not in the cytosol. Streptomycin, which inhibits plastid protein synthesis, also inhibited synthesis of GDH, indicating that a fraction of GDH activity was plastidial in origin. This is supported by the data on subcellular distribution of the enzyme, which showed that a major fraction of GDH is found in the plastidial fraction, although some activity is found associated with the mitochondrial fraction also. Since a major fraction of GDH activity was found in the plastidial fraction, the authors studied protein synthesis using isolated plastids and {sup 35}S-methionine. Using antibodies raised against purified GDH, they identified a {sup 35}S-labeled 41-kilodalton polypeptide synthesized by plastids as GDH.

  20. Characterization of an acidic chitinase from seeds of black soybean (Glycine max (L Merr Tainan No. 3.

    Directory of Open Access Journals (Sweden)

    Ya-Min Chang

    Full Text Available Using 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside (4-MU-GlcNAc3 as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3 by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain length from 3 to 5 (GlcNAcn, n = 3-5, and pNp-GlcNAc4 was the most degradable substrate. Using pNp-GlcNAc4 as a substrate, the optimal pH for the enzyme reaction was 4.0; kinetic parameters Km and kcat were 245 µM and 10.31 min-1, respectively. This enzyme also showed activity toward CM-chitin-RBV, a polymer form of chitin, and N-acetyl chitooligosaccharides, an oligomer form of chitin. The smallest oligomer substrate was an N-acetylglucosamine tetramer. These results suggested that this enzyme was an endo-splitting chitinase with short substrate cleavage activity and useful for biotechnological applications, in particular for the production of N-acetyl chitooligosaccharides.

  1. Characterization of an acidic chitinase from seeds of black soybean (Glycine max (L) Merr Tainan No. 3).

    Science.gov (United States)

    Chang, Ya-Min; Chen, Li-Chun; Wang, Hsin-Yi; Chiang, Chui-Liang; Chang, Chen-Tien; Chung, Yun-Chin

    2014-01-01

    Using 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside (4-MU-GlcNAc3) as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3) by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain length from 3 to 5 (GlcNAcn, n = 3-5), and pNp-GlcNAc4 was the most degradable substrate. Using pNp-GlcNAc4 as a substrate, the optimal pH for the enzyme reaction was 4.0; kinetic parameters Km and kcat were 245 µM and 10.31 min-1, respectively. This enzyme also showed activity toward CM-chitin-RBV, a polymer form of chitin, and N-acetyl chitooligosaccharides, an oligomer form of chitin. The smallest oligomer substrate was an N-acetylglucosamine tetramer. These results suggested that this enzyme was an endo-splitting chitinase with short substrate cleavage activity and useful for biotechnological applications, in particular for the production of N-acetyl chitooligosaccharides.

  2. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  3. Evaluating effect of biofertilizer on nodulation and soybean (Glycine max L plants growth characteristics under water deficit stress of seed

    Directory of Open Access Journals (Sweden)

    M. Tajik Khaveh

    2016-05-01

    Full Text Available In order to evaluate the effects of biofertilizer on soybean (Glycine max L. seed vigor that produced under water deficit condition and related traits, an experiment was conducted in a factorial layout based of complete randomized block design with four replications at the research greenhouse of Aboureihan campus- Tehran University, Iran. Experimental treatments were include biofertilizer (seed inoculation with Bradyrhizobium japonicum, co-inoculation with Bradyrhizobium japonicum and Pseudomonas fluorescens, co-inoculation with Bradyrhizobium japonicum and Glomus mosseae, Cultivar (Zalta Zalha and Clark×Hobbit line and water deficit stress [irrigation plants after 50 (normal irrigation, 100 (medium stress, 150 (sever stress mm evaporation from pan class A, in parents field]. Results showed that the water deficit stress had negative effects on seed quality and seedling emergence percentage, mean daily seedling emergence, root, leaf and shoot dry weight, number of nodule were decreased. ZaltaZalha cultivar had higher shoot dry weight and number of leaf compared with other cultivars. Applications of biofertilzer was effective on stem diameter, root, leaf and shoot dry weight, number of leaf and nodule and those attributes increased by co-inoculation of Bradyrhizobium japonicum and Glomus mosseae. Also, use of biofertilizer in stress levels was effective on stem dry weight. Stem dry weight was increased by Co-inoculation of cultivar seeds with Bradyrhizobium japonicum and Glomus mosseae.

  4. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    Science.gov (United States)

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  5. Selection for later flowering in soybean (Glycine max L.Merrill F2 populations cultivated under short day conditions

    Directory of Open Access Journals (Sweden)

    Oliveira Antonio Carlos Baião de

    1999-01-01

    Full Text Available Several different selection strategies were used to estimate expected gain of days to flowering and other related characters in two F2 soybean (Glycine max (L. Merrill populations. The sample originated from crosses of lines whose seeds do not contain the three lipoxygenase isozymes with the commercially cultivated IAC-12. IAC-12 is a gene carrier for an extended juvenile period. This study was conducted during the winter of 1994 in Viçosa, Minas Gerais. The plants were grown under natural photoperiod. One population was grown in a heated greenhouse, and the other in the field under natural temperature conditions. Lower temperatures early in the field planting caused a delay in flowering. Delayed flowering caused a broader amplitude in all characters evaluated, and resulted in higher selection gains for the field-grown plants than for the greenhouse-grown plants. Direct selection for number of flowering days proved to be efficient for improving this character in both populations. Gains were also obtained for other characters. Interactions of temperature and photoperiod and temperature and genotypes affected soybean flowering time and produced alterations in other correlated agronomic characters, including productivity.

  6. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  7. Response of Glycine max to drought stress in relation to growth parameters and some key enzymes of carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Maryam Nasr Esfahani

    2015-06-01

    Full Text Available Drought stress is one of the major constraints for production and yield of soybean (Glycine max. For this reason, identifying mechanisms associated with drought tolerance in soybean is very impotent for improving and increasing drought resistance by genetic engineering methods. In this study, the effect of drought on growth traits (plant height, fresh and dry weight of shoot and also fresh and dry weight of root and enzyme activities of isocitrate dehydrogenase (ICDH, phosphoenolpyruvate carboxylase (PEPC, malate dehydrogenase (MDH, glutamine synthetase (GS and nitrate reductase (NR were assessed in drought sensitive and tolerant cultivars of soybean. The results showed that growth indicators are higher in drought tolerant cultivar under water availability (control and water deficient when compared with those of drought sensitive cultivar. An increase in the activity of ICDH was observed in both the cultivars under drought stress as compared with their respective control plants but this activity was higher in tolerant cultivar. The activities of PEPC, MDH, GS and NR were significantly decreased in drought sensitive cultivar whereas the activities of these enzymes were higher in another cultivar. In general, the results of this study showed different behavior in the activities of assayed enzymes in two sets of soybean cultivars differing in drought tolerance and also decline of the activities of these enzymes in drought sensitive cultivar due to water deficit stress may be one of the possible reasons for decreased growth of the soybean plants under drought.

  8. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  9. Calcium oxalate crystal production and density at different phenological stages of soybean plants (Glycine max L.) from the southeast of the Pampean Plain, Argentina

    OpenAIRE

    Borrelli, Natalia L.; Benvenuto, María Laura; Osterrieth, Margarita

    2016-01-01

    Glycine max L. (soybean) is one of the major crops of the world. Although the process of biomineralisation has been reported in some organs of soybean, we now report the description and quantification of calcium oxalate crystals in vegetative and reproductive organs of soybean during its life cycle, as they act as an important source of calcium to the soil, once the harvesting is finished. • Through diaphanisation, cross-sectioning, optical and scanning electron microscopy analysi...

  10. Desempenho de genótipos de soja-hortaliça de ciclo precoce [Glycine max (L. Merril] em diferentes densidades Performance of genotypes of early-cycle vegetable soybeans [Glycine max (L. Merril] in different densities

    Directory of Open Access Journals (Sweden)

    Hamilton César de O. Charlo

    2008-04-01

    Full Text Available Objetivando-se avaliar o desempenho de dois genótipos de soja-hortaliça de ciclo precoce [Glycine max (L. Merril], em diferentes densidades, foi instalado um ensaio, em área experimental do Setor de Olericultura e Plantas Aromático-Medicinais, pertencente ao Departamento de Produção Vegetal, nas dependências da Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP, Campus de Jaboticabal-SP. O delineamento experimental foi o de parcelas subdivididas, adotando-se nas parcelas os genótipos e nas subparcelas as densidades, com quatro repetições por tratamento. Cada parcela experimental foi constituída por quatro linhas de 4,5m de plantio, com densidades de 20, 10 e 7 plantas por metro e 0,60m nas entrelinhas, sendo consideradas para avaliação 20 plantas por parcela, das duas linhas centrais. As sementes foram semeadas em bandejas de poliestireno expandido de 128 células, contendo substrato Plantmax Hortaliças®. O transplantio ocorreu dez dias após a semeadura, em solo devidamente preparado, conforme recomendações para a cultura. A colheita foi realizada quando os legumes estavam em estádio reprodutivo R6. Avaliaram-se os genótipos JLM010 e CNPSOI quanto às características: número médio de legumes por planta, número médio de sementes por legume, massa fresca de 100 sementes e produtividade estimada de grãos imaturos. Com base nos resultados obtidos concluiu-se que o genótipo JLM010 é o mais recomendado e deve ser plantado na densidade de 7 plantas por metro.With the aim of evaluating the performance of two genotypes of early-cycle soybeans [Glycine max (L. Merril] in different spacings, a study was carried out in the experimental area of the Sector of Vegetable Crops and Aromatic Medicinal Plants, belonging to the Department of Crop Sciences, College of Agricultural and Veterinary Sciences (FCAV-UNESP, Jaboticabal Campus-SP. The experimental design used was the one of subdivided parcels, each parcel representing

  11. The Effect of using Quail Litter Biochar on Soybean (Glycine max L. Merr. Production Efecto del uso de Biocarbón de Lecho de Codorniz en la Producción de Soya (Glycine max L. Merr.

    Directory of Open Access Journals (Sweden)

    Tawadchai Suppadit

    2012-06-01

    Full Text Available Biochars can be used as soil amendments for improving soil properties and crop yield. The objective of this research was to study the plant growth, yield, yield components, and seed quality, including nutrients and heavy metals (Pb, Cd, and Hg, in the soybean plant (Glycine max L. Merr. and soil. The experiment was conducted from September 2010 to January 2011 in a greenhouse located in the Dan Khun Thot District, Nakhon Ratchasima Province, Thailand. The research comprised six treatments with four replicates in a completely randomized design. Quail litter biochar (QLB at rates of 0, 24.6, 49.2, 73.8, 98.4 and 123 g per pot mixture were provided to soybean cv. Chiang Mai 60. The results showed that QLB could be used as a soil fertility improvement and amendment for soybean production with an optimum rate of 98.4 g per pot mixture, which gave the best performance in terms of the number of nodes, height, DM accumulation, total yield, and seed quality. After the experiment, the nutrient contents in the soil increased as the QLB content increased, but the heavy metal residues in the leaves and seeds did not change. However, QLB at levels higher than 98.4 g per pot mixture is not advisable because QLB is alkaline in nature, which may affect soil pH.El biocarbón puede usarse como enmienda para mejorar las propiedades del suelo y el rendimiento del cultivo. El objetivo de esta investigación fue el estudio del crecimiento de la planta, rendimiento y sus características, así como la calidad de semilla, incluyéndose el estudio de nutrientes y metales pesados (Pb, Cd y Hg en la planta de soya (Glycine max L. Merr. y el suelo. La experimentación se realizó en condiciones de invernadero en el distrito de Dan Khun Thot, provincia de Nakhon Ratchasima, Tailandia, entre septiembre del 2010 y enero del 2011. La investigación constó de seis tratamientos con cuatro repeticiones en un diseño completamente al azar. Se administró biocarbón de lecho de

  12. Biodegradation of glyphosate in rhizospheric soil cultivated with Glycine max, Canavalia ensiformis e Stizolobium aterrimum Biodegradação de glyphosate em solo rizosférico de Glycine max, Canavalia ensiformis e Stizolobium aterrimum

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2009-01-01

    Full Text Available Biodegradation of glyphosate was evaluated in rhizospheric soil cultivated with Glycine max (soybean, var. BRS245-RR, Canavalia ensiformis and Stizolobium aterrimum. After these species were cultivated for 60 days, soil samples were collected, placed in flasks and treated with 14C-glyphosate. After 30 days of incubation, the total release rate of C-CO2 was determined along with microbial biomass (MBC, metabolic quotient (qCO2, and degradation percentage of the radio-labeled glyphosate released as 14C-CO2. A higher mass of rhizosphere-associated microorganisms was verified in the soil samples from pots cultivated with soybean, regardless of glyphosate addition. However, in the presence of the herbicide, this characteristic was the most negatively affected. Microorganisms from the C. ensiformis rhizosphere released a lower amount of 14C-CO2, while for those originated from S. aterrimum, the amount released reached 1.3% more than the total carbon derived from the respiratory activity. The rhizospheric soil from S. aterrimum also presented higher glyphosate degradation efficiency per microbial biomass unit. However, considering qCO2, the microbiota of the rhizospheric soil cultivated with soybean was more efficient in herbicide degradation.Avaliou-se neste trabalho a degradação de glyphosate em solo rizosférico proveniente do cultivo de Glycine max (soja var. BRS245-RR, Canavalia ensiformis e Stizolobium aterrimum. Para isso, após o cultivo, em vasos, das citadas espécies por 60 dias, coletaram-se amostras de solo, as quais foram acondicionadas em frascos e tratadas com 14C-glyphosate. Após 32 dias de incubação, foram determinados a taxa de desprendimento total de C-CO2, a biomassa microbiana (MBC, o quociente metabólico (qCO2 e a porcentagem de degradação do glyphosate radiomarcado liberado na forma de 14C-CO2. Verificou-se a maior massa de microrganismos associados à rizosfera em amostras de solo proveniente de vasos cultivados com a

  13. Comprehensive analysis of the soybean (Glycine max GmLAX auxin transporter gene family

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-03-01

    Full Text Available The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plants via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTANT 1 ⁄ LIKE AUX1 (AUX⁄LAX auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA. In this study, genome-wide comprehensive analysis of the soybean AUX⁄LAX (GmLAX gene family, including phylogenic relationships, chromosome localization, and gene structure, were carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.

  14. Nonomuraea glycinis sp. nov., a novel actinomycete isolated from the root of black soya bean [Glycine max (L.) Merr].

    Science.gov (United States)

    Li, Zhilei; Song, Wei; Zhao, Junwei; Zhuang, Xiaoxin; Zhao, Yue; Wang, Xiangjing; Xiang, Wensheng

    2017-12-01

    A novel actinomycete, designated strain NEAU-BB2C19 T , was isolated from the root of black soya bean [Glycine max (L.) Merr] collected from Harbin, Heilongjiang Province, China, and characterized using a polyphasic approach. The strain was an aerobic, Gram-stain-positive actinomycete that formed extensively branched substrate mycelium and aerial hyphae. The predominant menaquinones were MK-9(H2) and MK-9(H0). The major cellular fatty acid profile consisted of iso-C16 : 0, 10-methyl C17 : 0 and 10-methyl C18 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, phosphatidylglycerol and glycolipid. The DNA G+C content was 68.2±0.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-BB2C19 T should be assigned to the genus Nonomuraea and formed a distinct branch with its closest neighbour Nonomuraea guangzhouensis NEAU-ZJ3 T (98.75 % 16S rRNA gene sequence similarity). The morphological and chemotaxonomic properties of the strain were also consistent with those of members of the genus Nonomuraea. A combination of DNA-DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-BB2C19 T could be clearly differentiated from its closest phylogenetic relative. Thus, the strain is concluded to represent a novel species of the genus Nonomuraea, for which the name Nonomuraea glycinis sp. nov. is proposed. The type strain is NEAU-BB2C19 T (=CGMCC 4.7430 T =DSM 104838 T ).

  15. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  16. Ecological aspects study of replacement intercropping patterns of Soybean (Glycine max L. and Millet (Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Goudarz Ahmadvand

    2016-03-01

    Full Text Available Intercropping is considered for increasing and stability of yield in per unit. In order to study the effects of soybean (Glycine max L. and millet (Panicum miliaceum L. replacement intercropping on agronomic traits, diversity of weeds and soil biological activity, an experiment was conducted at the Research Station of Agricultural Faculty, of Bu-Ali Sina University, in 2014. The experiment was carried out as a randomized complete block design with three replications. The replacement intercropping series consisted of monoculture of soybean, monoculture of millet, 75% soybean+ 25% millet, 50% soybean+ 50% millet and 25% soybean+ 75% millet. The results showed that the highest seed yield of 219.8 and 171.9 gm-2 belonged to monoculture of soybean and monoculture of millet, respectively. Intercropping reduced maximum leaf area index of soybean and millet but leaf chlorophyll content of soybean and millet were increased. The highest number of pods per plant, number of seeds per plant in soybean and panicle number per plant in millet were obtained in 50S:50M ratio. Mean soil respiration rate in intercropping treatments was 4 and 8 % higher than the monoculture of soybean and millet, respectively. Intercropping patterns of 50S:50M and 25S:75M were successful in reducing weed plant density and diversity in comparison with soybean monoculture. Results showed that in all intercropping treatments, land equivalent ratio was more than one. Maximum value of land equivalent ratio (2.20 was achieved in 50S:50M treatment. Soybean and millet intercropping at different levels of replacement, didn’t have actual yield loss. Calculating the aggressivity showed that millet was more dominate than soybean. The maximum relative crowding coefficient of soybean was observed in 75S:25M, however that of millet was obtained in 25S:75M and 50S:50M intercroppings indicating that millet is more competitor than soybean.

  17. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    Science.gov (United States)

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression.

  18. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max).

    Science.gov (United States)

    Zhang, Jiaoping; Song, Qijian; Cregan, Perry B; Jiang, Guo-Liang

    2016-01-01

    Twenty-two loci for soybean SW and candidate genes conditioning seed development were identified; and prediction accuracies of GS and MAS were estimated through cross-validation and validation with unrelated populations. Soybean (Glycine max) is a major crop for plant protein and oil production, and seed weight (SW) is important for yield and quality in food/vegetable uses of soybean. However, our knowledge of genes controlling SW remains limited. To better understand the molecular mechanism underlying the trait and explore marker-based breeding approaches, we conducted a genome-wide association study in a population of 309 soybean germplasm accessions using 31,045 single nucleotide polymorphisms (SNPs), and estimated the prediction accuracy of genomic selection (GS) and marker-assisted selection (MAS) for SW. Twenty-two loci of minor effect associated with SW were identified, including hotspots on Gm04 and Gm19. The mixed model containing these loci explained 83.4% of phenotypic variation. Candidate genes with Arabidopsis orthologs conditioning SW were also proposed. The prediction accuracies of GS and MAS by cross-validation were 0.75-0.87 and 0.62-0.75, respectively, depending on the number of SNPs used and the size of training population. GS also outperformed MAS when the validation was performed using unrelated panels across a wide range of maturities, with an average prediction accuracy of 0.74 versus 0.53. This study convincingly demonstrated that soybean SW is controlled by numerous minor-effect loci. It greatly enhances our understanding of the genetic basis of SW in soybean and facilitates the identification of genes controlling the trait. It also suggests that GS holds promise for accelerating soybean breeding progress. The results are helpful for genetic improvement and genomic prediction of yield in soybean.

  19. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    International Nuclear Information System (INIS)

    Yun Juan; Li Xihong; Fan Xuetong; Tang Yao; Xiao Yao; Wan Sen

    2012-01-01

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on soybeans, isoflavone, tocopherol contents, raffinose family oligosaccharides, color and sensory properties were evaluated as a function of irradiation dose. The results indicated that gamma irradiation reduced aerobic bacterial and fungal load. Irradiation at the doses applied did not cause any significant change (p>0.05) in the contents of isoflavone of soybeans, but decreased tocopherol contents. The content of key flatulence-producing raffinose family oligosaccharides in irradiated soybeans (10.0 kGy) decreased by 82.1% compared to the control. Sensory analysis showed that the odor of the soybeans was organoleptically acceptable at doses up to 5.0 kGy and no significant differences were observed between irradiated and nonirradiated samples in flavor, texture and color after irradiation. - Highlights: ► The objective of this study concerns the elimination of microbial load factors at different radiation dose (0.0, 1.0, 3.0, 5.0 and 10.0 kGy). ► Investigated the degradation of the gamma irradiation on the reduction of flatulence-causing. ► Indicated the effect of irradiation on the isoflavone and tocopherol contents of the soybeans. ► Evaluated the effect of the gamma irradiation on the sensory properties of soybeans.

  20. Elicited soybean (Glycine max L.) extract improves regulatory T cell activity in high fat-fructose diet mice

    Science.gov (United States)

    Atho'illah, Mochammad Fitri; Widyarti, Sri; Rifa'i, Muhaimin

    2017-05-01

    Obesity is a metabolic disorder characterized by the central distribution of abdominal fat, hyperglycemia, hyperlipidemia, and hypertension. A high-fat diet can lead to overnutrition and directly trigger inflammation in adipose tissue. Regulatory T cells (Tregs) are essential negative regulators of inflammation. Soybean (Glycine max L.) has a variety of beneficial health. It contains isoflavones, particularly daidzein and genistein which can be transformed using microbial and physical stimuli to enhance bioactivity. The aim of this study was to analyze the effect of elicited soybean extract (ESE) on Treg activity in high fat-fructose (HFFD) mice. Twenty-eight female Balb/C mice were divided into seven groups: normal diet (ND) only, ND + ESE 104 mg/kg BW, HFFD only, HFFD + Simvastatin 2.8 mg/kg, HFFD + ESE 78 mg/kg BW, HFFD + ESE 104 mg/kg BW, and HFFD + ESE 130 mg/kg BW. The high fat-fructose diet was given over a period of 20 weeks, and ESE was administered orally per day after 20 weeks for four weeks. At week 24, the animals were sacrificed and the spleen was collected. Tregs were labeled as CD4+CD25+CD62L+ and the relative Treg number was measured using flow cytometry. The HFFD treatment significantly decreased Treg number (p < 0.05) compared to a normal diet. The ESE treatment in HFFD mice could improve Treg numbers compared to HFFD mice. Our results suggest that ESE has potential to be used as a supplement to suppress chronic inflammation via increased Treg number.

  1. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  2. Molecular cloning, heterologous expression and functional characterization of gamma tocopherol methyl transferase (γ-TMT) from Glycine max.

    Science.gov (United States)

    Tewari, Kalpana; Dahuja, Anil; Sachdev, Archana; Kumar, Vaibhav; Ali, Kishwar; Kumar, Amresh; Kumari, Sweta

    2017-12-01

    γ-Tocopherol methyltransferase (γ-TMT) (EC 2.1.1.95) is the last enzyme in the tocopherol biosynthetic pathway and it catalyzes the conversion of γ-tocopherol into α-tocopherol, the nutritionally significant and most bioactive form of vitamin E. Although the γ-TMT gene has been successfully overexpressed in many crops to enhance their α-tocopherol content but still only few attempts have been made to uncover its structural, functional and regulation aspects at protein level. In this study, we have cloned the complete 909bp coding sequence of Glycine max γ-TMT (Gm γ-TMT) gene that encodes the corresponding protein comprising of 302 amino acid residues. The deduced Gm γ-TMT protein showed 74-87% sequence identity with other characterized plant γ-TMTs. Gm γ-TMT belongs to Class I Methyl Transferases that have a Rossmann-like fold which consists of a seven-stranded β sheet joined by α helices. Heterologous expression of Gm γ-TMT in pET29a expression vector under the control of bacteriophage T7 promoter produced a 37.9 kDa recombinant Gm γ-TMT protein with histidine hexamer tag at its C-terminus. The expression of recombinant Gm γ-TMT protein was confirmed by western blotting using anti-His antibody. The recombinant protein was purified by Ni 2+ -NTA column chromatography. The purified protein showed SAM dependent methyltransferase activity. The α-tocopherol produced in the in-vitro reaction catalyzed by the purified enzyme was detected using reverse phase HPLC. This study has laid the foundation to unveil the biochemical understanding of Gm γ-TMT enzyme which can be further explored by studying its kinetic behaviour, substrate specificity and its interaction with other biomolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Effect of Ferrous Nano-oxide Particles on Physiological Traits and Nutritional Compounds of Soybean ( Glycine max L.) Seed.

    Science.gov (United States)

    Sheykhbaglou, Roghayyeh; Sedghi, Mohammad; Fathi-Achachlouie, Bahram

    2018-02-19

    Soybean (Glycine max L.) seed contains amounts of protein, lipid, carbohydrate and mineral elements, which protein and lipid have been known as a main part for soybean's trade value. In this study, in order to investigate the effect of ferrous nano-oxide particles on nutritional compounds of soybean seed, an experiment with 5 treatments and 3 replications was conducted as a randomized complete block design. Treatments were 5 concentrations of ferrous nano-oxide particles including 0, 0.25, 0.5, 0.75 and 1 g L-1 which were sprayed 3 times at 4 and 8 leaves stage and pod initiation. Lipid and protein contents, fatty acids profile, some of mineral elements such as Fe, Mg, Ca and P, chlorophyll a, b and total chlorophyll content were determined. Results showed that solution containing ferrous nano-oxide particles had significant effect on nutritional compounds of soybean seed (P<0.01) compared to control. The highest content of lipid and protein (25.4 and %33.8, respectively) observed by applying 0.75 g L-1 of ferrous nano-oxide and the lowest content was also in control. Changes in the trends of fatty acids profile (palmitic, oleic, linoleic and linolenic acids), some of mineral elements (Fe, Mg, Ca and P) and chlorophyll contents were similar to lipid and protein levels which by increasing in concentration of ferrous nano-oxide from 0 to 0.75 g L-1 all measured parameters also increased, but reduction in all parameters was observed in concentration from 0.75 to 1 g L-1. In conclusion, application of 0.75 to 1 g L-1 ferrous nano-oxide had the best effect on the nutrient composition of soybean seed.

  4. Functional Characterization of the Steroid Reductase GenesGmDET2aandGmDET2bformGlycine max.

    Science.gov (United States)

    Huo, Weige; Li, Bodi; Kuang, Jiebing; He, Pingan; Xu, Zhihao; Wang, Jinxiang

    2018-03-03

    Brassinosteroids are important phytohormones for plant growth and development. In soybean ( Glycine max ), BR receptors have been identified, but the genes encoding BR biosynthesis-related enzymes remain poorly understood. Here, we found that the soybean genome encodes eight steroid reductases (GmDET2a to GmDET2h). Phylogenetic analysis grouped 105 steroid reductases from moss, fern and higher plants into five subgroups and indicated that the steroid reductase family has experienced purifying selection. GmDET2a and GmDET2b, homologs of the Arabidopsis thaliana steroid 5 α -reductase AtDET2, are proteins of 263 amino acids. Ectopic expression of GmDET2a and GmDET2b rescued the defects of the Atdet2-1 mutant in both darkness and light. Compared to the mutant, the hypocotyl length and plant height of the transgenic lines GmDET2a and GmDET2b increased significantly, in both darkness and light, and the transcript levels of the BR biosynthesis-related genes CPD , DWF4 , BR6ox-1 and BR6ox-2 were downregulated in GmDET2aOX-23 and GmDET2bOX-16 lines compared to that in Atdet2-1 . Quantitative real-time PCR revealed that GmDET2a and GmDET2b are ubiquitously expressed in all tested soybean organs, including roots, leaves and hypocotyls. Moreover, epibrassinosteroid negatively regulated GmDET2a and GmDET2b expression. Sulfate deficiency downregulated GmDET2a in leaves and GmDET2b in leaves and roots; by contrast, phosphate deficiency upregulated GmDET2b in roots and leaves. Taken together, our results revealed that GmDET2a and GmDET2b function as steroid reductases.

  5. Evaluation of the Protective Role of Glycine max Seed Extract (Soybean Oil) in Drug-Induced Nephrotoxicity in Experimental Rats.

    Science.gov (United States)

    Ramasamy, Anand; Jothivel, Nandhakumar; Das, Saibal; Swapna, A; Albert, Alice Padmini; Barnwal, Preeti; Babu, Dinesh

    2017-09-28

    This study was conducted to evaluate the nephroprotective effect of Glycine max seed extract (soybean oil) against gentamicin- and rifampicin-induced nephrotoxicity in Sprague-Dawley rats and to compare its effects with those of vitamin E, which has well-established antioxidant and nephroprotective effects. Sixty male Sprague-Dawley rats (body weight 150-210 g) were divided into 10 groups. The first five groups were treated for 14 consecutive days with normal saline (5 ml/kg, by mouth [p.o.]); gentamicin (80 mg/kg intraperitoneally [i.p.]); gentamicin (80 mg/kg, i.p.) + vitamin E (250 mg/kg p.o.); gentamicin (80 mg/kg i.p.) + soybean oil (2.5 ml/kg p.o.); and gentamicin (80 mg/kg, i.p.) + soybean oil (5 ml/kg p.o.), respectively. For the next five groups, the same group allocation was done, but gentamicin was replaced with rifampicin (1 g/kg i.p.). Various biomarkers for nephrotoxicity in serum and urine were evaluated along with histopathological examination of kidneys. Analysis of variance (ANOVA) was done following Tukey's multiple comparison test; p < .05 was considered significant. Soybean oil in both doses significantly (p < .005) decreased serum blood urea nitrogen, creatinine, urea, uric acid and urine volume, kidney weight, urinary sodium, urinary potassium, and total protein and significantly (p < .005) increased serum total protein and urine creatinine in gentamicin- and rifampicin-treated animals, exhibiting nephroprotective effects. Soybean oil also showed strong antioxidant effects, causing significant (p < .005) increase in kidney homogenate catalases, glutathione peroxidase, and superoxide dismutase and significant (p < .005) decrease in lipid peroxidase in gentamicin- and rifampicin-treated animals. Soybean oil demonstrated good nephroprotective activity due to antioxidant effects.

  6. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L. Merr.] Seed Protein and Oil QTLs

    Directory of Open Access Journals (Sweden)

    Piyaporn Phansak

    2016-06-01

    Full Text Available Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L. Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca. 450 bimorphic SNPs detected per mating. A significant quantitative trait locus (QTL on one or more chromosomes was detected for protein in 35 (73%, and for oil in 25 (52%, of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg–1 and R2 values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed.

  7. Transpiration response of 'slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors.

    Science.gov (United States)

    Sadok, Walid; Sinclair, Thomas R

    2010-03-01

    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1-3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl(2), and AgNO(3). Dose-response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl(2), and 42% for AgNO(3). These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl(2), TR of PI 416937 was insensitive to AgNO(3) exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136.

  8. Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors

    Science.gov (United States)

    Sadok, Walid; Sinclair, Thomas R.

    2010-01-01

    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1–3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl2, and AgNO3. Dose–response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl2, and 42% for AgNO3. These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl2, TR of PI 416937 was insensitive to AgNO3 exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136. PMID:19969533

  9. Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system.

    Science.gov (United States)

    Guler, Neslihan Saruhan; Pehlivan, Necla

    2016-06-01

    Hydrogen peroxide (H(2)O(2)) functions as a signal molecule in plants under abiotic and biotic stress. In this study, the role of exogenous H(2)O(2) in improving drought tolerance in two soybean cultivars (Glycine max L. Merrill) differing in their tolerance to drought was evaluated. Plants were grown in plastic pots with normal irrigation in a phytotron. Four weeks after radicle emergence, either 1 mM H(2)O(2) or distilled water was sprayed as foliar onto the leaves of each plant, after drought stress was applied. Leaf samples were harvested on the 4(th) and 7(th) days of the drought. Antioxidant-related enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) content was measured during the drought period. Drought stress decreased leaf water potential, relative water content and photosynthetic pigment content but enhanced lipid peroxidation and endogenous H(2)O(2) concentration. By contrast, exogenous low dose H(2)O(2) improved water status, pigment content and lipid peroxidation under drought stress. Endogenous H(2)O(2) concentration was reduced by exogenous H(2)O(2) as compared to drought treatment alone. H(2)O(2) pre-treatment induced all the antioxidant enzyme activities, to a greater extent than the control leaves, during drought. H(2)O(2) pretreatment further enhanced the activities of antioxidant enzymes in the tolerant cultivar compared to the sensitive cultivar. Results suggested that low dose H(2)O(2) pre-treatment alleviated water loss and H(2)O(2) content and increased drought stress tolerance by inducing the antioxidant system.

  10. EFIKASI CAMPURAN MINYAK CENGKEH DAN EKSTRAK BIJI MIMBA UNTUK PENGENDALIAN PENYAKIT KARAT (PHAKOPSORA PACHYRHIZI PADA KEDELAI (GLYCINE MAX

    Directory of Open Access Journals (Sweden)

    Sumartini .

    2017-04-01

    Full Text Available Efficacy of clove oil and neem extract control rust (Phakopsora rapachyrhizi disease on soybean (Glycine max. Rust is the major disease on soybean. It was widely spread in almost all soybean production areas in the world. Yield losses can reach 85%. One of the control measured was sprayed with a mixture of clove oil and neem extract. The objective of the research was found the information of the clove oil and neem extract effectivity control soybean rust. The research consisted of two phases as followed: 1 the efficacy of clove oil and neem extract dilution control soybean rust disease. 2 the efficacy of clove oil, neem extract and soap berry (Sapindus rarak extract control soybean rust disease. The research was conducted at Kendalpayak Experimental Station and the green house of Indonesian Legumes and Tuber Crops Research Institute, Malang District, in dry season of 2012 and 2013 respectively. The research was arranged in randomized block design. Treatments were various comparison between clove oil, neem extract and soap berry. Parameters observed were rust disease intensity and yield components. Results showed that a mixture of clove oil and neem extract with ratio of 60:40 (v:v can inhibit rust disease intensity by 45% compared with control, increase the number of pods by 60% and preventing the yieldloss of 20%. Furthermore, a mixture of clove oil, neem extract and berry soap (Sapindus rarak with a 50:30:20 ratio (v:v:v can inhibit rust disease intensity up to 28% and 24% in the field and green house respectively and prevent yield loss by 12%.

  11. Yields and Yield Components of Maize (Zea Mays L. and Soybean (Glycine Max as Affected by Different Tillage Methods

    Directory of Open Access Journals (Sweden)

    Kvaternjak Ivka

    2015-12-01

    Full Text Available At the experiment station of the Krizevci College of Agriculture, yield and yield components of maize (Zea mays L. and soybean (Glycine max grown in rotation under five different methods of tillage were investigated. The aim of this study was to determine the effect of different tillage methods on yield and yield components of maize and soybean. The results and the determined number of plants per hectare of maize and soybean show that more favorable conditions for germination are in variants where ploughing performed in the autumn (variants C, D and E. During a four-year study, the minimum number of plants per hectare of maize and soybean was found in variant A. The dry season in panicle stage of maize in 2006 has lowered yields compared to 2008, and the drought in 2007 during the seed-filling period reduced the yield and the 1000 kernel weight of soybean compared with 2009 in all variants of tillage methods. The highest grain yield of maize was recorded in variant B. During 2006, with the unfavorable weather conditions, the lowest grain yield of maize was recorded in variant E with intensive tillage treatment. The highest yield of soybean was recorded in variant E, but there were no statistically significant differences compared to variants with the reduction of additional tillage interventions (variant B, C and D. With respect to maize grain and soybean seed yield, variant A was the lowest. Considering the achieved yields of maize grain, there is a possibility of reducing additional tillage interventions, whilst for achieving higher yield of soybean seed intensive tillage is recommended.

  12. EVALUACIÓN DEL POTENCIAL FORRAJERO DE DIEZ CULTIVARES DE SOYA (Glycine max (L Merr EN VENEZUELA

    Directory of Open Access Journals (Sweden)

    Alexander Hernández

    2013-01-01

    Full Text Available Con el objetivo de evaluar y seleccionar cultivares de soya (Glycine max. (L Merr con fines de forraje, se llevó a cabo un experimento de un diseño en bloques completamente al azar con 6 repeticiones. Los materiales experimentales usados fueron 9 cultivares procedentes del banco de germoplasma de La Fundación DANAC y el cultivar CIGRAS-06 provenientes del Centro de Investigaciones de Granos y Semillas de la UCR. Las variables bajo estudio fueron las relacionadas con la arquitectura de la planta, producción de biomasa total en el estado reproductivo R6, rendimiento de grano y algunas variables bromatológicas. Los análisis estadísticos mostraron diferencias significativas para las variables objeto de estudio. Los cultivares con mayores rendimientos de biomasa fueron CIGRAS-06, FP93-1935, FP93-1924 y FP90-6102 con 17245, 13075, 13066 y 12587 kg.ha-1 de materia seca (MS. Los de mayores contenidos de proteína cruda (PC en las vainas fueron FP90-10205, FP93-1930 y FP92-1904, con 24,2, 23,7 y 21,0%, respectivamente; y a nivel de las hojas los cultivares FP93-1935, FP92-4906 y FP90-7102 con 25,5, 24,9 y 23,0%, respectivamente. Para la producción de grano mostraron alto potencial los cultivares CIGRAS-06, FP93-1924, FP90-6102 y FP90-6103, al superar los 3500 kg.ha-1.

  13. Drought Tolerance Conferred in Soybean (Glycine max. L) by GmMYB84, a Novel R2R3-MYB Transcription Factor.

    Science.gov (United States)

    Wang, Nan; Zhang, Wenxiao; Qin, Mengyin; Li, Shuo; Qiao, Meng; Liu, Zhenhua; Xiang, Fengning

    2017-10-01

    MYB-type transcription factors (MYB TFs) play diverse roles in plant development and stress responses. However, the mechanisms underlying the actions of MYB TFs during stress response remain unclear. In this study we identified a R2R3-MYB TF in soybean (Glycine max), denoted GmMYB84, which contributes to drought resistance. Expression of GmMYB84 was induced by drought, salt stress, H2O2 and ABA. Compared with the wild type (WT), GmMYB84-overexpressing soybean mutants (OE lines) exhibited enhanced drought resistance with a higher survival rate, longer primary root length, greater proline and reactive oxygen species (ROS) contents, higher antioxidant enzyme activities [peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD)], a lower dehydration rate and reduced malondialdehyde (MDA) content. We also found that ROS could induce SOD/POD/CAT activity in OE lines. In particular, we found that the optimal level of ROS is required for GmMYB84 to modulate primary root elongation. Some ROS-related genes were up-regulated under abiotic stress in GmMYB84 transgenic plants compared with the WT. Furthermore, electrophoretic mobility shift assay and luciferase reporter analysis demonstrated that GmMYB84 binds directly to the promoter of GmRBOHB-1 and GmRBOHB-2 genes. Based on this evidence, we propose a model for how GmMYB84, H2O2 and antioxidant enzymes work together to control root growth under both optimal and drought stress conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  15. Soybean (Glycine max L.) N-Turnover Effects on Sustainable Agriculture

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    on account of its exceptional food value. Nowadays of planted area, it comes fifth after wheat, rice, maize and barley. World soya production is twice as great as that of all other grain legumes. It is a legume able to fix the atmospheric nitrogen it needs for growth through the agency of specific (Rhisobium japonicum) bacteria (Haberlandt 1878, Kurnik et al. 1987, Bódis et al. 1988). Soya is an exelent preparatory crop. It improves soil structure, it leaves considerable residues of nitrogen for the following crop (Walter et al. 1970, Marcus-Wuner 1983, Márton et al. 1990, Németh 1995): it is a first-class entry for winter wheat. It is harvested in good time to allow cultivations for winter wheat and also leaves the ground in good condition for direct drilling. It is a good break crop in cereal rotations, limiting the build-up of fungal diseases. Soya is a reliable crop, tolerant of temporary water excess, more tolerant of cold than sorghum at shooting and flowering and it is more drought resistant than maize. Soya is demanding crop and responds well to physical and chemical soil improvement. The grain of present-day varieties contains on average 40-43 % protein and 21 % oil in dry matter. The various uses for soybeans can be summarised thus: a; whole grain, ground or unground after cooking, for human and animal foods, b; oil in human nutrition, c; special oilseed cakes for human diet (low-fat flour) and on a larger scale, for animal nutrition as a complement to forages and cereals. In the subject of much soybean research has been to find means of improving yields (Norman 1963, Walter et al. 1970, Caldwell 1973, Hinson and Hartwig 1977, Mengel and Kirkby 1982, Marcus-Wuner 1983, Márton et al. 1990, Németh 1995). Among the means for yield improvement fertilizers (nitrogen) occupy a prime position. The nitrogen is indispensable to the plant, being a yield and an essential constituent of amino acids, proteins and nucleic acids (Fauconnier 1986). Soya uses some 300

  16. In silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in Phaseolus vulgaris L. and Glycine max L. Merr

    Directory of Open Access Journals (Sweden)

    Yarmilla eReinprecht

    2013-09-01

    Full Text Available Legumes contain a variety of phytochemicals derived from the phenylpropanoid pathway that have important effects on human health as well as seed coat color, plant disease resistance and nodulation. However, the information about the genes involved in this important pathway is fragmentary in common bean (Phaseolus vulgaris L.. The objectives of this research were to isolate genes that function in and control the phenylpropanoid pathway in common bean, determine their genomic locations in silico in common bean and soybean, and analyze sequences of the 4CL gene family in two common bean genotypes. Sequences of phenylpropanoid pathway genes available for common bean or other plant species were aligned, and the conserved regions were used to design sequence-specific primers. The PCR products were cloned and sequenced and the gene sequences along with common bean gene-based (g markers were BLASTed against the Glycine max v.1.0 genome and the P. vulgaris v.1.0 (Andean early release genome. In addition, gene sequences were BLASTed against the OAC Rex (Mesoamerican genome sequence assembly. In total, fragments of 46 structural and regulatory phenylpropanoid pathway genes were characterized in this way and placed in silico on common bean and soybean sequence maps. The maps contain over 250 common bean g and SSR (simple sequence repeat markers and identify the positions of more than 60 additional phenylpropanoid pathway gene sequences, plus the putative locations of seed coat color genes. The majority of cloned phenylpropanoid pathway gene sequences were mapped to one location in the common bean genome but had two positions in soybean. The comparison of the genomic maps confirmed previous studies, which show that common bean and soybean share genomic regions, including those containing phenylpropanoid pathway gene sequences, with conserved synteny. Indels identified in the comparison of Andean and Mesoamerican common bean sequences might be used to develop

  17. Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max.

    Directory of Open Access Journals (Sweden)

    Zhaoyun Wu

    Full Text Available BACKGROUND: Phosphorus is one of the macronutrients essential for plant growth and development. The acquisition and translocation of phosphate are pivotal processes of plant growth. In a large number of plants, phosphate uptake by roots and translocation within the plant are presumed to occur via a phosphate/proton cotransport mechanism. PRINCIPAL FINDINGS: We cloned two cDNAs from soybean (Glycine max, GmPT1 and GmPT2, which show homology to the phosphate/proton cotransporter PHO84 from the budding yeast Saccharomyces cerevisiae. The amino acid sequence of the products predicted from GmPT1 and GmPT2 share 61% and 63% identity, respectively, with the PHO84 in amino acid sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass values are ∼58.7 kDa for GmPT1 and ∼58.6 kDa for GmPT2. Transiently expressed GFP-protein fusions provide direct evidence that the two Pi transporters are located in the plasma membrane. Uptake of radioactive orthophosphate by the yeast mutant MB192 showed that GmPT1 and GmPT2 are dependent on pH and uptake is reduced by the addition of uncouplers of oxidative phosphorylation. The K(m for phosphate uptake by GmPT1 and GmPT2 is 6.65 mM and 6.63 mM, respectively. A quantitative real time RT-PCR assay indicated that these two genes are expressed in the roots and shoots of seedlings whether they are phosphate-deficient or not. Deficiency of phosphorus caused a slight change of the expression levels of GmPT1 and GmPT2. CONCLUSIONS: The results of our experiments show that the two phosphate transporters have low affinity and the corresponding genes are constitutively expressed. Thereby, the two phosphate transporters can perform translocation of phosphate within the plant.

  18. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  19. Evolution and structural diversification of Nictaba-like lectin genes in food crops with a focus on soybean (Glycine max).

    Science.gov (United States)

    Van Holle, Sofie; Rougé, Pierre; Van Damme, Els J M

    2017-03-01

    The Nictaba family groups all proteins that show homology to Nictaba, the tobacco lectin. So far, Nictaba and an Arabidopsis thaliana homologue have been shown to be implicated in the plant stress response. The availability of more than 50 sequenced plant genomes provided the opportunity for a genome-wide identification of Nictaba -like genes in 15 species, representing members of the Fabaceae, Poaceae, Solanaceae, Musaceae, Arecaceae, Malvaceae and Rubiaceae. Additionally, phylogenetic relationships between the different species were explored. Furthermore, this study included domain organization analysis, searching for orthologous genes in the legume family and transcript profiling of the Nictaba -like lectin genes in soybean. Using a combination of BLASTp, InterPro analysis and hidden Markov models, the genomes of Medicago truncatula , Cicer arietinum , Lotus japonicus , Glycine max , Cajanus cajan , Phaseolus vulgaris , Theobroma cacao , Solanum lycopersicum , Solanum tuberosum , Coffea canephora , Oryza sativa , Zea mays, Sorghum bicolor , Musa acuminata and Elaeis guineensis were searched for Nictaba -like genes. Phylogenetic analysis was performed using RAxML and additional protein domains in the Nictaba-like sequences were identified using InterPro. Expression analysis of the soybean Nictaba -like genes was investigated using microarray data. Nictaba -like genes were identified in all studied species and analysis of the duplication events demonstrated that both tandem and segmental duplication contributed to the expansion of the Nictaba gene family in angiosperms. The single-domain Nictaba protein and the multi-domain F-box Nictaba architectures are ubiquitous among all analysed species and microarray analysis revealed differential expression patterns for all soybean Nictaba-like genes. Taken together, the comparative genomics data contributes to our understanding of the Nictaba -like gene family in species for which the occurrence of Nictaba domains had not

  20. Comparative Analysis of Two Stress-Inducible tau Class Glutathione Transferases from Glycine max Revealed Significant Catalytic and Structural Diversification.

    Science.gov (United States)

    Pouliou, Fotini; Perperopoulou, Fereniki; Labrou, Nikolaos E

    2017-01-01

    Glutathione transferases (GSTs, EC. 2.5.1.18) form a large group of multifunctional enzymes that are involved in the metabolism and inactivation of a wide range of endogenous and xenobiotic compound as well as in cell regulation and response to several biotic and abiotic stresses. In the present work, we report the comparative analysis of the structural and functional features of two isoenzymes (GmGSTU5-5 and GmGSTU8-8) of the glutathione transferase (GST) family from Glycine max. Full-length cDNA clones of GmGSTU5-5 and GmGSTU8-8 were derived from RT-PCR of RNA isolated from soybean seedlings and were cloned into a T7 expression vector. Τhe recombinant enzymes were expressed in E. coli and purified by affinity chromatography. Substrate specificity, kinetic and inhibition analysis were carried out towards a range of different xenobiotic compounds and GSH analogues. The thermal stability of the enzymes was also evaluated using activity assays and differential scanning fluorimetry. Analysis of substrate specificity using a range of thiol substrates and electrophilic compounds suggested that both isoenzymes display broad and overlapping specificities. They are capable of detoxifying major stress-induced toxic products. Study of their ligandin-binding properties by kinetic analysis and molecular modelling indicated that both GmGSTU5-5 and GmGSTU8-8 bind a range of secondary metabolites and plant hormones, suggesting a role in transport or storage of bioactive compounds. Thermostability analysis showed that GmGSTU5-5 and GmGSTU8-8 display extraordinary thermal stability, compared to other plant GSTs. Our results suggest that GmGSTU5-5 and GmGSTU8-8 display different or overlapping substrate specificities and kinetic properties. The biological role of GmGSTU5-5 and GmGSTU8-8 may be relevant to the detoxification of toxic compounds or the binding of bioactive metabolites that function in cell regulation and stress defence mechanisms. Copyright© Bentham Science

  1. RELACIÓN BIOMASA DE RAÍZ/BIOMASA TOTAL DE SOJA (Glycine max EN DOS SISTEMAS DE LABRANZA

    Directory of Open Access Journals (Sweden)

    Mónica Beatriz Barrios

    2014-07-01

    Full Text Available La soja es el principal cultivo en Argentina debido a su adaptación a los suelos, la incorporación de tecnología con el empleo de la siembra directa y el precio del mercado internacional. Las propiedades físicas, químicas y biológicas de cada suelo se ven modificadas por el tipo de sistema de laboreo empleado. El entorno generado por la labranza altera el crecimiento y el equilibrio funcional de los cultivos herbáceos. En el año 2006, se instaló un ensayo en el Partido de Ezeiza (Pampa Ondulada, con el objetivo de evaluar los efectos del sistema de laboreo en el equilibrio funcional entre biomasa de raíces/biomasa total en soja (Glycine max durante la campaña 2012/2013. Se utilizó un diseño de bloques completos al azar con dos tratamientos que consistieron en: labranza convencional (LC y siembra directa (SD, con cuatro repeticiones. Se midió: peso de biomasa aérea, área foliar, rendimiento en grano, peso de raíces de 0-10 y 10-20 cm de profundidad, y se calculó biomasa total y la relación biomasa de raíces/biomasa total. El peso de raíces se determinó con el método del cilindro, el área foliar con el paquete estadístico Iproplus y el rendimiento con el cuadrado de corte. Los datos obtenidos fueron sometidos a análisis de varianza y las medias de los tratamientos fueron comparadas según Tukey (P < 0.05. El efecto del sistema de labranza generó diferentes respuestas en función de la variable evaluada y la fecha de muestreo. LC resultó significativamente superior (P < 0.05 respecto a SD en biomasa total y biomasa aérea en las etapas fenológicas R3 y R5; biomasa de raíces en R1 y R3; IAF en R2, R3 y R5. El rendimiento en grano fue mayor en LC respecto de SD, sin embargo el sistema de labranza no afectó la relación biomasa de raíz/biomasa total.

  2. QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar 'L-10'

    Directory of Open Access Journals (Sweden)

    Zhang Hongxia

    2011-05-01

    Full Text Available Abstract Background Resistance of soybean (Glycine max L. Merr. cultivars to populations of cyst nematode (SCN; Heterodera glycines I. was complicated by the diversity of HG Types (biotypes, the multigenic nature of resistance and the temperature dependence of resistance to biotypes. The objective here was to identify QTL for broad-spectrum resistance to SCN and examine the transcript abundances of some genes within the QTL. Results A Total of 140 F5 derived F7 recombinant inbred lines (RILs were advanced by single-seed-descent from a cross between 'L-10' (a soybean cultivar broadly resistant to SCN and 'Heinong 37' (a SCN susceptible cultivar. Associated QTL were identified by WinQTL2.1. QTL Qscn3-1 on linkage group (LG E, Qscn3-2 on LG G, Qscn3-3 on LG J and Qscn14-1 on LG O were associated with SCN resistance in both year data (2007 and 2008. Qscn14-2 on LG O was identified to be associated with SCN resistance in 2007. Qscn14-3 on LG D2 was identified to be associated with SCN resistance in 2008. Qscn14-4 on LG J was identified to be associated with SCN resistance in 2008. The Qscn3-2 on LG G was linked to Satt309 (less than 4 cM, and explained 19.7% and 23.4% of the phenotypic variation in 2007 and 2008 respectively. Qscn3-3 was less than 5 cM from Satt244 on LG J, and explained 19.3% and 17.95% of the phenotypic variations in 2007 and 2008 respectively. Qscn14-4 could explain 12.6% of the phenotypic variation for the SCN race 14 resistance in 2008 and was located in the same region as Qscn3-3. The total phenotypic variation explained by Qscn3-2 and Qscn3-3 together was 39.0% and 41.3% in 2007 and 2008, respectively. Further, the flanking markers Satt275, Satt309, Sat_350 and Satt244 were used for the selection of resistant lines to SCN race 3, and the accuracy of selection was about 73% in this RIL population. Four genes in the predicted resistance gene cluster of LG J (chromosome 16 were successfully cloned by RT-PCR. The transcript

  3. Identification of Alternaria alternata Mycotoxins by LC-SPE-NMR and Their Cytotoxic Effects to Soybean (Glycine max Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Edson Rodrigues-Filho

    2013-02-01

    Full Text Available This present work describes the application of liquid chromatograpy-solid phase extraction-nuclear magnetic resonance spectroscopy to analyse Alternaria alternata crude extracts. Altenusin (1, alternariol (2, 3'-hydroxyalternariol monomethyl ether (3, and alternariol monomethyl ether (4, were separated and identified. High-resolution mass spectrometry confirmed the proposed structures. The cytotoxic effects of these compounds towards plants were determined using soybean (Glycine max cell cultures as a model. EC50 values which range from 0.11 (±0.02 to 4.69 (±0.47 μM showed the high cytotoxicity of these compounds.

  4. Efeito do metribuzin no controle das plantas daninhas e na produção de grãos em Glycine max (L merrill Effect of metribuzin in weed control and yield of Glycine max (L. merrill

    Directory of Open Access Journals (Sweden)

    J. P. Silva Neto

    1991-01-01

    Full Text Available No ano agrícola 1985/ 86, em Viçosa-MG, foi instalado um ensaio de campo em solo Pdzólico Vermelho-Amarelo argiloso e com 2,9% de matéria orgânica, objetivando estudar o efeito das doses de metribuzin (0,0; 0,35; 0,70 e 1,05 kg i.a.ha-1 no controle de plantas daninhas e na produtividade da soja (Geycine max (L. Merri ll, cv. 'Uber aba'. A maioria das monocotiledôneas que ocorreram na area experimental foi represent ada por Cyperus rotundus L., Brachiaria plantaginea (Link Hitch. e Cynodon dactylon (L. Pers., tendo-se verificado somente redução em Brachiaria planta taginea em virtude do aumento das doses de metribuzin, ocorrendo o mesmo com relação às dicotiledôneas que se fizerem presentes no experimento, com exceção de Oxalis Oxyptera Prop., que não foi controlada nas doses utilizadas. A densidade total médias das invasoras, menos Cyperus rotundus , Oxalis oxyptera e Cynodon dactylon, foi de 141; 124; 62 e 59 plantas . m-2, respectivamente, para as doses de 0,0; 0,35 ; 0,70 e 1,05 kg i.a.ha-1 de metribuzin. A dose de 0,35 kg i.a. de metribuzin.ha-1 foi suficiente para promover a redução da matéria seca da parte aérea das plantas daninhas com a mesma eficiência de controle da dose de 1,05 kg i.a .ha-1 Entretanto, a densidade total médil das invasoras foi reduzida sig nificativamente nas doses de 0,70 e 1,05 kg i.a. de metribuzin.ha-l. O efeito do metribuzin na soja foi evidenciado somente na dose de 1,05 kg i.a.ha-1, com injúria foliar (clorose leve ocorrida até 25 dias, aproximadamente, apôs a emergência das plântulas. Após esse período, houve total recuperação de todas as plantas de soja submetidas a essa dose. A produção de grão se o índice de colheita não foram influencia dos significativamente pelas doses de metribuzin.In order to test doses of metribu zin (0,0; 0,35; 0,70 and 1,05 kg a.i.ha ¹ in weed control and yield of soybe an (Glycine max (L. Merri ll, Uberaba, an experiment was conducted under

  5. Seleccion de cepas de rizobios en suelos promisorios para el cultivo de la soya (Glycine max (L Merril en Colombia

    Directory of Open Access Journals (Sweden)

    Sylvester Bradley Rosemary

    1989-06-01

    Full Text Available En el invernadero se evaluó la efectividad de las cepas preseleccionadas de B. japonicum (CIAT 199,209,3778,3874 y 3876 de la recomendada (CIAT51 y una de Rhizobium spp (CIAT 3779. En el suelo Fluventic Haplustoll, de reacción casi neutra, se presentó respuesta altamente significativa a la inoculación. El tratamiento fertilizado con 150 kg de N/ha produjo el mayor rendimiento de N. Las cepas más efectivas fueron CIAT 3778 y 51, que también presentaron el mayor indice de efectividad a la inoculación (IEI. En el suelo Typic Pellustert,de reacción alcalina, se presentó respuesta significativa a la inoculación. El mayor rendimiento de N se obtuvo con las cepas CIAT 3778 y 51, que fueron además estadísticamente iguales a las cepas CIAT 199 y 3876 en cuanto al IEI. En el suelo Arenic Haplustalf, de reacción ligeramente ácida, hubo respuesta altamente significativa a la inoculación y la cepa más efectiva fue la CJAT 199. En el suelo Fluventic Ustropept, de reacci6n ligeramente ácida, se presentaron diferencias significativas entre los tratamientos inoculados. El mayor rendimiento de N se presentó en el tratamiento fertilizado con N. Las mejores cepas fueron CIAT 3778,3779 y 209. En el suelo Vertic Ustropept, de reacción alcalina, se presentó respuesta altamente significativa a la inoculación. En cuanto al rendimiento de N no se encontraron diferencias entre el tratamiento fertilizado con N y las cepas CIAT 51, 209 y CIAT 3778, siendo también las más efectivas en cuanto al IEI, junto oon la cepa CIAT 199. En los suelos Tropentic Haplorthox y Typic Tropudult no se enoontró respuesta a la inoculación.Screening of Rhizobium strains in soils apt for soybean (Glycine max (L Merril cultivation in Colombia. Under greenhouse conditions were evaluated the effectivity of the preselected strains of the preselected strains of B. japonicum (CIAT 199, 209, 3778, 3874 and 3876, in addition to the recommended strain (CIAT 51 and one of

  6. Manganese (Mn) stress toward hyperaccumulators plants combination (HPC) using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition on soybean (Glycine max) seedling stage

    Science.gov (United States)

    Darmawan, Tania Sylviana; Zahroh, Tata Taqiyyatuz; Merindasya, Mirza; Masfaridah, Ririn; Hartanti, Dyah Ayu Sri; Arum, Sekar; Nurhatika, Sri; Muhibuddin, Anton; Surtiningsih, Tini; Arifiyanto, Achmad

    2017-06-01

    Heavy metals were a metal bracket which had a specific gravity greater than 5 g / cm3. Manganese was one of them because it has a specific gravity of 7.4 g / cm3. Together with widespread cases of soil contamination caused by heavy metals as well as increased development of the science of breeding ground rapidly, then the alternative rehabilitation techniques were relatively cheap and effective it needs to be developed and even some cases of contaminated management soil using a combination of plants with microorganisms to be more effective. Thus it was necessary to develop research on plants that were able to accumulate heavy metals and other toxic materials, such as Mn so that the land becomes safe for health and the environment. Based on above reason this research aimed to see the influence of hyperaccumulators combination of plants using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition to stressed by manganese (Mn) on soybean (Glycine max). Observations of growth, chlorophyll content and heavy metals analysis performed on nine treatments (P1-P9) and one control (P0). The results showed a combination of hyperaccumulators under mychorrizal helped overcome the stress of manganese (Mn) in the leaves of soybean (G. max). It gave an influence on the number of leaves and chlorophyll content of soybean (G. max), but no effect performed on the height and the roots of soybean (G. max). The use of plants in small amounts hyperaccumulators (P1;1 jatropha and 1 lamtoro) was sufficient to cope with stress of Mn in the leaves of soybean (G. max).

  7. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Yungang Xu

    Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional

  8. Newly identified resistance to soybean aphid (Aphis glycines) in soybean plant introduction lines

    Science.gov (United States)

    Host-plant resistance is potentially efficacious in managing the soybean aphid (SA, Aphis glycines Matsumura), a major invasive pest in northern soybean-production regions of North America. However, development of aphid-resistant soybean has been complicated by the presence of virulent SA biotypes,...

  9. Identification of large variation in the photosynthetic induction response among 37 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity.

    Science.gov (United States)

    Soleh, M A; Tanaka, Y; Kim, S Y; Huber, S C; Sakoda, K; Shiraiwa, T

    2017-03-01

    Irradiance continuously fluctuates during the day in the field. The speed of the induction response of photosynthesis in high light affects the cumulative carbon gain of the plant and could impact growth and yield. The photosynthetic induction response and its relationship with the photosynthetic capacity under steady-state conditions (P max ) were evaluated in 37 diverse soybean [Glycine max (L.) Merr.] genotypes. The induction response of leaf photosynthesis showed large variation among the soybean genotypes. After 5 min illumination with strong light, genotype NAM23 had the highest leaf photosynthetic rate of 33.8 µmol CO 2 m -2  s -1 , while genotype NAM12 showed the lowest rate at 4.7 µmol CO 2 m -2  s -1 . Cumulative CO 2 fixation (CCF) during the first 5 min of high light exposure ranged from 5.5 mmol CO 2 m -2 for NAM23 to 0.81 mmol CO 2 m -2 for NAM12. The difference in the induction response among genotypes was consistent throughout the growth season. However, there was no significant correlation between CCF and P max among genotypes suggesting that different mechanisms regulate P max and the induction response. The observed variation in the induction response was mainly attributed to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation, but soybean lines differing in the induction response did not differ in the leaf content of Rubisco activase α- and β-proteins. Future studies will be focused on identifying molecular determinants of the photosynthetic induction response and determining whether this trait could be an important breeding target to achieve improved growth of soybeans in the field.

  10. Likelihood assessment for gene flow of transgenes from imported genetically modified soybean (Glycine max(L.) Merr.) to wild soybean (Glycine sojaSeib. et Zucc.) in Japan as a component of environmental risk assessment.

    Science.gov (United States)

    Goto, Hidetoshi; McPherson, Marc A; Comstock, Bradley A; Stojšin, Duška; Ohsawa, Ryo

    2017-09-01

    Environmental risk assessment is required for genetically modified (GM) crops before their import into Japan. Annual roadside monitoring along transportation routes from ports to processing facilities for GM soybean ( Glycine max (L.) Merr.) have been requested as a condition of import only approval because of lack of information on the likelihood of persistence of imported GM soybean for food, feed and processing and the potential for transfer of transgenes into wild soybean ( Glycine soja Seib. et Zucc.) through gene flow under the Japanese environment. The survey of soybean seeds, plants and wild soybean populations were conducted along transportation routes from unloading ports to processing facilities that provided data to help quantify actual exposure. The survey indicated that the opportunities for co-existence and subsequent crossing between wild soybean populations and imported soybean are highly unlikely. Together the survey results and the comprehensive literature review demonstrated low exposure of imported GM soybean used for food, feed and processing in Japan. This evaluation of exposure level is not specific to particular GM soybean event but can apply to any GM soybean traits used for food, feed and processing if their weediness or invasiveness are the same as those of the conventional soybean.

  11. Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata [L] Wilczek).

    Science.gov (United States)

    María Landete, José; Hernández, Teresa; Robredo, Sergio; Dueñas, Montserrat; de Las Rivas, Blanca; Estrella, Isabel; Muñoz, Rosario

    2015-03-01

    Mung beans (Vigna radiata [L] Wilczek) purchased from a Spanish company as "green soybeans", showed a different phenolic composition than yellow soybeans (Glycine max cv. Merit). Isoflavones were predominant in yellow soybeans, whereas they were completely absent in the green seeds on which flavanones were predominant. In order to enhance their health benefits, both types of bean were subjected to technological processes, such as soaking and fermentation. Soaking increased malonyl glucoside isoflavone extraction in yellow beans and produced an increase in apigenin derivatives in the green beans. Lactobacillus plantarum CECT 748 T fermentation produced an increase in the bioactivity of both beans since a conversion of glycosylated isoflavones into bioactive aglycones and an increase of the bioactive vitexin was observed in yellow and green beans, respectively. In spite of potential consumer confusion, since soybean and "green soybean" are different legumes, the health benefits of both beans were enhanced by lactic fermentation.

  12. Gene transcript accumulation and in situ mRNA hybridization of two putative glutamate dehydrogenase genes in etiolated Glycine max seedlings.

    Science.gov (United States)

    Dimou, M; Tsaniklidis, G; Aivalakis, G; Katinakis, P

    2015-01-01

    Glutamate dehydrogenase (EC 1.4.1.2) is a multimeric enzyme that catalyzes the reversible amination of α-ketoglutarate to form glutamate. We characterized cDNA clones of two Glycine max sequences, GmGDH1 and GmGDH2, that code for putative α- and β-subunits, respectively, of the NADH dependent enzyme. Temporal and spatial gene transcript accumulation studies using semiquantitative RT-PCR and in situ hybridization have shown an overlapping gene transcript accumulation pattern with differences in relative gene transcript accumulation in the organs examined. Detection of NADH-dependent glutamate dehydrogenase activity in situ using a histochemical method showed concordance with the spatial gene transcript accumulation patterns. Our findings suggest that although the two gene transcripts are co-localized in roots of etiolated soybean seedlings, the ratio of the two subunits of the active holoenzyme may vary among tissues.

  13. Effect of Rhizobium sp. BARIRGm901 inoculation on nodulation, nitrogen fixation and yield of soybean (Glycine max) genotypes in gray terrace soil.

    Science.gov (United States)

    Alam, Faridul; Bhuiyan, M A H; Alam, Sadia Sabrina; Waghmode, Tatoba R; Kim, Pil Joo; Lee, Yong Bok

    2015-01-01

    Soybean plants require high amounts of nitrogen, which are mainly obtained from biological nitrogen fixation. A field experiment was conducted by soybean (Glycine max) genotypes, growing two varieties (Shohag and BARI Soybean6) and two advanced lines (MTD10 and BGM02026) of soybean with or without Rhizobium sp. BARIRGm901 inoculation. Soybean plants of all genotypes inoculated with Rhizobium sp. BARIRGm901 produced greater nodule numbers, nodule weight, shoot and root biomass, and plant height than non-inoculated plants. Similarly, inoculated plants showed enhanced activity of nitrogenase (NA) enzyme, contributing to higher nitrogen fixation and assimilation, compared to non-inoculated soybean plants in both years. Plants inoculated with Rhizobium sp. BARIRGm901 also showed higher pod, stover, and seed yield than non-inoculated plants. Therefore, Rhizobium sp. BARIRGm901 established an effective symbiotic relationship with a range of soybean genotypes and thus increased the nodulation, growth, and yield of soybean grown in gray terrace soils in Bangladesh.

  14. Papel da redutase do nitrato em soja [Glycine max(L.) Merr. Cv IAC-17] sob condições de hipoxia do sistema radicular

    OpenAIRE

    Andrea Dias Brandão

    2005-01-01

    Resumo: A soja [Glycine Max (L.) Merr.] tem sido um dos modelos mais usados entre as plantas cultivadas para estudar os efeitos de tolerância à hipóxia, já que é tida como uma planta com certo grau de tolerância ao estresse de oxigênio e sua importância também tem um caráter econômico bastante relevante. Condições de hipóxia são comuns na natureza, por exemplo em campos alagados onde a difusão de oxigênio para o sistema radicular fica bastante prejudicada. Quando o estresse ocorre em tempo pr...

  15. Effects of enhanced UVB on growth and yield of alfalfa (Medic ago Sativa L.) and soybean (Glycine max L.) under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydoun, S.A.; Mohamad, A.

    1997-04-01

    The effects of 20% increase of UVB on growth and yield of alfalfa (Medicago Sativa L.) and two cultivars of soybean (Glycine Max (L.) Mer) under field conditions have been investigated. The increase of UVB dose ranged between 1.746 and 7.112 J/cm 2 during experiment. The results showed that soybean yield decrease by 16% and 31% in A. 3803 and A. 2522 cultivars respectively, under UVB exposure. The dry weight and leaf area were sensitive in the A. 3803 cultivar, while they were tolerant in the A. 2522 cultivar. Alfalfa response to UVB varied during the different stages of growth, whereas the yield was 12% less in the exposed plants. (author). 21 refs., 17 tabs

  16. Genome-Wide Comparative In Silico Analysis of the RNA Helicase Gene Family in Zea mays and Glycine max: A Comparison with Arabidopsis and Oryza sativa

    Science.gov (United States)

    Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  17. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    Science.gov (United States)

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  18. Analysis and modeling of dry matter production rate by soybean [Glycine max] community: Curvilinear response to radiation intensity

    International Nuclear Information System (INIS)

    Sameshima, R.

    1996-01-01

    The linear relationship between the amount of absorbed radiation and dry matter production by crop communities has long been known, and the proportionality constant between them is known as the radiation use efficiency (RUE). To analyze and predict crop production using RUE, the assumption is often made that RUE is not sensitive to radiation intensity and that dry matter production rate (DMPR) is a linear function of radiation intensity.However, there is evidence in opposition to this assumption, including reports of increasing RUE in shade tests, and hyperbolic response of photosynthetic rate to radiation intensity. The following model was developed and used to analyze the response of DMPR and RUE to daily radiation R S : DMPR = DMPR max (R S ) * g(α) where DMPR max (R S ) is the DMPR of a hypothetical soybean community absorbing all radiation, and g(α) represents the effect of radiation absorptivity (α). A hyperbolic curve and a straight line were employed for DMPR max (R S ) and g(α), respectively. Field experimental data including shade tests were used to determine the parameters for the model. Two sets of parameters were required to cover the entire experimental period. DMPR max (R S ) had an apparent curvilinear relationship with R S . The model successfully described dry matter production under successive low radiation conditions, which could not be estimated by a model with RUE insensitive to radiation. (author)

  19. Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants1[OPEN

    Science.gov (United States)

    Wang, Bing; Sumit, Rishi; Srivastava, Subodh K.; Yang, Yang; Swaminathan, Sivakumar

    2018-01-01

    Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1. In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome. PMID:29101280

  20. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  1. Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays)

    Science.gov (United States)

    2005-01-01

    Unlike animals which accumulate glutathione (γ-glutamyl-L-cysteinyl-glycine) alone as their major thiol antioxidant, several crops synthesize alternative forms of glutathione by varying the carboxy residue. The molecular basis of this variation is not well understood, but the substrate specificity of the respective GSs (glutathione synthetases) has been implicated. To investigate their substrate tolerance, five GS-like cDNAs have been cloned from plants that can accumulate alternative forms of glutathione, notably soya bean [hGSH (homoglutathione or γ-glutamyl-L-cysteinyl-β-alanine)], wheat (hydroxymethylglutathione or γ-glutamyl-L-cysteinyl-serine) and maize (γ-Glu-Cys-Glu). The respective recombinant GSs were then assayed for the incorporation of differing C-termini into γ-Glu-Cys. The soya bean enzyme primarily incorporated β-alanine to form hGSH, whereas the GS enzymes from cereals preferentially catalysed the formation of glutathione. However, when assayed with other substrates, several GSs and one wheat enzyme in particular were able to synthesize a diverse range of glutathione variants by incorporating unusual C-terminal moieties including D-serine, non-natural amino acids and α-amino alcohols. Our results suggest that plant GSs are capable of producing a diverse range of glutathione homologues depending on the availability of the acyl acceptor. PMID:16008521

  2. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes.

    Science.gov (United States)

    Kovinich, Nik; Saleem, Ammar; Arnason, John T; Miki, Brian

    2011-07-29

    The R locus controls the color of pigmented soybean (Glycine max) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (iRT) and brown (irT) soybean (Glycine max) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-O-glycosyltransferase (UGT78K1) from the seed coat of black (iRT) soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether UGT78K1 was overexpressed with anthocyanin biosynthesis in the black (iRT) seed coat compared to the nearly-isogenic brown (irT) tissue.In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system. Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (iRT) or the brown (irT) seed coat. A global analysis of gene expressions identified UGT78K1 and 19 other anthocyanin, (iso)flavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis in vitro and expression

  3. Evaluación de variedades de soya (Glycine max (L Merr con diferente hábito de crecimiento según los niveles de riego

    Directory of Open Access Journals (Sweden)

    Chinchilla R. Germán

    1988-06-01

    Full Text Available Se evaluaron 15 genotipos de soya Glycine max (L Merr. de hábito de crecimiento determinado (CD, semideterminado (SO, indeterminado (CI aplicando 5 niveles de riego suplementario y uno sin riego de efectos fijos en la época más seca del año. Las variables fisiológicas, el rendimiento y sus componentes se evaluaron en R2 (floración completa, R2 (inicio de llenado de grano R7 (madurez fisiológica y R8 (cosecha. Las variables fisiológicas de la soya presentan óptima expresión con riego alrededor de 400 mm y reducciones significativas aplicando menos de 324 mm de siembra a cosecha. La disminución del IAF en R5 con niveles de poca humedad puede ser el principal mecanismo de tolerancia a sequía. Principalmente por la senescencia y abscisión de hojas de la planta. Las variedades entre y dentro de hábito de crecimiento difieren en su capacidad para sostener el rendimiento final, permitiendo seleccionar genotipos tolerantes a sequía (línea – 121 (CD ICA- Tunía (CS y L-141 (CI.Fifteen genotypes of Glycine max (L Merr. with determinate (CO semideterminate (SO and indeterminate (ID growth habits were evaluate by applying five levels of suplementary irrigation and one without irrigation of permanent effects during the year dry season. The physiologic variables, yield, components were evaluated in R2 (total flowering, R5 (begining of grain replenishrnen, R7 (physiologic maturity and R8 (harvest. The physiologic variables of soybean present and optimun expression applying about 400 mm of irrigation, and showed an significant reduction applying less than 324 mm between planting and harvest. The reduction of foliar area index (FAI in R5 and low humidity levels can be the main mechanism of drowght tolerance by senescence absition of leaves. The varietys inside and among the growth habits showed different in their capacity to surtain the final yield allowing to select genotypes for their drought tolerance (line L-121 (CO,ICA-Tunía (CS, L-141

  4. A Technique for Evaluating Heterodera glycines Development in Susceptible and Resistant Soybean.

    Science.gov (United States)

    Halbrendt, J M; Lewis, S A; Shipe, E R

    1992-03-01

    A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; 'Pickett' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and 'Pickett' but not in PI 209332.

  5. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.

    Science.gov (United States)

    Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A

    2014-07-01

    Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Residual Effect Of Organic Fertilizer And Addition Inorganik Fertilizer To Nutrient Uptake Growth And Productions Of Black Soy Bean Glycine Max L. Merr At Rainfed Areas.

    Directory of Open Access Journals (Sweden)

    Elli Afrida

    2015-02-01

    Full Text Available Abstract Research that have theme Residual Effect of Organic Fertilizer and Addition Anorganik Fertilizer to Nutrient Uptake Growth and pruductions of Black Soy Bean Glycine max L. Merr at Rainfed Wetland. Research was conducted at Suka Makmur village sub-distric Binjai Distric Langkat. Research was arranged in split plot design main plot is applications of phonska fertilizerwith 4 level i.e 0 t ha-1 A0 0.20 t ha-1 A1 0.25 t ha-1 A2 dan 0.30 t ha-1 A3 and sub plot is residual effect from first research with 16 combinations. Research was replicated 3 times. Result of research was showed application organic fertilizer that was combinated with anorganic fertilizer can increased N and K uptake. Application organic and anorganic fertilizer as single factor showed significantly effect of number of pods and soy bean productions but at interaction treatment not significantly effect however generally occurs increased production at O33A3 tratment until 80 comparison with control.

  7. Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial

    Directory of Open Access Journals (Sweden)

    Jeong Tae-Sook

    2011-09-01

    Full Text Available Abstract Background Natural food supplements with high flavonoid content are often claimed to promote weight-loss and lower plasma cholesterol in animal studies, but human studies have been more equivocal. The aim of this study was firstly to determine the effectiveness of natural food supplements containing Glycine max leaves extract (EGML or Garcinia cambogia extract (GCE to promote weight-loss and lower plasma cholesterol. Secondly to examine whether these supplements have any beneficial effect on lipid, adipocytokine or antioxidant profiles. Methods Eighty-six overweight subjects (Male:Female = 46:40, age: 20~50 yr, BMI > 23 Results EGML and GCE supplementation failed to promote weight-loss or any clinically significant change in %body fat. The EGML group had lower total cholesterol after 10 weeks compared to the placebo group (p Conclusions Ten weeks of EGML or GCE supplementation did not promote weight-loss or lower total cholesterol in overweight individuals consuming their habitual diet. Although, EGML did increase plasma HDL-C levels which is associated with a lower risk of atherosclerosis.

  8. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max.

    Science.gov (United States)

    Alekseeva, A A; Kargov, I S; Kleimenov, S Yu; Savin, S S; Tishkov, V I

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

  9. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.).

    Science.gov (United States)

    Zhang, Ling; Zhao, Hong-Kun; Dong, Qian-Li; Zhang, Yuan-Yu; Wang, Yu-Min; Li, Hai-Yun; Xing, Guo-Jie; Li, Qi-Yun; Dong, Ying-Shan

    2015-01-01

    Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.

  10. Delineation of the structural and functional role of Arg111 in GSTU4-4 from Glycine max by chemical modification and site-directed mutagenesis.

    Science.gov (United States)

    Labrou, Nikolaos E; Muharram, Magdy Mohamed; Abdelkader, Maged Saad

    2016-10-01

    The structural and functional role of Arg111 in GSTU4-4 from Glycine max (GmGSTU4-4) was studied by chemical modification followed by site-directed mutagenesis. The arginine-specific reagent 2,3-butanedione (BTD) inactivates the enzyme in borate buffer at pH8.0, with pseudo-first-order saturation kinetics. The rate of inactivation exhibited a non-linear dependence on the concentration of BTD which can be described by reversible binding of reagent to the enzyme (KD 81.2±9.2mM) prior to the irreversible reaction, with maximum rate constants of 0.18±0.01min(-1). Protection from inactivation was afforded by substrate analogues demonstrating the specificity of the reaction. Structural analysis suggested that the modified residue is Arg111, which was confirmed by protein chemistry experiments. Site-directed mutagenesis was used in dissecting the role of Arg111 in substrate binding, specificity and catalytic mechanism. The mutant Arg111Ala enzyme exhibited unchanged Km value for GSH but showed reduced affinity for the xenobiotic substrates, higher kcat and specific activities towards aromatic substrates and lower specific activities towards aliphatic substrates. The biological significance of the specific modification of Arg111 by dicarbonyl compounds and the role of Arg111 as a target for engineering xenobiotic substrate specificity were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods.

    Science.gov (United States)

    Imura, Osamu; Shi, Kun; Iimura, Keiji; Takamizo, Tadashi

    2010-01-01

    We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods. © ISBR, EDP Sciences, 2011.

  12. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-08-31

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  13. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-08-01

    Full Text Available The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr., GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD. Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  14. Yield response of soy bean cultivars (Glycine max [L.] Merrill to the application of different doses of biofertilizer FitoMás–E

    Directory of Open Access Journals (Sweden)

    Yanitza Meriño Hernández

    2015-02-01

    Full Text Available This research was done under field conditions, from December 2012 through February 2013. The objective was to evaluate the yield response of soy bean (Glycine max [L.] Merrill, variety “INCASOY-24”, to the application of different doses of FitoMás-E, in a randomized block experimental design with 4 treatments: T1 (control, T2 (1 L.ha-1, T3 (1.5 L.ha-1 and T4 (2 L.ha-1, and 4 replications. The bioestimulant was applied to foliage early in the morning from the 10th day after germination. The data were analyzed statistically with Statistica, ver. 8.0 software. When the indicators used showed significant differences, the Duncan’s Multiple Range Test was applied to p < 0.05. The results of each evaluated variable showed a significant effect of FitoMás-E on the cultivar. The best results were achieved where the application dose was 1 L.ha-1 (T2.

  15. THE EFFECT OF SPRUCE BARK POLYPHENOLS EXTRACT IN COMBINATION WITH DEUTERIUM DEPLETED WATER (DDW ON GLYCINE MAX L. AND HELIANTHUS ANNUUS L. DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Corneliu Tanase

    2010-09-01

    Full Text Available The aim of this study was to evaluate the effect of spruce bark aqueous extract and deuterium depleted water (DDW as bioregulators on the plant growth Glycine max L. and Helianthus annuus. The following specific parameteres were closely monitorised: germination energy and germination capacity, plants vegetative organelles growth and development and photoassimilatory pigments concentrations. The results have shown that DDW presents different effects depending on tested plant species. In the case of soybean, DDW presented stimulatory effects on both germination energy and capacity, radicles elongation, primary leaves growth and development but inhibitory effects on photoassimilatory pigments. Spruce bark extract reduced the germination capacity of soybean seeds, but accelerated the germination process of sunflower seeds and present stimulatory effects on plantlets biomass accumulation. The combination of DDW with Picea abies polyphenolic extract promoted soybean plantlet elongation, especially the rootlets ones and stimulated green biomass accumulation for both soybean and sunflower plantlets. Analyzing the photoassimilatory pigments concentration for sunflower, it can be observed an increasing trend (almost 100% comparing with control when introduce into the growth medium DDW and P. abies polyphenolic extract. DDW and P. abies bark extract have shown an important role in plant growth and development, improving photoassimiliation process.

  16. Selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in greenhouse

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-07-01

    Full Text Available An experiment on the selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in green house. The aim of the experiment the selection and potency of the Rhizobium strain to increase the growth of soybean. The experiment was carried out in green house condition in Microbiology Division, Research Center for Biology-LIPI with sterile sand medium. The research design was Completely Randomized Design with three replications for each treatment. The Rhizobium strains used were 1 W (isolated from bean, Vigna radiata, 2 W (isolated from soybean, 3 W (isolated from bean, 4 W (isolated from soybean, 5 W (isolated from soybean, 6 W (isolated from peanut, Arachis hypogaea, 7 W (isolated from peanut, 8 W (isolated from peanut, the controls were uninoculated with Rhizobium strain and without urea fertilizer (K1, uninoculated and with urea fertilizer equal 100 kg/ha (K2. The plants were harvested after 50 days, the variable of investigation were the dry weight of canopy, roots, nodules root, total plants, number of nodules and ‘symbiotic capacity”. The results showed that all of experiment plant which be inoculated with Rhizobium able to form nodule. Strain of 2 W (isolated from soybean has given the best effects on the growth of soybean.

  17. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.)

    NARCIS (Netherlands)

    Santos, Carla S.; Roriz, Mariana; Pinto de Carvalho, S.M.P.; Vasconcelos, Marta W.

    2015-01-01

    Iron (Fe) deficiency chlorosis (IDC) leads to leaf yellowing, stunted growth and drastic yield losses. Plants have been differentiated into ‘Fe-efficient’ (EF) if they resist to IDC and ‘Fe-inefficient’ (IN) if they do not, but the reasons for this contrasting efficiency remain elusive. We grew

  18. Resistance of Soybean Cultivars to Heterodera glycines HG type 2.5 in Korea

    Directory of Open Access Journals (Sweden)

    Donggeun Kim

    2013-09-01

    Full Text Available A total of 75 soybean cultivars developed in Korea was screened against soybean cyst nematode (SCN, Heterodera glycines HG type 2.5. Cysts developed on soybean cultivars ranged from 104 to 624 cysts per pot. There was no resistant cultivar but ‘Jangyeopkong’, ‘Saealkong’, ‘Miryangkong’, and ‘Mansukong’ were moderately resistant; 33 cultivars were moderately susceptible and the other cultivars were susceptible. ‘Jangyeopkong’, ‘Saealkong’, ‘Miryangkong’, and ‘Mansukong’ could be recommended for soybean fields infested with SCN until developing SCN resistant soybean.

  19. Emisiones de óxido nitroso en un cultivo de soja [Glycine max (L. Merrill]: efecto de la inoculación y de la fertilización nitrógenada Nitrous oxide emission during a soybean [Glycine max (L. Merril] culture: inoculation and nitrogen fertilization effects

    Directory of Open Access Journals (Sweden)

    Ignacio A Ciampitti

    2005-12-01

    Full Text Available El óxido nitroso absorbe radiación infrarroja contribuyendo al efecto invernadero; este gas es producido principalmente en el suelo, mediante los procesos de nitrificación y denitrificación. En un estudio a campo, sobre un suelo Argiudol típico, se evaluó el efecto de la fertilización y la inoculación con Bradyrhizobium japonicum en un cultivo de soja [Glycine max (L. Merrill], sobre las emisiones de óxido nitroso. Los gases se extrajeron de cilindros de PVC y la lectura se realizó con cromatografía gaseosa. Las emisiones presentaron valores crecientes desde la siembra hacia madurez fisiológica del cultivo, para todos los tratamientos; este comportamiento fue concomitante con la evolución presentada por la humedad edáfica. La fertilización nitrogenada aumentó significativamente (PNitrous oxide gas absorbs infrared radiation contributing to the greenhouse effect; this gas is produced mainly in soil, by means of the processes of nitrification and denitrification. In a field study at the FAUBA on a typic Argiudol, we evaluated the effect of fertilization and inoculation with Bradyrhizobium japonicum during a soybean culture [Glycine max (L. Merrill], on nitrous oxide emisión. Gases were sampled with PVC cylinders and were read with gaseous chromatography. Emissions presented increasing values from seeding towards physiological maturity for all treatments; this behavior was similar to the evolution presented by nitrate level and soil moisture. Nitrogen fertilization significantly increased (P<0.05 nitrous oxide emissions and inoculation only had a significant effect with the highest level of fertilization (P=0.09. Plots fertilized at highest dose and inoculated gave the greatest nitrous oxide emissions. The variable that better explains the emissions is the nitrate level (r² = 0.1899; P=0.0231.

  20. Gamma-ray induction of a mutant soybean [Glycine max (L.) Merrill] line lacking all seed lipoxygenases

    International Nuclear Information System (INIS)

    Hajika, Makita; Suda, Ikuo; Sakai, Shinji; Takahashi, Masakazu

    1997-01-01

    Induction of a soybean line lacking all isozymes of seed lipoxygenase was attempted using γ-radiation and of 1,813 seeds in M 3 generation, only one was identified as a seed lacking all the isozymes by SDS-PAGE. This line did not present any physiological abnormality over 10 generations or more (M 4 -M 14 ) and no significant influence of the enzyme on the agricultural traits was observed during the performance test in fields. In the resistance test against insect pests, significant differences were not found among the varieties and the lines tested. These results suggest that deletion of all lipoxygenase isozymes would not affect the soybean production in practice. The lipoxygenase activity was not detected in the leaves as well as the seeds of this line, suggesting that this enzyme are not indispensable for the soybean growth. The validity of this line in food processing fields was examined through determining the levels of hexanal production and DETBA. This line was found able to improve the taste of soybean cookies and use in combination with other materials as flour, egg, etc. because the line has no lipoxygenase activity. (M.N.)

  1. Comparison of fluoride effects on germination and growth of Zea mays, Glycine max and Sorghum vulgare.

    Science.gov (United States)

    Fina, Brenda L; Lupo, Maela; Dri, Nicolas; Lombarte, Mercedes; Rigalli, Alfredo

    2016-08-01

    Fluorosis is a disease caused by over-exposure to fluoride (F). Argentina's rural lands have higher fluorine content than urban lands. Evidence confirms that plants grown in fluoridated areas could have higher F content. We compared F uptake and growth of crops grown in different F concentrations. The effect of 0-8 ppm F concentrations on maize, soybeans and sorghum germination and growth was compared. After 6 days seeding, the germination was determined, the roots and aerial parts lengths were measured, and vigor index was calculated. F content was measured in each part of the plants. Controls with equal concentrations of NaCl were carried out. Significant decrease in roots and aerial parts lengths, and in vigor index of maize and soybeans plants was observed with F concentrations greater than 2 ppm. This was not observed in sorghum seedlings. Also, the amount of F in all crops augmented as F increases, being higher in roots and ungerminated seeds. Sorghum was the crop with the highest F content. Fluoride decreased the germination and growth of maize and soybeans and therefore could influence on their production. Conversely, sorghum seems to be resistant to the action of F. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max seed coats enabling the identification of pigment isogenes

    Directory of Open Access Journals (Sweden)

    Arnason John T

    2011-07-01

    Full Text Available Abstract Background The R locus controls the color of pigmented soybean (Glycine max seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (iRT and brown (irT soybean (Glycine max were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-O-glycosyltransferase (UGT78K1 from the seed coat of black (iRT soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether UGT78K1 was overexpressed with anthocyanin biosynthesis in the black (iRT seed coat compared to the nearly-isogenic brown (irT tissue. In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system. Results Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (iRT or the brown (irT seed coat. A global analysis of gene expressions identified UGT78K1 and 19 other anthocyanin, (isoflavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin

  3. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  4. Mind your elders: wild soybean’s contribution to soybean aphid resistance

    Science.gov (United States)

    Currently, biotype 4 soybean aphid (Aphis glycines Matsamura, SBA) is the most virulent SBA biotype. Overcoming the most aphid resistant genes, SBA biotype 4 has become the greatest challenge in utilizing plant resistance in soybean [Glycine max (L.) Merr.]. Soybean’s wild ancestor Glycine soja (Sie...

  5. Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves.

    Science.gov (United States)

    Guruprasad, Kadur; Kadur, Guruprasad; Bhattacharjee, Swapan; Swapan, Bhattacharjee; Kataria, Sunita; Sunita, Kataria; Yadav, Sanjeev; Sanjeev, Yadav; Tiwari, Arjun; Arjun, Tiwari; Baroniya, Sanjay; Sanjay, Baroniya; Rajiv, Abhinav; Abhinav, Rajiv; Mohanty, Prasanna

    2007-01-01

    Exclusion of UV (280-380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34-46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants.

  6. Evaluation of replacement intercropping of soybean (Glycine max L. with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. under weed infestation

    Directory of Open Access Journals (Sweden)

    M. Bagheri Shirvan

    2016-05-01

    Full Text Available In order to evaluate intercropping of soybean (Glycine max L. cv. JK with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. with weed interference, an experiment was performed in randomized complete block design with 12 treatments and three replications at a field located 10 km of Shirvan during year of 2011. The treatments were included 75% soybean: 25%sweet basil, 50%soybean: 50% sweet basil, 25% soybean: 75% sweet basil, 75% soybean: 25% borage, 50% soybean: 50% borage and 25% soybean: 75% borage under weed infestation, in addition sole cropping of plants under weed control and weed interference. Intercropped plants had more success in reduction of weed density and biomass compared to monoculture. Soybean50: sweet basil50, reduced the weed density by 47.95% and 52.9%, and reduced the weed biomass by 68.91% and 61.87% more than sweet basil and soybean pure stand, respectively. Investigation of dry matter accumulation showed that increasing of plant proportion in intercropping caused increasing of plant dry matter. The height of soybean and borage was increased in intercropping and weed interference, while the highest height of sweet basil was observed in monoculture at second harvest. Biological and economical yield of soybean in intercropping with sweet basil was higher than intercropping with borage. The highest harvest index was related to 50:50 soybean: sweet basil ratio. In this ratio, the harvest index increased 4.9% compared to soybean monoculture. Yield of sweet basil and borage decreased with increasing of soybean rows in intercropping. Based on area-time equivalent ratio, soybean 75% with sweet basil and borage 25% (based on borage seed yield had 3% and 4% advantage compared to monoculture.

  7. Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map.

    Science.gov (United States)

    Cai, Zhandong; Cheng, Yanbo; Ma, Zhuwen; Liu, Xinguo; Ma, Qibin; Xia, Qiuju; Zhang, Gengyun; Mu, Yinghui; Nian, Hai

    2018-03-01

    Fifteen stable QTLs were identified using a high-density soybean genetic map across multiple environments. One major QTL, qIF5-1, contributing to total isoflavone content explained phenotypic variance 49.38, 43.27, 46.59, 45.15 and 52.50%, respectively. Soybeans (Glycine max L.) are a major source of dietary isoflavones. To identify novel quantitative trait loci (QTL) underlying isoflavone content, and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population comprised of 196 F 7:8-10 recombinant inbred lines (RILs, Huachun 2 × Wayao) was utilized to evaluate individual and total isoflavone content in plants grown in four different environments in Guangdong. A high-density genetic linkage map containing 3469 recombination bin markers based on 0.2 × restriction site-associated DNA tag sequencing (RAD-seq) technology was used to finely map QTLs for both individual and total isoflavone contents. Correlation analyses showed that total isoflavone content, and that of five individual isoflavone, was significantly correlated across the four environments. Based on the high-density genetic linkage map, a total of 15 stable quantitative trait loci (QTLs) associated with isoflavone content across multiple environments were mapped onto chromosomes 02, 05, 07, 09, 10, 11, 13, 16, 17, and 19. Further, one of them, qIF5-1, localized to chromosomes 05 (38,434,171-39,045,620 bp) contributed to almost all isoflavone components across all environments, and explained 6.37-59.95% of the phenotypic variance, especially explained 49.38, 43.27, 46.59, 45.15 and 52.50% for total isoflavone. The results obtained in the present study will pave the way for a better understanding of the genetics of isoflavone accumulation and reveals the scope available for improvement of isoflavone content through marker-assisted selection.

  8. Barcode System for Genetic Identification of Soybean [Glycine max(L.) Merrill] Cultivars Using InDel Markers Specific to Dense Variation Blocks.

    Science.gov (United States)

    Sohn, Hwang-Bae; Kim, Su-Jeong; Hwang, Tae-Young; Park, Hyang-Mi; Lee, Yu-Young; Markkandan, Kesavan; Lee, Dongwoo; Lee, Sunghoon; Hong, Su-Young; Song, Yun-Ho; Koo, Bon-Cheol; Kim, Yul-Ho

    2017-01-01

    For genetic identification of soybean [ Glycine max (L.) Merrill] cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, co-dominant and relatively abundant. Despite their biological importance, the investigation of InDels with proven quality and reproducibility has been limited. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a dense variation block (dVB) with non-random recombination due to many variations. Firstly, 2,274 VBs were mined by analyzing whole genome data in six soybean cultivars (Backun, Sinpaldal 2, Shingi, Daepoong, Hwangkeum, and Williams 82) for transferability to dVB-specific InDel markers. Secondly, 73,327 putative InDels in the dVB regions were identified for the development of soybean barcode system. Among them, 202 dVB-specific InDels from all soybean cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the markers were assessed in 147 soybean cultivars, and the soybean barcode system that allows a clear distinction among soybean cultivars is also detailed. In addition, the changing of the dVBs in a chromosomal level can be quickly identified due to investigation of the reshuffling pattern of the soybean cultivars with 27 maker sets. Especially, a backcross-inbred offspring, "Singang" and a recurrent parent, "Sowon" were identified by using the 27 InDel markers. These results indicate that the soybean barcode system enables not only the minimal use of molecular markers but also comparing the data from different sources due to no need of exploiting allele binning in new varieties.

  9. Kinetic characterization, optimum conditions for catalysis and substrate preference of secretory phospholipase A2 from Glycine max in model membrane systems.

    Science.gov (United States)

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-01-01

    Two secretory phospholipase A2 (sPLA2s) from Glycine max, GmsPLA2-IXA-1 and GmsPLA2-XIB-2, have been purified as recombinant proteins and the activity was evaluated in order to obtain the optimum conditions for catalysis using mixed micelles and lipid monolayers as substrate. Both sPLA2s showed a maximum enzyme activity at pH 7 and a requirement of Ca(2+) in the micromolar range. These parameters were similar to those found for animal sPLA2s but a surprising optimum temperature for catalysis at 60 °C was observed. The effect of negative interfacial charges on the hydrolysis of organized substrates was evaluated through initial rate measurements using short chain phospholipids with different head groups. The enzymes showed subtle differences in the specificity for phospholipids with different head groups (DLPC, DLPG, DLPE, DLPA) in presence or absence of NaCl. Both recombinant enzymes showed lower activity toward anionic phospholipids and a preference for the zwitterionic ones. The values of the apparent kinetic parameters (Vmax and KM) demonstrated that these enzymes have more affinity for phosphatidylcholine compared with phosphatidylglycerol, in contrast with the results observed for pancreatic sPLA2. A hopping mode of catalysis was proposed for the action of these sPLA2 on mixed phospholipid/triton micelles. On the other hand, Langmuir-monolayers assays indicated an optimum lateral surface pressure for activity in between 13 and 16 mN/m for both recombinant enzymes. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  10. Douchi (fermented Glycine max Merr.) alleviates atopic dermatitis-like skin lesions in NC/Nga mice by regulation of PKC and IL-4.

    Science.gov (United States)

    Jung, A-Ram; Ahn, Sang-Hyun; Park, In-Sik; Park, Sun-Young; Jeong, Seung-Il; Cheon, Jin-Hong; Kim, Kibong

    2016-10-24

    Douchi (fermented Glycine max Merr.) is produced from fermented soybeans, which is widely used in traditional herbal medicine. In this study, we investigated whether Douchi attenuates protein kinase C (PKC) and interleukin (IL)-4 response and cutaneous inflammation in Atopic dermatitis (AD)-like NC/Nga mice. To induce AD-like skin lesions, D. farinae antigen was applied to the dorsal skin of 3-week-old NC/Nga mice. After inducing AD, Douchi extract was administered 20 mg/kg daily for 3 weeks to the Douchi-treated mice group. We identified the changes of skin barrier and Th2 differentiation through PKC and IL-4 by immunohistochemistry. Douchi treatment of NC/Nga mice significantly reduced clinical scores (p < 0.01) and histological features. The levels of PKC and IL-4 were significantly reduced in the Douchi-treated group (p < 0.01). The reduction of IL-4 and PKC led to decrease of inflammatory factors such as substance P, inducible nitric oxide synthase (iNOS) and Matrix metallopeptidase 9 (MMP-9) (all p < 0.01). Douchi also down-regulated Th1 markers (IL-12, TNF-α) as well as Th2 markers (IL-4, p-IκB) (p < 0.01). Douchi alleviates AD-like skin lesions through suppressing of PKC and IL-4. These results also lead to diminish levels of substance P, iNOS and MMP-9 in skin lesions. Therefore, Douchi may have potential applications for the prevention and treatment of AD.

  11. In situ synchrotron X-ray fluorescence mapping and speciation of CeO₂ and ZnO nanoparticles in soil cultivated soybean (Glycine max).

    Science.gov (United States)

    Hernandez-Viezcas, Jose A; Castillo-Michel, Hiram; Andrews, Joy Cooke; Cotte, Marine; Rico, Cyren; Peralta-Videa, Jose R; Ge, Yuan; Priester, John H; Holden, Patricia Ann; Gardea-Torresdey, Jorge L

    2013-02-26

    With the increased use of engineered nanomaterials such as ZnO and CeO₂ nanoparticles (NPs), these materials will inevitably be released into the environment, with unknown consequences. In addition, the potential storage of these NPs or their biotransformed products in edible/reproductive organs of crop plants can cause them to enter into the food chain and the next plant generation. Few reports thus far have addressed the entire life cycle of plants grown in NP-contaminated soil. Soybean ( Glycine max ) seeds were germinated and grown to full maturity in organic farm soil amended with either ZnO NPs at 500 mg/kg or CeO₂ NPs at 1000 mg/kg. At harvest, synchrotron μ-XRF and μ-XANES analyses were performed on soybean tissues, including pods, to determine the forms of Ce and Zn in NP-treated plants. The X-ray absorption spectroscopy studies showed no presence of ZnO NPs within tissues. However, μ-XANES data showed O-bound Zn, in a form resembling Zn-citrate, which could be an important Zn complex in the soybean grains. On the other hand, the synchrotron μ-XANES results showed that Ce remained mostly as CeO₂ NPs within the plant. The data also showed that a small percentage of Ce(IV), the oxidation state of Ce in CeO₂ NPs, was biotransformed to Ce(III). To our knowledge, this is the first report on the presence of CeO₂ and Zn compounds in the reproductive/edible portion of the soybean plant grown in farm soil with CeO₂ and ZnO NPs.

  12. Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran.

    Science.gov (United States)

    Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Tajbakhsh, Mahmood; Baharfar, Robabeh

    2017-04-01

    Glycine max (L.) Merrill (soybean) is a major leguminous crop, cultivated globally as well as in Iran. This study examines the chemical composition of soybean essential oil, and evaluates the antioxidant and antimicrobial activities of seeds on various plant pathogens that commonly cause irreparable damages to agricultural crops. The essential oil of soybean seeds was analyzed by gas chromatography coupled to mass spectrometry. Antimicrobial activity was tested against 14 microorganisms, including three gram-positive, five gram-negative bacteria, and six fungi, using disk diffusion method and the Minimum Inhibitory Concentration technique. The soybean seeds were also subjected to screening for possible antioxidant activity by using catalase, peroxidase, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Forty components were identified, representing 96.68% of the total oil. The major constituents of the oil were carvacrol (13.44%), (E,E)-2,4-decadienal (9.15%), p-allylanisole (5.65%), p-cymene (4.87%), and limonene (4.75%). The oil showed significant activity against Pseudomonas syringae subsp. syringae, Rathayibacter toxicus with MIC = 25 µg/mL, and Pyricularia oryzae with MIC = 12.5 µg/mL. In addition, the free radical scavenging capacity of the essential oil was determined with an IC 50 value of 162.35 µg/mL. Our results suggest that this plant may be a potential source of biocide, for economical and environmentally friendly disease control strategies. It may also be a good candidate for further biological and pharmacological investigations.

  13. Evaluación de siete cultivares de soya (Glycine max en las condiciones edafoclimáticas del municipio Majibacoa, Las Tunas

    Directory of Open Access Journals (Sweden)

    Aracelis Romero

    Full Text Available La investigación se realizó en una cooperativa de créditos y servicios (CCS del municipio Majibacoa, provincia Las Tunas, con el objetivo de evaluar el comportamiento productivo de siete cultivares de soya (Glycine max (L. Merrill en un suelo Fersialítico Pardo Rojizo lixiviado. Los cultivares evaluados fueron: Júpiter, Conquista, BR-4, Canadá, Inifat-382, Williams e Incasoy-1. Se empleó un diseño de bloques al azar, con cuatro réplicas por tratamiento, y parcelas de 5 x 2 m con una distancia entre réplicas de 1 m. La siembra se realizó a una profundidad de 4 cm, y la distancia entre surcos fue de 0,50 y de 0,10 m entre plantas. Se aplicaron dos riegos por semana y se fertilizó con una fórmula completa en el momento de la siembra, con dosis de 80 y 100 kg de fósforo y potasio/ha, respectivamente. A los 15 días de emergidas las plantas, la mayor altura se obtuvo en el cv. Júpiter y la menor, en el Canadá. A los 30, 45 y 60 días, Júpiter, Conquista e Inifat-382 fueron significativamente superiores a los otros cultivares. El mayor rendimiento de granos se obtuvo en los cvs. Júpiter e Inifat-382 (2,11 y 2,19 t/ha, respectivamente y el menor, en Incasoy-1, lo que se correspondió con un menor número de vainas por planta. Se concluye que los cultivares más destacados fueron Júpiter e Inifat-382, ya que lograron la mayor altura de las plantas y el mejor rendimiento de granos; mientras que el cv. Incasoy-1 fue el de menor rendimiento

  14. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L. Merril

    Directory of Open Access Journals (Sweden)

    Husni Thamrin Sebayang

    2018-04-01

    Full Text Available The growth and yield of soybeans can decrease due to competition from weeds. Various efforts have been made to control the growth of weeds such as land preparation and weeding periods. An experiment to study the effect of soil tillage systems and weeding time on the growth of weeds and soybean crop yield (Glycine max (L. Merril has been done in Wringinsongo Village, Tumpang Sub-District, Malang Regency from February to May 2017. The split-plot design with three replicates was used with the soil tillage system as the main plot consisting of three levels, T0: no tillage, T1: minimum tillage, and T2: conventional tillage, and weeding time as the sub plot consisting of 4 levels, P0: no weeding, P1: weeding 1 time, P2: weeding two times and P3: weeding three times. The results showed that the dominant weed species before treatment were Amaranthus spinosus (Spiny amaranth, Cynodon dactylon (Bermuda grass, Cyperus rotundus (Purple nutsedge, Ageratum conyzoides (Billygoat weed, and Portulaca oleracea (Common purslane. After treatment, the dominant weed species were Cyperus rotundus (Purple nutsedge, Amaranthus spinosus (Spiny amaranth, Ageratum conyzoides (Billygoat weed, Physalis peruviana (Cape gooseberry, and Eclipta alba (False daisy. There was no significant difference of the dry weight of weeds in conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting, and minimum tillage and no tillage. For the yield of soybeans, conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting were not significant with that of minimum tillage. The yield of soybeans was lower than that of with no tillage and no weeding.

  15. Efeito de doses de metribuzin no crescimento e na conversão da energia solar em plantas de soja (Glycine max (L . merrill Effect of metribuzin doses on the growth and solar energy conversion in soybean (Glycine max (L. merrill plants

    Directory of Open Access Journals (Sweden)

    P. J. Silva Neto

    1991-01-01

    Full Text Available O crescimento e a eficiência na conversão da energia solar foram estudados em soja (Glycine max (L. Merri ll, cv. 'Uberaba', cultivada em condições de campo, sob quatro doses de metribuzin (0, 0,35; 0,70 e 1,05 kg i.a.ha-1. O valor máximo da conversão da energia solar foi de 0,75%, para as plantas cultiva das na maior dose do herbicida. Os valores da conversão da energia solar média durante o ciclo da cultura foram 0,32 ; 0,31 ; 0,32 e 0,33%. em ordem crescente de dose do metribuzin. De modo geral, na fase vegetativa as plantas controle apresentaram valores inferiores em todos os valores de crescimento determinados, superando as tratadas com metribuzin somente na fase reprodutiva, mostrando que no período crítico de competição o dano causado pelas plantas daninhas é maior que a possível fitotoxicida de causada pelo metribuzin.Growth analysis and evaluation of solar energy conversion in soybean (Glycine max (L. Merrill, Uberaba unver field conditions and four doses of metribuzin (0,0;0,35; 0,70 and 1,05 kg i.a.ha-1 were performed in this study. Maximum solar energy conversion was 0,75% for pla nts tre ate d wit h 1,05 kg i.a.ha -1 metribuzin. The aver age of solar energy conversion throughout the entire crop cycle were 0,32, 0,31 , 0,32 and 0,33% for the increasing metribuzin doses. In general, the control showed lower figures for all growth values studied than the treated during the vegetative phase. During the reproductive phase, however, they surpassed those tre ated with metribuzin, showing that in the critical period of competition weeds were more harmful than the phytotoxicity produced by metribuzin.

  16. Fine mapping of the soybean aphid resistance genes Rag6 and Rag3c from glycine soja 85-32

    Science.gov (United States)

    The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2001. Host-plant resistance is known as an ideal management of aphids. Two novel aphid-resistant loci, Rag6 and Rag3c, from the Glycine soja accession 85-32, were previously detected in a 1...

  17. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    Science.gov (United States)

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  18. Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly

    Directory of Open Access Journals (Sweden)

    Shultz Jeffry

    2008-07-01

    Full Text Available Abstract Background Many of the world's most important food crops have either polyploid genomes or homeologous regions derived from segmental shuffling following polyploid formation. The soybean (Glycine max genome has been shown to be composed of approximately four thousand short interspersed homeologous regions with 1, 2 or 4 copies per haploid genome by RFLP analysis, microsatellite anchors to BACs and by contigs formed from BAC fingerprints. Despite these similar regions,, the genome has been sequenced by whole genome shotgun sequence (WGS. Here the aim was to use BAC end sequences (BES derived from three minimum tile paths (MTP to examine the extent and homogeneity of polyploid-like regions within contigs and the extent of correlation between the polyploid-like regions inferred from fingerprinting and the polyploid-like sequences inferred from WGS matches. Results Results show that when sequence divergence was 1–10%, the copy number of homeologous regions could be identified from sequence variation in WGS reads overlapping BES. Homeolog sequence variants (HSVs were single nucleotide polymorphisms (SNPs; 89% and single nucleotide indels (SNIs 10%. Larger indels were rare but present (1%. Simulations that had predicted fingerprints of homeologous regions could be separated when divergence exceeded 2% were shown to be false. We show that a 5–10% sequence divergence is necessary to separate homeologs by fingerprinting. BES compared to WGS traces showed polyploid-like regions with less than 1% sequence divergence exist at 2.3% of the locations assayed. Conclusion The use of HSVs like SNPs and SNIs to characterize BACs wil improve contig building methods. The implications for bioinformatic and functional annotation of polyploid and paleopolyploid genomes show that a combined approach of BAC fingerprint based physical maps, WGS sequence and HSV-based partitioning of BAC clones from homeologous regions to separate contigs will allow reliable de

  19. Calcium oxalate crystal production and density at different phenological stages of soybean plants (Glycine max L.) from the southeast of the Pampean Plain, Argentina.

    Science.gov (United States)

    Borrelli, N; Benvenuto, M L; Osterrieth, M

    2016-11-01

    Glycine max L. (soybean) is one of the major crops of the world. Although the process of biomineralisation has been reported in some organs of soybean, we now report the description and quantification of calcium oxalate crystals in vegetative and reproductive organs of soybean during its life cycle, as they act as an important source of calcium to the soil, once the harvesting is finished. Through diaphanisation, cross-sectioning, optical and scanning electron microscopy analysis of the organs, morphology, size and location of the crystals were identified. In addition, crystal density (n° crystals·mm -2 ) and the input of crystals to soil (n° crystals·ha -1 ) were calculated. Soybean produced prismatic calcium oxalate crystals in vegetative and reproductive organs, generally associated with vascular bundles, resulting in a potencial transfer to the soil of 81.4 x 10 7 crystals·ha -1 throughout its life cycle. Pods were the organs with higher calcium oxalate crystal production (1112.7 ± 384.6 crystals·mm -2 ), but with the smaller size (12.3 ± 2.1 μm long). However, cotyledons were the organs that produce the larger crystals (21.3 ± 3.5 μm long), but in lesser amounts (150.9 ± 64.4 crystals·mm -2 ). In leaves, although crystal size did not differ from vegetative to reproductive stage (14.5 ± 4.2 and 14.5 ± 4 μm in length, respectively), the crystal density increased (293.2 and 409 crystals·mm -2 , respectively). These results will contribute to knowledge of the amount of calcium oxalate crystals involved in the process of Ca recycling through cultivated vegetation in fields from humid plains at medium latitudes, which therefore have biological, botanical, biogeochemical and pedological relevance. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Diaspora, a large family of Ty3-gypsy retrotransposons in Glycine max, is an envelope-less member of an endogenous plant retrovirus lineage.

    Science.gov (United States)

    Yano, Sho T; Panbehi, Bahman; Das, Arpita; Laten, Howard M

    2005-05-05

    The chromosomes of higher plants are littered with retrotransposons that, in many cases, constitute as much as 80% of plant genomes. Long terminal repeat retrotransposons have been especially successful colonizers of the chromosomes of higher plants and examinations of their function, evolution, and dispersal are essential to understanding the evolution of eukaryotic genomes. In soybean, several families of retrotransposons have been identified, including at least two that, by virtue of the presence of an envelope-like gene, may constitute endogenous retroviruses. However, most elements are highly degenerate and are often sequestered in regions of the genome that sequencing projects initially shun. In addition, finding potentially functional copies from genomic DNA is rare. This study provides a mechanism to surmount these issues to generate a consensus sequence that can then be functionally and phylogenetically evaluated. Diaspora is a multicopy member of the Ty3-gypsy-like family of LTR retrotransposons and comprises at least 0.5% of the soybean genome. Although the Diaspora family is highly degenerate, and with the exception of this report, is not represented in the Genbank nr database, a full-length consensus sequence was generated from short overlapping sequences using a combination of experimental and in silico methods. Diaspora is 11,737 bp in length and contains a single 1892-codon ORF that encodes a gag-pol polyprotein. Phylogenetic analysis indicates that it is closely related to Athila and Calypso retroelements from Arabidopsis and soybean, respectively. These in turn form the framework of an endogenous retrovirus lineage whose members possess an envelope-like gene. Diaspora appears to lack any trace of this coding region. A combination of empirical sequencing and retrieval of unannotated Genome Survey Sequence database entries was successfully used to construct a full-length representative of the Diaspora family in Glycine max. Diaspora is presently the

  1. The effects of nitrogen starter fertilizer and plant density on yield, yield components and oil and protein content of soybean (Glycine max L. Merr).

    Science.gov (United States)

    Boroomandan, P; Khoramivafa, M; Haghi, Y; Ebrahimi, A

    2009-02-15

    Effects of nitrogen starter fertilizer and plant density on yield and oil and protein content of soybean (Glycine max L. Merr) are not well understood, because nitrogen starter fertilizer and plant density has been tested separately. Two years field experiment was conducted to evaluate effects of these factors on yield, yield components, oil and protein content in 2006 and 2007 in Kermanshah, Iran. The experiment was conducted on soybean (var. Williams) as a split-plot based on randomized complete blocks design with three replications. Nitrogen starter fertilizer treatments were arranged in three rates (0, 40, 80 kg ha(-1)) as main plots and plant density as sub plots arranged with three levels (15, 30, 45 plant m(-2)). Based on similarity treatments and experimental designs, the results of analysis of combined variance and mean comparisons showed significant (528.4 kg ha(-1) yield increase as density increased from 30 to 45 plant m(-2) and nitrogen starter fertilizer increased from 0 to 40 kg ha(-1) in two years. Analysis of correlation showed a positive significant correlation between yield and number of seed per plant (r = 0.724), number of pods and yield (r = 0.463), thousand seed weight and yield (r = 0.437). A linear regression was found between yield and number of seed per plant, number of pods and thousand seed weight (yield = 37.58 + 0.73x1-0.14x2 + 0.7x3; r2 = 0.56); p < 0.01). Seed protein was unaffected by plant densities, but nitrogen application changed it. Dissimilarly, oil content has a diverse respond to treatments. This experiment showed density of 45 plant m(-2) and application of nitrogen starter fertilizer 40 kg ha(-1) are optimum and increase grain yield under condition of our experiment. We suggest to conduct some experiments for understanding of linear relationship for number of pod for understanding of linear relationship for number of pod for levels of nitrogen starter and quadratic relationship for number of seed for levels of density.

  2. pH-dependent phytoavailability and speciation of tungsten (W) in soil affecting growth and N nutrition of soy (Glycine max)

    Science.gov (United States)

    Oburger, Eva; Vergara Cid, Carolina; Preiner, Julian; Hu, Junjian; Hann, Stephan; Wanek, Wolfgang; Richter, Andreas

    2017-04-01

    Tungsten (W) is an economically important transition metal that finds a broad scope of applications ranging from household appliances to high-end technology goods. However, in the past decades, increasing industrial and military use of W-based products (particularly ammunition, as well as drilling, milling and cutting tools) opened new pathways of W into natural systems and raise the need for a better understanding of the behavior of W in the environment. Soils play an important role in controlling the bioavailability of pollutants and their entry into the food web via plant uptake as they serve as filter and buffer systems. However, compared to other trace metals, knowledge about the fate of W in the plant-soil environment is rather sketchy. The chemical alikeness of W and molybdenum (Mo) suggests not only similar, typical anionic behaviour in soil but also a potential negative effect of W on important plant physiological processes that require Mo. We examined how soil pH dependent solubility and W speciation affected biomass production, W and nutrient uptake by soy (Glycine max cv Primus) and the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase). Increased solubility of mainly monomeric W in high pH soils resulted in increased W plant uptake, demonstrating a greater risk of entry of W into the food web in alkaline soils. Symbiotic nitrogen fixation was able to compensate for reduced nitrate reductase activity until W soil solution concentrations became too phytotoxic, indicating a more efficient detoxification/compartmentalization mechanism in nodules than in soy leaves. The increasing presence of polymeric W species observed in low pH soils spiked with high W concentrations resulted in decreased W uptake but simultaneously had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our results demonstrate the importance of soil pH for

  3. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32.

    Science.gov (United States)

    Zhang, Shichen; Zhang, Zhongnan; Bales, Carmille; Gu, Cuihua; DiFonzo, Chris; Li, Ming; Song, Qijian; Cregan, Perry; Yang, Zhenyu; Wang, Dechun

    2017-09-01

    Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance. Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F 3 -derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5-46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5-22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.

  4. Influência do manejo da palhada de capim-braquiária (Brachiaria decumbens sobre o desenvolvimento inicial de soja (Glycine max e amendoim-bravo (Euphorbia heterophylla Influence of straw management of Brachiaria decumbens on the initial development of Glycine max and Euphorbia heterophylla

    Directory of Open Access Journals (Sweden)

    C.D.G. Maciel

    2003-12-01

    Full Text Available Com o objetivo de avaliar os efeitos de diferentes manejos de palhada de capim-braquiária sobre o desenvolvimento inicial da cultura de soja e da planta daninha amendoimbravo, foi conduzido um experimento em condições de casa de vegetação no NuPAMFCA/UNESP, BotucatuSP. Os tratamentos utilizados foram: manejo da palhada na superfície do solo + irrigação superficial (T1; manejo da palhada na superfície do solo + irrigação subsuperficial (T2; palhada incorporada ao solo (T3; e testemunha sem cobertura (T4. A palhada foi colhida no campo 30 dias após dessecação com o herbicida glyphosate (1,44 g i.a. ha-1. O delineamento experimental utilizado foi o inteiramente casualizado, com sete repetições, sendo as unidades experimentais vasos plásticos, com a soja e o amendoim-bravo semeados paralelamente, em linhas distintas. O T1 reduziu significativamente o índice de velocidade de germinação (IVG e a altura das plântulas de soja aos 5 e 10 dias após a emergência (DAE, ao contrário do amendoim-bravo, o qual não sofreu interferência dos tratamentos estudados, constituindo-se em uma planta-problema para sistemas produtivos com palhada de capim-braquiária. Os resultados da análise de crescimento (TCA - taxa de crescimento absoluto, TCR - taxa de crescimento relativo e TAL - taxa de assimilação líquida das plântulas de soja e amendoim-bravo apresentaram valores máximos aos 15 DAE, com exceção do T3 para soja, o qual reduziu expressivamente o desenvolvimento em relação aos demais tratamentos.An experiment was carried out under greenhouse conditions at NuPAM-FCA/UNESP, Botucatu, SP, Brazil to evaluate the effects of different types of straw management of Brachiaria decumbens on the initial development of Glycine max and Euphorbia heterophylla. The treatments were: straw on soil surface + irrigation on the top (T1; straw on soil surface + underirrigation (T2; straw incorporated into the soil (T3 and control (T4. B. decumbens

  5. Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults.

    Directory of Open Access Journals (Sweden)

    Michael S Lustgarten

    Full Text Available Metabolic profiling may provide insight into biologic mechanisms related to age-related increases in regional adiposity and insulin resistance.The objectives of the current study were to characterize the association between mid-thigh intermuscular and subcutaneous adipose tissue (IMAT, SCAT, respectively and, abdominal adiposity with the serum metabolite profile, to identify significant metabolites as further associated with the homeostasis model assessment of insulin resistance (HOMA-IR, and, to develop a HOMA-IR associated metabolite predictor set representative of regional adiposity, in 73 functionally-limited (short physical performance battery ≤10; SPPB older adults (age range, 70-85 y.Fasting levels of 181 total metabolites, including amino acids, fatty acids and acylcarnitines were measured with use of an untargeted mass spectrometry-based metabolomic approach. Multivariable-adjusted linear regression was used in all analyses.Thirty-two, seven and one metabolite(s were found to be associated with IMAT, abdominal adiposity and, SCAT, respectively, including the amino acid glycine, which was positively associated with SCAT and, negatively associated with both IMAT and abdominal adiposity. Glycine and four metabolites found to be significantly associated with regional adiposity were additionally associated with HOMA-IR. Separate stepwise regression models identified glycine as a HOMA-IR associated marker of both IMAT (model R(2 = 0.51, p<0.0001 and abdominal adiposity (model R(2 = 0.41, p<0.0001.Our findings for a positive association between glycine with SCAT but, a negative association between glycine with IMAT and abdominal adiposity supports the hypothesis that SCAT metabolic processes are different from that found in other fat depots. In addition, because of the significant associations found between glycine with HOMA-IR, IMAT, SCAT and abdominal adiposity, our results suggest glycine as a serum biomarker of both insulin sensitivity

  6. Comparative study of the anti-oxidant activity of the total polyphenols extracted from Hibiscus Sabdariffa L., Glycine max L. Merr., yellow tea and red wine through reaction with DPPH free radicals

    Directory of Open Access Journals (Sweden)

    T. Andzi Barhé

    2016-01-01

    Full Text Available The present study is part of the evaluation of extracts of Glycine max L. Merr and Hibiscus L. Sabdariffa as antioxidants. A comparative study was performed with extracts of yellow tea and commercial red wine, two foods known for their antioxidant activity. The method applied is free radical scavenging using the 1,1-diphenyl-2-picrylhydrazyl (DPPH°. The antioxidant properties were identified and measured by the determining the anti-radical activity reducing index, expressed in percentage % RSA (Radical Scavenger Activity, and by the determination of the colouring intensity (IC50. All results are compared to those of ascorbic acid as reference antioxidant. The results indicate the following order for the antioxidant power of the extracts tested. % RSA (tea > % RSA (Glycine max % > RSA (red wine % > RSA (Sabdariffa Hibiscus, and colouring intensities (IC50 ranging from 4.62 μM (ascorbic acid to 1.10 μM (Hibiscus sabdariffa correlated with their chemical structure and the content of phenolic compounds.

  7. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield.

    Science.gov (United States)

    Asghar, Tehseen; Iqbal, Munawar; Jamil, Yasir; Zia-Ul-Haq; Nisar, Jan; Shahid, Muhammad

    2017-01-01

    Recently, laser and magnetic field pre-sowing seed treatments attracted the attention of the scientific community in response to their positive effect on plant characteristics and the present study was exemplified for Glycine max Var 90-I. Seeds were exposed to laser (HeNe-wave length 632nm and density power of 1mW/cm 2 ) and magnetic field (sinusoidal non-uniform-50, 75 and 100mT for 3, 5min with exposure) and seed germination, seedling growth and yield attributes were compared. The germination (mean germination, germination percentage, emergence index, germination speed, relative germination coefficient, emergence coefficient of uniformity) growth (root dry weight, root length, shoot fresh weight and shoot dry weight, leaf dry & fresh weight, root fresh weight, leaf area, shoot length, plant total dry weight at different stages, stem diameter, number of leaves, vigor index I & II), biochemical (essential oil) and yield attributes (seed weight, count) were enhanced significantly in response to both laser and magnetic field treatments. However, magnetic field treatment furnished slightly higher response versus laser except relative water contents, whole plant weight and shoot length. Results revealed that both laser and magnetic field pre-sowing seed treatments affect the germination, seedling growth, and yield characteristics positively and could possibly be used to enhance Glycine max productivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Perfomance evaluation of a direct injection engine using different blends of soybean (Glycine max methyl biodiesel Avaliação do desempenho de um motor de injeção direta sob diferentes misturas de biodiesel metílico de soja (Glycine max

    Directory of Open Access Journals (Sweden)

    Gustavo H. Nietiedt

    2011-10-01

    Full Text Available Diesel fuel is used widely in Brazil and worldwide. On the other hand, the growing environmental awareness leads to a greater demand for renewable energy resources. Thus, this study aimed to evaluate the use of different blends of soybean (Glycine max methyl biodiesel and diesel in an ignition compression engine with direct injection fuel. The tests were performed on an electric eddy current dynamometer, using the blends B10, B50 and B100, with 10; 50 e 100% of biodiesel, respectively, in comparison to the commercial diesel B5, with 5% of biodiesel added to the fossil diesel. The engine performance was analyzed trough the tractor power take off (PTO for each fuel, and the best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44.62 kW; 234.87 g kW-1 h-1; B10 (44.73 kW; 233.78 g kW-1 h-1; B50 (44.11 kW; 250.40 g kW-1 h-1 e B100 (43.40 kW; 263.63 g kW-1 h-1. The best performance occurred with the use of B5 and B10 fuel, without significant differences between these blends. The B100 fuel showed significant differences compared to the other fuels.O óleo diesel combustível é utilizado em grande escala no País e no mundo. Por outro lado, a crescente conscientização ambiental acarreta em maior demanda por recursos energéticos renováveis. Assim, o presente trabalho objetivou avaliar o uso de diferentes misturas de biodiesel metílico de soja (Glycine max e diesel mineral em um motor de ignição por compressão e injeção direta de combustível. Os procedimentos de ensaio foram realizados em um dinamômetro elétrico de correntes parasitas, utilizando as proporções de mistura B10, B50 e B100, com 10; 50 e 100% de biodiesel, respectivamente, em comparação ao diesel comercial B5, com 5% de biodiesel adicionado ao diesel fóssil. O desempenho do motor foi analisado através da tomada de potência do trator (TDP para cada mistura, sendo que os melhores resultados obtidos para potência e consumo espec

  9. Polinização por Apis mellifera em soja transgênica [Glycine max (L. Merrill] Roundup Ready™ cv. BRS 245 RR e convencional cv. BRS 133 = Pollination by Apis mellifera in transgenic soy (Glycine max (L. Merrill Roundup Ready™ cv. BRS 245 RR and conventional cv. BRS 133

    Directory of Open Access Journals (Sweden)

    Tais da Silva Lopes

    2008-04-01

    Full Text Available O objetivo deste estudo foi verificar a influência de Apis mellifera na produção de grãos e qualidade de sementes da soja transgênica Glycine max (L. Merrill Roundup Ready™ e convencional. A soja transgênica foi plantada intercalada com a convencional, em 18 parcelas, em três tratamentos: gaiolas com abelhas A. mellifera, gaiolas sem abelhas e áreas descobertas, com livre visitação de insetos. Na soja transgênica, em três parcelas de cada tratamento, foi aplicado glifosato, 30 dias após a emergência. Os parâmetros analisados foram: produção de grãos; número de vagens por planta; peso de 100 sementes e porcentagem de germinação das sementes. Não houve diferença entre as cultivares, entretanto a produção de 2.757,40 kg ha-1 obtida na área coberta por gaiola com abelhas, e2.828,47 kg ha-1 na área livre para visitação de insetos foram superiores a 2.000,53 kg ha-1 da área coberta por gaiola sem abelhas. O número de vagens por planta foi maior na área coberta por gaiola com abelhas (38,28 e área livre (32,65, quando comparado com o daárea coberta por gaiola sem abelhas (21,19. O peso médio de 100 sementes e a germinação das sementes não foram diferentes entre as cultivares e nem entre os tratamentos. Concluise que, para as cultivares estudadas, houve benefício na produção de grãos de 37,84%,quando foi permitida a visita de abelhas.This research was carried out to evaluate the influence of Africanized honeybees in grain production and seed quality of Glycine max (L. Merrill Roundup Ready™ transgenic soy, as well as of conventional soy. Transgenic soy was interposed with conventional soybean, in 18 plots and three treatments: covered area with Africanized honeybees, covered area without honeybees, and uncovered area with free insect visitation. The herbicide Glyphosate was applied on three plots of each treatment of transgenic soy, 30 days after emergence. Grain production, number of pods/plant, weight per

  10. EFECTO DEL CONTENIDO DE HUMEDAD Y NIVEL DE COMPACTACIÓN DE UN SUELO ULTISOL SOBRE ALGUNAS CARACTERÍSTICAS BROMATOLÓGICAS DEL CULTIVO DE SOYA (Glycine max L. Merril cv San Baiba | EFFECT OF MOISTURE CONTENT AND LEVEL OF COMPACTION OF AN ULTISOL SOIL ON SOME BROMATOLOGIC characteristics OF CULTIVATION OF SOYBEAN (Glycine max L. Merrill cv San Baiba

    Directory of Open Access Journals (Sweden)

    María Trujillo Galindo

    2016-10-01

    Full Text Available Debido a que los problemas de compactación de suelos como limitante en el desarrollo de los cultivos han sido tradicionalmente estudiados de manera independiente del factor humedad, se realizó un experimento para determinar el comportamiento del cultivo de Soya (Glycine max L. Merrill cv San Baiba con respecto a la humedad y la compactación de un suelo Ultisol de la sabana del estado Monagas, Venezuela. Se utilizó un diseño de bloques al azar en arreglo factorial donde se estudió la interacción de cuatro niveles de compactación a través de diferentes número de golpes por capa (0, 12, 24, 36 y cuatro de humedad a través de la variación de la frecuencias de riego (todos los días, cada dos días, cada tres días y cada cuatro días. Se evidenció que la masa fresca foliar y de ramas, así como el área foliar se vieron afectadas por la frecuencia de riego arrojando las siguientes ecuaciones de regresión, respectivamente: Y = 905,035 + 1691,364 x - 390,280 x2 con un R2 = 98,12 %, Y = 16,770 + 23,350 x - 5,250 x2 con un R2 = 98,40 % y Y = 17,535 + 7,576 x - 2,08 x2 con un R2 = 97,61 %. Por otra parte, la masa seca de ramas se vio afectada por la interacción. Las variables masa seca foliar, porcentaje de cenizas, extracto etéreo, fibra cruda, materia orgánica, materia seca y proteína cruda no mostraron diferencias significativas para ninguno de los factores evaluados ni su interacción.

  11. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Vauclare, Pierre; Bligny, Richard; Gout, Elisabeth; Widmer, Francois

    2013-01-01

    Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13 C- and 31 P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homo-spermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells. (authors)

  12. Qualidade da aplicação aérea líquida com uma aeronave agrícola experimental na cultura da soja (Glycine Max L. Liquid aerial pesticide application quality with an experimental agricultural aircraft in soybean crop (Glycine Max L.

    Directory of Open Access Journals (Sweden)

    Elton F. dos Reis

    2010-10-01

    Full Text Available Os avanços da tecnologia de aplicação aérea de agroquímicos têm-se dado na direção de redução do volume de calda, o que pode ocasionar má distribuição e consequente deposição irregular. O presente trabalho teve como objetivo avaliar a qualidade da aplicação de calda de pulverização em aplicação aérea, na cultura da soja (Glycine Max L.. Para a aplicação, foi utilizada uma aeronave agrícola experimental, aplicando um volume de calda de 20 L ha-1 . Para a determinação dos volumes depositados nas folhas do terço superior, médio e inferior das plantas de soja, foi utilizado corante alimentício azul brilhante adicionado à calda de pulverização. Estas folhas foram lavadas, e o volume determinado por espectrofotometria. Para a obtenção do espectro de gotas, foram utilizados alvos artificiais constituídos por papel hidrossensível, distribuídos no terço superior e médio das plantas. Os dados foram submetidos à análise de variância de fator único, considerando as diferentes posições na planta, e cartas de controle foram feitas a partir dos limites inferior e superior de controle. A aplicação aérea de calda de pulverização na cultura da soja apresentou menores valores de diâmetro da mediana volumétrica, amplitude relativa e cobertura no terço médio em relação ao terço superior da cultura da soja. Houve menor deposição da calda de pulverização no terço inferior. Os indicadores de cobertura da calda de pulverização demonstraram que a aplicação aérea com a aeronave agrícola experimental avaliada não se encontra sob controle estatístico de processo, ou seja, fora do padrão de qualidade.Advances in aerial pesticide application technology of chemicals have been given in the direction of reducing the syrup volume, which can cause poor distribution and consequent irregular deposition. This study aimed to evaluate the quality of the syrup spray on aerial application in soybean crop (Glycine Max

  13. Uji Pemberian Dolomit, Lumpur Laut Dan Beberapa Strain Rhizobl4 Terhadap Pertumbuhan Tanaman Kedelai (glycine max (l) mcrril) Pada Tanah Bergambut

    OpenAIRE

    Pranoto, Eko

    2013-01-01

    EK.0 PRANOTO (2005), " Ttying in giving dolomite, sea mud and some of strain Rhizobia towards the growth of soybean plant (Glycine ma>• L^emll) at peat soil" which is auided by Prof. Dr. Ir. AsmarlaiH S. Hanafiah, MS.DAA and Kemala San Lubis SP, MP. The research did twice. The first research compared the dolomite with sea mud, both as amendment. And compared the rhm>t«a inoculums from Biologic Soil laboratory FP-USU collection with the rhizobia inoculums from that peat soil. The second resear...

  14. Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes.

    Science.gov (United States)

    Soria-Guerra, Ruth Elena; Rosales-Mendoza, Sergio; Chang, Sungyul; Haudenshield, James S; Padmanaban, Annamalai; Rodriguez-Zas, Sandra; Hartman, Glen L; Ghabrial, Said A; Korban, Schuyler S

    2010-05-01

    Soybean rust, caused by Phakopsora pachyrhizi, is a destructive foliar disease in nearly all soybean-producing countries. To identify genes controlling resistance to soybean rust, transcriptome profiling was conducted in resistant and susceptible Glycine tomentella genotypes triggered by P. pachyrhizi infection. Among 38,400 genes monitored using a soybean microarray, at 5% false discovery rate, 1,342 genes were identified exhibiting significant differential expression between uninfected and P. pachyrhizi-infected leaves at 12, 24, 48, and 72 h post-inoculation (hpi) in both rust-susceptible and rust-resistant genotypes. Differentially expressed genes were grouped into 12 functional categories, and among those, large numbers relate to basic plant metabolism. Transcripts for genes involved in the phenylpropanoid pathway were up-regulated early during rust infection. Similarly, genes coding for proteins related to stress and defense responses such as glutathione-S-transferases, peroxidases, heat shock proteins, and lipoxygenases were consistently up-regulated following infection at all four time points. Whereas, subsets of genes involved in cellular transport, cellular communication, cell cycle, and DNA processing were down-regulated. Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) on randomly selected genes from the different categories confirmed these findings. Of differentially expressed genes, those associated with the flavonoid biosynthesis pathway as well as those coding for peroxidases and lipoxygenases were likely to be involved in rust resistance in soybean, and would serve as good candidates for functional studies. These findings provided insights into mechanisms underlying resistance and general activation of plant defense pathways in response to rust infection.

  15. The Sinorhizobium fredii HH103 MucR1 Global Regulator Is Connected With the nod Regulon and Is Required for Efficient Symbiosis With Lotus burttii and Glycine max cv. Williams.

    Science.gov (United States)

    Acosta-Jurado, Sebastián; Alias-Villegas, Cynthia; Navarro-Gómez, Pilar; Zehner, Susanne; Murdoch, Piedad Del Socorro; Rodríguez-Carvajal, Miguel A; Soto, María J; Ollero, Francisco-Javier; Ruiz-Sainz, José E; Göttfert, Michael; Vinardell, José-María

    2016-09-01

    Sinorhizobium fredii HH103 is a rhizobial strain showing a broad host range of nodulation. In addition to the induction of bacterial nodulation genes, transition from a free-living to a symbiotic state requires complex genetic expression changes with the participation of global regulators. We have analyzed the role of the zinc-finger transcriptional regulator MucR1 from S. fredii HH103 under both free-living conditions and symbiosis with two HH103 host plants, Glycine max and Lotus burttii. Inactivation of HH103 mucR1 led to a severe decrease in exopolysaccharide (EPS) biosynthesis but enhanced production of external cyclic glucans (CG). This mutant also showed increased cell aggregation capacity as well as a drastic reduction in nitrogen-fixation capacity with G. max and L. burttii. However, in these two legumes, the number of nodules induced by the mucR1 mutant was significantly increased and decreased, respectively, with respect to the wild-type strain, indicating that MucR1 can differently affect nodulation depending on the host plant. RNA-Seq analysis carried out in the absence and the presence of flavonoids showed that MucR1 controls the expression of hundreds of genes (including some related to EPS production and CG transport), some of them being related to the nod regulon.

  16. Influência de abelhas africanizadas na concentração de açúcares no néctar de soja (Glycine max L. Merrill var. Coodetec 207 = Influence of africanized honeybees on sugar concentration in the nectar of soybean (Glycine max L. Merrill var. Coodetec 207

    Directory of Open Access Journals (Sweden)

    Eloi Machado Alves

    2010-04-01

    Full Text Available O objetivo foi avaliar a concentração de açúcares no néctar de soja (Glycine max L. Merrill em áreas com ou sem a presença de abelhas Apis mellifera L. Foi utilizada a variedade Coodetec 207 em quatro tratamentos: área de 24 m2 coberta com colônia de abelhas africanizadas em seu interior; área semicoberta com livre acesso para insetos visitantes; área livre e área coberta sem abelhas. As flores foram coletadas durante três dias, a cada 2h. e a concentração dos açúcares totais por flor foi determinada por espectrofotometria. A área coberta com abelha apresentou maior concentração de açúcares totais em relação à área coberta sem abelhas e livre, contudo, aconcentração de açúcares totais na área livre não diferiu da concentração observada na área coberta sem abelhas. Houve redução na concentração média de sacarose na área livre, diferindo das concentrações nas demais áreas. A concentração média de glicose não diferiu entre os tratamentos, enquanto que a de frutose não apresentou diferença entre as áreas cobertas com abelhas, semicoberta e livre. A variedade Coodetec 207 da soja apresentou maior concentração total de açúcares e de frutose nas áreas cobertas com abelhas. Contudo, a presença de Apis mellifera não interferiu nesta concentração de açúcares no néctar das flores de soja desta variedade.This research was carried out to evaluate the sugar concentration in soybean nectar in areas with Africanized honeybee colonies. The var. Coodetec 207 was used in four treatments: 24 m2 covered area with Africanized honeybee colony inside, semi-covered area for free insect visitation, uncovered area, and covered area without insect visitation. Flowers were harvested for three days at two-hour intervals, and the total sugar concentration per flower was determined by spectrophotometry. The covered area with Africanized honeybee colony presented higher sugar concentration than the covered area

  17. Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in the five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance in...

  18. Glycine propionyl-L-carnitine increases plasma nitrate/nitrite in resistance trained men

    Directory of Open Access Journals (Sweden)

    Smith Webb A

    2007-12-01

    Full Text Available Abstract We have recently demonstrated that oral intake of glycine propionyl-L-carnitine (GPLC increases plasma nitrate/nitrite (NOx, a surrogate measure of nitric oxide production. However, these findings were observed at rest, and in previously sedentary subjects. Purpose In the present study, we sought to determine the impact of oral GPLC on plasma NOx at rest and in response to a period of reactive hyperemia in resistance trained men. Methods Using a double blind, crossover design, 15 healthy men (24 ± 4 years were assigned to GPLC (3 g/d PLC + 1044 mg glycine and a placebo in random order, for a four-week period, with a two-week washout between condition assignment. Blood samples were taken from subjects at rest and at 0, 3, and 10 minutes following an ischemia-reperfusion protocol (six minutes of upper arm cuff occlusion at 200 mmHg followed by rapid reperfusion with cuff removal. Blood samples were taken from a forearm vein from the same arm used for the protocol and analyzed for total nitrate/nitrite. Data are presented as mean ± SEM. Results A condition main effect (p = 0.0008 was noted for NOx, with higher values in subjects when using GPLC (45.6 ± 2.8 μmol·L-1 compared to placebo (34.9 ± 1.2 μmol·L-1. No time main effect was noted (p = 0.7099, although values increased approximately 12% from rest (37.7 ± 2.7 μmol·L-1 to a peak at 10 minutes post protocol (42.3 ± 3.3 μmol·L-1. The interaction effect was not significant (p = 0.8809, although paired time contrasts revealed higher values for GPLC compared to placebo at 3 (48.2 ± 6.7 vs. 34.9 ± 2.4 μmol·L-1; p = 0.033 and 10 (48.8 ± 5.9 vs. 35.7 ± 2.1 μmol·L-1; p = 0.036 minutes post protocol, with non-statistically significant differences noted at rest (41.8 ± 4.5 vs. 33.6 ± 2.5 μmol·L-1; p = 0.189 and at 0 minutes (43.6 ± 5.1 vs. 35.4 ± 2.7 μmol·L-1; p = 0.187 post protocol. An analysis by subject (collapsed across time indicated that 11 of the 15 subjects

  19. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    Science.gov (United States)

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance.

    Science.gov (United States)

    Loshon, Charles A; Wahome, Paul G; Maciejewski, Mark W; Setlow, Peter

    2006-04-01

    Bacteria of various Bacillus species are able to grow in media with very high osmotic strength in part due to the accumulation of low-molecular-weight osmolytes such as glycine betaine (GB). Cells of Bacillus species grown in rich and minimal media contained low levels of GB, but GB levels were 4- to 60-fold higher in cells grown in media with high salt. GB levels in Bacillus subtilis cells grown in minimal medium were increased approximately 7-fold by GB in the medium and 60-fold by GB plus high salt. GB was present in spores of Bacillus species prepared in media with or without high salt but at lower levels than in comparable growing cells. With spores prepared in media with high salt, GB levels were highest in B. subtilis spores and > or =20-fold lower in B. cereus and B. megaterium spores. Although GB levels in B. subtilis spores were elevated 15- to 30-fold by GB plus high salt in sporulation media, GB levels did not affect spore resistance. GB levels were similar in wild-type B. subtilis spores and spores that lacked major small, acid-soluble spore proteins but were much lower in spores that lacked dipicolinic acid.

  1. O papel do peróxido de hidrogênio na tolerância de soja (Glycine max) ao alagamento

    OpenAIRE

    Andrade, Cínthia Aparecida

    2014-01-01

    Objetivou-se, no presente trabalho, avaliar a influência do pré-tratamento de sementes de soja (Glicine max) com peróxido de hidrogênio, na tolerância ao alagamento. Dessa maneira, sementes de soja foram pré-tratadas com H2O2 70mM ou com água (controle) e 12 dias após semeadura essas foram submetidas ao alagamento. As avaliações foram realizadas antes da imposição do estresse, aos 16 dias (aparecimento de clorose nas plantas controle) e aos 27 dias (aparecimento de clorose nas plantas pré-tra...

  2. Stability of soybean aphid resistance in soybean across different temperatures

    Science.gov (United States)

    The soybean aphid, Aphis glycines Matsumura, is the most important insect pest posing a threat to soybean, Glycine max (L.) Merr., grain production in the United States. Soybean cultivars with resistance are currently being deployed to aid in management of the pest. Temperature has been reported to ...

  3. Ação do Agrostemin sobre a altura e o número de folhas de plantas de soja (Glycine max L. MERRILL cv. IAC-8 Effects of Agrostemmin on number of leaves and height of soybean plants

    Directory of Open Access Journals (Sweden)

    A.A.H. Fernandes

    1993-05-01

    Full Text Available O presente estudo teve por finalidade avaliar o efeito de um estimulante vegetal, o Agrostemin, sobre a altura e o número de folhas das plantas de soja (Glycine max L. MERRILL cv. IAC-8. O experimento foi conduzido em casa de vegetação. Foram estudados seis tratamentos, correspondentes as seguintes dosagens, épocas e formas de aplicação: testemunha (T1; 0,125g Agrostemin/l00g sementes (T2; 0,125g Agrostemin/100g semente e pulverização foliar à 333 ppm (T3; 0,125g Agrostemin/l00g sementes e pulverização foliar à 500 ppm (T4; pulverização foliar à 333 ppm (T5 e pulverização foliar à 500 ppm (T6. Realizaram-se três coletas de plantas, com intervalo de 14 dias. O experimento foi em delineamento inteiramente casualizado, utilizando-se duas análises de variância com desdobramento em efeitos de regressão. Através dos resultados obtidos concluiu-se que o Agrostemin quando aplicado via semente (T2 ou via foliar à 500 ppm (T6, aumentou a altura e o número de folhas. Ao aplicar o produto via semente mais via foliar à 500 ppm (T4, estas medidas diminuiram.A greenhouse experiment was conducted to evaluate the effects of Agrostemmin (plant stimulant on height and number of leaves of soybean plants (Glycine max L Merril cv. IAC-8. Six treatments were studied: check (T1; 0,125g Agrostemmin/l00g seed (T2; 0,125g Agrostemmin/100 seed and foliar spraying 333 ppm (T3; 0,125g Agrostemmin/l00g seed and foliar spraying 500 ppm (T4; foliar spraying 333 ppm (T5 and foliar spraying 500 ppm (T6. Three samplings were made at 14 day intervals. The experimental layout was completely randomized, using two variance, testing regression effects. Agrostemmin applied to the seed (T2 or sprayed on the leaves at the rate of 500 ppm (T6 increased height and number of leaves of soybean, whereas the combination of Agrostemmin applied to the seeds and sprayed at 500 ppm (T4 decreased those values.

  4. Physiology response of fourth generation saline resistant soybean (Glycine max (L.) Merrill) with application of several types of antioxidants

    Science.gov (United States)

    Manurung, I. R.; Rosmayati; Rahmawati, N.

    2018-02-01

    Antioxidant applications are expected to reduce the adverse effects of soil saline. This research was conducted in plastic house, Plant Tissue Laboratory Faculty of Agriculture and Plant Physiology Laboratory Faculty of Mathematic and Natural Science, Universitas Sumatera Utara, Medan also in Research Centers and Industry Standardization, Medan from July-December 2016. The objective of the research was to know the effect of various antioxidant treatments with different concentrations (control, ascorbic acid 250, 500 and 750 ppm; salicylic acid 250, 500 and 750 ppm; α-tocopherol 250, 500 and 750 ppm) on fourth generation soybean physiology in saline condition (Electric Conductivity 5-6 dS/m). The results of this research showed that the antioxidant type and concentration affected not significantly to physiology of fourth generation soybean. Descriptively the highest average of superoxide dismutase and peroxide dismutase was showed on ascorbic acid 250 ppm. The highest average of ascorbate peroxidase was showed on α-tocopherol 750 ppm. The highest average of carotenoid content was showed on ascorbic acid 500 ppm. The highest average of chlorophyll content was showed on α-tocopherol 250 ppm. The highest average of ratio of K/Na was showed on salicylic acid 250 ppm.

  5. Soybean (Glycine max L. Merr.) Sprouts Germinated under Red Light Irradiation Induce Disease Resistance against Bacterial Rotting Disease

    OpenAIRE

    Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun

    2015-01-01

    Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650-660), far red (720-730) and blue (440-450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were co...

  6. Magnetic molecularly imprinted polymers based on silica modified by deep eutectic solvents for the rapid simultaneous magnetic-based solid-phase extraction of Salvia miltiorrhiza bunge, Glycine max (Linn.) Merr and green tea.

    Science.gov (United States)

    Li, Guizhen; Wang, Xiaoqin; Row, Kyung Ho

    2018-01-19

    Novel magnetic molecularly imprinted polymers (MMIPs) with multiple-template based on silica were modified by four types of deep eutectic solvents (DESs) for the rapid simultaneous magnetic solid-phase extraction (MSPE) of tanshinone Ⅰ, tanshinone ⅡA, and cryptotanshinone from Salvia miltiorrhiza bunge; glycitein, genistein, and daidzein from Glycine max (Linn.) Merr; and epicatechin, epigallocatechin gallate, and epicatechin gallate from green tea, respectively. The synthesized materials were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Single factor experiments were to explore the relationship between the extraction efficiency and four factors (the sample solution pH, amount of DESs for modification, amount of adsorbent, and extraction time). It was showed that the DES4-MMIPs have better extraction ability than the MMIPs without DESs and the other three DESs-modified MMIPs. The best extraction recoveries with DES4-MMIP were tanshinone Ⅰ (85.57%), tanshinone ⅡA (80.58%), cryptotanshinone (92.12%), glycitein (81.65%), genistein (87.72%), daidzein (92.24%), epicatechin (86.43%), epigallocatechin gallate (80.92%), and epicatechin gallate (93.64%), respectively. The novel multiple-template MMIPs materials modified by DES for the rapid simultaneous MSPE of active compounds were proved to reduce the experimental steps than single-template technique, and increase the extraction efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Resistance of Glycine tomentella to soybean leaf rust Phakopsora pachyrhizi in relation to ploidy level and geographic distribution.

    Science.gov (United States)

    Schoen, D J; Burdon, J J; Brown, A H

    1992-04-01

    Accessions of five diploid and five tetraploid isozymically defined groups of Glycine tomentella collected from throughout the species range in Australasia were scored for resistance to three separate isolates of Phakopsora pachyrhizi, the causal agent of soybean leaf rust. Resistance levels were found to be high (>75%) in most of the groups. While resistance levels differed among groups, the overall levels in polyploids were similar to those in diploids. Geographical patterns of resistance and susceptibility to P. pachyrhizi indicate that two regions of susceptibility exist. The highest proportion of susceptible accessions occurs in the Kimberley Plateau region of Western Australia and the Northern Territory, while another region of susceptibility is found in the Townsville/Cairns region of Queensland. Results from genetic crosses between accessions within two forms of the tetraploids indicate that in the aneuploid form (2n = 78), resistance to P. pachyrhizi was under the control of a single dominant gene, whereas in a second group of tetraploids (2n=80), resistance was controlled by two or three gene loci.

  8. Identificação de proteínas diferencialmente expressas em folhas de soja (Glycine max (L.) Merrill) em resposta a Phakopsora pachyrhizi.

    OpenAIRE

    Pereira, Mateus Rodrigues

    2011-01-01

    A ferrugem asiática da soja (FAS), cujo agente causal é o fungo Phakopsora pachyrhizi Sydow, é considerada uma das doenças mais agressivas à cultura, pois ainda não há cultivares comerciais imunes ao patógeno. O mecanismo de controle da doença mais utilizado é o uso de fungicidas, o que aumenta o custo de produção e acarreta em problemas ambientais. O controle das doenças de plantas por meio de resistência genética é a forma mais eficaz e econômica. Estudos genômicos e proteômicos têm sido...

  9. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  10. Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae cultivar MG/BR46 (Conquista under two water deficit induction systems

    Directory of Open Access Journals (Sweden)

    Polyana K. Martins

    2008-01-01

    Full Text Available Drought cause serious yield losses in soybean (Glycine max, roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista and characterize their expression levels during water deficit. Soybean plants grown in nutrient solution hydroponically and in sand-pots were submitted to water stress and gene expression analysis was conducted using the differential display (DD and real time polymerase chain reaction (PCR techniques. Three differentially expressed mRNA transcripts showed homology to the Antirrhinum majus basic helix-loop-helix transcription factor bHLH, the Arabidopsis thaliana phosphatidylinositol transfer protein PITP and the auxin-independent growth regulator 1 (axi 1. The hydroponic experiments showed that after 100 min outside the nutrient solution photosynthesis completely stopped, stomata closed and leaf temperature rose. Both stress induction treatments produced significant decrease in the mitotic indices of root cells. Axi 1, PITP and bHLH were not only differentially expressed during dehydration in the hydroponics experiments but also during induced drought in the pot experiments. Although, there were differences between the two sets of experiments in the time at which up or down regulation occurred, the expression pattern of all three transcripts was related. Similar gene expression and cytological analysis results occurred in both systems, suggesting that hydroponics could be used to simulate drought detection by roots growing in soil and thus facilitate rapid and easy root sampling.

  11. Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 fromGlycine max(L) Merr.: comprehending its evolutionary conservancy at functional level.

    Science.gov (United States)

    Marathe, Ashish; Krishnan, Veda; Mahajan, Mahesh M; Thimmegowda, Vinutha; Dahuja, Anil; Jolly, Monica; Praveen, Shelly; Sachdev, Archana

    2018-01-01

    Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 ( GmItpk2 ), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk 2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that Gm ITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 β barrel sheets with ATP-binding site close to β sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.

  12. Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.).

    Science.gov (United States)

    Arikit, Siwaret; Yoshihashi, Tadashi; Wanchana, Samart; Uyen, Tran T; Huong, Nguyen T T; Wongpornchai, Sugunya; Vanavichit, Apichart

    2011-01-01

    2-Acetyl-1-pyrroline (2AP), the volatile compound that provides the 'popcorn-like' aroma in a large variety of cereal and food products, is widely found in nature. Deficiency in amino aldehyde dehydrogenase (AMADH) was previously shown to be the likely cause of 2AP biosynthesis in rice (Oryza sativa L.). In this study, the validity of this mechanism was investigated in soybeans (Glycine max L.). An assay of AMADH activity in soybeans revealed that the aromatic soybean, which contains 2AP, also lacked AMADH enzyme activity. Two genes, GmAMADH1 and GmAMADH2, which are homologous to the rice Os2AP gene that encodes AMADH, were characterized. The transcription level of GmAMADH2 was lower in aromatic varieties than in nonaromatic varieties, whereas the expression of GmAMADH1 did not differ. A double nucleotide (TT) deletion was found in exon 10 of GmAMADH2 in all aromatic varieties. This variation caused a frame-shift mutation and a premature stop codon. Suppression of GmAMADH2 by introduction of a GmAMADH2-RNAi construct into the calli of the two nonaromatic wild-type varieties inhibited the synthesis of AMADH and induced the biosynthesis of 2AP. These results suggest that deficiency in the GmAMADH2 product, AMADH, plays a similar role in soybean as in rice, which is to promote 2AP biosynthesis. This phenomenon might be a conserved mechanism among plant species. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.

  13. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1.

    Directory of Open Access Journals (Sweden)

    Francisco Pérez-Montaño

    Full Text Available Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis.

  14. Weed Control in Soybean (Glycine max)

    International Nuclear Information System (INIS)

    Kipkemoi, P.L.

    2002-01-01

    Weed Compete for limited growth factors with crop plants. This result in loss of crop vigour and hence reduces crop yields. A study was conducted in 1997 and 2001 to evaluate the use of herbicides and hand hoeing for weed control in soybeans. Crop establishment was by hand planting. The herbicides were applied using CP3 Knap sack sprayer calibrated to deliver a spray volume of 150l/ha. Hand weeding treatment were done as appropriate. The trial layout was randomised complete block design with four replications in both years. The tested herbicides did not satisfactorily control the weeds present at the experimental site in both years. Hand weeding on the other hand gave good control of the weeds which were reflected in high soybean yields. In these trials yields were negatively correlated with the number of weeds present. The tested herbicides alone appeared to be inadequate in controlling weeds in soybean. Compared with the weed-free treatment a single application of soil-applied or post-emergence herbicides did not control a broad spectrum of weeds and reduced soybean yields. It can also be inferred that soybean yield losses are minimised if they are kept weed free for at most 6 weeks after emergence

  15. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  16. Association mapping for partial resistance to Phytophthora sojae in ...

    Indian Academy of Sciences (India)

    2014-08-22

    Aug 22, 2014 ... resistance, and facilitate future marker-assistant selection aimed to improve resistance to P. sojae and reduce disease-related mortality in soybean. [Sun J., Guo N., Lei J., Li L., Hu G. and Xing H. 2014 Association mapping for partial resistance to Phytophthora sojae in soybean. (Glycine max (L.) Merr.).

  17. Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males

    Directory of Open Access Journals (Sweden)

    Orem Ihsan

    2009-04-01

    Full Text Available Abstract Background Recent research has indicated that short term administration of glycine propionyl-L-carnitine (GPLC significantly elevates levels of nitric oxide metabolites at rest and in response to reactive hyperaemia. However, no scientific evidence exists that suggests such supplementation enhances exercise performance in healthy, trained individuals. The purpose of this study was to examine the effects of GPLC on the performance of repeated high intensity stationary cycle sprints with limited recovery periods in resistance trained male subjects. Methods In a double-blind, placebo-controlled, cross-over design, twenty-four male resistance trained subjects (25.2 ± 3.6 years participated in two test sessions separated by one week. Testing was performed 90 minutes following oral ingestion of either 4.5 grams GPLC or 4.5 grams cellulose (PL, in randomized order. The exercise testing protocol consisted of five 10-second Wingate cycle sprints separated by 1-minute active recovery periods. Peak (PP and mean values (MP of sprint power output and percent decrement of power (DEC were determined per bout and standardized relative to body masss. Heart rate (HR and blood lactate (LAC were measured prior to, during and following the five sprint bouts. Results Significant main effects (p Conclusion These findings indicate that short-term oral supplementation of GPLC can enhance peak power production in resistance trained males with significantly less LAC accumulation.

  18. Selecting soybean resistant to the cyst nematode Heterodera glycines using simple sequence repeat (microssatellite) markers.

    Science.gov (United States)

    Espindola, S M C G; Hamawaki, O T; Oliveira, A P; Hamawaki, C D L; Hamawaki, R L; Takahashi, L M

    2016-03-11

    The soybean cyst nematode (SCN) is a major cause of soybean yield reduction. The objective of this study was to evaluate the efficiency of marker-assisted selection to identify genotypes resistant to SCN race 3 infection, using Sat_168 and Sat-141 resistance quantitative trait loci. The experiment was carried out under greenhouse conditions, using soybean populations originated from crosses between susceptible and resistant parent stock: CD-201 (susceptible) and Foster IAC (resistant), Conquista (susceptible) and S83-30 (resistant), La-Suprema (susceptible) and S57-11 (resistant), and Parecis (susceptible) and S65-50 (resistant). Plants were inoculated with SCN and evaluated according to the female index (FI), those with FI markers Sat-141 and Sat_168. Marker selection efficiency was analyzed by a contingency table, taking into account genotypic versus phenotypic evaluations for each line. These markers were shown to be useful tool for selection of SCN race 3.

  19. Effects of elevated CO{sub 2} concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.H. [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Klumpp, A.; Fangmeier, A. [Institute of Landscape and Plant Ecology (320), Plant Ecology and Ecotoxicology, Universitaet Hohenheim, August-von-Hartmann-Str. 3, 70599 Stuttgart (Germany); Pignata, M.L., E-mail: pignata@com.uncor.edu [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina)

    2011-03-15

    The carbon dioxide (CO{sub 2}) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO{sub 2} and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO{sub 2} regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO{sub 2} and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO{sub 2} than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO{sub 2} and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO{sub 2} and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human

  20. Teste de lixiviação de potássio para avaliação do vigor de sementes de soja [Glycine max (L.Merril] Potassium leaching test for the evaluation of soybean seed vigour

    Directory of Open Access Journals (Sweden)

    D.C.F.S. Dias

    1995-12-01

    Full Text Available O presente trabalho teve como objetivo principal investigar a possibilidade de se obter indicações rápidas sobre a qualidade fisiológica de sementes de soja através do teste de lixiviação de potássio, cuja eficiência foi avaliada comparativamente as informações fornecidas por outros métodos considerados adequados para a determinação do vigor. Para tanto, utilizou-se quatro lotes de sementes de soja dos cultivares IAC-8 e IAC-15 que foram submetidos aos testes de germinação, primeira contagem de germinação, envelhecimento artificial, condutividade elétrica e determinação do grau de umidade. Além destes foram conduzidos estudos de lixiviação de potássio utilizando-se amostras de sementes não danificadas e de sementes fisicamente puras. A quantidade de potássio lixiviado foi avaliada em fotômetro de chama após 60, 90, 120 e 150 minutos de embebição a 30ºC. As avaliações feitas aos 60, 90 e 120 minutos mostraram-se adequadas para a identificação de lotes com diferentes níveis de vigor, constituindo-se em um método simples e rápido para a avaliação da qualidade fisiológica das sementes.This work was performed to investigate the possibilities of providing rapid indications on the physiological quality of seeds through the potassium leaching test. Four lots of soybean (Glycine max (L. Merrill seeds, cultivars IAC-8 and IAC-15 were submitted to germination, first count, accelerated aging, electrical conductivity and seed moisture tests. In addition, studies on potassium leaching were conducted with samples of selected non damaged seeds and with pure seeds. The amount of leached potassium was evaluated in a flame photometer after a 60, 90, 120 and 150 minute imbibition at 30°C. The evaluations after 60, 90 and 120 minutes were suitable for the identification of lots with different levels of vigour, thus proving to be a simple and rapid method for seed vigour evaluation.

  1. A model plant pathogen from the kingdom Animalia: Heterodera glycines, the soybean cyst nematode.

    Science.gov (United States)

    Niblack, T L; Lambert, K N; Tylka, G L

    2006-01-01

    The soybean cyst nematode, Heterodera glycines, adversely affects the production of soybean, Glycine max, in many areas of the world, particularly in the United States, where it is the most economically important soybean pathogen. Despite the availability of hundreds of H. glycines-resistant soybean cultivars, the nematode continues to be a major limiting factor in soybean production. The use of nonhost rotation and resistance are the primary means of reducing losses caused by the nematode, but each of these options has disadvantages. As a subject for study of nematode parasitism and virulence, H. glycines provides a useful model despite its obligately parasitic nature. Its obligately sexual reproduction and ready adaptation to resistant cultivars, formerly referred to as "race shift," presents an excellent opportunity for the study of virulence in nematodes. Recent advances in H. glycines genomics have helped identify putative nematode parasitism genes, which, in turn, will aid in the understanding of nematode pathogenicity and virulence and may provide new targets for engineering nematode resistance.

  2. Mapeamento de semeaduras de soja (Glycine max (L.Merr. mediante dados MODIS/Terra E TM/Landsat 5: um comparativo Mapping of soybean (Glycine max (L. Merr. culture by MODIS/Terra and TM/Landsat 5: a comparative

    Directory of Open Access Journals (Sweden)

    Rubens A. C. Lamparelli

    2008-06-01

    Full Text Available O objetivo deste trabalho foi comparar mapeamentos de semeadura da cultura da soja na região oeste do Paraná, realizados com imagens MODIS/Terra e TM/Landsat 5. Primeiramente, construiu-se máscara de referência, considerando seis imagens TM ao longo do ciclo da cultura, utilizando-se dos algoritmos Paralelepípedo e MaxVer com posterior análise visual. As imagens MODIS foram classificadas com o algorítimo Paralelepípedo, em quatro passagens referentes ao pico vegetativo. O desempenho das classificações foi avaliado por meio de Matrizes de Erros, calculadas pela análise de 100 pontos amostrais (soja ou não-soja, aleatoriamente distribuídos em cada um dos oito municípios da área de estudo. Os principais resultados mostraram que a Exatidão Global (EG e o Índice Kappa (IK, que variaram entre 0,55 e 0,80, em ambos os sensores, são considerados bons a muito bons. Quando EG e IK dos sensores TM e MODIS foram comparados, não se encontrou diferença significativa. O mapeamento da soja utilizando o sensor MODIS produziu 70% de confiabilidade sob o ponto de vista do usuário. A principal conclusão é a viabilidade de mapear a soja pelo sensor MODIS com as vantagens de que as imagens MODIS têm melhor resolução temporal e são disponibilizadas gratuitamente na Internet.The objective of this work was to compare the soybean crop mapping in the western of Parana State by MODIS/Terra and TM/Landsat 5 images. Firstly, it was generated a soybean crop mask using six TM images covering the crop season, which was used as a reference. The images were submitted to Parallelepiped and Maximum Likelihood digital classification algorithms, followed by visual inspection. Four MODIS images, covering the vegetative peak, were classified using the Parallelepiped method. The quality assessment of MODIS and TM classification was carried out through an Error Matrix, considering 100 sample points between soybean or not soybean, randomly allocated in each of

  3. Genome-wide association study of soybean cyst nematode (Heterodera glycines Ichinohe) HG type 2.5.7 (race 1) resistance in wild soybean (Glycine soja Sieb. & Zucc.)

    Science.gov (United States)

    Soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Thus far, most of the commercial SCN-resistant soybean cultivars have been developed from very limited resistant germplasm resources. Overuse of these limited resistant sources has resulted in SCN race ...

  4. Max Planck

    Indian Academy of Sciences (India)

    THOLASI

    Max Planck – Founder of Quantum Theory. Max Karl Ernst ... quantum theory. Planck obtained his doctorate degree – 'summa cum laude' – from the University of Munich in. 1879, the year of birth of Albert Einstein. He then ... human culture, forming an integral part with the other branches of human learning and exercising its ...

  5. Genetic analysis of soybean resistance to Fusarium solani f.sp. glycines

    Directory of Open Access Journals (Sweden)

    Vanoli Fronza

    2004-01-01

    Full Text Available In order to study the genetic control of soybean resistance to sudden death syndrome (SDS, a 5 x 5 diallel with the F2 generation, without the reciprocals, was carried out in a greenhouse. The following parents were used: Forrest, MG/BR-46 (Conquista, IAC-4, FT-Cristalina, and FT-Estrela. The first two cultivars are more resistant to SDS than IAC-4, which is considered to be moderately resistant to SDS, and the last two cultivars are highly susceptible. The fungus was inoculated with three colonized sorghum grains placed at the bottom of the holes with two soybean seeds. Single plants were evaluated between 14 and 37 days after emergency based on foliar severity symptoms (1-5 of SDS. The disease incidence and a disease index were also calculated for each plot (clay pots with five plants each. The analysis for severity and disease index was performed only with the data of the 37th day after emergence. Additive and dominant genetic effects were detected by Jinks-Hayman's analysis, but the dominant genetic effects were higher. The genetic parameters estimated indicated that the average degree of dominance showed the presence of overdominance; at least three loci or genic blocks that exhibited dominance were responsible for the genetic control of SDS resistance; the estimates of narrow-sense heritabilities were moderate (0.48 to 0.62, but in the broad-sense they were higher (0.90 to 0.95, thus reinforcing the presence of dominance effects; and the resistance to SDS was controlled mostly by dominant alleles. Five microsatellite markers (Satt163, Satt309, Satt354, Satt371 and Satt570, reported as linked to five QRLs of the SDS, were used to genotype the parents and showed the possibility of occurrence of multiallelism in those loci, but this evidence did not invalidate the fitting of the data to the Jinks-Hayman's model.

  6. Water deficiency at different developmental stages of Glycine max can improve drought tolerance Deficiência hídrica em diferentes estágios de desenvolvimento de soja pode aumentar a tolerância à seca

    Directory of Open Access Journals (Sweden)

    Alan Panaia Kron

    2008-01-01

    Full Text Available Developmental windows are specific periods of sensitivity during normal plant development in which a perturbation may be adaptively integrated. In these periods, sub-lethal environmental perturbations may improve the capacity to grow at lethal conditions. The aim of this study was to test the hypothesis that previous non-lethal water deficit applied in different developmental stages in soybean plants could enables them to improve the tolerance to environmental perturbations. In order to test this hypothesis we carried out an experiment with soybean plants submitted to water deficit in different stages of plant development, evaluating yield and physiological aspects. Our results indicated that water deficit experienced on V4 stage (vegetative induces more suitable response, enabling plants to develop a process of tolerance improvement to a further water shortage period, probably through a reduction of growth, which maintains a conservative strategy of energy use. On the other hand, water deficit in R1 stage (reproductive, increased the plant susceptibility to posterior water withholding. This " strategy" was the opposite of the one employed by plants on V4 stage, i.e., to maintain growth rate probably at the expense of a higher energetic cost.Janelas de desenvolvimento são períodos específicos durante o ciclo de vida das plantas em que uma perturbação ambiental pode ser incorporada através de um processo de adaptação. Nesses períodos, perturbações ambientais subletais podem capacitar as plantas a crescer em condições letais. O objetivo deste trabalho foi testar a hipótese de que plantas de soja (Glycine max submetidas à deficiência hídrica não-letal em diferentes estágios de seu desenvolvimento poderiam otimizar sua tolerância a estresses ambientais posteriores. Para testar essa hipótese, foi conduzido um experimento com plantas de soja submetidas à deficiência hídrica em diferentes estágios de desenvolvimento, avaliando

  7. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A

    Science.gov (United States)

    Improving resistance for Phytophthora root and stem rot is an important goal in soybean [Glycine max (L.) Merr.] breeding. Partial resistance can be as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of this study was to identify QTL con...

  8. Role of physiological mechanisms and EPSPS gene expression in glyphosate resistance in wild soybeans (Glycine soja).

    Science.gov (United States)

    Gao, Yue; Tao, Bo; Qiu, Lijuan; Jin, Longguo; Wu, Jing

    2014-02-01

    The physiological mechanisms underlying glyphosate resistance in wild soybean germplasm and relevant EPSPS gene expression were evaluated. These germplasms were selected by gradually increasing glyphosate selection pressure started from 2010. As indicated by a whole-plant dose response bioassay, ZYD-254 plants were resistant to glyphosate at concentrations of 1230gaeha(-1), but the susceptible plants (ZYD-16) were unable to survive in the presence of 300gaeha(-1) glyphosate. The ED50 values of resistant germplasm were approximately 8.8 times of the susceptible germplasm. Chlorophyll content was significantly decreased in ZYD-16 plants in comparison with ZYD-254 plants. ZYD-16 plants accumulated 10.1 times more shikimate in leaves at 5days after glyphosate treatment at 1230gaeha(-1) than ZYD-254 did. GST activity differed between ZYD-254 and ZYD-16 in three tissues. It was highest in leaves. There were no significant differences in EPSPS1 or EPSPS3 expression between two germplasms before exposure to glyphosate treatment. After glyphosate treatment, there was a 2- to 4-fold increase in EPSPS1 mRNA levels in ZYD-254, but there was no change in EPSPS3 mRNA levels in ZYD-254 or ZYD-16. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Genetic analysis of resistance to soybean rust disease | Kiryowa ...

    African Journals Online (AJOL)

    Soybean rust (Phakopsora pachyrhizi Sydow.) causes the most damage of all the pathogens known to attack soybean (Glycine max. Merril). A study was conducted in Uganda to estimate the magnitude of genetic parameters controlling soybean rust resistance and to estimate narrow sense heritability of the resistance.

  10. Selection individual on mutant genotype of soybean (Glycine maxl.merrill) in m5 generation based on resistance of stem rot disease Athelia rolfsii (curzi)

    Science.gov (United States)

    Rahmah, M.; Hanafiah, D. S.; Siregar, L. A. M.; Safni, I.

    2018-02-01

    This study was aimed to obtain selected individuals on soybean plant Glycine max L. (Merrill) in M5 generation based on high production character and tolerance of stem rot disease Athelia rolfsii (Curzi). This research was conducted in Plant Disease Laboratory and experimental field Faculty of Agriculture Universitas Sumatera Utara Medan, Indonesia. This research was conducted from December 2016 to June 2017. The treatments were 15 mutant lines genotypes and Anjasmoro variety. The results showed that some lines mutant genotypes can gave the good agronomic appearance character than Anjasmoro variety on inoculation treatment of stem rot disease. Selection performed on population M5 producesselected individuals with tolerance of stem rot disease from 100 and 200 Gy population.

  11. An examination of training on the VertiMax resisted jumping device for improvements in lower body power in highly trained college athletes .

    Science.gov (United States)

    Rhea, Matthew R; Peterson, Mark D; Oliverson, Jeff R; Ayllón, Fernando Naclerio; Potenziano, Ben J

    2008-05-01

    Training to develop superior muscular power has become a key component to most progressive sport conditioning programs. Conventional resistance training, plyometrics, and speed/agility modalities have all been employed in an effort to realize superlative combinations of training stimuli. New training devices such as the VertiMax resisted jump trainer are marketed as a means of improving lower body reactive power. The purpose of this study was to evaluate the effectiveness of the VertiMax, in combination with traditional training modalities, for improvements in lower body power among highly trained athletes. Forty men and women Division I collegiate athletes representing the sports of baseball, basketball, soccer, gymnastics, and track completed a 12-week mixed-methods training program. Two groups were constructed with both groups performing the same conventional resistance training and strength training exercises. The training control group performed traditional plyometric exercises while the experimental group performed similar loaded jump training on the VertiMax. Lower body power was measured before and after the training program by the TENDO FiTROdyne Powerlizer and statistically compared for differences between groups. Data analyses identified a significant (p training alone (effect size = 0.09). These data convincingly demonstrate that the VertiMax represents an effective strategy for developing lower body power among trained college athletes, when combined with traditional strength and conditioning approaches.

  12. Biochemical interactions between Glycine max L. silicon dioxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products.

    Science.gov (United States)

    Romeh, Ahmed Ali; Hendawi, Mohamed Yousef

    2017-10-01

    Fenamiphos is a systematic nematicide-insecticide used extensively for the control of soil nematodes. Fenamiphos and oxidation products have been known to induce water pollution, soil pollution and ecotoxicological effects on aquatic organisms, as well as heath issues. This contaminant can be removed by phytoremediation. Herein, we tested several strategies to improve the effectiveness of this technology. A combination of G. max plus Pseudomonas fluorescens was more efficient than G. max plus Serratia marcescens or G. max alone in degrading fenamiphos to other metabolites. Three major metabolites, namely fenamiphos sulfoxide (FSO), fenamiphos sulfone (FSO 2 ) and fenamiphos phenol (F-phenol), were detected in roots and leaves in which G. max amended with P. fluorescens or amended with S. marcescens produced a significant accumulation of FSO and FSO 2 with higher amounts than for G. max alone. Leaf concentrations of FSO were always higher than in the roots, while FSO 2 accumulated significantly more in G. max roots than in G. max leaves. In soil treated with fenamiphos, G. max roots and leaves alone, and in combined effects of plant and microorganisms, resulted in the disappearance of fenamiphos and the appearance of F-SO, F-SO 2 and F-phenol, which in turn caused toxic stress in G. max and the resulting production of reactive oxygen species such as H 2 O 2 with higher content and an increase in antioxidant GPX activity. Although a batch equilibrium technique showed that use of SiO 2 resulted in the efficient removal of fenamiphos when compared with other treatments for removing adsorbed fenamiphos from soil, a fewer amount of fenamiphos was removed by G. max L. with SiO 2 . H 2 O 2 content and GPX activity increased in G. max under fenamiphos treatment and its degradation products, while amended G. max with SiO 2 or Argal led to a decrease in GPX activity and H 2 O 2 content. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841

    Science.gov (United States)

    Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdmann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the US. Partial resistance is as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of t...

  14. Etude des possibilités de production de Jatropha curcas L. dans un couvert permanent de Stylosanthes guianensis (Aublet Schwartz en association avec le maïs (Zea mays L. et le soja (Glycine max (L. Merr. dans les conditions du Plateau des Batéké à Kinshasa

    Directory of Open Access Journals (Sweden)

    Minengu, JD.

    2015-01-01

    Full Text Available Study of the Production Possibilities of Jatropha curcas L. in Permanent Cover of Stylosanthes guianensis (Aublet Schwartz in Association with Maize (Zea mays L. and Soybean (Glycine max (L. Merr. under the Conditions of the Batéké Plateau in Kinshasa. An experiment was carried out between July 2009 and December 2012 on the Batéké Plateau near Kinshasa to assess the impact of the intercropping of Jatropha curcas L. with short-cycle food crops (maize Zea mays L. and soybeans Glycine max (L. Merr. in a permanent cover of Stylosanthes guianensis (Aublet Schwartz. The thirteen compared treatments consisted in the rotation corn – corn – soybean in pure stand and twelve combinations involving the cultivation of J. curcas: (1 J. curcas in sole crop or in association with S. guianensis, (2 three J. curcas planting densities (3 333, 2 500, or 1 667 shrubs ha-1 and (3 J. curcas sole cropped or associated with a short-cycle annual crop (rotation corn - corn, soybean. Vegetative development and seed yield of food crops and J. curcas were higher in plots with permanent S. guianensis cover. The highest mean yield of J. curcas in the 3rd year of production (harvests of July and December 2012 was 409.4±13.2 kg ha-1 dry seeds in plots with S. guianensis cover and 289,6±8,1 kg ha-1 in plots without mulch. The gravity of the damage of insect pests on J. curcas was higher in sole cropping (>60% than in intercropping (<45%. The cultivation of J. curcas in a permanent cover of S. guianensis in intercropping with maize and soybean ensures both a good development of J. curcas plants and attractive yields of annual food crops in the early years following the installation of the plantation. During this phase, the optimum planting density is 2 500 shrubs ha-1.

  15. Soybean lines evaluated for resistance to reniform nematode

    Science.gov (United States)

    Seventy-four wild and domestic soybean (Glycine max and G. soja) lines were evaluated for resistance to reniform nematode (Rotylenchulus reniformis) in growth chamber tests with a day length of 16 hours and temperature held constant at 28 C. Several entries for which reactions to reniform nematode w...

  16. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea

    Science.gov (United States)

    Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on...

  17. The Seed Biotinylated Protein of Soybean (Glycine max): A Boiling-Resistant New Allergen (Gly m 7) with the Capacity To Induce IgE-Mediated Allergic Responses.

    Science.gov (United States)

    Riascos, John J; Weissinger, Sandra M; Weissinger, Arthur K; Kulis, Michael; Burks, A Wesley; Pons, Laurent

    2016-05-18

    Soybean is a common allergenic food; thus, a comprehensive characterization of all the proteins that cause allergy is crucial to the development of effective diagnostic and immunotherapeutic strategies. A cDNA library was constructed from seven stages of developing soybean seeds to investigate candidate allergens. We searched the library for cDNAs encoding a seed-specific biotinylated protein (SBP) based on its allergenicity in boiled lentils. A full-length cDNA clone was retrieved and expressed as a 75.6-kDa His-tagged recombinant protein (rSBP) in Escherichia coli. Western immunoblotting of boiled bacterial extracts demonstrated specific IgE binding to rSBP, which was further purified by metal affinity and anion exchange chromatographies. Of the 23 allergic sera screened by ELISA, 12 contained IgEs specific to the purified rSBP. Circular dichroism spectroscopy revealed a predominantly unordered structure consistent with SBP's heat stability. The natural homologues (nSBP) were the main proteins isolated from soybean and peanut embryos after streptavidin affinity purification, yet they remained low-abundance proteins in the seed as confirmed by LC-MS/MS. Using capture ELISAs, the soybean and peanut nSBPs were bound by IgEs in 78 and 87% of the allergic sera tested. The soybean nSBP was purified to homogeneity and treatments with different denaturing agents before immunoblotting highlighted the diversity of its IgE epitopes. In vitro activation of basophils was assessed by flow cytometry in a cohort of peanut-allergic children sensitized to soybean. Stronger and more frequent (38%) activations were induced by nSBP-soy compared to the major soybean allergen, Gly m 5. SBPs may represent a novel class of biologically active legume allergens with the structural resilience to withstand many food-manufacturing processes.

  18. Эффективность взаимодействия препарата ассоциативных бактерий с сортами Glycine max. L

    OpenAIRE

    Парахин, Н.; Моисеенко, Ю.; Петрова, С.

    2009-01-01

    Рассмотрено действие препарата ассоциативных бактерий на сортах Glycine max. L. и дана оценка эффективности его применения.

  19. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge

    Science.gov (United States)

    Glycine max (L.) Merr. cv. Waseshiroge is considered to be strongly resistant to several races of Phytophthora sojae in Japan. In order to characterize the inheritance of Waseshiroge resistance to P. sojae isolates, 42 F2 progeny plants and 94 F7:8 families were produced from crosses between the sus...

  20. First report of Phakopsora pachyrhizi adapting to soybean genotypes with Rpp1 or Rpp6 rust resistance genes in field plots in the United States

    Science.gov (United States)

    Since the first detection of soybean rust, caused by Phakopsora pachyrhizi Syd., in the continental United States in November, 2004, soybean [Glycine max (L.) Merr.] genotypes with the Rpp1 or Rpp6 resistance genes have exhibited high levels of resistance in the United States. In 2011 and 2012, howe...

  1. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Márquez-García, Belén; Comadira, Gloria; Fernandez-Garcia, Nieves; Olmos, Enrique; Schnaubelt, Daniel; Kunert, Karl J; Foyer, Christine H

    2014-09-01

    Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Evaluation of BD MAX Staph SR Assay for Differentiating Between Staphylococcus aureus and Coagulase-Negative Staphylococci and Determining Methicillin Resistance Directly From Positive Blood Cultures.

    Science.gov (United States)

    Lee, Jaewoong; Park, Yeon Joon; Park, Dong Jin; Park, Kang Gyun; Lee, Hae Kyung

    2017-01-01

    We evaluated the performance of the BD MAX StaphSR Assay (SR assay; BD, USA) for direct detection of Staphylococcus aureus and methicillin resistance not only in S. aureus but also in coagulase-negative Staphylococci (CNS) from positive blood cultures. From 228 blood culture bottles, 103 S. aureus [45 methicillin-resistant S. aureus (MRSA), 55 methicillin-susceptible S. aureus (MSSA), 3 mixed infections (1 MRSA+Enterococcus faecalis, 1 MSSA+MRCNS, 1 MSSA+MSCNS)], and 125 CNS (102 MRCNS, 23 MSCNS) were identified by Vitek 2. For further analysis, we obtained the cycle threshold (Ct) values from the BD MAX system software to determine an appropriate cutoff value. For discrepancy analysis, conventional mecA/mecC PCR and oxacillin minimum inhibitory concentrations (MICs) were determined. Compared to Vitek 2, the SR assay identified all 103 S. aureus isolates correctly but failed to detect methicillin resistance in three MRSA isolates. All 55 MSSA isolates were correctly identified by the SR assay. In the concordant cases, the highest Ct values for nuc, mecA, and mec right-extremity junction (MREJ) were 25.6, 22, and 22.2, respectively. Therefore, we selected Ct values from 0-27 as a range of positivity, and applying this cutoff, the sensitivity/specificity of the SR assay were 100%/100% for detecting S. aureus, and 97.9%/98.1% and 99.0%/95.8% for detecting methicillin resistance in S. aureus and CNS, respectively. We propose a Ct cutoff value for nuc/mec assay without considering MREJ because mixed cultures of MSSA and MRCNS were very rare (0.4%) in the positive blood cultures.

  3. Organ-Specific Differential NMR-Based Metabonomic Analysis of Soybean [Glycine max (L. Merr.] Fruit Reveals the Metabolic Shifts and Potential Protection Mechanisms Involved in Field Mold Infection

    Directory of Open Access Journals (Sweden)

    Wen-yu Yang

    2017-04-01

    Full Text Available Prolonged, continuous rainfall is the main climatic characteristic of autumn in Southwest China, and it has been found to cause mildew outbreaks in pre-harvest soybean fields. Low temperature and humidity (LTH stress during soybean maturation in the field promotes pre-harvest mildew, resulting in damage to different organs of soybean fruits to different extents, but relatively little information on the resistance mechanisms in these fruits is available. Therefore, to understand the metabolic responses of soybean fruits to field mold (FM, the metabonomic variations induced by LTH were characterized using proton nuclear magnetic resonance spectroscopy (1H-NMR, and the primary metabolites from the pod, seed coat and cotyledon of pre-harvest soybean were quantified. Analysis of FM-damaged soybean germplasms with different degrees of resistance to FM showed that extracts were dominated by 66 primary metabolites, including amino acids, organic acids and sugars. Each tissue had a characteristic metabolic profile, indicating that the metabolism of proline in the cotyledon, lysine in the seed coat, and sulfur in the pod play important roles in FM resistance. The primary-secondary metabolism interface and its potential contribution to FM resistance was investigated by targeted analyses of secondary metabolites. Both the seed coat and the pod have distinct but nonexclusive metabolic responses to FM, and these are functionally integrated into FM resistance mechanisms.

  4. Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel

    OpenAIRE

    Che, Zhijun; Liu, Hailun; Yi, Fanglei; Cheng, Hao; Yang, Yuming; Wang, Li; Du, Jingyi; Zhang, Peipei; Wang, Jiao; Yu, Deyue

    2017-01-01

    Soybean mosaic virus (SMV) is a member of Potyvirus genus that causes severe yield loss and destroys seed quality in soybean [Glycine max (L.) Merr.]. It is important to explore new resistance sources and discover new resistance loci to SMV, which will provide insights to improve breeding strategies for SMV resistance. Here, a genome-wide association study was conducted to accelerate molecular breeding for the improvement of resistance to SMV in soybean. A population of 165 soybean mutants de...

  5. Glycine in the conserved motif III modulates the thermostability and oxidative stress resistance of peptide deformylase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Narayanan, Sai Shyam; Sokkar, Pandian; Ramachandran, Murugesan; Nampoothiri, Kesavan Madhavan

    2011-07-01

    Peptide deformylase (PDF) catalyses the removal of the N-formyl group from the nascent polypeptide during protein maturation. The PDF of Mycobacterium tuberculosis H37Rv (MtbPDF), overexpressed and purified from Escherichia coli, was characterized as an iron-containing enzyme with stability towards H(2) O(2) and moderate thermostability. Substitution of two conserved residues (G49 and L107) from MtbPDF with the corresponding residues found in human PDF affected its deformylase activity. Among characterized PDFs, glycine (G151) in motif III instead of conserved aspartate is characteristic of M. tuberculosis. Although the G151D mutation in MtbPDF increased its deformylase activity and thermostability, it also affected enzyme stability towards H(2) O(2) . Molecular dynamics and docking results confirmed improved substrate binding and catalysis for the G151D mutant and the study provides another possible molecular basis for the stability of MtbPDF against oxidizing agents. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Greenhouse evaluation of commercial soybean cultivars adapted to the northern United States for resistance to charcoal rot

    Science.gov (United States)

    Thirty (30) and sixty-seven (67) commercially available soybean (Glycine max (L.) Merr) cultivars from Wisconsin (Maturity group (MG) I-II) and Indiana (MG II-III), respectively, were evaluated for charcoal rot (CR; Macrophomina phaseolina (Tassi) Goid) resistance using a cut-stem greenhouse assay. ...

  7. Evaluation of soybean germplasm accessions for resistance to Phakopsora pachyrhizi populations in the southeastern United States, 2009-2012

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] germplasm accessions from the USDA Soybean Germplasm Collection were screened for resistance to soybean rust (Phakopsora pachyrhizi) at up to five locations in the southeastern United States in 2009, 2011 and 2012. In 2009, plant introductions (PIs) from maturity gro...

  8. The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max.

    Science.gov (United States)

    da Graça, José P; Ueda, Tatiana E; Janegitz, Tatiani; Vieira, Simone S; Salvador, Mariana C; de Oliveira, Maria C N; Zingaretti, Sonia M; Powers, Stephen J; Pickett, John A; Birkett, Michael A; Hoffmann-Campo, Clara B

    2016-11-01

    To test the hypothesis that the plant stress related elicitor cis-jasmone (cJ) provides protection in soybean pods against the seed-sucking stink bug pest, Euschistus heros, the growth of E. heros on cJ-treated pods was investigated using three soybean cultivars differing in insect susceptibility, i.e. BRS 134 (susceptible), IAC 100 (resistant) and Dowling (resistant). E. heros showed reduced weight gain when fed cJ-treated Dowling, whereas no effect on weight gain was observed when fed other treated cultivars. Using analysis of variance, a three factor (cultivar x treatment x time) interaction was observed with concentrations of the flavonoid glycosides daidzin and genistin, and their corresponding aglycones, daidzein and genistein. There were increases in genistein and genistin concentrations in cJ-treated Dowling at 144 and 120 h post treatment, respectively. Higher concentrations of malonyldaidzin and malonylgenistin in Dowling, compared to BRS 134 and IAC 100, were observed independently of time, the highest concentrations being observed in cJ-treated seeds. Levels of glycitin and malonylglycitin were higher in BRS 134 and IAC 100 compared to Dowling. Canonical variate analysis indicated daidzein (in the first two canonical variates) and genistein (in the first only) as important discriminatory variables. These results suggest that cJ treatment leads to an increase in the levels of potentially defensive isoflavonoids in immature soybean seeds, but the negative effect upon E. heros performance is cultivar-dependent. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. ASPECTOS BIOLÓGICOS DE Anticarsia gemmatalis HÜEBNER (LEPIDOPTERA: NOCTUIDAE EM CULTIVARES DE SOJA (Glycine max MERRIL BIOLOGICAL ASPECTS OF Anticarsia gemmatalis HÜEBNER (LEPIDOPTERA: NOCTUIDAE ON SOYBEAN CULTIVARS

    Directory of Open Access Journals (Sweden)

    José Baldin Pinheiro

    2007-09-01

    Full Text Available

    O trabalho foi desenvolvido no Laboratório de Entomologia da Escola de Agronomia da Universidade Federal de Goiás, em condições controladas de temperatura (25+2ºC, umidade relativa (40+10% e fotofase de 13h, com o objetivo de estudar o efeito das cultivares Emgopa 316, FT-Estrela, IAC 100 e IAC 17, no desenvolvimento de Anticarsia gemmatalis. Foram observadas a duração do período larval, o tamanho e o peso de lagartas e peso de pupas. Na cultivar Emgopa 316, as larvas apresentaram uma diminuição no período larval e um aumento nos pesos larval e pupal, enquanto IAC 100 mostrou alguma evidência de antibiose, aumentando o período larval e diminuindo o peso de lagartas e de pupas.

    PALAVRAS-CHAVE: Resistência; antibiose; insecta.

    A laboratory work was conducted at Universidade Federal de Goiás, under controlled conditions of temperature (25+2º, relative humidity (40+10% and photophase (13h. The objective was to evaluate the effect of the soybean cultivars Emgopa 316, FT-Estrela, IAC 100 and IAC 17 on the development of Anticarsia gemmatalis Hüebner, 1818. Duration of the development phases, length of larvae and weight of pupae were observed. Emgopa 316 showed a decreasing duration of larval stage and an increase in larvae and pupae weight; IAC 100 showed some evidence of antibiosis, increasing the larval stage and decreasing larvae and pupae weight.

    KEY-WORDS: Insecta; resistance; antibiosis.

  10. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  11. Environmental adaptation in wild soybeans (Glycine soja) across their native geographic range in northeast Asia

    Science.gov (United States)

    Understanding the genetic basis of adaptive variation and the forces that shape this diversity in natural populations are long-standing goals in evolutionary biology. The wild soybean (Glycine soja), from which domesticated soybeans (Glycine max) were derived, is widely distributed throughout a dive...

  12. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  13. Induction of soybean resistance to bacterial pustule disease (Xanthomonas axonopodis pv. glycines) by rhizobacteria and organic material treatment

    Science.gov (United States)

    Khaeruni, A.; Johan, E. A.; Wijayanto, T.; Taufik, M.; Syafar, A. A. R.; Kade Sutariati, G. A.

    2018-02-01

    This study aimed to evaluate the role of different formulations and types of organic matter in improving yield and resistance of soybean plants to bacterial pustule disease. The study was prepared based on a randomized block design with a factorial pattern. The first factor was the application of rhizobacterial formulation (biofresh), ie F0 = without the application of rhizobacteria, F1 = application of biofresh in solid formulation, and F2 = application of biofresh in liquid formulation. The second factor was the application of organic materials, namely B1 = compost of soybean litter + cow dung, B2 = compost of rice straw + cow dung, B3 = compost of soybean litter + rice straw + cow dung. Observation of disease severity and soybean yield was conducted on five sample plants in each treatment. The results showed that the treatment of biological agent biofresh in solid formulation combined with compos of soybean litter, was the best treatment in increasing plant resistance to bacterial pustule disease and seed weight. Plant resistance induction occurred systemically characterized by salicylic acid increase of 0.3 mg and peroxidase increase of 0.07 unit / mL in the sample plants.

  14. Evaluation of soybean breeding lines for resistance to Phomopsis seed decay: Results of 2014, 2015, and 2016 field trials in Stoneville, Mississippi

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] is one of the most important crops in the world. Phomopsis seed decay (PSD) is a soybean seed disease that causes poor seed quality. This disease is caused primarily by a fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla). Planting PSD-resistant soybea...

  15. Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85-32.

    Science.gov (United States)

    Zhang, Shichen; Zhang, Zhongnan; Wen, Zixiang; Gu, Cuihua; An, Yong-Qiang Charles; Bales, Carmille; DiFonzo, Chris; Song, Qijian; Wang, Dechun

    2017-12-01

    Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified. The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS-LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.

  16. Genetic variability in soybean ( Glycine max L.) for low soil ...

    African Journals Online (AJOL)

    Assessment of the genetic variability of soybean genotypes under low soil phosphorus (P) conditions provides an understanding of the genetic potential of the genotypes to improve the crop for low P tolerance. The study was designed objectively to estimate the extent of genetic variability of soybean genotypes for low P ...

  17. Soybean (Glycine max) as a versatile biocatalyst for organic synthesis

    African Journals Online (AJOL)

    Luciana

    2012-04-12

    Apr 12, 2012 ... Cetonas Aromáticas Utilizando a Casca da Passiflora como. Biocatalisador. MS Thesis, Edições UFC, Fortaleza, Brazil, 2003. Machado LL, Monte FJQ, de Oliveira MCF, de Mattos MC, Lemos TLG,. Gotor-Fernández V, Gonzalo G, Gotor V (2008). Bioreduction of aromatic aldehydes and ketones by fruits' ...

  18. Roasted soybeans (glycine max. (l) merril) for lactating dairy cows

    OpenAIRE

    Nelcy Madruga de Carvalho

    2001-01-01

    Soybeans were roasted in an experimental roaster during 2 or 3 minutes either at 380 or 490 ºC air temperature and kept or not for 30 minutes under steeping. The heat treatment effects on soybeans were evaluated in a first trial through two different procedures: a) after 16 hours of an “in situ” ruminal incubation period, all heat treated soybeans showed an increased (P0,05). In a second trial, soybeans roasted at 380 ºC, during 2 minutes and kept under steeping were included in isonitrogenou...

  19. Analysis of resource use efficiency among soybean ( Glycine max ...

    African Journals Online (AJOL)

    Also, 87.5% of the farmers were in their active age, and 81.7% utilized their personal saving as a major source of finance for production. The result of the production function analysis indicated that 87.21% of the variation in the output of soybean is explained for by the independent variables. Resource-use efficiency ...

  20. Soybean ( Glycine max ) complementation and the zinc status of HIV ...

    African Journals Online (AJOL)

    GM Were, O Ohiokpehai, JB Okeyo-Owuor, GM Mbagaya, J Kimiywe, D Mbithe, MM Okello ... Subsequently, inadequate food supply at the household level has led to micronutrient deficiencies especially zinc. ... Suba District, Kenya is resource-poor with high levels of food insecurity and lack of diet diversification.

  1. Optimization of soybean (glycine max L.) regeneration for korean cultivars

    International Nuclear Information System (INIS)

    Phat, P.; Rehman, S. U.; Ju, H. J.; Jung, H. I.

    2015-01-01

    Tissue culture could provide key insights into the development of transgenic plants, production of good cultivars and secondary metabolites, conservation of endangered plants, and safeguarding of germplasms. In this study, the effects of shoot induction media, explants, cultivars, and phytohormone concentrations on the regeneration efficiency of Korean soybean cultivars were evaluated. Restricted dormancy and poor germination may affect regeneration, depending on the type of germination medium or initiation of phytohormone treatment. Therefore, we analyzed the effects of different germination media containing plant growth regulators, i.e. 6-benzyladenine (BAP), gibberellic acid 3 (GA /sub 3/), and naphthalene acetic acid (NAA), prior to investigating the influences of explant types, media with or without vitamins, cultivars, and different phytohormones (BAP and GA3). A high frequency of germination was observed in Murashige and Skooge (MS) medium with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.25 mg L /sup -1/ GA /sub 3/. Cotyledonary node explants and Gamborg B5 with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.17 mg L /sup -1/ GA /sub 3/ in callus induction medium (CIM) and 1 mg L /sup -1/ BAP in shoot induction medium (SIM) were found to be the most efficient conditions for induction of soybean regeneration, both in callus development and shoot regeneration. Two Korean soybean cultivars, cv. Daepung and Nampung, showed similar development of shoot regeneration efficiency, but significantly different shoot induction times. Therefore, the protocol reported here may be used for further development of regeneration efficiency and can be employed for efficient transformation in soybeans. (author)

  2. Genetic Variability in Soybean (Glycine max L.) for Low Soil ...

    African Journals Online (AJOL)

    Abush Tesfaye

    worldwide importance as food and market crop. This is mainly because of its high ... The application of inorganic P fertilizers is one of the possibilities for addressing the problem of low P availability. However ...... Soybean Research Conference held in Foz do Iguassu, Brazil, 1-5 March, 2004. Tong, X.J., X. Yan, Y.G. Lu, ...

  3. Glycine max and Moringa oleifera : nutritional values, processing ...

    African Journals Online (AJOL)

    For fighting malnutrition in the developing countries, using soybean and Moringa oleifera plant materials can be considered as the cheaper and the most sustainable approach. The objective of our review is to identify and present the nutritional potential of these two agro-resources. We conducted a literature review on the ...

  4. Soybean performance ( Glycine max (L) Merr ) on tropical soils with ...

    African Journals Online (AJOL)

    Pot trial was conducted to investigate the effects of soil types, nitrogen and phosphorus application on the yield, and nodulation and nutrient uptake of soybean grown on tropical soils. Results showed that forest soils produced higher dry matter yield, pod number, seed number, nodule number, and nodule weight at 6 and 12 ...

  5. Archaeological Soybean (Glycine max) in East Asia: Does Size Matter?

    Science.gov (United States)

    Lee, Gyoung-Ah; Crawford, Gary W.; Liu, Li; Sasaki, Yuka; Chen, Xuexiang

    2011-01-01

    The recently acquired archaeological record for soybean from Japan, China and Korea is shedding light on the context in which this important economic plant became associated with people and was domesticated. This paper examines archaeological (charred) soybean seed size variation to determine what insight can be gained from a comprehensive comparison of 949 specimens from 22 sites. Seed length alone appears to represent seed size change through time, although the length×width×thickness product has the potential to provide better size change resolution. A widespread early association of small seeded soybean is as old as 9000–8600 cal BP in northern China and 7000 cal BP in Japan. Direct AMS radiocarbon dates on charred soybean seeds indicate selection resulted in large seed sizes in Japan by 5000 cal BP (Middle Jomon) and in Korea by 3000 cal BP (Early Mumun). Soybean seeds recovered in China from the Shang through Han periods are similar in length to the large Korean and Japanese specimens, but the overall size of the large Middle and Late Jomon, Early Mumun through Three Kingdom seeds is significantly larger than any of the Chinese specimens. The archaeological record appears to disconfirm the hypothesis of a single domestication of soybean and supports the view informed by recent phyologenetic research that soybean was domesticated in several locations in East Asia. PMID:22073186

  6. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  7. Proteomic analysis of the Heliotropic Organ Pulvinus in Glycine max

    Science.gov (United States)

    BACKGROUND: Certain plant species respond to light, dark, and other environmental factors by leaf movement. Leguminous plants both track and avoid the sun through turgor changes of the pulvinus tissue at the base of leaves. Mechanisms leading to pulvinar turgor flux, particularly knowledge of the pr...

  8. Common sunflower (Helianthus annuus) interference in soybean (Glycine max)

    International Nuclear Information System (INIS)

    Geier, P.W.; Maddux, L.D.; Moshier, L.J.; Stahlman, P.W.

    1996-01-01

    Multiple weed species in the field combine to cause yield losses and can be described using one of several empirical models. Field studies were conducted to compare observed corn yield loss caused by common sunflower and shattercane populations with predicted yield losses modeled using a multiple species rectangular hyperbola model, an additive model, or the yield loss model in the decision support system, WeedSOFT, and to derive competitive indices for common sunflower and shattercane. Common sunflower and shattercane emerged with corn and selected densities established in field experiments at Scandia and Rossville, KS, between 2000 and 2002. The multiple species rectangular hyperbola model fit pooled data from three of five location–years with a predicted maximum corn yield loss of 60%. Initial slope parameter estimate for common sunflower was 49.2 and 4.2% for shattercane. A ratio of these estimates indicated that common sunflower was 11 times more competitive than shattercane. When common sunflower was assigned a competitive index (CI) value of 10, shattercane CI was 0.9. Predicted yield losses modeled for separate common sunflower or shattercane populations were additive when compared with observed yield losses caused by low-density mixed populations of common sunflower (0 to 0.5 plants m −2 ) and shattercane (0 to 4 plants m −2 ). However, a ratio of estimates of these models indicated that common sunflower was only four times as competitive as shattercane, with a CI of 2.5 for shattercane. The yield loss model in WeedSOFT underpredicted the same corn losses by 7.5%. Clearly, both the CI for shattercane and the yield loss model in WeedSOFT need to be reevaluated, and the multiple species rectangular hyperbola model is proposed. (author)

  9. Radiation processing and functional properties of soybean ( Glycine max)

    Science.gov (United States)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V.; Sharma, Arun

    2010-04-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  10. Radiation processing and functional properties of soybean (Glycine max)

    Energy Technology Data Exchange (ETDEWEB)

    Pednekar, Mrinal, E-mail: mrinal1854@yahoo.co.i [Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra (India); Das, Amit K. [Department of Food Engineering, CFTRI, Mysore 570020, Karnataka (India); Rajalakshmi, V; Sharma, Arun [Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra (India)

    2010-04-15

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  11. Induced mutation for the improvement of soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Asencion, A.B.; Lapade, A.G.; Grafia, A.O.; Barrida, A.C.; Veluz, A.M.; Marbella, L.J.

    2004-01-01

    A study on the use of gamma radiation in the induction of mutations in eight varieties of soybean was conducted. The radiosensitivity of the seeds of both local and introduced soybean varieties was determined. The effects of gamma radiation in the M1 generation were evaluated. Percentage germination was not affected by doses of 200 and 250 Gy gamma radiation in all the eight soybean varieties. No significant differences in seedling height were observed at 200 Gy and the control except for the 250 Gy in BPI-Sy4, PSB-Sy4 and PSB-Sy5. In the Vietnamese varieties, significant differences in seedling height were obtained in doses of 200, 250 Gy and the control except for the variety AKO 6. There was significant difference in plant height of mature plants between the control and treatment dose of 250 Gy in varieties DT 95 and AKO 6. Likewise, significant differences in mature plant height were noted between the control and those at 250 Gy in local varieties BPI-Sy4, PSB-Sy5 and NSIC-Sy8. The number of days to flower was not affected by gamma radiation in both the local and introduced varieties. There were significant differences in the number of pods per plant between the control and a low dose of 200 Gy in Vietnamese variety DT 96 and the local varieties PSB-Sy4, PSB-Sy5 and NSIC-Sy8. The 3 types of chlorophyll mutation induced by gamma rays in the local varieties were: chlorina, striatia,and spotted yellow. Only chlorina mutant was induced in the introduced varieties. Desirable mutants that are early and high yielding were selected. Results of the drought tolerance tests indicated that the number of days to flowering of the control and 8 varieties was not affected by the duration of irrigation withdrawals 20,30,40 and 50 days after planting. Significant differences in seed weight among the different varieties were noted only in 20 and 30 day irrigation withdrawal treatment. When the effects of the different treatments were analyzed on a per variety bases, some of the varieties were not affected by the irrigation withdrawals, an indication of drought tolerance. Five selected varieties that showed tolerance to drought conditions will be subjected to different irrigation regimes to confirm these results. Based on the above mentioned results, gamma radiation is an effective mutagenic agent in inducing morphological changes as well as genetic changes in different varieties of soybean. (Author)

  12. Radiation induced mutagenesis in soybean (Glycine Max L. Merrill)

    International Nuclear Information System (INIS)

    Wakode, M.M.; Nandanwar, R.S.; Patil, G.P.

    2000-01-01

    The mutagenic effects of gamma rays (10, 20 and 30 kR) on some biological parameter in M1 generation and frequency and spectrum of chlorophyll and morphological mutations in five cultivars of soybean viz. JS-8021, JS-335, JS- 7105, Monetta and PKV -1 have been studied. A dose dependant decrease was noticed in most of the characters like root length, shoot length, germination, plant height, plant survival and pollen sterility. While seedling height, number of seeds per pod and number of branches per plant were not affected significantly. The highest frequency and spectrum of chlorophyll and morphological mutations was noticed in variety JS-8021 in which 20 different gene loci for various characters were mutated. However variety JS- 7105 showed less radio sensitive response for different traits in which only 12 different loci were mutated. While JS-335, monetta and PKV-I showed moderate response to frequency and spectrum of various mutations. These varieties showed differential response to radio sensitivity, some useful mutations included, high yielding mutant in 20 kR, non shattering mutant in 30 kR and vine type mutant in 10 kR in variety monetta. Extra early type, erect and high branched type mutant were recorded with high frequency in 10 and 20 kR respectively in variety JS-8021. In general, 20 kR dose was found more effective in all the varieties studied. (author)

  13. Effect of soybean derivatives (glycine max) on thyroid of rats

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1977-01-01

    The effect of a Brazilian variety soybean and their comercial products on thyroid gland is studied. Soybean derivatives are tested in rats through acute experiments of 3 to 24 hours and semichronic experiments of 16 to 29 days. The autoclaved extract administered after 6 to 24 hours decreases the percentage of iodine ( 131 I) uptake. Semichronic experiments show that the factor found in soybean provokes both an increase or a reduction in percentage of iodine ( 131 I) uptake, depending ou the oeriod of action [pt

  14. Nodulin gene expression during soybean (Glycine max) nodule development.

    NARCIS (Netherlands)

    Gloudemans, T.; Vries, de S.; Bussink, H.J.; Malik, N.S.A.; Franssen, H.; Louwerse, J.; Bisseling, T.

    1987-01-01

    In vitro translation products of total RNA isolated from soybean nodules at successive stages of nodule development were analyzed by two-dimensional gel electrophoresis. In that way the occurrence of over 20 mRNAs specifically transcribed from nodulin genes was detected. The nodulin genes could be

  15. Radiation processing and functional properties of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V; Sharma, Arun

    2010-01-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  16. Effect of Different Levels of Soybean / Glycine Max / Meal ...

    African Journals Online (AJOL)

    Therefore, an experiment was carried out using twenty-four yearling male Black Head Ogaden sheep with an initial body weight of 12.95 ± 1.79 kg (mean ± SD) to evaluate the effect of different levels of soybean meal supplementation to natural pasture hay on feed intake, digestibility, average daily body weight gain, and ...

  17. effect of remediation on growth parameter of soybean (glycine max)

    African Journals Online (AJOL)

    Sir VIn

    The effectiveness of cow dung, poultry manure, NPK (mineral fertilizers) and municipal waste compost which were the easily ... Key words: Crude oil, polluted soils, soy bean, remediation material, poultry manure, NPK fertilizers, grain yield, plant height ..... Amakiri MA (2000). Microbes Moving the World Forward in The New.

  18. Intercrop performance of different varieties of soybean (Glycine Max ...

    African Journals Online (AJOL)

    ONOS

    2010-12-13

    Dec 13, 2010 ... (TGX 1894-3E, medium maturing variety), gave the highest grain yield of Soybean and fresh tuber yield of cassava at 12MAP,. Key words: ... basic component of cropping systems in many areas of south eastern Nigeria. ... and aquatic environment, increased soil acidity and highly selective transport or ...

  19. Rapid Detection of Staphylococcus aureus and Methicillin-Resistant S. aureus in Atopic Dermatitis by Using the BD Max StaphSR Assay.

    Science.gov (United States)

    Lee, Mi Kyung; Park, Kui Young; Jin, Taewon; Kim, Ju Hee; Seo, Seong Jun

    2017-07-01

    Eczematous lesions of atopic dermatitis (AD) patients are known to be a source of Staphylococcus aureus (SA) transmission and might be a reservoir for community-associated methicillin-resistant SA (MRSA). The BD Max StaphSR (BD-SR) is a fully automated, multiplex real-time PCR assay for the direct detection and differentiation of SA and MRSA from nasal swab samples. We evaluated the detection rates of SA and MRSA from skin lesions of outpatients with AD using the BD-SR assay, and determined the usefulness of the BD-SR assay. A total of 244 skin swab samples (skin lesions of 213 outpatients with AD and normal skin of 31 healthy controls) were tested directly by using the BD-SR assay. Of the 213 samples from patients with AD, 69 (32.4%) were positive for SA, 6 (8.7%) of which were positive for MRSA. Only 1 (3.2%) of 31 samples from healthy controls was positive for SA. The BD-SR assay is effective for the rapid detection of SA and MRSA from skin swab samples, which can provide important information for managing patients with AD and preventing the spread of MRSA. © The Korean Society for Laboratory Medicine.

  20. Genome Duplication in Soybean (Glycine Subgenus Soja)

    Science.gov (United States)

    Shoemaker, R. C.; Polzin, K.; Labate, J.; Specht, J.; Brummer, E. C.; Olson, T.; Young, N.; Concibido, V.; Wilcox, J.; Tamulonis, J. P.; Kochert, G.; Boerma, H. R.

    1996-01-01

    Restriction fragment length polymorphism mapping data from nine populations (Glycine max X G. soja and G. max X G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes. PMID:8878696

  1. Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments

    OpenAIRE

    Moellers, Tara C.; Singh, Arti; Zhang, Jiaoping; Brungardt, Jae; Kabbage, Mehdi; Mueller, Daren S.; Grau, Craig R.; Ranjan, Ashish; Smith, Damon L.; Chowda-Reddy, R. V.; Singh, Asheesh K.

    2017-01-01

    Genome-wide association (GWAS) and epistatic (GWES) studies along with expression studies in soybean [Glycine max (L.) Merr.] were leveraged to dissect the genetics of Sclerotinia stem rot (SSR) [caused by Sclerotinia sclerotiorum (Lib.) de Bary], a significant fungal disease causing yield and quality losses. A large association panel of 466 diverse plant introduction accessions were phenotyped in multiple field and controlled environments to: (1) discover sources of resistance, (2) identify ...

  2. Intensidade da ferrugem asiática (Phakopsora pachyrhizi H. Sydow & P. Sydow da soja [Glycine max (L. Merr.] nas cultivares Conquista, Savana e Suprema sob diferentes temperaturas e períodos de molhamento foliar The effects of temperature and leaf wetness periods on the development of soybean rust in the cultivars Consquista, Savana and Suprema

    Directory of Open Access Journals (Sweden)

    Marcelo Carvalho Alves

    2007-09-01

    Full Text Available A Ferrugem Asiática (Phakopsora pachyrhizi H. Sydow & P. Sydow, relatada em diversas regiões do globo terrestre de climas tropicais e subtropicais, causa redução significativa na produtividade da soja [Glycine max (L. Merr.]. Fatores bióticos como interação patógeno-hospedeiro e abióticos influenciam o progresso da doença. Objetivou-se neste trabalho estudar os efeitos da temperatura e de períodos de molhamento foliar no progresso da Ferrugem Asiática nas cultivares Conquista, Savana e Suprema. O experimento foi conduzido no Departamento de Fitopatologia da Universidade Federal de Lavras, em junho de 2004, em câmaras de crescimento vegetal nas temperaturas de 15, 20, 25 e 30 °C e períodos de molhamento foliar de 0, 6, 12, 18 e 24 horas. A inoculação foi realizada pulverizando-se as plantas com suspensão de 10(4 uredósporos de P. pachyrhizi.mL-1 de água. Dados da incidência e da severidade foram utilizados para avaliar o progresso da doença e integrados por meio da área abaixo da curva de progresso da incidência (AACPI e da severidade (AACPS. Modelos de regressão não-linear foram ajustados para a AACPI e AACPS. Foi calculado o volume abaixo da superfície de resposta para incidência (VASRI e severidade (VASRS em relação à temperatura e molhamentos foliares com o objetivo de detectar diferenças entre cultivares. Molhamentos foliares acima de 15 horas e temperaturas próximas a 20 ºC, nas 3 cultivares avaliadas, determinaram maior intensidade da Ferrugem Asiática. Temperaturas próximas a 30 e 15 ºC ocasionaram menor intensidade da doença. Períodos de molhamento foliar abaixo de 6 horas reduziram a intensidade da doença. Todas as cultivares testadas foram suscetíveis à doença, entretanto, a cultivar Conquista apresentou maior VASRI e VASRS da Ferrugem Asiática comparada às cultivares Savana e Suprema, as quais não diferiram estatisticamente. Houve diferença entre as cultivares para AACPI em cada

  3. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Aaqil Khan, Muhammad; Muhammad Imran, Qari; Kang, Sang-Mo; Al-Hosni, Khdija; Jeong, Eun Ju; Lee, Ko Eun; Lee, In-Jung

    2017-01-01

    The plastid genomes of different plant species exhibit significant variation, thereby providing valuable markers for exploring evolutionary relationships and population genetics. Glycine soja (wild soybean) is recognized as the wild ancestor of cultivated soybean (G. max), representing a valuable genetic resource for soybean breeding programmes. In the present study, the complete plastid genome of G. soja was sequenced using Illumina paired-end sequencing and then compared it for the first time with previously reported plastid genome sequences from nine other Glycine species. The G. soja plastid genome was 152,224 bp in length and possessed a typical quadripartite structure, consisting of a pair of inverted repeats (IRa/IRb; 25,574 bp) separated by small (178,963 bp) and large (83,181 bp) single-copy regions, with a 51-kb inversion in the large single-copy region. The genome encoded 134 genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 39 transfer RNA genes, and possessed 204 randomly distributed microsatellites, including 15 forward, 25 tandem, and 34 palindromic repeats. Whole-plastid genome comparisons revealed an overall high degree of sequence similarity between G. max and G. gracilis and some divergence in the intergenic spacers of other species. Greater numbers of indels and SNP substitutions were observed compared with G. cyrtoloba. The sequence of the accD gene from G. soja was highly divergent from those of the other species except for G. max and G. gracilis. Phylogenomic analyses of the complete plastid genomes and 76 shared genes yielded an identical topology and indicated that G. soja is closely related to G. max and G. gracilis. The complete G. soja genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of Glycine species and can be used to identify related species.

  4. Mini MAX - Medicaid Sample

    Data.gov (United States)

    U.S. Department of Health & Human Services — To facilitate wider use of MAX, CMS contracted with Mathematica to convene a technical expert panel (TEP) and determine the feasibility of creating a sample file for...

  5. Remembering Max Boisot

    DEFF Research Database (Denmark)

    Sanchez, Ron

    2013-01-01

    phenomena, and his ability to rigorously categorize and usefully interrelate the many theories and concepts with which he was conversant. These qualities are illustrated through some further comments on the process of writing our 2010 paper on economic organizing. I conclude by suggesting how......This chapter offers some reflections on Max Boisot and his extraordinary intellect drawn from our 15 years of exchanging and crafting ideas together. I first comment on the process of working with Max, and then suggest some of the remarkable qualities of thought that I believe distinguished Max...... these qualities of thought are also reflected in Max's individual work and especially in his crowning achievement, the Information-Space Model....

  6. MAX and Survey Linkages

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS is interested in linking MAX files with survey data, including four surveys conducted by the National Center for Health Statistics (NCHS) - the National Health...

  7. A Max Forum

    NARCIS (Netherlands)

    Desain, P.; Honing, H.; Dannenberg, R.; Jacobs, D.; Lippe, C.; Settel, Z.; Pope, S.; Puckette, M.; Lewis, G.

    1993-01-01

    A critical review of Max resulted in responses from many researchers (including the original designers). They each focus on different aspects: the language design, the implementation and the consequences of the use of event based software for music composition.

  8. ASSESSING Bemisia tabaci (GENN.) BIOTYPE B RESISTANCE IN SOYBEAN GENOTYPES: ANTIXENOSIS AND ANTIBIOSIS

    OpenAIRE

    Goncalves Franco da Silva, Jose Paulo; Lopes Baldin, Edson Luiz; de Souza, Efrain Santana; Lourencao, Andre Luiz

    2012-01-01

    Since it was first reported in Brazil in the 1990s, the B biotype of silverleaf whitefly (Bemisia tabaci [Genn.], Hemiptera: Aleyrodidae) has been recognized as an important pest in soybeans (Glycine max L.), reducing the productivity of this legume species in some areas of the country. As an alternative to chemical control, the use of resistant genotypes represents an important tool for integrated pest management (IPM). This study evaluated the performance of 10 soybean genotypes prior to wh...

  9. Genetics Home Reference: glycine encephalopathy

    Science.gov (United States)

    ... the brain. Glycine encephalopathy is caused by the shortage of an enzyme that normally breaks down glycine in the body. A lack of this enzyme allows excess glycine to build up in tissues and organs, particularly the brain, leading to serious medical problems. ...

  10. WiMax taking wireless to the max

    CERN Document Server

    Pareek, Deepak

    2006-01-01

    With market value expected to reach 5 billion by 2007 and the endorsement of some of the biggest names in telecommunications, World Interoperability for Microwave Access (WiMAX) is poised to change the broadband wireless landscape. But how much of WiMAX's touted potential is merely hype? Now that several pre-WiMAX networks have been deployed, what are the operators saying about QoS and ROI? How and when will device manufacturers integrate WiMAX into their products? What is the business case for using WiMAX rather than any number of other established wireless alternatives?WiMAX: Taking Wireless

  11. Max Jakobson : Kommunismisse tuleb suhtuda objektiivselt / Max Jakobson

    Index Scriptorium Estoniae

    Jakobson, Max, 1923-2013

    2002-01-01

    President Rüütel andis Soome tuntud diplomaadile ja Inimsusevastaste Kuritegude Uurimise Rahvusvahelise Komisjoni (IKURK) esimehele Max Jakobsonile Maarjamaa Risti I klassi teenetemärgi. Tseremooniajärgne intervjuu Max Jakobsoniga

  12. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    Science.gov (United States)

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake.

  13. Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3.

    Science.gov (United States)

    Yuan, C P; Wang, Y J; Zhao, H K; Zhang, L; Wang, Y M; Liu, X D; Zhong, X F; Dong, Y S

    2016-06-10

    Over-utilization of germplasms that are resistant to the soybean cyst nematode (SCN) in soybean breeding programs can lead to genetic vulnerability in resistant cultivars. Resistant wild soybean (Glycine soja) is considered an invaluable gene source for increasing the genetic diversity of SCN resistance. In this study, we genotyped 23 G. soja accessions that are resistant to SCN race 3 for polymorphisms in the resistance genes, rhg1, Rhg4, and SHMT, and investigated their genetic relationship with eight Glycine max resistant cultivars. We identified 89 single nucleotide polymorphisms (SNPs) and 11 DNA insertion-deletions (InDels), of which 70 SNPs and 8 InDels were found in rhg1, 9 SNPs were found in Rhg4, and 10 SNPs and 3 InDels were found in SHMT. Nucleotide diversity was π = 0.00238 and θ = 0.00235, and haplotype diversity was 1.000. A phylogenetic tree comprising four clusters was constructed using sequence variations of the 23 G. soja and 8 G. max resistant accessions. Five G. soja accessions in subcluster A2, and four G. soja accessions in cluster B were genetically distant from G. max genotypes. Eight resistance-associated SNPs in the three resistance genes formed nine haplotypes in total. G. soja resistant accessions had different haplotypes (H2, H4, H5, H6, H7, and H8) compared with those of G. max (H1, H3, and H9). These results provide vital information on the use of wild soybeans for broadening the genetic base of SCN resistance.

  14. N-max infinite divisibility and N-max stability

    OpenAIRE

    Satheesh, S.; Sandhya, E.

    2014-01-01

    Here we give a necessary and sufficient condition for the convergence to a random max infinitely divisible law from that of a random maximum. We then discuss random max-stable laws, their domain of max-attraction and the associated extremal processes.

  15. Compositions of (max, +) automata

    Czech Academy of Sciences Publication Activity Database

    Lahaye, S.; Komenda, Jan; Boimond, J.-L.

    2015-01-01

    Roč. 25, 1-2 (2015), s. 323-344 ISSN 0924-6703 R&D Projects: GA ČR(CZ) GAP103/11/0517 Institutional support: RVO:67985840 Keywords : (max,+) automata * synchronous product * asynchronous product Subject RIV: BA - General Mathematics Impact factor: 1.268, year: 2015 http://link.springer.com/article/10.1007/s10626-014-0186-6

  16. 15N- and [13C]NMR Determination of Utilization of Glycine for Synthesis of Storage Protein in the Presence of Glutamine in Developing Cotyledons of Soybean

    Science.gov (United States)

    Skokut, Thomas A.; Varner, Joseph E.; Schaefer, Jacob; Stejskal, Edward O.; McKay, Robert A.

    1982-01-01

    Solid-state 15N- and [13C] NMR have been used to measure quantitatively the utilization of glycine in the presence of glutamine for the synthesis of storage protein in immature cotyledons of soybean (Glycine max L. cv. Elf) in culture. The presence of an equal molar amount of glycine in the medium causes a decrease in the use of glutamine-amide nitrogen. Glycine nitrogen is incorporated extensively into peptide bonds (in amounts greater than what would be expected if it appeared solely in glycine residues), but is used sparingly for synthesis of histidine ring residues, guanidino nitrogen residues of arginine, and lysine residues. The modest use of glycine carbon in protein synthesis does not parallel the use of glycine nitrogen. PMID:16662199

  17. Characterisation of L-alanine and glycine absorption across the gut of an ancient vertebrate.

    Science.gov (United States)

    Glover, Chris N; Bucking, Carol; Wood, Chris M

    2011-08-01

    This study utilised an in vitro technique to characterise absorption of two amino acids across the intestinal epithelium of Pacific hagfish, Eptatretus stoutii. Uptake of L-alanine and glycine conformed to Michaelis-Menten kinetics. An uptake affinity (K(m); substrate concentration required to attain a 50% uptake saturation) of 7.0 mM and an uptake capacity (J (max)) of 83 nmol cm(-2) h(-1) were described for L-alanine. The K(m) and J(max) for glycine were 2.2 mM and 11.9 nmol cm(-2) h(-1), respectively. Evidence suggested that the pathways of L-alanine and glycine absorption were shared, and sodium dependent. Further analysis indicated that glycine uptake was independent of luminal pH and proline, but a component of uptake was significantly impaired by 100-fold excesses of threonine or asparagine. The presence of a short-term (24 h) exposure to waterborne glycine, similar in nature to that which may be expected to occur when feeding inside an animal carcass, had no significant impact on gastrointestinal glycine uptake. This may indicate a lack of cross talk between absorptive epithelia. These results are the first published data to describe gastrointestinal uptake of an organic nutrient in the oldest extant vertebrate and may provide potential insight into the evolution of nutrient transport systems.

  18. Max Algebraic Complementary Basic Matrices

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.

    2014-01-01

    Roč. 457, 15 September (2014), s. 287-292 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : CB-matrix * Max algebra * Max permanent * Max eigenvalues Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  19. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  20. Assesing Bemisia tabaci (Genn.) biotype B resistance in soybean genotypes: Antixenosis and antibiosis Evaluación de la resistencia de genotipos de soya a Bemisia tabaci (Genn.) biotipo B: Antixenosis y antibiosis

    OpenAIRE

    José Paulo Gonçalves Franco da Silva; Edson Luiz Lopes Baldin; Efrain Santana de Souza; André Luiz Lourenção

    2012-01-01

    Since it was first reported in Brazil in the 1990s, the B biotype of silverleaf whitefly (Bemisia tabaci Genn., Hemiptera: Aleyrodidae) has been recognized as an important pest in soybeans (Glycine max L.), reducing the productivity of this legume species in some areas of the country. As an alternative to chemical control, the use of resistant genotypes represents an important tool for integrated pest management (IPM). This study evaluated the performance of 10 soybean genotypes prior to whit...

  1. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence

    NARCIS (Netherlands)

    Karatzas, K.A.G.; Wouters, J.A.; Gahan, C.G.M.; Hill, C.; Abee, T.; Bennik, M.H.J.

    2003-01-01

    A spontaneous high hydrostatic pressure (HHP)-tolerant mutant of Listeria monocytogenes ScottA, named AK01, was isolated previously. This mutant was immotile and showed increased resistance to heat, acid and H2O2 compared with the wild type (wt) (Karatzas, K.A.G. and Bennik, M.H.J. 2002 Appl Environ

  2. Glycine Transporter Dimers

    Science.gov (United States)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette; Dutertre, Sébastien; Hastrup, Hanne; Jha, Alok; Gether, Ulrik; Sitte, Harald H.; Betz, Heinrich; Eulenburg, Volker

    2015-01-01

    Different Na+/Cl−-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2 by fluorescence resonance energy transfer microscopy. Endoglycosidase treatment and surface biotinylation further revealed that complex-glycosylated GlyTs form dimers located at the cell surface. Furthermore, substitution of tryptophan 469 of GlyT2 by an arginine generated a transporter deficient in dimerization that was retained intracellulary. Based on these results and GlyT structures modeled by using the crystal structure of the bacterial homolog LeuTAa, as a template, residues located within the extracellular loop 3 and at the beginning of transmembrane domain 6 are proposed to contribute to the dimerization interface of GlyTs. PMID:18252709

  3. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  4. Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja.

    Science.gov (United States)

    Ji, Wei; Li, Yong; Li, Jie; Dai, Cui-hong; Wang, Xi; Bai, Xi; Cai, Hua; Yang, Liang; Zhu, Yan-ming

    2006-02-22

    Salinization causes negative effects on plant productivity and poses an increasingly serious threat to the sustainability of agriculture. Wild soybean (Glycine soja) can survive in highly saline conditions, therefore provides an ideal candidate plant system for salt tolerance gene mining. As a first step towards the characterization of genes that contribute to combating salinity stress, we constructed a full-length cDNA library of Glycine soja (50109) leaf treated with 150 mM NaCl, using the SMART technology. Random expressed sequence tag (EST) sequencing of 2,219 clones produced 2,003 cleaned ESTs for gene expression analysis. The average read length of cleaned ESTs was 454 bp, with an average GC content of 40%. These ESTs were assembled using the PHRAP program to generate 375 contigs and 696 singlets. The resulting unigenes were categorized according to the Gene Ontology (GO) hierarchy. The potential roles of gene products associated with stress related ESTs were discussed. We compared the EST sequences of Glycine soja to that of Glycine max by using the blastn algorithm. Most expressed sequences from wild soybean exhibited similarity with soybean. All our EST data are available on the Internet (GenBank_Accn: DT082443-DT084445). The Glycine soja ESTs will be used to mine salt tolerance gene, whose full-length cDNAs will be obtained easily from the full-length cDNA library. Comparison of Glycine soja ESTs with those of Glycine max revealed the potential to investigate the wild soybean's expression profile using the soybean's gene chip. This will provide opportunities to understand the genetic mechanisms underlying stress response of plants.

  5. 3ds Max 2012 Bible

    CERN Document Server

    Murdock, Kelly L

    2011-01-01

    Updated version of the bestselling 3ds Max book on the market 3ds Max 2012 Bible is one of the most popular 3ds Max how-tos on the market. If you're a beginner just itching to create something right away, the Quick Start project in Part 1 is for you. If you're an experienced user checking out 3ds Max 2012's latest and greatest features, you'll love the fact that the 3ds Max 2012 Bible continues to be the most comprehensive reference on this highly complex application.Find out what's new, what's tried and true, and how creative you can get using the tips, tricks, and techniques in this must-hav

  6. SISTEMAS DE MANEJO DO SOLO: SOJA [Glycine max (L.] CONSORCIADA COM Brachiaria decumbens (STAPF SOIL MANAGEMENT SYSTEMS: SOYBEAN [Glycine max (L.] INTERCROPPED WITH Brachiaria decumbens (STAPF

    Directory of Open Access Journals (Sweden)

    Emanuel da Silva Barros

    2011-01-01

    Full Text Available

    Objetivou-se, com este trabalho, avaliar o efeito de diferentes sistemas de manejo do solo sobre os componentes de produção da soja cultivada solteira e em consórcio com B. decumbens, nos Tabuleiros Costeiros do Estado de Alagoas. Os tratamentos consistiram no cultivo da variedade de soja Monsoy 9350, nos sistemas preparo convencional do solo, cultivo mínimo e plantio direto. O delineamento experimental utilizado foi o em blocos casualizados, com parcelas subdivididas (com e sem B. decumbens, e quatro repetições. As variáveis analisadas foram: 1 cultura da soja: determinação dos estágios fenológicos, composição química das plantas, estande de plantas, diâmetro do colmo, altura de plantas, altura de inserção da primeira vagem, número de vagens por planta, número de grãos por vagem, número de grãos por planta, massa de 1.000 grãos e produtividade; e 2 B. decumbens: composição química das plantas, além do acúmulo de matéria seca, em cinco épocas de amostragens. Os sistemas de manejo do solo influenciaram o estande de plantas e a concentração de P, Cu, Fe e Zn, na soja, além do S, na Brachiaria decumbens. O sistema plantio direto apresentou maior produtividade de grãos e produção de fitomassa de B. decumbens, nas condições edafoclimáticas de Rio Largo (AL.

    PALAVRAS-CHAVE: Plantio direto; integração lavoura-pecuária; cultivo mínimo.

    The aim of this study was to evaluate the effects of different soil management systems on the soybean yield components intercropped or not with Brachiaria decumbens, in the coastal plateau of the Alagoas State, Brazil. For that, the 9350 Monsoy soybean was cultivated under conventional tillage, minimum tillage, and no-tillage. The experiment was carried out by using a split-plot randomized blocks design (with and without B. decumbens and four replications. The variables analyzed were: 1 soybean: determination of phenological stages, chemical composition of plants, stand of plants, stem diameter, plant height, first pod insertion height, number of grains per pod, number of pods, number of grains per plant, mass of 1,000 grains, and yield; and 2 B. decumbens: chemical composition of plants and accumulation of dry matter, in five different sampling times. The soil management systems influenced the stand of plants and the concentration of P, Cu, Fe, and Zn, in soybean, besides S, in B. decumbens. The no-tillage system showed higher grain and biomass yield for B. decumbens, under the edaphoclimatic conditions of Rio Largo, Alagoas State, Brazil.

    KEY-WORDS: No-tillage; crop-livestock integrated system; minimum tillage.

  7. Physiological quality of soybean (Glycine max. L. seeds during to processing Qualidade fisiológica de sementes de soja (Glycine max. L. durante o beneficiamento

    Directory of Open Access Journals (Sweden)

    Ivano Alessandro Devilla

    2011-10-01

    Full Text Available Processing is an important phase in the seed industry. It encompasses important steps to attain seed quality and high performance. The objective of this work was to evaluate the physiological quality of soybean seed cultivars during important steps of that process. A completely randomized design in a 4 x 5 factorial arrangement with four replicates was used. Samples of three soybean cultivars (Vencedora, Emgopa 313, Luziânia - non transgenic and one genetically modified – Valiosa were drawn in five points of the processing chain: 1º - seed dryer; 2º – bucket elevator number 1; 3º – bucket elevator number 2; 4º - bucket elevator number 3; and 5º – seed spiral separator. The following tests were performed: germination, first count, accelerated aging, electrical conductivity and tetrazolium (viability and vigor. Results obtained indicated that seeds from cultivars Emgopa-313, Luziânia and Valiosa - RR presented physiological quality higher than Vencedora, in all stages of processing. To cultivar seeds of Vencedora, the number of elevators mug during the stages of drying and processing time increased the percentage of mechanical damage to seed.Na busca de sementes de alto padrão de qualidade, a fase de beneficiamento configura-se como importante etapa. Objetivou com este trabalho avaliar a qualidade fisiológica de sementes de cultivares de soja durante o processo de beneficiamento. Empregou-se o delineamento experimental inteiramente casualizado em esquema fatorial 4 x 5, com quatro repetições. Os tratamentos foram constituídos de quatro cultivares de soja (Vencedora, Emgopa-313, Luziânia – não transgênicas e Valiosa – transgênica coletadas em cinco pontos de amostragem (1º – secador; 2º – elevadores de caneca número 1; 3º – elevadores de caneca número 2; 4º – elevadores de caneca número 3 e 5º – espiral. A qualidade fisiológica das sementes foi avaliada pelos seguintes testes: germinação, primeira contagem, envelhecimento acelerado, condutividade elétrica e tetrazólio (viabilidade e vigor. As sementes de soja das cultivares Emgopa-313, Valiosa - RR e Luziânia apresentaram qualidade fisiológica superior à Vencedora, em todas as etapas do beneficiamento. Para as sementes da cultivar Vencedora, o grande número de elevadores de caneca no decorrer das etapas de secagem e no beneficiamento propiciou aumento na porcentagem de dano mecânico à semente.

  8. Resposta da soja (Glycine max (L. Merrill à ação de bioestimulante = Soybean (Glycine max (L. Merrill response to biostimulant action

    Directory of Open Access Journals (Sweden)

    Celestina Alflen Klahold

    2006-04-01

    Full Text Available Objetivando verificar o efeito do bioestimulante, Stimulate®, aplicado via semente e pulverização foliar, na cultura da soja, conduziu-se um experimento sob ambiente protegido, em vasos. O delineamento foi de blocos casualizados, com 4 repetições. Os tratamentos constaram da combinação de doses de bioestimulate, aplicadas via semente (0, 3 e 5 mL kg-1 de sementes na semeadura e via foliar (0,0; 0,075; 0,150 e 0,225 mL L-1, aos 58 dias após a emergência (DAE. Realizaram-se coletas de plantas aos 73 e 129 DAE.Para algumas das variáveis estudadas, nas doses utilizadas, houve efeito negativo na resposta à aplicação de bioestimulante, para algumas doses testadas. Respostas positivas foram verificadas para massa seca de flores, raízes, razão raiz/parte aérea, número de flores, vagens e grãos e produção por planta. Destacaram-se positivamente os tratamentos: 0,0 mL 0,5 kg-1 (AS + 0,150 mL L-1 (APF; 3,0 mL 0,5 kg-1 (AS + 0,0 mL L-1 (APF; 3,0 mL 0,5 kg-1 (AS+ 0,225 mL L-1 (APF e 5,0 mL 0,5 kg-1 (AS + 0,075 mL L-1 (APF.Aiming to verify the effect of the bioestimulant, Stimulate®, applied saw by seed and leaf pulverization, in the culture of the soybean. It behaved an experiment under greenhouse, in vases. Randomized block experimental design was used, with four repetitions. The treatments consisted of the combination of bioestimulant doses: seed application (SA (0; 3; and 5 mL kg-1 of seeds in the sowing and leaf spray (LS (0.0; 0.075; 0.150; and 0.225 mL L- 1, to the 58 days after the emergency (DAE. Collections of plants were accomplished to the 73 and 129 DAE. For some of the studied variables, in the used doses, there was negative effect in the response of the biostimulant application, for some tested doses. Positives responses were verified for flowers and roots dry mass; root/shoot relation; flowers; beans and grains number; and yield for plant. They stood out the treatments: 0,0 mL 0.5 kg-1 (SA + 0.150 mL L-1 (LS; 3.0 mL 0.5 kg-1 (SA + 0.0 mL L-1 (LS; 3.0 mL 0.5 kg-1 (SA + 0.225 mL L-1 (LS; and 5.0 mL 0.5 kg-1 (SA + 0.075 mL L-1 (LS.

  9. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  10. President Ilves kohtus Max Jakobsoniga

    Index Scriptorium Estoniae

    2008-01-01

    President Toomas Hendrik Ilves ja Soome tuntud diplomaat Max Jakobson arutasid 16. septembril 2008 Tallinnas toimunud kohtumisel julgeolekuolukorda Euroopas pärast Venemaa-Gruusia sõda, Euroopa Liidu suhteid Venemaaga ja NATO tulevikku

  11. 76 FR 8771 - Glycine From China

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... order on glycine from China. SUMMARY: The Commission hereby gives notice that it will proceed with a... determine whether revocation of the antidumping duty order on glycine from China would be likely to lead to...

  12. 76 FR 55109 - Glycine From China

    Science.gov (United States)

    2011-09-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... U.S.C. 1675(c)), that revocation of the antidumping duty order on glycine from China would be likely... contained in USITC Publication 4255 (August 2011), entitled Glycine from China: Investigation No. 731-TA-718...

  13. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate.

    Science.gov (United States)

    Kape, R; Parniske, M; Brandt, S; Werner, D

    1992-01-01

    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms. PMID:1622242

  14. the case of glycine biosynthesis

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Despite great progress in understanding nutrition during the. 20th century, some important questions remain unanswered. (Baker 2005). One of these concerns, for example, how glycine is partitioned between the synthesis of collagen and other metabolic functions when it is deficient in the diet, and, as we shall argue in this ...

  15. Review of the Rpt3 Genes Encoding Part of the 26S Proteasome Associated with Loci Underlying Disease Resistance in Soybean

    Directory of Open Access Journals (Sweden)

    Shivani Malik, Sukesh Bhaumik and David A. Lightfoot*

    2012-05-01

    Full Text Available The 26S proteasomal complex is a multifunctional proteolyticmachinery of the cell. The proteasome plays role in myriadof cellular functions, which have been further diversified byits separable proteolytic and non-proteolytic sub-complexes.Protein quality control and turnover, cell cycle regulation,gene regulation and DNA repair are among the key processescontrolled by the proteasome. Disease resistance inplants invokes changes in all the processes controlled by the26S proteasome. In this review, the potential contribution ofgenes encoding the proteasome to disease resistance in soybean(Glycine max L. Merr. was examined.

  16. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  17. Analysis list: Max [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Max Blood,Muscle,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyus...hu-u/mm9/target/Max.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Max.5.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/target/Max.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Max.Blood....tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Max.Muscle.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Max.Pluripotent_stem_cell.tsv http://dbarchive.biosciencedbc.jp/k

  18. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  19. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained....

  20. Regulation of hepatic glycine catabolism by glucagon

    International Nuclear Information System (INIS)

    Jois, M.; Hall, B.; Fewer, K.; Brosnan, J.T.

    1989-01-01

    Glucagon stimulates 14CO2 production from [1-14C] glycine by isolated rat hepatocytes. Maximal stimulation (70%) of decarboxylation of glycine by hepatocytes was achieved when the concentration of glucagon in the medium reached 10 nM; half-maximal stimulation occurred at a concentration of about 2 nM. A lag period of 10 min was observed before the stimulation could be measured. Inclusion of beta-hydroxybutyrate (10 mM) or acetoacetate (10 mM) did not affect the magnitude of stimulation suggesting that the effects of glucagon were independent of mitochondrial redox state. Glucagon did not affect either the concentration or specific activity of intracellular glycine, thus excluding the possibilities that altered concentration or specific activity of intracellular glycine contributes to the observed stimulation. The stimulation of decarboxylation of glycine by glucagon was further studied by monitoring 14CO2 production from [1-14C]glycine by mitochondria isolated from rats previously injected with glucagon. Glycine decarboxylation was significantly stimulated in the mitochondria isolated from the glucagon-injected rats. We suggest that glucagon is a major regulator of hepatic glycine metabolism through the glycine cleavage enzyme system and may be responsible for the increased hepatic glycine removal observed in animals fed high-protein diets

  1. Beneficial Effects of the Amino Acid Glycine.

    Science.gov (United States)

    Pérez-Torres, Israel; Zuniga-Munoz, Alejandra María; Guarner-Lans, Veronica

    2017-01-01

    Glycine is the smallest non-essential, neutral and metabolically inert amino acid, with a carbon atom bound to two hydrogen atoms, and to an amino and a carboxyl group. This amino acid is an essential substrate for the synthesis of several biologically important biomolecules and compounds. It participates in the synthesis of proteins, of the tripeptide glutathione and in detoxification reactions. It has a broad spectrum of anti-inflammatory, cytoprotective and immunomodulatory properties. To exert its actions, glycine binds to different receptors. The GlyR anion channel is the most studied receptor for glycine. However, there are GlyR-independent mechanisms for glycine cytoprotection and other possible binding molecules of glycine are the NMDA receptor and receptors GlyT1 and GlyT2. Although, in humans, the normal serum level of glycine is approximately 300 μM, increasing glycine intake can lead to blood levels of more than 900 μM that increase its benefic actions without having harmful side effects. The herbal pesticide glyphosate might disrupt glycine homeostasis. Many in vitro studies involving different cell types have demonstrated beneficial effects of the addition of glycine. Glycine also improved conditions of isolated perfused or stored organs. In vivo studies in experimental animals have also tested glycine as a protector molecule and some studies on the beneficial effects of glycine after its clinical application have been done. Although at high-doses, glycine may cause toxic effects, further studies are needed to investigate the safe range of usage of this aminoacid and to test the diverse routes of administration.

  2. Konsep Nilai Menurut Max Scheler

    Directory of Open Access Journals (Sweden)

    R. Parmono

    2007-11-01

    Full Text Available Max Scheler dilahirkan di Munchen Jerman Selatan pada tahun1814, suatu daerah yang rnasyarakatnya, mayoritas Katholik. Ibunya seorang wanita Yahudi, sedang ayahnya beragama Protestan. Pada waktu ia berumur 15 tahun (1889 ia belajar di Gymnasium (sekolah menengah di Munchen ia masuk agama Katholik.

  3. Max Weber and Robert Michels.

    Science.gov (United States)

    Scaff, Lawrence A.

    1981-01-01

    This paper investigates the unique intellectual partnership of Max Weber and Robert Michels, with particular emphasis on Weber's influence on Michel's inquiry into the sociology of parties and organization. Concludes with an evaluation of the import of Weber's critique of Michels' work. (DB)

  4. Max Weber - bedaget og aktuel

    DEFF Research Database (Denmark)

    Eistrup, Jens

    2010-01-01

    undervisningsartiklen introducerer en række af Max Webers centrale begreber om herredømme, bureaukrati, social handlen, rationalitet og profession. dernæst illustreres hvorledes Webers begreber kan tjene til at belyse spændingsfeltet mellem politik og profession i en socialfaglig kontekst....

  5. O pensamento de Max Weber

    Directory of Open Access Journals (Sweden)

    Maurício Tragtenberg

    1966-06-01

    Full Text Available Max Weber inicia sua carreira universitária em 1893, como professor extraordinário de Direito Mercantil e Romano, na Universidade de Berlim. Em 1894 assume a Cadeira de Economia Política na Universidade de Hamburgo e em 1897 leciona na Universidade de Heidelberg.

  6. Supressividade dos nematóides Meloydogine javanica e Heterodera glycines em soja por adição de lodo de esgoto ao solo Supressiveness of nematodes Meloydogine javanica e Heterodera glycines in soybean by sewage sludge incorporated in the soil

    Directory of Open Access Journals (Sweden)

    Fabio Fernando de Araújo

    2005-08-01

    Full Text Available O lodo de esgoto, atendendo às exigências ambientais, apresenta grande potencial para utilização em solos agrícolas, onde vem sendo amplamente disposto. Sua utilização altera propriedades químicas, físicas e biológicas do solo, devido a sua composição em macro e micronutrientes e matéria orgânica. Estas alterações podem proporcionar benefícios como aumento da disponibilidade nutricional às culturas, indução de supressividade aos fitopatógenos presentes no solo e resistência às doenças da parte aérea. Por outro lado, pode influenciar negativamente o equilíbrio biológico e químico no solo, devido à presença de concentrações consideráveis de N disponível, sais solúveis e metais pesados. Com o objetivo de avaliar os efeitos da incorporação de lodo de esgoto ao solo sobre supressividade de nematoides de galha (Meloydogine javanica (Treub Chitwood e do cisto (Hetodera glycines Ichinoe, parasitas da soja (Glycine max L., foram realizados experimentos em laboratório e casa de vegetação utilizando-se solo coletado de área experimental da Embrapa Meio Ambiente, Jaguariúna, SP. Esta área recebeu aplicações sucessivas de lodos de esgotos, originários das Estações de Tratamento de Esgoto de Barueri e de Franca, no Estado de S. Paulo, durante cinco anos (1998-2002. Com relação à indução de supressividade a nematóides, observou-se que o lodo de esgoto não afetou o desenvolvimento de fêmeas de H. glycines no solo (apenas reduziu o número de ovos por cisto contudo reduziu a reprodução de M. javanica, nas raízes de soja.Sewage sludge has shown great potential for use in agriculture, where it has been widely used. There are some modifications on chemical, physical and biological properties of the soil due to its composition of macro and micronutrients and organic substances. These alterations can provide benefits as an increase to the availability of nutrients to the plants, suppressiveness induction of

  7. Is glycine effective against elevated blood pressure?

    Science.gov (United States)

    El Hafidi, Mohammed; Pérez, Israel; Baños, Guadalupe

    2006-01-01

    Glycine, a non-essential amino acid, has been found to protect against oxidative stress in several pathological situations, and it is required for the biosynthesis of structural proteins such as elastin. As hypertension is a disease in which free radicals and large vessel elasticity are involved, this article will examine the possible mechanisms by which glycine may protect against high blood pressure. The addition of glycine to the diet reduces high blood pressure in a rat model of the metabolic syndrome. Also, glycine supplemented to the low protein diet of rat dams during pregnancy has a beneficial effect on blood pressure in their offspring. The mechanism by which glycine decreases high blood pressure can be attributed to its participation in the reduction of the generation of free radicals, increasing the availability of nitric oxide. In addition, as glycine is required for a number of critical metabolic pathways, such as the synthesis of the structural proteins collagen and elastin, the perturbation of these leads to impaired elastin formation in the aorta. This involves changes in the aorta's elastic properties, which would contribute to the development of hypertension. The use of glycine to lower high blood pressure could have a significant clinical impact in patients with the metabolic syndrome and with limited resources. On the other hand, more studies are needed to explore the beneficial effect of glycine in other models of hypertension and to investigate possible side-effects of treatment with glycine.

  8. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max) Using Association Mapping.

    Science.gov (United States)

    Liu, Zhangxiong; Li, Huihui; Fan, Xuhong; Huang, Wen; Yang, Jiyu; Li, Candong; Wen, Zixiang; Li, Yinghui; Guan, Rongxia; Guo, Yong; Chang, Ruzhen; Wang, Dechun; Wang, Shuming; Qiu, Li-Juan

    2016-01-01

    The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS) was exploited to detect the quantitative trait loci (QTL) for number of days to flowering (ETF), number of days from flowering to maturity (FTM), and number of days to maturity (ETM) using 4032 single nucleotide polymorphism (SNP) markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding.

  9. Induced mutation and radiation sensitivity in vitro culture of soybean (Glycine Max L. Merrill)

    International Nuclear Information System (INIS)

    Atak, C.; Alikamanoglu, S.; Yalcin, S.

    1999-01-01

    In our research, the seeds of J-357 soybean variety were irradiated with 50, 100, 200, 300 and 500 Gy of gamma rays. Callus and meristem cultures were established from the primary leaves and apical meristem of 5-day-old seeding from the irradiation seeds. The average callus fresh weight formed at the cultures were determined on the 30th day and GR 50 dose which reduces the callus fresh weight at the rate 50% in accordance with control was found as 250 Gy. The regenerated plants from meristem cultures were determined on the 28th day and LD 50 dose which decreases the regenerated plant percentage at the 50% in accordance with control was found as 220 Gy. Cytological investigation was done at the callus and meristem cultures obtained from both irradiated seeds and explants. At the seed and explant irradiations, gamma radiation dose between the ranges 50 to 200 Gy and 5 to 25 Gy; respectively were used. Observations were done at mitotic anaphase in the samples taken from meristem and callus cultures. In anaphase, two types of cytological aberrations, bridge and fragments were determined. The regenerated plants were grown in the climate chamber and the seeds were taken from each M1 plant and chlorophyll mutants were determined in M2 generation. The radiosensitivity of the meristem cultures established by irradiated seeds from view of plant regenerations and plant number which is taken seed was evaluated by comparing with the results of meristem cultures established from the irradiated explant from the point of in vitro mutation studies

  10. A comparative study on preservation of soy flour (Glycine max.(l ...

    African Journals Online (AJOL)

    BSN

    J. Biotech. t6 (t) SS - 64. 55. A comparative study on preservation of soy ... Soy flour has many applications \\\\'Orldwide namely Com-soy milk (CSM), wheal soy blend and soy sauce (Obatolu ct al .. 1993). ... cultivated in tropical Africa and the seeds arc used as a condiment or spice. It belongs lo the family or Zingeberaccae.

  11. ESTIMATION OF SOYBEAN SEED (Glycine max L. Merr DETERIORATION DURING STORAGE

    Directory of Open Access Journals (Sweden)

    Irma Noviana

    2017-09-01

    Full Text Available ing the behavior and deterioration of soybean seed and to predict seed viability during storage in controlled conditions. The experiment used completely randomized design with two levels of variety which nested in storage period with four replications. Two varieties were Dering-1 and Detam 2 that storage in controlled condition at temperature of 19 up to 22 °C and 64 up to 67 percent of relative humidity for six months. The seeds were evaluated for moisture content, protein, peroxide value, electrical conductivity and seed viability. During the deterioration the moisture content, peroxide, electrical conductivity increased while protein content and germination declined. Deterioration model of soybeans can be used to predict the decline of soybean seeds during the controlled storage.

  12. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  13. Effect of cobalt-60 gamma irradiation on viability of soybean (glycine max. l) seed

    International Nuclear Information System (INIS)

    Addai, Isaac Kwahene

    2001-12-01

    The rapid rate of deterioration and low viability of soybean seeds particularly in storage is a major constraint to its production in the subtropical and tropical areas. Various approaches have been made to solve this problem but they have centred mainly on the control of the environment. Experimental mutagenesis is one of the ways by which genetic variability could be created to serve as basis for selection. In this study, induced mutations were used to create genetic variation and mutants with improved storability selected to provide a more lasting solution to this problem. Seeds of three soybean varieties - Gmx 92-6-10, Gmx 92-5-4E and TGX 87D- 1303 were subjected to four (4) months ambient storage and three accelerated ageing tests. The germination percentages computed 7 days after planting showed that 20% ethanol solution better mimicked ambient storage than 20% methanol solution and the 75°C hot water. In the radiation dosage response studies, dry seeds containing 10% moisture from the three varieties were subjected to 0, 50, 100, 150, 200 and 250 Gy doses of 60Co gamma rays at Ghana Atomic Energy Commission, Kwabenya and sown. The 250 Gy dose reduced both germination percentage and plant height by about 50% relative to the control and was used as the dosage appropriate for induced mutations for the varieties. Five thousand M2 plants were harvested and screened individually for improved storability using 20% ethanol solution, storing threshed seeds at ambient condition and storing seeds in pods also at ambient conditions. The 20% ethanol solution was less effective in selecting putative in mutants compared to the two ambient storage screening methods, but could be used as an initial screening method. The variety Gmx 92-6-10 was generally considered to give the greatest response to irradiation because it produce the largest proportion of putative mutant improved storability in two out of the three screening methods used at the M2 generation. Since TGX 87D 1 303 produced the smallest proportion of putative mutants with improved storability at the M2 generation was considered the meat unresponsive. Only mutants with 80% germination and above were selected in the M2 to produce the M3 generation. The amount of improvement gained depended on the variety and the screening method In Gmx 92-6-10, the improvements from selection of M2 and M3 over the control were 25.7 % and 60.3% respectively. The improvement of M3 over M2 was 45.3%. In Grnx 92-5-4E, the improvements from selection of M2 and M3 over the control were 17.0% and 63.7% respectively whilst the improvement of M3 over M2 was 42.3%. For TGX 87D 1303, the improvements from selection of M2 and M3 over the control were 24.7% and 32.7% whilst the improvement of M3 over M2 was 65.0%. Even though TGX 87D-1303 gave the smallest proportion of improved mutants, it produced the highest gain in selection at the M3 generation. (au)

  14. The Effect of Soya bean ( Glycine max ) on Pefloxacin Absorption in ...

    African Journals Online (AJOL)

    The study was to investigate the effect of soya bean on the absorption of pefloxacin when given by oral route in rats. The first group of animals feeding on standard pellet feeds was given pefloxacin (8 mg/kg, p.o), while the second and third groups were also given the drug at the same dosage level but were fed with 50 ...

  15. [Study on the quantitative and qualitative of fungi colonizing soybeans (Glycine max L.)].

    Science.gov (United States)

    Janda, Katarzyna; Wolska, Jolanta

    The aim of study was to analyse the qualitative and quantitative composition of fungi in soybeans on RBCA, YpSs, and DG18 culture media at 25, 37 and 45°C. The analysis included 15 samples of soybeans. The highest number of mould species (23) were isolated on RBCA at 25°C, followed by xerophilic species (20) on DG18 at 25°C, and mesophilic (13) and thermophilic species (4) on YpSs medium at 37° and 45°C, respectively. Ninety-five strains belonging to 40 species were isolated from soybean samples. The predominant species were Penicillium chrysogenum and Eurotium herbariorum. This study revealed new species of mycobiota not previously isolated from soybeans.

  16. Producción de soya (Glycine max L. bajo tres sistemas de labranza

    Directory of Open Access Journals (Sweden)

    Rojas Palacio Hernán

    1987-06-01

    Full Text Available

    The goals of this consisted in economically analyzing the conventional pattern with regard to minimum tillage and non tillage; evaluating the influence of the tillage systems on the physical properties of the soil and on the soybean's growth and yield. The experiment was stablished on clay soil. The experimental design employed was that of hierarchy-arranged random blocks with three repetitions (9 experimental units. The conventional tillage permitts the improvement of the physical conditions of the soil, performs a better control on the weeds, gives the soybean plant a full growth and yield causing the highest profitability. The second treatment showing the best efficiency was the minimum tillage.

    Se evaluó la influencia de los sistemas de labranza convencional, mínima y no labranza sobre las propiedades físicas del suelo, en el desarrollo y producción de la soya. El experimento se estableció en suelo arcilloso. El diseño experimental fue el de bloques al azar jerarquizados con tres repeticiones (9 unidades experimentales. La labranza convencional mejora las condiciones físicas del suelo, ejerce mayor control sobre las malezas, confiere a la planta de soya apropiado desarrollo y producción ocasionando así la mayor rentabilidad. El segundo tratamiento en eficiencia fue el de la labranza mínima.

  17. Effect of the ingestion of soybeans derivatives (Glycine max) on rat thyroid

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1978-01-01

    Soybean derivatives were tested in rat through acute experiments of 3 to 24 hours and two semichronic experiments of 16 and 29 days. The acute essay were realized with Total Extract (TEs) obtained from Defated Soybean Flour by precipitation in an aqueous medium and posteriorly in acetone. The percentage of iodine ( 131 I) uptake by 100 gr. of rat was decreased by the Total Autoclaved Extract administered by gastric tube after 6 and 24 hours. The Total Extract, without previous autoclaving showed effect on the gland after 6 hours and lost its activity 24 hours after its administration. TEs obtained from Comercial Soybean Products as: Proteic Concentrate, Tosted Flour and Milk also provoked a decrease in percentage of iodine ( 131 I) uptake after 24 hours by 100 gr. of rat. The semichronic experiments were realized with Soybean fraction products, which were incorporated to experimental diet. The first of 16 days, showed a reduction in percentage of iodide ( 131 I) uptake by 10mg of thyroid and an increase of the triiodothyronine-binding capacity of rat serm. In the second of 29 days an increase was observed in the percentage of iodine ( 131 I) uptake by 10mg of thyroid, caused by the factor in study and no alteration of seric hormones. The thyroid hormones and their precursors were also assayed and an increase of monoiodotyrosine (MIT), triiodothyronine (T3) and thyroxine (T4) was noted, as well as a decrease of diiodotyrosine (DIT) and inorganic iodine. An increase in the MIT/DIT ratio and decrease in T 3 /T 4 ratio, were observed. In preliminary physicochemical tests, the fraction sephadex G-25 showed a positive reaction for ninhidrin, Molish and flavenoids [pt

  18. Analisis Sistem Proses Pindah Massa pada Ekstraksi secara Mekanik Minyak Kedelai (Glycine Max Oil

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Argo

    2010-10-01

    Full Text Available Soybean, a vegetable protein-rich commodity needed to improve public nutrition, safe to consume, and the price affordable. The purpose of this research are to: 1. determine the effect of pressure and time of extraction the mass balance, yield and level of soybean oil extraction, 2. Gain mass transfer coefficient value in soybean oil extraction process, and 3. analyze the mechanism of mass changes during the extraction process soybean oil is mechanically using hydraulic pressing. Oil obtained results indicate an increase due to the influence of a given amount of pressure and length of time silenced. The greater the pressure exerted, the more oil produced this shows soybean oil can come out with a maximum at the greatest pressure of 200 kg/cm2. Mass transfer coefficient in soybean oil extraction process at a pressure of 100 kg/cm2 5.57x10-5 gcm3/cm seconds. In the pressure is 200 kg/cm2 15.39 x 10-5g cm3/cm seconds.

  19. Effect of Nitrate on Nodule and Root Growth of Soybean (Glycine max (L. Merr.

    Directory of Open Access Journals (Sweden)

    Akinori Saito

    2014-03-01

    Full Text Available The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots.

  20. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max Using Association Mapping.

    Directory of Open Access Journals (Sweden)

    Zhangxiong Liu

    Full Text Available The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS was exploited to detect the quantitative trait loci (QTL for number of days to flowering (ETF, number of days from flowering to maturity (FTM, and number of days to maturity (ETM using 4032 single nucleotide polymorphism (SNP markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding.

  1. ISOLASI DAN PURIFIKASI FITASE DARI KOTILEDON KEDELAI [GLYCINE MAX (L. MERR.] HASIL PERKECAMBAHAN

    Directory of Open Access Journals (Sweden)

    MISWAR MISWAR

    2012-09-01

    Full Text Available RINGKASAN Asam fitat (myo-inositol hexakisphosphate merupakan bentuk utama unsur P yang terdapat dalam biji legum dan sereal. Selama proses perkecambahan, unsur P dari asam fitat digunakan sebagai sumber nutrisi untuk pertumbuhan dan perkembangan kecambah. Hidrolisis asam fitat dalam biji oleh aktivitas fitase akan melepaskan inositol dan fosfat bebas. Tidak adanya aktivitas fitase dalam saluran pencernaan ternak non-ruminansia menyebabkan mineral dan unsur nutrisi lain yang terikat pada asam fitat tidak dapat diserap. Penggunaan fitase untuk menghidrolisis asam fitat meningkatkan daya serap usus terhadap mineral dan unsur nutrisi lainnya. Tujuan penelitian ini adalah untuk mengetahui aktivitas fitase pada kotiledon kedelai hasil perkecambahan. Biji kedelai ditumbuhkan pada media kapas basah selama 14 hari dan setiap 2 hari kotiledon dipanen. Hasil penelitian menunjukkan bahwa biji kedelai var. Bromo yang dikecambahkan selama 10 hari menghasilkan aktivitas fitase kotiledon tertinggi. Purifikasi fitase kotiledon kedelai dengan amonium sulfat dan fraksinasi dengan DEAE-celullose menghasilkan tiga bentuk fitase. Fitase 2 mempunyai aktivitas spesifik tertinggi (35,96 ug Pi jam-1mg protein-1 dengan nilai km dan Vmaks masing-masing sebesar 0.221 mM asam fitat dan 0.383 ?Pi jam-1.

  2. Material embodiment and energy flows as efficiency indicators of soybean (Glycine max) production in Brazil

    OpenAIRE

    Romanelli,Thiago L.; Nardi,Hudson de S.; Saad,Filipe A.

    2012-01-01

    As the requirement for agriculture to be environmentally suitable there is a necessity to adopt indicators and methodologies approaching sustainability. In Brazil, biodiesel addition into diesel is mandatory and soybean oil is its main source. The material embodiment determines the convergence of inputs into the crop. Moreover, the material flows are necessary for any environmental analysis. This study evaluated distinct production scenarios, and also conventional versus GMO crops, through th...

  3. Synchrotron micro-imaging of soybean (Glycine max) leaves grown from magnetoprimed seeds - Feasibility study

    Science.gov (United States)

    Fatima, A.; Guruprasad, K. N.; Kataria, S.; Agrawal, A. K.; Singh, B.; Sarkar, P. S.; Shripathi, T.; Kashyap, Y.; Sinha, A.

    2016-05-01

    The novel phase contrast technique (PCI) based on refractive index variations has been utilized in this work to image soft tissues like plant leaves. The feasibility study of synchrotron micro-imaging to assess the changes in the soybean leaf vascular structure was conducted for plants grown after magnetic field treatment of seeds. Soybean seeds were pre-treated with Static Magnetic Field of different strengths 150 mT and 200 mT for 1 hour to evaluate the effect of magnetopriming on leaf vascular structures, which has links with plant growth and productivity. The plants emerged after magnetic field treatment on seeds showed enhancement in the growth and leaf parameters. Qualitative and quantitative analysis of the leaf venation has been performed using PCI technique to study this enhancement in the leaf structure.

  4. Variation in quality of individual seeds within a seed lot of soybean (Glycine max (L.) Merrill)

    NARCIS (Netherlands)

    Illipronti, R.A.

    1997-01-01

    The research described in this thesis aimed at increasing insight into the sources of variation in quality attributes of individual seeds within a soybean seed lot, into the relations between physical attributes and performance of seeds in seed tests and in controlled seed production

  5. Fungi and bacteria inventory on soybean (Glycine max (L.) merill) planting media applied by local microorganisms

    Science.gov (United States)

    Akhsan, Ni'matuljannah; Vionita

    2017-02-01

    An experiment aimed to determine the effect of application of several types of local microorganisms (MOL) and the number of doses to the development of fungi and bacteria on soybean planting media, have been conducted in Samarinda for 3 (three) months. Factorial experiment arranged in a completely randomized design and repeated three times, was used in this experiment. The first factor was the type of MOL consisted of cow dung (m1), snails (m2), banana peel (m3) and bamboo roots (m4), and the second factor was the dose MOL zero mL (d0), 100 mL (d1), 200 mL (d2), 300 mL (d3), 400 mL (d4) analyzed with Anova and Least Significance Difference (LSD) at 5%. Fungi and bacteria contained in the local microorganisms (cow dung, snails, banana peel and bamboo root) are: fungus Aspergillus sp, Penicillium sp., Trichoderma sp., cellulotic and lignolitic bacteria. An increase in the type and amount of fungus is happened for some genus. The dominant bacteria in the planting medium is a gram-negative bacteria. Cow dung seemed the best source at the dosages level of 400 ml.

  6. Glyphosate effects on the gene expression of the apical bud in soybean (Glycine max).

    Science.gov (United States)

    Jiang, Ling-Xue; Jin, Long-Guo; Guo, Yong; Tao, Bo; Qiu, Li-Juan

    2013-08-09

    Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Nutritional and sensory characteristics of sari tempe formulated from import soybean (glycine max)

    Science.gov (United States)

    Kurniadi, Muhamad; Andriani, Martina; Sari, Intan Indriana; Angwar, Mukhamad; Nurhayati, Rifa; Khasanah, Yuniar; Wiyono, Tri

    2017-01-01

    Tempe is traditional Indonesian food made from Rhizopus sp. fermentation of soybean. The aims of this research are to know the effect of the addition of water and CMC to nutritional and sensory characteristics of the sari tempe formulated from import soybean. The experimental design used in this study is entirely randomized design (CRD), which consists of two factors: variations addition of water with tempe (1:3, 1:5 and 1:7) and the variation of the addition of CMC concentration (0.05%; 0,10% and 0.15%). Sensory data were analyzed statistically using one-way ANOVA. If it showed significant results, then it is continued by real difference test using Duncan's Multiple Range Test (DMRT) at significance level α = 0.05. The results showed the best formula of sari tempe was F6 with 1:5 water ratio and 0.15% CMC concentration. Folate content and vitamin B6 decreased while processing sari tempe respectively 10.3 times and 2.7 times. Whereas, the vitamin B12 content is increased by 1.7 times. The best formula of sari tempe contains 90.96 % water content; 0.08 % ash content; 0.36 % fat content; 23.41 ppm vitamin B6; 337.49 ppm vitamin B12 and 17.31 ppm folate.

  8. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  9. Morphological study on the gamma radiation effect on soybean (Glycine max Merr)

    International Nuclear Information System (INIS)

    Nurtjahjo.

    1976-01-01

    Soybean seeds of 1 3 4 5 var. were irradiated with 0, 10, 15, and 20 Krad, of gamma rays. The result of these treatment are as follows: (1) At treatment within 10 Krad of gamma rays, some of the plant growth changed from determinate type to indeterminate type. (2) The treatment within 15 and 20 Krad of gamma rays results in four different kinds of leaf size and shape. (author)

  10. Production of peptone from soya beans (Glycine max L merr) and ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-09-18

    Sep 18, 2006 ... Peptone was produced from soya beans and African locust beans. The produced peptones were evaluated as component of microbiological media for the growth of some bacteria and compared with some commercial peptones. Some of the tested bacteria are Escherichia coli, Pseudomonas aeruginosa ...

  11. SEED VIGOR TESTING OF SOME DOMESTIC SOYBEAN CULTIVARS (Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Luka Andrić

    2004-12-01

    Full Text Available Seed ageing is an important cause of low vigor and bad field emergence, especially in adverse seedbed conditions. Therefore, in this investigation, soybean seed vigor was tested by four laboratory tests (germination energy GE, standard germination SG, cold test CT, electrical conductivity EC and in field trial, as well (early planting dates Epd and optimal planting dates Opd. The soybean seed of 5 cultivars from Agricultural Institute Osijek, produced in the 3 years (1999., 2000., 2001. was used in the investigation. The seed was stored in a warehouse conditions for 6, 18 or 30 months prior to testing. Tested soybean seed showed significant differences in seed vigor influenced by seed age, seed treatment with fungicide (Vitavax 200 FF, cultivar and planting date. High quality seed with GE and SG over 85%,performed quite well in both planting dates, as well as seeds with the CT over 70% or with EC under 42 μScm-1g-1. On the contrary, considering seed with reduced vigor there is a very great possibility of reduced FE especially in Epd. However, seed treatment with fungicide and sowing in optimal seedbed conditions can significantly contribute to improvement of soybean seed performance and stand establishment. Correlation analyses showed that all tested seed vigor parameters were significantly connected (sign. level 99%. At early planting, the strongest correlation was established between the field emergence and CT (untreated seed, r=0.949** and for treated seed r=0.951** whereas in optimal planting date was between the field emergence and SG (for untreated seed r=0. 938** and for treated seed r=0.942**. Laboratory seed health testing showed significant differences in fungal disease intensity influenced by fungicide seed treatment, cultivar and seed age. Total seed infection and infection with Fusarium spp. was adversely correlated with all vigor parameters. All tested vigor parameters of soybean seed had influence on grain yield indirectly by crop stand establishment.

  12. Effects of different boiling time of soybean ( Glycine max (L) merril ...

    African Journals Online (AJOL)

    A 56-day feeding trial was conducted with Oreochromis niloticus (Tilapia) fingerlings fed soybean boiled at different periods. The period treatment variations were unboiled soybean as control (T1); soybean seeds boiled for 20 minutes (T2); 30 minutes (T3); 40 minutes (T4) and for 50 minutes (T5). The soybean seeds so ...

  13. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Science.gov (United States)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  14. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    Science.gov (United States)

    Soybean sprouts are considered as natural and healthy food by Asian consumers. However, sprouts are often associated with outbreaks of foodborne illnesses and recalls due to contamination of seeds with human pathogens. Irradiation may be used to inactivate pathogens on seeds and sprouts. In this stu...

  15. Soybean (Glycine max L. Response to Fungicides in the Absence of Disease Pressure

    Directory of Open Access Journals (Sweden)

    W. James Grichar

    2013-01-01

    Full Text Available Field studies were conducted during the 2010 and 2011 growing seasons along the Texas Upper Gulf Coast region to study the effects of fungicides on soybean disease development and to evaluate the response of four soybean cultivars to prothioconazole plus trifloxystrobin and pyraclostrobin. In neither year did any soybean diseases develop enough to be an issue. Only NKS 51-T8 responded to a fungicide treatment in 2010 while HBK 5025 responded in 2011. Prothioconazole plus trifloxystrobin increased NKS 51-T8 yield by 23% in 2010 while in 2011 the yield of HBK 5025 was increased 14% over the unsprayed check. No yield response was noted with pyraclostrobin on any soybean cultivar. Only prothioconazole + trifloxystrobin applied to either NKS 51-T8 or DP5335 in 2010 resulted in a net increase in dollars per hectare over the unsprayed check of the respective cultivar. In 2011, under extremely dry conditions, all fungicides with the exception of prothioconazole + trifloxystrobin applied to HBK 5025 resulted in a net decrease in returns over the unsprayed check.

  16. Environmental assessment of organic soybean (Glycine max.) imported from China to Denmark

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Yu-Hui, Qiao; Van, Luo

    2010-01-01

    Growing global trade with organic products has increased the demand for environmental impact assessments during both production and transport. Environmental hotspots of organic soybeans produced in China and imported to Denmark were identified in a case study using a life cycle assessment approach....... Furthermore, environmental impacts of organic and conventional soybeans at farm gate were compared in the case study. The total global warming potential (GWP) per ton organic soybeans imported to Denmark revealed that 51% came from transportation and 35% from the farm level. Comparing organic and conventional...... soybean at farm gate showed that GWP, non-renewable energy use, acidification and eutrophication was lower per ton organic soybeans, whereas land use was slightly higher....

  17. Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.

    Science.gov (United States)

    McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula

    2017-08-16

    Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.

  18. Rizobacterias que promueven el desarrollo e incremento en productividad de Glycine max L.

    Directory of Open Access Journals (Sweden)

    Damián Antonio Cedeño Saavedra

    2017-06-01

    Full Text Available Los suelos agrícolas destinados al cultivo de especies vegetales de ciclo corto, carecen de materia orgánica por efecto del excesivo empleo de agroquímicos, estos fertilizantes edáficos de origen químico ocasionan cambios en la estructura y la biodiversidad del suelo. La incorporación de rizobacterias en la agricultura permite mejorar la productividad de cultivos de leguminosas por la formación de un complejo de simbiosis rhizobio-planta que permite la fijación de nitrógeno. El objetivo del presente trabajo fue evaluar el efecto de Bradyrhizobium japonicum, Pseudomonas veronii R4 y Pseudomonas fluorescens CHA0 para promover el desarrollo e incremento de productividad en tres variedades de soja: ICA-P34; INIAP-308; INIAP-307. A los 7 y 30 días se evaluó el desarrollo radicular y formación de nódulos, por co-inoculación de rizobacterias y sin inoculantes, también se determinó el rendimiento en kgha-1. En condiciones in vitro se incrementó el tejido radicular con 5, 3 y 9 cm de largo, por B. japonicum en ICA-P34, INIAP-308 y INIAP-307. En plántulas se observó raíces de 21 y 20 cm en INIAP-307 con P. veronii R4 y P. fluorescens CHA0. Inoculando las tres variedades con B. japonicum, se obtuvo 10, 14 y 10 nódulos por planta, cuando se aplicó Pseudomonas spp no existió formación de nódulos. El rendimiento de granos por hectárea fue 3700, 2890 y 3929 kgha-1, con B. japonicum, sin inoculo bacteriano los rendimientos disminuyen a 2006, 1611 y 1842 kgha-1. B. japonicum coloniza el sistema radicular influyendo con cambios morfológicos y fisiológicos, que positivamente incrementa el rendimiento en semillas de soja.

  19. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2014-09-01

    Full Text Available Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.

  20. Efektifitas Kemasan dan Suhu Ruang Simpan terhadap Daya Simpan Benih Kedelai (Glycine max (L. Meirril

    Directory of Open Access Journals (Sweden)

    Marlinda Dwi Purwanti

    2015-02-01

    Full Text Available This study aims to determine the best of packaging types and storage temperature for soybean seeds. The research was conducted in laboratory using a 5x3 factorial design arranged in a completely randomized design (CRD. The first factor was the types of packaging namely PP plastic (Poly Prophylene vaccuum, PP plastic (Poly Prophylene without vaccuum, PE plastic (Poly Ethylene vaccuum, PE plastic (Poly Ethylene without vaccuum, and control (without packaging. The second factor was the temperature of storage room, i.e. room temperature (27-29 0C, air conditioned room (17-19 0C and Cooler room (7 0C. Each treatment was replicated 4 times. The results showed that the best packaging type for storing seed at temperature (27-29 0C PP plastic & PE plastic with and without vaccuum. However, the soybean seed storaged in air-conditioned room (17-19 0C and Cooler room temperature (7 0C using the vaccuum, non vaccuum, and withot packaging could maintain the quality of soybead seed for 4 months.

  1. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.).

    Science.gov (United States)

    Lan, Tu; You, Jiangfeng; Kong, Lingnan; Yu, Miao; Liu, Minghui; Yang, Zhenming

    2016-01-01

    Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Serapan Fosfor dan Pertumbuhan Kedelai(Glycine max pada Tanah Ultisol dengan Pemberian Asam Humat

    Directory of Open Access Journals (Sweden)

    Wahyuningsih Wahyuningsih

    2017-08-01

    Full Text Available Ultisol merupakan salah satu jenis tanah asam yang memiliki kelarutan Al, Fe, dan Mn tinggi, serta kandungan P dan Moyang rendah. KelarutanAl dan Fe yangtinggiakan menjerap fosfat, sehingga ketersediaan dan serapan P bagi tanaman menjadi rendah. Salah satu upaya untuk mengatasi ketidaktersediaan P pada tanah Ultisol yaitu dengan penambahan asam humat. Asam humat merupakan makromolekul polielektrolit yang memiliki gugus fungsional seperti -COOH, -OH fenolat, maupun -OH alkoholat,sehingga asam humat memiliki kemampuan untuk membentuk kompleks dengan ion logam. Penelitian ini dilakukan dengan tujuan untuk: (1 mengetahui pengaruh asam humat terhadap serapan P dan pertumbuhan tanaman kedelai (2 menentukan konsentrasi asam humat yang paling baikdalam meningkatkan serapan P dan pertumbuhan tanaman kedelai. Metode penelitian yang digunakan adalah eksperimental dengan Rancangan Acak Kelompok (RAK. Pengelompokan didasarkan atas perbedaan intensitas cahaya yang ada di rumah kaca. Perlakuan berupa konsentrasi asam humat, dengan 5 konsentrasi yang berbeda yaitu 0 ppm, 400 ppm, 800 ppm, 1200 ppm dan 1600 ppm. Parameter yang diukur meliputi tinggi tanaman, luas daun, bobot basah, dan bobot kering, P tersedia serta P tanaman. Data yang diperoleh dianalisis menggunakananalisis ragam pada tingkat kepercayaan 95% dan 99%. Apabila hasil perlakuan berpengaruh nyata, maka dilanjutkan dengan uji Beda Nyata Terkecil (BNT. Hasil penelitian menunjukkan bahwa asam humat berpengaruh terhadap serapan P dan pertumbuhan kedelai pada tanah Ultisol. Asam humat 1200 ppm merupakan perlakuan paling baik dalam meningkatkan ketersediaan P, sehingga mampu meningkatkanpertumbuhan kedelai pada tanah Ultisol.

  3. Effect of Hf on the fine structure of mesophyll cells from Glycine max, Merr

    Energy Technology Data Exchange (ETDEWEB)

    Wei, L.; Miller, G.W.

    1972-04-01

    A series of ultrastructural changes were observed in soybean leaves fumigated with 40 to 50 ppb of hydrogen fluoride. In the cytoplasm the presence of small vacuoles was the first noticeable initial change. The fragmentation of the vacuolar membrane occurred either simultaneously or followed immediately. Lipid-droplet-like globules and numerous vesicles occurred subsequently in the cytoplasm and increased as the injury became more severe. There was a decrease in polysomes and a detachment of ribosome from the rough endoplasmic reticulum. Free ribosome concentration also decreased as the injury became severe. Mitochondrial modifications involving dilation of outer and cristae membranes followed by reduction of both cristae number and matrix electron density and the disappearance of mitochondrial granules were observed in the chlorotic leaves. Electron dense inclusions accumulated in some mitochondria as well. The first noticeable change observed in the chloroplast was the presence of clusters of phytoferritin granules within the stoma after only 2 days of fumigation. Alterations in nuclear structures were observed in later stages of injury. Numerous small electron dense particles were found on various types of membranes in cells of severely chlorotic leaves. They were distributed on outer mitochondrial membranes, endoplasmic reticula, dictyosomes, tonoplasts, plasmalemma, nuclear envelopes, and disintegrating organelles and vesicles, but were never observed on membranes of chloroplasts and microbodies. The presence of fluoride has attracted the attention of many workers primarily in certain industrial areas where the emitted atmospheric fluoride concentrates and is accumulated by plants initiating injury. 6 references.

  4. Utilization of nitrogen by soybean (Glycine max) influenced by the addition of sugar cane bagasse

    International Nuclear Information System (INIS)

    Bonetti, R.; Saito, S.M.T.

    1982-01-01

    N 2 -fixation in soybean and soil-N and 15 N-urea utilization where studied in a glasshouse. Doses of fertilizer were 0, 40 and 80 kgN/ha added either to cultivated - or virgin soil, where sugar cane bagasse was also added (20 ton/ha). Non-nodulating soybean was used as a control to determine the absorption of the three N-sources: soil, fertilizer and N 2 -fixation. The N-immobilization effect caused by bagasse addition was observed even after a pre-incubation period of 40 days, being greater in the cultivated than in the soil without organic matter. Accumulations of N, P and S where also smaller in these plants. Additions of N were not sufficient to equal the values observed in soils without organic matter. Addition of 40 kgN/ha showed a sinergistic and positive effect on treatments that had N-immobilization, reinforcing the idea that starter doses of N are necessary for maximization of nodulation and N 2 -fixation in soybean, in soils with low N. N 2 -fixation contributed with mean values of 54% and 84% N, respectively, in the aerial part and pools in non-treated soil. When bagasse was added, the percentages of N 2 -fixed increased, however in smaller amounts, showing a necessity of different sources of N to increase the total N in plant. The greatest N 2 -fixation (48,6 kgN/ha) was found in the cultivated soil, where only bagasse had been added. (M.A.) [pt

  5. Respons Pertumbuhan dan Produksi Kedelai (Glycine max (L.) Merril) F4 Tahan Salin terhadap Pemberian Antioksidan

    OpenAIRE

    Harahap, Rada Kurniati

    2016-01-01

    Soybean production is declining can not meet the needs of soybean in Indonesia, one of the main causes is the limited agricultural land. To increase the production of soybean in Indonesia can be reached by way of the expansion of planting areas, the use of potential land, one of which is saline soil. This study was conducted in a plastic house the Faculty of Agriculture, University of Sumatera Utara, Medan with the altitude +25 meters above sea level, from March 2016 to July 2016. The researc...

  6. Large Homogeneous Genome Regions (Isochores in Soybean (Glycine max (L. Merr.

    Directory of Open Access Journals (Sweden)

    Jenna Lynn Woody

    2012-06-01

    Full Text Available The landscape of plant genomes, while slowly being characterized and defined, is still composed primarily of regions of undefined function. Many eukaryotic genomes contain isochore regions, mosaics of homogeneous GC content that can abruptly change from one neighboring isochore to the next. Isochores are broken into families which are characterized by their GC levels. We identified 4,339 compositionally distinct domains and 331 of these were identified as Long Homogeneous Genome Regions (LHGRs. We assigned these to four families based on finite mixture models of GC content. We then characterized each family with respect to exon length, gene content, and transposeable elements. The LHGR pattern of soybeans is unique in that while the majority of the genes within LHGRs are found within a single LHGR family with a narrow GC-range (Family B, that family is not the highest in GC content as seen in vertebrates and invertebrates. Instead Family B has a mean GC content of 35%. The range of GC content for all LHGRs is 16-59% GC which is a larger range than what is typical of vertebrates. This is the first study in which LHGRs have been identified in soybeans and the functions of the genes within the LHGRs have been analyzed.

  7. Fumonisins and fungi in dry soybeans (Glycine Max L.) for human consumption.

    Science.gov (United States)

    Garcia, Laura P; Savi, Geovana D; Santos, Karolina; Scussel, Vildes M

    2016-06-01

    This survey reports the occurrence of fumonisins (FBs) and fungi in dry soybeans sold for human consumption. The variation levels were 138-1495 µg kg(-1) and 178-552 µg kg(-1) for FB1 and FB2, respectively. In addition, potentially toxigenic fungi as Fusarium, Aspergillus and Penicillium genera were isolated in the samples. These can be considered as indicator-toxin and can produce considerable amounts of mycotoxins. Despite FB presence in the soybeans for human consumption, there is no legal regulation. Therefore, it is important to emphasise the need for frequent monitoring of these contaminants in soybeans.

  8. Salt Stess On Soybean Glycine Max L Merr Improving Salt Stress Tolerance Through Seed Priming

    Directory of Open Access Journals (Sweden)

    Maman Suryaman

    2017-08-01

    Full Text Available Soybean seeds rapidly deteriorate or loss of viability and vigor especially in stress conditions including by saline. This study was aimed to obtain the best seed viability and vigor of soybean treated by seed priming under salt stress. This study used a randomized completely block design with factorial pattern. First factor was the saline stress of NaCl concentration C which consisted of three levels c0 0 0.5 c1 c2 1.Second factor was the treatment of seed priming P that consisted of 4 levels p0 hydropriming p1 osmopriming p2 matripriming p3 vitamin priming. The experiment was repeated three times. Data collected consisted of germination capacity germination rate hypocotyl and epicotyl length the weight of seedling and the electrical conductivity. Data were analyzed by analysis of variance followed by Duncans multiple range test at 5 percent. The results showed that osmopriming matripriming and vitamin priming improved total germination and germination rate of soybean seeds under salinity stress while seed priming with hydropriming caused significantly the reduction of germination total and germination rate in salinity stress of 1 percent. Increased salinity stress from 0 to 1 percent caused a reduction in hypocotyl and epicotyl length different with osmopriming matripriming and vitamin priming that produced hypocotyl and epicotyl longer than hydropriming. In all seed primings increased salinity stress from 0 to 1 percent lowered the weight of seedlings and most drastic reduction of seedling weight occurred in seeds treated with hydropriming. Among seed priming treatments osmopriming matripriming and vitamin priming were more able to reduce membrane leakage compared to hydropriming as indicated by lower electrical conductivity rates contributing the increase in tolerance to salt stress and high in seed viability and vigor.

  9. BEBIDA DE SOJA (GLYCINE MAX E ACEROLA (MALPIGHIA PUNICIFOLIA ENRIQUECIDA COM CÁLCIO

    Directory of Open Access Journals (Sweden)

    Elaine Cristina de Souza LIMA

    2012-12-01

    Full Text Available Na atualidade, as indústrias alimentícias vêm buscando novas formulações de produtos, devido ao aumento da demanda do consumidor por alimentos funcionais. A acerola e a soja são consideradas alimentos funcionais, no entanto, a soja apresenta teores limitantes de cálcio. O objetivo deste estudo foi avaliar o efeito da adição de diferentes sais de cálcio sobre as propriedades sensoriais de bebida formulada com adição de soja e acerola. Amostras dessa bebida natural (sem adição de cálcio e enriquecidas com quatro diferentes sais de cálcio - lactato de cálcio, carbonato de cálcio, gluconato de cálcio e fosfato tricálcio foram analisadas sensorialmente por 50 provadores, segundo escala hedônica estruturada de 7 pontos. A bebida enriquecida com melhor qualidade sensorial foi caracterizada físicoquímica e microbiologicamente. Dentre as bebidas de soja e acerola enriquecidas com sais de cálcio a que se destacou em termos de sabor global foi aquela enriquecida com lactato de cálcio. O teor de cálcio encontrado em 200 mL dessa bebida na forma pasteurizada foi capaz de suprir em torno de 38% da ingestão diária recomendável para adultos constituindo, assim, uma bebida funcional à base de soja, com alto valor nutritivo e boa qualidade sensorial.

  10. Development of a highly efficient, repetitive system of organogenesis in soybean (Glycine max (L.) Merr).

    NARCIS (Netherlands)

    Shan, Zhihui; Raemakers, C.J.J.M.; Tzitzikas, E.; Ma, Zhengqiang; Visser, R.G.F.

    2005-01-01

    A highly efficient, repetitive system of organogenesis was developed in soybean. Seeds of soybean cv. White hilum pretreated with TDZ formed multiple bud tissue(s) (MBT) at the cotyledonary nodes. MBT initiation occurred only if the axillary buds were not removed from the cotyledonary node. The best

  11. Transgenic soybean pollen (Glycine max L.) in honey from the Yucatán peninsula, Mexico.

    Science.gov (United States)

    Villanueva-Gutiérrez, R; Echazarreta-González, C; Roubik, D W; Moguel-Ordóñez, Y B

    2014-02-07

    Using precise pollen species determination by conventional microscopic methods, accompanied by molecular genetic markers, we found bees collect GMO (genetically modified) soybean pollen and incorporate it in Yucatan honey. Honey comb samples from Las Flores, Campeche, Mexico, often contained soybean pollen. Pollen in honey was analyzed in nine samples; six contained substantial soy pollen and two tested positive for soybean GMO. Our analyses confirm field observations that honey bees, Apis mellifera, gather soybean pollen and nectar. The resultant risk for honey production in the Yucatán Peninsula and Mexico is evident in wholesale price reduction of 12% when GMO products are detected and honey consignments are rejected. Although this affects only 1% of current export honey (2011-2013) GMO soybean is an unacknowledged threat to apiculture and its economics in one of the world's foremost honey producing areas.

  12. Polygenic Inheritance of Canopy Wilting in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    As water demand for agriculture exceeds water availability, cropping systems need to become more efficient in water usage, such as deployment of cultivars that sustain yield under drought conditions. Soybean cultivars differ in how quickly they wilt during water-deficit stress, and this trait may l...

  13. Effects of spent engine oil contamination on soybean (Glycine max L ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Sci.13(4):. 1584 – 1602. Bouwer, H. (1986). Intake rate: Cylinder infiltrometer. In: methods of Soil Analysis, part. I, Klute A. (Ed.) Monograph no. 9 Amer.Soc. of. Agron: Madison. W I. 826 – 844. Edebiri, R.A.O; Nwanokwale, E. (1981). Control of pollution from internal combustion engine used lubricant. Proc. Int. Seminar, petr.

  14. (Glycine max L. (Merril) à l'apport des biomasses vertes de Tithonia ...

    African Journals Online (AJOL)

    SARAH

    30 mars 2013 ... des biomasses de Tithonia diversifolia (10143 kg /hectare) comme fertilisant constituerait un atout majeur pour l'accroissement des rendements du soja dans un contexte de dégradation des sols et de prix élevé des engrais minéraux. Mots clés : biomasse de Tithonia diversifolia, fumure organique, soja, ...

  15. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    Science.gov (United States)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  16. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings

    Science.gov (United States)

    Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.

    2018-01-01

    Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.

  17. Plant regeneration from cotyledons of mature soybean (Glycine max L.) Wilis cultivar using gamma rays

    International Nuclear Information System (INIS)

    Hutabarat, D.; Ratna, R.

    1999-01-01

    Soybean Wilis cultivar was efficiently regenerated in vitro via somatic embryogenesis. Cotyledonary explants were excised from mature germinating seeds. Seeds were germinated on agar solution and on B5 medium enriched with 5 ppm BA, 0.25 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Cotyledonary nodes from both germinating seeds were excised and cultured on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Age of seedlings had a remarkable influence on shoot regeneration. Cotyledon from seeds germinated on agar solution with light gave better result in shoot regeneration compare with those germinated in darkness. The highest number of regenerants per explants (5 shoots) was produced by cotyledon from seeds germinated on B5 medium enriched with 5 ppm IBA and 500 ppm casein hydrolyzate in darkness. The seeds of soybean were exposed to gamma-rays doses 10 Gy then germinated on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate did not improve the number of plant regeneration. Only 5-day-old seedlings from seeds were exposed to gamma-rays dose 30 Gy could improve the number of shoot regeneration, one of the cotyledonary node treated produced 21 regeneration shoots

  18. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  19. Entomofauna associated to soybean [Glycine max (L. Merr.] in direct seeding and conventional tillage

    Directory of Open Access Journals (Sweden)

    Arahis Cruz Limonte

    2016-01-01

    Full Text Available The main purpose of this research work was to investigate the effect of the direct seeding and conventional tillage of soybean on the incidence of plagues and natural enemies. The study was carried out on the farm “Día y Noche” of the Basic Unit of Cooperative Production “28 de Octubre” (UBPC, for its Spanish acronym, and in the Laboratories of the Agricultural Research Center of Central University of Las Villas. Field experiments were conducted on an Inceptisol, since November 2013 to May 2014. The soybean cultivar Incasoy – 27 was used. The insects in relation to the development stages of the plant were identified and quantified. In both systems 10 species of phytophagous insects and one of entomophagous insects were quantified; Hedylepta indicata L. stands out with more presence in the direct seeding, while Diabrotica balteata LeConte and the species belong to the family Pentatomidae caused most damage to the plants in conventional tillage.

  20. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    International Nuclear Information System (INIS)

    Schmidt, W.E.; Ebel, J.

    1987-01-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a β-1,3-[ 3 H] glucan elicitor fraction from Phytophthora megasperma f.sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent K/sub d/ value for β-glucan elicitor binding is ≅ 0.2 x 10 -6 M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies the [ 3 H]glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched β-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay

  1. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max

    Science.gov (United States)

    Background: Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gaine...

  2. Application of earthworm humus and Bradyrhizobium japonicum in Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Ricardo Gómez Machado

    2017-10-01

    Full Text Available The experiment was developed in the Granma University's productive area, with the objective of evaluating the alone and combined earthworm humus application effect with Bradyrhizobium japonicum on G7R-315 variety soybean cultivation. Six treatments were evaluated: T1 Control, T2 B. japonicum, T3 earthworm humus (6 t ha-1, T4 B. japonicum + earthworm humus (6 t ha-1, T5 earthworm humus (8 t ha-1, T6 B. japonicum + earthworm humus (8 t ha-1 on a brown soil. A randomized block design was used with three replicas. The evaluated variables were: number per plant leguminous; weigh from 100 seeds and agricultural yield. The data obtained were processed by double classification variance analysis, applied a Turkey's multivariate statistical analysis. It was found that treatments that included the earthworm humus, the evaluated variables shown superior significantly results and it differed of the control treatment and to the aloneB. japonicum application.

  3. Application of earthworm humus and Bradyrhizobium japonicum in Glycine max (L.) Merrill

    OpenAIRE

    Ricardo Gómez Machado; Marta Travieso Torres; Luis Antonio Tamayo López; Yoannia Gretel Pupo Blanco

    2017-01-01

    The experiment was developed in the Granma University's productive area, with the objective of evaluating the alone and combined earthworm humus application effect with Bradyrhizobium japonicum on G7R-315 variety soybean cultivation. Six treatments were evaluated: T1 Control, T2 B. japonicum, T3 earthworm humus (6 t ha-1), T4 B. japonicum + earthworm humus (6 t ha-1), T5 earthworm humus (8 t ha-1), T6 B. japonicum + earthworm humus (8 t ha-1) on a brown soil. A randomized block design was use...

  4. Effect of salt on the fermentation of soybean (Glycine max) into ...

    African Journals Online (AJOL)

    Previous studies showed that 1% salt improved the organoleptic attributes of traditional fermented daddawa. Also, Bacillus subtilis as a monoculture starter produced daddawa of same quality with traditional daddawa. The aim of this study was to investigate the effect of 1% salt on some biochemical changes occurring in the ...

  5. PENAMBAHAN INOKULUM DALAM MENINGKATKAN KUALITAS JERAMI KEDELAI EDAMAME (Glycine max var Ryokhoho SEBAGAI PAKAN TERNAK

    Directory of Open Access Journals (Sweden)

    Nafiatul Umami

    2014-06-01

    Full Text Available This research was conducted to investigated the effect of rhizobium inoculation and harvesting time on the productivity of edamame and the chemical composition in the straw edamame. This study was planted edamame soy bean seed. This experiment was carried out in green house used regosol soil in polybag, 2x2 factorial experiment with five replication was arranged in completely randomized design, continued by Duncan’s multiple range test (DMRT for the significant result. The first factor was harvesting time (U consisting of harvested at 65 days (U1 and harvested at 75 days (U2; the second factor was inoculant (I consisting of with inoculation (I1 and without inoculant (I0. The result of the study showed, that underground dry weight (DW mass yield and DM and OM straw productions, crude protein (CP, nitrogen free extract (NFE of UP1 were higher (P<0.01 and ash of straw were higher(P<0.05 than UP2. DM and OM pod productions of UP1 was also superior (P<0.05 than UP2. UP2 resulted better fiber crude (FC (P<0.01 than UP1. Inoculation (L1 resulted better DM and OM straw productions and CP of straw (P<0.01, and underground DW mass yield, FC, NFE of straw were affected (P<0.05 by interaction between treatments. Underground DW mass yield, FC, NFE, DM and OM of straw, and pods productions were not affected by interaction. And all the treatments were also not affected ether extract (EE of straw.The results of experiment shown that legin factor not signification of in vitro digestibility. The harvest time (U1 was higher (P<0.05 than harvested at 75 days. Interaction among two factors not significant on in vitro organic matter digestibility.

  6. Effect of cadmium on soybean ( Glycine max L) growth and nitrogen ...

    African Journals Online (AJOL)

    , an experiment was performed in sand culture using Hoagland nutrient solution. At the time of sowing, different cadmium level that is 0, 4, 8 and 16 mg kg-1 sand was created using Cd (NO3)2. Soybean shoots and root lengths shoot and root ...

  7. A new species of Lysiphlebus Förster 1862 (Hymenoptera: Braconidae, Aphidiinae) attacking soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) from China

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Rakhshani, E.; Tomanović, Ž.; Hoelmer, K.; Kavallieratos, N. G.; Yu, J.; Wang, M.; Heimpel, G. E.

    2010-01-01

    Roč. 19, č. 1 (2010), s. 179-186 ISSN 1070-9428 Grant - others:Ministry of Science and Technological Developments of the Republic of Serbia(SR) 143006B Institutional research plan: CEZ:AV0Z50070508 Keywords : Lysiphlebus orientalis sp. n. * aphid parasitoids * Glycine max Subject RIV: EG - Zoology Impact factor: 0.500, year: 2010

  8. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  9. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Conclusions: Our data are consistent with a model wherein elevated circulating BCAA contribute to development of obesity-related insulin resistance by interfering with lipid oxidation in skeletal muscle. BCAA-dependent lowering of the skeletal muscle glycine pool appears to contribute to this effect by slowing acyl-glycine export to the urine.

  10. Genomic differences between cultivated soybean, G. max and its wild relative G. soja.

    Science.gov (United States)

    Joshi, Trupti; Valliyodan, Babu; Wu, Jeng-Hung; Lee, Suk-Ha; Xu, Dong; Nguyen, Henry T

    2013-01-01

    Glycine max is an economically important crop and many different varieties of soybean exist around the world. The first draft sequences and gene models of G. max (domesticated soybean) as well as G. soja (wild soybean), both became available in 2010. This opened the door for comprehensive comparative genomics studies between the two varieties. We have further analysed the sequences and identified the 425 genes that are unique to G. max and unavailable in G. soja. We further studied the genes with significant number of non-synonymous SNPs in their upstream regions. 12 genes involved in seed development, 3 in oil and 6 in protein concentration are unique to G. max. A significant number of unique genes are seen to overlap with the QTL regions of the three traits including seed, oil and protein. We have also developed a graphical chromosome visualizer as part of the Soybean Knowledge Base (SoyKB) tools for molecular breeding, which was used in the analysis and visualization of overlapping QTL regions for multiple traits with the deletions and SNPs in G. soja. The comparisons between genome sequences of G. max and G. soja show significant differences between the genomic compositions of the two. The differences also highlight the phenotypic differences between the two in terms of seed development, oil and protein traits. These significant results have been integrated into the SoyKB resource and are publicly available for users to browse at http://soykb.org/GSoja.

  11. Max Planck et les quanta

    CERN Document Server

    Boudenot, Jean-Claude

    2016-01-01

    « Les atomes, dit Jean Perrin en 1913, ne sont pas ces éléments éternels et insécables dont l'irréductible simplicité donnait au possible une borne, et, dans leur inimaginable petitesse, nous commençons à pressentir un fourmillement prodigieux de mondes nouveaux ». C'est bien dans un monde totalement nouveau, le monde quantique, que nous a fait pénétrer la découverte des quanta par Max Planck. Son article de 1900 est le déclencheur de l'une des plus grandes révolutions scientifiques de tous les temps. Les trente années qui suivent sont les plus riches de la physique ; Planck, Einstein, Bohr, Sommerfeld, de Broglie, Schrödinger, Heisenberg, Dirac, Born, Pauli… reconstruisent la physique sur de nouvelles bases sur fond de conflit des générations. Le monde est par ailleurs secoué par la guerre, Max Planck est tourmenté et vit des épreuves personnelles dramatiques. C'est l'homme, aussi bien que l'oeuvre, que les auteurs ont tenté de dépeindre dans cet ouvrage. Ils ont également souhait�...

  12. Max Reinharz (1923-2012)

    CERN Multimedia

    2013-01-01

    Max Reinharz was born in Vienna, Austria, in 1923. In 1939 he was obliged to emigrate to the UK. At the beginning of the Second World War he was interned as an enemy alien and then deported to Australia at a time when the British feared an invasion by Germany. He returned to the UK in 1943 and joined the British Army. After he was demobbed in 1947, he studied physics in Vienna, where he took his doctorate in 1953.   Max Reinharz (centre) with Gordon Munday (left) and Henri Laporte (right) in 1979. After working in Brussels, at the physics Institute of Genoa and the University of Pisa, he joined CERN in 1960 as a fellow and in 1964 became a senior physicist in the NP Division. His name is associated with many publications, such as those of the CERN neutrino experiment and the CERN-Geneva-Lund collaboration to verify T symmetry conservation in lambda decays. He then joined a small team in the Proton Synchrotron Division (MPS) responsible for assisting external physics groups to prepare and i...

  13. V-dotO2max prediction from multi-frequency bioelectrical impedance analysis

    International Nuclear Information System (INIS)

    Stahn, Alexander; Strobel, Günther; Terblanche, Elmarie

    2008-01-01

    Bioelectrical impedance analysis (BIA) has been shown to be highly related to skeletal muscle mass and blood volume, both of which are important determinants of maximal oxygen uptake (V-dotO 2max ). The aim of the present study was therefore to investigate the ability of whole-body and segmental multi-frequency BIA to improve current nonexercise V-dotO 2max prediction models. Data for V-dotO 2max (mL min −1 ), anthropometry, self-reported physical activity (PA-R) and BIA were collected in 115 men and women. Multiple linear regression analysis (MLR) was used to develop the most parsimonious prediction model. Segmental BIA was not superior to whole-body measurements. Correlation coefficients between V-dotO 2max and resistance indices were significantly higher at 500 kHz compared to 50 kHz (p 2max (r = 0.89). After adjusting for age, gender and PA-R, MLR revealed that the inclusion of intracellular resistance index was slightly, but significantly (p 2max ( −1 ). In short, whole-body BIA marginally improves the accuracy of nonexercise V-dotO 2max prediction models and its advantage is most pronounced in individuals with particularly low V-dotO 2max

  14. Soybean Pl 494182: A new source of more durable resistance to nematode populations

    Science.gov (United States)

    Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the United States and worldwide. In 2012, SCN reduced yields in the U.S. by an estimated $1 billion. These losses have been contained at a stable level with the use of resistan...

  15. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  16. Mastering Autodesk 3ds Max 2013

    CERN Document Server

    Harper, Jeffrey

    2012-01-01

    Get professional training in 3ds Max from this Autodesk Official Training Guide Extremely popular with video game designers as well as architects, 3ds Max offers integrated 3D modeling, animation, rendering, and compositing tools designed to streamline production. If you already have a working knowledge of 3ds Max basics, this official guide will take your skills to the next level. Detailed tutorials cover all the latest features of 3ds Max. From modeling, texturing, animation, and architectural visualization to high-level techniques for film, television, games, and more, this book provides

  17. Functional reconstitution of the glycine receptor

    International Nuclear Information System (INIS)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr.

    1989-01-01

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of [ 3 H]strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium]. Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment

  18. Impact of Rag1 aphid resistant soybeans on Binodoxys communis (Hymenoptera: Braconidae), a parasitoid of soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Ghising, Kiran; Harmon, Jason P; Beauzay, Patrick B; Prischmann-Voldseth, Deirdre A; Helms, Ted C; Ode, Paul J; Knodel, Janet J

    2012-04-01

    Multiple strategies are being developed for pest management of the soybean aphid, Aphis glycines Matsumura; however, there has been little published research thus far to determine how such strategies may influence each other, thereby complicating their potential effectiveness. A susceptible soybean (Glycine max L.) variety without the Rag1 gene and a near isogenic resistant soybean variety with the Rag1 gene were evaluated in the laboratory for their effects on the fitness of the soybean aphid parasitoid, Binodoxys communis (Gahan). The presence or absence of the Rag1 gene was verified by quantifying soybean aphid growth. To test for fitness effects, parasitoids were allowed to attack soybean aphids on either a susceptible or resistant plant for 24 h and then aphids were kept on the same plant throughout parasitoid development. Parasitoid fitness was measured by mummy and adult parasitoid production, adult parasitoid emergence, development time, and adult size. Parasitoids that attacked soybean aphids on susceptible plants produced more mummies, more adult parasitoids, and had a higher emergence rate compared with those on resistant plants. Adult parasitoids that emerged from resistant plants took 1 d longer and were smaller compared with those from susceptible plants. This study suggests that biological control by B. communis may be compromised when host plant resistance is widely used for pest management of soybean aphids.

  19. Distribución e identificación de especies hospedantes de Heterodera glycines Ichinohe raza 3 en el Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Varón de Agudelo Francia

    1988-06-01

    Full Text Available Se dividió la parte plana del Valle del Cauca en tres zonas (norte, centro y sur, habiéndose visitado 33 fincas. En la zona norte las malezas con mayor porcentaje de frecuencia y distribución en los cultivos de soya fueron Digitaria horizontalis, Echinochloa colonum y Leptochloa filiformis; en la zona centro Ipomoea hirta, Amaranthus dubius y Echinochloa colonum y en la zona sur predominaron Ipomoea hirta, Portulaca oleracea Cyperus rotundus. Los análisis de muestras de suelo y raíces indicaron que H. glycines se encuentra distribuido en todo el Valle del Cauca, presentando la zona sur (Candelaria, Palmira y Puerto Tejada las mayores poblaciones. Entre las especies evaluadas (malezas, cultivos, leguminosas forrajeras y silvestres, solamente Glycine max y Phaseolus vulgaris se consideraron como susceptibles a H. glycines raza 3. y P. angularis y P. multiflora permitieron muy poca infección y multiplicación del nemátodo.A nematode recognition of Heterodera glycines was focused on crops of soybean. Valle del Cauca was divided in three zones (northen, central and southern and 33 farms were visited. The results of the analysis on samples of soils and roots showe that Heterodera glycines is scattered throughout Valle del Cauca, being the southern zone (Palmira, Candelaria and Puerto Tejada the one having the highest standards in nematode population. Weeds showing a greater frequency percentage were : Digitaria horizontalis, Echinochloa colonum and Leptochloa filiformis, in the northen zone; Ipomoea hirta, Amaranthus dubius and Echinochloa colonum, in the central zone, and Ipomoea hirta, Portulaca oleracea and Cyperus rotundus, in the southern zone , From among the whole species evaluated (weeds, crops, leguminous a n d fodder plants, Glycine max and Phaseolus vulgaris were considered to be susceptible to H. Glycines race 3. Phaseolus angularis y P. multiflora let low population levels.

  20. Synthesis of the Novel MAX Phases for the Future Nuclear Fuel Cladding and Structural Materials

    International Nuclear Information System (INIS)

    Chung, Seung Hyeok; Kim, Taehee; Lee, Taegyu; Ryu, H. J.

    2016-01-01

    With these properties, the MAX phases are expected to be used for the Accident Tolerant Fuel (ATF) cladding and oxidation/corrosion resistance materials. Especially, the MAX phase can be used for the Gen-IV, SFR and HTGR, component materials which have to possess the thermal and corrosion resistance. The zirconium has been used to the nuclear industry for fuel cladding because of the small thermal neutron cross-section. Zr-based MAX phase was discovered by group Lapauw et al. They observed the Zr 2 AlC and Zr 3 AlC 2 with the X-ray diffraction (XRD) patterns and backscattered electron detector. Fabrication of the Zr-containing MAX phase was investigated for nuclear fuel cladding and structural materials applications. A MAX phase with the Zr 3 AlC 2 structure was synthesized by spark plasma sintering of a powder mixture targeting (Zr 0.5 Cr 0.5 ) 4 AlC 3 . The formation of MAX phases was confirmed by XRD and EDS of sintered samples. In the future work, the electron probe micro analyzer (EPMA) and transmission electron microscopy (TEM) are required to certain analyze the elements composition and formation of the MAX phase

  1. Max Jakobson õiendab arveid ajalooga / Imbi Paju

    Index Scriptorium Estoniae

    Paju, Imbi, 1959-

    2003-01-01

    Soome politoloogi ja diplomaadi Max Jakobsoni raamatust "Tilinpäätos" ("Arve sulgemine"), milles ta käsitleb Eesti ja Soome suhteid 20. sajandil. Vt samas: Lennart Meri meelitas Jakobsoni sõjakuritegusid uurima; lühiintervjuu Max Jakobsoniga

  2. Veteranpoliitik Max Jakobson õpetab ajalugu / Sirje Kiin

    Index Scriptorium Estoniae

    Kiin, Sirje, 1949-

    1998-01-01

    Soome sõltumatu välispoliitika konsultant ja ajakirjanik Max Jakobson. Ülevaade Max Jakobsoni intervjuust soomerootsi majandusajakirjale "Forum för ekonomi och teknik" 1998. aasta aprillinumbris Venemaa Baltimaade-vastasest propagandast ning EL-i ja NATO laienemisest

  3. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans

    Science.gov (United States)

    Sugimoto, Takuma; Kato, Masayasu; Yoshida, Shinya; Matsumoto, Isao; Kobayashi, Tamotsu; Kaga, Akito; Hajika, Makita; Yamamoto, Ryo; Watanabe, Kazuhiko; Aino, Masataka; Matoh, Toru; Walker, David R.; Biggs, Alan R.; Ishimoto, Masao

    2012-01-01

    Phytophthora stem and root rot, caused by Phytophthora sojae, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.], and the incidence of this disease has been increasing in several soybean-producing areas around the world. This presents serious limitations for soybean production, with yield losses from 4 to 100%. The most effective method to reduce damage would be to grow Phytophthora-resistant soybean cultivars, and two types of host resistance have been described. Race-specific resistance conditioned by single dominant Rps (“resistance to Phytophthora sojae”) genes and quantitatively inherited partial resistance conferred by multiple genes could both provide protection from the pathogen. Molecular markers linked to Rps genes or quantitative trait loci (QTLs) underlying partial resistance have been identified on several molecular linkage groups corresponding to chromosomes. These markers can be used to screen for Phytophthora-resistant plants rapidly and efficiently, and to combine multiple resistance genes in the same background. This paper reviews what is currently known about pathogenic races of P. sojae in the USA and Japan, selection of sources of Rps genes or minor genes providing partial resistance, and the current state and future scope of breeding Phytophthora-resistant soybean cultivars. PMID:23136490

  4. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  5. Studies on HG Type of Heterodera glycines in Korea

    Directory of Open Access Journals (Sweden)

    Donggeun Kim

    2013-03-01

    Full Text Available Thirteen soybean cyst nematode (SCN (Heterodera glycines populations collected in Korea were examined in their HG type by their reproductivity on 7 Plant Introduction indicators for the identification of HG type. Six HG types were identified, HG type 0, 2, 5, 2.5, 1.2.7, and 2.5.7. HG type 2.5 was the most frequent (4 samples, 30.8%, followed by HG type 2.5.7 (3 samples, 23.0%. About 76.9% of SCN populations were reproduced on PI 88788, followed by PI 209332 (61.5%, PI 548316 (‘Cloud’ (30.8%, and PI 548402 (‘Peking’ (7.7%. No population could reproduce on PI 90763, PI 437654, thus, they could be used for resistant source for developing SCN resistant soybean in Korea.

  6. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    Directory of Open Access Journals (Sweden)

    Srour Ali

    2012-08-01

    Full Text Available Abstract Background Soybean (Glycine max (L. Merr. resistance to any population of Heterodera glycines (I., or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS, was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06 encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%. In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has

  7. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463.

    Science.gov (United States)

    Lee, Jeong-Dong; Shannon, J Grover; Vuong, Tri D; Nguyen, Henry T

    2009-01-01

    Tolerant soybean (Glycine max [L.] Merr.) cultivars aid in reducing salt damage in problem fields. New genes are important to reduce losses from salt injury. Objectives of this study were to determine inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) PI483463 and to test allelism of tolerance genes from genotypes PI483463 and S-100, a common ancestor of southern in US cultivars. Tolerant (T) PI483463 was crossed to sensitive (S) cultivar Hutcheson to study inheritance. PI483463 (T) was crossed with S-100 (T) to test for allelism. Parents, F(1) plants, F(2) populations, and F(2:3) lines were assayed in a 100 mM salt solution to determine tolerance. F(2) from T x S cross segregated 3(T):1 (S) and the F(2:3) lines responded 1 (T): 2 (segregating):1 (S). F(2) plants from PI483463 (T) x S-100 (T) segregated 15 (T):1 (S) indicating different genes from the 2 sources. Results showed that G. soja line PI483463 had a single dominant gene for salt tolerance, which was different than the gene in G. max line S-100. The symbol, Ncl2, was designated for this new salt tolerance allele.

  8. Piezoelectricity and Ferroelectricity in Amino Acid Glycine =

    Science.gov (United States)

    Seyedhosseini, Ensieh

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and switchable polarization at room temperature. Here we study piezoelectricity and ferroelectricity in the smallest amino acid glycine, representing a broad class of non-centrosymmetric amino acids. Glycine is one of the basic and important elements in biology, as it serves as a building block for proteins. Three polymorphic forms with different physical properties are possible in glycine (alpha, beta and gamma), Of special interest for various applications are non-centrosymmetric polymorphs: beta-glycine and gamma-glycine. The most useful beta-polymorph being ferroelectric took much less attention than the other due to its instability under ambient conditions. In this work, we could grow stable microcrystals of beta-glycine by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were characterized by X-ray diffraction analysis and Raman spectroscopy. In addition, spin-coating technique was used for the fabrication of highly aligned nano-islands of beta-glycine with regular orientation of the crystallographic axes relative the underlying substrate (Pt). Further we study both as-grown and tip-induced domain structures and polarization switching in the beta-glycine molecular systems by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. We show that beta-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of applied voltage and pulse duration. The domain shape is dictated by

  9. WiMax network planning and optimization

    CERN Document Server

    Zhang, Yan

    2009-01-01

    This book offers a comprehensive explanation on how to dimension, plan, and optimize WiMAX networks. The first part of the text introduces WiMAX networks architecture, physical layer, standard, protocols, security mechanisms, and highly related radio access technologies. It covers system framework, topology, capacity, mobility management, handoff management, congestion control, medium access control (MAC), scheduling, Quality of Service (QoS), and WiMAX mesh networks and security. Enabling easy understanding of key concepts and technologies, the second part presents practical examples and illu

  10. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  11. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome.

    Science.gov (United States)

    Kim, Moon Young; Lee, Sunghoon; Van, Kyujung; Kim, Tae-Hyung; Jeong, Soon-Chun; Choi, Ik-Young; Kim, Dae-Soo; Lee, Yong-Seok; Park, Daeui; Ma, Jianxin; Kim, Woo-Yeon; Kim, Byoung-Chul; Park, Sungjin; Lee, Kyung-A; Kim, Dong Hyun; Kim, Kil Hyun; Shin, Jin Hee; Jang, Young Eun; Kim, Kyung Do; Liu, Wei Xian; Chaisan, Tanapon; Kang, Yang Jae; Lee, Yeong-Ho; Kim, Kook-Hyung; Moon, Jung-Kyung; Schmutz, Jeremy; Jackson, Scott A; Bhak, Jong; Lee, Suk-Ha

    2010-12-21

    The genome of soybean (Glycine max), a commercially important crop, has recently been sequenced and is one of six crop species to have been sequenced. Here we report the genome sequence of G. soja, the undomesticated ancestor of G. max (in particular, G. soja var. IT182932). The 48.8-Gb Illumina Genome Analyzer (Illumina-GA) short DNA reads were aligned to the G. max reference genome and a consensus was determined for G. soja. This consensus sequence spanned 915.4 Mb, representing a coverage of 97.65% of the G. max published genome sequence and an average mapping depth of 43-fold. The nucleotide sequence of the G. soja genome, which contains 2.5 Mb of substituted bases and 406 kb of small insertions/deletions relative to G. max, is ∼0.31% different from that of G. max. In addition to the mapped 915.4-Mb consensus sequence, 32.4 Mb of large deletions and 8.3 Mb of novel sequence contigs in the G. soja genome were also detected. Nucleotide variants of G. soja versus G. max confirmed by Roche Genome Sequencer FLX sequencing showed a 99.99% concordance in single-nucleotide polymorphism and a 98.82% agreement in insertion/deletion calls on Illumina-GA reads. Data presented in this study suggest that the G. soja/G. max complex may be at least 0.27 million y old, appearing before the relatively recent event of domestication (6,000∼9,000 y ago). This suggests that soybean domestication is complicated and that more in-depth study of population genetics is needed. In any case, genome comparison of domesticated and undomesticated forms of soybean can facilitate its improvement.

  12. Max Reinhardt Haus Berliini / Triin Ojari

    Index Scriptorium Estoniae

    Ojari, Triin, 1974-

    1998-01-01

    Arhitekt Peter Eisenmani projekteeritud multifunktsionaalne maja on planeeritud II maailmasõjas hävinud Max Reinhardti teatrihoone kohale. Ühte hoonetahukasse kui uude maamärki on 'volditud' kokku aktiivse linnaelu kõik aspektid.

  13. Approximation by max-product type operators

    CERN Document Server

    Bede, Barnabás; Gal, Sorin G

    2016-01-01

    This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly,...

  14. WiMAX technology and network evolution

    CERN Document Server

    Etemad, Kamran

    2010-01-01

    WiMAX, the Worldwide Interoperability for Microwave Access, represents a paradigm shift in telecommunications technology. It offers the promise of cheaper, smaller, and simpler technology compared to existing broadband options such as DSL, cable, fiber, and 3G wireless.

  15. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites.

    Science.gov (United States)

    Li, Yongchun; Guo, Na; Zhao, Jinming; Zhou, Bin; Xu, Ran; Ding, Hui; Zhao, Weiguo; Gai, Junyi; Xing, Han

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F 2:8:11 lines) and JN(RN)P7 (248 F 2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, Presistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  16. FLECH PowerMax Service Requirement Specification

    OpenAIRE

    2014-01-01

    It is expected that in the future, ancillary services will be required at distribution level. This work describes how one of these ancillary services, the PowerMax service, must be spec ified within a market framework. The basis of this work is the Flexibility Clearing House (FLE CH) platform and the Distribution System Operator (DSO) services defined in [1]. The PowerMax service has been further discussed in [2], and this technical report seeks to clarify the implementation details first dis...

  17. Mining Frequent Max and Closed Sequential Patterns

    OpenAIRE

    Afshar, Ramin

    2002-01-01

    Although frequent sequential pattern mining has an important role in many data mining tasks, however, it often generates a large number of sequential patterns, which reduces its efficiency and effectiveness. For many applications mining all the frequent sequential patterns is not necessary, and mining frequent Max, or Closed sequential patterns will provide the same amount of information. Comparing to frequent sequential pattern mining, frequent Max, or Closed sequential pattern mining g...

  18. Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel

    Directory of Open Access Journals (Sweden)

    Zhijun Che

    2017-10-01

    Full Text Available Soybean mosaic virus (SMV is a member of Potyvirus genus that causes severe yield loss and destroys seed quality in soybean [Glycine max (L. Merr.]. It is important to explore new resistance sources and discover new resistance loci to SMV, which will provide insights to improve breeding strategies for SMV resistance. Here, a genome-wide association study was conducted to accelerate molecular breeding for the improvement of resistance to SMV in soybean. A population of 165 soybean mutants derived from two soybean parents was used in this study. There were 104 SNPs identified significantly associated with resistance to SC7, some of which were located within previous reported quantitative trait loci. Three putative genes on chromosome 1, 9, and 12 were homologous to WRKY72, eEF1Bβ, and RLP9, which were involved in defense response to insect and disease in Arabidopsis. Moreover, the expression levels of these three genes changed in resistance and susceptible soybean accessions after SMV infection. These three putative genes may involve in the resistance to SC7 and be worthy to further research. Collectively, markers significantly associated with resistance to SC7 will be helpful in molecular marker-assisted selection for breeding resistant soybean accessions to SMV, and the candidate genes identified would advance the functional study of resistance to SMV in soybean.

  19. Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel

    Science.gov (United States)

    Che, Zhijun; Liu, Hailun; Yi, Fanglei; Cheng, Hao; Yang, Yuming; Wang, Li; Du, Jingyi; Zhang, Peipei; Wang, Jiao;