WorldWideScience

Sample records for glycine conjugate produced

  1. Improved synthesis of glycine, taurine and sulfate conjugated bile acids as reference compounds and internal standards for ESI-MS/MS urinary profiling of inborn errors of bile acid synthesis.

    Science.gov (United States)

    Donazzolo, Elena; Gucciardi, Antonina; Mazzier, Daniela; Peggion, Cristina; Pirillo, Paola; Naturale, Mauro; Moretto, Alessandro; Giordano, Giuseppe

    2017-04-01

    Bile acid synthesis defects are rare genetic disorders characterized by a failure to produce normal bile acids (BAs), and by an accumulation of unusual and intermediary cholanoids. Measurements of cholanoids in urine samples by mass spectrometry are a gold standard for the diagnosis of these diseases. In this work improved methods for the chemical synthesis of 30 BAs conjugated with glycine, taurine and sulfate were developed. Diethyl phosphorocyanidate (DEPC) and diphenyl phosphoryl azide (DPPA) were used as coupling reagents for glycine and taurine conjugation. Sulfated BAs were obtained by sulfur trioxide-triethylamine complex (SO 3 -TEA) as sulfating agent and thereafter conjugated with glycine and taurine. All products were characterized by NMR, IR spectroscopy and high resolution mass spectrometry (HRMS). The use of these compounds as internal standards allows an improved accuracy of both identification and quantification of urinary bile acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular characterisation of a recombinant bovine glycine N-acyltransferase / Christoffel Petrus Stephanus Badenhorst

    OpenAIRE

    Badenhorst, Christoffel Petrus Stephanus

    2010-01-01

    Conjugation of glycine to organic acids is an important detoxification mechanism. Metabolites of aspirin and industrial solvents, benzoic acid found in plant material and many endogenous metabolites are detoxified by conjugation to glycine. The enzyme responsible for glycine conjugation, glycine N-acyltransferase (GL YAT), is investigated in this study. The enzyme is also important for the management of organic acidemias which are inherited metabolic diseases. However, not all ...

  3. New insights into the catalytic mechanism of human glycine N-acyltransferase.

    Science.gov (United States)

    van der Sluis, Rencia; Ungerer, Vida; Nortje, Carla; A van Dijk, Alberdina; Erasmus, Elardus

    2017-11-01

    Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi-substrate kinetic parameters of a recombinant human glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC-ESI-MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi-Bi and/or ping-pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl-CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis-Menten reaction mechanism. © 2017 Wiley Periodicals, Inc.

  4. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION.

    Science.gov (United States)

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  5. Synthesis of selectively 13C-labelled benzoic acid for nuclear magnetic resonance spectroscopic measurement of glycine conjugation activity

    International Nuclear Information System (INIS)

    Akira, Kazuki; Hasegawa, Hiroshi; Baba, Shigeo

    1995-01-01

    The synthesis of [4- 13 C]benzoic acid (BA) labelled in a single protonated carbon, for use as a probe to measure glycine conjugation activity by nuclear magnetic resonance (NMR) spectroscopy, has been reported. The labelled compound was prepared by a seven-step synthetic scheme on a relatively small scale using [2- 13 C] acetone as the source of label in overall yield of 16%. The usefulness of [4- 13 C]BA was demonstrated by the NMR spectroscopic monitoring of urinary excretion of [4- 13 C]hippuric acid in the rat administered with the labelled BA. (Author)

  6. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    OpenAIRE

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:...

  7. First-principles study of the formation of glycine-producing radicals from common interstellar species

    Science.gov (United States)

    Sato, Akimasa; Kitazawa, Yuya; Ochi, Toshiro; Shoji, Mitsuo; Komatsu, Yu; Kayanuma, Megumi; Aikawa, Yuri; Umemura, Masayuki; Shigeta, Yasuteru

    2018-03-01

    Glycine, the simplest amino acid, has been intensively searched for in molecular clouds, and the comprehensive clarification of the formation path of interstellar glycine is now imperative. Among all the possible glycine formation pathways, we focused on the radical pathways revealed by Garrod (2013). In the present study, we have precisely investigated all the chemical reaction steps related to the glycine formation processes based on state-of-the-art density functional theory (DFT) calculations. We found that two reaction pathways require small activation barriers (ΔE‡ ≤ 7.75 kJ mol-1), which demonstrates the possibility of glycine formation even at low temperatures in interstellar space if the radical species are generated. The origin of carbon and nitrogen in the glycine backbone and their combination patterns are further discussed in relation to the formation mechanisms. According to the clarification of the atomic correspondence between glycine and its potential parental molecules, it is shown that the nitrogen and two carbons in the glycine can originate in three common interstellar molecules, methanol, hydrogen cyanide, and ammonia, and that the source molecules of glycine can be described by any of their combinations. The glycine formation processes can be categorized into six patterns. Finally, we discussed two other glycine formation pathways expected from the present DFT calculation results.

  8. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  9. Antibody conjugated glycine doped polyaniline nanofilms as efficient biosensor for atrazine

    Science.gov (United States)

    Bhardwaj, Sanjeev K.; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2017-12-01

    Atrazine is an important member of triazine family of pesticides. The development of its detection methods gained great attention due to the potential health risks associated with its contamination in various media including water, soil, and food. The contamination of atrazine in drinking water beyond the legal permissible limit of EPA (e.g. 3 ng ml-1) may cause various damages to living organisms (e.g. heart, urinary, and limb defects). In this research, we discuss the potential significance of a highly sensitive conductometric immunosensor for sensing the atrazine pesticide. To this end, electrochemical assembly of glycine doped polyaniline (PAni) nanofilms on silicon (Si) substrate was built and modified further with anti-atrazine antibodies. The herein developed immunosensor offered highly sensitive detection of atrazine with a low detection limit of 0.07 ng ml-1. The proposed biosensor was simple in design with excellent performance in terms of its sensitivity, stability and specificity. Highlights •Glycine doped PAni nanofilms have been electropolymerized on Silicon substrates. •Functionality of the above thin films provides opportunity to develop an immunosensing platform. •Highly sensitive and specific detection of atrazine has been realized over a wide concentration range with a LOD of 0.07 ng ml-1. Novelty statement Atrazine is a widely used pesticide in the agriculture sector. It is highly recommended to develop simple biosensing systems for enabling the prospect of routine monitoring. The present research for the first time proposes the design of a glycine doped PAni based simple and highly effective biosensor for the atrazine pesticide. The doping of glycine has easily generated functional groups on the nano-PAni material for further convenient immobilization of anti-atrazine antibodies. The proposed sensor can be highlighted with advantages like ease of fabrication, use of environment friendly functionalization agent, specificity, wide

  10. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis

    International Nuclear Information System (INIS)

    Castric, P.A.

    1977-01-01

    Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [ 14 C]threonine to [ 14 C]glycine. H14CN is produced with low dilution of label from either [1- 14 C]glycine or [2- 14 C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2- 14 C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed

  11. Emulsifying properties of maillard conjugates produced from sodium caseinate and locust bean gum

    Directory of Open Access Journals (Sweden)

    F. A. Perrechil

    2014-06-01

    Full Text Available Emulsifying properties of sodium caseinate -locust bean gum Maillard conjugates produced at different temperatures (54 - 96 ºC, protein/polysaccharide ratios (0.3 - 1.0 and reaction times (1 - 24 hours were evaluated. Conjugate formation was confirmed by formation of color and high molecular weight fractions and the decrease of the αs- and β-casein bands. The emulsions stabilized by Maillard conjugates showed good stability. The mean droplet diameter (d32 tended to decrease with the increase of incubation time and temperature, except at extreme conditions (24 hours and 90 ºC or 96 ºC when the partial degradation of the conjugates was probably favored, resulting in phase separation of emulsions. The emulsion viscosity decreased with the increase in the protein/polysaccharide ratio and with the degradation of the conjugates. The conditions used in the experimental design made the optimization of the conjugate production viable, which showed greater emulsifier properties than the pure protein under acid conditions.

  12. Glycine serine interconversion in the rooster

    International Nuclear Information System (INIS)

    Sugahara, Michihiro; Kandatsu, Makoto

    1976-01-01

    Serine was isolated by the column chromatography from the hydrolyzates of proteins of the serum, the liver and the pectoral muscle which were obtained from the roosters fed a diet containing 2- 14 C glycine for 16 - 17 days. The carbon chain of serine was cut off by treating with sodium periodate. The specific activity of each carbon (as barium carbonate) was estimated. Carboxyl carbon had little radioactivity. The specific activity of hydroxymethyl carbon was 10 - 19% of that of methylene carbon. Glycine isolated from the same hydrolyzates was degraded by ninhydrin oxidation. Formaldehyde produced from 2-C was oxidized to carbon dioxide by treating with mercuric chloride. Carboxyl carbon had little radioactivity. The specific activities of 2-C of glycine and 2-C of serine in the same tissue protein were compared. The ratio of serine 2-C/glycine 2-C was between 0.7 - 1.5. These results seem to indicate that glycine directly converts to serine in the rooster. The quantitative significance of the pathways of glycine (serine) biosynthesis is discussed. (auth.)

  13. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  14. Novel type of ornithine-glutathione double conjugate excreted as a major metabolite into the bile of rats administered clebopride

    International Nuclear Information System (INIS)

    Ishizuka, T.; Komiya, I.; Hiratsuka, A.; Watabe, T.

    1990-01-01

    Rats orally given radioactive Clebopride [[14C]CP; N-(1'-benzyl-4'-piperidyl)-2-[14C]methoxy-4-amino-5-chlorobenzamide++ +], an antiulcer agent, excreted a novel type of ornithine (Orn)-GSH double conjugate in the bile as a major metabolite [(14C]BMCP), corresponding to 18% of the dose. The present study provides the first evidence for Orn conjugation of a xenobiotic in mammals and demonstrates that the structure of the radioactive conjugate differs fundamentally from those known in birds and reptiles. The structure of the biliary metabolite, [14C]BMCP, purified to homogeneity by silica gel thin layer and reverse phase high pressure liquid chromatography, was elucidated as S-[2-ornithylamino-4-[14C]methoxy-5-(1'-methyl-4'-piperidylamin o) carboxyphenyl]glutathione, based mainly on the following facts: (1) BMCP showed a protonated molecular ion (M + H)+ peak at m/z 683 in the secondary ion mass spectrum and (2) [14C]BMCP afforded Orn, glutamic acid, glycine, S-(2-amino-4-[14C]methoxy-5-carboxyphenyl)cysteine [( 14C]AMCC), and 1-methyl-4-aminopiperidine (MAP) quantitatively, in an equal molar ratio, by complete hydrolysis with peptidase. Thus, BMCP was a metabolite with three enzymatically hydrolyzable amide bonds in addition to the one existing originally in the parent structure of the drug, which produces MAP by peptic digestion. Of the three additional amide bonds of BMCP, one was a novel type of bond formed by condensation of the alpha-carboxylic acid group of Orn with the primary aromatic amino group of the drug and the other two were in the S-glutathionyl residue, substituted for the chlorine atom vicinal to the Orn-conjugating primary amino group in the aromatic ring and affording glutamic acid, glycine, and the S-cysteine conjugate AMCC by hydrolysis of BMCP with the peptidase

  15. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  16. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  17. Amide-conjugated indole-3-acetic acid and adventitious root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.

    1986-01-01

    The purpose of this research was to investigate further the relationship between amide-conjugated auxin and adventitious root formation. Indoleacetylaspartic acid (IAA-aspartate) was positively identified as the predominant conjugate isolated from mung bean cuttings after the cuttings has been treated with 10 -3 M IAA. In cuttings treated with [1- 14 C]IAA immediately after excision (0 hr), the percent of extractable 14 C in IAA-aspartate in the hypocotyl sharply increased until 36 hr, then steadily declined. [ 14 C]IAA was completely metabolized between 12 and 24 hr. The rooting activities of IAA-L-aspartate, IAA-L-alanine, and IAA-glycine were determined at various stages of root formation; some cuttings were pretreated with 10 -3 M IAA at 0 hr. Pretreated cuttings that were treated with IAA-glycine at 12, 24, 36 hr exhibited the greatest consistency between replications, the greatest number of long roots, and the longest roots. The conjugates did not stimulate rooting as effectively as IAA, yet like IAA, generally enhanced rooting the greatest when applied before the first cell division (24 hr)

  18. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep.

    Science.gov (United States)

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi

    2006-03-01

    Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.

  19. The light activated alkylation of glycine

    International Nuclear Information System (INIS)

    Knowles, H.S.

    2001-04-01

    The work contained in this thesis focuses on the light-initiated alkylation of the α-centre of glycine compounds. The elaboration of the glycines in this manner represents a versatile, clean and cost effective alternative to ionic routes to higher α-amino acids. Preliminary investigations demonstrated that a range of nitrogen protecting groups were compatible with the radical alkylation. A variety of solvents could also be used although solvents with easily removable hydrogen atoms were found to interfere with the alkylation. Furthermore, a number of photo-initiators were investigated and the use of di-tert-butyl peroxide was found to afford the desired phenylalanine products in up to 27% yield (54% based on recovered starting material) when toluene was used as the alkylating agent. A range of different precursor concentrations was investigated and it was found that the optimum concentration of the glycine precursor was 0.13 mol dm -3 ; the phenylalanine yields were reduced when the concentration was less than this value. Owing to the poor UV absorption by di-tert-butyl peroxide, benzophenone (an effective photosensitiser) was added to the reaction mixture and this was shown to increase the alkylation yields. The ratio of reagents which produced the highest yield of phenylalanine products was found to be 1 : 5 : 5 : 10 for glycine : di-tert-butyl peroxide : benzophenone : toluene. This produced the phenylalanine product in up to 37% yield (57% based on recovered starting material). A number of substituents. (e.g. F, Cl etc.) could be attached to the aromatic ring of the toluene alkylating agent, affording substituted phenylalanines in 5 - 36% under these conditions. The formation of chiral phenylalanine products was probed by reacting glycine precursors bearing chiral auxiliaries. However, low diastereoselectivities were observed; the d.r. ranged from 1 : 1.1 to 1 : 1.5 only when chiral ester and amide protecting groups were used. In the final chapter, the

  20. Reduction of Burn Progression with Topical Delivery of (Antitumor Necrosis Factor-alpha )-Hyaluronic Acid Conjugates

    Science.gov (United States)

    2012-01-01

    antibody conjugation to HA The conjugation chemistry followed a method previously developed in our laboratory. Briefly, HA (12 mg) was modi - fied...Webster MW, McGill JB, Schwartz SL. Promotion and acceleration of diabetic ulcer healing by arginine-glycine-aspartic acid (RGD) peptide matrix. RGD...Study Group. Diabetes Care 1995; 18: 39–46. 32. Ho-Asjoe M, Chronnell CM, Frame JD, Leigh IM, Carver N. Immunohistochemical analysis of burn depth. J

  1. Optical observations geomagnetically conjugate to sprite-producing lightning discharges

    Directory of Open Access Journals (Sweden)

    R. A. Marshall

    2005-09-01

    Full Text Available Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP was deployed at the South African Astronomical Observatory (SAAO, near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam. Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques

  2. Novel type of ornithine-glutathione double conjugate excreted as a major metabolite into the bile of rats administered clebopride.

    Science.gov (United States)

    Ishizuka, T; Komiya, I; Hiratsuka, A; Watabe, T

    1990-06-01

    Rats orally given radioactive Clebopride [[14C]CP; N-(1'-benzyl-4'-piperidyl)-2-[14C]methoxy-4-amino-5-chlorobenzamide++ +], an antiulcer agent, excreted a novel type of ornithine (Orn)-GSH double conjugate in the bile as a major metabolite [( 14C]BMCP), corresponding to 18% of the dose. The present study provides the first evidence for Orn conjugation of a xenobiotic in mammals and demonstrates that the structure of the radioactive conjugate differs fundamentally from those known in birds and reptiles. The structure of the biliary metabolite, [14C]BMCP, purified to homogeneity by silica gel thin layer and reverse phase high pressure liquid chromatography, was elucidated as S-[2-ornithylamino-4-[14C]methoxy-5-(1'-methyl-4'-piperidylamin o) carboxyphenyl]glutathione, based mainly on the following facts: 1) BMCP showed a protonated molecular ion (M + H)+ peak at m/z 683 in the secondary ion mass spectrum and 2) [14C]BMCP afforded Orn, glutamic acid, glycine, S-(2-amino-4-[14C]methoxy-5-carboxyphenyl)cysteine [( 14C]AMCC), and 1-methyl-4-aminopiperidine (MAP) quantitatively, in an equal molar ratio, by complete hydrolysis with peptidase. Thus, BMCP was a metabolite with three enzymatically hydrolyzable amide bonds in addition to the one existing originally in the parent structure of the drug, which produces MAP by peptic digestion. Of the three additional amide bonds of BMCP, one was a novel type of bond formed by condensation of the alpha-carboxylic acid group of Orn with the primary aromatic amino group of the drug and the other two were in the S-glutathionyl residue, substituted for the chlorine atom vicinal to the Orn-conjugating primary amino group in the aromatic ring and affording glutamic acid, glycine, and the S-cysteine conjugate AMCC by hydrolysis of BMCP with the peptidase. Substitution of a methyl group for the benzyl group at the piperidine ring nitrogen atom, leading to the formation of MAP by peptic digestion, also occurred during metabolism of CP to

  3. Optical observations geomagnetically conjugate to sprite-producing lightning discharges

    Directory of Open Access Journals (Sweden)

    R. A. Marshall

    2005-09-01

    Full Text Available Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP was deployed at the South African Astronomical Observatory (SAAO, near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam.

    Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques

  4. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  5. Synthesis and distribution of N-benzyloxycarbonyl-[14C]-glycine, a lipophilic derivative of glycine

    International Nuclear Information System (INIS)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H.

    1995-01-01

    N-benzyloxycarbonyl[ 14 C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U- 14 C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author)

  6. Nitrogen functionality of glucose-glycine condensate; Glucose to glycine tono shukugo hanno (shukugobutsuchu no chisso kagobutsu no keitai bunseki)

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, C.; Yoshioka, T.; Komano, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology; Sugimoto, Y.; : Miki, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1996-10-28

    In order to clarify a humification process in the early stage of coalification, the nitrogen functionality of prepared glucose-glycine condensate was studied experimentally. In experiment, the condensate was prepared by heating the mixture of glucose, glycine and water in a autoclave at 130{degree}C for 50 hours, and furthermore heating the produced solid material in water at 300{degree}C. After the condensate was hydrocracked, the fraction, condensate and hydrocracking residue were analyzed by elementary analyzer, {sup 13}C-NMR, XPS, FT-IR, capillary GC-FID/NPD and GC-MS. As a result, the glucose-glycine condensate could be arranged on the basis of three types of nitrogen such as pyridine, pyrrole and quaternary amine type. Pyridine type nitrogen increased, while quaternary amine type one decreased with an increase in heating treatment temperature. Rich pyrrole type nitrogen and poor pyridine type one were found in light nitrogen compounds in hydrocracked products. 2 refs., 4 figs., 2 tabs.

  7. Synthesis and distribution of N-benzyloxycarbonyl-[{sup 14}C]-glycine, a lipophilic derivative of glycine

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H. [Universite Catholique de Louvain, Brussels (Belgium). Dept. des Sciences Pharmaceutiques

    1995-12-31

    N-benzyloxycarbonyl[{sup 14}C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U-{sup 14}C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author).

  8. Ciprofibrate, clofibric acid and respective glycinate derivatives. Effects of a four-week treatment on male lean and obese Zucker rats.

    Science.gov (United States)

    Lupp, Amelie; Karge, Elke; Deufel, Thomas; Oelschlägers, Herbert; Fleck, Christian

    2008-01-01

    Fibrates are widely prescribed in hyperlpidemic patients to prevent atherosclerosis. Their therapeutic use, however, can be associated with adverse effects like gastrointestinal disorders, myalgia, myositis and hepatotoxicity. In rodents large doses can even cause hepatocellular carcinoma. Additionally, interactions with the biotransformation of other compounds at the cytochrome P450 (CYP) system have been observed. Thus, the discovery of new substances or derivatives with less side effects is of great interest. In the present study the influence of a four-week daily oral administration of 2 mg/kg body weight ciprofibrate (CAS 52214-84-3) or of 100 mg/kg body weight clofibric acid (CAS 882-09-7) was compared to that of the respective doses of their newly synthesized glycine conjugates in adult male lean and obese Zucker rats. Although obese rats displayed distinctly higher serum lipid concentrations, after fibrate treatment values were significantly lowered in lean animals only. Livers of obese rats were significantly enlarged, histologically showing a fine-droplet like fatty degeneration and an increase in glycogen content, but no signs of inflammation. After fibrate administration histologically a hypertrophy, an eosinophilia, a reduced glycogen content and also hepatocyteapoptosis were observed. Livers of obese rats displayed higher CYP1A1 andCYP2E1 expression, but lower immunostaining for CYP2B1 and CYP3A2. No differences between the two groups of rats were seen with respect to CYP4A1 expression. Due to fibrate treatment especially CYP2E1 and CYP4A1, but also CYP1A1, 2B1 and 3A2 were induced. Resulting CYP mediated monooxygenase activities were also elevated in most cases. In general, effects of clofibric acid and clofibric acid glycinate (CAS 4896-55-3) were less distinct than those of ciprofibrate and its glycinate (CAS 640772-36-7). With no parameterinvestigated major differences were seen between the parent fibrates and their glycine conjugates. Thus, the

  9. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  10. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  11. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.

    Science.gov (United States)

    Song, Hun-Suk; Jeon, Jong-Min; Choi, Yong Keun; Kim, Jun-Young; Kim, Wooseong; Yoon, Jeong-Jun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2017-12-28

    Lignocellulose is now a promising raw material for biofuel production. However, the lignin complex and crystalline cellulose require pretreatment steps for breakdown of the crystalline structure of cellulose for the generation of fermentable sugars. Moreover, several fermentation inhibitors are generated with sugar compounds, majorly furfural. The mitigation of these inhibitors is required for the further fermentation steps to proceed. Amino acids were investigated on furfural-induced growth inhibition in E. coli producing isobutanol. Glycine and serine were the most effective compounds against furfural. In minimal media, glycine conferred tolerance against furfural. From the IC₅₀ value for inhibitors in the production media, only glycine could alleviate growth arrest for furfural, where 6 mM glycine addition led to a slight increase in growth rate and isobutanol production from 2.6 to 2.8 g/l under furfural stress. Overexpression of glycine pathway genes did not lead to alleviation. However, addition of glycine to engineered strains blocked the growth arrest and increased the isobutanol production about 2.3-fold.

  12. Polyglycerol-opioid conjugate produces analgesia devoid of side effects.

    Science.gov (United States)

    González-Rodríguez, Sara; Quadir, Mohiuddin A; Gupta, Shilpi; Walker, Karolina A; Zhang, Xuejiao; Spahn, Viola; Labuz, Dominika; Rodriguez-Gaztelumendi, Antonio; Schmelz, Martin; Joseph, Jan; Parr, Maria K; Machelska, Halina; Haag, Rainer; Stein, Christoph

    2017-07-04

    Novel painkillers are urgently needed. The activation of opioid receptors in peripheral inflamed tissue can reduce pain without central adverse effects such as sedation, apnoea, or addiction. Here, we use an unprecedented strategy and report the synthesis and analgesic efficacy of the standard opioid morphine covalently attached to hyperbranched polyglycerol (PG-M) by a cleavable linker. With its high-molecular weight and hydrophilicity, this conjugate is designed to selectively release morphine in injured tissue and to prevent blood-brain barrier permeation. In contrast to conventional morphine, intravenous PG-M exclusively activated peripheral opioid receptors to produce analgesia in inflamed rat paws without major side effects such as sedation or constipation. Concentrations of morphine in the brain, blood, paw tissue, and in vitro confirmed the selective release of morphine in the inflamed milieu. Thus, PG-M may serve as prototype of a peripherally restricted opioid formulation designed to forego central and intestinal side effects.

  13. Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats

    International Nuclear Information System (INIS)

    Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente; Blakeney, Ernest W.; Kanz, Mary F.; Dugas, Tammy R.

    2008-01-01

    4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objective was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [ 14 C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [ 14 C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity may be decreased

  14. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  16. Isolation, Characterization, and Distribution of a Biocontrol Fungus from Cysts of Heterodera glycines.

    Science.gov (United States)

    Kim, D G; Riggs, R D; Correll, J C

    1998-05-01

    ABSTRACT Seventy-six populations of Heterodera glycines were collected from 33 counties in 10 states of the United States along the Mississippi and Missouri Rivers in 1992 and 1993. A sterile hyphomycete fungus of an unnamed taxon, designated ARF18 and shown to be a parasite of eggs of H. glycines, was isolated from eggs and cysts of 10 of the populations from Kentucky, Louisiana, Mississippi, and Tennessee. Ten isolates of ARF18 obtained in this study and seven isolates obtained in earlier studies were characterized for cultural morphology on several growth media, the ability to produce sclerotium-like structures (SLS) on cornmeal agar, growth rates, pathogenicity to eggs of H. glycines in vitro, and mitochondrial (mt) DNA restriction fragment length polymorphisms (RFLPs). All 17 isolates of ARF18 readily grew on potato dextrose agar, cornmeal agar, and nutrient agar. Based on colony morphology and SLS appearance on cornmeal agar, the isolates could be grouped into two morphological phenotypes. Isolates that produced SLS that were composed of a compact mass of hyphae were designated ARF18-C, whereas isolates that produced SLS composed of a mass of loosely clumped hyphae were designated ARF18-L. Only minor differences in growth rates were detected among the ARF18-C and ARF18-L isolates. All 10 ARF18-C isolates, which were from Arkansas, Louisiana, Mississippi, and Tennessee, belonged to a single mtDNA RFLP haplotype. The seven ARF18-L isolates shared many comigrating mtDNA restriction fragments with one another, but belonged to three distinct mtDNA RFLP haplotypes. Ability to infect eggs of H. glycines in vitro varied considerably among the various isolates of ARF18. In particular, several of the ARF18-C isolates were consistently able to infect over 50% (mean = 70.0%, standard deviation = 16%) of the eggs of H. glycines, whereas ARF18-L infected eggs to a lesser degree (mean = 25%, standard deviation = 27%). ARF18-C was isolated only from H. glycines populations

  17. 76 FR 8771 - Glycine From China

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... order on glycine from China. SUMMARY: The Commission hereby gives notice that it will proceed with a... determine whether revocation of the antidumping duty order on glycine from China would be likely to lead to...

  18. 76 FR 55109 - Glycine From China

    Science.gov (United States)

    2011-09-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... U.S.C. 1675(c)), that revocation of the antidumping duty order on glycine from China would be likely... contained in USITC Publication 4255 (August 2011), entitled Glycine from China: Investigation No. 731-TA-718...

  19. Utilization of [1-14C]carbon of glycine of high glycine diet fed young and old rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Medovar, B.Ya.; Pisarczuk, K.L.; Grigorov, Yu.G.

    1987-01-01

    The incorporation of radioactivity from [1- 14 C]glycine was studied in various organ (serum, liver, muscle) fractions (acid soluble, proteins, lipids, liver glycogen) and carbon dioxide in rats fed with isonitrogenous isocaloric purfied diets. The diets contained 30% casein (control), gelatin (exchange of half of the 30% casein) or glycine (corresponding level of glycine in relation to the gelatin diet). The incorporation of radioactivity into proteins was reduced by feeding high glycine diets in young (20-weeks-old) and old (18-month-old) rats in relation to the control diet. The modifications of the results for old animals may be partially explained on the base of a reduced protein turnover rate and adaptation to a high gelatin (glycine) diet. (author)

  20. NGR-peptide-drug conjugates with dual targeting properties.

    Directory of Open Access Journals (Sweden)

    Kata Nóra Enyedi

    Full Text Available Peptides containing the asparagine-glycine-arginine (NGR motif are recognized by CD13/aminopeptidase N (APN receptor isoforms that are selectively overexpressed in tumor neovasculature. Spontaneous decomposition of NGR peptides can result in isoAsp derivatives, which are recognized by RGD-binding integrins that are essential for tumor metastasis. Peptides binding to CD13 and RGD-binding integrins provide tumor-homing, which can be exploited for dual targeted delivery of anticancer drugs. We synthesized small cyclic NGR peptide-daunomycin conjugates using NGR peptides of varying stability (c[KNGRE]-NH2, Ac-c[CNGRC]-NH2 and the thioether bond containing c[CH2-CO-NGRC]-NH2, c[CH2-CO-KNGRC]-NH2. The cytotoxic effect of the novel cyclic NGR peptide-Dau conjugates were examined in vitro on CD13 positive HT-1080 (human fibrosarcoma and CD13 negative HT-29 (human colon adenocarcinoma cell lines. Our results confirm the influence of structure on the antitumor activity and dual acting properties of the conjugates. Attachment of the drug through an enzyme-labile spacer to the C-terminus of cyclic NGR peptide resulted in higher antitumor activity on both CD13 positive and negative cells as compared to the branching versions.

  1. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Dibas, Mohammed I; Lester, Henry A

    2007-01-01

    change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine...... and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus...

  2. Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion

    Science.gov (United States)

    2016-06-13

    Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion Ashley L. Ruth, Paula C. Latorre, and...sites as well as the formation of Mn3+ ions via the Jahn- Teller effect. The use of the glycine nitrate combustion synthesis produces small particles at...advantage of submicron ceramic synthesis, namely the glycine nitrate combustion process (GNP), we propose the capability for in-situ B-site doping

  3. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    Half of the known peptide hormones are C-terminally amidated. Subsequent biogenesis studies have shown that the immediate precursor is a glycine-extended peptide. The clinical interest in glycine-extended hormones began in 1994, when it was suggested that glycine-extended gastrin stimulated cancer...... and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  4. Effect of linkers on the αvβ3 integrin targeting efficiency of cyclic RGD-conjugates

    Science.gov (United States)

    Karmakar, Partha; Grabowska, Dorota; Sudlow, Gail; Ziabrev, Kostiantyn; Sanyal, Nibedita; Achilefu, Samuel

    2018-02-01

    Cyclic arginine-glycine-aspartic acid (cRGD) peptides are well known to target ανβ3 integrin expressed on cancer cells and neovasculature. Conjugation of these peptides with dyes, drugs, antibodies and other biomolecules through covalent linkers provides a facile way to deliver these products to tumor cells for targeted cancer therapy and diagnosis. Click chemistry and acid-amine couplings are widely used conjugation strategies. However, the effects of different linkers and the distance between the cRGD and the conjugates on the binding of cRGD ligand with ανβ3 has been underexplored. In this present study, we prepared cRGD-conjugates using different linkers and determined how they altered the tumor targeting efficiency in vitro and in vivo. The results demonstrate that different linkers significantly altered the pharmacokinetics of the cRGD conjugates and the tumor uptake kinetics. Unlike large antibodies, this preliminary finding shows that linkers used to attach drugs and fluorescent molecular probes to small peptides play a major role in the accuracy of tumor targeting and treatment outcomes. As a result, considerable attention should be paid to the nature of linkers used in the design of molecular probes and targeted therapeutics.

  5. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    Science.gov (United States)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  6. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dextrose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Dextrose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b) Sponsor...

  7. Functional reconstitution of the glycine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr. (Universidad Autonoma de Madrid (Spain))

    1989-07-25

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of ({sup 3}H)strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.

  8. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    With the advent of the use of precise ion accelerators for medical purposes, it becomes ever more important to understand the interaction of biomolecules with fast ions.  Glycine is both a protein component and a model biomolecule, and is thus an important test system.    In this report, we discu...

  9. 15N-labelled glycine synthesis

    International Nuclear Information System (INIS)

    Tavares, Claudineia R.O.; Bendassolli, Jose A.; Sant'Ana Filho, Carlos R.; Prestes, Clelber V.; Coelho, Fernando

    2006-01-01

    This work describes a method for 15 N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of α-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia ( 15 NH 3 ). Special care was taken to avoid possible 15 NH 3 losses, since its production cost is high. In that respect, although the purchase cost of the 13 N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an important tool for N cycling studies in living organisms, also minimizing labor and environmental hazards, as well as time limitation problems in field studies. The tests were carried out with three replications, and variable 15 NH 3(aq) volumes in the reaction were used (50, 100, and 150 mL), in order to calibrate the best operational condition; glycine masses obtained were 1.7, 2, and 3.2 g, respectively. With the development of a system for 15 NH 3 recovery, it was possible to recover 71, 83, and 87% of the ammonia initially used in the synthesis. With the required adaptations, the same system was used to recover methanol, and 75% of the methanol initially used in the amino acid purification process were recovered. (author)

  10. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  11. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  12. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    Energy Technology Data Exchange (ETDEWEB)

    Cura D’Ars de Figueiredo, João, E-mail: joaoc@ufmg.br; Asevedo, Samara Santos, E-mail: samaranix@hotmail.com; Barbosa, João Henrique Ribeiro, E-mail: joaohrb@yahoo.com.br

    2014-10-30

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  13. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    International Nuclear Information System (INIS)

    Cura D’Ars de Figueiredo, João; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-01-01

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  14. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  15. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose i and ii cotton nanocrystalline preparations

    Science.gov (United States)

    Lysozyme was attached through an amide linkage between some of the protein’s aspartate and glutamate residues to amino-glycine-cellulose (AGC), which was prepared by esterification of glycine to preparations of cotton nanocrystals (CNC). The nanocrystalline preparations were produced through acid h...

  16. Sensitization of glycine (spectrophotometric read-out) dosimetric system using sorbitol

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2009-01-01

    Glycine spectrophotometric read-out systems have a useful dose range of 15-4000 Gy. An attempt was made to sensitize it using sorbitol as a sensitizer. Optimum compositions of aqueous acidic solutions of ferrous ammonium sulphate-xylenol orange (XO), i.e. FX and sorbitol-ferrous ammonium sulphate-xylenol orange, i.e. SFX, for 400 mg of glycine, which gives maximum dosimetric response for any given dose, were established. Molar absorption coefficient values of ferric-XO-glycine complex, i.e. ε-values, were determined for glycine system in FX and SFX. These values were found to be 8410 and 15,000 m 2 mol -1 respectively, indicating that an enhancement or sensitivity factor of about 1.78 can be achieved by sorbitol for glycine in SFX. This factor was further confirmed by measuring the gamma dose response of glycine in FX and in SFX for four different doses, viz. 37.8, 75.5, 151 and 302 Gy. It was observed that dose response of glycine in SFX is about 77% more than that of glycine in FX. The maximum variation observed in response of glycine in FX or SFX was found to be within ±1.5%.

  17. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  18. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  19. Peptide-Conjugated Quantum Dots Act as the Target Marker for Human Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Shuang-ling Li

    2016-03-01

    Full Text Available Background/Aims: In the present study, we describe a novel and straightforward approach to produce a cyclic- arginine-glycine-aspartic (RGD-peptide-conjugated quantum dot (QD probe as an ideal target tumor biomarker. Due to its specific structure, the probe can be used for targeted imaging of pancreatic carcinoma cells. Methods: Pancreatic carcinoma cells were routinely cultured and marked with QD-RGD probe. The QD-RGD probe on the fluorescence-labeled cancer cell was observed by fluorescence microscopy and laser confocal microscopy. Cancer cell viability was detected by MTT assay after culturing with QD-RGD probe. Results: Fluorescence microscopy and laser confocal microscopy displayed that 10nmol/L QD-RGD probe was able to effectively mark pancreatic carcinoma cells. In comparison with organic dyes and fluorescent proteins, the quantum dot-RGD probe had unique optical and electronic properties. Conclusion: QD-RGD probe has a low cytotoxicity with an excellent optical property and biocompatibility. These findings support further evaluation of QD-RGD probes for the early detection of pancreatic cancer.

  20. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  1. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Ji, Y; Hebbring, S; Zhu, H; Jenkins, G D; Biernacka, J; Snyder, K; Drews, M; Fiehn, O; Zeng, Z; Schaid, D; Mrazek, D A; Kaddurah-Daouk, R; Weinshilboum, R M

    2011-01-01

    Major depressive disorder (MDD) is a common psychiatric disease. Selective serotonin reuptake inhibitors (SSRIs) are an important class of drugs used in the treatment of MDD. However, many patients do not respond adequately to SSRI therapy. We used a pharmacometabolomics-informed pharmacogenomic research strategy to identify citalopram/escitalopram treatment outcome biomarkers. Metabolomic assay of plasma samples from 20 escitalopram remitters and 20 nonremitters showed that glycine was negatively associated with treatment outcome (P = 0.0054). This observation was pursued by genotyping tag single-nucleotide polymorphisms (SNPs) for genes encoding glycine synthesis and degradation enzymes, using 529 DNA samples from SSRI-treated MDD patients. The rs10975641 SNP in the glycine dehydrogenase (GLDC) gene was associated with treatment outcome phenotypes. Genotyping for rs10975641 was carried out in 1,245 MDD patients in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and its presence was significant (P = 0.02) in DNA taken from these patients. These results highlight a possible role for glycine in SSRI response and illustrate the use of pharmacometabolomics to "inform" pharmacogenomics.

  2. An improved synthesis of α-13C glycine and heteronuclear NMR studies of its incorporation into thioredoxin

    International Nuclear Information System (INIS)

    Wishart, D.S.; Sykes, B.D.; Richards, F.M.

    1992-01-01

    We present an improved method to easily prepare gram quantities of α- 13 C glycine beginning from K 13 CN. The four step synthesis involves the production of an N, N-diphenyl-cyanoformamidine intermediate through the coupling of cyanide to N, N-diphenylcarbodiimide. Subsequent reduction by LiAlH 4 and hydrolysis of the resulting amidine produces fully enriched α- 13 C labelled glycine with a 45-50% yield. This relatively fast and simple synthesis uses only commonly available compounds and requires no special equipment, making the process easy to perform in any well equipped biochemistry laboratory. We further demonstrate that the product may be used, without extensive purification, to specifically label bacterially expressed proteins (E. coli thioredoxin) through standard biosynthetic procedures. We also show that the 13 C glycine-labelled protein may be readily analyzed using commonly available heteronuclear NMR techniques. Complete assignments for all 9 glycines of native E. coli thoredoxin are presented. (Author)

  3. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, Hai-Ying; van Vliet, Erwin A.; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K.; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the

  4. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, H-Y; van Vliet, E.A.; Bright, K-A.; Hanthorn, M.; Lytle, N.K.; Gorter, J.; Aronica, E.; Boison, D.

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-d-aspartate receptor (NMDAR). In hippocampus, the

  5. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice.

    Science.gov (United States)

    Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine; Laukens, Debby

    2017-04-01

    The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila , bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we

  6. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  7. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    Ligand binding to Cys-loop receptors produces either global conformational changes that lead to activation or local conformational changes that do not. We found that the fluorescence of a fluorophore tethered to R271C in the extracellular M2 region of the alpha1 glycine receptor increases during ...

  8. In vivo NMR analysis of incorporation of [2-13C] glycine into silk fibroin

    International Nuclear Information System (INIS)

    Asakura, Tetsuo; Nagashima, Mariko; Demura, Makoto; Osanai, Minoru.

    1990-01-01

    The biosynthetic mechanism of silk fibroin in silkworms, Bombyx mori, is unique because this fibrous protein composed mainly of glycine, alanine and serine is produced very rapidly in large quantity in the posterior silk glands. It is very meaningful to investigate into the biosynthesis of silk protein under nondestructive condition by in vivo NMR and C-13 labeling techniques. The sugar metabolism related to the production of silk fibroin was analyzed by monitoring the change in the C-13 labeled peaks in the NMR spectra for silkworms. In this paper, the monitoring of the 2-(C-13) glycine metabolism in Bombyx mori by the C-13 NMR in vivo is reported. In particular, the in vivo transport of glycine from the midgut to the posterior silk gland was measured, and the rate constants were determined with the course of the peak intensity in the C-13 NMR spectra. It is possible to discuss quantitatively the in vivo production of silk fibroin with these rate constants. The experiment and the results are reported. The in vivo C-13 NMR spectra of a 5 day old, 5th instar larva of Bombyx mori after the oral administration of 2-(C-13) glycine are shown. The significant increase of the peak intensity occurred. (K.I.)

  9. Single Channel Analysis of Isoflurane and Ethanol Enhancement of Taurine-Activated Glycine Receptors.

    Science.gov (United States)

    Kirson, Dean; Todorovic, Jelena; Mihic, S John

    2018-01-01

    The amino acid taurine is an endogenous ligand acting on glycine receptors (GlyRs), which is released by astrocytes in many brain regions, such as the nucleus accumbens and prefrontal cortex. Taurine is a partial agonist with an efficacy significantly lower than that of glycine. Allosteric modulators such as ethanol and isoflurane produce leftward shifts of glycine concentration-response curves but have no effects at saturating glycine concentrations. In contrast, in whole-cell electrophysiology studies these modulators increase the effects of saturating taurine concentrations. A number of possible mechanisms may explain these enhancing effects, including modulator effects on conductance, channel open times, or channel closed times. We used outside-out patch-clamp single channel electrophysiology to investigate the mechanism of action of 200 mM ethanol and 0.55 mM isoflurane in enhancing the effects of a saturating concentration of taurine. Neither modulator enhanced taurine-mediated conductance. Isoflurane increased the probability of channel opening. Isoflurane also increased the lifetimes of the two shortest open dwell times while both agents decreased the likelihood of occurrence of the longest-lived intracluster channel-closing events. The mechanism of enhancement of GlyR functioning by these modulators is dependent on the efficacy of the agonist activating the receptor and the concentration of agonist tested. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  11. Glycine-U-14C metabolism in young rats fed the 10% casein diets containing excess glycine

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Wakatsuki, Tetsuo; Muramatsu, Keiichiro

    1975-01-01

    Nine hours after rats fed ad libitum for 14 days a 10% casein diet (10C), a 10% casein diet containing 7% glycine (10C7G) and a 10% casein diet containing 7% glycine with 1.4% L-arginine.HCl and 0.9% L-methionine (10C7GArgMet) were force-fed 10 ml of each diet suspension containing 5μCi of glycine-U- 14 C per 100 g of body weight, the radioactivity recoveries of 14 C in expired CO 2 , tissue components and urine were determined. The radioactivity recovery of 14 C in the expired CO 2 of the 10C7G group was generally higher than that of the 10C7GArgMet group. The recovery of 14 C in the trichloroacetic acid (TCA) soluble fraction of muscle of the 10C7G and the 10C7GArgMet groups were greater than that of the 10C group. The recoveries of 14 C in the TCA soluble fraction and protein of plasma and liver, and the muscle protein were negligible in all the groups. The amount of glycine- 14 C incorporated into the carcass lipids of the 10C7GArgMet group was larger than that of other groups. The recoveries of 14 C in the liver and muscle glycogen, and liver lipids were remarkably small in all the groups. From the above results, it was suggested that the degradation of glycine- 14 C to expiratory CO 2 was not accelerated, but the rate of incorporation of the isotope into carcass lipids was increased by the supplementation of L-arginine and L-methionine to the 10C7G diet as compared with that of rats fed the 10C7G diet. (JPN)

  12. Fast heavy-ion radiation damage of glycine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryosuke [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2016-12-15

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  13. Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae.

    Science.gov (United States)

    Dicke, J M; Verges, D; Kelley, L K; Smith, C H

    1993-01-01

    Like most amino acids, glycine is present in higher concentrations in the fetus than in the mother. Unlike most amino acids, animal studies suggest fetal concentrations of glycine are minimally in excess of those required for protein synthesis. Abnormal glycine utilization has also been demonstrated in small-for-gestational age human fetuses. The mechanism(s) of glycine uptake in the human placenta are unknown. In other mammalian cells glycine is a substrate for the A, ASC and Gly amino acid transport systems. In this study human placental glycine uptake was characterized using microvillous and basal plasma membrane vesicles each prepared from the same placenta. In both membranes glycine uptake was mediated predominantly by the sodium-dependent A system. Competitive inhibition studies suggest that in microvillous vesicles the small percentage of sodium-dependent glycine uptake not inhibited by methylaminoisobutyric acid (MeAIB) shares a transport system with glycine methyl ester and sarcosine, substrates of the Gly system in other tissues. In addition there are mediated sodium-independent and non-selective transport mechanisms in both plasma membranes. If fetal glycine availability is primarily contingent upon the common and highly regulated A system, glycine must compete with many other substrates potentially resulting in marginal fetal reserves, abnormal utilization and impaired growth.

  14. Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing.

    Science.gov (United States)

    Dong, Wenfei; Yang, Liaoyuan; Huang, Yuming

    2017-05-15

    A facile and rapid post-synthetic strategy was proposed to prepare a glycine functionalized MIL-53(Fe), namely glycine-MIL-53(Fe), by a simple mixing of water dispersible MIL-53(Fe) and glycine. The FT-IR, SEM, XRD and zeta potential were used to characterize the glycine-MIL-53(Fe). The result showed that glycine post-synthetic modification of MIL-53(Fe) did not change in the morphology and crystal structure of MIL-53(Fe). Interestingly, compared with MIL-53(Fe), the glycine-MIL-53(Fe) exhibits an enhanced peroxidase-like activity, which could catalyze the oxidation of TMB by H 2 O 2 to produce an intensive color reaction. Kinetic analysis indicated that the K m of glycine-MIL-53(Fe) for TMB was one-tenth of that of MIL-53(Fe). The glycine-MIL-53(Fe) as peroxidase mimetic displays better stability under alkaline or acidic conditions than MIL-53(Fe). The good performance of glycine-MIL-53(Fe) over MIL-53(Fe) may be attributed to the increase of affinity between TMB and the glycine-MIL-53(Fe). With these characteristics, a simple and sensitive method was developed for the detection of H 2 O 2 and glucose. The linear detection range for H 2 O 2 is 0.10-10μM with a detection limit of 49nM, and glucose could be linearly detected in the range from 0.25 to 10μM with a detection limit of 0.13μM. The proposed method was successfully used for glucose detection in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens.

    Science.gov (United States)

    Lidö, Helga Höifödt; Stomberg, Rosita; Fagerberg, Anne; Ericson, Mia; Söderpalm, Bo

    2009-07-01

    The mesolimbic dopamine (DA) projection from the ventral tegmental area to nucleus accumbens (nAc), a central part of the reward system, is activated by ethanol (EtOH) and other drugs of abuse. We have previously demonstrated that the glycine receptor in the nAc and its amino acid agonists may be implicated in the DA activation and reinforcing properties of EtOH. We have also reported that the glycine transporter 1 inhibitor, Org 25935, produces a robust and dose-dependent decrease in EtOH consumption in Wistar rats. The present study explores the interaction between EtOH and Org 25935 with respect to DA levels in the rat nAc. The effects of Org 25935 (6 mg/kg, i.p.) and/or EtOH (2.5 g/kg, i.p.) on accumbal DA levels were examined by means of in vivo microdialysis (coupled to HPLC-ED) in freely moving male Wistar rats. The effect of Org 25935 on accumbal glycine output was also investigated. Systemic Org 25935 increased DA output in a subpopulation of rats (52% in Experiment 1 and 38% in Experiment 2). In Experiment 2, EtOH produced a significant increase in DA levels in vehicles (35%) and in Org 25935 nonresponders (19%), whereas EtOH did not further increase the DA level in rats responding to Org 25935 (2%). The same dose of Org 25935 increased glycine levels by 87% in nAc. This study demonstrates that Org 25935, probably via increased glycine levels, (i) counteracts EtOH-induced increases of accumbal DA levels and (ii) increases basal DA levels in a subpopulation of rats. The results are in line with previous findings and it is suggested that the effects observed involve interference with accumbal GlyRs and are related to the alcohol consumption modulating effect of Org 25935.

  16. Nonlinear conjugate gradient methods in micromagnetics

    Directory of Open Access Journals (Sweden)

    J. Fischbacher

    2017-04-01

    Full Text Available Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is μ0ΔH = 1.4 T at 450 K.

  17. Production of 1-carbon units from glycine is extensive in healthy men and women.

    Science.gov (United States)

    Lamers, Yvonne; Williamson, Jerry; Theriaque, Douglas W; Shuster, Jonathan J; Gilbert, Lesa R; Keeling, Christine; Stacpoole, Peter W; Gregory, Jesse F

    2009-04-01

    Glycine undergoes decarboxylation in the glycine cleavage system (GCS) to yield CO(2), NH(3), and a 1-carbon unit. CO(2) also can be generated from the 2-carbon of glycine by 10-formyltetrahydrofolate-dehydrogenase and, after glycine-to-serine conversion by serine hydroxymethyltransferase, from the tricarboxylic acid cycle. To evaluate the relative fates of glycine carbons in CO(2) generation in healthy volunteers (3 male, 3 female, aged 21-26 y), primed, constant infusions were conducted using 9.26 micromol x h(-1) x kg(-1) of [1,2-(13)C]glycine and 1.87 micromol x h(-1) x kg(-1) of [5,5,5-(2)H(3)]leucine, followed by an infusion protocol using [1-(13)C]glycine as the glycine tracer. The time period between the infusion protocols was >6 mo. In vivo rates of whole-body glycine and leucine flux were nearly identical in protocols with [1,2-(13)C]glycine and [5,5,5-(2)H(3)]leucine and with [1-(13)C]glycine and [5,5,5-(2)H(3)]leucine tracers, which showed high reproducibility between the tracer protocols. Using the [1-(13)C]glycine tracer, breath CO(2) data showed a total rate of glycine decarboxylation of 96 +/- 8 micromol x h(-1) x kg(-1), which was 22 +/- 3% of whole-body glycine flux. In contrast, infusion of [1,2-(13)C]glycine yielded a glycine-to-CO(2) flux of 146 +/- 37 micromol x h(-1) x kg(-1) (P = 0.026). By difference, this implies a rate of CO(2) formation from the glycine 2-carbon of 51 +/- 40 micromol x h(-1) x kg(-1), which accounts for approximately 35% of the total CO(2) generated in glycine catabolism. These findings also indicate that approximately 65% of the CO(2) generation from glycine occurs by decarboxylation, primarily from the GCS. Further, these results suggest that the GCS is responsible for the entry of 5,10-methylenetetrahydrofolate into 1-carbon metabolism at a very high rate ( approximately 96 micromol x h(-1) x kg(-1)), which is approximately 20 times the demand for methyl groups for homocysteine remethylation.

  18. Genetics Home Reference: glycine encephalopathy

    Science.gov (United States)

    ... seizures. As they get older, many develop intellectual disability, abnormal movements, and behavioral problems. Other atypical types of glycine encephalopathy appear later in childhood or adulthood ...

  19. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. α-Methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy

    Directory of Open Access Journals (Sweden)

    Jungyeon Hwang

    2008-10-01

    Full Text Available Jungyeon Hwang1, Kathleen Rodgers2, James C Oliver3, Thomas Schluep11Insert Therapeutics, Inc., Pasadena, CA, USA; 2Livingston Research Institute, Los Angeles, CA, USA; James C Oliver, Peptagen, Inc., Raleigh, NC USAAbstract: A glycinate derivative of α-methylprednisolone (MP was prepared and conjugated to a linear cyclodextrin polymer (CDP with a loading of 12.4% w/w. The polymer conjugate (CDP-MP self-assembled into nanoparticles with a size of 27 nm. Release kinetics of MP from the polymer conjugate showed a half-life (t1/2 of 50 h in phosphate buffer solution (PBS and 19 h in human plasma. In vitro, the proliferation of human lymphocytes was suppressed to a similar extent but with a delayed effect when CDP-MP was compared with free MP. In vivo, CDP-MP was administered intravenously to mice with collagen-induced arthritis and compared with free MP. CDP-MP was administered weekly for six weeks (0.07, 0.7, and 7 mg/kg/week and MP was administered daily for six weeks (0.01, 0.1, and 1 mg/kg/day. Body weight changes were minimal in all animals. After 28 days, a significant decrease in arthritis score was observed in animals treated weekly with an intermediate or high dose of CDP-MP. Additionally, dorsoplantar swelling was reduced to baseline in animals treated with CDP-MP at the intermediate and high dose level. Histological evaluation showed a reduction in synovitis, pannus formation and disruption of architecture at the highest dose level of CDP-MP. MP administered daily at equivalent cumulative doses showed minimal efficacy in this model. This study demonstrates that conjugation of MP to a cyclodextrin-polymer may improve its efficacy, leading to lower doses and less frequent administration for a safer and more convenient management of rheumatoid arthritis.Keywords: α-methylprednisolone (MP, cyclodextrin polymer (CDP, polymer conjugate (CDP-MP, rheumatoid arthritis (RA, enhanced permeability and retention effect (EPR

  1. Growth and antimicrobial studies of γ-glycine crystal grown using CuSO4

    Science.gov (United States)

    Vijayalakshmi, V.; Dhanasekaran, P.

    2018-05-01

    In the current work single crystals of pure and 1M of CuSO4-added glycine were grown by slow evaporation method and its optical and antimicrobial properties were studied. The Polymorph of glycine transforms from a-glycine to γ-glycine due to the incorporation of CuSO4 on glycine was affirmed by the PXRD and FTIR studies. The impact of CuSO4 on the antimicrobial action of the grown samples was deliberate by utilizing the agar diffusion method.

  2. Radiosynthesis of N-¹¹C-Methyl-Taurine-Conjugated Bile Acids and Biodistribution Studies in Pigs by PET/CT.

    Science.gov (United States)

    Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim

    2016-04-01

    During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Science.gov (United States)

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  4. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    Science.gov (United States)

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  5. Genetic engineering and chemical conjugation of potato virus X.

    Science.gov (United States)

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  6. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  7. A weak link in metabolism: the metabolic capacity for glycine ...

    Indian Academy of Sciences (India)

    Prakash

    2009-12-03

    Dec 3, 2009 ... glyoxylate, threonine and trimethyllysine (carnitine synthesis), most of them ...... Participation of glycine in porphyrin biosynthesis. Eight glycine ...... normal and streptozotocin-induced diabetic rats; J. Dent. Res. 63 23–27.

  8. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    Science.gov (United States)

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  10. Conjugation of colloidal clusters and chains by capillary condensation.

    Science.gov (United States)

    Li, Fan; Stein, Andreas

    2009-07-29

    Capillary condensation was used to establish connections in colloidal clusters and 1D colloidal chains with high regional selectivity. This vapor-phase process produced conjugated clusters and chains with anisotropic functionality. The capillary condensation method is simple and can be applied to a wide range of materials. It can tolerate geometric variations and even permits conjugation of spatially separated particles. The selective deposition was also used to modulate the functionality on the colloid surfaces, producing tip-tethered nanosized building blocks that may be suitable for further assembly via directional interactions.

  11. Synthesis and evaluation of the antioxidative potential of minoxidil-polyamine conjugates.

    Science.gov (United States)

    Hadjipavlou-Litina, Dimitra; Magoulas, George E; Bariamis, Stavros E; Tsimali, Zinovia; Avgoustakis, Konstantinos; Kontogiorgis, Christos A; Athanassopoulos, Constantinos M; Papaioannou, Dionissios

    2013-07-01

    A series of conjugates (MNX-CO-PA) of minoxidil (MNX) with the polyamines (PAs) putrescine (PUT), spermidine (SPD) and spermine (SPM) as well as dopamine were produced through activation of MNX with N,N'-carbonyldiimidazole, followed by reaction with dopamine or selectively protected PAs and acid-mediated deprotection. These conjugates together with conjugates of the general type MNX-PA or PA-MNX-PA, readily produced using literature protocols, were tested as antioxidants. The most potent inhibitors of lipid peroxidation were the conjugates MNX-SPM (2, 94%), SPM-MNX-SPM (4, 94%) and MNX-N(4)-SPD (7, 91%) and MNX (91%). The most powerful lipoxygenase (LOX) inhibitors were MNX (IC50 = 20 μM) and the conjugates MNX-N(8)-SPD (9, IC50 = 22.1 μM), MNX-CO-dopamine (11, IC50 = 28 μM) and MNX-N(1)-SPD (8, IC50 = 30 μM). The most interesting conjugates 2, MNX-CO-PUT (5), 8 and 11 as well as MNX were generally found to exhibit weaker (22-36.5%) or no (conjugate 8) anti-inflammatory activity than indomethacin (47%) with the exception of MNX which showed almost equal potency (49%) to indomethacin. The cytocompatibility of conjugates and MNX at the highest concentration of 100 μM showed a survival percentage of 87-107%, with the exception of conjugates with SPM (compound 2) and MNX-CO-SPM (6), which showed considerable cytotoxicity (survival percentage 8-14%). Molecular docking studies were carried on conjugate 9 and the parent compound MNX and were found to be in accordance with our experimental biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  13. Glycine facilitates gamma-glutamylcysteinylethyl ester-mediated increase in liver glutathione level.

    Science.gov (United States)

    Nishida, K; Ohta, Y; Ishiguro, I

    1997-08-27

    gamma-Glutamylcysteinylethyl ester (gamma-GCE) increases reduced glutathione (GSH) levels in GSH-depleted rat hepatocytes. Because glycine, a constituent of GSH, exists at 0.3 to 0.4 mM in rat plasma, we examined the influence of glycine added to the medium on the action of gamma-GCE to increase GSH levels in the rat hepatocytes. Glycine (0.2-0.8 mM) dose-dependently enhanced gamma-GCE-mediated increase in intracellular GSH levels with an increase in intracellular gamma-GCE levels. These results indicate that exogenous glycine facilitates gamma-GCE-mediated increase in intracellular GSH levels in rat hepatocytes possibly by enhancing the uptake of gamma-GCE into the cells.

  14. Cytokinin biogeochemistry in relation to leaf senescence. II. The metabolism of 6-benzylaminopurine in soybean leaves and the inhibition of its conjugation

    International Nuclear Information System (INIS)

    Zhang, R.; Letham, D.S.; Wong, O.C.; Nooden, L.D.; Parker, C.W.

    1987-01-01

    The metabolism of [ 3 H]6-benzylamino purine was studied in presenescent and early senescent soybean (Glycine max [L.] Merr.) leaves. In both types of leaves, the metabolism was essentially the same. The principal metabolite was identified as β-(6-benzylaminopurin-9-yl)alanine by mass spectral studies, which included discharge ionization-secondary ion mass spectrometry and pulsed positive ion-negative ion-chemical ionization mass spectrometry. Conversion to this alanine conjugate was found to be inhibited 2,4-dichlorophenoxyacetic acid and 5,7-dichloroindoleacetic acid

  15. Preparation and immunological properties of procaine-protein conjugates

    International Nuclear Information System (INIS)

    Liakopoulou, A.

    1981-01-01

    Procaine was conjugated to BSA and rat and rabbit Gf using the carbodiimide method and 14 C-procaine as tracer. The composition of the conjugates could be varied depending on the time of incubation and the concentration of procaine in the reaction mixtures. Procaine-BSA conjugates were soluble in water or saline. However, procaine conjugates to rat or rabbit Gf were not readily soluble in saline. These conjugates were good for immunization purposes, but it was cumbersome to work with them when clear solutions were needed, as in the immunochemical procedures used in this study. The immunological properties of the conjugates were studied in rats and rabbits. Rats responded with production of IgGa and precipitating antibodies to the procaine group, but IgE antibodies to the immunogen could not be detected. Furthermore, precipitating antibodies towards the procaine group were raised in rabbits. When BSA was the protein carrier, antibodies to the carrier molecule were also detected in both rats and rabbits. The conjugates of procaine to rat or rabbit Gf did not elicit antibody response to the carrier molecule when used in the homologous species. Hapten inhibition studies suggested that, in the rabbit, antibodies were also produced with specificity directed towards the molecular configuration of the hapten-carrier bond. (author)

  16. Impaired absorption of marked oligopeptide Glycine-I Tyrosine-Glycine after successful autologous-allotopic ileal mucosa transplantation in beagles.

    Science.gov (United States)

    Beiler, H A; Steinorth, J; Witt, A; Mier, W; Mohammed, A; Waag, K L; Zachariou, Z

    2004-10-01

    After establishing a method for ileal mucosa transplantation in an animal model, the authors investigated the absorptive capacity for oligopeptides of the transplanted mucosa. In 14 beagle dogs the authors transplanted ileal mucosa in a vascularized demucosed segment of the transverse colon. The colonic wall-ileal mucosa complex then was integrated in the ileal continuity. Six animals were lost owing to operative complications. Absorptive capacity for oligopeptides was measured in the remaining 8 animals with the iodine 131 (131I)-marked tripeptide glycine-tyrosine-glycine before and 4 weeks after transplantation. The results were compared and analyzed with the Student's t test for matched pairs. Blood concentrations of the marked tripeptide with P value less than .05 were considered as a significant reduction in the absorptive capacity of the transplanted ileal mucosa. After fixation with glutaraldehyd graft, uptake of the colonic wall-ileal mucosa complex was evaluated histologically in 8 animals. In all 8 animals, a 100% graft uptake was verified in all sections. Fifteen minutes after application of 15 MBc Glycine-131I-Tyrosine-Glycine there was no significant difference in the absorption between normal and transplanted ileal mucosa. After 30 minutes, the absorption of the transplanted ileal mucosa showed a tendency (P < .1) for an impaired uptake of the marked tripeptide. However, 60 minutes after application the difference in the absorptive capacity of the transplanted ileal mucosa was significant (P < .05). Autologous allotopic ileal mucosa transplantation is feasible; however, an impaired absorption of oligopeptides of the transplanted mucosa 4 weeks after transplantation could be observed.

  17. 75 FR 63444 - Glycine From the People's Republic of China: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2010-10-15

    ... exports, sales, or entries of subject merchandise during the POR.'' See 75 FR at 22107 (emphasis added... crystalline material, like salt or sugar. Glycine is produced at varying levels of purity and is used as a... duties shall be assessed at rates equal to the cash deposit of estimated antidumping duties required at...

  18. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2.

    Science.gov (United States)

    Mostyn, Shannon N; Carland, Jane E; Shimmon, Susan; Ryan, Renae M; Rawling, Tristan; Vandenberg, Robert J

    2017-09-20

    It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC 50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.

  19. Conjugative IncFI plasmids carrying CTX-M-15 among Escherichia coli ESBL producing isolates at a University hospital in Germany

    Directory of Open Access Journals (Sweden)

    Hain Torsten

    2009-06-01

    Full Text Available Abstract Background Multi-drug-resistant, extended-spectrum β-lactamase (ESBL-producing Enterobacteriaceae, constitute an emerging public-health concern. Little data on the molecular epidemiology of ESBL producing Escherichia coli is available in Germany. Here we describe the prevalence and molecular epidemiology of ESBL producing-Escherichia coli isolates at a German University hospital. Methods We analysed 63 non-duplicate clinical ESBL isolates obtained over an 8-month period using PCR and sequence-based ESBL allele typing, plasmid replicon typing, phylogenetic group typing. Pulsed-field gel electrophoresis (PFGE based genotyping and plasmid profiling was performed, as well as confirmatory DNA-based hybridization assays. Results Examination of the 63 Escherichia coli isolates revealed an almost equal distribution among the E. coli phylogenetic groups A, B1, B2 and D. High prevalence (36/63 of the CTX-M-15 gene was observed and an analysis of PFGE-based patterns revealed the presence of this CTX-M allele in multiple clones. Resistance to cefotaxime was a transferable trait and a commonly occurring 145.5 kb conjugative IncFI plasmid was detected in 65% of E. coli carrying the CTX-M-15 allele. The rate of transferable antibiotic resistances for GM, SXT, TET, GM-SXT-TET, SXT-TET and GM-TET was 33%, 61%, 61%, 27%, 44% and 11%, respectively. The remaining strains did not have a common IncFI plasmid but harboured transferable IncFI plasmids with sizes that ranged from 97 to 242.5 kb. Conclusion Our data demonstrate the presence of IncFI plasmids within the prevailing E. coli population in a hospital setting and suggest that the dissemination of CTX-M-15 allele is associated to lateral transfer of these well-adapted, conjugative IncFI plasmids among various E. coli genotypes.

  20. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  1. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    Science.gov (United States)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2017-06-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  2. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  3. Rapid Methods to Distinguish Heterodera schachtii from Heterodera glycines Using PCR Technique

    Directory of Open Access Journals (Sweden)

    Hyoung Rai Ko

    2017-09-01

    Full Text Available The purpose of this study was to develop rapid methods for distinguishing between Heterodera schachtii and H. glycines detected from chinese cabbage fields of highland in Gangwon, Korea. To do this, we performed PCR-RFLP and PCR with the primers set developed in this study for GC147, GC408 and PM001 population, H. schachtii, and YS224, DA142 and BC115 population, H. glycines. Eight restriction enzymes generated RFLP profiles of mtDNA COI region for populations of H. schachtii and H. glycines, repectively. As a result, treatment of two restriction enzymes, RsaI and HinfI, were allowed to distinguish H. schachtii from H. glycines based on the differences of DNA band patterns. The primer set, #JBS1, #JBG1 and #JB3R, amplified specific fragments with 277 and 339 bp of H. schachtii, 339 bp of H. glycines, respectively, while it did not amplify fragments from three root-knot nematodes and two root-lesion nematodes. Thus, the primer set developed in this study could be a good method, which is used to distinguish between H. schachtii and H. glycines.

  4. A DFT study of adsorption of glycine onto the surface of BC_2N nanotube

    International Nuclear Information System (INIS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-01-01

    Highlights: • Glycine adsorption over the pristine BC_2N nanotubes is investigated by DFT calculations. • Adsorption of glycine in its zwitterionic form is stronger in comparison with the radical form. • Adsorption of glycine from its amine head on adsorbent leads to a significant decrease in the electronic properties. - Abstract: A theoretical study of structure and the energy interaction of amino acid glycine (NH_2CH_2COOH) with BC_2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC_2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC_2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  5. Storage Conditions of Conjugated Reagents Can Impact Results of Immunogenicity Assays

    Directory of Open Access Journals (Sweden)

    Robert J. Kubiak

    2016-01-01

    Full Text Available Consistent performance of anti-drug antibody (ADA assays through all stages of clinical development is critical for the assessment of immunogenicity and interpretation of PK, PD, safety, and efficacy. The electrochemiluminescent assays commonly employed for ADA measurement use drug conjugated with ruthenium and biotin to bind ADA in samples. Here we report an association between high nonspecific ADA responses in certain drug-naïve individuals and the storage buffer of the conjugated reagents used in a monoclonal antibody ADA assay. Ruthenylated reagents stored in phosphate-buffered saline (PBS buffer had increased levels of aggregate and produced variable and high baseline responses in some subjects. Reagents stored in a histidine-sucrose buffer (HSB had lower aggregate levels and produced low sample responses. In contrast to PBS, conjugated reagents formulated in HSB remained low in aggregate content and in sample response variability after 5 freeze/thaw cycles. A reagent monitoring control (RMC serum was prepared for the real-time evaluation of conjugated reagent quality. Using appropriate buffers for storage of conjugated reagents together with RMCs capable of monitoring of reagent aggregation status can help ensure consistent, long-term performance of ADA methods.

  6. Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures

    Science.gov (United States)

    Valverde, Danillo; da Costa Ludwig, Zélia Maria; da Costa, Célia Regina; Ludwig, Valdemir; Georg, Herbert C.

    2018-01-01

    At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.

  7. A critical role for glycine transporters in hyperexcitability disorders

    Directory of Open Access Journals (Sweden)

    Robert J Harvey

    2008-03-01

    Full Text Available Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle refl ex, known as hyperekplexia (OMIM 149400. This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and nonsense mutations in the glycine receptor (GlyR α1 subunit gene (GLRA1 on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR β subunit (GLRB and the GlyR clustering proteins gephyrin (GPNH and collybistin (ARHGEF9. Recent studies of the Na+ /Cl--dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899. These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

  8. Quantification of residual solvents in antibody drug conjugates using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Medley, Colin D., E-mail: medley.colin@gene.com [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States); Kay, Jacob [Research Pharmaceutical Services, 520 Virginia Dr. Fort, Washington, PA (United States); Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P. [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States)

    2014-11-19

    Highlights: • Sensitive residual solvents detection in ADCs. • 125 ppm QL for common conjugation solvents. • Generic and validatable method. - Abstract: The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  9. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained.......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...

  10. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  11. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    Science.gov (United States)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  12. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    International Nuclear Information System (INIS)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-01-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly(N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size (D h ) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV–visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.Graphical Abstract

  13. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  14. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  15. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers

    Directory of Open Access Journals (Sweden)

    Makoto eBannai

    2012-04-01

    Full Text Available Approximately 30% of the general population suffers from insomnia. Given that insomnia causes many problems, amelioration of the symptoms is crucial. Recently, we found that a nonessential amino acid, glycine subjectively and objectively improves sleep quality in humans who have difficulty sleeping. We evaluated the effects of glycine on daytime sleepiness, fatigue and performances in sleep-restricted healthy subjects. Sleep was restricted to 25% less than the usual sleep time for three consecutive nights. Before bedtime, 3 g of glycine or placebo were ingested, sleepiness and fatigue were evaluated using the visual analogue scale (VAS and a questionnaire, and performance were estimated by personal computer (PC performance test program on the following day. In subjects given glycine, the VAS data showed a significant reduction in fatigue and a tendency toward reduced sleepiness. These observations were also found via the questionnaire, indicating that glycine improves daytime sleepiness and fatigue induced by acute sleep restriction. PC performance test revealed significant improvement in psychomotor vigilance test. We also measured plasma melatonin and the expression of circadian-modulated genes expression in the rat suprachiasmatic nucleus (SCN to evaluate the effects of glycine on circadian rhythms. Glycine did not show significant effects on plasma melatonin concentrations during either the dark or light period. Moreover, the expression levels of clock genes such as Bmal1 and Per2 remained unchanged. However, we observed a glycine-induced increase in the neuropeptides arginine vasopressin and vasoactive intestinal polypeptide in the light period. Although no alterations in the circadian clock itself were observed, our results indicate that glycine modulated SCN function. Thus, glycine modulates certain neuropeptides in the SCN and this phenomenon may indirectly contribute to improving the occasional sleepiness and fatigue induced by sleep

  16. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  17. Effect of Glycine on Lead Mobilization, Lead-Induced Oxidative Stress, and Hepatic Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Yolanda Alcaraz-Contreras

    2011-01-01

    Full Text Available The effectiveness of glycine in treating experimental lead intoxication was examined in rats. Male Wistar rats were exposed to 3 g/L lead acetate in drinking water for 5 weeks and treated thereafter with glycine (100 and 500 mg/kg, orally once daily for 5 days or glycine (1000 mg/kg, orally once daily for 28 days. The effect of these treatments on parameters indicative of oxidative stress (glutathione and malondialdehyde levels, the activity of blood -aminolevulinic acid dehydratase, and lead concentration in blood, liver, kidney, brain, and bone were investigated. Liver samples were observed for histopathological changes. Glycine was found to be effective in (1 increasing glutathione levels; (2 reducing malondialdehyde levels; (3 decreasing lead levels in bone with the highest dose. However, glycine had no effect on lead mobilization when 100 and 500 mg/kg glycine were administered. In microscopic examination, glycine showed a protective effect against lead intoxication.

  18. Effect of epileptogenic agents on the incorporation of /sup 3/H-glycine into proteins in the cat's cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Rojik, I.; Feher, O.

    1982-06-01

    Filter paper strips soaked in /sup 3/H-glycine solution were applied to acoustic cortex of cats, anaesthetized with Nembutal and pretreated with epileptogenic agents (Metrazol, G-penicillin, and 3-amino-pyridine) and cycloheximide. The untreated contralateral hemisphere served as control. After 1 h incubation, both cortical samples were excised simultaneously and fixed in Bouin solution for autoradiography. Incorporation was blocked by cycloheximide. There was no glycine incorporation on the penicillin-treated side, while pyramidal cells were intensively labelled in layers II-V of the mirror focus. 3-Aminopyridine produced the same result. Metrazol as convulsant proved to be far weaker than the previous two. The intensity of incorporation was significantly more intensive in the mirror focus than in the primary one. Penicillin and 3-aminopyridine, while provoking cortical seizures, seem to inhibit glycine incorporation into a neuron-specific, function-dependent protein contained by the labelled cells in the autoradiogram.

  19. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  20. Glycine Transporter Inhibitor Attenuates the Psychotomimetic Effects of Ketamine in Healthy Males: Preliminary Evidence

    Science.gov (United States)

    D'Souza, Deepak Cyril; Singh, Nagendra; Elander, Jacqueline; Carbuto, Michelle; Pittman, Brian; de Haes, Joanna Udo; Sjogren, Magnus; Peeters, Pierre; Ranganathan, Mohini; Schipper, Jacques

    2012-01-01

    Enhancing glutamate function by stimulating the glycine site of the NMDA receptor with glycine, -serine, or with drugs that inhibit glycine reuptake may have therapeutic potential in schizophrenia. The effects of a single oral dose of cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-ylmethyl) amino-methylcarboxylic acid hydrochloride (Org 25935), a glycine transporter-1 (GlyT1) inhibitor, and placebo pretreatment on ketamine-induced schizophrenia-like psychotic symptoms, perceptual alterations, and subjective effects were evaluated in 12 healthy male subjects in a randomized, counter-balanced, within-subjects, crossover design. At 2.5 h after administration of the Org 25935 or placebo, subjects received a ketamine bolus and constant infusion lasting 100 min. Psychotic symptoms, perceptual, and a number of subjective effects were assessed repeatedly before, several times during, and after completion of ketamine administration. A cognitive battery was administered once per test day. Ketamine produced behavioral, subjective, and cognitive effects consistent with its known effects. Org 25935 reduced the ketamine-induced increases in measures of psychosis (Positive and Negative Syndrome Scale (PANSS)) and perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)). The magnitude of the effect of Org 25935 on ketamine-induced increases in Total PANSS and CADSS Clinician-rated scores was 0.71 and 0.98 (SD units), respectively. None of the behavioral effects of ketamine were increased by Org 25935 pretreatment. Org 25935 worsened some aspects of learning and delayed recall, and trended to improve choice reaction time. This study demonstrates for the first time in humans that a GlyT1 inhibitor reduces the effects induced by NMDA receptor antagonism. These findings provide preliminary support for further study of the antipsychotic potential of GlyT1 inhibitors. PMID:22113087

  1. A novel liquid chromatography/tandem mass spectrometry method for the quantification of glycine as biomarker in brain microdialysis and cerebrospinal fluid samples within 5min.

    Science.gov (United States)

    Voehringer, Patrizia; Fuertig, René; Ferger, Boris

    2013-11-15

    Glycine is an important amino acid neurotransmitter in the central nervous system (CNS) and a useful biomarker to indicate biological activity of drugs such as glycine reuptake inhibitors (GRI) in the brain. Here, we report how a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the fast and reliable analysis of glycine in brain microdialysates and cerebrospinal fluid (CSF) samples has been established. Additionally, we compare this method with the conventional approach of high performance liquid chromatography (HPLC) coupled to fluorescence detection (FD). The present LC-MS/MS method did not require any derivatisation step. Fifteen microliters of sample were injected for analysis. Glycine was detected by a triple quadrupole mass spectrometer in the positive electrospray ionisation (ESI) mode. The total running time was 5min. The limit of quantitation (LOQ) was determined as 100nM, while linearity was given in the range from 100nM to 100μM. In order to demonstrate the feasibility of the LC-MS/MS method, we measured glycine levels in striatal in vivo microdialysates and CSF of rats after administration of the commercially available glycine transporter 1 (GlyT1) inhibitor LY 2365109 (10mg/kg, p.o.). LY 2365109 produced 2-fold and 3-fold elevated glycine concentrations from 1.52μM to 3.6μM in striatal microdialysates and from 10.38μM to 36μM in CSF, respectively. In conclusion, we established a fast and reliable LC-MS/MS method, which can be used for the quantification of glycine in brain microdialysis and CSF samples in biomarker studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Equilibria in aqueous cadmium-chloroacetate-glycinate systems. A convolution-deconvolution cyclic voltammetric study

    International Nuclear Information System (INIS)

    Abdel-Hamid, R.; Rabia, M.K.M.

    1994-01-01

    Stability constants and composition of cadmium-glycinate binary complexes were determined using cyclic voltammetry. Furthermore, binary and ternary complex equilibria for chloroacetates and glycinate with cadmium in 0.1 M aqueous KNO 3 at pH 10.4 and 298 K were investigated. Cadmium forms binary complexes with chloroacetates of low stability and ternary ones with chloroacetate-glycinate of significant stability. (author)

  3. Secondary Emission From Synthetic Opal Infiltrated by Colloidal Gold and Glycine

    International Nuclear Information System (INIS)

    Dovbeshko, G.I.; Fesenko, O.M.; Boyko, V.V.; Romanyuk, V.R.; Gorelik, V.S.; Moiseyenko, V.N.; Sobolev, V.B.; Shvalagin, V.V.

    2012-01-01

    A comparison of the secondary emission (photoluminescence) and Bragg reflection spectra of photonic crystals (PC), namely, synthetic opals, opals infiltrated by colloidal gold, glycine, and a complex of colloidal gold with glycine is performed. The infiltration of colloidal gold and a complex of colloidal gold with glycine into the pores of PC causes a short-wavelength shift (about 5-15 nm) of the Bragg reflection and increases the intensity of this band by 1.5-3 times. In photoluminescence, the infiltration of PC by colloidal gold and colloidal gold with glycine suppresses the PC emission band near 375-450 nm and enhances the shoulder of the stop-zone band of PC in the region of 470-510 nm. The shape of the observed PC emission band connected with defects in synthetic opal is determined by the type of infiltrates and the excitation wavelength. Possible mechanisms of the effects are discussed.

  4. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  5. Gbu Glycine Betaine Porter and Carnitine Uptake in Osmotically Stressed Listeria monocytogenes Cells

    Science.gov (United States)

    Mendum, Mary Lou; Smith, Linda Tombras

    2002-01-01

    The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected. PMID:12406761

  6. Crystal lattice dependency of the free radicals found in irradiated glycine

    NARCIS (Netherlands)

    Bie, M.J.A. de; Braams, R.

    1969-01-01

    The EPR spectra, and hence the stable free radicals, are different for the - or γ-irradiated α-, β- and γ-crystal forms of polycrystalline glycone. Therefore comparisons of the trideutero-glycine EPR spectrum with the EPR spectra of non-deuterated glycine are open to question

  7. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    Science.gov (United States)

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  8. Preferential Pathway for Glycine Formation in Star-Forming Regions

    Science.gov (United States)

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  9. A DFT study of adsorption of glycine onto the surface of BC{sub 2}N nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Alireza, E-mail: Alireza.soltani46@yahoo.com [Joints, Bones and Connective Tissue Research Center, Golestan University of Medical Sciences, Gorgan (Iran, Islamic Republic of); Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Azmoodeh, Zivar [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Javan, Masoud Bezi [Physics Department, Faculty of Sciences, Golestan University, Gorgan (Iran, Islamic Republic of); Lemeski, E. Tazikeh [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Karami, Leila [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Glycine adsorption over the pristine BC{sub 2}N nanotubes is investigated by DFT calculations. • Adsorption of glycine in its zwitterionic form is stronger in comparison with the radical form. • Adsorption of glycine from its amine head on adsorbent leads to a significant decrease in the electronic properties. - Abstract: A theoretical study of structure and the energy interaction of amino acid glycine (NH{sub 2}CH{sub 2}COOH) with BC{sub 2}N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC{sub 2}N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC{sub 2}N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  10. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    International Nuclear Information System (INIS)

    Yin, A; Taylor, M H

    2008-01-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of ∼30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  11. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    Energy Technology Data Exchange (ETDEWEB)

    Yin, A [Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90025-1567 (United States); Taylor, M H [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States)], E-mail: yin@ess.ucla.edu

    2008-07-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of {approx}30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  12. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  13. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    Science.gov (United States)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  15. Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1981-01-01

    Glycine receptors have been localized by autoradiography in the rat central nervous system (CNS) using [ 3 H]strychnine. The gross distribution of receptors is in excellent accord with the distribution determined by filtration binding assays. Specifically, the density of glycine receptors is greatest in the gray matter of the spinal cord and decreases progressively in regions more rostral in the neuraxis. Glycine receptors were found to be associated with both sensory and motor systems in the CNS. Moreover, there is a striking correlation between areas of high strychnine binding site density and areas in which glycine has been found to be electrophysiologically active. Finally, the anatomic localization of strychnine binding sites may help explain many of the signs and symptoms of strychnine ingestion. For example, individuals consuming subconvulsive doses of strychnine frequently experience altered cutaneous and auditory sensation. We have localized strychnine receptors in areas of the acoustic system known to influence discriminative aspects of audition and in areas of the spinal cord and trigeminal nuclei which modulate discriminative aspects of cutaneous sensation. The alteration of visceral functions (e.g., blood pressure and respiratory rate) associated with strychnine ingestion may be accounted for in a similar manner

  16. Four-wave mixing and phase conjugation in plasmas

    International Nuclear Information System (INIS)

    Federici, J.F.

    1989-01-01

    Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma

  17. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira [Naresuan University, Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science (Thailand); Vilaivan, Tirayut [Chulalongkorn University, Department of Chemistry, Organic Synthesis Research Unit, Faculty of Science (Thailand); Nakkuntod, Maliwan [Naresuan University, Department of Biology, Faculty of Science (Thailand); Rutnakornpituk, Metha, E-mail: methar@nu.ac.th [Naresuan University, Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science (Thailand)

    2016-09-15

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly(N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size (D{sub h}) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV–visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.Graphical Abstract.

  18. Affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine.

    Science.gov (United States)

    Nordbö, H; Eriksen, H M; Rölla, G

    1979-10-01

    The affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine was studied. A series of mixtures containing 1 M furfural and 0.25-2.0 M glycine were incubated at 37 degrees C and aliquots of hydroxyapatite added. The apatite showed a strong affinity for the brown pigment formed, and an excess of glycine in the mixtures appeared to enhance the binding. The adsorption of furfural to hydroxyapatite was estimated by a spectrophotometric method. The data revealed that pretreatment with CaCl2 and glycine significantly increased the adsorption of furfural.

  19. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  20. Investigations on the nucleation kinetics of γ-glycine single crystal

    International Nuclear Information System (INIS)

    Yogambal, C.; Rajan Babu, D.; Ezhil Vizhi, R.

    2014-01-01

    Single crystals of γ-glycine were grown by slow evaporation technique. The crystalline system was confirmed by single crystal X-ray diffraction analysis. The optical absorption study has shown that the grown crystal possesses lower cut-off wavelength. Solubility and metastable zone width were estimated for different temperatures. The induction period of title compound was determined by varying the temperature and concentration. Nucleation parameters such as Gibbs volume free energy change (ΔG v ), interfacial tension (γ), critical free energy change of the nucleus (ΔG ⁎ ), nucleation rate (J), number of molecules in the critical nucleus (i ⁎ ) have been calculated for the aqueous solution grown γ-glycine single crystals. The second harmonic generation (SHG) of γ-glycine was confirmed by Q-switched Nd:YAG laser technique

  1. Synthesis and characterization of nido-carborane-cobalamin conjugates

    International Nuclear Information System (INIS)

    Hogenkamp, Harry P.C.; Collins, Douglas A.; Live, David; Benson, Linda M.; Naylor, Stephen

    2000-01-01

    Three vitamin B 12 (cyanocobalamin) conjugates bearing one nido-carborane molecule or two nido-carborane molecules linked to the propionamide side chains via a four carbon linker have been synthesized. Reaction of o-carboranoylchloride with 1,4-diaminobutane in pyridine produced nido-carboranoyl(4-amidobutyl)amine, which was linked to the b- and d-monocarboxylic acids and the b,d-dicarboxylic acid of cyanocobalamin. Mass spectrometry analysis as well as 11 B nuclear magnetic resonance demonstrated that during the reaction of o-carboranonylchloride with diaminobutane one of the boron atoms was eliminated. In vitro biological activity of the cyanocobalamin-nido-carborane conjugates was assessed by the unsaturated vitamin B 12 binding capacity assay. When compared with 57 Co cyanocobalamin, the biological activity of cyanocobalamin-b-nido-carborane, cyanocobalamin-d-nido-carborane, and cyanocobalamin-b-d-bis-nido-carborane conjugates were 92.93%, 35.75%, and 37.02%, respectively. These findings suggest that the 10 B cobalamin conjugates might be useful agents in treating malignant tumors via neutron capture therapy

  2. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  3. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  4. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  5. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  6. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  7. Intense correlation between brain infarction and protein-conjugated acrolein.

    Science.gov (United States)

    Saiki, Ryotaro; Nishimura, Kazuhiro; Ishii, Itsuko; Omura, Tomohiro; Okuyama, Shigeru; Kashiwagi, Keiko; Igarashi, Kazuei

    2009-10-01

    We recently found that increases in plasma levels of protein-conjugated acrolein and polyamine oxidases, enzymes that produce acrolein, are good markers for stroke. The aim of this study was to determine whether the level of protein-conjugated acrolein is increased and levels of spermine and spermidine, the substrates of acrolein production, are decreased at the locus of infarction. A unilateral infarction was induced in mouse brain by photoinduction after injection of Rose Bengal. The volume of the infarction was analyzed using the public domain National Institutes of Health image program. The level of protein-conjugated acrolein at the locus of infarction and in plasma was measured by Western blotting and enzyme-linked immunosorbent assay, respectively. The levels of polyamines at the locus of infarction and in plasma were measured by high-performance liquid chromatography. The level of protein-conjugated acrolein was greatly increased, and levels of spermine and spermidine were decreased at the locus of infarction at 24 hours after the induction of stroke. The size of infarction was significantly decreased by N-acetylcysteine, a scavenger of acrolein. It was also found that the increases in the protein-conjugated acrolein, polyamines, and polyamine oxidases in plasma were observed after the induction of stroke. The results indicate that the induction of infarction is well correlated with the increase in protein-conjugated acrolein at the locus of infarction and in plasma.

  8. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  9. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Yang, Xiao; Cui, Xiaoxian; Zhao, Li; Guo, Doudou; Feng, Lei; Wei, Shiwei; Zhao, Chao; Huang, Danfeng

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce ( Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control) for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa) significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol) and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  10. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  11. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  12. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  13. Selective binding of carotenoids with a shorter conjugated chain to the LH2 antenna complex and those with a longer conjugated chain to the reaction center from Rubrivivax gelatinosus.

    Science.gov (United States)

    Kakitani, Yoshinori; Fujii, Ritsuko; Hayakawa, Yoshihiro; Kurahashi, Masahiro; Koyama, Yasushi; Harada, Jiro; Shimada, Keizo

    2007-06-19

    Rubrivivax gelatinosus having both the spheroidene and spirilloxanthin biosynthetic pathways produces carotenoids (Cars) with a variety of conjugated chains, which consist of different numbers of conjugated double bonds (n), including the C=C (m) and C=O (o) bonds. When grown under anaerobic conditions, the wild type produces Cars for which n = m = 9-13, whereas under semiaerobic conditions, it additionally produces Cars for which n = m + o = 10 + 1, 13 + 1, and 13 + 2. On the other hand, a mutant, in which the latter pathway is genetically blocked, produces only Cars for which n = 9 and 10 under anaerobic conditions and n = 9, 10, and 10 + 1 under semianaerobic conditions. Those Cars that were extracted from the LH2 complex (LH2) and the reaction center (RC), isolated from the wild-type and the mutant Rvi. gelatinosus, were analyzed by HPLC, and their structures were determined by mass spectrometry and 1H NMR spectroscopy. The selective binding of Cars to those pigment-protein complexes has been characterized as follows. (1) Cars with a shorter conjugated chain are selectively bound to LH2 whereas Cars with a longer conjugated chain to the RC. (2) Shorter chain Cars with a hydroxyl group are bound to LH2 almost exclusively. This rule holds either in the absence or in the presence of the keto group. The natural selection of shorter chain Cars by LH2 and longer chain Cars by the RC is discussed, on the basis of the results now available, in relation to the light-harvesting and photoprotective functions of Cars.

  14. Antibody conjugate radioimmunotherapy of superficial bladder cancer

    International Nuclear Information System (INIS)

    Perkins, Alan; Hopper, Melanie; Murray, Andrea; Frier, Malcolm; Bishop, Mike

    2002-01-01

    The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C 595 (gG3) which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radio immuno conjugates of the C 595 antibody have been produced with high radiolabelling efficiency and immuno reactivity using Tc-99 m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun. (author)

  15. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  16. Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose

    Science.gov (United States)

    Aboelezz, E.; Hassan, G. M.

    2018-04-01

    The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.

  17. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  18. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists.

    Science.gov (United States)

    Moskal, Joseph R; Burch, Ronald; Burgdorf, Jeffrey S; Kroes, Roger A; Stanton, Patric K; Disterhoft, John F; Leander, J David

    2014-02-01

    The N-methyl-d-aspartate receptor-ionophore complex plays a key role in learning and memory and has efficacy in animals and humans with affective disorders. GLYX-13 is an N-methyl-d-aspartate receptor (NMDAR) glycine-site functional partial agonist and cognitive enhancer that also shows rapid antidepressant activity without psychotomimetic side effects. The authors review the mechanism of action of GLYX-13 that was investigated in preclinical studies and evaluated in clinical studies. Specifically, the authors review its pharmacology, pharmacokinetics, and drug safety that were demonstrated in clinical studies. NMDAR full antagonists can produce rapid antidepressant effects in treatment-resistant subjects; however, they are often accompanied by psychotomimetic effects that make chronic use outside of a clinical trial inpatient setting problematic. GLYX-13 appears to exert its antidepressant effects in the frontal cortex via NMDAR-triggered synaptic plasticity. Understanding the mechanistic underpinning of GLYX-13's antidepressant action should provide both novel insights into the role of the glutamatergic system in depression and identify new targets for therapeutic development.

  19. Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate process

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.

    2007-01-01

    The objective of the present investigation was to develop a technique to synthesize submicronic particles of Nb-doped strontium titanate with a homogeneous composition. This was achieved by a modified glycine-nitrate process, using Ti-lactate, Nb-oxalate, and Sr(NO3)(2) as starting materials....... A combination of both citric acid and glycine was needed in order to integrate the useful features of both complexation and combustion natures of citric acid and glycine, respectively. The amount of citric acid, glycine, and nitrates in the starting solution, as well as the source for extra nitrates...

  20. Effect of amount of glycine as fuel in obtaining nanocomposite Ni/NiO

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Quirino, M.R.; Vieira, D.A.; Gama, L.

    2010-01-01

    This paper proposes to investigate the effect of the amount of glycine in obtaining nanocomposite Ni/NiO synthesized by combustion reaction technique. The amount of glycine used was calculated on the stoichiometric composition of 50% and 100%. Characterizations by X-ray diffraction (XRD), N2 adsorption by the BET method and scanning electron microscopy (SEM) were performed with powder of Ni/NiO result. The analysis of X-ray diffraction showed the presence of crystalline NiO phase in the presence of nickel as a secondary phase, whose amount increased with the amount of glycine. Increasing the concentration of glycine also caused an increase in surface area, which ranged from 1.1 to 1.4 m 2 /g. The micrographs revealed the formation of soft agglomerates with porous appearance and easy dispersions. It can be concluded that the synthesis is effective to obtain nanosized powders. (author)

  1. Metabolism of L-leucine-U-14C in young rats fed excess glycine diets

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Tadauchi, Nobuo; Muramatsu, Keiichiro

    1975-01-01

    As reported previously, while the growth-depressing effect of excess glycine was prevented by supplementing L-arginine and L-methionine, the degradation of glycine-U-(SUP 14)C into expired carbon dioxide was not accelerated by the supplement of both amino acids. However, it was found that the incorporation of the isotope into the lipids of livers and carcasses increased in the rats fed the excess glycine diet containing both amino acids. The lipid synthesis utilizing excess glycine may be accelerated by adding both amino acids to the 10% casein diet containing excess glycine. In the present experiment, the metabolic fate of L-leucine-U-(SUP 14)C was studied with the rats fed the excess glycine diet with or without L-arginine and L-methionine. 10% casein (10C), 10% casein diet containing 7% glycine (10C7G), or 10C7G Supplemented with 1.4% L-arginine-HCL and 0.9% L-methionine (10C7GArgMet) was fed to each rat, and the diet suspension containing 4 sup(μ)Ci of L-leucine-U-(SUP 14)C per 100 g of body weight was fed forcibly after 12 hr fast. The radioactivity in expired carbon dioxide, TCA soluble fraction, protein, glycogen, lipids and urine, and the concentration of free amino acids in blood plasma, livers and urine were measured. The body weight gain and food intake of the 10C7G group were much smaller than those of the other groups. The recovery of (SUP 14)C-radioactivity in expired carbon dioxide was much lower in the 10C7GArgMet group than that of the other groups. (Kako, I.)

  2. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    Science.gov (United States)

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  3. [3H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    International Nuclear Information System (INIS)

    Benke, D.; Honer, M.; Mohler, H.; Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C.

    1999-01-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [ 3 H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [ 3 H]CGP 61594 labeled with high affinity (K D =23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [ 3 H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [ 3 H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [ 3 H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca2+-dependent outward rectification

    Directory of Open Access Journals (Sweden)

    Christian Madry

    2010-03-01

    Full Text Available Glycine has diverse functions within the mammalian central nervous system. It inhibits postsynaptic neurons via strychnine-sensitive glycine receptors (GlyRs and enhances neuronal excitation through co-activation of N-methyl-D-aspartate (NMDA receptors. Classical Ca2+-permeable NMDA receptors are composed of glycine-binding NR1 and glutamate-binding NR2 subunits, and hence require both glutamate and glycine for efficient activation. In contrast, recombinant receptors composed of NR1 and the glycine binding NR3A and/or NR3B subunits lack glutamate binding sites and can be activated by glycine alone. Therefore these receptors are also named excitatory glycine receptors. Co-application of antagonists of the NR1 glycine-binding site or of the divalent cation Zn2+ markedly enhances the glycine responses of these receptors. To gain further insight into the properties of these glycine-gated NMDA receptors, we investigated their current-voltage (I-V dependence. Whole-cell current-voltage relations of glycine currents recorded from NR1/NR3B and NR1/NR3A/NR3B expressing oocytes were found to be linear under our recording conditions. In contrast, NR1/NR3A receptors displayed a strong outwardly rectifying I-V relation. Interestingly, the voltage-dependent inward current block was abolished in the presence of NR1 antagonists, Zn2+ or a combination of both. Further analysis revealed that Ca2+ (1.8 mM present in our recording solutions was responsible for the voltage-dependent inhibition of ion flux through NR1/NR3A receptors. Since physiological concentrations of the divalent cation Mg2+ did not affect the I-V dependence, our data suggest that relief of the voltage-dependent Ca2+ block of NR1/NR3A receptors by Zn2+ may be important for the regulation of excitatory glycinergic transmission, according to the Mg2+-block of conventional NR1/NR2 NMDA receptors.

  5. Thermodynamics of proton dissociations from aqueous glycine at temperatures from 278.15 to 393.15 K, molalities from 0 to 1.0 mol . kg-1, and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of glycine, glycinium chloride, and sodium glycinate

    International Nuclear Information System (INIS)

    Ziemer, S.P.; Niederhauser, T.L.; Merkley, E.D.; Price, J.L.; Sorenson, E.C.; McRae, B.R.; Patterson, B.A.; Origlia-Luster, M.L.; Woolley, E.M.

    2006-01-01

    We have measured the densities of aqueous solutions of glycine, glycine plus equimolal HCl, and glycine plus equimolal NaOH at temperatures 278.15 ≤ T/K ≤ 368.15, molalities 0.01 ≤ m/mol . kg -1 ≤ 1.0, and at p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15 ≤ T/K ≤ 393.15 and at the same m and p using a fixed-cell differential scanning calorimeter. We used the densities to calculate apparent molar volumes V φ and the heat capacities to calculate apparent molar heat capacities C p,φ for these solutions. We used our results and values of V φ (T, m) and C p,φ (T, m) for HCl(aq), NaOH(aq), NaCl(aq) from the literature to calculate parameters for Δ r C p,m (T, m) for the first and second proton dissociations from protonated aqueous cationic glycine. We then integrated this value of Δ r C p,m (T, m) in an iterative algorithm, using Young's Rule to account for the effects of speciation and chemical relaxation on the observed V φ and C p,φ of the solutions. This procedure yielded parameters for V φ (T, m) and C p,φ (T, m) for glycinium chloride {H 2 Gly + Cl - (aq)} and sodium glycinate {Na + Gly - (aq)} which successfully modeled our observed results. We have then calculated values of Δ r C p,m , Δ r H m , Δ r V m , and pQ a for the first and second proton dissociations from protonated aqueous glycine as functions of T and m

  6. THE INCORPORATION OF RADIOACTIVITY FROM GLYCINE-C$sup 14$ BY MAMMALIAN SPERMATOZOA

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C. N.

    1962-05-15

    The metabolic pathways of glycine incorporation were investigated by biochemical and radibautographic methods. Results show that glycine is utilized hy bovine spermatoza and is incorporated into all fractions of the sperm cell. Incorporation into the nucleic acid fraction and especially into thymine indicates that there is a turnover in the desoxyribenucleic acid during storage of bovine spermatoza. (C.H.)

  7. Effect of glycine and alanine supplementation on development of cattle embryos cultured in CR1aa medium with or without cumulus cells

    Directory of Open Access Journals (Sweden)

    Kr. BREDBACKA

    2008-12-01

    Full Text Available The effect of alanine (1 mM and glycine (10 mM supplementation on bovine embryo development in vitro was investigated. Presumptive bovine zygotes, produced by in vitro maturation and insemination of oocytes, were cultured for 144 h in CR1aa medium in the absence (Experiments 1 and 2 or presence of cumulus cells (Experiment 3. In Experiment 1, the proportion of morulae and blastocysts of cleaved embryos in glycine-supplemented medium was not different from that of the control medium (34% in both mediaglycine-enriched medium (69.5 vs. 53.3, P = 0.016. In Experiment 2, addition of alanine did not improve the formation of morulae and blastocysts (13% vs. 21% in control medium, and the mean cell numbers in morulae and blastocysts were lower than those in the control group (34.3 vs. 68.7, P = 0.007. In the presence of cumulus cells, the combined supplementation of glycine and alanine increased the proportion of morulae and blastocysts over that in the control medium (31% vs. 14%, P = 0.003.;

  8. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  9. Application of Glycine, Tufool and Salicylic Acid in Sugar beet (Beta vulgaris L. under Drought Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Kheirkhah

    2016-03-01

    Full Text Available Sugar beet is one of strategic products to supply sugar in water limited areas of Iran. Thus, proper managements to supply enouph water in production of sugar beet is very important. To evaluate the effects of some anti stress substances like salicylic acid, tyuful and glycine to irritigate the effect of early water deficit on suger beet, an experiment based on randomized complete block design with three replications was carried out at the Research Farm of Fariman Sugar Factory in 2013. Treatments consisted of control (without using anti stress substances, with three concentration of salicylic acid (0.1, 0.5, and 1 mM, tyuful with three concentration (0.5, 1 and 1.5 liter per thousand and glycine with three concentration (1, 2 and 3 liters per thousand. The results showed that the effects of anti-stress materials significantly affected the sugar content, root yield, white sugar yield and harmful nitrogen. Highest sugar content (15.65%, root yield (83.82 t.ha-1 and white sugar percentage (11.15% were obtained by using tyuful 1.5 lit/1000. While, the lowest levels of these characters were obtained from control (not using anti stress substances. Maximum harmful nitrogen was produced in control treatment (4.38 and highest level of alkalinity with mean of 3.49 was observed by using 3 lit/1000 of glycine. Our results showed that all of the anti stress substances had positive effects on sugar beet under drought stress condition.

  10. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine.

    Science.gov (United States)

    Hsu, Jean W; Thame, Minerva M; Gibson, Raquel; Baker, Tameka M; Tang, Grace J; Chacko, Shaji K; Jackson, Alan A; Jahoor, Farook

    2016-03-14

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% from the first to the third trimester in pregnant adolescent girls. As serine is a primary precursor for glycine synthesis, the objective of this study was to measure and compare glycine and serine fluxes and inter-conversions in pregnant adolescent girls and adult women in the first and third trimesters. Measurements were made after an overnight fast by continuous intravenous infusions of 2H2-glycine and 15N-serine in eleven adolescent girls (17·4 (se 0·1) years of age) and in ten adult women (25·8 (se 0·5) years of age) for 4 h. Adolescent girls had significantly slower glycine flux and they made less glycine from serine in the third (Padolescent girls (P=0·04) and was significantly associated with third trimester glycine flux. These findings suggest that the pregnant adolescent cannot maintain glycine flux in late pregnancy compared with early pregnancy because of decreased synthesis from serine. It is possible that the inability to maintain glycine synthesis makes her fetus vulnerable to impaired cartilage synthesis, and thus linear growth.

  11. π-Conjugated polymer anisotropic organogel nanofibrous assemblies for thermoresponsive photonic switches.

    Science.gov (United States)

    Narasimha, Karnati; Jayakannan, Manickam

    2014-11-12

    The present work demonstrates one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor-made π-conjugated polymer anisotropic organogel. New semicrystalline segmented π-conjugated polymers are designed with rigid aromatic oligophenylenevinylene π-core and flexible alkyl chain along the polymer backbone. These polymers are found to be self-assembled as semicrystalline or amorphous with respect to the number of carbon atoms in the alkyl units. These semicrystalline polymers produce organogels having nanofibrous morphology of 20 nm thickness with length up to 5 μm. The polymer organogel is aligned in a narrow glass capillary, and this anisotropic gel device is further demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. The λ/4 photonic switching ability is found to be maximum at θ = 45° angle under the cross polarizers. The orthogonal arrangements of the gel capillaries produce dark and bright spots as on-and-off optical switches. Thermoreversibility of the polymer organogel (also its xerogel) was exploited to construct thermoresponsive photonic switches for the temperature window starting from 25 to 160 °C. The organic photonic switch concept can be adapted to large number of other π-conjugated materials for optical communication and storage.

  12. Evaluation of iodovinyl antibody conjugates: Comparison with a p-iodobenzoyl conjugate and direct radioiodination

    International Nuclear Information System (INIS)

    Hadley, S.W.; Wilbur, D.S.

    1990-01-01

    The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was ∼ a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate

  13. Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition

    International Nuclear Information System (INIS)

    Esteves, Marcos C.; Sumodjo, Paulo T.A.; Podlaha, Elizabeth J.

    2011-01-01

    Highlights: → Mixed/induced codeposition of CoNiMo from a glycine containing bath. → Deposition in a rotating cylinder Hull cell. → The mechanism is explained in term of the complex species that can be formed. - Abstract: The present study focuses on the behavior of the CoNiMo mixed anomalous/induced codeposition process, using glycine as a probe to influence the coverage of adsorbed intermediates. In order to facilitate the investigation of a wide variation of parameters the electrodeposition of the alloy films was performed using a rotating cylinder Hull cell. Alloy composition, current efficiency and partial currents of each metal were analyzed. The partial current densities and hence alloy composition was affected by the amount of glycine in the electrolyte: increasing glycine enhanced both cobalt and molybdenum deposition rates and hindered nickel deposition. It is suggested that the glycine facilitates the adsorption of M(I) adsorbed intermediates that control the anomalous and induced codeposition behavior. The current efficiency ranged from 30 up to 75% and was only slightly affected by glycine at high applied current densities. Films with a tridimensional porous structure were obtained applying current densities higher than 200 mA cm -2 , formed as a consequence of the large hydrogen evolution side reaction, presenting conditions for a novel Mo-alloy electrode structure.

  14. [{sup 3}H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Benke, D.; Honer, M.; Mohler, H. [Institute of Pharmacology, ETH and University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C. [NS Research, Novartis Pharma AG, CH-4002 Basle (Switzerland)

    1999-02-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [{sup 3}H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [{sup 3}H]CGP 61594 labeled with high affinity (K{sub D}=23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [{sup 3}H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [{sup 3}H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [{sup 3}H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  16. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine

    Science.gov (United States)

    Liao, Yi-Ting; Manson, Anthony C.; DeLyser, Michael R.; Noid, William G.; Cremer, Paul S.

    2017-01-01

    We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins. PMID:28228526

  17. Co-conjugation vis-à-vis individual conjugation of α-amylase and glucoamylase for hydrolysis of starch.

    Science.gov (United States)

    Jadhav, Swati B; Singhal, Rekha S

    2013-10-15

    Two enzymes, α-amylase and glucoamylase have been individually and co-conjugated to pectin by covalent binding. Both the enzyme systems showed better thermal and pH stability over the free enzyme system with the complete retention of original activities. Mixture of individually conjugated enzymes showed lower inactivation rate constant with longer half life than the co-conjugated enzyme system. Individually conjugated enzymes showed an increase of 56.48 kJ/mole and 38.22 kJ/mole in activation energy for denaturation than the free enzymes and co-conjugated enzymes, respectively. Km as well as Vmax of individually and co-conjugated enzymes was found to be higher than the free enzymes. SDS-polyacrylamide gel electrophoresis confirmed the formation of conjugate and co-conjugate as evident by increased molecular weight. Both the enzyme systems were used for starch hydrolysis where individually conjugated enzymes showed highest release of glucose at 60 °C and pH 5.0 as compared to free and co-conjugated enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. High efficient removal of chromium (VI) using glycine doped polypyrrole adsorbent from aqueous solution

    CSIR Research Space (South Africa)

    Ballav, N

    2012-08-01

    Full Text Available Glycine doped polypyrrole (PPy-gly) adsorbent was prepared via in situ polymerization of pyrrole (Py) monomer in the presence of glycine (gly) for the removal of Cr(VI). Formation of PPy homopolymer and inclusion of gly in the PPy matrix were...

  19. A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Lynch, Joseph W.

    2010-01-01

    Ivermectin exerts its anthelmintic effect by activating nematode Cys-loop glutamate-gated receptors. Here we show that a glycine residue at a specific transmembrane domain location is essential for high ivermectin sensitivity in both glycine- and glutamate-gated Cys-loop receptors. We also show...

  20. Application of Glycine-TTC dosimeter in gamma radiation processing facility

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mondal, S.; Kulkarni, M.S.

    2018-01-01

    Glycine-TTC dosimeter was found to have a useful dose range of 5 to 30 kGy using spectro-photometric read-out method. Potential use of this dosimeter was demonstrated by measuring dose-rate in gamma chamber GC 900. The aim of the present study was to verify the performance of this dosimeter in actual industrial processing conditions encountered in radiation processing facility such as Gamma Radiation Processing Plant for Spices (GRPPS), BRIT, Vashi. Accordingly, glycine-TTC dosimeters were irradiated along with routine dosimeter viz. ceric-cerous of GRPPS and reference standard dosimeter viz. alanine EPR

  1. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  2. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  3. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    Science.gov (United States)

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan.

    Science.gov (United States)

    Zhang, Guiqiang; Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Wang, Zhuo A; Du, Yuguang

    2018-05-04

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin⁻chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide⁻polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease.

  5. The discovery of glycine and related amino acid-based factor Xa inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kohrt, Jeffrey T.; Filipski, Kevin J.; Cody, Wayne L.; Bigge, Christopher F.; La, Frances; Welch, Kathleen; Dahring, Tawny; Bryant, John W.; Leonard, Daniele; Bolton, Gary; Narasimhan, Lakshmi; Zhang, Erli; Peterson, J. Thomas; Haarer, Staci; Sahasrabudhe, Vaishali; Janiczek, Nancy; Desiraju, Shrilakshmi; Hena, Mostofa; Fiakpui, Charles; Saraswat, Neerja; Sharma, Raman; Sun, Shaoyi; Maiti, Samarendra N.; Leadley, Robert; Edmunds, Jeremy J. (Naeja); (Pfizer)

    2010-12-03

    Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.

  6. Kinetics and mechanism of oxidation of glycine by iron(III)–1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. ... bon dioxide and ammonia with K2S2O8, KMnO4, po- ... 2. Experimental. A 1⋅0 mol dm–3 solution of glycine is prepared afresh by dissolving glycine (E-Merck) in water and its strength is determined by the acetuous perchloric.

  7. Autoantibodies in infectious mononucleosis have specificity for the glycine-alanine repeating region of the Epstein-Barr virus nuclear antigen

    Science.gov (United States)

    1987-01-01

    Viruses have been postulated to be involved in the induction of autoantibodies by: autoimmunization with tissue proteins released by virally induced tissue damage; immunization with virally encoded antigens bearing molecular similarities to normal tissue proteins; or nonspecific (polyclonal) B cell stimulation by the infection. Infectious mononucleosis (IM) is an experiment of nature that provides the opportunity for examining these possibilities. We show here that IgM antibodies produced in this disease react with at least nine normal tissue proteins, in addition to the virally encoded Epstein-Barr nuclear antigen (EBNA-1). The antibodies are generated to configurations in the glycine-alanine repeat region of EBNA-1 and are crossreactive with the normal tissue proteins through similar configurations, as demonstrated by the effectiveness of a synthetic glycine-alanine peptide in inhibiting the reactions. The antibodies are absent in preillness sera and gradually disappear over a period of months after illness, being replaced by IgG anti-EBNA-1 antibodies that do not crossreact with the normal tissue proteins but that are still inhibited by the glycine-alanine peptide. These findings are most easily explained by either a molecular mimicry model of IgM autoantibody production or by the polyclonal activation of a germline gene for a crossreactive antibody. It also indicates a selection of highly specific, non-crossreactive anti-EBNA-1 antibodies during IgM to IgG isotype switching. PMID:2435830

  8. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates.

    Science.gov (United States)

    Cole, Stephanie J; Yoon, Alexander J; Faull, Kym F; Diener, Andrew C

    2014-08-01

    Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild-type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild-type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  9. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  10. The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats

    International Nuclear Information System (INIS)

    Bunaciu, Rodica Petruta; Tharappel, Job C.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela; Robertson, Larry W.; Srinivasan, Cidambi; Spear, Brett T.; Glauert, Howard P.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague-Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O-dealkylase (BROD

  11. Fasting Serum Taurine-Conjugated Bile Acids Are Elevated in Type 2 Diabetes and Do Not Change With Intensification of Insulin

    Science.gov (United States)

    Wewalka, Marlene; Patti, Mary-Elizabeth; Barbato, Corinne; Houten, Sander M.

    2014-01-01

    Context: Bile acids (BAs) are newly recognized signaling molecules in glucose and energy homeostasis. Differences in BA profiles with type 2 diabetes mellitus (T2D) remain incompletely understood. Objective: The objective of the study was to assess serum BA composition in impaired glucose-tolerant, T2D, and normal glucose-tolerant persons and to monitor the effects of improving glycemia on serum BA composition in T2D patients. Design and Setting: This was a cross-sectional cohort study in a general population (cohort 1) and nonrandomized intervention (cohort 2). Patients and Interventions: Ninety-nine volunteers underwent oral glucose tolerance testing, and 12 persons with T2D and hyperglycemia underwent 8 weeks of intensification of treatment. Main Outcome Measures: Serum free BA and respective taurine and glycine conjugates were measured by HPLC tandem mass spectrometry. Results: Oral glucose tolerance testing identified 62 normal-, 25 impaired glucose-tolerant, and 12 T2D persons. Concentrations of total taurine-conjugated BA were higher in T2D and intermediate in impaired- compared with normal glucose-tolerant persons (P = .009). Univariate regression revealed a positive association between total taurine-BA and fasting glucose (R = 0.37, P fasting insulin (R = 0.21, P = .03), and homeostatic model assessment-estimated insulin resistance (R = 0.26, P = .01) and an inverse association with oral disposition index (R = −0.36, P fasting serum total BA or BA composition. Conclusion: Fasting taurine-conjugated BA concentrations are higher in T2D and intermediate in impaired compared with normal glucose-tolerant persons and are associated with fasting and postload glucose. Serum BAs are not altered in T2D in response to improved glycemia. Further study may elucidate whether this pattern of taurine-BA conjugation can be targeted to provide novel therapeutic approaches to treat T2D. PMID:24432996

  12. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  13. Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere-attached l-glycine.

    Science.gov (United States)

    Donmez, Soner; Arslan, Fatma; Sarı, Nurşen; Hasanoğlu Özkan, Elvan; Arslan, Halit

    2017-09-01

    In the present study, a novel biosensor that is sensitive to glucose was prepared using the microspheres modified with (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) with l-glycine. Polymeric microspheres having Schiff bases were prepared from FMPS using the glycine condensation method. Glucose oxidase enzyme was immobilized onto modified carbon paste electrode by cross-linking with glutaraldehyde. Oxidation of enzymatically produced H 2 O 2 (+0.5 V vs. Ag/AgCl) was used for determination of glucose. Optimal temperature and pH were found as 50 °C and 8.0, respectively. The glucose biosensor showed a linear working range from 5.0 × 10 -4 to 1.0 × 10 -2 M, R 2 = 0.999. Storage and operational stability of the biosensor were also investigated. The biosensor gave perfect reproducible results after 20 measurements with 3.3% relative standard deviation. It also had good storage stability. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  14. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  15. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  17. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  18. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    Science.gov (United States)

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    Science.gov (United States)

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman

    2016-08-01

    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard L; Chudnovsky, Yakov; Pacold, Michael E; Chen, Walter W; Cantor, Jason R; Shelton, Laura M; Gui, Dan Y; Kwon, Manjae; Ramkissoon, Shakti H; Ligon, Keith L; Kang, Seong Woo; Snuderl, Matija; Vander Heiden, Matthew G; Sabatini, David M

    2015-04-16

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.

  1. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  2. Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults.

    Directory of Open Access Journals (Sweden)

    Michael S Lustgarten

    Full Text Available Metabolic profiling may provide insight into biologic mechanisms related to age-related increases in regional adiposity and insulin resistance.The objectives of the current study were to characterize the association between mid-thigh intermuscular and subcutaneous adipose tissue (IMAT, SCAT, respectively and, abdominal adiposity with the serum metabolite profile, to identify significant metabolites as further associated with the homeostasis model assessment of insulin resistance (HOMA-IR, and, to develop a HOMA-IR associated metabolite predictor set representative of regional adiposity, in 73 functionally-limited (short physical performance battery ≤10; SPPB older adults (age range, 70-85 y.Fasting levels of 181 total metabolites, including amino acids, fatty acids and acylcarnitines were measured with use of an untargeted mass spectrometry-based metabolomic approach. Multivariable-adjusted linear regression was used in all analyses.Thirty-two, seven and one metabolite(s were found to be associated with IMAT, abdominal adiposity and, SCAT, respectively, including the amino acid glycine, which was positively associated with SCAT and, negatively associated with both IMAT and abdominal adiposity. Glycine and four metabolites found to be significantly associated with regional adiposity were additionally associated with HOMA-IR. Separate stepwise regression models identified glycine as a HOMA-IR associated marker of both IMAT (model R(2 = 0.51, p<0.0001 and abdominal adiposity (model R(2 = 0.41, p<0.0001.Our findings for a positive association between glycine with SCAT but, a negative association between glycine with IMAT and abdominal adiposity supports the hypothesis that SCAT metabolic processes are different from that found in other fat depots. In addition, because of the significant associations found between glycine with HOMA-IR, IMAT, SCAT and abdominal adiposity, our results suggest glycine as a serum biomarker of both insulin sensitivity

  3. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    Science.gov (United States)

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  4. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  5. Characterization and in vitro release studies of oral microbeads containing thiolated pectin–doxorubicin conjugates for colorectal cancer treatment

    Directory of Open Access Journals (Sweden)

    Kamonrak Cheewatanakornkool

    2017-11-01

    Full Text Available Novel oral microbeads were developed based on a biopolymer–drug conjugate of doxorubicin (DOX conjugated with thiolated pectin via reducible disulfide bonds. The microbeads were fabricated by ionotropic gelation with cations such as Al3+, Ca2+ and Zn2+. The results showed that using zinc acetate can produce the strongest microbeads with spherical shape. However, the microbeads prepared from thiolated pectin–DOX conjugate were very soft and irregular in shape. To produce more spherical microbeads with suitable strength, the native pectin was then added to the formulations. The particle size of the microbeads ranged from 0.87 to 1.14 mm. The morphology of the microbeads was characterized by optical and scanning electron microscopy. DOX was still in crystalline form when used in preparing the microbeads, as confirmed by powder X-ray diffractometry. Drug release profiles showed that the microbeads containing thiolated pectin–DOX conjugate exhibited reduction-responsive character; in reducing environments, the thiolated pectin–DOX conjugate could uncouple resulting from a cleavage of the disulfide linkers and consequently release the DOX. The best-fit release kinetics of the microbeads containing thiolated pectin–DOX conjugate, in the medium without reducing agent, fit the Korsmeyer–Peppas model while those in the medium with reducing agent fit a zero-order release model. These results suggested that the microbeads containing thiolated pectin–DOX conjugate may be a promising platform for cancer-targeted delivery of DOX, exploiting the reducing environment typically found in tumors.

  6. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  7. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    Science.gov (United States)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  8. Glycine as Alternative Fuel in Making Hydrotalcite Compound by Means of Combustion Method

    International Nuclear Information System (INIS)

    Shamsudin, I.K.; Helwani, Z.; Abdullah, A.Z.

    2013-01-01

    Hydrotalcite is anion compound capable of exchanging ions; it has the potential as a catalyst and adsorbent for variety of applications. Hydrotalcite can be prepared through several approaches, depending on the specific need and the characteristics of the compound. In this study, hydrotalcite was prepared through combustion method using glycine as fuel for the first time. Glycine was selected as opposed to urea so that hydrotalcite is safe for use in food processing or health. Hydrotalcite that was successfully obtained via combustion technique using glycine as fuel showed interesting characteristics. The compound demonstrated high thermal endurance and highest alkalinity, which suited the application for bio diesel production from vegetable oil and hydrogenation in the making of fats. However, the surface area was low in comparison with the same compound obtained from co-precipitation and sol-gel techniques. (author)

  9. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  10. A possibility for generation of two species of charge carriers along main-chain and side-chains for a π-conjugated polymer

    International Nuclear Information System (INIS)

    Kudo, Yuki; Kawabata, Kohsuke; Goto, Hiromasa

    2013-01-01

    Iodide doping produces charge carriers in π-conjugated polymers. Solitons can be generated in the case of polyacetylene, and polarons in the case of aromatic-type conjugated polymers. We synthesized a conjugated main-chain/side-chain polymer, which consists of polyene in the main-chain and aromatic-type conjugated units in the side-chains. Based on the SSH (Su, Schrieffer, Heeger) theoretical model of solitons in one-dimensional conjugated polymers, we experimentally carried out chemical doping to the main-chain/side-chains conjugated polymer. Generation of the charge carriers was examined by electron spin resonance spectroscopy. This study may lead to realization of a dual doping system of solitons and polarons in π-conjugation expanded to two-dimensional directions in polymers.

  11. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses.

    Directory of Open Access Journals (Sweden)

    Makoto Sumie

    Full Text Available Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord.We made patch-clamp recordings from substantia gelatinosa (SG neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli.Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine.We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous

  12. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    Science.gov (United States)

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.

  13. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  14. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  15. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    Science.gov (United States)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  16. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling.

    Science.gov (United States)

    Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J

    2013-10-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.

  17. Optical phase conjugation

    CERN Document Server

    Fisher, Robert A

    1983-01-01

    This book appears at a time of intense activity in optical phase conjugation. We chose not to await the maturation of the field, but instead to provide this material in time to be useful in its development. We have tried very hard to elucidate and interrelate the various nonlinear phenomena which can be used for optical phase conjugation.

  18. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    Science.gov (United States)

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner

  19. Melanoidins extinction coefficient in the glucose/glycine Maillard reaction

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2003-01-01

    Melanoidins (brown, nitrogenous polymers and co-polymers) are the final products of the Maillard reaction. The glucose/glycine melanoidins extinction coefficient was determined using C-14-labelled glucose at three different reaction conditions. The absorbance was measured at different wavelengths

  20. Synthesis and evaluation of 99mTc/99Tc-MAG3-biotin conjugates for antibody pretargeting strategies

    International Nuclear Information System (INIS)

    Gog, Frank B. van; Visser, Gerard W.M.; Gowrising, Radjish W.A.; Snow, Gordon B.; Dongen, Guus A.M.S. van

    1998-01-01

    Four 99m Tc-MAG3-biotin conjugates were synthesized to determine their potential use in antibody pretargeting strategies for radioimmunoscintigraphy (RIS). To use these 99m Tc-MAG3-biotin conjugates as model compounds for 186 Re-MAG3-biotin conjugates for radioimmunotherapy (RIT), nanomolar amounts of 99 Tc were added as carrier to 99m Tc. The biotin derivatives used for the preparation of the conjugates - biocytin, biotin hydrazide, biotinyl-piperazine, and biotinyl-diaminosuccinic acid - differed at the site that is regarded to be susceptible to hydrolysis by biotinidase present in human plasma. All four conjugates were produced with high radiochemical purity, were stable in PBS, and demonstrated full binding capacity to streptavidin. The 99m Tc/ 99 Tc-MAG3-labeled biotinyl-piperazine and biotinyl-diaminosuccinic acid conjugates were stable in mouse as well as human plasma, whereas the corresponding biocytin and biotin hydrazide conjugates were rapidly degraded. The biodistribution in nude mice at 30 min after injection was similar for all conjugates, and a rapid blood clearance and high intestinal excretion were both observed. It is concluded that the metabolic routing of a conjugate containing biotin and MAG3 is dominated by these two moieties. For this reason, MAG3-biotin conjugates do not seem suited for pretargeted RIT, for which quantitative and fast renal excretion is a prerequisite to minimize radiation toxicity. However, in a pretargeted RIS approach the 99m Tc-MAG3-biotin conjugates might have potential

  1. Naked-eye 3D imaging employing a modified MIMO micro-ring conjugate mirrors

    Science.gov (United States)

    Youplao, P.; Pornsuwancharoen, N.; Amiri, I. S.; Thieu, V. N.; Yupapin, P.

    2018-03-01

    In this work, the use of a micro-conjugate mirror that can produce the 3D image incident probe and display is proposed. By using the proposed system together with the concept of naked-eye 3D imaging, a pixel and a large volume pixel of a 3D image can be created and displayed as naked-eye perception, which is valuable for the large volume naked-eye 3D imaging applications. In operation, a naked-eye 3D image that has a large pixel volume will be constructed by using the MIMO micro-ring conjugate mirror system. Thereafter, these 3D images, formed by the first micro-ring conjugate mirror system, can be transmitted through an optical link to a short distance away and reconstructed via the recovery conjugate mirror at the other end of the transmission. The image transmission is performed by the Fourier integral in MATLAB and compares to the Opti-wave program results. The Fourier convolution is also included for the large volume image transmission. The simulation is used for the manipulation, where the array of a micro-conjugate mirror system is designed and simulated for the MIMO system. The naked-eye 3D imaging is confirmed by the concept of the conjugate mirror in both the input and output images, in terms of the four-wave mixing (FWM), which is discussed and interpreted.

  2. Characterization of hapten-protein conjugates: antibody generation and immunoassay development for chlorophenoxyacetic acid pesticides.

    Science.gov (United States)

    Boro, Robin C; Singh, K Vikas; Suri, C Raman

    2009-01-01

    The generation of specific and sensitive antibodies against small molecules is greatly dependent upon the characteristics of the hapten-protein conjugates. In this study, we report a new fluorescence-based method for the characterization of hapten-protein conjugates. The method is based on an effect promoted by hapten-protein conjugation density upon the fluorescence intensity of the intrinsic tryptophan chromophore molecules of the protein. The proposed methodology is applied to quantify the hapten-protein conjugation density for two different chlorophenoxyacetic acid pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenoxybutyric acid (2,4-DB), coupled to carrier protein. Highly sensitive anti-2,4-D and anti-2,4-DB antibodies were obtained using these well-characterized hapten-protein conjugates. The generated antibodies were used in an immunoassay format demonstrating inhibitory concentration (IC50) values equal to 30 and 7 ng/mL for 2,4-D and 2,4-DB, respectively. Linearity was observed in the concentration range between 0.1-500 nglmL with LODs around 4 and 3 ng/mL for 2,4-D and 2,4-DB, respectively, in standard water samples. The proposed method was successfully applied for the determination of the extent of hapten-protein conjugation to produce specific antibodies for immunoassay development against pesticides.

  3. Preparation of carbon paste electrodes including poly(styrene) attached glycine-Pt(IV) for amperometric detection of glucose.

    Science.gov (United States)

    Dönmez, Soner; Arslan, Fatma; Sarı, Nurşen; Kurnaz Yetim, Nurdan; Arslan, Halit

    2014-04-15

    In this study, a novel carbon paste electrode that is sensitive to glucose was prepared using the nanoparticles modified (4-Formyl-3-methoxyphenoxymethyl) with polystyren (FMPS) with L-Glycine-Pt(IV) complexes. Polymeric nanoparticles having Pt(IV) ion were prepared from (4-Formyl-3-methoxyphenoxymethyl) polystyren, glycine and PtCl4 by template method. Glucose oxidase enzyme was immobilized to a modified carbon paste electrode (MCPE) by cross-linking with glutaraldehyde. Determination of glucose was carried out by oxidation of enzymatically produced H2O2 at 0.5 V vs. Ag/AgCl. Effects of pH and temperature were investigated, and optimum parameters were found to be 8.0 and 55°C, respectively. Linear working range of the electrode was 5.0×10(-6)-1.0×10(-3) M, R(2)=0.997. Storage stability and operational stability of the enzyme electrode were also studied. Glucose biosensor gave perfect reproducible results after 10 measurements with 2.3% relative standard deviation. Also, it had good storage stability (gave 53.57% of the initial amperometric response at the end of 33th day). © 2013 Published by Elsevier B.V.

  4. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes.

    Science.gov (United States)

    Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar

    2018-02-01

    The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Qualidade conjugal: mapeando conceitos

    Directory of Open Access Journals (Sweden)

    Clarisse Mosmann

    2006-12-01

    Full Text Available Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais na definição da qualidade conjugal: recursos pessoais dos cônjuges, contexto de inserção do casal e processos adaptativos. Neste sentido, a qualidade conjugal é resultado do processo dinâmico e interativo do casal, razão deste caráter multidimensional.

  6. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    Science.gov (United States)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  7. 75 FR 66352 - Glycine From the People's Republic of China: Initiation of Antidumping Anti-circumvention Inquiry

    Science.gov (United States)

    2010-10-28

    ..., submission at 5 and 6. Domestic interested parties argue that an analysis of the relevant statutory factors... merchandise imported into the United States. The domestic interested parties' analysis of these factors... sieve and then repackage the processed PRC-origin glycine for export as Indian glycine. Id at 9-10...

  8. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device.

    Science.gov (United States)

    Abelha, T F; Phillips, T W; Bannock, J H; Nightingale, A M; Dreiss, C A; Kemal, E; Urbano, L; deMello, J C; Green, M; Dailey, L A

    2017-02-02

    This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG 5K -PLGA 55K ) matrix. The influence of PEG 5K -PLGA 55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG 5K -PLGA 55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.

  9. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    Science.gov (United States)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  10. The critical mission of glycine as a surfactant in the improvement of structural, morphological and optoelectronic features of CdO films

    Science.gov (United States)

    Aydin, Raşit

    2018-05-01

    The main aim of this study is to examine the effect of glycine as a surfactant agent on the physical properties of CdO films. For this purpose nanostructured CdO films with and without different glycine aggregations (0.5, 1.0 and 2.0 M %) were synthesized on glass bases by SILAR technique. The morphological, structural and optical characteristics of these films have been investigated using MM, SEM, XRD and UV-visible spectroscopy respectively. The MM results showed homogeneous and smooth all films. The SEM graphs showed that by using different glycine concentrations as surfactant, the particle thickness decreased from 366.25 nm to 241.10 nm. XRD results showed that the all CdO films with glycine display a (111) and (200) preferential orientations similar to that of the CdO film without glycine. The direct band gap energy of these films is found to increase from 2.05 to 2.35 eV with increasing the glycine concentration in the bath solution.

  11. GABA and glycine as neurotransmitters: a brief history.

    Science.gov (United States)

    Bowery, N G; Smart, T G

    2006-01-01

    gamma-Aminobutyric acid (GABA) emerged as a potentially important brain chemical just over 50 years ago, but its significance as a neurotransmitter was not fully realized until over 16 years later. We now know that at least 40% of inhibitory synaptic processing in the mammalian brain uses GABA. Establishing its role as a transmitter was a lengthy process and it seems hard to believe with our current knowledge that there was ever any dispute about its role in the mammalian brain. The detailed information that we now have about the receptors for GABA together with the wealth of agents which facilitate or reduce GABA receptor mechanisms make the prospects for further research very exciting. The emergence of glycine as a transmitter seems relatively painless by comparison to GABA. Perhaps this is appropriate for the simplest of transmitter structures! Its discovery within the spinal cord and brainstem approximately 40 years ago was followed only 2 years later by the proposal that it be conferred with 'neurotransmitter' status. It was another 16 years before the receptor was biochemically isolated. Now it is readily accepted as a vital spinal and supraspinal inhibitory transmitter and we know many details regarding its molecular structure and trafficking around neurones. The pharmacology of these receptors has lagged behind that of GABA. There is not the rich variety of allosteric modulators that we have come to readily associate with GABA receptors and which has provided us with a virtual treasure trove of important drugs used in anxiety, insomnia, epilepsy, anaesthesia, and spasticity, all stemming from the actions of the simple neutral amino acid GABA. Nevertheless, the realization that glycine receptors are involved in motor reflexes and nociceptive pathways together with the more recent advent of drugs that exhibit some subtype selectivity make the goal of designing selective therapeutic ligands for the glycine receptor that much closer.

  12. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    Directory of Open Access Journals (Sweden)

    Donna Vanhauteghem

    Full Text Available Our previous work described a clear loss of Escherichia coli (E. coli membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine and N,N-dimethylglycine (DMG, but not N,N,N-trimethylglycine (betaine, under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.

  13. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    Science.gov (United States)

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  14. Cross-Conjugated n-Dopable Aromatic Polyketone

    NARCIS (Netherlands)

    Voortman, Thomas P.; Bartesaghi, Davide; Koster, L. Jan Anton; Chiechi, Ryan C.

    2015-01-01

    This paper describes the synthesis and characterization of a high molecular weight cross-conjugated polyketone synthesized via scalable Friedel Crafts chemistry. Cross-conjugated polyketones are precursors to conjugated polyions; they become orders of magnitude more conductive after a two-electron

  15. 99mTc(CO)3-DTMA bombesin conjugates having high affinity for the GRP receptor

    International Nuclear Information System (INIS)

    Lane, Stephanie R.; Veerendra, Bhadrasetty; Rold, Tammy L.; Sieckman, Gary L.; Hoffman, Timothy J.; Jurisson, Silvia S.; Smith, Charles J.

    2008-01-01

    Introduction: Targeted diagnosis of specific human cancer types continues to be of significant interest in nuclear medicine. 99m Tc is ideally suited as a diagnostic radiometal for in vivo tumor targeting due to its ideal physical characteristics and diverse labeling chemistries in numerous oxidation states. Methods: In this study, we report a synthetic approach toward design of a new tridentate amine ligand for the organometallic aqua-ion [ 99m Tc(H 2 O) 3 (CO) 3 ] + . The new chelating ligand framework, 2-(N,N'-Bis(tert-butoxycarbonyl)diethylenetriamine) acetic acid (DTMA), was synthesized from a diethylenetriamine precursor and fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy ( 1 H and 13 C). DTMA was conjugated to H 2 N-(X)-BBN(7-14)NH 2 , where X=an amino acid or aliphatic pharmacokinetic modifier and BBN=bombesin peptide, by means of solid phase peptide synthesis. DTMA-(X)-BBN(7-14)NH 2 conjugates were purified by reversed-phase high-performance chromatography and characterized by electrospray-ionization mass spectrometry. Results: The new conjugates were radiolabeled with [ 99m Tc(H 2 O) 3 (CO) 3 ] + produced via Isolink radiolabeling kits to produce [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ]. Radiolabeled conjugates were purified by reversed-phase high-performance chromatography. Effective receptor binding behavior was evaluated in vitro and in vivo. Conclusions: [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ] conjugates displayed very high affinity for the gastrin releasing peptide receptor in vitro and in vivo. Therefore, these conjugates hold some propensity to be investigated as molecular imaging agents that specifically target human cancers uniquely expressing the gastrin releasing peptide receptor subtypes

  16. Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis

    International Nuclear Information System (INIS)

    Tao, Yu-gui; Xu, Yan-qiu; Pan, Jun; Gu, Hao; Qin, Chang-yun; Zhou, Peng

    2012-01-01

    Graphical abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. The obtained TiO 2 sample showed good photocatalytic activity of decomposition of methyl orange under sunlight. Highlights: ► Flower-like TiO 2 hierarchical spheres were synthesized by glycine assistant. ► Reaction time, temperature, solution pH and glycine dosage were studied. ► The formation of the flower-like TiO 2 spheres is an Ostwald ripening process. ► Flower-like TiO 2 showed high photocatalytic activity under sunlight. - Abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2 O 2 ). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2 .

  17. The ribose and glycine Maillard reaction in the interstellar medium ...

    Indian Academy of Sciences (India)

    WINTEC

    mechanics are briefly addressed in this work. Keywords. Density functional computational study; ribose; glycine; Maillard reaction; gaseous phase .... following the total mass balance of the reaction. Thus, ..... Jalbout A F Origin Life Evol. Biosph ...

  18. Block-conjugate-gradient method

    International Nuclear Information System (INIS)

    McCarthy, J.F.

    1989-01-01

    It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum

  19. MK-801, but not drugs acting at strychnine-insensitive glycine receptors, attenuate methamphetamine nigrostriatal toxicity.

    Science.gov (United States)

    Layer, R T; Bland, L R; Skolnick, P

    1993-10-15

    Repeated administration of methamphetamine (METH) results in damage to nigrostriatal dopaminergic neurons. Both competitive N-methyl-D-aspartate (NMDA) receptor antagonists and use-dependent cation channel blockers attenuate METH-induced damage. The objectives of the present study were to examine whether comparable reductions in METH-induced damage could be obtained by compounds acting at strychnine-insensitive glycine receptors on the NMDA receptor complex. Four injections of METH (5 mg/kg i.p.) resulted in a approximately 70.9% depletion of striatal dopamine (DA) and approximately 62.7% depletion of dihydroxyphenylacetic acid (DOPAC) content, respectively. A significant protection against METH-induced DA and DOPAC depletion was afforded by the use-dependent channel blocker, MK-801. The competitive glycine antagonist 7-chlorokynurenic acid (7-Cl-KA), the low efficacy glycine partial agonist (+)-3-amino-1-hydroxy-2-pyrrolidone ((+)-HA-966), and the high efficacy partial glycine agonist 1-aminocyclopropane-carboxylic acid (ACPC) were ineffective against METH-induced toxicity despite their abilities to attenuate glutamate-induced neurotoxicity under both in vivo and in vitro conditions. These results indicate that glycinergic ligands do not possess the same broad neuroprotective spectrum as other classes of NMDA antagonists.

  20. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  1. Thermal coupling of conjugate ionospheres and the tilt of the earth's magnetic field

    Science.gov (United States)

    Richards, P. G.; Torr, D. G.

    1986-01-01

    The effect of thermal coupling and the tilt of the earth's magnetic field on interhemispheric coupling is investigated, and, due to a longitudinal displacement in the conjugate points, it is found that the tilt significantly effects the upward flow of H(+) flux such that the maximum upward flux can occur several hours before local sunrise. Heating from the conjugate atmosphere, which accompanies solar illumination in one hemisphere, produces electron temperatures 1000 K higher in the dark than in the sunlit hemisphere, and the morning upward H(+) fluxes in the dark ionosphere are as large as the daytime fluxes. A strong symmetry is also noted in the overall behavior of the H(+) fluxes due to the differing day lengths at the conjugate points, which are separated by 15 deg in latitude. Electron temperatures in the conjugate hemispheres are found to be strongly coupled above the F region peaks, though in the vicinity of the peaks near 250 km, the coupling is weak during the day and strong during the night.

  2. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity.

    Science.gov (United States)

    Goldberg, Deborah S; Vijayalakshmi, Nirmalkumar; Swaan, Peter W; Ghandehari, Hamidreza

    2011-03-30

    Poly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.5 PAMAM dendrimer-SN38 conjugates with ester-linked glycine and β-alanine spacers for their suitability in oral therapy of hepatic colorectal cancer metastases. G3.5-βAlanine-SN38 was mostly stable while G3.5-Glycine-SN38 showed 10%, 20%, and 56% SN38 release in simulated gastric, intestinal and liver environments for up to 6, 24 and 48 hours, respectively. Short-term treatment of Caco-2 cells with G3.5-SN38 conjugates did not reduce cell viability, while comparable concentrations of SN38 caused significant cytotoxicity. G3.5-Glycine-SN38 and G3.5-βAlanine-SN38 showed IC₅₀ values of 0.60 and 3.59 μM, respectively, in HT-29 cells treated for 48 h, indicating the efficacy of the drug delivery system in colorectal cancer cells with longer incubation time. Both conjugates increased SN38 transepithelial transport compared to the free drug. Transport of G3.5-Glycine-SN38 was highly concentration-dependent whereas transport of G3.5-βAlanine-SN38 was concentration-independent, highlighting the influence of drug loading and spacer chemistry on transport mechanism. Together these results show that PAMAM dendrimers have the potential to improve the oral bioavailability of potent anti-cancer drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Formation of apolar ecdysteroid conjugates by ovaries of the house cricket Acheta domesticus in vitro.

    OpenAIRE

    Whiting, P; Dinan, L

    1988-01-01

    The newly laid eggs of the house cricket Acheta domesticus contain apolar ecdysteroid conjugates, which we have hypothesized to be ecdysone long-chain fatty acyl esters [Whiting & Dinan (1988) J. Insect Physiol., in the press]. The ovaries of mature adult female A. domesticus in vitro convert [3H]ecdysone into apolar conjugates identical with those found in newly laid eggs. Comparison of the radioactive metabolites produced on incubation of [3H]ecdysone with various organs of adult female A. ...

  4. Synthetic and mechanistic insight into nosylation of glycine residues

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Sølling, Theis Ivan; Strømgaard, Kristian

    2013-01-01

    The Fukuyama-Mitsunobu alkylation procedure is widely used to introduce alkyl substituents to amino groups in general and N-alkylation of peptides in particular. Here we have investigated the procedure in detail for N-alkylation of peptides with N-terminal glycine residues, based on the observati...

  5. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    A series of aliphatic and aromatic aldehydes and ketones were reduced using plant cell preparations of Glycine max seeds (soybean). The biotransformation of five aromatic aldehydes in water, at room temperature afforded the corresponding alcohols in excellent yields varying from 89 to 100%. Two prochiral aromatic ...

  6. Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat

    International Nuclear Information System (INIS)

    Takada, M.; Hattori, T.

    1987-01-01

    Autoradiographic retrograde tracing techniques with radioactive transmitters were used to analyse the identity of a putative transmitter in the rat pallidosubthalamic (GP-STN) pathway. One to 2 hours after the stereotaxic injection of 3 H-glycine restricted to the STN, a large number of neuronal somata were radiolabeled in the GP. No comparable labeling was observed following the injection of 3 H-gamma-aminobutyric acid ( 3 H-GABA) into the same nucleus even with survival times as long as 6 hours. Specifically, no significant somatic labeling was detected either in the GP or in the caudoputamen (CPU). Only when 3 H-GABA was injected into the substantia nigra did CPU and GP neurons become labeled. On the contrary, STN neuronal somata were invariably labeled 6 hours after the intrapallidal injection of 3 H-GABA, whereas no perikaryal labeling was observed in the STN after 3 H-glycine injection into the GP. The perikaryal labeling was prevented in all cases by intraventricular administration of colchicine 1 day before the isotope injections. The observations suggest that 3 H-glycine was preferentially transported retrogradely through the GP-STN pathway, and 3 H-GABA through the STN-GP projection. In view of the recent controversy on the role of GABA as a putative transmitter of the GP-STN projection, we now propose glycine as an alternative transmitter candidate of these critically situated neurons in the basal ganglia

  7. L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats.

    Science.gov (United States)

    de Aguiar Picanço, Etiene; Lopes-Paulo, Francisco; Marques, Ruy G; Diestel, Cristina F; Caetano, Carlos Eduardo R; de Souza, Mônica Vieira Mano; Moscoso, Gabriela Mendes; Pazos, Helena Maria F

    2011-05-01

    Radiotherapy is widely used for cancer treatment but has harmful effects. This study aimed to assess the effects of L-arginine and glycine supplementation on the colon wall of rats submitted to abdominal irradiation. Forty male Wistar rats were randomly divided into four groups: I-healthy, II-irradiated with no amino acid supplementation, III-irradiated and supplemented with L-arginine, and IV-irradiated and supplemented with glycine. The animals received supplementation for 14 days, with irradiation being applied on the eighth day of the experiment. All animals underwent laparotomy on the 15th day for resection of a colonic segment for stereologic analysis. Parametric and nonparametric tests were used for statistical analysis, with the level of significance set at p ≤0.05. Stereologic analysis showed that irradiation induced a reduction of the total volume of the colon wall of group II and III animals compared to healthy controls, but not of group IV animals supplemented with glycine. The mucosal layer of the irradiated animals of all groups was reduced compared to healthy group I animals, but supplementation with L-arginine and glycine was effective in maintaining the epithelial surface of the mucosal layer. The present results suggest that glycine supplementation had a superior effect on the irradiated colon wall compared to L-arginine supplementation since it was able to maintain the thickness of the wall and the epithelial surface of the mucosa, whereas L-arginine maintained the partial volume of the epithelium and the epithelial surface, but not the total volume of the intestinal wall.

  8. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells

    Science.gov (United States)

    Pramod, P. S.; Shah, Ruchira; Jayakannan, Manickam

    2015-04-01

    The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells.The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the

  9. Transtuzumab-conjugated liposome-coated fluorscent magnetic namoparticles to target breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Mi Jung; Lee, Hak Jong; Hwang, Sung Il; Yun, Bo La; Kim, Sun Mi [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Yoon, Young Il; Kwon, Yong Soo [Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of); Yoon, Tae Jong [NanoBio Materials Chemistry Lab., Dept. of Applied Bioscience, CHA University, Pocheon (Korea, Republic of)

    2014-08-15

    To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNPm-SiO{sub 2}]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNPm-SiO{sub 2}]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer. The physiochemical characteristics of Lipo[MNPm-SiO{sub 2}] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNPm-SiO{sub 2}] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, Herceptin)-conjugated Lipo[MNPm-SiO{sub 2}] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging. We obtained uniformly-sized and evenly distributed Lipo[MNPm-SiO{sub 2}] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNPm-SiO{sub 2}] was observed by in vitro fluorescence and MR imaging. Trastuzumab-conjugated Lipo[MNPm-SiO{sub 2}] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer.

  10. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  11. Influence of foliar application of glycine betaine on gas exchange characteristics of cotton (gossypium Hirsutum L.)

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Din, S.U.

    2007-01-01

    Water is the most limiting factor in cotton production and numerous efforts are being made to improve crop drought tolerance. A field study was conducted with the objectives to determine the effects of different application rates of glycine betaine in field grown cotton at Central Cotton Research Institute, Multan. Four levels of glycine betaine (0.0, 1.0, 3.0 and 6.0 kg ha-1) were applied at three physiological growth stages i.e. at squaring, first flower and peak flowering. Cotton cultivar CIM-448 was used as test crop. Results showed that crop sprayed with glycine betaine at the rate of 6.0 kg ha-1 maintained 120.0, 62.1, 69.7 and 35.5 percent higher net CO/sub 2/ assimilation rate (PN), transpiration rate (E), stomatal resistance (gs) and water use efficiency (PN/E), respectively over that of untreated crop. Crop spayed with glycine betaine at peak flowering stage maintained higher PN, E, gs and PN/E compared to at other stages of growth. (author)

  12. Synthesis and Characterization of Chromium (III) Complexes with L-Glutamic Acid, Glycine and LCysteine

    OpenAIRE

    Kun Sri Budiasih; Chairil Anwar; Sri Juari Santosa; Hilda Ismail

    2013-01-01

    Some Chromium (III) complexes were synthesized with three amino acids: L Glutamic Acid, Glycine, and L-cysteine as the ligands, in order to provide a new supplement containing Cr(III) for patients with type 2 diabetes mellitus. The complexes have been prepared by refluxing a mixture of Chromium(III) chloride in aqueous solution with L-glutamic acid, Glycine, and L-cysteine after pH adjustment by sodium hydroxide. These complexes were characterized by Infrared and Uv-Vis s...

  13. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

    Science.gov (United States)

    Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao

    2018-06-05

    A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

  14. The simultaneous detection and quantification of p-aminobenzoic acid and its phase 2 biotransformation metabolites in human urine using LC-MS/MS.

    Science.gov (United States)

    Nortje, Carla; Jansen van Rensburg, Peet; Cooke, Cecile; Erasmus, Elardus

    2015-01-01

    p-Aminobenzoic acid (PABA) can be used as a probe substance to investigate glycine conjugation, a reaction of phase 2 biotransformation. An LC-MS/MS method for simultaneous quantification of PABA and its metabolites from human urine was developed and validated. The metabolites can be quantified with acceptable precision and accuracy directly from human urine samples after ingestion of 550 mg PABA. The developed LC-MS/MS assay is to our knowledge the first method available for the simultaneous quantification of PABA and its glycine conjugation metabolites in human urine and provides important quantitative data for studies of this phase 2 biotransformation pathway.

  15. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  16. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress

    OpenAIRE

    Bilal, Saqib; Khan, Abdul L.; Shahzad, Raheem; Asaf, Sajjad; Kang, Sang-Mo; Lee, In-Jung

    2017-01-01

    This study investigated the Ni-removal efficiency of phytohormone-producing endophytic fungi Penicillium janthinellum, Paecilomyces formosus, Exophiala sp., and Preussia sp. Among four different endophytes, P. formosus LHL10 was able to tolerate up to 1 mM Ni in contaminated media as compared to copper and cadmium. P. formosus LHL10 was further assessed for its potential to enhance the phytoremediation of Glycine max (soybean) in response to dose-dependent increases in soil Ni (0.5, 1.0, and ...

  17. Research study of conjugate materials; Conjugate material no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  18. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B

    1981-11-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked inhibition of many non-Legionellaceae bacteria. The selectivity of the medium was subsequently improved by the incorporation of vancomycin (5 microgram/ml) and polymyxin B (100 U/ml). This selective medium, glycine-vancomycin-polymyxin B agar, should facilitate the recovery of Legionellaceae from environmental sources.

  19. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna

    2011-05-01

    Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  20. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  1. Misonidazole-glutathione conjugates in CHO cells

    International Nuclear Information System (INIS)

    Varghese, A.J.; Whitmore, G.F.

    1984-01-01

    Misonidazole, after reduction to the hydroxylamine derivative, reacts with glutathione (GSH) under physiological conditions. The reaction product has been identified as a mixture of two isomeric conjugates. When water soluble extracts of CHO cells exposed to misonidazole under hypoxic conditions are subjected to HPLC analysis, misonidazole derivatives, having the same chromatographic properties as the GSH-MISO conjugates, were detected. When CHO cells were incubated with misonidazole in the presence of added GSH, a substantial increase in the amount of the conjugate was detected. When extracts of CHO cells exposed to misonidazole under hypoxia were subsequently exposed to GSH, an increased formation of the conjugate was observed. A rearrangement product of the hydroxylamine derivative of misonidazole is postulated as the reactive intermediate responsible for the formation of the conjugate

  2. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  3. Effect of Maillard Conjugates on the Physical Stability of Zein Nanoparticles Prepared by Liquid Antisolvent Coprecipitation.

    Science.gov (United States)

    Davidov-Pardo, Gabriel; Joye, Iris J; Espinal-Ruiz, Mauricio; McClements, David Julian

    2015-09-30

    Protein nanoparticles are often not very stable in a complex food matrix because they are primarily stabilized by electrostatic repulsion. In this study, we envisaged the stabilization of zein nanoparticles through Maillard conjugation reactions with polysaccharides of different molecular mass. Zein nanoparticles (0.5% w/v) containing resveratrol (0.025% w/v grape skin extract) were produced by liquid antisolvent precipitation and coated with Maillard conjugates (MC) of sodium caseinate and different molecular mass carbohydrates during particle production. Zein nanoparticles coated with conjugated polysaccharides of 2.8, 37, and 150 kDa had diameters of 198 ± 5, 176 ± 6, and 180 ± 3 nm, respectively. The encapsulation efficiency (∼83%) was not affected by conjugation, but the conjugates significantly improved particle stability against changes in pH (2.0-9.0), CaCl2 addition (up to 100 mM), and heat treatment (30-90 °C, 30 min). Zein nanoparticles coated by MC may therefore be suitable delivery systems for hydrophobic bioactive molecules in a wide range of commercial products.

  4. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  5. Poly(2-oxazoline)-Antibiotic Conjugates with Penicillins.

    Science.gov (United States)

    Schmidt, Martin; Bast, Livia K; Lanfer, Franziska; Richter, Lena; Hennes, Elisabeth; Seymen, Rana; Krumm, Christian; Tiller, Joerg C

    2017-09-20

    The conjugation of antibiotics with polymers is rarely done, but it might be a promising alternative to low-molecular-weight derivatization. The two penicillins penicillin G (PenG) and penicillin V (PenV) were attached to the end groups of different water-soluble poly(2-oxazoline)s (POx) via their carboxylic acid function. This ester group was shown to be more stable against hydrolysis than the β-lactam ring of the penicillins. The conjugates are still antimicrobially active and up to 20 times more stable against penicillinase catalyzed hydrolysis. The antibiotic activity of the conjugates against Staphylococcus aureus in the presence of penicillinase is up to 350 times higher compared with the free antibiotics. Conjugates with a second antimicrobial function, a dodecyltrimethylammonium group (DDA-X), at the starting end of the PenG and PenV POx conjugates are more antimicrobially active than the conjugates without DDA-X and show high activity in the presence of penicillinase. For example, the conjugates DDA-X-PEtOx-PenG and DDA-X-PEtOx-PenV are 200 to 350 times more active against S. aureus in the presence of penicillinase and almost as effective as the penicillinase stable cloxacollin (Clox) under these conditions. These conjugates show even greater activity compared to cloxacollin without this enzyme present. Further, both conjugates kill Escherichia coli more effectively than PenG and Clox.

  6. The radiation stability of glycine in solid CO2 - In situ laboratory measurements with applications to Mars

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-05-01

    The detection of biologically important, organic molecules on Mars is an important goal that may soon be reached. However, the current small number of organic detections at the martian surface may be due to the harsh UV and radiation conditions there. It seems likely that a successful search will require probing the subsurface of Mars, where penetrating cosmic rays and solar energetic particles dominate the radiation environment, with an influence that weakens with depth. Toward the goal of understanding the survival of organic molecules in cold radiation-rich environments on Mars, we present new kinetics data on the radiolytic destruction of glycine diluted in frozen carbon dioxide. Rate constants were measured in situ with infrared spectroscopy, without additional sample manipulation, for irradiations at 25, 50, and 75 K with 0.8-MeV protons. The resulting half-lives for glycine in CO2-ice are compared to previous results for glycine in H2O-ice and show that glycine in CO2-ice is much less stable in a radiation environment, with destruction rate constants ∼20-40 times higher than glycine in H2O-ice. Extrapolation of these results to conditions in the martian subsurface results in half-lives estimated to be less than 100-200 Myr even at depths of a few meters.

  7. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    Science.gov (United States)

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  8. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    Science.gov (United States)

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  9. Carbon K-shell photoionization of CO: Molecular frame angular distributions of normal and conjugate shakeup satellites

    International Nuclear Information System (INIS)

    Jahnke, T.; Titze, J.; Foucar, L.; Wallauer, R.; Osipov, T.; Benis, E.P.; Jagutzki, O.; Arnold, W.; Czasch, A.; Staudte, A.; Schoeffler, M.; Alnaser, A.; Weber, T.; Prior, M.H.; Schmidt-Boecking, H.; Doerner, R.

    2011-01-01

    We have measured the molecular frame angular distributions of photoelectrons emitted from the Carbon K-shell of fixed-in-space CO molecules for the case of simultaneous excitation of the remaining molecular ion. Normal and conjugate shakeup states are observed. Photoelectrons belonging to normal Σ-satellite lines show an angular distribution resembling that observed for the main photoline at the same electron energy. Surprisingly a similar shape is found for conjugate shakeup states with Π-symmetry. In our data we identify shake rather than electron scattering (PEVE) as the mechanism producing the conjugate lines. The angular distributions clearly show the presence of a Σ shape resonance for all of the satellite lines.

  10. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  11. Production of Conjugated Linoleic and Conjugated α-Linolenic Acid in a Reconstituted Skim Milk-Based Medium by Bifidobacterial Strains Isolated from Human Breast Milk

    Directory of Open Access Journals (Sweden)

    María Antonia Villar-Tajadura

    2014-01-01

    Full Text Available Eight bifidobacterial strains isolated from human breast milk have been tested for their abilities to convert linoleic acid (LA and α-linolenic acid (LNA to conjugated linoleic acid (CLA and conjugated α-linolenic acid (CLNA, respectively. These bioactive lipids display important properties that may contribute to the maintenance and improvement human health. Three selected Bifidobacterium breve strains produced CLA from LA and CLNA from LNA in MRS (160–170 and 210–230 μg mL−1, resp. and, also, in reconstituted skim milk (75–95 and 210–244 μg mL−1, resp.. These bifidobacterial strains were also able to simultaneously produce both CLA (90–105 μg mL−1 and CLNA (290–320 μg mL−1 in reconstituted skim milk. Globally, our findings suggest that these bifidobacterial strains are potential candidates for the design of new fermented dairy products naturally containing very high concentrations of these bioactive lipids. To our knowledge, this is the first study describing CLNA production and coproduction of CLA and CLNA by Bifidobacterium breve strains isolated from human milk in reconstituted skim milk.

  12. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  13. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  14. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  15. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    Full Text Available Brain strokes are widely spread all over the world and are among the most dangerous for the population. Often it leads to death, complete or partial loss of ability to work. The correction of imbalance of Excitatory and inhibitory neurotransmitter systems by activation of natural inhibitory processes is a promising direction of primary neuroprotection in cerebral ischemia. Particular attention is drawn to the natural inhibitory neurotransmitter – glycine and its role in the mechanisms of acute cerebral ischemia. There are data on the ability of the thiotriazoline antioxidant to potentiate the therapeutic effect of neurometabolic cerebroprotectors. Therefore, the creation of new combined preparation based on glycine with thiotriazoline is important today. Objective: to study the structure, and estimate the energy of formation and geometric characteristics of the intermolecular hydrogen bonds for complexes which are formed with glycine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Method of calculation. The initial approximation to the structure of the complexes was obtained with the help of molecular docking procedure using the AutoDock Vina program. The resulting three-component complexes were preliminarily optimized by the semiempirical PM7 method, taking into account the outward influences, which was simulated by the COSMO method. The calculations were carried out using the MOPAC2012 program. The complexes were optimized using the density functional method with the empirical dispersion correction B97-D3/SVP+COSMO (Water using geometric correction for the incompleteness of the gCP basic set. A more accurate calculation of the solvation energy was carried out by SMD method. Calculations by the density functional method were carried out using the ORCA 3.0.3 program. The energy of formation of complexes in solution was calculated as the difference between the free Gibbs energies of the solvated complex and its individual solvated

  16. Synthesis and characterization of nanoparticles conjugated tannase and using it for enhancement of antibacterial activity of tannase produced by Serratia marcescens.

    Science.gov (United States)

    Nsayef Muslim, D Sahira; Abbas Dham, Ziyad; J Mohammed, D Nadheer

    2017-09-01

    Fourteen isolates of Serratia marcescens were collected from patients suffering from septicemia. All theseisolates revealed different levels in tannase production. Tannase was partially purified from Serratia marcescens b9 by precipitation method at 70% saturation of ammonium sulfate. Au, Pt, SnO 2 and SiO 2 nanoparticles were prepared by laser ablation and examined by transmission electron microscopy (TEM), X-ray diffraction pattern and UV-Visible absorption spectroscopy. Conjugation of SiO 2 nanoparticles to tannase by feeding and pulses methods were prepared and characterized by TEM, X-ray diffraction pattern and UV-Visible spectrum. SiO 2 nanoparticles conjugated partially purified tannase by feeding showed the higher effectiveness and higher significant level against all tested UTI causing in comparison with ciprofloxacin antibiotic, SiO 2 nanoparticles alone, partially purified tannase alone and partially purified tannase by pulses. So that we can conclude that feeding method was the best method for enhancement partially purified tannase activity to maximum level thus SiO 2 nanoparticles conjugated partially purified tannase may be a useful antibacterial agent for the treatment of urinary tract infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitani, Takahiko; Kadota, Hajime

    1976-01-01

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  18. SHMT2 drives glioma cell survival in the tumor microenvironment but imposes a dependence on glycine clearance

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P.; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard; Chudnovsky, Yakov; Pacold, Michael E.; Chen, Walter W.; Cantor, Jason R.; Shelton, Laura M.; Gui, Dan Y.; Kwon, Manjae; Ramkissoon, Shakti H.; Ligon, Keith L.; Kang, Seong Woo; Snuderl, Matija; Heiden, Matthew G. Vander; Sabatini, David M.

    2015-01-01

    SUMMARY Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumor microenvironment1–3. Here, we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischemic zones of gliomas. In human glioblastoma multiforme (GBM), mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumor regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumor environment, but also renders these cells sensitive to glycine cleavage system inhibition. PMID:25855294

  19. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    Science.gov (United States)

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  20. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    International Nuclear Information System (INIS)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-01-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH . radical and H 3 O + surface defects. The coupling of incoming CO molecules with the surface OH . radicals on the ice clusters yields the formation of the COOH . radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol –1 and –22 kcal mol –1 , respectively. The COOH . radicals couple with incoming NH=CH 2 molecules (experimentally detected in the ISM) to form the NHCH 2 COOH . radical glycine through energy barriers of 12 kcal mol –1 , exceedingly high at ISM cryogenic temperatures. Nonetheless, when H 3 O + is present, one proton may be barrierless transferred to NH=CH 2 to give NH 2 =CH 2 + . This latter may react with the COOH . radical to give the NH 2 CH 2 COOH +. glycine radical cation which can then be transformed into the NH 2 CHC(OH) 2 +. species (the most stable form of glycine in its radical cation state) or into the NH 2 CHCOOH . neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H 3 O

  1. Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-ice Dust Particles

    Science.gov (United States)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH• radical and H3O+ surface defects. The coupling of incoming CO molecules with the surface OH• radicals on the ice clusters yields the formation of the COOH• radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol-1 and -22 kcal mol-1, respectively. The COOH• radicals couple with incoming NH=CH2 molecules (experimentally detected in the ISM) to form the NHCH2COOH• radical glycine through energy barriers of 12 kcal mol-1, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H3O+ is present, one proton may be barrierless transferred to NH=CH2 to give NH2=CH2 +. This latter may react with the COOH• radical to give the NH2CH2COOH+• glycine radical cation which can then be transformed into the NH2CHC(OH)2 +• species (the most stable form of glycine in its radical cation state) or into the NH2CHCOOH• neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H3O+ ions to facilitate chemical

  2. Preparation, structural analysis and bioactivity of ribonuclease A-albumin conjugate: tetra-conjugation or PEG as the linker.

    Science.gov (United States)

    Li, Chunju; Lin, Qixun; Wang, Jun; Shen, Lijuan; Ma, Guanghui; Su, Zhiguo; Hu, Tao

    2012-12-31

    Ribonuclease A (RNase A) is a therapeutic enzyme with cytotoxic action against tumor cells. Its clinical application is limited by the short half-life and insufficient stability. Conjugation of albumin can overcome the limitation, whereas dramatically decrease the enzymatic activity of RNase A. Here, three strategies were proposed to prepare the RNase A-bovine serum albumin (BSA) conjugates. R-SMCC-B (a conjugate of four RNase A attached with one BSA) and R-PEG-B (a mono-conjugate) were prepared using Sulfo-SMCC (a short bifunctional linker) and mal-PEG-NHS (a bifunctional PEG), respectively. Mal-PEG-NHS and hexadecylamine (HDA) were used to prepare the mono-conjugate, R-HDA-B, where HDA was adopted to bind BSA. The PEG linker can elongate the proximity between RNase A and BSA. In contrast, four RNase A were closely located on BSA in R-SMCC-B. R-SMCC-B showed the lowest K(m) and the highest relative enzymatic activity and k(cat)/K(m) in the three conjugates. Presumably, the tetravalent interaction of RNase A in R-SMCC-B can increase the binding affinity to its substrate. In addition, the slow release of BSA from R-HDA-B may increase the enzymatic activity of R-HDA-B. Our study is expected to provide strategies to develop protein-albumin conjugate with high therapeutic potential. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  4. Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI, Cu(II and Zn(II—Hydrazide Derivative of Glycine-Grafted Chitosan

    Directory of Open Access Journals (Sweden)

    Mohammed F. Hamza

    2017-05-01

    Full Text Available A new magnetic functionalized derivative of chitosan is synthesized and characterized for the sorption of metal ions (environmental applications and metal valorization. The chemical modification of the glycine derivative of chitosan consists of: activation of the magnetic support with epichlorohydrin, followed by reaction with either glycine to produce the reference material (i.e., Gly sorbent or glycine ester hydrochloride, followed by hydrazinolysis to synthesize the hydrazide functionalized sorbent (i.e., HGly sorbent. The materials are characterized by titration, elemental analysis, FTIR analysis (Fourrier-transform infrared spectrometry, TGA analysis (thermogravimetric analysis and with SEM-EDX (scanning electron microscopy coupled to energy dispersive X-ray analysis. The sorption performances for U(VI, Cu(II, and Zn(II are tested in batch systems. The sorption performances are compared for Gly and HGly taking into account the effect of pH, the uptake kinetics (fitted by the pseudo-second order rate equation, and the sorption isotherms (described by the Langmuir and the Sips equations. The sorption capacities of the modified sorbent reach up to 1.14 mmol U g−1, 1.69 mmol Cu g−1, and 0.85 mmol Zn g−1. In multi-metal solutions of equimolar concentration, the chemical modification changes the preferences for given metal ions. Metal ions are desorbed using 0.2 M HCl solutions and the sorbents are re-used for five cycles of sorption/desorption without significant loss in performances.

  5. Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males

    Directory of Open Access Journals (Sweden)

    Orem Ihsan

    2009-04-01

    Full Text Available Abstract Background Recent research has indicated that short term administration of glycine propionyl-L-carnitine (GPLC significantly elevates levels of nitric oxide metabolites at rest and in response to reactive hyperaemia. However, no scientific evidence exists that suggests such supplementation enhances exercise performance in healthy, trained individuals. The purpose of this study was to examine the effects of GPLC on the performance of repeated high intensity stationary cycle sprints with limited recovery periods in resistance trained male subjects. Methods In a double-blind, placebo-controlled, cross-over design, twenty-four male resistance trained subjects (25.2 ± 3.6 years participated in two test sessions separated by one week. Testing was performed 90 minutes following oral ingestion of either 4.5 grams GPLC or 4.5 grams cellulose (PL, in randomized order. The exercise testing protocol consisted of five 10-second Wingate cycle sprints separated by 1-minute active recovery periods. Peak (PP and mean values (MP of sprint power output and percent decrement of power (DEC were determined per bout and standardized relative to body masss. Heart rate (HR and blood lactate (LAC were measured prior to, during and following the five sprint bouts. Results Significant main effects (p Conclusion These findings indicate that short-term oral supplementation of GPLC can enhance peak power production in resistance trained males with significantly less LAC accumulation.

  6. Measurement and modelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine

    Energy Technology Data Exchange (ETDEWEB)

    Dehghani, M.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ; Modarress, H. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ]. E-mail: hmodares@aut.ac.ir; Monirfar, M. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2006-08-15

    Electrochemical measurements were made on (H{sub 2}O + NaBr + K{sub 3}PO{sub 4} + glycine) mixtures at T = 298.15 K by using ion selective electrodes. The mean ionic activity coefficients of NaBr at molality 0.1 were determined at five K{sub 3}PO{sub 4} molalities (0.01, 0.03, 0.05, 0.07, and 0.1) mol . kg{sup -1}. The activity coefficients of glycine were evaluated from mean ionic activity coefficients of NaBr. The modified Pitzer equation was used to model the experimental data.

  7. Chemical de-conjugation for investigating the stability of small molecule drugs in antibody-drug conjugates.

    Science.gov (United States)

    Chen, Tao; Su, Dian; Gruenhagen, Jason; Gu, Christine; Li, Yi; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-05

    Antibody-drug conjugates (ADCs) offer new therapeutic options for advanced cancer patients through precision killing with fewer side effects. The stability and efficacy of ADCs are closely related, emphasizing the urgency and importance of gaining a comprehensive understanding of ADC stability. In this work, a chemical de-conjugation approach was developed to investigate the in-situ stability of the small molecule drug while it is conjugated to the antibody. This method involves chemical-mediated release of the small molecule drug from the ADC and subsequent characterization of the released small molecule drug by HPLC. The feasibility of this technique was demonstrated utilizing a model ADC containing a disulfide linker that is sensitive to the reducing environment within cancer cells. Five reducing agents were screened for use in de-conjugation; tris(2-carboxyethyl) phosphine (TCEP) was selected for further optimization due to its high efficiency and clean impurity profile. The optimized de-conjugation assay was shown to have excellent specificity and precision. More importantly, it was shown to be stability indicating, enabling the identification and quantification of the small molecule drug and its degradation products under different formulation pHs and storage temperatures. In summary, the chemical de-conjugation strategy demonstrated here offers a powerful tool to assess the in-situ stability of small molecule drugs on ADCs and the resulting information will shed light on ADC formulation/process development and storage condition selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Implications of Partial Conjugation of Whey Protein Isolate to Durian Seed Gum through Maillard Reactions: Foaming Properties, Water Holding Capacity and Interfacial Activity

    Directory of Open Access Journals (Sweden)

    Bahareh Tabatabaee Amid

    2013-12-01

    Full Text Available This paper deals with the conjugation of durian seed gum (DSG with whey protein isolate (WPI through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin. The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05 improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums.

  9. Control of Helical Chirality of Ferrocene-Dipeptide Conjugates by the Secondary Structure of Dipeptide Chains.

    Science.gov (United States)

    Moriuchi, Toshiyuki; Nishiyama, Taiki; Nobu, Masaki; Hirao, Toshikazu

    2017-09-18

    Controlling helical chirality and creating protein secondary structures in cyclic/acyclic ferrocene-dipeptide bioorganometallic conjugates were achieved by adjusting the conformational flexibility of the dipeptide chains. In systems reported to date, the helical chirality of a conjugate was determined by the absolute configuration of the adjacent amino acid reside. In contrast, it was possible to induce both M- and P-helical chirality, even when the configuration of the adjacent amino acid was the same. It is particularly interesting to note that M-helical chirality was produced in a cyclic ferrocene-dipeptide conjugate composed of the l-Ala-d-Pro-cystamine-d-Pro-l-Ala dipeptide sequence (1), in which a type II β-turn-like secondary structure was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  11. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  12. Bethe-Salpeter equation for non-self conjugate mesons in a power-law potential

    International Nuclear Information System (INIS)

    Ikhdair, S.M.

    1992-07-01

    We develop an approach to the solution of the spinless Bethe-Salpeter equation for the different-mass case. Although the calculations are developed for spin-zero particles in any arbitrary spherically symmetric potential, the non-Coulombic effective power-law potential is used as a kernel to produce the spin-averaged bound states of the non-self-conjugate mesons. The analytical formulae are also applicable to the self-conjugate mesons in the equal-mass case. The flavor-independent case is investigated in this work. The calculations are carried out to the third-order correction of the energy series. Results are consistent with those obtained before. (author). 14 refs, 1 tab

  13. Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    associated with the closed-flip transition in the alpha1-glycine receptor. We employed voltage-clamp fluorometry to compare ligand-binding domain conformational changes induced by the following agonists, listed from highest to lowest affinity and efficacy: glycine > beta-alanine > taurine. Voltage...

  14. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting.

    Science.gov (United States)

    Pan, Lucy Yan; Salas-Solano, Oscar; Valliere-Douglass, John F

    Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in C H 2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.

  15. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  16. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    Science.gov (United States)

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  17. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  18. Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane Helix

    DEFF Research Database (Denmark)

    Högel, Philipp; Götz, Alexander; Kuhne, Felix

    2018-01-01

    Flexible transmembrane helices frequently support the conformational transitions between different functional states of membrane proteins. While proline is well known to distort and destabilize transmembrane helices, the role of glycine is still debated. Here, we systematically investigated the e...

  19. Organometallic B12-DNA conjugate

    DEFF Research Database (Denmark)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander

    2014-01-01

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...

  20. The Conjugate Acid-Base Chart.

    Science.gov (United States)

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  1. REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy ...

    African Journals Online (AJOL)

    REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy. AOK Johnson. Abstract. Conjugated hyperbilirubinaemia exists when the conjugated serum bilirubin level is more than 2 mg/dl or more than 20 per cent of the total serum bilirubin. It is always pathological in early infancy. The causes are many and diverse ...

  2. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  3. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    International Nuclear Information System (INIS)

    Liao Maofu; Kielian, Margaret

    2005-01-01

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion

  4. Application of optical phase conjugation to plasma diagnostics (invited)

    International Nuclear Information System (INIS)

    Jahoda, F.C.; Anderson, B.T.; Forman, P.R.; Weber, P.G.

    1985-01-01

    Several possibilities for plasma diagnostics provided by optical phase conjugation and, in particular, self-pumped phase conjugation in barium titanate (BaTiO 3 ) are discussed. These include placing a plasma within a dye laser cavity equipped with a phase conjugate mirror for intracavity absorption measurements, time differential refractometry with high spatial resolution, and simplified real-time holographic interferometry. The principles of phase conjugation with particular reference to photorefractive media and the special advantages of self-pumped phase conjugation are reviewed prior to the discussion of the applications. Distinctions are made in the applications between those for which photorefractive conjugators are essential and those for which they only offer experimental simplification relative to other types of phase conjugators

  5. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  6. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Rimola, Albert; Sodupe, Mariona [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ugliengo, Piero, E-mail: albert.rimola@uab.cat [Dipartimento di Chimica, NIS Centre of Excellence and INSTM (Materials and Technology National Consortium), UdR Torino, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  7. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  8. Evaluation of glutamic acid and glycine as sources of nonessential amino acids for lake trout (Salvelinus namaycush) and rainbow trout (Salmo gairdnerii)

    Science.gov (United States)

    Hughes, S.G.

    1985-01-01

    1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.

  9. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  10. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles

    Science.gov (United States)

    Yuan, Youyong; Min, Yuanzeng; Hu, Qinglian; Xing, Bengang; Liu, Bin

    2014-09-01

    The design of nanoplatforms with target recognition and near-infrared (NIR) laser photoregulated chemo- and photodynamic therapy is highly desirable but remains challenging. In this work, we have developed such a system by taking advantage of a conjugated polyelectrolyte (CPE)-drug conjugate and upconversion nanoparticles (UCNPs). The poly(ethylene glycol) (PEG) grafted CPE not only serves as a polymer matrix for UCNP encapsulation, but also as a fluorescent imaging agent, a photosensitizer as well as a carrier for chemotherapeutic drug doxorubicin (DOX) through a UV-cleavable ortho-nitrobenzyl (NB) linker. Upon 980 nm laser irradiation, the UCNPs emit UV and visible light. The up-converted UV light is utilized for controlled drug release through the photocleavage of the ortho-nitrobenzyl linker, while the up-converted visible light is used to initiate the polymer photosensitizer to produce reactive oxygen species (ROS) for photodynamic therapy. The NIR photo-regulated UCNP@CPE-DOX showed high efficiency of ROS generation and controlled drug release in cancer cells upon single laser irradiation. In addition, the combination therapy showed enhanced inhibition of U87-MG cell growth as compared to sole treatments. As two light sources with different wavelengths are always needed for traditional photodynamic therapy and photoregulated drug release, the adoption of UCNPs as an NIR light switch is highly beneficial to combined chemo- and photodynamic therapy with enhanced therapeutic effects.

  11. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration.

    Science.gov (United States)

    Edgington, Robert; Spillane, Katelyn M; Papageorgiou, George; Wray, William; Ishiwata, Hitoshi; Labarca, Mariana; Leal-Ortiz, Sergio; Reid, Gordon; Webb, Martin; Foord, John; Melosh, Nicholas; Schaefer, Andreas T

    2018-01-15

    Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.

  12. Methotrexate and epirubicin conjugates as potential antitumor drugs

    Directory of Open Access Journals (Sweden)

    Szymon Wojciech Kmiecik

    2017-07-01

    Full Text Available Introduction: The use of hybrid molecules has become one of the most significant approaches in new cytotoxic drug design. This study describes synthesis and characterization of conjugates consisting of two well-known and characterized chemotherapeutic agents: methotrexate (MTX and epirubicin (EPR. The synthesized conjugates combine two significant anticancer strategies: combinatory therapy and targeted therapy. These two drugs were chosen because they have different mechanisms of action, which can increase the anticancer effect of the obtained conjugates. MTX, which is a folic acid analog, has high cytotoxic properties and can serve as a targeting moiety that can reach folate receptors (FRs overexpresing tumor cells. Combination of nonselective drugs such as EPR with MTX can increase the selectivity of the obtained conjugates, while maintaining the high cytotoxic properties.Materials and methods: Conjugates were purified by RP-HPLC and the structure was investigated by MS and MS/MS methods. The effect of the conjugates on proliferation of LoVo, LoVo/Dx, MCF-7 and MV-4-11 human cancer cell lines was determined by SRB or MTT assay.Results: The conjugation reaction results in the formation of monosubstituted (α, γ and disubstituted MTX derivatives. In vitro proliferation data demonstrate that the conjugates synthesized in our study show lower cytotoxic properties than both chemotherapeutics used alone.Discussion: Epirubicin cytotoxicity was not observed in obtained conjugates. Effective drugs release after internalization needs further investigation.

  13. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  14. The comparative analysis of antiparkinsonian activity of glycine combined with amantadine in conditions of changing neurosynaptic transmission

    Directory of Open Access Journals (Sweden)

    Mamchur V.I.

    2017-10-01

    Full Text Available Parkinson's disease is traditionally viewed as a disease which affects the human motor sphere. Besides motor manifestations in the clinical picture of the disease, non-motor manifestations with dementia as the most common are present. The purpose of the work – experimental evaluation of the possible antiparkinsonian action of glycine in terms of experimental models of Parkinson's disease equivalents (akinetic-rigid and tremor forms on the background of antiparkinsonian correction by amantadine. Methods: catalepsy model (inhibition of dopaminergic transmission, equivalents of hypokinesia and rigidity states and model of arekolyn tremor (activation of cholinergic transmission that corresponds to parkinsonian tremor on the background of amantadine administration (50 mg/kg, glycine (100 mg/kg and 200 mg/kg and their combined introduction. The research results show a positive dynamic in combined using of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg, which was is determined by the low percentage of animals with symptoms of catalepsy (50-70% with evaluation criteria of 0.5-1.8 points with maximum possible 6 points. Similar results were obtained in terms of activation of the cholinergic system (arekolyn tremor. Glycine at a dose of 100 mg/kg and 200 mg/kg facilitated to optimization of antitremor action of amantadine, that is registered in increased latent period of tremor, reduction of its duration and intensity attenuation almost by 2,1 times in comparison with indicators of the control group. Thus, studied combinations of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg are promising in studying of their influence on dementia in Parkinson's syndrome, and this study will be continued.

  15. Effect of surface structure and wettability of DLC and N-DLC thin films on adsorption of glycine

    International Nuclear Information System (INIS)

    Ahmed, Mukhtar H.; Byrne, John A.

    2012-01-01

    Diamond-like carbon (DLC) is known to have excellent biocompatibility. Various samples of DLC and nitrogen-doped DLC thin films (N-DLC) were deposited onto silicon substrates using plasma-enhanced chemical vapour deposition (PECVD). Subsequently, the adsorption of amino acid glycine onto the surfaces of the thin films was investigated to elucidate the mechanisms involved in protein adhesion. The physicochemical characteristics of the surfaces, before and after adsorption of glycine, were investigated using Fourier transfer infrared (FTIR), Raman spectroscopy, spectroscopic ellipsometry (SE) and contact angle (θ). The Raman study highlighted decrease slightly in the ID/IG ratio at low levels of N (5.4 at.%), whilst increasing the nitrogen dopant level (>5.4 at.%) resulted in a increase of the ID/IG ratio, and the FTIR band at related to C=N. Following exposure to glycine solutions, the presence of Raman bands at 1727 cm -1 and 1200 cm -1 , and FTIR bands at 1735 cm -1 indicates that the adsorption of glycine onto the surfaces has taken place. These results which obtained from SE and surface free energy, show that low levels of nitrogen doping in DLC enhances the adsorption of the amino acid, while, increased doping led to a reduced adsorption, as compared to undoped DLC. Glycine is bound to the surface of the DLC films via both de-protonated carboxyl and protonated amino groups while, in the case of N-DLC gylcine was bound to the surface via anionic carboxyl groups and the amino group did not interact strongly with the surface. Doping of DLC may allow control of protein adsorption to the surface.

  16. Distribución e identificación de especies hospedantes de Heterodera glycines Ichinohe raza 3 en el Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Varón de Agudelo Francia

    1988-06-01

    Full Text Available Se dividió la parte plana del Valle del Cauca en tres zonas (norte, centro y sur, habiéndose visitado 33 fincas. En la zona norte las malezas con mayor porcentaje de frecuencia y distribución en los cultivos de soya fueron Digitaria horizontalis, Echinochloa colonum y Leptochloa filiformis; en la zona centro Ipomoea hirta, Amaranthus dubius y Echinochloa colonum y en la zona sur predominaron Ipomoea hirta, Portulaca oleracea Cyperus rotundus. Los análisis de muestras de suelo y raíces indicaron que H. glycines se encuentra distribuido en todo el Valle del Cauca, presentando la zona sur (Candelaria, Palmira y Puerto Tejada las mayores poblaciones. Entre las especies evaluadas (malezas, cultivos, leguminosas forrajeras y silvestres, solamente Glycine max y Phaseolus vulgaris se consideraron como susceptibles a H. glycines raza 3. y P. angularis y P. multiflora permitieron muy poca infección y multiplicación del nemátodo.A nematode recognition of Heterodera glycines was focused on crops of soybean. Valle del Cauca was divided in three zones (northen, central and southern and 33 farms were visited. The results of the analysis on samples of soils and roots showe that Heterodera glycines is scattered throughout Valle del Cauca, being the southern zone (Palmira, Candelaria and Puerto Tejada the one having the highest standards in nematode population. Weeds showing a greater frequency percentage were : Digitaria horizontalis, Echinochloa colonum and Leptochloa filiformis, in the northen zone; Ipomoea hirta, Amaranthus dubius and Echinochloa colonum, in the central zone, and Ipomoea hirta, Portulaca oleracea and Cyperus rotundus, in the southern zone , From among the whole species evaluated (weeds, crops, leguminous a n d fodder plants, Glycine max and Phaseolus vulgaris were considered to be susceptible to H. Glycines race 3. Phaseolus angularis y P. multiflora let low population levels.

  17. Quantitative determination of glycine in aqueous solution using glutamate dehydrogenase-immobilized glyoxal agarose beads.

    Science.gov (United States)

    Keskin, Semra Yilmazer; Keskin, Can Serkan

    2014-01-01

    In this study, an enzymatic procedure for the determination of glycine (Gly) was developed by using a column containing immobilized glutamate dehydrogenase (GDH) on glyoxal agarose beads. Ammonia is produced from the enzymatic reactions between Gly and GDH with NAD(+) in phosphate buffer medium. The indophenol blue method was used for ammonia detection based on the spectrophotometric measurements of blue-colored product absorbing at 640 nm. The calibration graph is linear in the range of 0.1-10 mM of Gly concentrations. The effect of pH, temperature, and time interval was studied to find column stability, and also the interference effects of other amino acids was investigated. The interaction between GDH and glyoxal agarose beads was analyzed by Fourier transform infrared (FTIR) spectroscopy. The morphology of the immobilized and non-immobilized agarose beads were characterized by atomic force microscopy (AFM).

  18. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  19. Life Cycle, Ultrastructure, and Host Specificity of the North American Isolate of Pasteuria that Parasitizes the Soybean Cyst Nematode, Heterodera glycines.

    Science.gov (United States)

    Atibalentja, N; Jakstys, B P; Noel, G R

    2004-06-01

    Light and transmission electron microscopy were used to investigate the life cycle and ultrastructure of an undescribed isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. Studies also were conducted to determine the host specificity of Pasteuria. The endospores that attached to the cuticle of second-stage juveniles (J2) of H. glycines in soil did not germinate until the encumbered nematodes invaded soybean roots. Thereafter, the bacterium developed and completed its life cycle only in females. The stages of endosporogenesis were typical of Pasteuria spp. The mature endospore, like that of P. nishizawae, the only other Pasteuria known to infect H. glycines, produces an epicortical layer that completely surrounds the cortex, an outer spore coat that tapers progressively from the top to the base of the central body, and a double basal adhesion layer. However, subtle differences exist between the Pasteuria from North America and P. nishizawae with regard to size of the central body, nature and function of the mesosomes observed in the earlier stages of endosporogenesis, and appearance of the fibers lining the basal adhesion layer and the exosporium of the mature endospore. Endospores of the North American Pasteuria attached to J2 of H. schachtii, H. trifolii, and H. lespedezae but not to Meloidogyne arenaria race 1, Tylenchorhynchus nudus, and Labronema sp. Results from this study indicate that the North American Pasteuria is more similar to P. nishizawae than to any other known member of the genus. Additional evidence from comparative analysis of 16S rDNA sequences is needed to clarify whether these two Pasteuria belong to the same species.

  20. Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Yu Omori

    2015-03-01

    Full Text Available This study was conducted to identify the characteristic pharmacological features of GT-0198 that is phenoxymethylbenzamide derivatives. GT-0198 inhibited the function of glycine transporter 2 (GlyT2 in human GlyT2-expressing HEK293 cells and did not bind various major transporters or receptors of neurotransmitters in a competitive manner. Thus, GT-0198 is considered to be a comparatively selective GlyT2 inhibitor. Intravenous, oral, and intrathecal injections of GT-0198 decreased the pain-related response in a model of neuropathic pain with partial sciatic nerve ligation. This result suggests that GT-0198 has an analgesic effect. The analgesic effect of GT-0198 was abolished by the intrathecal injection of strychnine, a glycine receptor antagonist. Therefore, GT-0198 is considered to exhibit its analgesic effect via the activation of a glycine receptor by glycine following presynaptic GlyT2 inhibition in the spinal cord. In summary, GT-0198 is a structurally novel GlyT2 inhibitor bearing a phenoxymethylbenzamide moiety with in vivo efficacy in behavioral models of neuropathic pain.

  1. Synthesis, Crystal Structure of a Novel Mn Complex with Nicotinoyl-Glycine

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-12-01

    Full Text Available A novel manganese complex, C16H26MnN4O12, was synthesized by the reaction of nicotinoyl-glycine and NaOH in an ethanol/water solution and structurally characterized by elemental analysis, UV-vis spectrum, IR spectrum and single-crystal X-ray diffraction analysis. The crystal of the complex belongs to the triclinic space group P1 with a = 7.8192(16 Å, b = 8.8800(18 Å, c = 9.0142(18 Å, α = 83.14(3°, β = 65.27(3°, γ = 81.67(3°, V = 516.3(2 Å3, Z = 1, Dx = 1.542 mg·m−3, μ = 0.66 mm−1, F(000 = 271, and final R1 = 0.0381, ωR2 = 0.0964. The nicotinoyl-glycine ligand acts as a bridging ligand to connect the manganese ions by the hydrogen interactions; thus, the complex expands into a 3D supramolecular net structure.

  2. Thermal and Electrical Properties of Polyaniline-glycine Composites

    Science.gov (United States)

    Mathavan, T.; Umapathy, S.; Jothirajan, M. A.; Vivekanandam, T. S.; Okram, G. S.

    2011-07-01

    Polymer-amino acid composites were prepared by combining the synthesized polyaniline and glycine in solid state. The samples were characterized by modulated DSC and AFM. Modulated DSC thermogram showed the structural changes occurred while composite formation. D.C electrical conductivity measurements were carried out on the samples in the temperature range of 310 K-85 K by using two-probe method. Analysis of D.C conductivity results revealed that the conductivity was governed by Mott's 2-dimensional variable range hopping.

  3. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate.

    Directory of Open Access Journals (Sweden)

    Sujiet Puthenveetil

    Full Text Available Antibody drug conjugates (ADCs are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.

  4. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate.

    Science.gov (United States)

    Puthenveetil, Sujiet; He, Haiyin; Loganzo, Frank; Musto, Sylvia; Teske, Jesse; Green, Michael; Tan, Xingzhi; Hosselet, Christine; Lucas, Judy; Tumey, L Nathan; Sapra, Puja; Subramanyam, Chakrapani; O'Donnell, Christopher J; Graziani, Edmund I

    2017-01-01

    Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.

  5. Peptide dendrimer-conjugates of ketoprofen: Synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery.

    Science.gov (United States)

    Hegde, Aswathi R; Rewatkar, Prarthana V; Manikkath, Jyothsna; Tupally, Karnaker; Parekh, Harendra S; Mutalik, Srinivas

    2017-05-01

    The aim of this study was to evaluate skin delivery of ketoprofen when covalently tethered to mildly cationic (2 + or 4 + ) peptide dendrimers prepared wholly by solid phase peptide synthesis. The amino acids glycine, arginine and lysine formed the dendrimer with ketoprofen tethered either to the lysine side-arm (N ε ) or periphery of dendrimeric branches. Passive diffusion, sonophoresis- and iontophoresis-assisted permeation of each peptide dendrimer-drug conjugate (D1-D4) was studied across mouse skin, both in vitro and in vivo. In addition, skin toxicity of dendrimeric conjugates when trialed with iontophoresis or sonophoresis was also evaluated. All dendrimeric conjugates improved aqueous solubility at least 5-fold, compared to ketoprofen alone, while also exhibiting appreciable lipophilicity. In vitro passive diffusion studies revealed that ketoprofen in its native form was delivered to a greater extent, compared with a dendrimer-conjugated form at the end of 24h (Q 24h (μg/cm 2 ): ketoprofen (68.06±3.62)>D2 (49.62±2.92)>D4 (19.20±0.89)>D1 (6.45±0.40)>D3 (2.21±0.19). However, sonophoresis substantially increased the skin permeation of ketoprofen-dendrimer conjugates in 30min (Q 30min (μg/cm 2 ): D4 (122.19±7.14)>D2 (66.74±3.86)>D1 (52.10±3.22)>D3 (41.66±3.22)) although ketoprofen alone again proved superior (Q 30min : 167.99±9.11μg/cm 2 ). Next, application of iontophoresis was trialed and shown to considerably increase permeation of dendrimeric ketoprofen in 6h (Q 6h (μg/cm 2 ): D2 (711.49±39.14)>D4 (341.23±16.43)>D3 (89.50±4.99)>D1 (50.91±2.98), with a Q 6h value of 96.60±5.12μg/cm 2 for ketoprofen alone). In vivo studies indicated that therapeutically relevant concentrations of ketoprofen could be delivered transdermally when iontophoresis was paired with D2 (985.49±43.25ng/mL). Further, histopathological analysis showed that the dendrimeric approach was a safe mode as ketoprofen alone. The present study successfully demonstrates that

  6. Confirmation of hydrazone formation in HYNIC-peptide conjugate preparation, and its hydrolysis during labeling with 99mTc

    International Nuclear Information System (INIS)

    Gandomkar, M.; Najafi, R.; Shafiei, M.; Ebrahimi, S.E.S.

    2007-01-01

    Because of its monodenticity, 6-hydrazinopyridine-3-carboxylic acid (HYNIC) is of interest as a bifunctional chelator for labeling peptide with 99m Tc. Here, we confirm the formation of hydrazone in HYNIC-conjugated peptide. The preparative HPLC was used to purify the HYNIC conjugated somatostatin-based peptide and the result showed two peaks, even after two consecutive purifications. Analysis of these peaks by mass spectrometry indicated the presence of hydrazone, produced during preparation conjugate. Further, we have shown that presence of hydrazone really does not matter because under 99m Tc-labeling conditions, hydrazone is hydrolyzed back to HYNIC that then chelates 99m Tc. A HYNIC-peptide conjugate freeze-dried kit was also prepared in a mildly acidic or neutral condition with a final pH of 6-7. The kit was then labeled by 99m Tc and incubated in 100 dec. C for 10 min, and a labeling yield of >95% was obtained

  7. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study

    International Nuclear Information System (INIS)

    Chamberland, David L; Agarwal, Ashish; Kotov, Nicholas; Fowlkes, J Brian; Carson, Paul L; Wang Xueding

    2008-01-01

    Monitoring of anti-rheumatic drug delivery in experimental models and in human diseases would undoubtedly be very helpful for both basic research and clinical management of inflammatory diseases. In this study, we have investigated the potential of an emerging hybrid imaging technology-photoacoustic tomography-in noninvasive monitoring of anti-TNF drug delivery. After the contrast agent composed of gold nanorods conjugated with Etanercept molecules was produced, ELISA experiments were performed to prove the conjugation and to show that the conjugated anti-TNF-α drug was biologically active. PAT of ex vivo rat tail joints with the joint connective tissue enhanced by intra-articularly injected contrast agent was conducted to examine the performance of PAT in visualizing the distribution of the gold-nanorod-conjugated drug in articular tissues. By using the described system, gold nanorods with a concentration down to 1 pM in phantoms or 10 pM in biological tissues can be imaged with good signal-to-noise ratio and high spatial resolution. This study demonstrates the feasibility of conjugating TNF antagonist pharmaceutical preparations with gold nanorods, preservation of the mechanism of action of TNF antagonist along with preliminary evaluation of novel PAT technology in imaging optical contrast agents conjugated with anti-rheumatic drugs. Further in vivo studies on animals are warranted to test the specific binding between such conjugates and targeted antigen in joint tissues affected by inflammation

  8. Study of different coupling agents in the conjugation of a V3-based synthetic MAP to carrier proteins.

    Science.gov (United States)

    Cruz, L J; Iglesias, E; Aguilar, J C; Quintana, D; Garay, H E; Duarte, C; Reyes, O

    2001-09-01

    The conjugation of synthetic peptides to carrier proteins is a widely used method for immunological studies. Different coupling agents have been described to form the conjugate with carrier proteins. In this paper, we demonstrate that the antibody response toward V3-based synthetic MAPs derived from HIV-1, JY1 isolate, conjugated to two different carrier proteins using either m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) or beta-maleimidopropionic acid N-hydroxysuccinimide ester (MPS), or succinic anhydride (SA) show different behaviors. An excellent anti-JY1 response without a strong response to the coupling agent is observed in the case of succinic anhydride spacer. In contrast, MBS produces total abrogation of the antibody response with a high response toward the coupling agent.

  9. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans

    DEFF Research Database (Denmark)

    Orskov, C; Rabenhøj, L; Wettergren, A

    1994-01-01

    Using specific radioimmunoassays, we studied the occurrence of amidated and glycine-extended glucagon-like peptide I (GLP-I) molecules in the human small intestine and pancreas and in the circulation system in response to a breakfast meal. Through gel permeation chromatography of extracts...... plasma were 7 +/- 1 and 6 +/- 1 pM, respectively (n = 6). In response to a breakfast meal, the concentration of amidated GLP-I rose significantly amounting to 41 +/- 5 pM 90 min after the meal ingestion, whereas the concentration of glycine-extended GLP-I only rose slightly to a maximum of 10 +/- 1 p...

  10. Effect of Chelator Conjugation Level and Injection Dose on Tumor and Organ Uptake of 111In Labeled MORAb-009, an Anti-mesothelin Antibody

    Science.gov (United States)

    Shin, I. S.; Lee, S.-M.; Kim, H. S.; Yao, Z.; Regino, C.; Sato, N.; Cheng, K. T.; Hassan, R.; Campo, M. F.; Albone, E. F.; Choyke, P. L.; Pastan, I.; Paik, C. H.

    2012-01-01

    Introduction Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin and the effect of MORAb dose on the biodistribution of 111In labeled MORAb-009. Methods We used nude mice bearing A431/K5 tumor as a mesothelin-positive tumor model and A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5, and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed-mesothelin in the circulation, the biodistribution studies were performed after the i.v. co-injection of the 111In labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses, 0.2, 2, and 30 μg of MORAb-009. Results The tumor uptake in A431/K5 tumor was 4 times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin-mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in biodistribution of the 111In label. The 111In labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake, and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30 μg dose produced higher tumor uptake than the 0.2 and 2 μg doses whereas the 30 μg dose produced lower liver and spleen uptakes than the 0.2 μg dose. Conclusion This study

  11. In Vitro Evaluation of Third Generation PAMAM Dendrimer Conjugates

    Directory of Open Access Journals (Sweden)

    Mohammad Najlah

    2017-10-01

    Full Text Available The present study compares the use of high generation G3 and low generation G0 Polyamidoamine (PAMAM dendrimers as drug carriers of naproxen (NAP, a poorly water soluble drug. Naproxen was conjugated to G3 in different ratios and to G0 in a 1:1 ratio via a diethylene glycol linker. A lauroyl chain (L, a lipophilic permeability enhancer, was attached to G3 and G0 prodrugs. The G3 and G0 conjugates were more hydrophilic than naproxen as evaluated by the measurement of partitioning between 1-octanol and a phosphate buffer at pH 7.4 and pH 1.2. The unmodified surface PAMAM-NAP conjugates showed significant solubility enhancements of NAP at pH 1.2; however, with the number of NAP conjugated to G3, this was limited to 10 molecules. The lactate dehydrogenase (LDH assay indicated that the G3 dendrimer conjugates had a concentration dependent toxicity towards Caco-2 cells. Attaching naproxen to the surface of the dendrimer increased the IC50 of the resulting prodrugs towards Caco-2 cells. The lauroyl G3 conjugates showed the highest toxicity amongst the PAMAM dendrimer conjugates investigated and were significantly more toxic than the lauroyl-G0-naproxen conjugates. The permeability of naproxen across monolayers of Caco-2 cells was significantly increased by its conjugation to either G3 or G0 PAMAM dendrimers. Lauroyl-G0 conjugates displayed considerably lower cytotoxicity than G3 conjugates and may be preferable for use as a drug carrier for low soluble drugs such as naproxen.

  12. Radioimmunoassay for the determination of free and conjugated abscisic acid

    International Nuclear Information System (INIS)

    Weiler, E.W.

    1979-01-01

    The characterization and application of a radioimmunoassay specific for free and conjugated abscisic acid (ABA) is reported, The antibodies produced against a bovine serum albumin-(+-)-ABA conjugate have a high affinity for ABA (Ka= 1.3 x 10 9 l mol -1 ). Trans, trans-ABA and related compounds, such as xanthoxin, phaseic acid, dihydrophaseic acid, vomifoliol or violaxanthin do not interfere with the assay. The detection limit of this method is 0.25 x 10 -12 mol ABA, the measuring range extends to 20 x 10 -12 mol, and average recoveries are 103%. Because of the high specificity of this immunoassay, no extract purification steps are required prior to analysis. Several hundred plants can be analyzed per day in a semi-automatic assay performance. ABA has been detected in all higher plant families examined, but was absent in the blue-green alga, Spirulina platensis, the liverwort Marchantia polymorpha, and two species of fungi. (orig.) [de

  13. Heat Effect of the Protonation of Glycine and the Enthalpies of Resolvation of Participating Chemical Species in Water-Dimethylsulfoxide Solvent Mixtures

    Science.gov (United States)

    Isaeva, V. A.; Sharnin, V. A.

    2018-02-01

    Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.

  14. Preclinical evaluation of a Haemophilus influenzae type b conjugate vaccine process intended for technology transfer.

    Science.gov (United States)

    Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans

    2014-01-01

    Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes

  15. Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.

    Science.gov (United States)

    Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen

    2016-08-12

    The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.

  16. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...

  17. Bioanalytical method development and validation for the determination of glycine in human cerebrospinal fluid by ion-pair reversed-phase liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Jiang, Jian; James, Christopher A; Wong, Philip

    2016-09-05

    A LC-MS/MS method has been developed and validated for the determination of glycine in human cerebrospinal fluid (CSF). The validated method used artificial cerebrospinal fluid as a surrogate matrix for calibration standards. The calibration curve range for the assay was 100-10,000ng/mL and (13)C2, (15)N-glycine was used as an internal standard (IS). Pre-validation experiments were performed to demonstrate parallelism with surrogate matrix and standard addition methods. The mean endogenous glycine concentration in a pooled human CSF determined on three days by using artificial CSF as a surrogate matrix and the method of standard addition was found to be 748±30.6 and 768±18.1ng/mL, respectively. A percentage difference of -2.6% indicated that artificial CSF could be used as a surrogate calibration matrix for the determination of glycine in human CSF. Quality control (QC) samples, except the lower limit of quantitation (LLOQ) QC and low QC samples, were prepared by spiking glycine into aliquots of pooled human CSF sample. The low QC sample was prepared from a separate pooled human CSF sample containing low endogenous glycine concentrations, while the LLOQ QC sample was prepared in artificial CSF. Standard addition was used extensively to evaluate matrix effects during validation. The validated method was used to determine the endogenous glycine concentrations in human CSF samples. Incurred sample reanalysis demonstrated reproducibility of the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  19. Tetrafullerene conjugates for all-organic photovoltaics

    NARCIS (Netherlands)

    Fernández, G.; Sánchez, L.; Veldman, D.; Wienk, M.M.; Atienza, C.M.; Guldi, D.M.; Janssen, R.A.J.; Martin, N.

    2008-01-01

    The synthesis of two new tetrafullerene nanoconjugates in which four C60 units are covalently connected through different -conjugated oligomers (oligo(p-phenylene ethynylene) and oligo(p-phenylene vinylene)) is described. The photovoltaic (PV) response of these C60-based conjugates was evaluated by

  20. Novel Aflatoxin Derivatives and Protein Conjugates

    Directory of Open Access Journals (Sweden)

    Reinhard Niessner

    2007-03-01

    Full Text Available Aflatoxins, a group of structurally related mycotoxins, are well known for their toxic and carcinogenic effects in humans and animals. Aflatoxin derivatives and protein conjugates are needed for diverse analytical applications. This work describes a reliable and fast synthesis of novel aflatoxin derivatives, purification by preparative HPLC and characterisation by ESI-MS and one- and two-dimensional NMR. Novel aflatoxin bovine serum albumin conjugates were prepared and characterised by UV absorption and MALDI-MS. These aflatoxin protein conjugates are potentially interesting as immunogens for the generation of aflatoxin selective antibodies with novel specificities.

  1. Development and Characterization of a Camelid Single Domain Antibody-Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Uger, Marni D; Wisniewski, Pawel; Chao, Heman

    2017-01-01

    Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody-urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MS E peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[( N -maleimidopropionamido)-diethyleneglycol] ester (SM(PEG) 2 ), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol

  2. Development and Characterization of a Camelid Single Domain Antibody–Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2

    Directory of Open Access Journals (Sweden)

    Baomin Tian

    2017-08-01

    Full Text Available Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs. In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21 and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody–urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MSE peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3 pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[(N-maleimidopropionamido-diethyleneglycol] ester (SM(PEG2, which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis

  3. Structure Property Relationships in Organic Conjugated Systems

    OpenAIRE

    O'Neill, Luke

    2008-01-01

    A series of pi(п) conjugated oligomers containing 1 to 6 monomer units were studied by absorption and photoluminescence spectroscopies. The results are discussed and examined with regard to the variation of the optical properties with the increase of effective conjugation length. It was found that there was a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length. The relationships are in good agreement with the si...

  4. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    Science.gov (United States)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  5. Bacterially produced recombinant influenza vaccines based on virus-like particles.

    Directory of Open Access Journals (Sweden)

    Andrea Jegerlehner

    Full Text Available Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.

  6. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B 2 ...

    African Journals Online (AJOL)

    The combined effects of zinc, gibberellic acid, vitamin B2, amino acids (glycine and L-leucine) on pigment production were evaluated in a liquid culture of Monascus purpureus. In this study, response surface design was used to optimize each parameter. The data were analyzed using Minitab 14 software. Five parameters ...

  7. Effects of a glycine transporter-1 inhibitor and D-serine on MK-801-induced immobility in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Koike, Hiroyuki; Kinoshita, Kohnosuke; Kambe, Daiji; Kaku, Ayaka; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2015-02-01

    Glutamatergic dysfunction, particularly the hypofunction of N-methyl-D-aspartate (NMDA) receptors, is involved in the pathophysiology of schizophrenia. The positive modulation of the glycine site on the NMDA receptor has been proposed as a novel therapeutic approach for schizophrenia. However, its efficacy against negative symptoms, which are poorly managed by current medications, has not been fully addressed. In the present study, the effects of the positive modulation of the glycine site on the NMDA receptor were investigated in an animal model of negative symptoms of schizophrenia. The subchronic administration of MK-801 increased immobility in the forced swimming test in rats without affecting spontaneous locomotor activity. The increased immobility induced by MK-801 was attenuated by the atypical antipsychotic clozapine but not by either the typical antipsychotic haloperidol or the antidepressant imipramine, indicating that the increased immobility induced by subchronic treatment with MK-801 in the forced swimming test may represent a negative symptom of schizophrenia. Likewise, positive modulation of the glycine sites on the NMDA receptor using an agonist for the glycine site, D-serine, and a glycine transporter-1 inhibitor, N-[(3R)-3-([1,1'-biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine hydrochloride (NFPS), significantly reversed the increase in immobility in MK-801-treated rats without reducing the immobility time in vehicle-treated rats. The present results show that the stimulation of the NMDA receptor through the glycine site on the receptor either directly with D-serine or by blocking glycine transporter-1 attenuates the immobility elicited by the subchronic administration of MK-801 and may be potentially useful for the treatment of negative symptoms of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. IRDye78 Conjugates for Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Atif Zaheer

    2002-10-01

    Full Text Available The detection of human malignancies by near-infrared (NIR fluorescence will require the conjugation of cancer-specific ligands to NIR fluorophores that have optimal photoproperties and pharmacokinetics. IRDye78, a tetra-sulfonated heptamethine indocyanine NIR fluorophore, meets most of the criteria for an in vivo imaging agent, and is available as an N-hydroxysuccinimide ester for conjugation to low-molecular-weight ligands. However, IRDye78 has a high charge-to-mass ratio, complicating purification of conjugates. It also has a potentially labile linkage between fluorophore and ligand. We have developed an ion-pairing purification strategy for IRDye78 that can be performed with a standard C18 column under neutral conditions, thus preserving the stability of fluorophore, ligand, and conjugate. By employing parallel evaporative light scatter and absorbance detectors, all reactants and products are identified, and conjugate purity is maximized. We describe reversible and irreversible conversions of IRDye78 that can occur during sample purification, and describe methods for preserving conjugate stability. Using seven ligands, spanning several classes of small molecules and peptides (neutral, charged, and/or hydrophobic, we illustrate the robustness of these methods, and confirm that IRDye78 conjugates so purified retain bioactivity and permit NIR fluorescence imaging of specific targets.

  9. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Science.gov (United States)

    Kuzmin, Mikhail; Lahtonen, Kimmo; Vuori, Leena; Sánchez-de-Armas, Rocío; Hirsimäki, Mika; Valden, Mika

    2017-07-01

    Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH2(CH2)COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH2(CH2)COO-]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  10. Collagen VI glycine mutations : Perturbed assembly and a spectrum of clinical severity

    NARCIS (Netherlands)

    Pace, Rishika A.; Peat, Rachel A.; Baker, Naomi L.; Zamurs, Laura; Moergelin, Matthias; Irving, Melita; Adams, Naomi E.; Bateman, John F.; Mowat, David; Smith, Nicholas J. C.; Lamont, Phillipa J.; Moore, Steven A.; Mathews, Katherine D.; North, Kathryn N.; Lamande, Shireen R.

    Objective: The collagen VI muscular dystrophies, Bethlem myopathy and Ullrich congenital muscular dystrophy, form a continuum of clinical phenotypes. Glycine mutations in the triple helix have been identified in both Bethlem and Ullrich congenital muscular dystrophy, but it is not known why they

  11. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  12. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    Science.gov (United States)

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  13. Investigations into the choice of immunogen, ligand, antiserum and assay conditions for the radioimmunoassay of conjugated cholic acid

    Energy Technology Data Exchange (ETDEWEB)

    Beckett, G J; Percy-Robb, I W [Royal Infirmary, Edinburgh (UK); Hunter, W M [Medical Research Council, Edinburgh (UK)

    1978-09-01

    Investigations into the choice of immunogen, ligand, antiserum and assay conditions for the radioimmunoassay of conjugated cholic acid have been performed with a view to producing optimal assay conditions. Cholic acid-BSA was found to be the best immunogen to produce antibodies to conjugated cholic acid and the response was of an IgG type. Incorporating a spacer (hexanoic acid) between hapten and carrier protein resulted in a decrease in antiserum titre. Optimal conditions for the assay were found using (/sup 125/I)histamine-glycocholic acid as ligand with a dilution of antiserum to produce 60% binding of ligand and a pH of 7.4. Using these assay conditions no serum effects were found; extraction of serum prior to assay was therefore unnecessary. The assay was sensitive enough to detect post-prandial increases in serum bile acid concentrations following a liquid test meal; no increase was observed throughout the same time period in a fasting control.

  14. Preconditioning the modified conjugate gradient method ...

    African Journals Online (AJOL)

    In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.

  15. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  16. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    Background and aim: Nutrient distribution and carbon fluxes upon spring thaw are compared in mesocosms from high arctic and subarctic ecosystems dominated by Cassiope tetragona or Salix hastata/Salix arctica, in order to evaluate the possibility of plant and microbial utilization of an organic...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...

  17. Hydrophobic radical influence on structure and vibration spectra of zwitter-ionic forms of glycine and alanine in condensed state

    International Nuclear Information System (INIS)

    Ten, G.N.; Kadrov, D.M.; Baranov, V.I.

    2014-01-01

    Structure and vibrational spectra of the zwitter-ionic forms of glycine and alanine in water solution and solid state have been calculated in the B3LYP/6-311++G(d,p) approximation. The environment influence has been taken into account by two methods: the self-consistent reaction field (SCRF) method and one of modeling the glycine and alanine complexes with molecules of water. The structure, energy and spectral properties have been determined which allow establishing an influence of the hydrophobic radical on the glycine and alanine ability to form the hydrogen bonds. It is shown by comparison with experiment that for the calculation of vibrational (IR and Raman) spectra of the zwitter-ionic forms of glycine and alanine in the condensed states they must be surrounded with three molecules of water, one of which is located between the N + H 3 and COO - ionic groups. The value of energy necessary to form the Ala complexes with water compared to Gly ones is 56.47 and 12.55 kcal/mol higher in the case of the complex formation with 1and 3 molecules of water, respectively, located between bipolar groups. (authors)

  18. Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Webb, Timothy I.; Dixon, Christine L.

    2011-01-01

    Ivermectin is an anthelmintic drug that works by activating glutamate-gated chloride channel receptors (GluClRs) in nematode parasites. GluClRs belong to the Cys-loop receptor family that also includes glycine receptor (GlyR) chloride channels. GluClRs and A288G mutant GlyRs are both activated...

  19. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG.

    Science.gov (United States)

    Hui, James Z; Tsourkas, Andrew

    2014-09-17

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.

  20. Confirmation of hydrazone formation in HYNIC-peptide conjugate preparation, and its hydrolysis during labeling with {sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Gandomkar, M. [Radioisotope Division, Nuclear Research Center, Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)]. E-mail: msgandomkar@yahoo.com; Najafi, R. [Radioisotope Division, Nuclear Research Center, Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of); Shafiei, M. [Radioisotope Division, Nuclear Research Center, Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of); Ebrahimi, S.E.S. [Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2007-07-15

    Because of its monodenticity, 6-hydrazinopyridine-3-carboxylic acid (HYNIC) is of interest as a bifunctional chelator for labeling peptide with {sup 99m}Tc. Here, we confirm the formation of hydrazone in HYNIC-conjugated peptide. The preparative HPLC was used to purify the HYNIC conjugated somatostatin-based peptide and the result showed two peaks, even after two consecutive purifications. Analysis of these peaks by mass spectrometry indicated the presence of hydrazone, produced during preparation conjugate. Further, we have shown that presence of hydrazone really does not matter because under {sup 99m}Tc-labeling conditions, hydrazone is hydrolyzed back to HYNIC that then chelates {sup 99m}Tc. A HYNIC-peptide conjugate freeze-dried kit was also prepared in a mildly acidic or neutral condition with a final pH of 6-7. The kit was then labeled by {sup 99m}Tc and incubated in 100 dec. C for 10 min, and a labeling yield of >95% was obtained.

  1. NdFeO3 nanocrystals under glycine nitrate combustion formation

    Science.gov (United States)

    Tugova, Ekaterina; Yastrebov, Sergey; Karpov, Oleg; Smith, Roger

    2017-06-01

    Nanocrystalline perovskite NdFeO3 with the orthorhombic structure was prepared by a glycine nitrate combustion method under different technological conditions. The starting materials Fe(NO3)3 · 9H2O,Nd(NO3)3 · 6H2O in stoichiometric amounts and H2NCH2COOH were used. These quantities were varied by changing the ratio of glycine moles to metal nitrate moles (G/N) in the range between 0.25 and 0.75. The prepared NdFeO3 nanocrystals were characterised by X-ray diffraction (XRD) and electron microscopy. Decomposition of the XRD diffraction profile using Voigt contours was exploited for analysis of the pattern in the area where the most prominent diffraction peak was situated. We demonstrate that Voigt functions reduce to Lorentzians for G / N = 0.75 and 0.55 . A volume-weighted diameter distribution function was derived using the width of the Lorentzians. The log-normal shape of the distribution is discussed in terms of the model, assuming exponential growth of cluster size in the time available for the NdFeO3 nanograin to grow.

  2. Protoporphyrin-IX conjugated cellulose nanofibers that exhibit high antibacterial photodynamic inactivation efficacy

    Science.gov (United States)

    Dong, Jiancheng; Ghiladi, Reza A.; Wang, Qingqing; Cai, Yibing; Wei, Qufu

    2018-06-01

    Towards the development of anti-infective nanoscale materials employing a photodynamic mechanism of action, we report the synthesis, physical properties (SEM, mechanical strength, water contact angle), spectroscopic characterization (infrared, Raman, DRUV), and evaluation of antibacterial efficacy of porphyrin-conjugated regenerated cellulose nanofibers, termed RC-TETA-PPIX-Zn. Cellulose acetate was electrospun to produce nanofibers, thermally treated to enhance mechanical strength, and finally hydrolyzed to produce regenerated cellulose (RC) nanofibers that possessed a high surface area and nanofibrous structure. Covalent grafting of a protoporphyrin IX (PPIX) photosensitizer using epichlorohydrin/triethylenetetramine (TETA), followed by zinc chelation, afforded RC-TETA-PPIX-Zn. The high surface area afforded by the nanofibers and efficient photosensitizer conjugation led to a very high loading of 412 nmol PPIX/mg material, corresponding to a degree of substitution of 0.1. Antibacterial efficacy was evaluated against Staphylococcus aureus (ATCC-6538) and Escherichia coli (ATCC-8099), with our best results achieving detection limit inactivation (99.999+%) of both bacteria after only 20 min illumination (Xe lamp, λ ≥ 420 nm). No statistically significant loss in antibacterial activity was observed when using nanofibers that had been ‘photo-aged’ with 5 h of pre-illumination to simulate the effects of photobleaching. Post aPDI, scanning electron microscopy revealed that the bacteria had undergone cell membrane leakage, consistent with oxidative damage caused by photo-generated reactive oxygen species. Taken together, the conjugation strategy employed here provides a scalable, facile and efficient route to creating nanofibrous materials from natural polymers with a high photosensitizer loading, enabling the use of commercially-available neutral porphyrin photosensitizers, such as PPIX, in the design and synthesis of potent anti-infective nanomaterials.

  3. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation.

    Science.gov (United States)

    Cao, Na; Feng, Si-Shen

    2008-10-01

    To develop a polymer-anticancer drug conjugate, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was employed as a carrier of doxorubicin (DOX) to enhance its therapeutic effects and reduce its side effects. Doxorubicin was chemically conjugated to TPGS. The molecular structure, drug loading efficiency, drug release kinetics and stability of the conjugate were characterized. The cellular uptake, intracellular distribution, and cytotoxicity were accessed by using MCF-7 breast cancer cells and C6 glioma cells as in vitro cell model. The conjugate showed higher cellular uptake efficiency and broader distribution within the cells. Judged by IC(50), the conjugate was found 31.8, 69.6, 84.1% more effective with MCF-7 cells and 43.9, 87.7, 42.2% more effective with C6 cells than the parent drug after 24, 48, 72 h culture, respectively. The in vivo pharmacokinetics and biodistribution were investigated after an i.v. administration at 5 mg DOX/kg body weight in rats. Promisingly, 4.5-fold increase in the half-life and 24-fold increase in the area-under-the-curve (AUC) of DOX were achieved for the TPGS-DOX conjugate compared with the free DOX. The drug level in heart, gastric and intestine was significantly reduced, which is an indication of reduced side effects. Our TPGS-DOX conjugate showed great potential to be a prodrug of higher therapeutic effects and fewer side effects than DOX itself.

  4. Effect of backbone structure on charge transport along isolated conjugated polymer chains

    International Nuclear Information System (INIS)

    Siebbeles, Laurens D.A.; Grozema, Ferdinand C.; Haas, Matthijs P. de; Warman, John M.

    2005-01-01

    Fast charge transport in conjugated polymers is essential for their application in opto-electronic devices. In the present paper, measurements and theoretical modeling of the mobility of excess charges along isolated chains of conjugated polymers in dilute solution are presented. Charge carriers were produced by irradiation of the polymer solution with 3-MeV electrons from a Van de Graaff accelerator. The mobilities of the charges along the polymer chains were obtained from time-resolved microwave conductivity measurements. The mobilities are strongly dependent on the chemical nature of the polymer backbone. Comparison of the experimental data with results from ab initio quantum mechanical calculations shows that the measured mobilities are strongly limited by torsional disorder, chemical defects and chain ends. Improvement of the structure of polymer backbones is therefore expected to significantly enhance the performance of these materials in 'plastic electronics'

  5. Bis-polymer lipid-peptide conjugates and nanoparticles thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Dong, He; Shu, Jessica; Dube, Nikhil

    2018-04-24

    The present invention provides bis-polymer lipid-peptide conjugates containing a hydrophobic block and headgroup containing a helical peptide and two polymer blocks. The conjugates can self-assemble to form helix bundle subunits, which in turn assemble to provide micellar nanocarriers for drug cargos and other agents. Particles containing the conjugates and methods for forming the particles are also disclosed.

  6. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  7. Enhanced attachment and growth of periodontal cells on glycine-arginine-glycine-aspartic modified chitosan membranes

    Directory of Open Access Journals (Sweden)

    Hsiao-Pei Tu

    2016-01-01

    Full Text Available Background: Chitosan, a polymeric carbohydrate derived from the exoskeleton of arthropod, has been suggested to be an excellent biomaterial for improving wound healing, especially for bones. To improve the periodontal cell attachment and growth, the cell adhesive peptide glycine-arginine-glycine-aspartic acid (Gly-Arg-Gly-Asp, GRGD grafted chitosan membrane was introduced in this study. Materials and Methods: Two types of commercial chitosan, three types of primary cultured cells, and two established cell lines were used. Human gingival and periodontal fibroblasts (hGF and hPDL, human root derived cell (hRDC, and rat calvaria bone cell (rCalB were cultured on the GRGD-fixed by ultraviolet light photochemical method on the chitosan membrane. With (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium assay and propidium iodine (PI staining, the cell adhesion and growth on GRGD-grafted chitosan were examined. Basal mRNA expressions of the receptors for GRGD, integrin αv (ITG αv and ITG β3, in the human gingival fibroblast cell line and mouse osteoblast cell line (MC3T3-E1 were examined with real-time polymerase chain reaction. Results: Because the cell adhesion/growth patterns on two chitosan membranes were similar, the GRGD modification was performed on one membrane (Primex only. For periodontal cells (hGFs, hPDLs, and hRDCs, the number of attached cells were increased on the membrane with the high concentration of GRGD than those on the membrane unmodified or modified with low concentration GRGD. For rCalBs cells, a different pattern was noted: GRGD modification did not enhance the calvaria cells attachment or growth. Moreover, mRNA expressions of ITG αv and β3 in AG09319 cells were significantly higher than those in MC3T3-E1 cells. Conclusions: With the limitation of this study, we suggested that GRGD-modified chitosan, especially at high concentration, could enhance the growth of various periodontal

  8. Fate of [15N]glycine in peat as determined by 13C and 15N CP-MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Benzing-Purdie, L.M.; Cheshire, M.V.; Williams, B.L.; Sparling, G.P.; Ratcliffe, C.I.; Ripmeester, J.A.

    1986-01-01

    Peat samples, nonsterile, sterilized by γ irradiation or autoclaving, were incubated with [ 15 N]glycine for a period of 6 months. The 13 C NMR data showed the established trend of increased humification with decreasing particle size and that autoclaving had significantly disturbed the humification-particle size distribution. The 15 N CP-MAS NMR spectra showed the presence of [ 15 N]glycine in all fractions after incubation. 15 NH 4 + , a result of either biological or chemical deamination, was one of the main products in the nonsterile peat series. The 15 N spectra also showed resonances corresponding to amine, secondary amide, and pyrrole-type nitrogen and the presence of glycine derivatives and melanoidins. The results presented give the first spectroscopic evidence of the possible involvement of the Maillard reaction in the humification process

  9. Preparation of cyclotron-produced {sup 186}Re and comparison with reactor-produced {sup 186}Re and generator-produced {sup 188}Re for the labeling of bombesin

    Energy Technology Data Exchange (ETDEWEB)

    Moustapha, Moustapha E. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); University of Missouri Research Reactor (MURR), University of Missouri-Columbia, Columbia, MO 65211 (United States); Ehrhardt, Gary J. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); University of Missouri Research Reactor (MURR), University of Missouri-Columbia, Columbia, MO 65211 (United States); Smith, Charles J. [Department of Radiology, University of Missouri-Columbia, Columbia, MO 65211 (United States); University of Missouri Research Reactor (MURR), University of Missouri-Columbia, Columbia, MO 65211 (United States); Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Szajek, Lawrence P. [Positron Emission Tomography Department, National Institutes of Health, Bethesda, MD 20892-1180 (United States); Eckelman, William C. [Positron Emission Tomography Department, National Institutes of Health, Bethesda, MD 20892-1180 (United States); Jurisson, Silvia S. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States)]. E-mail: jurissons@missouri.edu

    2006-01-15

    The radioisotopes {sup 186}Re and {sup 188}Re have been extensively investigated for various forms of radiotherapy due to their useful and high-abundance {beta} particle emissions, low-abundance and imageable {gamma}-rays, and chemical resemblance to technetium. In addition, {sup 188}Re is available in no-carrier-added (NCA) form from long lived W-188 generators, whereas {sup 186}Re can be produced in large quantities from reactors, although not in NCA form. However, NCA {sup 186}Re can be produced on a cyclotron by a (p,n) reaction on {sup 186}W. The purpose of this study was to compare labeling of the peptide bombesin with these three forms of rhenium radioisotopes. Cyclotron-produced NCA {sup 186}Re was separated radiochemically from enriched {sup 186}W (96.9%) targets using high-purity methyl ethyl ketone (MEK). The resulting {sup 186}Re-MEK was then loaded onto a small alumina column to separate the resulting NCA {sup 186}Re from any remaining {sup 186}W. The experimental levels of impurities associated with {sup 186}Re at the end of the separation process were found to be 5.7x10{sup -6} Ci of {sup 182}Re (0.57%, t {sub 1/2}=12.7 h) and 1.283x10{sup -5} Ci of {sup 182m}Re (1.28%, t {sub 1/2}=2.67 days). The radionuclidic purity of the separated {sup 186}Re was found to be 99.6%, whereas the chemical identity was determined by reversed phase high-performance liquid chromatography (RP-HPLC) to be perrhenate ({sup 186}ReO{sub 4} {sup -}). Generator-produced {sup 188}ReO{sub 4} {sup -} from a {sup 188}W/{sup 188}Re generator (Oak Ridge National Laboratory) and CA {sup 186}ReO{sub 4} {sup -} produced from a {sup 185}Re(n,{gamma}){sup 186}Re reaction at the University of Missouri Research Reactor (MURR) were used for comparison with the NCA {sup 186}Re in subsequent studies. N{sub 3}S-5-Ava-BBN(7-14)NH{sub 2} conjugates provide flexibility for designing {sup 186,188}Re-labeled conjugates that retain high in vitro and in vivo specificity targeting of GRP receptor

  10. Potassium-stimulated release of radiolabelled taurine and glycine from the isolated rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.F.; Pycock, C.J.

    1982-09-01

    The release of preloaded (/sup 3/H)glycine and (/sup 3/H)taurine in response to a depolarising stimulus (12.5-50 mM KCl) has been studied in the superfused rat retina. High external potassium concentration immediately increased the spontaneous efflux of (/sup 3/H)glycine, the effect of 50 mM K+ apparently being abolished by omitting calcium from the superfusing medium. In contrast, although high potassium concentrations increased the spontaneous efflux of (/sup 3/H)taurine from the superfused rat retina, this release was not evident until the depolarising stimulus was removed from the superfusing medium. The magnitude of this late release of (/sup 3/H)taurine was dependent on external K+ concentrations, and appeared immediately after cessation of the stimulus irrespective of whether it was applied for 4, 8, or 12 min. Potassium (50 mM)-induced release of taurine appeared partially calcium-dependent, being significantly reduced (p less than 0.01) but not abolished by replacing calcium with 1 mM EDTA in the superfusate. High-affinity uptake systems for both (/sup 3/H)glycine and (/sup 3/H)taurine were demonstrated in the rat retina in vitro (Km values, 1.67 microM and 2.97 microM; Vmax values, 19.3 and 23.1 nmol/g wet weight tissue/h, respectively). The results are discussed with respect to the possible neurotransmitter roles of both amino acids in the rat retina.

  11. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  12. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Science.gov (United States)

    2010-04-01

    ... consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine (aminoacetic acid) in food for human consumption. (a) Heretofore, the...

  13. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids

    NARCIS (Netherlands)

    Lozovaya, N.; Yatsenko, N.; Beketov, A.; Tsintsadze, T.; Burnashev, N.

    2005-01-01

    At many central synapses, endocannabinoids released by postsynaptic cells act retrogradely on presynaptic G-protein-coupled cannabinoid receptors to inhibit neurotransmitter release. Here, we demonstrate that cannabinoids may directly affect the functioning of inhibitory glycine receptor (GlyR)

  14. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Martin Perreault

    Full Text Available Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G, glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

  15. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi

    2017-01-01

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  16. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  17. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.J.M.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional H-1 NMR

  18. Selective Covalent Conjugation of Phosphorothioate DNA Oligonucleotides with Streptavidin

    Directory of Open Access Journals (Sweden)

    Christof M. Niemeyer

    2011-08-01

    Full Text Available Protein-DNA conjugates have found numerous applications in the field of diagnostics and nanobiotechnology, however, their intrinsic susceptibility to DNA degradation by nucleases represents a major obstacle for many applications. We here report the selective covalent conjugation of the protein streptavidin (STV with phosphorothioate oligonucleotides (psDNA containing a terminal alkylthiolgroup as the chemically addressable linking unit, using a heterobifunctional NHS-/maleimide crosslinker. The psDNA-STV conjugates were synthesized in about 10% isolated yields. We demonstrate that the terminal alkylthiol group selectively reacts with the maleimide while the backbone sulfur atoms are not engaged in chemical conjugation. The novel psDNA-STV conjugates retain their binding capabilities for both biotinylated macromolecules and the complementary nucleic acid. Moreover, the psDNA-STV conjugate retained its binding capacity for complementary oligomers even after a nuclease digestion step, which effectively degrades deoxyribonucleotide oligomers and thus the binding capability of regular DNA-STV conjugates. The psDNA-STV therefore hold particular promise for applications e.g. in proteome research and novel biosensing devices, where interfering endogenous nucleic acids need to be removed from analytes by nuclease digestion.

  19. Growth of glycine ethyl ester hydrochloride and its characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, G.; Pari, S., E-mail: sparimyur@gmail.com

    2016-11-15

    Single crystal of glycine ethyl ester hydrochloride by slow evaporation method is reported. The grown crystal characterized by single crystal X-ray diffraction, FT-IR, UV–Vis–NIR and fluorescence spectroscopy. It is established that the crystal falls under the monoclinic system and space group P21/c with the cell parameters as: a=8.565 Å, b=12.943 Å, c=6.272 Å, α=γ=90°, β=103.630º. UV–Vis–NIR spectrum shows indirect allowed transition with a band gap of 5.21 eV and other optical properties are measured. The crystal is also shown to have a high transmittance in the visible region. The third order nonlinear property and optical limiting have been investigated using Z-Scan technique. Complex impedance spectrum measured at the dc conductivity. Dependence of dielectric constant, dielectric loss and ac conductivity on frequency at different temperature of applied ac field is analyzed. The mechanical behavior has been assessed by Vickers microhardness indenter. The thermal behavior of glycine ethyl ester hydrochloride was analyzed using TG/DTA thermal curves. From the thermal study, the material was found to possess thermal stability up to 174 °C. The predicted NLO properties, UV–Vis transmittance and Z-scan studies indicate that is an attractive material for photonics optical limiting applications.

  20. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  1. A two-dimensional conjugated aromatic polymer via C-C coupling reaction

    Science.gov (United States)

    Liu, Wei; Luo, Xin; Bao, Yang; Liu, Yan Peng; Ning, Guo-Hong; Abdelwahab, Ibrahim; Li, Linjun; Nai, Chang Tai; Hu, Zhi Gang; Zhao, Dan; Liu, Bin; Quek, Su Ying; Loh, Kian Ping

    2017-06-01

    The fabrication of crystalline 2D conjugated polymers with well-defined repeating units and in-built porosity presents a significant challenge to synthetic chemists. Yet they present an appealing target because of their desirable physical and electronic properties. Here we report the preparation of a 2D conjugated aromatic polymer synthesized via C-C coupling reactions between tetrabromopolyaromatic monomers. Pre-arranged monomers in the bulk crystal undergo C-C coupling driven by endogenous solid-state polymerization to produce a crystalline polymer, which can be mechanically exfoliated into micrometre-sized lamellar sheets with a thickness of 1 nm. Isothermal gas-sorption measurements of the bulk material reveal a dominant pore size of ~0.6 nm, which indicates uniform open channels from the eclipsed stacking of the sheets. When employed as an organic anode in an ambient-temperature sodium cell, the material allows a fast charge/discharge of sodium ions, with impressive reversible capacity, rate capability and stability metrics.

  2. Vi-CRM 197 as a new conjugate vaccine against Salmonella Typhi.

    Science.gov (United States)

    Micoli, F; Rondini, S; Pisoni, I; Proietti, D; Berti, F; Costantino, P; Rappuoli, R; Szu, S; Saul, A; Martin, L B

    2011-01-17

    An efficacious, low cost vaccine against typhoid fever, especially for young children, would make a major impact on disease burden in developing countries. The virulence capsular polysaccharide of Salmonella Typhi (Vi) coupled to recombinant mutant Pseudomonas aeruginosa exoprotein A (Vi-rEPA) has been shown to be highly efficacious. We investigated the use of carrier proteins included in infant vaccines, standardized the conjugation process and developed key assays required for routine lot release at production scale. Vi from a BSL1 organism, Citrobacter freundii, strain WR7011, was used as an alternative to Vi from S. Typhi. We showed that Vi conjugated to CRM(197), a non-toxic mutant of diphtheria toxin, widely used in commercial vaccines, was produced at high yield. Vi-CRM(197) proved immunogenic in animal studies, even without adjuvant. Thus, Vi-CRM(197) appears to be a suitable candidate for the development of a commercially viable, effective typhoid vaccine for developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Lipid-peptide-polymer conjugates and nanoparticles thereof

    Science.gov (United States)

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  4. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor.

    Science.gov (United States)

    Manjappa, Arehalli S; Chaudhari, Kiran R; Venkataraju, Makam P; Dantuluri, Prudhviraju; Nanda, Biswarup; Sidda, Chennakesavulu; Sawant, Krutika K; Murthy, Rayasa S Ramachandra

    2011-02-28

    A great deal of effort has been made over the years to develop liposomes that have targeting vectors (oligosaccharides, peptides, proteins and vitamins) attached to the bilayer surface. Most studies have focused on antibody conjugates since procedures for producing highly specific monoclonal antibodies are well established. Antibody conjugated liposomes have recently attracted a great deal of interest, principally because of their potential use as targeted drug delivery systems and in diagnostic applications. A number of methods have been reported for coupling antibodies to the surface of stealth liposomes. The objective of this review is to enumerate various strategies which are employed in the modification and conjugation of antibodies to the surface of stealth liposomes. This review also describes various derivatization techniques of lipids prior and after their use in the preparation of liposomes. The use of single chain variable fragments and affibodies as targeting ligands in the preparation of immunoliposomes is also discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Dietary intakes of glutamic acid and glycine are associated with stroke mortality in Japanese adults.

    Science.gov (United States)

    Nagata, Chisato; Wada, Keiko; Tamura, Takashi; Kawachi, Toshiaki; Konishi, Kie; Tsuji, Michiko; Nakamura, Kozue

    2015-04-01

    Dietary intakes of glutamic acid and glycine have been reported to be associated with blood pressure. However, the link between intakes of these amino acids and stroke has not been studied. We aimed to examine the association between glutamic acid and glycine intakes and the risk of mortality from stroke in a population-based cohort study in Japan. The analyses included 29,079 residents (13,355 men and 15,724 women) of Takayama City, Japan, who were aged 35-101 y and enrolled in 1992. Their body mass index ranged from 9.9 to 57.4 kg/m(2). Their diets were assessed by a validated food frequency questionnaire. Deaths from stroke were ascertained over 16 y. During follow-up, 677 deaths from stroke (328 men and 349 women) were identified. A high intake of glutamic acid in terms of a percentage of total protein was significantly associated with a decreased risk of mortality from total stroke in women after controlling for covariates; the HR (95% CI) for the highest vs. lowest quartile was 0.72 (0.53, 0.98; P-trend: 0.03). Glycine intake was significantly associated with an increased risk of mortality from total and ischemic stroke in men without history of hypertension at baseline; the HRs (95% CIs) for the highest vs. lowest tertile were 1.60 (0.97, 2.51; P-trend: 0.03) and 1.88 (1.01, 3.52; P-trend: 0.02), respectively. There was no association between animal or vegetable protein intake and mortality from total and any subtype of stroke. The data suggest that glutamic acid and glycine intakes may be associated with risk of stroke mortality. Given that this is an initial observation, our results need to be confirmed. © 2015 American Society for Nutrition.

  6. Novel β-cyclodextrin-eosin conjugates.

    Science.gov (United States)

    Benkovics, Gábor; Afonso, Damien; Darcsi, András; Béni, Szabolcs; Conoci, Sabrina; Fenyvesi, Éva; Szente, Lajos; Malanga, Milo; Sortino, Salvatore

    2017-01-01

    Eosin B (EoB) and eosin Y (EoY), two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy and mass spectrometry. Preliminary spectroscopic investigations showed that the β-cyclodextrin-EoY conjugate retains both the fluorescence properties and the capability to photogenerate singlet oxygen of the unbound chromophore. In contrast, the corresponding β-cyclodextrin-EoB conjugate did not show either relevant emission or photosensitizing activity probably due to aggregation in aqueous medium, which precludes any response to light excitation.

  7. Novel β-cyclodextrin–eosin conjugates

    Directory of Open Access Journals (Sweden)

    Gábor Benkovics

    2017-03-01

    Full Text Available Eosin B (EoB and eosin Y (EoY, two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy and mass spectrometry. Preliminary spectroscopic investigations showed that the β-cyclodextrin–EoY conjugate retains both the fluorescence properties and the capability to photogenerate singlet oxygen of the unbound chromophore. In contrast, the corresponding β-cyclodextrin–EoB conjugate did not show either relevant emission or photosensitizing activity probably due to aggregation in aqueous medium, which precludes any response to light excitation.

  8. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    Science.gov (United States)

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  9. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  10. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Rodionov, N.S.; Molodkin, A.K.; Fedorov, Yu.A.; Tsekhanskij, R.S.

    1985-01-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid

  11. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Rodionov, N S; Molodkin, A K; Fedorov, Yu A; Tsekhanskij, R S

    1985-07-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid.

  12. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and

  13. DENDRIMER CONJUGATES FOR SELECTIVE OF PROTEIN AGGREGATES

    DEFF Research Database (Denmark)

    2004-01-01

    Dendrimer conjugates are presented, which are formed between a dendrimer and a protein solubilising substance. Such dendrimer conjugates are effective in the treatment of protein aggregate-related diseases (e.g. prion-related diseases). The protein solubilising substance and the dendrimer together...

  14. Phase conjugation of speckle-inhomogeneous radiation in a holographic Nd:YAG laser with a short thermal hologram

    International Nuclear Information System (INIS)

    Yarovoi, V V; Kirsanov, A V

    2002-01-01

    A model of the so-called short hologram, which does not exhibit in-depth diffraction deformation of the fine speckle pattern of the recording fields, is studied. The investigation is performed by the example of a thermal hologram recorded by two speckle waves, which is the output mirror of a ring laser produced as a result of this recording. It is shown that the ability of this short hologram to select a wave conjugated to a speckle signal in the mode of the holographic laser depends both on the degree of mutual mixing of the speckles of recording beams in the hologram volume and on the effects of its saturation by the beams. The maximum accuracy of phase conjugation of speckle radiation in the holographic Nd:YAG laser achieved upon the best selection of the conjugate wave by the short thermal hologram was 93%. (nonlinear optical phenomena)

  15. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story

    Directory of Open Access Journals (Sweden)

    Magdalena Czolpinska

    2018-03-01

    Full Text Available Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures, these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.

  16. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element.

    Directory of Open Access Journals (Sweden)

    Jacob Thomas

    Full Text Available Integrative and conjugative elements (ICEs are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT by the ICE-encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP, encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability.

  17. Glycine transporter GlyT1, but not GlyT2, is expressed in rat dorsal root ganglion--Possible implications for neuropathic pain

    NARCIS (Netherlands)

    Schlösser, Lukas; Barthel, Franziska; Brandenburger, Timo; Neumann, Elena; Bauer, Inge; Eulenburg, Volker; Werdehausen, Robert; Hermanns, Henning

    2015-01-01

    Glycinergic inhibitory neurotransmission plays a pivotal role in the development of neuropathic pain. The glycine concentration in the synaptic cleft is controlled by the glycine transporters GlyT1 and GlyT2. GlyT1 is expressed throughout the central nervous system, while GlyT2 is exclusively

  18. Rapid diagnosis of hypoglycin A intoxication in atypical myopathy of horses.

    Science.gov (United States)

    Sander, Johannes; Cavalleri, Jessika-M V; Terhardt, Michael; Bochnia, Mandy; Zeyner, Annette; Zuraw, Aleksandra; Sander, Stefanie; Peter, Michael; Janzen, Nils

    2016-03-01

    Hypoglycin A (2-amino-3-(2-methylidenecyclopropyl)propanoic acid) is the plant toxin shown to cause atypical myopathy in horses. It is converted in vivo to methylenecyclopropyl acetic acid, which is transformed to a coenzyme A ester that subsequently blocks beta oxidation of fatty acids. Methylenecyclopropyl acetic acid is also conjugated with carnitine and glycine. Acute atypical myopathy may be diagnosed by quantifying the conjugates of methylenecyclopropyl acetic acid plus a selection of acyl conjugates in urine and serum. We describe a new mass spectrometric method for sample volumes of acid in urine, the coefficients of variation for intraday quantification were 2.9% and 3.0%, respectively. The respective values for interday were 9.3% and 8.0%. Methylenecyclopropyl acetyl carnitine was detected as high as 1.18 µmol/L in serum (median: 0.46 µmol/L) and 1.98 mmol/mol creatinine in urine (median: 0.79 mmol/mol creatinine) of diseased horses, while the glycine derivative accumulated up to 1.97 mmol/mol creatinine in urine but was undetectable in most serum samples. In serum samples from horses with atypical myopathy, the intraday coefficients of variation for C4-C8 carnitines and glycines were ≤4.5%. Measured concentrations exceeded those in healthy horses by ~10 to 1,400 times. © 2015 The Author(s).

  19. Conjugate Gaze Palsies

    Science.gov (United States)

    ... version Home Brain, Spinal Cord, and Nerve Disorders Cranial Nerve Disorders Conjugate Gaze Palsies Horizontal gaze palsy Vertical ... Version. DOCTORS: Click here for the Professional Version Cranial Nerve Disorders Overview of the Cranial Nerves Internuclear Ophthalmoplegia ...

  20. Synthesis of Mikto-Arm Star Peptide Conjugates.

    Science.gov (United States)

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  1. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  2. Development and validation of an in vitro pharmacokinetic/pharmacodynamic model to test the antibacterial efficacy of antibiotic polymer conjugates.

    Science.gov (United States)

    Azzopardi, Ernest A; Ferguson, Elaine L; Thomas, David W

    2015-04-01

    This study describes the use of a novel, two-compartment, static dialysis bag model to study the release, diffusion, and antibacterial activity of a novel, bioresponsive dextrin-colistin polymer conjugate against multidrug resistant (MDR) wild-type Acinetobacter baumannii. In this model, colistin sulfate, at its MIC, produced a rapid and extensive drop in viable bacterial counts (growth for up to 48 h, with 3 log10 CFU/ml lower bacterial counts after 48 h than those of controls. Doubling the concentration of dextrin-colistin conjugate (to 2× MIC) led to an initial bacterial killing of 3 log10 CFU/ml at 8 h, with a similar regrowth profile to 1× MIC treatment thereafter. The addition of colistin sulfate (1× MIC) to dextrin-colistin conjugate (1× MIC) resulted in undetectable bacterial counts after 4 h, followed by suppressed bacterial growth (3.5 log10 CFU/ml lower than that of control at 48 h). Incubation of dextrin-colistin conjugates with infected wound exudate from a series of burn patients (n = 6) revealed an increasing concentration of unmasked colistin in the outer compartment (OC) over time (up to 86.3% of the initial dose at 48 h), confirming that colistin would be liberated from the conjugate by endogenous α-amylase within the wound environment. These studies confirm the utility of this model system to simulate the pharmacokinetics of colistin formation in humans administered dextrin-colistin conjugates and further supports the development of antibiotic polymer conjugates in the treatment of MDR infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  4. Analytical characterization of polymer-drug conjugates

    International Nuclear Information System (INIS)

    Rizzo, V.; Gigli, M.; Pinciroli, V.

    1998-01-01

    A few polymeric conjugates of antitumor drugs have been recently developed in view of possible therapeutic advantages: solubilization of sparingly soluble drugs in water, improvement of therapeutic index, organ targeting through a second chemical species bound to the same polymeric chain. In this article it's described the analytical approach used in the characterization of the conjugates for chemical identity, purity and strength of the contained active ingredient. The techniques are: high field NMR and size exclusion chromatography with non-aqueous mobile phase for identity; selective hydrolysis and HPLC for strength and purity. A complete and reliable picture is thus obtained both for qualitative and for quantitative aspects. This is an important step forward in the direction of further development and marketing of polymer-drug conjugates [it

  5. Conjugate gradient algorithms using multiple recursions

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  6. Gamma radiation effect on the anatomical structure of soybean (Glycine max. Merr)

    International Nuclear Information System (INIS)

    Bhikuningputra, W.

    1976-01-01

    Gamma radiation effects on soybean plant (Glycine max. Merr) have been studied by using radiation doses of 0, 20, 25, 30, and 35 Krad. Investigation is carried out after each treatment. It proves that each treatment causes different morphological changes on leaves, stems, roots, and fibres of the treated plants. (SMN)

  7. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    Science.gov (United States)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  8. SYNTHESIS OF SOME PROLINE DERIVATIVES BY MEANS OF MICHAEL ADDITIONS OF GLYCINE ESTERS

    NARCIS (Netherlands)

    VANDERWERF, A; KELLOGG, RM

    1991-01-01

    Addition of the Schiff bases derived from reaction of glycine alkyl esters with benzophenoneimine to alpha,beta-unsaturated ketones, followed by hydrogenation of the addition products, leads to 5- or 3,5-substituted prolines. Hydrolysis of the Michael adducts rather than hydrogenation allows

  9. Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons

    Science.gov (United States)

    Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.

    2018-04-01

    Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C—C or C—N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

  10. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.

    Science.gov (United States)

    Agarwal, Paresh; Bertozzi, Carolyn R

    2015-02-18

    Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.

  11. Conjugation of the CRM197-inulin conjugate significantly increases the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein.

    Science.gov (United States)

    Hu, Shun; Yu, Weili; Hu, Chunyang; Wei, Dong; Shen, Lijuan; Hu, Tao; Yi, Youjin

    2017-11-01

    Mycobacterium tuberculosis (Mtb) is a serious fatal pathogen that causes tuberculosis (TB). Effective vaccination is urgently needed to deal with the serious threat from TB. Mtb-secreted protein antigens are important virulence determinants of Mtb with poor immunogenicity. Adjuvants and antigen delivery systems are thus highly desired to improve the immunogenicity of protein antigens. Inulin is a biocompatible polysaccharide (PS) adjuvant that can stimulate a strong cellular and humoral immunity. Bacterial capsular PS and haptens have been conjugated with cross-reacting material 197 (CRM 197 ) to improve their immunogenicity. CFP10 and TB10.4 were two Mtb-secreted immunodominant protein antigens. A CFP10-TB10.4 fusion protein (CT) was used as the antigen for covalent conjugation with the CRM 197 -inulin conjugate (CRM-inu). The resultant conjugate (CT-CRM-inu) elicited high CT-specific IgG titers, stimulated splenocyte proliferation and provoked the secretion of Th1-type and Th2-type cytokines. Conjugation with CRM-inu significantly prolonged the systemic circulation of CT and exposure to the immune system. Moreover, CT-CRM-inu showed no apparent toxicity to cardiac, hepatic and renal functions. Thus, conjugation of CT with CRM-inu provided an effective strategy for development of protein-based vaccines against Mtb infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Study of Adsorption of Patulin by Nanocellulose Conjugated with Poly Guanine in Contaminated Apple juice

    Directory of Open Access Journals (Sweden)

    M Ghafori Bidakhavidi

    2016-07-01

    Full Text Available Abstract Introdction: Patulin is a dangerous toxin produced by various fungi. Hence, the current study aimed to evaluate adsorption of Patulin by nanocellulose conjugated with Poly-guanine in contaminated apple juice. Methods: Firstly, nanocellulose was synthesized, and then it was bonded to poly-guanine by a cross-linker. Then, concentration serial of Patulin was prepared in the apple juice, conjugated nanoparticles were added to them, and all were incubated at 37 ºC. After incubation, the Patulin concentration was measured by HPLC, and finally the adsorption percentage was calculated for each tube. Regarding molecular simulation, the initial structures of Patulin and nanocellulose conjugated with Poly-guanine were inserted into Hyperchem software, and their intermolecular energy was calculated during 50 picoseconds. Results: The results of the present study demonstrated that there was a significant direct correlation between the initial concentration of Patulin and the adsorption percentage of toxin. In addition, the adsorption maximum was reported 70±5 %, and the intermolecular energy between two structures was -20.3 Kcal/mol based on the computational simulation. Conclusions: It can be concluded that nanocellulose conjugated with Poly-guanine seems to be a good adsorbent for Patulin, which is demanded to be used in the future studies in regard with its application.

  13. O:2-CRM(197) conjugates against Salmonella Paratyphi A.

    Science.gov (United States)

    Micoli, Francesca; Rondini, Simona; Gavini, Massimiliano; Lanzilao, Luisa; Medaglini, Donata; Saul, Allan; Martin, Laura B

    2012-01-01

    Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2) of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197), using the terminus 3-deoxy-D-manno-octulosonic acid (KDO), thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197) as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.

  14. O:2-CRM(197 conjugates against Salmonella Paratyphi A.

    Directory of Open Access Journals (Sweden)

    Francesca Micoli

    Full Text Available Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2 of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197, using the terminus 3-deoxy-D-manno-octulosonic acid (KDO, thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197 as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.

  15. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    Science.gov (United States)

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  16. Rapid purification of tri-iodothyronine and thyroxine protein conjugates for antibody production.

    Science.gov (United States)

    Burke, C W; Shakespear, R A

    1975-04-01

    Thyroxine (T-4) and tri-iodothyronine (T-3) were coupled to human serum albumin (HSA) with carbodi-imide. By adsorption chromatography on Sephadex G-25, fractions containing purified conjugate, but not reversibly-bound T-3 or T-4, were obtained, and this procedure took 5 h; considerably less than the conventional dialysis technique. Highly specific high-titre antisera were produced in rabbits and guinea-pigs by injection of these fractions in Freund's adjuvant.

  17. Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Tsukigawa, K.; Nakamura, H.; Chytil, Petr; Fang, J.; Ulbrich, Karel; Otagiri, M.; Maeda, H.

    2017-01-01

    Roč. 106, 30 August (2017), s. 10-19 ISSN 0928-0987 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:AV ČR,Japan Society for the Promotion of Science(CZ) JSPS-16-05 Program:Bilaterální spolupráce Institutional support: RVO:61389013 Keywords : pirarubicin * PHPMA conjugate * tandem-diblock PHPMA conjugate Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.756, year: 2016

  18. RGDS-conjugated CdSeTe/CdS quantum dots as near-infrared fluorescent probe: preparation, characterization and bioapplication

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenzhen; Zhang, Qiyi; Huang, Huaying; Ren, Changjing; Pan, Yujin; Wang, Qing; Zhao, Qiang, E-mail: Zhaoqiang@scu.edu.cn [Sichuan University, School of Chemical Engineering (China)

    2016-12-15

    In the experiments, high-quality, water-soluble and near-infrared (NIR)-emitting CdSeTe and CdSeTe/CdS quantum dots (QDs) were successfully prepared. The average size of CdSeTe⁄CdS QDs was 7.68 nm and CdSeTe QDs was 4.33 nm. Arginine-glycine-aspartic-serine acid (RGDS) peptides were linked to CdSeTe/CdS QDs by N-(3-(dimethylamino)propyl)-N′-ehtylcarbodiimide hydrochloride (EDC) and N′-hydroxysuccinimide (NHS). The prepared RGDS-tagged NIR CdSeTe/CdS QDs (denoted as RGDS-CdSeTe/CdS) had an average diameter of 24.83 nm and were used for cancer cell immunofluorescence imaging. The characteristics of RGDS-conjugated CdSeTe/CdS such as morphology, structure, spectra, stability, cytotoxicity, and near-infrared microscopic imaging were investigated in detail. HepG2 cells were incubated with the novel fluorescent probe (RGDS-CdSeTe/CdS), which realized immunofluorescence targeting and imaging. The results reported here open up new perspectives for integrin-targeted near-infrared imaging and may aid in tumor detection including imaging-guided surgery.

  19. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  20. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    OpenAIRE

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that ...

  1. METHOD OF CONJUGATED CIRCULAR ARCS TRACING

    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir

    2017-01-01

    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  2. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  3. Class, Kinship Density, and Conjugal Role Segregation.

    Science.gov (United States)

    Hill, Malcolm D.

    1988-01-01

    Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…

  4. Solar multi-conjugate adaptive optics performance improvement

    Science.gov (United States)

    Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie

    2015-08-01

    In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.

  5. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  6. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  7. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  8. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    Directory of Open Access Journals (Sweden)

    Lijie Yang

    Full Text Available This study investigated the influence of nitrogen (N fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK, N fertilizer (NF and N fertilizer plus rice straw (NS. We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  9. Site-Selective Conjugation of Native Proteins with DNA

    DEFF Research Database (Denmark)

    Trads, Julie Brender; Tørring, Thomas; Gothelf, Kurt Vesterager

    2017-01-01

    Conjugation of DNA to proteins is increasingly used in academia and industry to provide proteins with tags for identification or handles for hybridization to other DNA strands. Assay technologies such as immuno-PCR and proximity ligation and the imaging technology DNA-PAINT require DNA-protein....... The introduction of a bioorthogonal handle at a specific position of a protein by recombinant techniques provides an excellent approach to site-specific conjugation, but for many laboratories and for applications where several proteins are to be labeled, the expression of recombinant proteins may be cumbersome...... conjugates. In DNA nanotechnology, the DNA handle is exploited to precisely position proteins by self-assembly. For these applications, site-selective conjugation is almost always desired because fully functional proteins are required to maintain the specificity of antibodies and the activity of enzymes...

  10. Conjugated Polymers for Flexible Energy Harvesting and Storage.

    Science.gov (United States)

    Zhang, Zhitao; Liao, Meng; Lou, Huiqing; Hu, Yajie; Sun, Xuemei; Peng, Huisheng

    2018-03-01

    Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium-ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    Science.gov (United States)

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Role of transglutaminase in insulin release. Study with glycine and sarcosine methylesters

    International Nuclear Information System (INIS)

    Sener, A.; Dunlop, M.E.; Gomis, R.; Mathias, P.C.; Malaisse-Lagae, F.; Malaisse, W.J.

    1985-01-01

    The Ca2+-responsive enzyme transglutaminase, which catalyzes the cross-bridging of proteins, is present in pancreatic islet cells, but its participation in the process of insulin release remains to be documented. Glycine methylester (1.0-10.0 mM) inhibited, in a dose-related manner, transglutaminase activity in rat pancreatic islet homogenates, decreased [ 14 C]methylamine incorporation into endogenous proteins of intact islets, and caused a rapid and reversible inhibition of insulin release evoked by D-glucose, while failing to affect D-[U- 14 C]glucose oxidation. Glycine methylester also inhibited insulin release induced by other nutrient or nonnutrient secretagogues. Sarcosine methylester failed to affect transglutaminase activity, [ 14 C]methylamine incorporation, and insulin release. Both methylesters mobilized 45 Ca from prelabeled intact islets, from membranes of islet cells, liver or brain, and from artificial lipid multilayers, this Ca mobilization being apparently unrelated to changes in transglutaminase activity. It is proposed that, in the pancreatic B cell, transglutaminase participates in the machinery controlling the access of secretory granules to the exocytotic sites

  13. Formation of primary sperm conjugates in a haplogyne spider (Caponiidae, Araneae) with remarks on the evolution of sperm conjugation in spiders.

    Science.gov (United States)

    Lipke, Elisabeth; Michalik, Peter

    2012-11-01

    Sperm conjugation, where two or more sperm are physically united, is a rare but widespread pheno-menon across the animal kingdom. One group well known for its different types of sperm conjugation are spiders. Particularly, haplogyne spiders show a high diversity of sperm traits. Besides individual cleistospermia, primary (synspermia) and secondary (coenospermia, "spermatophore") sperm conjugation occurs. However, the evolution of sperm conjugates and sperm is not understood in this group. Here, we look at how sperm are transferred in Caponiidae (Haplogynae) in pursuit of additional information about the evolution of sperm transfer forms in spiders. Additionally, we investigated the male reproductive system and spermatozoa using light- and transmission electron-microscopy and provide a 3D reconstruction of individual as of well as conjugated spermatozoa. Mature spermatozoa are characterized by an extremely elongated, helical nucleus resulting in the longest spider sperm known to date. At the end of spermiogenesis, synspermia are formed by complete fusion of four spermatids. Thus, synspermia might have evolved early within ecribellate Haplogynae. The fused sperm cells are surrounded by a prominent vesicular area. The function of the vesicular area remains still unknown but might be correlated with the capacitation process inside the female. Further phylogenetic and functional implications of the spermatozoa and sperm conjugation are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Design and biological activity of β-sheet breaker peptide conjugates

    International Nuclear Information System (INIS)

    Rocha, Sandra; Cardoso, Isabel; Boerner, Hans; Pereira, Maria Carmo; Saraiva, Maria Joao; Coelho, Manuel

    2009-01-01

    The sequence LPFFD (iAβ 5 ) prevents amyloid-β peptide (Aβ) fibrillogenesis and neurotoxicity, hallmarks of Alzheimer's disease (AD), as previously demonstrated. In this study iAβ 5 was covalently linked to poly(ethylene glycol) (PEG) and the activity of conjugates was assessed and compared to the activity of the peptide alone by in vitro studies. The conjugates were characterized by MALDI-TOF. Competition binding assays established that conjugates retained the ability to bind Aβ with similar strength as iAβ 5 . Transmission electron microscopy analysis showed that iAβ 5 conjugates inhibited amyloid fibril formation, which is in agreement with binding properties observed for the conjugates towards Aβ. The conjugates were also able to prevent amyloid-induced cell death, as evaluated by activation of caspase 3. These results demonstrated that the biological activity of iAβ 5 is not affected by the pegylation process.

  15. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  16. Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Hegmann, Elda; Gaspar, Kim; Kumar, Praveen; Chao, Heman

    2015-06-17

    A novel immunoconjugate (L-DOS47) was developed and characterized as a therapeutic agent for tumors expressing CEACAM6. The single domain antibody AFAIKL2, which targets CEACAM6, was expressed in the Escherichia coli BL21 (DE3) pT7-7 system. High purity urease (HPU) was extracted and purified from Jack bean meal. AFAIKL2 was activated using N-succinimidyl [4-iodoacetyl] aminobenzoate (SIAB) as the cross-linker and then conjugated to urease. The activation and conjugation reactions were controlled by altering pH. Under these conditions, the material ratio achieved conjugation ratios of 8-11 antibodies per urease molecule, the residual free urease content was practically negligible (95%) L-DOS47 conjugate was produced using only ultradiafiltration to remove unreacted antibody and hydrolyzed cross-linker. L-DOS47 was characterized by a panel of analytical techniques including SEC, IEC, Western blot, ELISA, and LC-MS(E) peptide mapping. As the antibody-urease conjugate ratio increased, a higher binding signal was observed. The specificity and cytotoxicity of L-DOS47 was confirmed by screening in four cell lines (BxPC-3, A549, MCF7, and CEACAM6-transfected H23). BxPC-3, a CEACAM6-expressing cell line was found to be most susceptible to L-DOS47. L-DOS47 is being investigated as a potential therapeutic agent in human phase I clinical studies for nonsmall cell lung cancer.

  17. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    Science.gov (United States)

    Poulin-Laprade, Dominic; Carraro, Nicolas; Burrus, Vincent

    2015-01-01

    Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.

  18. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    Directory of Open Access Journals (Sweden)

    Dominic ePoulin-Laprade

    2015-08-01

    Full Text Available Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs of the SXT/R391 family (SRIs and IncA/C conjugative plasmids (ACPs are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e. SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.

  19. An autoradiographic study on the distribution of 14C-glycine in clonorchis sinensis

    International Nuclear Information System (INIS)

    Lee, S.H.; Song, C.Y.

    1977-01-01

    To study an aspect of protein metabolism in chinese liverfluke, Clonorchis sinensis, an autoradiographic study was performed. A batch of 25 ml erlenmeyer flasks, each flask containing 10 worms of C. sinensis and 10 ml of Tyrode medium with 2.5 μCi/ml of 14 C-glycine, was incubated for 1 hour in Dubnoff metabolic shaking incubator at 37 0 C. Those worms were processed for microautoradiography immediately after the incubation, and following results were obtained from the autoradiographs. The densities of black silver grains derived from 14 C-glycine were the most apparent in the subparenchymal cells, intestinal epithelium, vitelline gland cells, ovary and the wall of the seminal vesicle. Moderate grade of densities were observed in the tegument, oral sucker, pharynx, intestinal content and in the testes. The reticular tissue, ventral sucker, uterus with eggs, seminal receptacle and the content of seminal vesicle showed trace amount of silver grains. (author)

  20. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from α-linolenic acid: conjugated linolenic acid (CLnA).

    Science.gov (United States)

    Park, Hui Gyu; Cho, Hyung Taek; Song, Myoung-Chong; Kim, Sang Bum; Kwon, Eung Gi; Choi, Nag Jin; Kim, Young Jun

    2012-03-28

    This study was performed to characterize natural CLnA isomer production by Bifidobacterium breve LMC520 of human origin in comparison to conjugated linoleic acid (CLA) production. B. breve LMC520 was found to be highly active in terms of CLnA production, of which the major portion was identified as cis-9,trans-11,cis-15 CLnA isomer by GC-MS and NMR analysis. B. breve LMC520 was incubated for 48 h using MRS medium (containing 0.05% L-cysteine · HCl) under different environmental conditions such as atmosphere, pH, and substrate concentration. The high conversion rate of α-linolenic acid (α-LNA) to CLnA (99%) was retained up to 2 mM α-LNA, and the production was proportionally increased nearly 7-fold with 8 mM by the 6 h of incubation under anaerobic conditions at a wide range of pH values (between 5 and 9). When α-LNA was compared with linoleic acid (LA) as a substrate for isomerization by B. breve LMC520, the conversion of α-LNA was higher than that of LA. These results demonstrated that specific CLnA isomer could be produced through active bacterial conversion at an optimized condition. Because many conjugated octadecatrienoic acids in nature are shown to play many positive roles, the noble isomer found in this study has potential as a functional source.

  1. Main: FBA8 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available on Ubiquitin activation of NF-kB Kazuhiro Iwai Graduate School of Frontier Biosciences, Osaka University - W...e discovered a new type of the linear polyubiquitin chain generated by a unique ubiquitin ligase complex LUB...h polyubiquitin conjugation. Polyubiquitin chains were thought to be formed only by the conjugation of the u...ified a new type of the linear polyubiquitin chain in which the C-terminal glycine of ubiquitin is conjugate...flammatory and autoimmune diseases. Here, we determine the structures and functions of various domains in HO

  2. Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2 BC3 and fertile soybean plants

    Science.gov (United States)

    The genetic resources of the 26 species of the subgenus Glycine have not been exploited to broaden the genetic base of soybean (Glycine max; 2n = 40). Initially, we hybridized eight soybean cultivars with six accessions of 78- and one accession of 40-chromosome G. tomentella. One accession of G. arg...

  3. Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Arihara, Keizo

    2016-06-15

    Effects of the odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves were investigated in the present study. Equimolar solutions of glucose and glycine were adjusted to pH 7 and pH 9 and heated at 90 °C for 30 min. The odor generated from the glycine/glucose Maillard reaction significantly decreased negative moods. Its effects on brainwaves differed according to pH; alpha brainwave distribution was increased after inhalation of the odor generated at pH 7, whereas it was decreased by the odor generated at pH 9. The effects on mood and brainwaves were also measured after inhalation of model solutions, which comprised of potent odorants determined by aroma extract dilution analysis (AEDA), and the results were similar to those obtained with the Maillard reaction samples. Therefore, odors constructed by potent odorants could influence human mood and brainwaves. Among all potent odorants, 2,3-dimethylpyrazine and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) were identified as the strongest, and high pH values resulted in higher yields of these odorants. Furthermore, DMHF was identified as the putative agent responsible for the decrease in alpha brainwave distribution after smelling the pH-9 Maillard reaction sample since higher concentrations of DMHF resulted in a similar effect.

  4. Conjugated Polymers Atypically Prepared in Water

    Science.gov (United States)

    Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.

    2010-01-01

    Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869

  5. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    Science.gov (United States)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  6. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  7. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  8. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system

    Czech Academy of Sciences Publication Activity Database

    Zubáčová, Z.; Novák, L.; Bublíková, J.; Vacek, V.; Fousek, Jan; Rídl, Jakub; Tachezy, J.; Doležal, P.; Vlček, Čestmír; Hampl, V.

    2013-01-01

    Roč. 8, č. 3 (2013), e55417 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : transcriptome sequencing * Trimastix * mitochondrion -like organelle * glycine cleavage complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  9. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  10. Diffeomorphisms Holder conjugate to Anosov diffeomorphisms

    OpenAIRE

    Gogolev, Andrey

    2008-01-01

    We show by means of a counterexample that a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is not necessarily Anosov. The counterexample can bear higher smoothness up to $C^3$. Also we include a result from the 2006 Ph.D. thesis of T. Fisher: a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is Anosov itself provided that Holder exponents of the conjugacy and its inverse are sufficiently large.

  11. Design and Synthesis of Novel and Selective Glycine Transporter-1 (GlyT1) Inhibitors with Memory Enhancing Properties.

    Science.gov (United States)

    Santora, Vincent J; Almos, Theresa A; Barido, Richard; Basinger, Jillian; Bellows, Chris L; Bookser, Brett Carder; Breitenbucher, J Guy; Broadbent, Nicola J; Cabebe, Clifford; Chai, Chih-Kun; Chen, Mi; Chow, Stephine; Chung, De Michael; Crickard, Lindsay; Danks, Anne M; Freestone, Graeme; Gitnick, Dany; Gupta, Varsha; Hoffmaster, Christine; Hudson, Andrew R; Kaplan, Alan P; Kennedy, Michael R; Lee, Dong; Limberis, James; Ly, Kiev; Mak, Chi Ching; Masatsugu, Brittany; Morse, Andrew C; Na, Jim; Neul, David; Nikpur, John; Peters, Marco; Petroski, Robert E; Renick, Joel; Sebring, Kristen; Sevidal, Samantha; Tabatabaei, Ali; Wen, Jenny; Yan, Yingzhuo; Yoder, Zachary W; Zook, Douglas

    2018-06-11

    We report here the identification and optimization of a novel series of potent GlyT1 inhibitors. A ligand design campaign that utilized known GlyT1 inhibitors as starting points led to the identification of a novel series of pyrrolo[3,4-c]pyrazoles amides (21-50) with good in vitro potency. Subsequent optimization of physicochemical and in vitro ADME properties produced several compounds with promising pharmacokinetic profiles. In vivo inhibition of GlyT1 was demonstrated for select compounds within this series by measuring the elevation of glycine in the cerebrospinal fluid (CSF) of rats after a single oral dosing of 10 mg/kg. Ultimately, an optimized lead, compound 46, demonstrated in vivo efficacy in a rat Novel Object Recognition (NOR) assay after oral dosing at 0.1, 1, and 3 mg/kg.

  12. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  13. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  14. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  15. π-Conjugated organic-based devices with different layered structures produced by the neutral cluster beam deposition method and operating conduction mechanism

    International Nuclear Information System (INIS)

    Seo, Hoon-Seok; Oh, Jeong-Do; Kim, Dae-Kyu; Shin, Eun-Sol; Choi, Jong-Ho

    2012-01-01

    The authors report on the systematic characterization of structural effects of organic complementary inverters based on two π-conjugated organic molecules, pentacene and copper hexadecafluorophthalocyanine (F 16 CuPc). Three classes of inverters with different layered structures in top-contact configuration were produced using the neutral cluster beam deposition method. Their voltage transfer characteristics, gain curves and hysteresis behaviour were characterized with respect to their thickness. Class I inverters, with generic structures of single-layered, p-and n-type (200/180 Å) transistors, exhibited high gains of 12.8 ± 1.0 with sharp inversions. Their two constituent transistors, with hole and electron mobilities of 0.38 cm 2 V -1 s -1 and 7.0 × 10 -3 cm 2 V -1 s -1 , respectively, showed well-coupled carrier conduction during operation. The behaviour of class II and III inverters, with layered heterojunction structures, was independent of upper-layer thickness and did not show hysteresis. The better performances of class II inverters, which showed high gains of 14.4 ± 1.1, were rationalized partly in terms of decreased mobility differences between their constituent transistors. Heterojunction geometries can be applied to obtain high-performance, fast-switching inverters by avoiding direct exposure of the air-sensitive transistors to ambient conditions. The inverters' general operating conduction mechanism is also discussed.

  16. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  17. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

    Directory of Open Access Journals (Sweden)

    Tao Zhan

    Full Text Available Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO, we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg(51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

  18. Glycine reduces tissue lipid peroxidation in hypoxia-reoxygenation-induced necrotizing enterocolitis in rats

    Directory of Open Access Journals (Sweden)

    Meyer Karine Furtado

    2006-01-01

    Full Text Available PURPOSE: To assess the protective effect of glycine in an experimental model of Neonatal Necrotizing Enterocolitis (NEC. METHODS: Fifty (50 neonatal Wistar rats, from a litter of six female rats and weighing 4 to 6 grams, were used. Five animals were cannibalized and the 45 remaining were distributed into three groups: the G1 normal control group (n=12; the G2 Group (n=16, of animals that underwent hypoxia-reoxygenation (HR; the G3 Group of animals (n=17 that underwent HR following a 5% intraperitoneal glycine infusion. The animals underwent hypoxia in a CO2 chamber receiving an air flow of 100% CO2 for 5 minutes and reoxygenation receiving an O2 flow at 100% for 5 minutes. One centimeter long small bowel and colon segments were prepared for histological analysis. The rest of the bowel was removed in a block and frozen at minus 80degreesC for homogenization and determination of tissue malondialdehyde (MDA. Tissue lesions were classified as Grade 0 to Grade 5, according to the level of damaged mucosa. RESULTS: The animals in Group G1 had levels of small bowel and colon lesion significantly smaller as compared to the animals in Groups G2 and G3. The G2 group had mean MDA values significantly higher than the animals in the G1 (p = .015 and G3 (p=0.021 groups. MDA values did not differ significantly (p = 0.992 for the animals in groups G1 and G3. CONCLUSION: Glycine reduces tissue MDA levels (a measurement of lipid peroxidation following HR in neonatal rats.

  19. Improvement of Emulsifying Properties of Wheat Gluten Hydrolysate λ-Carrageenan Conjugates

    Directory of Open Access Journals (Sweden)

    Jin-Shui Wang

    2006-01-01

    Full Text Available Gluten hydrolysate was prepared through limited enzymatic hydrolysis of wheat gluten resulting from the byproducts of wheat starch. The enzyme applied in the present study was Protamex. Response surface methodology was used to investigate the effects of pH, gluten hydrolysate (GHPλ-carrageenan (C ratio and reaction time on emulsifying properties of the GHP-C conjugate. The regression model for emulsion activity index (EAI was significant at p=0.001, while reaction time had a significant effect on EAI of the conjugate with regression coefficient of 4.25. The interactions of pH and GHP/ C ratio, and GHP/C ratio and reaction time significantly affected the EAI of the conjugate. Both the emulsifying property and nitrogen solubility index (NSI of GHP-C conjugate prepared under the optimal conditions increased more remarkably, compared to the control. The denaturation temperature of GHP-C conjugate obviously increased compared to wheat gluten. The addition of GHP-C conjugate had different effects on dough characteristics. Moreover, this conjugate can delay the increase in the bread crumb firmness during storage. It demonstrated that this conjugate couldimprove the dough characteristics and had anti-staling properties of bread.

  20. Direct growth of vertically aligned carbon nanotubes on silicon substrate by spray pyrolysis of Glycine max oil

    Directory of Open Access Journals (Sweden)

    K. T. Karthikeyan

    2017-11-01

    Full Text Available Vertically aligned carbon nanotubes have been synthesized by spray pyrolysis from Glycine max oil on silicon substrate using ferrocene as catalyst at 650 °C. Glycine max oil, a plant-based hydrocarbon precursor was used as a source of carbon and argon as a carrier gas. The as-grown vertically aligned carbon nanotubes were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. Scanning electron microscopic images reveal that the dense bundles of aligned carbon nanotubes. High resolution transmission electron microscopy and Raman spectroscopy observations indicate that as-grown aligned carbon nanotubes are well graphitized.

  1. Comparative study of glycine single crystals with additive of potassium nitrate in different concentration ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gujarati, Vivek P., E-mail: vivekgujarati@gmail.com; Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi R.; Chaki, S. H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat (India)

    2016-05-06

    Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field, UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.

  2. Specific bile acid radioimmunoassays for separate determinations of unconjugated cholic acid, conjugated cholic acid and conjugated deoxycholic acid in serum and their clinical application

    International Nuclear Information System (INIS)

    Matern, S.; Gerok, W.

    1977-01-01

    Specific radioimmunoassays for separate determinations of serum unconjugated cholic, conjugated cholic and conjugated deoxycholic acids have been developed. Prior to the radioimmunoassay, extraction of serum bile acids was performed with Amberlite XAD-2. Unconjugated cholic acid was separated from glyco- and taurocholic acids by thin-layer chromatography. At 50% displacement of bound labeled glyco[ 3 H]cholic acid using antiserum obtained after immunization with cholic acid-bovine serum albumin-conjugate the cross-reactivity of taurocholic acid was 100%, cholic acid 80%, glycochenodeoxycholic acid 10%, chenodeoxycholic acid 7%, conjugated deoxycholic acid 3%, and conjugated lithocholic acid 3 H]cholic acid was linear on a logit-log plot from 5 to 80 pmol of unlabeled glycocholic acid. Fasting serum conjugated cholic acid in healthy subjects was 0.68 +- 0.34 μmol/l. Unconjugated cholic acid was determined by a solid phase radioimmunoassay using the cholic acid antibody chemically bound to Sepharose. The displacement curve of [ 3 H]cholic acid in the solid phase radioimmunoassay was linear on a logit-log plot from 5 to 200 pmol of unlabeled cholic acid. The coefficient of variation between samples was 5%. Fasting serum conjugated deoxycholic acid concentrations in 10 healthy subjects ranged from 0.18 to 0.92 μmol/l determined by a radioimmunoassay using antiserum obtained after immunization with deoxycholic acid-bovine serum albumin-conjugate. The clinical application of these bile acid radioimmunoassays is shown by an 'oral cholate tolerance test' as a sensitive indicator of liver function and by an 'oral cholyglycine tolerance test' as a useful test for bile acid absorption. (orig.) [de

  3. Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm.

    Science.gov (United States)

    Vogel, Curtis R; Yang, Qiang

    2006-08-21

    We present two different implementations of the Fourier domain preconditioned conjugate gradient algorithm (FD-PCG) to efficiently solve the large structured linear systems that arise in optimal volume turbulence estimation, or tomography, for multi-conjugate adaptive optics (MCAO). We describe how to deal with several critical technical issues, including the cone coordinate transformation problem and sensor subaperture grid spacing. We also extend the FD-PCG approach to handle the deformable mirror fitting problem for MCAO.

  4. Preparation and biodistribution study of 99Tcm labelled dextran conjugates

    International Nuclear Information System (INIS)

    Yang Chunhui; Li Hongyu; Liang Jixin; Lu Jia; Luo Hongyi; Zheng Deqiang; Sun Guiquan

    2012-01-01

    99 Tc m Mannosylated dextran conjugates were prepared through [ 99 Tc m (CO) 3 ] + precursor synthesized by carbonyl Isolink kit. The labelled conjugates were injected sub-dermally into the rear foots of the mice, and the patent blue solution was injected at the same site 10 min before sacrifice. The mice were killed at 1 h and 4 h postinjection, and the samples of different tissues including SLN, 2LN, injection site, liver, spleen, blood were dissected and counted. The uptake in terms was calculated. The results of biodistribution demonstrated that the SLN uptakes of radiopharmaceutical (without mannose in the molecules) were rather low and in vivo excretion of these conjugates were comparatively faster, and the uptake of injection site was also low; on the other hand, the SLN uptakes of radio pharmaceutical (with mannose in their molecules) were much higher than those of their corresponding dextran conjugates without mannose, but the retention in the injection site of these conjugates increased too. The results indicated that the affinity of mannosyl-dextran conjugates to the receptors on the surface of macrophages in the lymph node. In addition, the different relative molecular mass of dextran conjugates also cause different biodistribution results, the major one had higher SLN uptake, the difference was significant (P 99 Tc m (CO) 3 ] + labelled mannosylated dextran conjugates showed promising properties as SLN imaging agent and worth further investigation. (authors)

  5. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  6. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    Science.gov (United States)

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  7. Conjugated Fatty Acid Synthesis

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  8. Hydrolyzed caseinomacropeptide conjugated galactooligosaccharides support the growth and enhance the bile tolerance in Lactobacillus strains.

    Science.gov (United States)

    Muthaiyan, Arunachalam; Hernandez-Hernandez, Oswaldo; Moreno, F Javier; Sanz, Maria Luz; Ricke, Steven C

    2012-07-11

    In this study bioactive caseinomacropeptide was conjugated with prebiotic galactooligosaccharides (hCMP:GOS) by Maillard reaction to synthesize value added prebiotic compounds to Lactobacillus strains. Growth study showed the ability of hCMP:GOS to serve as a sole carbon source for Lactobacillus strains. A significant amount of acetate and lactate was detected in cell free culture supernatant by HPLC. It demonstrated the ability of Lactobacillus strains to ferment the hCMP:GOS as a carbon source. In addition, hCMP:GOS grown Lactobacillus cells exhibited enhanced bile tolerance and retained 90% viability. Overall results of this study indicate that the hCMP conjugated GOS can be potential multipurpose prebiotic substrates to enhance the growth and bile tolerance in Lactobacillus strains and serve as a fermentable substrate to produce beneficial metabolites in the host.

  9. A 12-Fold ThSi2 Interpenetrated Network Utilizing a Glycine-Based Pseudopeptidic Ligand

    Directory of Open Access Journals (Sweden)

    Edward Loukopoulos

    2018-01-01

    Full Text Available We report the synthesis and characterization of a 3D Cu(II coordination polymer, [Cu3(L12(H2O8]·8H2O (1, with the use of a glycine-based tripodal pseudopeptidic ligand (H3L1 = N,N′,N″-tris(carboxymethyl-1,3,5-benzenetricarboxamide or trimesoyl-tris-glycine. This compound presents the first example of a 12-fold interpenetrated ThSi2 (ths net. We attempt to justify the unique topology of 1 through a systematic comparison of the synthetic parameters in all reported structures with H3L1 and similar tripodal pseudopeptidic ligands. We additionally explore the catalytic potential of 1 in the A3 coupling reaction for the synthesis of propargylamines. The compound acts as a very good heterogeneous catalyst with yields up to 99% and loadings as low as 3 mol %.

  10. Functional properties of nisin–carbohydrate conjugates formed by radiation induced Maillard reaction

    International Nuclear Information System (INIS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-01-01

    Nisin–carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin–carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin–dextran conjugates possessed better antioxidant potential than nisin–glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry. - Highlights: ► Nisin–carbohydrate conjugates were prepared using radiation induced Maillard reaction. ► Conjugation of nisin with dextran/glucose resulted in improvement of antibacterial spectrum. ► Conjugates of nisin with dextran/glucose had significant radical scavenging activity.

  11. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  12. Cross-conjugation and quantum interference: a general correlation?

    DEFF Research Database (Denmark)

    Valkenier, Hennie; Guedon, Constant M.; Markussen, Troels

    2014-01-01

    We discuss the relationship between the pi-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated...

  13. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2016-01-01

    Full Text Available Conjugated linoleic acids (CLA are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane.

  14. Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

    Science.gov (United States)

    Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe

    2013-01-01

    Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650

  15. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  16. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Science.gov (United States)

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  17. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  18. Comparative cytotoxicity of gold-doxorubicin and InP-doxorubicin conjugates.

    Science.gov (United States)

    Zhang, Xuan; Chibli, Hicham; Kong, Dekun; Nadeau, Jay

    2012-07-11

    Direct comparisons of different types of nanoparticles for drug delivery have seldom been performed. In this study we compare the physical properties and cellular activity of doxorubicin (Dox) conjugates to gold nanoparticles (Au) and InP quantum dots of comparable diameter. Although the Au particles alone are non-toxic and InP is moderately toxic, Au-Dox is more effective than InP-Dox against the Dox-resistant B16 melanoma cell line. Light exposure does not augment the efficacy of InP-Dox, suggesting that conjugates are breaking down. Electron and confocal microscopy and atomic absorption spectroscopy reveal that over 60% of the Au-Dox conjugates reach the cell nucleus. In contrast, InP-Dox enters cell nuclei to a very limited extent, although liberated Dox from the conjugates does eventually reach the nucleus. These observations are attributed to faster Dox release from Au conjugates under endosomal conditions, greater aggregation of InP-Dox with cytoplasmic proteins, and adherence of InP to membranes. These findings have important implications for design of active drug-nanoparticle conjugates.

  19. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui; Xu, Yanqiu; Pan, Jun; Gu, Hao; Qin, Changyun; Zhou, Peng

    2012-01-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  20. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui

    2012-11-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  1. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...

  2. Anticancer activity of drug conjugates in head and neck cancer cells.

    Science.gov (United States)

    Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M

    2016-06-01

    Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212).

  3. Small angle scattering from protein/sugar conjugates

    Science.gov (United States)

    Jackson, Andrew; White, John

    2006-11-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.

  4. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  5. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  6. Free and conjugated dopamine in human ventricular fluid

    International Nuclear Information System (INIS)

    Sharpless, N.S.; Thal, L.J.; Wolfson, L.I.; Tabaddor, K.; Tyce, G.M.; Waltz, J.M.

    1981-01-01

    Free dopamine and an acid hydrolyzable conjugate of dopamine were measured in human ventricular fluid specimens with a radioenzymatic assay and by high performance liquid chromatography (HPLC) with electrochemical detection. Only trace amounts of free norepinephrine and dopamine were detected in ventricular fluid from patients with movement disorders. When the ventricular fluid was hydrolyzed by heating in HClO 4 or by lyophilization in dilute HClO 4 , however, a substantial amount of free dopamine was released. Values for free plus conjugated dopamine in ventricular fluid from patients who had never taken L-DOPA ranged from 139 to 340 pg/ml when determined by HPLC and from 223 to 428 pg/ml when measured radioenzymatically. The correlation coefficient for values obtained by the two methods in the same sample of CSF was 0.94 (P<0.001). Patients who had been treated with L-DOPA had higher levels of conjugated dopamine in their ventricular CSF which correlated inversely with the time between the last dose of L-DOPA and withdrawal of the ventricular fluid. Additionally, one patient with acute cerebral trauma had elevated levels of free norepinephrine and both free and conjugated dopamine in his ventricular fluid. Conjugation may be an important inactivation pathway for released dopamine in man. (Auth.)

  7. Antibody-radioisotope conjugates for tumor localization and treatment

    International Nuclear Information System (INIS)

    Larson, S.M.; Carrasquillo, J.A.

    1985-01-01

    In principle, anti-tumor antibodies can be used to carry radioactivity to tumors for in-vivo diagnosis and treatment of cancer. First, for diagnostic purposes, an antibody that targets a specific antigen (for example, the p97 antigen of human melanoma tumor), is labeled with a tracer amount of radioactivity. When this antibody-radioisotope conjugate is injected into the blood stream, the antibody carries the radioactivity throughout the body and in time, percolates through all the tissues of the body. Because the tumor has specific antigens to which the antibody can bind, the antibody conjugate progressively accumulates in the tumor. Using conventional nuclear medicine imaging equipment, the body of the patient is scanned for radioactivity content, and a map of the distribution of the radioactivity is displayed on photographic film. The tumor shows up as a dense area of radio-activity. These same antibody-radioisotope conjugates may be used for therapy of tumors, except that in this case large amounts of radioactivity are loaded on the antibody. After localization of the conjugate there is sufficient radiation deposited in the tumor of radiotherapy. The success of this approach in the clinic is determined in large measure by the concentration gradient that can be achieved between tissue antibody conjugate in tumor versus normal tissue

  8. Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

    Science.gov (United States)

    Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders

    2014-01-01

    It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future

  9. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2.

    Directory of Open Access Journals (Sweden)

    Louise C Andresen

    Full Text Available It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g(-1 soil of (13C-labeled glycine ((13C2, 99 atom % to soils in situ. Plots were treated with elevated temperature (+1°C, T, summer drought (D and elevated atmospheric carbon dioxide (510 ppm [CO2], as well as combined treatments (TD, TCO2, DCO2 and TDCO2. The (13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs was determined after 24 h. (13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS. Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated (13C in all treatments, whereas fungi had minor or no glycine derived (13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G(+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was (13C-depleted (δ(13C = 12.2‰ compared to ambient (δ(13C = ∼-8‰, and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to

  10. Conjugal conflict and violence: a review and theoretical paradigm.

    Science.gov (United States)

    Smilkstein, G; Aspy, C B; Quiggins, P A

    1994-02-01

    Conjugal violence has been described as having multiple etiologies. The variables are so numerous that intervention and research protocols are difficult to effect. This paper proposes a paradigm that establishes conjugal conflict and violence as separate entities. According to the paradigm, conjugal conflict is viewed as "an inevitable part of human association," whereas conjugal violence is determined to be a learned behavioral tactic that is employed as a coping strategy when an individual's conflict threshold potential is exceeded. Evidence will be offered that violence is learned from family of origin and from observing what is common or accepted practice in the community. Use of this paradigm would give primacy to community education programs that advance the concept of conflict resolution through rational discourse.

  11. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  12. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2018-05-15

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  13. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  14. PROBING FUNDAMENTAL CONSTANT EVOLUTION WITH REDSHIFTED CONJUGATE-SATELLITE OH LINES

    International Nuclear Information System (INIS)

    Kanekar, Nissim; Chengalur, Jayaram N.; Ghosh, Tapasi

    2010-01-01

    We report Westerbork Synthesis Radio Telescope and Arecibo Telescope observations of the redshifted satellite OH 18 cm lines at z ∼ 0.247 toward PKS 1413+135. The 'conjugate' nature of these lines, with one line in emission and the other in absorption, but with the same shape, implies that the lines arise in the same gas. The satellite OH 18 cm line frequencies also have different dependences on the fine structure constant α, the proton-electron mass ratio μ = m p /m e , and the proton gyromagnetic ratio g p . Comparisons between the satellite line redshifts in conjugate systems can hence be used to probe changes in α, μ, and g p , with few systematic effects. The technique yields the expected null result when applied to Cen.A, a nearby conjugate satellite system. For the z ∼ 0.247 system toward PKS 1413+135, we find, on combining results from the two telescopes, that (ΔG/G) = (-1.18 ± 0.46) x 10 -5 (weighted mean), where G = g p (μα 2 ) 1.85 ; this is tentative evidence (with 2.6 σ significance, or at 99.1% confidence) for a smaller value of α, μ, and/or g p at z ∼ 0.247, i.e., at a lookback time of ∼2.9 Gyr. If we assume that the dominant change is in α, this implies (Δα/α) = (-3.1 ± 1.2) x 10 -6 . We find no evidence that the observed offset might be produced by systematic effects, either due to observational or analysis procedures, or local conditions in the molecular cloud.

  15. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking

    Directory of Open Access Journals (Sweden)

    Alkharouf Nadim W

    2009-03-01

    Full Text Available Abstract Background A single Glycine max (soybean genotype (Peking reacts differently to two different populations of Heterodera glycines (soybean cyst nematode within the first twelve hours of infection during resistant (R and susceptible (S reactions. This suggested that H. glycines has population-specific gene expression signatures. A microarray analysis of 7539 probe sets representing 7431 transcripts on the Affymetrix® soybean GeneChip® were used to identify population-specific gene expression signatures in pre-infective second stage larva (pi-L2 prior to their infection of Peking. Other analyses focused on the infective L2 at 12hours post infection (i-L212h, and the infective sedentary stages at 3days post infection (i-L23d and 8days post infection (i-L2/L38d. Results Differential expression and false discovery rate (FDR analyses comparing populations of pi-L2 (i.e., incompatible population, NL1-RHg to compatible population, TN8 identified 71 genes that were induced in NL1-RHg as compared to TN8. These genes included putative gland protein G23G12, putative esophageal gland protein Hgg-20 and arginine kinase. The comparative analysis of pi-L2 identified 44 genes that were suppressed in NL1-RHg as compared to TN8. These genes included a different Hgg-20 gene, an EXPB1 protein and a cuticular collagen. By 12 h, there were 7 induced genes and 0 suppressed genes in NL1-RHg. By 3d, there were 9 induced and 10 suppressed genes in NL1-RHg. Substantial changes in gene expression became evident subsequently. At 8d there were 13 induced genes in NL1-RHg. This included putative gland protein G20E03, ubiquitin extension protein, putative gland protein G30C02 and β-1,4 endoglucanase. However, 1668 genes were found to be suppressed in NL1-RHg. These genes included steroid alpha reductase, serine proteinase and a collagen protein. Conclusion These analyses identify a genetic expression signature for these two populations both prior to and subsequently

  16. Structure and function of nanoparticle-protein conjugates

    International Nuclear Information System (INIS)

    Aubin-Tam, M-E; Hamad-Schifferli, K

    2008-01-01

    Conjugation of proteins to nanoparticles has numerous applications in sensing, imaging, delivery, catalysis, therapy and control of protein structure and activity. Therefore, characterizing the nanoparticle-protein interface is of great importance. A variety of covalent and non-covalent linking chemistries have been reported for nanoparticle attachment. Site-specific labeling is desirable in order to control the protein orientation on the nanoparticle, which is crucial in many applications such as fluorescence resonance energy transfer. We evaluate methods for successful site-specific attachment. Typically, a specific protein residue is linked directly to the nanoparticle core or to the ligand. As conjugation often affects the protein structure and function, techniques to probe structure and activity are assessed. We also examine how molecular dynamics simulations of conjugates would complete those experimental techniques in order to provide atomistic details on the effect of nanoparticle attachment. Characterization studies of nanoparticle-protein complexes show that the structure and function are influenced by the chemistry of the nanoparticle ligand, the nanoparticle size, the nanoparticle material, the stoichiometry of the conjugates, the labeling site on the protein and the nature of the linkage (covalent versus non-covalent)

  17. Fullerene–biomolecule conjugates and their biomedicinal applications

    Directory of Open Access Journals (Sweden)

    Yang X

    2013-12-01

    Full Text Available Xinlin Yang,1 Ali Ebrahimi,1 Jie Li,1,2 Quanjun Cui11Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA; 2School of Materials Science, Beijing Institute of Technology, Beijing, People's Republic of ChinaAbstract: Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene–biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene–biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene–biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.Keywords: fullerene, amino acid, peptide, oligonucleotide, sugar, ester

  18. The Synthesis of Substituted Piperazine-cholesterol Conjugates for ...

    African Journals Online (AJOL)

    A small library of cholesterol-piperazine conjugates were synthesized by the reaction of cholesteryl chloroformate with a set of substituted piperazines in dichloromethane at room temperature. The conjugates, all obtained in good to excellent yields, were synthesized to be key components of nucleic acid transfection ...

  19. Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes.

    Science.gov (United States)

    Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin

    2017-01-01

    Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N -nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism.

  20. Preparation, isolation and identification of non-conjugated C18:2 fatty acid isomers.

    Science.gov (United States)

    Fardin-Kia, Ali Reza

    2016-12-01

    Non-conjugated geometric/positional isomers of linoleic acid (c9,c12-18:2) are often present in processed foods and oils. The following work presents a simple addition/elimination reaction for preparation of non-conjugated 18:2 fatty acid isomers. A mixture containing positional and geometric isomers of C18:2 fatty acids was produced by addition of hydrobromic acid to the fatty acid double bonds, followed by its elimination with a strong sterically hindered base. Pure 8,12-, 8,13-, 9,12-, and 9,13-18:2 fatty acid methyl esters were isolated from the synthetic mixture by a combination of sub-ambient RP-HPLC and Ag + -HPLC. The determination of the double bond position was achieved by GC-MS using picolinyl esters derivatives. The determination of the fatty acid double bond geometric configuration was obtained by partial hydrogenation of the isolated isomer with hydrazine, followed by the GC-FID analysis. Published by Elsevier Ireland Ltd.