WorldWideScience

Sample records for glycerol meso-erythritol myo-inositol

  1. Apparent molar volumes and apparent molar heat capacities of aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Blodgett, M.B.; Ziemer, S.P.; Brown, B.R.; Niederhauser, T.L.; Woolley, E.M.

    2007-01-01

    Apparent molar volumes V φ were determined for aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa, and apparent molar heat capacities C p,φ of the same solutions were determined at temperatures from (278.15 to 363.15) K at the same pressure. Molalities m/(mol . kg -1 ) of the solutions were in the range (0.02 ≤ m ≤ 3.2) for adonitol, (0.02 ≤ m ≤ 0.15) for dulcitol, (0.02 ≤ m ≤ 5.0) for glycerol, (0.02 ≤ m ≤ 3.0) for meso-erythritol, (0.02 ≤ m ≤ 0.5) for myo-inositol, (0.02 ≤ m ≤ 2.0) for D-sorbitol, and (0.02 ≤ m ≤ 2.7) for xylitol. A vibrating tube densimeter was used to obtain solution densities and a fixed-cell temperature scanning calorimeter was used to obtain heat capacities. Values of V φ and C p,φ for these sugar alcohols are discussed relative to one another and compared to values from the literature, where available

  2. Apparent molar volumes and apparent molar heat capacities of aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Blodgett, M.B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Ziemer, S.P. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Brown, B.R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Niederhauser, T.L. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Woolley, E.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States)]. E-mail: earl_woolley@byu.edu

    2007-04-15

    Apparent molar volumes V {sub {phi}} were determined for aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa, and apparent molar heat capacities C {sub p,{phi}} of the same solutions were determined at temperatures from (278.15 to 363.15) K at the same pressure. Molalities m/(mol . kg{sup -1}) of the solutions were in the range (0.02 {<=} m {<=} 3.2) for adonitol, (0.02 {<=} m {<=} 0.15) for dulcitol, (0.02 {<=} m {<=} 5.0) for glycerol, (0.02 {<=} m {<=} 3.0) for meso-erythritol, (0.02 {<=} m {<=} 0.5) for myo-inositol, (0.02 {<=} m {<=} 2.0) for D-sorbitol, and (0.02 {<=} m {<=} 2.7) for xylitol. A vibrating tube densimeter was used to obtain solution densities and a fixed-cell temperature scanning calorimeter was used to obtain heat capacities. Values of V {sub {phi}} and C {sub p,{phi}} for these sugar alcohols are discussed relative to one another and compared to values from the literature, where available.

  3. Myo-Inositol content determined by myo-inositol biosynthesis and oxidation in blueberry fruit.

    Science.gov (United States)

    Song, Fangyuan; Su, Hongyan; Yang, Nan; Zhu, Luying; Cheng, Jieshan; Wang, Lei; Cheng, Xianhao

    2016-11-01

    Myo-inositol metabolism in plant edible organs has become the focus of many recent studies because of its benefits to human health and unique functions in plant development. In this study, myo-inositol contents were analyzed during the development of two blueberry cultivars, cv 'Berkeley' and cv 'Bluecrop'. Furthermore, two VcMIPS 1/2 (Vaccinium corymbosum MIPS) genes, one VcIMP (Vaccinium corymbosum IMP) gene and one VcMIOX (Vaccinium corymbosum MIOX) gene were isolated for the first time from blueberry. The expression patterns of VcMIPS2, VcIMP and VcMIOX genes showed a relationship with the change profiles of myo-inositol content during fruit ripening. The results were further confirmed by the analyses of the enzyme activity. Results indicated that both myo-inositol biosynthesis and oxidation played important roles in determining of myo-inositol levels during the development of blueberry. To our knowledge, this report is the first to discuss myo-inositol levels in fruits in terms of biosynthesis and catabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Ferrarini, M G; Mucha, S G; Parrot, D; Meiffren, G; Bachega, J F R; Comte, G; Zaha, A; Sagot, M F

    2018-04-06

    Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo-inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo-inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo-inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  5. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol ...

    Indian Academy of Sciences (India)

    Devendra P Mishra

    2017-06-20

    Jun 20, 2017 ... years, the molecular mechanism of D-Myo-Inositol in the treatment of diabetes mellitus remains unclear. Diabetes mellitus is a complex ... understanding of biology space, and its synthetic deriva- tives have played significant ...

  6. Effects of myo-inositol plus alpha-lactalbumin in myo-inositol-resistant PCOS women.

    Science.gov (United States)

    Montanino Oliva, Mario; Buonomo, Giovanna; Calcagno, Marco; Unfer, Vittorio

    2018-05-10

    Myo-inositol (MI), successfully used in polycystic ovary syndrome (PCOS), was administered with α-LA to exploit its action of favouring the passage of other molecules through biological barriers, and also considering its anti-inflammatory effect. PCOS patients, according to the Rotterdam ESHRE-ASRM criteria, with anovulation and infertility > 1 year, were included in this open and prospective study. The preliminary phase was aimed at determining a set of MI-resistant PCOS patients. This treatment involved 2 g MI, taken twice per day by oral route, for three months. The Homeostasis Model Assessment (HOMA) index and MI plasma levels were measured. In the main phase, previously selected MI-resistant patients received the same daily amount of MI plus 50 mg α-LA twice a day, for a further three months. Ovulation was assessed using ultrasound examination on days 12, 14 and 20 of the cycle. The HOMA index, lipid, hormone and MI plasma levels were detected at baseline and at the end of this phase. Thirty-seven anovulatory PCOS subjects were included in the study. Following MI treatment, 23 of the 37 women (62%) ovulated, while 14 (38%) were resistant and did not ovulate. In the latter group, MI plasma levels did not increase. These MI-resistant patients underwent treatment in the main phase of the study, receiving MI and α-LA. After this combined treatment, 12 (86%) of them ovulated. Their MI plasma levels were found to be significantly higher than at baseline; also, a hormone and lipid profile improvement was recorded. The combination of MI with α-LA allowed us to obtain significant progress in the treatment of PCOS MI-resistant patients. Therefore, this new formulation was able to re-establish ovulation, greatly increasing the chances of desired pregnancy. Clinical trial registration number: NCT03422289 ( ClinicalTrials.gov registry).

  7. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... a reaction mechanism different from that of other phytases. By combining the data presented in this study with (1) structural information obtained from the crystal structure of Bacillus amyloliquefaciens phytase [Ha, Oh, Shin, Kim, Oh, Kim, Choi and Oh (2000) Nat. Struct. Biol. 7, 147-153], and (2) computer...

  8. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    International Nuclear Information System (INIS)

    Komoszynski, M.; Bandurski, R.S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3 H in the indole and 14 C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [ 3 H]indole-3-acetyl-myo-inositol and [ 3 H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumptions concerning the equilibration of applied [ 3 H]indole-3-acetyl-myo-inositol-[U- 14 C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indoleacetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C] galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C]galactose supplies appreciable amounts of 14 C to the shoot and both 14 C and 3 H to an uncharacterized insoluble fraction of the endosperm

  9. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Science.gov (United States)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  10. Effect of myo-inositol and melatonin versus myo-inositol, in a randomized controlled trial, for improving in vitro fertilization of patients with polycystic ovarian syndrome.

    Science.gov (United States)

    Pacchiarotti, Alessandro; Carlomagno, Gianfranco; Antonini, Gabriele; Pacchiarotti, Arianna

    2016-01-01

    Polycystic ovarian syndrome (PCOS) induces anovulation in women of reproductive age, and is one of the pathological factors involved in the failure of in vitro fertilization (IVF). Indeed, PCOS women are characterized by poor quality oocytes. Therefore, a treatment for enhancing oocyte quality becomes crucial for these patients. Myo-Inositol and melatonin proved to be efficient predictors for positive IVF outcomes, correlating with high oocyte quality. We tested the synergistic effect of myo-inositol and melatonin in IVF protocols with PCOS patients in a randomized, controlled, double-blind trial. Five-hundred twenty-six PCOS women were divided into three groups: Controls (only folic acid: 400 mcg), Group A (Inofolic® plus, a daily dose of myo-inositol: 4000 mg, folic acid: 400 mcg, and melatonin: 3 mg), and Group B (Inofolic®, a daily dose of myo-inositol: 4000 mg, and folic acid: 400 mcg). The main outcome measures were oocyte and embryo quality, clinical pregnancy and implantation rates. The treatment lasted from the first day of the cycle until 14 days after embryo transfer. Myo-inositol and melatonin have shown to enhance, synergistically, oocyte and embryo quality. In consideration of the beneficial effect observed in our trial and on the bases of previous studies, we decided to integrate routinely MI and M supplementation in the IVF protocols. The same treatment should be taken carefully in consideration in all procedures of this kind.

  11. Modulation of hemodynamic and vascular filtration changes in diabetic rats by dietary myo-inositol

    International Nuclear Information System (INIS)

    Pugliese, G.; Tilton, R.G.; Speedy, A.; Santarelli, E.; Eades, D.M.; Province, M.A.; Kilo, C.; Sherman, W.R.; Williamson, J.R.

    1990-01-01

    To assess the potential of myo-inositol-supplemented diets to prevent diabetes-induced vascular functional changes, we examined the effects of diets supplemented with 0.5, 1, or 2% myo-inositol on blood flow and vascular filtration function in nondiabetic control rats and rats with streptozocin-induced diabetes (STZ-D). After 1 mo of diabetes and dietary myo-inositol supplementation, (1) 131I-labeled bovine serum albumin (BSA) permeation of vessels was assessed in multiple tissues, (2) glomerular filtration rate (GFR) was estimated as renal plasma clearance of 57Co-labeled EDTA, (3) regional blood flows were measured with 15-microns 85Sr-labeled microspheres, and (4) endogenous albumin and IgG urinary excretion rates were quantified by radial immunodiffusion assay. In STZ-D rats, 131I-BSA tissue clearance increased significantly (2- to 4-fold) in the anterior uvea, choroid-sclera, retina, sciatic nerve, aorta, new granulation tissue, diaphragm, and kidney but was unchanged in skin, forelimb muscle, and heart. myo-Inositol-supplemented diets reduced diabetes-induced increases in 131I-BSA clearance (in a dose-dependent manner) in all tissues; however, only in new granulation tissue and diaphragm did the 2% myo-inositol diet completely normalize vascular albumin permeation. Diabetes-induced increases in GFR and in urinary albumin and IgG excretion were also substantially reduced or normalized by dietary myo-inositol supplements. Increased blood flow in anterior uvea, choroid-sclera, kidney, new granulation tissue, and skeletal muscle in STZ-D rats also was substantially reduced or normalized by the 2% myo-inositol diet. myo-Inositol had minimal if any effects on the above parameters in control rats

  12. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  13. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Science.gov (United States)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  14. Crystal Structure and Product Analysis of an Archaeal myo-Inositol Kinase Reveal Substrate Recognition Mode and 3-OH Phosphorylation.

    Science.gov (United States)

    Nagata, Ryuhei; Fujihashi, Masahiro; Sato, Takaaki; Atomi, Haruyuki; Miki, Kunio

    2015-06-09

    The TK2285 protein from Thermococcus kodakarensis was recently characterized as an enzyme catalyzing the phosphorylation of myo-inositol. Only two myo-inositol kinases have been identified so far, the TK2285 protein and Lpa3 from Zea mays, both of which belong to the ribokinase family. In either case, which of the six hydroxyl groups of myo-inositol is phosphorylated is still unknown. In addition, little is known about the myo-inositol binding mechanism of these enzymes. In this work, we determined two crystal structures: those of the TK2285 protein complexed with the substrates (ATP analogue and myo-inositol) or the reaction products formed by the enzyme. Analysis of the ternary substrates-complex structure and site-directed mutagenesis showed that five residues were involved in the interaction with myo-inositol. Structural comparison with other ribokinase family enzymes indicated that two of the five residues, Q136 and R140, are characteristic of myo-inositol kinase. The crystal structure of the ternary products-complex, which was prepared by incubating the TK2285 protein with myo-inositol and ATP, holds 1d-myo-inositol 3-phosphate (Ins(3)P) in the active site. NMR and HPLC analyses with a chiral column also indicated that the TK2285 reaction product was Ins(3)P. The results obtained here showed that the TK2285 protein specifically catalyzes the phosphorylation of the 3-OH of myo-inositol. We thus designated TK2285 as myo-inositol 3-kinase (MI3K). The precise identification of the reaction product should provide a sound basis to further explore inositol metabolism in Archaea.

  15. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis

    Science.gov (United States)

    Gardell, Alison M.; Yang, Jun; Sacchi, Romina; Fangue, Nann A.; Hammock, Bruce D.; Kültz, Dietmar

    2013-01-01

    SUMMARY This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na+ and Cl− concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge. PMID:24072790

  16. In vivo mapping of brain myo-inositol.

    Science.gov (United States)

    Haris, Mohammad; Cai, Kejia; Singh, Anup; Hariharan, Hari; Reddy, Ravinder

    2011-02-01

    Myo-Inositol (MI) is one of the most abundant metabolites in the human brain located mainly in glial cells and functions as an osmolyte. The concentration of MI is altered in many brain disorders including Alzheimer's disease and brain tumors. Currently available magnetic resonance spectroscopy (MRS) methods for measuring MI are limited to low spatial resolution. Here, we demonstrate that the hydroxyl protons on MI exhibit chemical exchange with bulk water and saturation of these protons leads to reduction in bulk water signal through a mechanism known as chemical exchange saturation transfer (CEST). The hydroxyl proton exchange rate (k=600 s(-1)) is determined to be in the slow to intermediate exchange regime on the NMR time scale (chemical shift (∆ω)>k), suggesting that the CEST effect of MI (MICEST) can be imaged at high fields such as 7 T (∆ω=1.2×10(3)rad/s) and 9.4 T (∆ω=1.6×10(3) rad/s). Using optimized imaging parameters, concentration dependent broad CEST asymmetry between ~0.2 and 1.5 ppm with a peak at ~0.6 ppm from bulk water was observed. Further, it is demonstrated that MICEST detection is feasible in the human brain at ultra high fields (7 T) without exceeding the allowed limits on radiofrequency specific absorption rate. Results from healthy human volunteers (N=5) showed significantly higher (p=0.03) MICEST effect from white matter (5.2±0.5%) compared to gray matter (4.3±0.5%). The mean coefficient of variations for intra-subject MICEST contrast in WM and GM were 0.49 and 0.58 respectively. Potential overlap of CEST signals from other brain metabolites with the observed MICEST map is discussed. This noninvasive approach potentially opens the way to image MI in vivo and to monitor its alteration in many disease conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    N. Mohd. Yusoff

    2011-12-01

    Full Text Available Phytate or myo-inositol hexakisphosphates (IP6 is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml. However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration..KEYWORDS: myo-inositol phosphates, phytase, MCF-7,  cancerABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6 dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml. Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih

  18. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates.

    Science.gov (United States)

    Greiner, Ralf

    2017-11-08

    Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.

  19. Myo-inositol, glucose and zinc concentrations determined in the preconceptional period, during and after pregnancy.

    NARCIS (Netherlands)

    Groenen, P.M.; Roes, E.M.; Peer, P.G.M.; Merkus, H.M.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M.

    2006-01-01

    OBJECTIVE: To determine the blood concentrations of myo-inositol, glucose and zinc before, during and after normal pregnancy. STUDY DESIGN: Preconceptionally, at 6, 10, 20, 30 and 37 weeks amenorrhea, and 6 weeks after delivery, blood samples of 18 nulliparae and 19 multiparae were obtained and

  20. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni Vitale

    2016-01-01

    Full Text Available Assisted reproductive technologies (ART have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment.

  1. Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo -Inositol Accumulation

    KAUST Repository

    Bruggeman, Quentin; Prunier, Florence; Mazubert, Christelle; de Bont, Linda; Garmier, Marie; Lugan, Raphaë l; Benhamed, Moussa; Bergounioux, Catherine; Raynaud, Cé cile; Delarue, Marianne

    2015-01-01

    of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish

  2. Time-series responses of swine plasma metabolites to ingestion of diets containing myo-inositol or phytase.

    Science.gov (United States)

    Cowieson, Aaron J; Roos, Franz F; Ruckebusch, Jean-Paul; Wilson, Jonathan W; Guggenbuhl, Patrick; Lu, Hang; Ajuwon, Kolapo M; Adeola, Olayiwola

    2017-12-01

    The effect of the ingestion of diets containing either myo-inositol or exogenous phytase on plasma metabolites was examined using 29 kg barrows. The diets were: control (maize, soya, rapeseed, rice bran), control plus 2 g/kg myo-inositol, control plus 1000 phytase units (FYT)/kg or 3000 FYT/kg exogenous phytase. Pigs were housed in a PigTurn device and blood was collected, from jugular catheters, via an automated system at -30, (30 min before feeding), 0, 15, 30, 45, 60, 90, 120, 150, 180, 240, 300 and 360 min post-feeding. The addition of 2 g/kg myo-inositol to the basal diet resulted in an increase in plasma myo-inositol concentration that was evident 45-60 min after diet introduction and persisted to 360 min post-feeding. Similarly, supplementation of the basal diet with either 1000 or 3000 FYT/kg exogenous phytase resulted in an increase in plasma myo-inositol concentration that was still rising 360 min post-feeding. Plasma P concentration was increased over time by the addition of 1000 and 3000 FYT/kg phytase, but not by the addition of myo-inositol. Other plasma metabolites examined were not affected by dietary treatment. It can be concluded that oral delivery of myo-inositol results in rapid increase in plasma myo-inositol concentrations that peak approximately 45-60 min after feeding. Use of supplemental phytase achieves similar increases in myo-inositol concentration in plasma but the appearance is more gradual. Furthermore, supplementation of pig diets with exogenous phytase results in rapid appearance of P in plasma that may be sustained over time relative to diets with no added phytase.

  3. Dietary supplementation with myo-inositol in women during pregnancy for treating gestational diabetes.

    Science.gov (United States)

    Brown, Julie; Crawford, Tineke J; Alsweiler, Jane; Crowther, Caroline A

    2016-09-07

    Gestational diabetes mellitus (GDM) is any degree of glucose intolerance that first presents and is recognised during pregnancy and usually resolves after the birth of the baby. GDM is associated with increased short- and long-term morbidity for the mother and her baby. Treatment usually includes lifestyle modification and/or pharmacological therapy (oral antidiabetic agents or insulin) with the aim to maintain treatment targets for blood glucose concentrations. Finding novel treatment agents which are effective, acceptable and safe for the mother and her baby are important. One such emerging potential intervention is myo-inositol which is an isomer of inositol and occurs endogenously and is found in natural dietary sources such as fruits, vegetables, nuts and cereals. To assess if dietary supplementation with myo-inositol during pregnancy is safe and effective, for the mother and fetus, in treating gestational diabetes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 April 2016), ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (7 April 2016), and reference lists of retrieved studies. All published and unpublished randomised controlled trials or cluster-randomised controlled trials reporting on the use of myo-inositol compared with placebo, no treatment or another intervention for the treatment of women with gestational diabetes. Quasi-randomised and cross-over studies are not eligible for inclusion. Women with pre-existing diabetes were excluded. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. For key outcomes (where data were available), we assessed the quality of the evidence using the GRADE approach. We included two studies (142 women and infants), both were conducted in women in Italy and compared myo-inositol with a placebo control.None of the maternal primary outcomes pre-specified for this review were reported in

  4. Gas Chromatographic Mass Spectrometric Determination of Myo-inositol in Humans Utilizing a Deuterated Internal Standard

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Larsen, Elfinn; Harbo, Helge

    1982-01-01

    The isotopic dilution technique was used for determining the content of myo-inositol in human urine, plasma and haemolysed erythrocyte samples. A deuterated myo-inositol, synthesized from inosose-2 by base-catalysed exchange of hydrogens by deuterium, followed by reduction of the inosose with 2H2......, was added as internal standard to the samples at an early stage in the analytical procedure. After separation and derivatization to the hexa-acetate, the gas chromatographic mass spectrometric analysis was carried out. A 25 m fused silica capillary column coated with methyl silicone was used, and the ions...... selected for monitoring were m/z 210 and m/z 214, which are characteristic and abundant fragment ions from unlabelled and hexadeuterated myo-inositolhexa-acetate, respectively. Calibration curves from water, urine, plasma and haemolysed erythrocytes show parallel, linear responses in the ratio between...

  5. myo-Inositol synthesis from [1-3H]glucose in Phaseolus vulgaris L. during early stages of germination

    International Nuclear Information System (INIS)

    Sasaki, K.; Taylor, I.E.P.

    1986-01-01

    Radiolabeled D-[1- 3 H]glucose was fed by imbibition under sterile conditions to bean (Phaseolus vulgaris L.) seeds. After 72 and 96 hours of feeding, the 3 H was located in uronic acid and pentose residues as well as hexose residues of cell wall polysaccharides in growing hypocotyl and root. Free myo-inositol present in cotyledons, hypocotyl, and root also contained 3 H, showing that de novo synthesis of myo-inositol from [1- 3 H]glucose did occur during the first 72 hours of germination. More than 90% of the labeled, free myo-inositol was present in the cotyledons. The 3 H percentage in trifluoroacetic acid-soluble arabinaose residues of cell wall polysaccharides from 72-hour-old bean hypocotyls was only half of their mole percentage. On the other hand, 3 H percentages in hexose residues were higher than their mole percentages. The results suggest that myo-inositol is synthesized from reserve sugars during the very early stages of germination, and that the newly synthesized myo-inositol, as well as that stored in cotyledons, can be used for the construction of new hypocotyl and root cell wall polysaccharides after conversion into uronic acids and pentoses via the myo-inositol oxidation pathway

  6. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    International Nuclear Information System (INIS)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan; Yu Zengping; Yang Yongjian; Giet, Markus van der; Tepel, Martin

    2005-01-01

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, β-myosin heavy chain, and α-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway

  7. An Uncharacterized Member of the Ribokinase Family in Thermococcus kodakarensis Exhibits myo-Inositol Kinase Activity*

    Science.gov (United States)

    Sato, Takaaki; Fujihashi, Masahiro; Miyamoto, Yukika; Kuwata, Keiko; Kusaka, Eriko; Fujita, Haruo; Miki, Kunio; Atomi, Haruyuki

    2013-01-01

    Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate. PMID:23737529

  8. Myo-inositol vs. D-chiro inositol in PCOS treatment.

    Science.gov (United States)

    Formuso, C; Stracquadanio, M; Ciotta, L

    2015-08-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women in fertile age. It is an endocrine and metabolic disorder characterized by oligo-anovulation, hyperandrogenism and insulin-resistance. Various therapeutic approaches have been attempted in PCOS, including diet and the use of pharmacological agents such as oral contraceptives (OCs) or anti-androgens. Recently, the introduction of inositol in the treatment plan has proved to be as reasonable as useful in countering the endocrine-metabolic disorders of this syndrome. The aim of our study was to compare the clinical, endocrine and metabolic response after 6 months of therapy in 137 PCOS women characterized by oligomenorrhea and/or acne and/or mild hirsutism and insulin-resistance. The patients were treated with myo-inositol or with D-chiro-inositol or with placebo. Our study showed that both myo-inositol (MI-PG) and D-chiro inositol (DCI-PG) treatments are able to significantly improve the regularity of the menstrual cycle, the Acne Score, the endocrine and metabolic parameters and the insulin-resistence in young, overweight, PCOS patients. Definitely, we assumed that both treatments with myo-inositol and with D-chiro inositol could be proposed as a potential valid therapeutic approach for the treatment of patients with PCOS. Additionally, further examination and for a longer period of treatment are needed.

  9. Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair.

    Science.gov (United States)

    Kadirvel, Manikandan; Arsic, Biljana; Freeman, Sally; Bichenkova, Elena V

    2008-06-07

    2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.

  10. Isolation and Identification of Myo-Inositol Crystals from Dragon Fruit (Hylocereus polyrhizus

    Directory of Open Access Journals (Sweden)

    Chandran Somasundram

    2012-04-01

    Full Text Available Crystals isolated from Hylocereus polyrhizus were analyzed using four different approaches—X-ray Crystallography, High Performance Liquid Chromatography (HPLC, Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS and Nuclear Magnetic Resonance (NMR and identified as myo-inositol. The X-ray crystallography analysis showed that the unit-cell parameters were: a = 6.6226 (3 Å, b = 12.0462 (5 Å, c = 18.8942 (8 Å, α = 90.00, β = 93.98, δ = 90.00. The purity of the crystals were checked using HPLC, whereupon a clean single peak was obtained at 4.8 min with a peak area of 41232 μV*s. The LC-MS/MS technique, which is highly sensitive and selective, was used to provide a comparison of the isolated crystals with a myo-inositol standard where the results gave an identical match for both precursor and product ions. NMR was employed to confirm the molecular structure and conformation of the crystals, and the results were in agreement with the earlier results in this study. The discovery of myo-inositol crystals in substantial amount in H. polyrhizus has thus far not been reported and this is an important finding which will increase the marketability and importance of H. polyrhizus as a crop with a wide array of health properties.

  11. Antenatal dietary supplementation with myo-inositol in women during pregnancy for preventing gestational diabetes.

    Science.gov (United States)

    Crawford, Tineke J; Crowther, Caroline A; Alsweiler, Jane; Brown, Julie

    2015-12-17

    Gestational diabetes, glucose intolerance with onset or first recognition during pregnancy, is a rising problem worldwide. Both non-pharmacological and pharmacological approaches to the prevention of gestational diabetes have been, and continue to be explored. Myo-inositol, an isomer of inositol, is a naturally occurring sugar commonly found in cereals, corn, legumes and meat. It is one of the intracellular mediators of the insulin signal and correlated with insulin sensitivity in type 2 diabetes. The potential beneficial effect on improving insulin sensitivity suggests that myo-inositol may be useful for women in preventing gestational diabetes. To assess if antenatal dietary supplementation with myo-inositol is safe and effective, for the mother and fetus, in preventing gestational diabetes. We searched the Pregnancy and Childbirth Group's Trials Register, ClinicalTrials.gov, WHO ICTRP (2 November 2015) and reference lists of retrieved studies. We sought published and unpublished randomised controlled trials, including conference abstracts, assessing the effects of myo-inositol for the prevention of gestational diabetes mellitus (GDM). Quasi-randomised and cross-over trials were not eligible for inclusion, but cluster designs were eligible. Participants in the trials were pregnant women. Women with pre-existing type 1 or type 2 diabetes were excluded. Trials that compared the administration of any dose of myo-inositol, alone or in a combination preparation were eligible for inclusion. Trials that used no treatment, placebo or another intervention as the comparator were eligible for inclusion. Two review authors independently assessed trials for inclusion, risk of bias and extracted the data. Data were checked for accuracy. We included four randomised controlled trials (all conducted in Italy) reporting on 567 women who were less than 11 weeks' to 24 weeks' pregnant at the start of the trials. The trials had small sample sizes and one trial only reported an

  12. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    Science.gov (United States)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  13. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    International Nuclear Information System (INIS)

    Hall, P.J.; Bandurski, R.S.

    1986-01-01

    [ 3 H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 0 C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as α-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other fraction enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected

  14. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  15. Isolation and Characterization of D-Myo-Inositol-3-Phosphate Synthase Gene Family Members in Soybean

    OpenAIRE

    Good, Laura Lee

    2001-01-01

    The objective of this research was to isolate genes encoding isoforms of the enzyme D-myo-inositol 3-phosphate synthase (MIPS, E.C. 5.5.1.4) from soybean and to characterize their expression, especially with respect to their involvement in phytic acid biosynthesis. A MIPS-homologous cDNA, designated GmMIPS1, was isolated via PCR using total RNA from developing seeds. Southern blot analysis and examination of MIPS-homologous soybean EST sequences suggested that GmMIPS1 is part of a multigene...

  16. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  17. Phytases Improve Myo-Inositol Bioaccessibility in Rye Bread: A Study Using an In Vitro Method of Digestion and a Caco-2 Cell Culture Model.

    Science.gov (United States)

    Duliński, Robert; Cielecka, Emilia Katarzyna; Pierzchalska, Małgorzata; Żyła, Krzysztof

    2015-03-01

    Preparations of 6-phytase A (EC 3.1.3.26) and phytase B (acid phosphatase, EC 3.1.3.2) were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo- inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo- inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo- inositol transport through enterocyte- -like differentiated Caco-2 cells to determine its bioaccessibility. Myo- inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technique. The concentration of myo- inositol in the dialysates of control bread was 25.3 µg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 µg/mL, and in the bread baked with phytase B to 64.98 µg/mL. Simultaneous application of both enzymes resulted in myo- inositol release of 64.04 µg/mL. The highest bioaccessibility of myo- inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modified rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo - -inositol.

  18. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants.

    Science.gov (United States)

    Sambe, Mame Abdou Nahr; He, Xueying; Tu, Qinghua; Guo, Zhenfei

    2015-03-01

    A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses. © 2014 Scandinavian Plant Physiology Society.

  19. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  20. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides.

    Science.gov (United States)

    Benaroya, Rony Oren; Zamski, Eli; Tel-Or, Elisha

    2004-02-01

    L-Myo-inositol 1-phosphate synthase (INPS EC 5.5.1.4) catalyzes the conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate. INPS is a key enzyme involved in the biosynthesis of phytate which is a common form of stored phosphates in higher plants. The present study monitored the increase of INPS expression in Azolla filiculoides resulting from exposure to inorganic phosphates, metals and salt stress. The expression of INPS was significantly higher in Azolla plants that were grown in rich mineral growth medium than those maintained on nutritional growth medium. The expression of INPS protein and corresponding mRNA increased in plants cultured in minimal nutritional growth medium when phosphate or Zn2+, Cd2+ and NaCl were added to the growth medium. When employing rich mineral growth medium, INPS protein content increased with the addition of Zn2+, but decreased in the presence of Cd2+ and NaCl. These results indicated that accumulation of phytate in Azolla is a result of the intensified expression of INPS protein and mRNA, and its regulation may be primarily derived by the uptake of inorganic phosphate, and Zn2+, Cd2+ or NaCl.

  2. Special focus on cerebral myo-inositol in patients with hepatic encephalopathy : proton MR spectroscopic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Choong Gon; Lee, Ho Kyu; Suh, Dae Chul; Lim, Tae Whan; Auh, Yong Ho; Lee Young Sang [Ulsan Univ. College of Medicine , Seoul (Korea, Republic of); Lee, Jung Hee [Asan Institute for Life Sciences, Seoul (Korea, Republic of)

    1996-08-01

    To determine whether or not cerebral myo-inositol/creatine-phos-phocreatine (MI/Cr) level can be used as a criterion of hepatic encephalopathy (HE). Single voxel stimulated echo sequence with short echo time (30ms) was applied to parietal white matter of 14 healthy control subjects, 11 patients with chronic viral hepatitis, 29 cirrhotic patients without HE, and 33 cirrhotic patients with HE. The metabolite ratios of N-acetylaspartate (NAA), choline containing compounds (Cho), and myo-Inositol (MI) were calculated using creatine/phosphocreatine (Cr) as an internal reference. Clinical data including modified Child-Pugh score, estimated serum osmolarity, and grade of HE, were obtained at the day of MR spectroscopy. MI/Cr was 34% lower in cirrhotic patients with HE than in control subjects. It was reduced below two standard deviation from normal in 17 of 33 cirrhotic patients with HE (52%). MI/Cr did not correlate with grade of HE (r=-0.55, p=0.00). In the analysis of Child class C patients, there was no significant difference of MI/Cr between cirrhotic patients with HE and those without HE (0.83 {+-} 0.11, n= 29 vs. 0.39 {+-} 0.11, n= 15, p= 0.59, respectively). A reduction of cerebral MI/Cr cannot be used as a diagnostic criterion of HE.

  3. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2015-10-01

    Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.

  4. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated

  5. Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida.

    NARCIS (Netherlands)

    Groenen, P.; Peer, P.G.M.; Wevers, R.A.; Swinkels, D.W.; Franke, B.; Mariman, E.C.M.; Steegers-Theunissen, R.P.M.

    2003-01-01

    OBJECTIVE: The purpose of this study was to investigate the maternal and children's myo-inositol, glucose, and zinc status in association with spina bifida risk. STUDY DESIGN: Sixty-three mothers and 70 children with spina bifida and 102 control mothers and 85 control children were investigated. The

  6. Myo-inositol-14C, phytic acid-14C and ferric phytate-14C metabolism through microbian action in an andosol soil

    International Nuclear Information System (INIS)

    Gonzalez I, J.

    1977-01-01

    The myo-inositol- 14 C, phytic acid- 14 C and ferric phytate- 14 C compounds were incubated in an andosol soil at 70% of the field capacity and at 36.5 deg C during twelve days. These compounds suffered a microbian oxidation at 14 CO 2 of 61.0, 1.9 and 0% respectively. The fixation of the phytic acid- 14 C was observed through the fast decrease in the metabolism, due to the formation of complexes with the Fe and Al (phytates). The myo-inositol- 14 C metabolism was reduced by a factor of nine at the second incubation day. The following mechanisms were observed in the myo-inositol metabolism: (i) adsorption of the inositol by the soil minerals, (ii) adsorption by humic acids, (iii) myo-inositol phosphorylation and (iv) epimerization of myo-inositol to chiro-inositol. It was found that the (i) and (ii) formation depends on the soil microbian activity. The (i), (ii) and (iii) interactions were considered as possible mechanisms for the inhibition of the myo-inositol microbian oxidation. The inhibition of the myo-inositol oxidation through adsorption or phosphorylation is considered as a chemical blockade for the hydroaxial group, avoiding this way a microbian oxidation stereospecific of this hydroxil group. (author)

  7. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  8. Myo-inositol uptake by cultured calf retinal pigment epithelial cells: regulation by glucose

    International Nuclear Information System (INIS)

    Khatami, M.; Rockey, J.H.

    1986-01-01

    Confluent primary (P-1) or subcultured passage 2 or 3 (P-2, P-3) calf retinal pigment epithelial cells (RPE) were incubated with [ 3 H]-myo-inositol (MI, 100-200 μM) in balanced salt solution (BSS), for 5 to 60 min at 37 0 C. MI uptake into RPE (P-2, 5 days old) was saturable with K/sub m/ of 147 μM and V/sub max/ of 5.5 pmole/min/μg DNA. P-1 or P-2 incubated with 10 μM MI for 40 min accumulated MI against a concentration gradient ([MI]in/[MI]out > 20). Replacement of 150 mM NaCl in BSS by 150 mM choline-Cl reduced the uptake of MI by 87%. MI uptake was inhibited (39%) when cells were incubated in BSS in the absence of Ca Cl 2 . Transport of MI into RPE incubated in the presence of phloridzin, ouabain or 2,4-dinitrophenol (1 mM each) for 10 min was inhibited by 65, 37 and 21%, respectively. α-D-Glucose (20 mM) in the incubation media inhibited MI uptake into primary (or P-2) cultured RPE by 30 or 43% when cells were incubated for 10 or 60 min, respectively. The ability of RPE cells, grown in the presence of 50 mM glucose for 15-25 days, to concentrate MI (40 μM) was reduced up to 41%. Cultured RPE cells accumulated myo-inositol by an active transport system, sensitive to ouabain, DNP and phloridzin. High glucose in the incubation media or in the growth media inhibited the uptake of MI into calf RPE cells

  9. Management of women with PCOS using myo-inositol and folic acid. New clinical data and review of the literature.

    Science.gov (United States)

    Regidor, Pedro-Antonio; Schindler, Adolf Eduard; Lesoine, Bernd; Druckman, Rene

    2018-03-02

    Introduction The use of 2 × 2000 mg myo-inositol +2 × 200 μg folic acid per day is a safe and promising tool in the effective improvement of symptoms and infertility for patients with polycystic ovary syndrome (PCOS). In addition, PCOS is one of the pathological factors involved in the failure of in vitro fertilization (IVF). Typically, PCOS patients suffer of poor quality oocytes. Patients and methods In an open, prospective, non-blinded, non-comparative observational study, 3602 infertile women used myo-inositol and folic acid between 2 and 3 months in a dosage of 2 × 2000 mg myo-inositol +2 × 200 μg folic acid per day. In a subgroup of 32 patients, hormonal values for testosterone, free testosterone and progesterone were analyzed before and after 12 weeks of treatment. The mean time of use was 10.2 weeks. In the second part of this trial it was investigated if the combination of myo-inositol + folic acid was able to improve the oocyte quality, the ratio between follicles and retrieved oocytes, the fertilization rate and the embryo quality in PCOS patients undergoing IVF treatments. Twenty-nine patients with PCOS, underwent IVF protocols for infertility treatment and were randomized prospectively into two groups. Group A (placebo) with 15 patients and group B (4000 mg myo-inositol +400 μg folic acid per day) with 14 patients were evaluated. The patients of group B used 2 months' myo-inositol + folic acid before starting the IVF protocol. For statistically analyses Student's t-test was performed. Results Seventy percent of the women had a restored ovulation, and 545 pregnancies were observed. This means a pregnancy rate of 15.1% of all the myo-inositol and folic acid users. In 19 cases a concomitant medication with clomiphene or dexamethasone was used. One twin pregnancy was documented. Testosterone levels changed from 96.6 ng/mL to 43.3 ng/mL and progesterone from 2.1 ng/mL to 12.3 ng/mL in the mean after 12 weeks of treatment (p

  10. Etude du potentiel insulino-sensibilisant du myo-inositol chez la souris : Evaluation de l’intérêt nutritionnel d’une supplémentation en myo-inositol

    OpenAIRE

    Croze , Marine

    2013-01-01

    Insulin resistance is the first step in the development of type 2 diabetes so finding insulin-sensitizing strategies is challenging for scientists. Some inositol isomers or derivatives have been reported to exert insulin-mimetic activity. myo-Inositol being the most abundant stereoisomeric form of inositol in foodstuffs, we tested its insulin-mimetic potential in the long term and as a nutritional strategy for insulin resistance prevention and/or treatment. This study demonstrates that chroni...

  11. Phytases Improve Myo-Inositol Bioaccessibility in Rye Bread: A Study Using an In Vitro Method of Digestion and a Caco-2 Cell Culture Model

    Directory of Open Access Journals (Sweden)

    Emilia Katarzyna Cielecka

    2015-01-01

    Full Text Available Preparations of 6-phytase A (EC 3.1.3.26 and phytase B (acid phosphatase, EC 3.1.3.2 were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo-inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo-inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo-inositol transport through enterocyte-like differentiated Caco-2 cells to determine its bioaccessibility. Myo-inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD technique. The concentration of myo-inositol in the dialysates of control bread was 25.3 μg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 μg/mL, and in the bread baked with phytase B to 64.98 μg/mL. Simultaneous application of both enzymes resulted in myo-inositol release of 64.04 μg/mL. The highest bioaccessibility of myo-inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modifi ed rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo-inositol.

  12. Phytases Improve Myo-Inositol Bioaccessibility in Rye Bread: A Study Using an In Vitro Method of Digestion and a Caco-2 Cell Culture Model

    Science.gov (United States)

    Cielecka, Emilia Katarzyna; Pierzchalska, Małgorzata; Żyła, Krzysztof

    2015-01-01

    Summary Preparations of 6-phytase A (EC 3.1.3.26) and phytase B (acid phosphatase, EC 3.1.3.2) were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo-inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo-inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo-inositol transport through enterocyte- -like differentiated Caco-2 cells to determine its bioaccessibility. Myo-inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technique. The concentration of myo-inositol in the dialysates of control bread was 25.3 µg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 µg/mL, and in the bread baked with phytase B to 64.98 µg/mL. Simultaneous application of both enzymes resulted in myo-inositol release of 64.04 µg/mL. The highest bioaccessibility of myo-inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modified rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo- -inositol. PMID:27904333

  13. Ovulation induction with myo-inositol alone and in combination with clomiphene citrate in polycystic ovarian syndrome patients with insulin resistance.

    Science.gov (United States)

    Kamenov, Zdravko; Kolarov, Georgi; Gateva, Antoaneta; Carlomagno, Gianfranco; Genazzani, Alessandro D

    2015-02-01

    Insulin resistance plays a key role in the pathogenesis of polycystic ovarian syndrome (PCOS). One of the methods for correcting insulin resistance is using myo-inositol. The aim of the present study is to evaluate the effectiveness of myo-inositol alone or in combination with clomiphene citrate for (1) induction of ovulation and (2) pregnancy rate in anovulatory women with PCOS and proven insulin resistance. This study included 50 anovulatory PCOS patients with insulin resistance. All of them received myo-inositolduring three spontaneous cycles. If patients remained anovulatory and/or no pregnancy was achieved, combination of myo-inositol and clomiphene citrate was used in the next three cycles. Ovulation and pregnancy rate, changes in body mass index (BMI) and homeostatic model assessment (HOMA) index and the rate of adverse events were assessed. After myo-inositol treatment, ovulation was present in 29 women (61.7%) and 18 (38.3%) were resistant. Of the ovulatory women, 11 became pregnant (37.9%). Of the 18 myo-inositol resistant patients after clomiphene treatment, 13 (72.2%) ovulated. Of the 13 ovulatory women, 6 (42.6%) became pregnant. During follow-up, a reduction of body mass index and HOMA index was also observed. Myo-inositol treatment ameliorates insulin resistance and body weight, and improves ovarian activity in PCOS patients.

  14. L-myo-inosose-1 as a probable intermediate in the reaction catalyzed by myo-inositol oxygenase

    International Nuclear Information System (INIS)

    Naber, N.I.; Swan, J.S.; Hamilton, G.A.

    1986-01-01

    In previous investigations, it was necessary to have Fe(II) and cysteine present in order to assay the catalytic activity of purified hog kidney myo-inositol oxygenase. In the present study it was found that, if this purified nonheme iron enzyme is slowly frozen in solution with glutathione and stored at -20 degrees C, it is fully active in the absence of activators if catalase is present to remove adventitious H 2 O 2 . With this simpler assay system it was possible to clarify the effects of several variables on the enzymic reaction. Thus, the maximum velocity is pH-dependent with a maximum around pH 9.5, but the apparent Km for myo-inositol (air atmosphere) remains constant at 5.0 mM throughout a broad pH range. The enzyme is quite specific for its substrate myo-inositol, is very sensitive to oxidants and reductants, but is not affected by a variety of complexing agents, nucleotides, sulfhydryl reagents, etc. In other experiments it was found that L-myo-inosose-1, a potential intermediate in the enzymic reaction, is a potent competitive inhibitor (Ki = 62 microM), while other inososes and a solution thought to contain D-glucodialdehyde, another potential intermediate, are weak inhibitors. Also, both a kinetic deuterium isotope effect (kH/kD = 2.1) and a tritium isotope effect (kH/kT = 7.5) are observed for the enzymic reaction when [1-2H]- and [1-3H]-myo-inositol are used as reactants. These latter results are considered strong evidence that the oxygenase reaction proceeds by a pathway involving L-myo-inosose-1 as an intermediate rather than by an alternative pathway that would have D-glucodialdehyde as the intermediate

  15. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.

    Science.gov (United States)

    De Grazia, Sara; Carlomagno, Gianfranco; Unfer, Vittorio; Cavalli, Pietro

    2012-09-01

    Neural tube defects (NTDs) are classified as folate sensitive (about 70%) and folate resistant (about 30%); although folic acid is able to prevent the former, several data have shown that inositol may prevent the latter. It has recently been proposed that coffee intake might represent a risk factor for NTD, likely by interfering with the inositol signaling. In the present study, we tested the hypothesis that, beside affecting the inositol signaling pathway, coffee also interferes with inositol absorption. In order to evaluate coffee possible negative effects on inositol gastrointestinal absorption, a single-dose bioavailability trial was conducted. Pharmacokinetics (PK) parameters of myo-inositol (MI) powder and MI soft gelatin capsules swallowed with water and with a single 'espresso' were compared. PK profiles were obtained by analysis of MI plasma concentration, and the respective MI bioavailability was compared. Myo-inositol powder administration was negatively affected by coffee intake, thus suggesting an additional explanation to the interference between inositol deficiency and coffee consumption. On the contrary, the concomitant single 'espresso' consumption did not affect MI absorption following MI soft gelatin capsules administration. Furthermore, it was observed that MI soft gelatin capsule administration resulted in improved bioavailability compared to the MI powder form. Myo-inositol soft gelatin capsules should be considered for the preventive treatment of NTDs in folate-resistant subjects due to their higher bioavailability and to the capability to reduce espresso interference.

  16. Effect of the treatment with myo-inositol plus folic acid plus melatonin in comparison with a treatment with myo-inositol plus folic acid on oocyte quality and pregnancy outcome in IVF cycles. A prospective, clinical trial.

    Science.gov (United States)

    Rizzo, P; Raffone, E; Benedetto, V

    2010-06-01

    The aim of the study was to evaluate the efficacy of a treatment with myo-inositol plus folic acid plus melatonin compared with myo-inositol plus folic acid alone on oocyte quality in women underwent in vitro fertilization (IVF) cycles. A prospective, clinical trial. Starting on the day of GnRH administration, 65 women undergoing IVF cycles were randomized in two groups to receive myo-inositol plus folic acid plus melatonin (32 women, group A), and myo-inositol plus folic acid (33 women, group B), administered continuously. Primary endpoints were number of morphologically mature oocytes retrieved (MII oocytes), embryo quality, and pregnancy rate. Secondary endpoints were the total number of oocytes retrieved (immature and mature oocytes), fertilization rate per number of retrieved oocytes and embryo cleavage rate. The mean number of oocytes retrieved did not differ between the two groups (7.88 +/- 1.76 vs 7.67 +/- 1.88; P=0.65). Whereas the group cotreated with melatonin reported a significantly greater mean number of mature oocytes (6.56 +/- 1.64 vs 5.76 +/- 1.56; P=0.047) and a lower mean number of immature oocytes (1.31 +/- 0.74 vs. 1.91 +/- 0.68; P=0.001). The mean number of embyos of top-quality (class 1 and 2) resulted higher in the group A (1.69 +/- 0.64 vs 1.24 +/- 0.75; P=0.01). Fertilization rate did not differ between the two groups. A total of 22 pregnancies were obtained (13 in group A and 9 in group B; P=0.26). Clinical pregnancy rate and implantation rate were in tendency higher in the group cotreated with melatonin, although the differences did not reach statistical significance. Biochemical pregnancy rate and abortion rate were similar in both groups. melatonin ameliorates the activity of myo-inositol and folic acid by improving oocyte quality and pregnancy outcome in women with low oocyte quality history.

  17. Evaluation of the effect of Retrograde Intrarenal Surgery with Myo-Inositol Oxygenase

    Science.gov (United States)

    Mertoglu, Cuma; Bozkurt, Aliseydi; Keskin, Ercüment; Gunay, Murat

    2018-01-01

    Objective: To investigate the effect of retrograde intra-renal surgery (RIRS) on kidneys using the myo-inositol oxygenase (MIOX) enzyme. MIOX is a renal tubular-specific novel marker for the early diagnosis of acute kidney injury. Methods: A total of twenty seven individuals that had undergone RIRS to treat kidney stones were included in the study. Biochemical tests were performed on serum samples collected immediately before RIRS (hour 0) and at the 6th and 24th hours after the surgery. Results: The creatinine value at hour 6 was lower than the baseline (hour 0) value (p = 0.0305). Cystatin C at hour 6 was lower than the value measured at hour 24 (p = 0.0142). Similarly, MIOX was lower at hour 6 compared to hour 24 (p = 0.0214). MIOX/creatinine at hour 6 was lower than the value calculated at hour 24 (p = 0.0348). The basal values of MIOX and creatinine were found to have a positive correlation (correlation coefficient r = 0.5946, p = 0.0035). Conclusions: Similar to the serum creatinine, the serum MIOX level provides information about kidney functions. RIRS was confirmed to be a safe procedure for the treatment of acute kidney injury with no negative effects on the kidneys. PMID:29643901

  18. Treating Woman with Myo-Inositol Vaginal Suppositories Improves Partner’s Sperm Motility and Fertility

    Directory of Open Access Journals (Sweden)

    Mario Montanino Oliva

    2016-01-01

    Full Text Available Motility is the feature that allows spermatozoa to actively reach and penetrate the female gamete during fertilization. When this function is altered, and especially decreased, troubles in conceiving may occur. In this study, we demonstrated that treating fertile women with myo-inositol (MI vaginal suppositories ameliorated their partners’ sperm motility and also positively affected their conceiving capacity, without changes in cervical mucus structural and biochemical characteristics. Indeed, by means of the postcoital test on female cervical mucus, a significant improvement especially in progressive sperm motility was recorded after MI suppository use. Concomitantly, after MI treatment, a reduction of immotile spermatozoa percentage was observed. Importantly, MI vaginal supplementation positively correlated with a pregnancy for 5 of the 50 couples enrolled in the study, leading us to speculate that this substance may substantially contribute to create in the cervical mucus an ideal milieu that makes spermatozoa more motile and functionally able to fertilize. Even though the detailed mechanism is still unclear, these results should encourage MI vaginal use for the clinical improvement of male infertility, through their partners.

  19. Quantification of plasma myo-inositol using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Guo, Jin; Shi, Yingfei; Xu, Chengbao; Zhong, Rugang; Zhang, Feng; Zhang, Ting; Niu, Bo; Wang, Jianhua

    2016-09-01

    Myo-inositol (MI) deficiency is associated with an increased risk for neural tube defects (NTDs), mental disorders and metabolic diseases. We developed a gas chromatography-mass spectrometry (GC-MS) method to detect MI in human plasma, which was accurate, relatively efficient and convenient for clinical application. An external standard method was used for determination of plasma MI. Samples were analyzed by GC-MS after derivatization. The stable-isotope labeled internal standard approach was used to validate the method's accuracy. Alpha fetal protein (AFP) was detected by chemiluminescence immunoassay. The method was validated by determining the linearity, sensitivity and recovery rate. There was a good agreement between the internal standard approach and the present method. The NTD-affected pregnancies showed lower plasma MI (P=0.024) and higher AFP levels (P=0.001) than control. Maternal MI level showed a better discrimination in spina bifida subgroup, while AFP level showed a better discrimination in anencephaly subgroup after stratification analysis. We developed a sensitive and reliable method for the detection of clinical plasma MI, which might be a marker for NTDs screening, and established fundamental knowledge for clinical diagnosis and prevention for the diseases related to disturbed MI metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo -Inositol Accumulation

    KAUST Repository

    Bruggeman, Quentin

    2015-06-05

    Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants. © 2015 American Society of Plant Biologists. All rights reserved.

  1. Myo-inositol effects in women with PCOS: a meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Vittorio Unfer1,

    2017-10-01

    Full Text Available Myo-inositol (MI supplementation in women with polycystic ovary syndrome (PCOS has been evaluated over the last years. Many hormonal and reproductive impairments associated with this disorder seem relieved by the supplement. The objective of the meta-analysis was to assess the effects of MI alone or combined with d-chiro-inositol (DCI on the endocrine and metabolic abnormalities of women with PCOS. Literature was retrieved from selected databases, MEDLINE, EMBASE, PubMed and Research Gate (up to November 2016. Only randomized controlled trials (RCTs investigating the effects of MI alone or combined with DdCI were reviewed. Nine RCTs involving 247 cases and 249 controls were included. Significant decreases in fasting insulin (SMD = −1.021 μU/mL, 95% CI: −1.791 to −0.251, P = 0.009 and homeostasis model assessment (HOMA index (SMD = −0.585, 95% CI: −1.145 to −0.025, P = 0.041 were identified after MI supplementation. The trial sequential analysis of insulin meta-analysis illustrates that the cumulative z-curve crossed the monitoring boundary, providing firm evidence of the intervention effect. A slight trend toward a reduction of testosterone concentration by MI with respect to controls was found (SMD = −0.49, 95% CI: −1.072 to 0.092, P = 0.099, whereas androstenedione levels remained unaffected. Throughout a subgroup’s meta-analysis, a significant increase in serum SHBG was observed only in those studies where MI was administered for at least 24 weeks (SMD = 0.425 nmol/L, 95% CI: 0.050–0.801, P = 0.026. These results highlight the beneficial effect of MI in improving the metabolic profile of women with PCOS, concomitantly reducing their hyperandrogenism.

  2. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Directory of Open Access Journals (Sweden)

    Fernando D Villarreal

    Full Text Available Myo-inositol (Ins is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus. Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS and inositol monophosphatase (IMPase, by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1 were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P, mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  3. Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Hong Meng

    Full Text Available BACKGROUND: Although it is a crucial cellular process required for both normal development and to face stress conditions, the control of programmed cell death in plants is not fully understood. We previously reported the isolation of ATXR5 and ATXR6, two PCNA-binding proteins that could be involved in the regulation of cell cycle or cell death. A yeast two-hybrid screen using ATXR5 as bait captured AtIPS1, an enzyme which catalyses the committed step of myo-inositol (MI biosynthesis. atips1 mutants form spontaneous lesions on leaves, raising the possibility that MI metabolism may play a role in the control of PCD in plants. In this work, we have characterised atips1 mutants to gain insight regarding the role of MI in PCD regulation. METHODOLOGY/PRINCIPAL FINDINGS: - lesion formation in atips1 mutants depends of light intensity, is due to PCD as evidenced by TUNEL labelling of nuclei, and is regulated by phytohormones such as salicylic acid - MI and galactinol are the only metabolites whose accumulation is significantly reduced in the mutant, and supplementation of the mutant with these compounds is sufficient to prevent PCD - the transcriptome profile of the mutant is extremely similar to that of lesion mimic mutants such as cpr5, or wild-type plants infected with pathogens. CONCLUSION/SIGNIFICANCE: Taken together, our results provide strong evidence for the role of MI or MI derivatives in the regulation of PCD. Interestingly, there are three isoforms of IPS in Arabidopsis, but AtIPS1 is the only one harbouring a nuclear localisation sequence, suggesting that nuclear pools of MI may play a specific role in PCD regulation and opening new research prospects regarding the role of MI in the prevention of tumorigenesis. Nevertheless, the significance of the interaction between AtIPS1 and ATXR5 remains to be established.

  4. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Science.gov (United States)

    Villarreal, Fernando D; Kültz, Dietmar

    2015-01-01

    Myo-inositol (Ins) is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus). Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS) and inositol monophosphatase (IMPase), by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1) were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P), mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P) is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  5. [The myo-inositol is beneficial in the therapy of pregnancy with insulin-dependent type 2 diabetes and polycystic ovary syndrome].

    Science.gov (United States)

    Kun, Attila; Tornóczky, János

    2017-04-01

    Authors would like to demonstrate the beneficial effect of myo-inositol supplementation in a pregnant woman with insulin-dependent type 2 diabetes mellitus and polycystic ovary syndrome. Insulin and metformin treatment could not achieve normalization of glucose homeostasis for 3 years, and hypoglycemic episodes were frequent. Myo-inositol and folic acid supplementation added to the basic treatment resulted in improved glucose levels in 2 months. At this time she became pregnant. During pregnancy serum glucose levels still improved in the next 2 months. The amniotic membrane ruptured at the 19th gestational week, and pregnancy had to be finished. Developmental disturbances were excluded by the pathologist. She became pregnant again and gave birth to a premature male neonate at the 29th gestational week. The aim of the report was to demonstrate that myo-inositol supplementation may improve the efficacy of the therapy in type 2 diabetes mellitus. Orv. Hetil., 2017, 158(14), 541-545.

  6. Soluble polysaccharide composition and myo-inositol content help differentiate the antioxidative and hypolipidemic capacity of peeled apples.

    Science.gov (United States)

    Ker, Yaw-Bee; Peng, Chiung-Huei; Chyau, Charng-Cherng; Peng, Robert Y

    2010-04-28

    Many people prefer to eat peeled apples. The present study investigated the composition of soluble polysaccharides (SP) in peeled apples and its antioxidative and hypolipidemic activity. The yield of SP ranged 0.43-0.88%, having MW ranging 223-848 kDa. All belonged to peptidoglycans. Among the fourteen amino acids found, seven were essential amino acids. In addition, sugar analysis indicated that 50% of apple samples consisted of glucoarabinan, 37.5% comprising taloarabinan and the remaining 12.5% containing alloglucan. Moreover, SP consisted of a huge amount of myo-inositol (>5.61%) and uronic acid (>11.7%), which may play a synergistic role in the hypolipidemic effect. Worth noting, we are the first who reported the presence of talose, allose and fucose in the apple SP. Conclusively, the biological value of SP is attributable to the differential effect of SP and the synergistic effect exerted by its unique SP pattern, high myo-inositol and uronic acid contents.

  7. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Science.gov (United States)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  8. Hypotonic activation of the myo-inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Joseph Andronic

    Full Text Available Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol P ino [m/s] and expression/localization of SLC5A3. P ino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm, P ino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼ 3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in P ino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM. dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.

  9. D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate, a mimic of D-myo-inositol 1,3,4,5-tetrakisphosphate: biological activity and pH-dependent conformational properties

    International Nuclear Information System (INIS)

    Horne, Graeme; Maechling, Clarisse; Fleig, Andrea; Hirata, Masato; Penner, Reinhold; Spiess, Bernard; Potter, Barry V.L.

    2004-01-01

    D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate [D-6-deoxy-Ins(1,3,4,5)P 4 ] 3 is a novel deoxygenated analogue of D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P 4 ] 2, a central and enigmatic molecule in the polyphosphoinositide pathway of cellular signalling. D-6-Deoxy-Ins(1,3,4,5)P 4 is a moderate inhibitor of Ins(1,4,5)P 3 5-phosphatase [1.8 μM] compared to Ins(1,3,4,5)P 4 [0.15 μM] and similar to that of L-Ins(1,3,4,5)P 4 [1.8 μM]. In displacement of [ 3 H] Ins(1,4,5)P 3 from the rat cerebellar Ins(1,4,5)P 3 receptor, while slightly weaker [IC 50 =800 nM] than that of D-Ins(1,3,4,5)P 4 [IC 50 =220 nM], 3 is less markedly different and again similar to that of L-Ins(1,3,4,5)P 4 [IC 50 =660 nM]. 3 is an activator of I CRAC when inward currents are measured in RBL-2H3-M1 cells using patch-clamp electrophysiological techniques with a facilitation curve different to that of Ins(1,3,4,5)P 4 . Physicochemical properties were studied by potentiometric 31 P and 1 H NMR titrations and were similar to those of Ins(1,3,4,5)P 4 apart from the observation of a biphasic titration curve for the P1 phosphate group. A novel vicinal phosphate charge-induced conformational change of the inositol ring above pH 10 was observed for D-6-deoxy-Ins(1,3,4,5)P 4 that would normally be hindered because of the central stabilising role played by the 6-OH group in Ins(1,3,4,5)P 4 . We conclude that the 6-OH group in Ins(1,3,4,5)P 4 is crucial for its physicochemical behaviour and biological properties of this key inositol phosphate

  10. Solid-State Fermentation Reduces Phytic Acid Level, Improves the Profile of Myo-Inositol Phosphates and Enhances the Availability of Selected Minerals in Flaxseed Oil Cake

    Science.gov (United States)

    2017-01-01

    Summary Flaxseed oil cake was subjected to fermentation with Rhizopus oligosporus (DSM 1964 and ATCC 64063), and the phytate (InsP6) content, myo-inositol phosphate profile and in vitro bioavailability of essential minerals were studied. Flaxseed oil cake had a phytate mass fraction of 13.9 mg/g. A 96-hour fermentation of flaxseed oil cake by R. oligosporus DSM 1964 and R. oligosporus ATCC 64063 decreased the InsP6 content by 48 and 33%, respectively. The strains had different phytate-degrading activities: fermentation of flaxseed oil cake with R. oligosporus DSM 1964 was more advantageous, yielding InsP3-5 as a predominating myo-inositol compound, while fermentation with R. oligosporus ATCC 64603 produced predominantly InsP5-6. Solid-state fermentation of flaxseed oil cake enhanced in vitro bioavailability of calcium by 14, magnesium by 3.3 and phosphorus by 2–4%. PMID:29089855

  11. The Combined therapy myo-inositol plus D-Chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients.

    Science.gov (United States)

    Minozzi, M; Nordio, M; Pajalich, R

    2013-02-01

    Women with Polycystic Ovarian Syndrome (PCOS) present several factors that increase the cardiovascular risk, such as insulin resistance and dyslipidemia. Myo-inositol and D-chiro-inositol have been shown to improve insulin resistance, hyperandrogenism and to induce ovulation in PCOS women. However, their effects on dyslipidemia are less clear. The aim of the present study was to evaluate whether the combined therapy myo-inositol plus D-chiro-inositol (in a in a physiological ratio of 40:1) improve the metabolic profile, therefore, reducing cardiovascular risk in PCOS patients. Twenty obese PCOS patients [BMI 33.7 ± 6 kg/m2 (mean ± SD)] were recruited. The lipid profile was assessed by measuring total cholesterol, LDL, HDL and triglycerides before and after 6 months treatment with the combined therapy. Secondary end points included changes in BMI, waist-hip ratio, percentage of body fat, HOMA-IR and blood pressure. The combined therapy myo-inositol and D-chiro-inositol improved LDL levels (3.50 ± 0.8 mmol/L versus, 3 ± 1.2 mmol/L p PCOS women, therefore, reducing the cardiovascular risk.

  12. Sign-trackers have elevated myo-inositol in the nucleus accumbens and ventral hippocampus following Pavlovian conditioned approach.

    Science.gov (United States)

    Fitzpatrick, Christopher J; Perrine, Shane A; Ghoddoussi, Farhad; Galloway, Matthew P; Morrow, Jonathan D

    2016-01-04

    Pavlovian conditioned approach (PCA) is a behavioral procedure that can be used to assess individual differences in the addiction vulnerability of drug-naïve rats and identify addiction vulnerability factors. Using proton magnetic resonance spectroscopy ( 1 H-MRS) ex vivo, we simultaneously analyzed concentrations of multiple neurochemicals throughout the mesocorticolimbic system two weeks after PCA training in order to identify potential vulnerability factors to addiction in drug naïve rats for future investigations. Levels of myo-inositol (Ins), a 1 H-MRS-detectable marker of glial activity/proliferation, were increased in the nucleus accumbens (NAc) and ventral hippocampus (vHPC), but not dorsal hippocampus or medial prefrontal cortex, of sign-trackers compared to goal-trackers or intermediate responders. In addition, Ins levels positively correlated with PCA behavior in the NAc and vHPC. Because the sign-tracker phenotype is associated with increased drug-seeking behavior, these results observed in drug-naïve rats suggest that alterations in glial activity/proliferation within these regions may represent an addiction vulnerability factor. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Characterization of D-myo-inositol 3-phosphate synthase gene expression in two soybean low phytate mutants

    International Nuclear Information System (INIS)

    Yuan Fengjie; Dong Dekun; Li Baiquan; Yu Xiaomin; Fu Xujun; Zhu Danhua; Zhu Shenlong; Yang Qinghua

    2013-01-01

    1D-myo-inositol 3-phosphate synthase (MIPS) gene plays a significant role in phytic acid biosynthesis. In this study, we used two low phytic acid mutants Gm-lpa-TW-1, Gm-lpa-ZC-2 and their respective wild type parents Taiwan75 and Zhechun No.3 to analyze the expression pattern and characterization of MIPS1 gene. The results showed that there was a common expression pattern of MIPS1 in soybean developing seeds. Expression was weak as detected by RT-PCR in initial stage, increased in the following stages, and the peak expression was appeared in 22 day after flowering (DAF). The expression of MIPS1 gene of non-seed tissues in mutant Gm-lpa-TW-1 and its wildtype Taiwan75 was very weak. In the developing seeds, the MIPS1 expression by qRT-PCR revealed a significant reduction in 22 DAF in mutant Gm-lpa-TW-1 as compared with the wildtype. Similarly, the expression of MIPS1 gene in non-seed tissue of Zhenchun No.3 and Gm-lpa-ZC-2 was very weak. However, stronger expression in developing seeds of the mutant Gm-lpa-ZC-2 than Zhechun No.3 was found. We concluded that the MIPS1 gene expression in the developing seed exhibited an up-regulation pattern in mutant Gm-lpa-ZC-2, but a down-regulation pattern in the mutant Gm-lpa-TW-1. (authors)

  14. Effect of the Putative Lithium Mimetic Ebselen on Brain Myo-Inositol, Sleep, and Emotional Processing in Humans.

    Science.gov (United States)

    Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C

    2016-06-01

    Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.

  15. Evaluation of thyroid nodule characteristics in subclinical hypothyroid patients under a myo-inositol plus selenium treatment.

    Science.gov (United States)

    Nordio, M; Basciani, S

    2018-04-01

    The anticancer effect of myo-inositol (MI) is catching researchers' attention worldwide. Thyroid nodules (TNs) have been detected by ultrasound (US) in up to 76% of the general population and, although most of them are benign, thyroid cancer is the most common malignancy of the endocrine system. A retrospective, observational study was conducted in 642 patients with suspected hypothyroidism undergoing US. The analysis was addressed exclusively to patients with subclinical hypothyroidism (SCH) or thyroid-stimulating hormone (TSH) levels borderline associated to TNs classified as class I and II; 1 group (control, no. 16) no treatment was prescribed; the other group (treated, no. 18) underwent treatment with 1 tablet containing MI plus selenium (Se) every day, for six months. Clinical data were collected to evaluate the nodular size, number, and elasticity, as well as TSH levels. Final data were analyzed from 34 patients: in 76% of mixed TNs was observed a significant reduction of their size and 56% of them significantly regressed nodule stiffness following oral supplementation with MI plus Se. The mean number of mixed nodules for patient shifted from 1.39 ± 0.16 to 1.05 ± 0.15 (p ≤ 0.05). TSH levels dropped from 4.2 ± 0.21 mIU/L at baseline to 2.1 ± 0.20 mIU/L post-treatment (p treatment with MI plus Se, a reduction of the size, number and elasticity score of TNs as well as TSH levels was observed. Further studies are required, either in vitro and in vivo, to investigate the use of MI plus Se for the management of TNs.

  16. Lower Choline and Myo-Inositol in Temporo-Parietal Cortex Is Associated With Apathy in Amnestic MCI

    Directory of Open Access Journals (Sweden)

    Shankar Tumati

    2018-04-01

    Full Text Available Apathy is a common symptom in patients with amnestic mild cognitive impairment (aMCI and is associated with an increased risk of progression to Alzheimer’s disease (AD. The neural substrates underlying apathy in aMCI may involve multiple brain regions, including the anterior cingulate cortex and the temporo-parietal region. Here we investigated neurometabolites in brain regions that may underlie apathy in aMCI patients using proton magnetic resonance spectroscopy (1H-MRS. Twenty-eight aMCI patients with varying degrees of apathy and 20 matched controls underwent 1H-MRS. Spectra were acquired from single voxels in the posterior cingulate cortex (PCC, dorsal anterior cingulate cortex (DACC, right dorsolateral prefrontal cortex (DLPFC, and right temporo-parietal cortex (TPC. Apathy was measured with the Apathy Evaluation Scale (AES. Spearman partial correlations between metabolite concentrations in each region and severity of apathy were determined. Additionally, analyses of covariance (ANCOVA were performed to determine whether metabolite changes differed between patients with or without clinically-diagnosed apathy. The degree of apathy was found to be negatively correlated with choline and myo-inositol (mI in the TPC. Additional exploratory analyses suggested that N-acetylaspartate (NAA/mI ratio was reduced in aMCI without clinical apathy but not in aMCI with clinical apathy. In the DACC, glutamate and glutamine (Glx levels tended to be higher in the aMCI with apathy group compared to controls and reduced in association with depression scores. In conclusion, apathy in aMCI patients was associated with neurometabolite changes indicative of altered membranal integrity and glial function in the right TPC. Findings also indicated that in a clinically-diagnosed aMCI cohort, apathy symptoms may be suggestive of neural changes that are distinct from aMCI without apathy.

  17. Lower Choline and Myo-Inositol in Temporo-Parietal Cortex Is Associated With Apathy in Amnestic MCI.

    Science.gov (United States)

    Tumati, Shankar; Opmeer, Esther M; Marsman, Jan-Bernard C; Martens, Sander; Reesink, Fransje E; De Deyn, Peter P; Aleman, André

    2018-01-01

    Apathy is a common symptom in patients with amnestic mild cognitive impairment (aMCI) and is associated with an increased risk of progression to Alzheimer's disease (AD). The neural substrates underlying apathy in aMCI may involve multiple brain regions, including the anterior cingulate cortex and the temporo-parietal region. Here we investigated neurometabolites in brain regions that may underlie apathy in aMCI patients using proton magnetic resonance spectroscopy ( 1 H-MRS). Twenty-eight aMCI patients with varying degrees of apathy and 20 matched controls underwent 1 H-MRS. Spectra were acquired from single voxels in the posterior cingulate cortex (PCC), dorsal anterior cingulate cortex (DACC), right dorsolateral prefrontal cortex (DLPFC), and right temporo-parietal cortex (TPC). Apathy was measured with the Apathy Evaluation Scale (AES). Spearman partial correlations between metabolite concentrations in each region and severity of apathy were determined. Additionally, analyses of covariance (ANCOVA) were performed to determine whether metabolite changes differed between patients with or without clinically-diagnosed apathy. The degree of apathy was found to be negatively correlated with choline and myo-inositol (mI) in the TPC. Additional exploratory analyses suggested that N-acetylaspartate (NAA)/mI ratio was reduced in aMCI without clinical apathy but not in aMCI with clinical apathy. In the DACC, glutamate and glutamine (Glx) levels tended to be higher in the aMCI with apathy group compared to controls and reduced in association with depression scores. In conclusion, apathy in aMCI patients was associated with neurometabolite changes indicative of altered membranal integrity and glial function in the right TPC. Findings also indicated that in a clinically-diagnosed aMCI cohort, apathy symptoms may be suggestive of neural changes that are distinct from aMCI without apathy.

  18. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles.

    Science.gov (United States)

    Mechri, Beligh; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2015-01-01

    This study reports a method for the analysis of mannitol, sorbitol and myo-inositol in olive tree roots and rhizospheric soil with gas chromatography. The analytical method consists of extraction with a mixture of dichloromethane:methanol (2:1, v/v) for soil samples and a mixture of ethanol:water (80:20) for root samples, silylation using pyridine, hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The recovery of mannitol sorbitol and myo-inositol (for extraction and analysis in dichloromethane:methanol and ethanol:water) was acceptable and ranged from 100.3 to 114.7%. The time of analysis was <24 min. Among identified polyols extracted from rhizosphere and roots of olive plants, mannitol was the major compound. A marked increase in mannitol content occurred in rhizosphere and roots of water-stressed plants, suggesting a much broader role of mannitol in stress response based on its ability to act as a compatible solute. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex.

    Science.gov (United States)

    Corcoba, Alberto; Gruetter, Rolf; Do, Kim Q; Duarte, João M N

    2017-09-01

    Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine-to-glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, p social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis. © 2017 International Society for Neurochemistry.

  20. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS that is required for inhibition of inositol synthesis by the mood stabilizer valproate.

    Directory of Open Access Journals (Sweden)

    Wenxi Yu

    Full Text Available Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS, which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA, which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.

  1. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate.

    Science.gov (United States)

    Yu, Wenxi; Daniel, Joshua; Mehta, Dhara; Maddipati, Krishna Rao; Greenberg, Miriam L

    2017-01-01

    Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.

  2. Defining the minimal structural requirements for partial agonism at the type I myo-inositol 1,4,5-trisphosphate receptor.

    Science.gov (United States)

    Wilcox, R A; Fauq, A; Kozikowski, A P; Nahorski, S R

    1997-02-03

    The novel synthetic analogues D-3-fluoro-myo-inositol 1,5-bisphosphate-4-phosphorothioate, [3F-Ins(1,5)P2-4PS], D-3-fluoro-myo-inositol 1,4-bisphosphate-5-phosphorothioate [3F-Ins(1,4)P2-5PS], and D-3-fluoro-myo-inositol 1-phosphate-4,5-bisphosphorothioate [3F-Ins(1)P-(4,5)PS2] were utilised to define the structure-activity relationships which could produce partial agonism at the Ca2+ mobilising myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptor. Based on prior structure-activity data we hypothesised that the minimal structural requirements for lns(1,4,5)P3 receptor partial agonism, were phosphorothioate substitution of the crucial vicinal 4,5-bisphosphate pair accompanied by another structural perturbation, such fluorination of 3-position of the myo-inositol ring. All the analogues fully displaced [3H]Ins(1,4,5)P3 from a single Ins(1,4,5)P3 binding site in pig cerebellar membranes [3F-Ins(1,5)P2-4PS (1C50 = 26 nM), 3F-Ins(1,4)P2-5PS (IC50 = 80 nM) and 3F-Ins(1)P-(4,5)PS2 (IC50 = 109 nM) cf. Ins(1,4,5)P3 (IC50 = 11 nM)]. In contrast, 3F-Ins(1,5)P2-4PS (IC50 = 424 nM) and 3F-Ins(1,4)P2-5PS (IC50 = 3579 nM) were weak full agonists at the Ca2+ mobilising Ins(1,4,5)P3 receptor of permeabilised SH-SY5Y neuroblastoma cells, being respectively 4- and 36-fold less potent than Ins(1,4,5)P3 (EC50 = 99 nM). While 3F-Ins(1)P-(4,5)PS2 (EC50 = 11345 nM) was a partial agonist releasing only 64.3 +/- 1.9% of the Ins(1,4,5)P3-sensitive intracellular Ca2+ pools. 3F-Ins(1)P-(4,5)PS2 was unique among the Ins(1,4,5)P3 receptor partial agonists so far identified in having a relatively high affinity for the Ins(1,4,5)P3 binding site, accompanied by a significant loss of intrinsic activity for Ca2+ mobilisation. This improved affinity was probably due to the retention of the 1-position phosphate, which enhances interaction with the Ins-(1,4,5)P3 receptor. 3F-Ins(1)P-(4,5)PS2 may be an important lead compound for the development of efficient Ins(1,4,5)P3 receptor antagonists.

  3. Effect of a supplementation with myo-inositol plus melatonin on oocyte quality in women who failed to conceive in previous in vitro fertilization cycles for poor oocyte quality: a prospective, longitudinal, cohort study.

    Science.gov (United States)

    Unfer, Vittorio; Raffone, Emanuela; Rizzo, Piero; Buffo, Silvia

    2011-11-01

    Several factors can affect oocyte quality and therefore pregnancy outcome in assisted reproductive technology (ART) cycles. Recently, a number of studies have shown that the presence of several compounds in the follicular fluid positively correlates with oocyte quality and maturation (i.e., myo-inositol and melatonin). In the present study, we aim to evaluate the pregnancy outcomes after the administration of myo-inositol combined with melatonin in women who failed to conceive in previous in vitro fertilization (IVF) cycles due to poor oocyte quality. Forty-six women were treated with 4 g/day myo-inositol and 3 mg/day melatonin (inofolic® and inofolic® Plus, Lo.Lipharma, Rome) for 3 months and then underwent a new IVF cycle. After treatment, the number of mature oocytes, the fertilization rate, the number of both, total and top-quality embryos transferred were statistically higher compared to the previous IVF cycle, while there was no difference in the number of retrieved oocyte. After treatment, a total of 13 pregnancies occurred, 9 of them were confirmed echographically; four evolved in spontaneous abortion. The treatment with myo-inositol and melatonin improves ovarian stimulation protocols and pregnancy outcomes in infertile women with poor oocyte quality.

  4. Identification of myo-inositol hexakisphosphate (IP6) as a β-secretase 1 (BACE1) inhibitory molecule in rice grain extract and digest.

    Science.gov (United States)

    Abe, Takako K; Taniguchi, Masayuki

    2014-01-01

    Alzheimer's disease (AD) is widely considered to be caused by amyloid-β peptide (Aβ) accumulation in the brain. Aβ is excised from amyloid-β precursor protein through sequential cleavage by β-secretase 1 (BACE1) and γ-secretase. Thus, BACE1 inhibition could prevent Aβ accumulation. Here, we identified myo-inositol hexakisphosphate (IP6) as a BACE1 inhibitory molecule in rice grain extract and digest. The rice digest and IP6 significantly inhibited Aβ production in neuroblastoma cells without cytotoxicity. These results suggested that rice components, including IP6, may be promising starting materials for the development of potent and safe drugs and/or food to prevent AD.

  5. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus.

    Science.gov (United States)

    Stieglitz, Kimberly A; Yang, Hongying; Roberts, Mary F; Stec, Boguslaw

    2005-01-11

    myo-Inositol-1-phosphate synthase (mIPS) catalyzes the first step in the synthesis of l-myo-inositol-1-phosphate. We have solved and refined the structure of the mIPS from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus at 1.9 A resolution. The enzyme crystallized from poly(ethylene glycol) in the P1 space group with one tetramer in the asymmetric unit and provided a view of the entire biologically active oligomer. Despite significant changes in sequence length and amino acid composition, the general architecture of the archaeal enzyme is similar to that of the eukaryotic mIPS from Saccharomyces cerevisiae and bacterial mIPS from Mycobacterium tuberculosis. The enhanced thermostability of the archaeal enzyme as compared to that from yeast is consistent with deletion of a number of surface loops that results in a significantly smaller protein. In the structure of the A. fulgidus mIPS, the active sites of all four subunits were fully ordered and contained NAD(+) and inorganic phosphate. The structure also contained a single metal ion (identified as K(+)) in two of the four subunits. The analysis of the electrostatic potential maps of the protein suggested the presence of a second metal-ion-binding site in close proximity to the first metal ion and NAD(+). The modeling of the substrate and known inhibitors suggests a critical role for the second metal ion in catalysis and provides insights into the common elements of the catalytic cycle in enzymes from different life kingdoms.

  6. Effects of a New Flavonoid and Myo-Inositol Supplement on Some Biomarkers of Cardiovascular Risk in Postmenopausal Women: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Rosario D’Anna

    2014-01-01

    Full Text Available Background and Aim. Cardiovascular risk is increased in women with menopause and metabolic syndrome. Aim of this study was to test the effect of a new supplement formula, combining cocoa polyphenols, myo-inositol, and soy isoflavones, on some biomarkers of cardiovascular risk in postmenopausal women with metabolic syndrome. Methods and Results. A total of 60 women were enrolled and randomly assigned (n=30 per group to receive the supplement (NRT: 30 mg of cocoa polyphenols, 80 mg of soy isoflavones, and 2 gr of myo-inositol, or placebo for 6 months. The study protocol included three visits (baseline, 6, and 12 months for the evaluation of glucose, triglycerides, and HDL-cholesterol (HDL-C, adiponectin, visfatin, resistin, and bone-specific alkaline phosphatase (bone-ALP. At 6 months, a significant difference between NRT and placebo was found for glucose (96±7 versus 108±10 mg/dL, triglycerides (145±14 versus 165±18 mg/dL, visfatin (2.8±0.8 versus 3.7±1.1 ng/mL, resistin (27±7 versus 32±8 µg/L, and b-ALP (19±7 versus 15±5 µg/mL. No difference in HDL-C concentrations nor in adiponectin levels between groups was reported at 6 months. Conclusions. The supplement used in this study improves most of the biomarkers linked to metabolic syndrome. This Trial is registered with NCT01400724.

  7. CD, MCD and VTVH MCD Studies of Biferrous and Mixed-Valent myo-Inositol Oxygenase: Insights into Substrate Activation of O2 Reactivity

    Science.gov (United States)

    Snyder, Rae Ana; Bell, Caleb B.; Diao, Yinghui; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.

    2013-01-01

    Myo-inositol oxygenase (MIOX) catalyzes the 4e− oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of biferrous MIOX shows two ligand field (LF) transitions near 10,000 cm−1, split by ~2,000 cm−1, characteristic of 6 coordinate (6C) Fe(II) sites, indicating that the modest reactivity of the biferrous form toward O2 can be attributed to the saturated coordination of both irons. Upon oxidation to the Fe(II)Fe(III) state, MIOX shows two LF transitions in the ~10,000 cm−1 region, again implying a coordinatively saturated Fe(II) site. Upon MI binding, these split in energy to 5,200 cm−1 and 11,200 cm−1, showing that MI binding causes the Fe(II) to become coordinately unsaturated. VTVH MCD magnetization curves of unbound and MI-bound Fe(II)Fe(III) forms show that upon substrate binding, the isotherms become more nested, requiring that the exchange coupling and ferrous zero field splitting (ZFS) both decrease in magnitude. These results imply that MI binds to the ferric site, weakening the Fe(III)-μ-OH bond and strengthening the Fe(II)-μ-OH bond. This perturbation results in the release of a coordinated water from the Fe(II) that enables its O2 activation. PMID:24066857

  8. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread.

    Science.gov (United States)

    García-Mantrana, Izaskun; Monedero, Vicente; Haros, Monika

    2015-07-01

    The goal of this investigation was to develop baking products using Bifidobacterium pseudocatenulatum ATCC27919, a phytase producer, as a starter in sourdough for the production of whole rye-wheat mixed bread. This Bifidobacterium strain contributed to myo-inositol hexakisphosphate (phytate) hydrolysis, resulting in breads with higher mineral availability as was predicted by the phytate/mineral molar ratios, which remained below the inhibitory threshold values for Ca and Zn intestinal absorption. The products with sourdough showed similar technological quality as their homologous without sourdough, with levels of acetic and d/l lactic acids in dough and bread baking significantly higher with the use of sourdough. The overall acceptability scores showed that breads with 25% of whole rye flour were highly accepted regardless of the inclusion of sourdough. This work emphasises that the in situ production of phytase during fermentation by GRAS/QPS microorganisms constitutes a strategy which is particularly appropriate for reducing the phytate contents in products for human consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Science.gov (United States)

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  10. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Directory of Open Access Journals (Sweden)

    Nicholas C Butzin

    Full Text Available The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS. These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  11. The Effects of Myo-Inositol and B and D Vitamin Supplementation in the db/+ Mouse Model of Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Jasmine F. Plows

    2017-02-01

    Full Text Available Gestational diabetes mellitus (GDM is a growing concern, affecting an increasing number of pregnant women worldwide. By predisposing both the affected mothers and children to future disease, GDM contributes to an intergenerational cycle of obesity and diabetes. In order to stop this cycle, safe and effective treatments for GDM are required. This study sought to determine the treatment effects of dietary supplementation with myo-inositol (MI and vitamins B2, B6, B12, and D in a mouse model of GDM (pregnant db/+ dams. In addition, the individual effects of vitamin B2 were examined. Suboptimal B2 increased body weight and fat deposition, decreased GLUT4 adipose tissue expression, and increased expression of inflammatory markers. MI supplementation reduced weight and fat deposition, and reduced expression of inflammatory markers in adipose tissue of mice on suboptimal B2. MI also significantly reduced the hyperleptinemia observed in db/+ mice, when combined with supplemented B2. MI was generally associated with adipose tissue markers of improved insulin sensitivity and glucose uptake, while the combination of vitamins B2, B6, B12, and D was associated with a reduction in adipose inflammatory marker expression. These results suggest that supplementation with MI and vitamin B2 could be beneficial for the treatment/prevention of GDM.

  12. A Combined Therapy with Myo-Inositol and D-Chiro-Inositol Improves Endocrine Parameters and Insulin Resistance in PCOS Young Overweight Women

    Directory of Open Access Journals (Sweden)

    Elena Benelli

    2016-01-01

    Full Text Available Introduction. We evaluated the effects of a therapy that combines myo-inositol (MI and D-chiro-inositol (DCI in young overweight women affected by polycystic ovary syndrome (PCOS, characterized by oligo- or anovulation and hyperandrogenism, correlated to insulin resistance. Methods. We enrolled 46 patients affected by PCOS and, randomly, we assigned them to two groups, A and B, treated, respectively, with the association of MI plus DCI, in a 40 : 1 ratio, or with placebo (folic acid for six months. Thus, we analyzed pretreatment and posttreatment FSH, LH, 17-beta-Estradiol, Sex Hormone Binding Globulin, androstenedione, free testosterone, dehydroepiandrosterone sulphate, HOMA index, and fasting glucose and insulin. Results. We recorded a statistically significant reduction of LH, free testosterone, fasting insulin, and HOMA index only in the group treated with the combined therapy of MI plus DCI; in the same patients, we observed a statistically significant increase of 17-beta-Estradiol levels. Conclusions. The combined therapy of MI plus DCI is effective in improving endocrine and metabolic parameters in young obese PCOS affected women.

  13. Expression analysis of a heat-inducible, Myo-inositol-1-phosphate synthase (MIPS) gene from wheat and the alternatively spliced variants of rice and Arabidopsis.

    Science.gov (United States)

    Khurana, Neetika; Chauhan, Harsh; Khurana, Paramjit

    2012-01-01

    Molecular dissection and a deeper analysis of the heat stress response mechanism in wheat have been poorly understood so far. This study delves into the molecular basis of action of TaMIPS, a heat stress-inducible enzyme that was identified through PCR-select subtraction technology, which is named here as TaMIPS2. MIPS (L-Myo-inositol-phosphate synthase) is important for the normal growth and development in plants. Expression profiling showed that TaMIPS2 is expressed during different developing seed stages upon heat stress. Also, the transcript levels increase in unfertilized ovaries and significant amounts are present during the recovery period providing evidence that MIPS is crucial for its role in heat stress recovery and flower development. Alternatively spliced forms from rice and Arabidopsis were also identified and their expression analysis revealed that apart from heat stress, some of the spliced variants were also inducible by drought, NaCl, Cold, ABA, BR, SA and mannitol. In silico promoter analysis revealed various cis-elements that could contribute for the differential regulation of MIPS in different plant systems. Phylogenetic analysis indicated that MIPS are highly conserved among monocots and dicots and TaMIPS2 grouped specifically with monocots. Comparative analyses was undertaken by different experimental approaches, i.e., semi-quantitative RT-PCR, quantitative RT-PCR, Genevestigator as a reference expression tool and motif analysis to predict the possible function of TaMIPS2 in regulating the different aspects of plant development under abiotic stress in wheat.

  14. Comparative Genomics of Pneumocystis Species Suggests the Absence of Genes for myo-Inositol Synthesis and Reliance on Inositol Transport and Metabolism

    Science.gov (United States)

    Sesterhenn, Thomas M.; Collins, Margaret S.; Welge, Jeffrey A.

    2014-01-01

    ABSTRACT In the context of deciphering the metabolic strategies of the obligate pathogenic fungi in the genus Pneumocystis, the genomes of three species (P. carinii, P. murina, and P. jirovecii) were compared among themselves and with the free-living, phylogenetically related fission yeast (Schizosaccharomyces pombe). The underrepresentation of amino acid metabolism pathways compared to those in S. pombe, as well as the incomplete steroid biosynthesis pathway, were confirmed for P. carinii and P. jirovecii and extended to P. murina. All three Pneumocystis species showed overrepresentation of the inositol phosphate metabolism pathway compared to that in the fission yeast. In addition to those known in S. pombe, four genes, encoding inositol-polyphosphate multikinase (EC 2.7.1.151), inositol-pentakisphosphate 2-kinase (EC 2.7.1.158), phosphoinositide 5-phosphatase (EC 3.1.3.36), and inositol-1,4-bisphosphate 1-phosphatase (EC 3.1.3.57), were identified in the two rodent Pneumocystis genomes, P. carinii and P. murina. The P. jirovecii genome appeared to contain three of these genes but lacked phosphoinositide 5-phosphatase. Notably, two genes encoding enzymes essential for myo-inositol synthesis, inositol-1-phosphate synthase (INO1) and inositol monophosphatase (INM1), were absent from all three genomes, suggesting that Pneumocystis species are inositol auxotrophs. In keeping with the need to acquire exogenous inositol, two genes with products homologous to fungal inositol transporters, ITR1 and ITR2, were identified in P. carinii and P. murina, while P. jirovecii contained only the ITR1 homolog. The ITR and inositol metabolism genes in P. murina and P. carinii were expressed during fulminant infection as determined by reverse transcriptase real-time PCR of cDNA from infected lung tissue. Supplementation of in vitro culture with inositol yielded significant improvement of the viability of P. carinii for days 7 through 14. PMID:25370490

  15. Effect of Non-Surgical Periodontal Therapy Along With Myo-Inositol on High-Sensitivity C-Reactive Protein and Insulin Resistance in Women With Polycystic Ovary Syndrome and Chronic Periodontitis: A Randomized Controlled Trial.

    Science.gov (United States)

    Deepti; Tewari, Shikha; Narula, Satish Chander; Singhal, Savita Rani; Sharma, Rajinder Kumar

    2017-10-01

    The purpose of this study is to evaluate the effect of non-surgical periodontal therapy and medical treatment on the level of a serologic marker of inflammation (high-sensitivity C-reactive protein [hsCRP]) and insulin resistance (homeostatic model assessment [HOMA]) in women with polycystic ovary syndrome (PCOS) and chronic periodontitis (CP). Women with PCOS and CP (n = 60) were randomly divided into two groups. The test group was treated with scaling and root planing (SRP) and myo-inositol (MI). The control group was treated with MI and given oral hygiene instructions. Anthropometric, metabolic, and periodontal parameters were assessed at baseline and re-evaluated at 3 and 6 months. All parameters of both groups at 6 months were compared with 25 systemically and periodontally healthy females (group A). Periodontal parameters were significantly improved in the test group compared with the control group at 3- and 6-month follow-up (P 0.05) was observed in the test group compared with the control group at 3 and 6 months. Both the test and control group showed significant consistent improvement in metabolic parameters at 3- and 6-month follow-up, which was further comparable to group A. SRP together with medical treatment results in a greater reduction of systemic inflammatory burden compared with medical treatment alone in management of women with PCOS and CP.

  16. Effects of a high dose of microbial phytase and myo-inositol supplementation on growth performance, tibia mineralization, nutrient digestibility, litter moisture content, and foot problems in broiler chickens fed phosphorus-deficient diets.

    Science.gov (United States)

    Farhadi, D; Karimi, A; Sadeghi, Gh; Rostamzadeh, J; Bedford, M R

    2017-10-01

    A total of 660 one-day-old Ross 308 broiler chicks were randomly distributed into eleven dietary treatments. Treatments included a maize-soybean meal-based diet with recommended calcium (Ca) and non-phytate phosphorus (nPP) (positive control; PC), an nPP-deficient diet (negative control; NC), NC diets supplemented with different levels of phytase (0, 500, 1,000, 2,000, 3,000, 4,000, 5,000, and 6,000 FTU/kg), a NC diet plus 0.15% myo-inositol, and a NC diet with reduced Ca level (Ca to nPP ratio same as PC). Feeding the NC diet had no effects on birds' body weight (BW), weight gain (WG), feed intake (FI), and feed conversion ratio (FCR), but decreased (P Phytase supplementation at ≥4,000 FTU/kg improved (P phytase returned (P phytase in a dose-dependent manner, especially at ≥4,000 FTU/kg levels, was effective in overcoming the negative consequences of NC diets, primarily due to the ability to improve nutrient utilization. In addition, reducing the Ca level or supplementation of inositol of NC diet can correct some the negative effects of feeding a NC diet confirming the negative effect of a wide Ca: P ratio in a P-deficient diet and suggesting that inositol may play a role in the response to phytase addition. © 2017 Poultry Science Association Inc.

  17. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    International Nuclear Information System (INIS)

    Jiang, Wei-Dan; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-01-01

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  18. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Hu, Kai [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Li, Shu-Hong [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: xqzhouqq@tom.com [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2014-10-15

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  19. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    International Nuclear Information System (INIS)

    Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Feng, Lin; Zhou, Xiao-Qiu

    2015-01-01

    Highlights: • Cu stress decreased fish muscle CuZnSOD, GPx1a, GPx1b and PKCδ mRNA levels. • Cu stress caused fish muscle lower nuclear Nrf2 levels and poor ARE binding ability. • Cu stress induced caspase-3 signaling-modulated DNA fragmentation in fish muscle. • Pre-treatment with MI prevented fish muscle from Cu-induced oxidative damages. - Abstract: The muscle is the main portion of fish that is consumed by humans. Copper (Cu) can induce oxidative damage in fish muscle. However, the effects of Cu exposure on the muscle antioxidant system and molecular patterns and preventive measures against these effects remain unclear. In this study, ROS production, enzymatic and mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2) signaling-related molecules, antioxidant response element (ARE) binding ability, DNA fragmentation and caspase-3 activities were analyzed in fish muscle following Cu exposure or myo-inositol (MI) pre-administration. The results indicated that contamination due to copper exposure caused an approximately three-fold increase in ROS production, induced lipid peroxidation and protein oxidation, and resulted in depletion of the glutathione (GSH) content of fish muscle. Moreover, Cu exposure caused decreases in the activities of total superoxide dismutase (T-SOD), CuZnSOD, and glutathione peroxidase (GPx) that were accompanied by decreases in CuZnSOD, GPx1a, GPx1b and signaling factor protein kinase C delta mRNA levels. The decreases in the antioxidant enzyme gene mRNA levels were confirmed to be partly due to the reduced nuclear Nrf2 protein levels, poor ARE binding ability and increased caspase-3 signaling-modulated DNA fragmentation in the fish muscle. Interestingly, MI pre-treatment prevented fish muscle from Cu-induced oxidative damages mainly through increasing the GSH content, and increasing the CuZnSOD and GPx activities and corresponding mRNA levels and ARE binding ability. Taken together, our results show for the first

  20. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Wu, Pei [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: zhouxq@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2015-02-15

    Highlights: • Cu stress decreased fish muscle CuZnSOD, GPx1a, GPx1b and PKCδ mRNA levels. • Cu stress caused fish muscle lower nuclear Nrf2 levels and poor ARE binding ability. • Cu stress induced caspase-3 signaling-modulated DNA fragmentation in fish muscle. • Pre-treatment with MI prevented fish muscle from Cu-induced oxidative damages. - Abstract: The muscle is the main portion of fish that is consumed by humans. Copper (Cu) can induce oxidative damage in fish muscle. However, the effects of Cu exposure on the muscle antioxidant system and molecular patterns and preventive measures against these effects remain unclear. In this study, ROS production, enzymatic and mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2) signaling-related molecules, antioxidant response element (ARE) binding ability, DNA fragmentation and caspase-3 activities were analyzed in fish muscle following Cu exposure or myo-inositol (MI) pre-administration. The results indicated that contamination due to copper exposure caused an approximately three-fold increase in ROS production, induced lipid peroxidation and protein oxidation, and resulted in depletion of the glutathione (GSH) content of fish muscle. Moreover, Cu exposure caused decreases in the activities of total superoxide dismutase (T-SOD), CuZnSOD, and glutathione peroxidase (GPx) that were accompanied by decreases in CuZnSOD, GPx1a, GPx1b and signaling factor protein kinase C delta mRNA levels. The decreases in the antioxidant enzyme gene mRNA levels were confirmed to be partly due to the reduced nuclear Nrf2 protein levels, poor ARE binding ability and increased caspase-3 signaling-modulated DNA fragmentation in the fish muscle. Interestingly, MI pre-treatment prevented fish muscle from Cu-induced oxidative damages mainly through increasing the GSH content, and increasing the CuZnSOD and GPx activities and corresponding mRNA levels and ARE binding ability. Taken together, our results show for the first

  1. Spatial and temporal expression analysis of D- myo -inositol 3 ...

    African Journals Online (AJOL)

    1á (eukaryotic elongation factor 1-alpha) using SYBER-Green. ... expression in the developing seed tissues and can be targeted using the dsRNA induced sequence specific RNA degradation mechanism for reduction of phytate levels without ...

  2. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    Science.gov (United States)

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-11-08

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.

  3. Chemical equilibrium of glycerol carbonate synthesis from glycerol

    International Nuclear Information System (INIS)

    Li Jiabo; Wang Tao

    2011-01-01

    Research highlights: → Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for the preparation of glycerol carbonate from glycerol. → The reaction of glycerol and carbon dioxide is thermodynamically limited. → High temperature and low pressure is favourable to the reaction of glycerol and urea. → Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol and dimethyl carbonate. → For the reaction of glycerol and ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. - Abstract: In this paper, the chemical equilibrium for the glycerol carbonate preparation from glycerol was investigated. The chemical equilibrium constants were calculated for the reactions to produce glycerol carbonate from glycerol. The theoretical calculation was compared with the experimental results for the transesterification of glycerol with dimethyl carbonate. Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for producing glycerol carbonate from glycerol according to the equilibrium constant. Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol with dimethyl carbonate. For the reaction of glycerol with ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. The reaction of glycerol with carbon dioxide is thermodynamically limited. High temperature and low pressure are favourable to the reaction of glycerol and urea.

  4. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2010-01-01

    , cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower

  5. Predicting grade of cerebral gliomas using Myo-inositol/Creatine ratio

    Directory of Open Access Journals (Sweden)

    Lamiaa I.A. Metwally

    2014-03-01

    Conclusion: MRS has proven to be an important complementary tool saving the patient from unnecessary biopsy taking when it is conclusive thus altering the treatment planning. This study had demonstrated that MI level and MI/Cr ratio are important in presurgical grading of brain tumors.

  6. Glycerol tertiary butyl ethers via etherification of glycerol with isobutene

    Energy Technology Data Exchange (ETDEWEB)

    Behr, A. [Dortmund Univ. (Germany). Chair of Chemical Process Development/Technical Chemistry A

    2007-07-01

    Glycerol and isobutene can react to a mixture of glycerol tertiary butyl ethers (GTBE) which can be used as additives for gasoline, diesel or biodiesel. This reaction was investigated in lab scale yielding a proposal for a process flow diagram containing reaction, extraction, flash and rectification units. This process has the advantages that only the suitable higher ethers are formed and that both glycerol and isobutene are fully converted. The homogeneous acid catalyst is low-priced and can be completely recycled. (orig.)

  7. Calibrating the glycerol dialkyl glycerol tetraether temperature signalin speleothems

    NARCIS (Netherlands)

    Blyth, A.J.; Schouten, S.

    2013-01-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples

  8. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems

    NARCIS (Netherlands)

    Blyth, A.J.; Schouten, S.|info:eu-repo/dai/nl/137124929

    2013-01-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples

  9. The dephosphorylation pathway of D-myo-inositol 1,3,4,5-tetrakisphosphate in rat brain.

    OpenAIRE

    Erneux, C; Delvaux, A; Moreau, C; Dumont, J E

    1987-01-01

    Dephosphorylation of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was measured in both the soluble and the particulate fractions of rat brain homogenates. Analysis of the hydrolysis of [4,5-32P]Ins(1,3,4,5)P4 showed that for both fractions the 5-phosphate of Ins(1,3,4,5)P4 was removed and inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] was specifically produced. In the soluble fraction, Ins(1,3,4)P3 was further hydrolysed at the 1-phosphate position to inositol 3,4-bisphosphate[Ins(3,4)P2]...

  10. Biohydrogen Production from Glycerol using Thermotoga spp

    NARCIS (Netherlands)

    Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantini, M.; Medina, F.

    2012-01-01

    Given the highly reduced state of carbon in glycerol and its availability as a substantial byproduct of biodiesel production, glycerol is of special interest for sustainable biofuel production. Glycerol was used as a substrate for biohydrogen production using the hyperthermophilic bacterium,

  11. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

    Science.gov (United States)

    Alvarez, María de Fátima; Medina, Roxana; Pasteris, Sergio E; Strasser de Saad, Ana M; Sesma, Fernando

    2004-01-01

    Lactobacillus rhamnosus ATCC 7469 was able to grow in glycerol as the sole source of energy in aerobic conditions, producing lactate, acetate, and diacetyl. A biphasic growth was observed in the presence of glucose. In this condition, glycerol consumption began after glucose was exhausted from the culture medium. Glycerol kinase activity was detected in L. rhamnosus ATCC 7469, a characteristic of microorganisms which catabolize glycerol in aerobic conditions. Genetic analysis revealed that this strain possesses two glycerol kinase genes: gykA and glpK, that encode for two different glycerol kinases GykA and GlpK, respectively. The glpK geneis associated in an operon with alpha-glycerophosphate oxidase (glpO) and glycerol facilitator (glpF) genes. Transcriptional analysis revealed that only glpK is expressed when L. rhamnosus was grown on glycerol. Copyright 2004 S. Karger AG, Basel

  12. Seasonal variability of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a temperate lake system

    NARCIS (Netherlands)

    Loomis, S.E.; Russell, J.M.; Heureux, A.M.; D'Andrea, W.J.; Sinninghe Damsté, J.S.

    2014-01-01

    Quantitative climate reconstructions are crucial for understanding the magnitude of and mechanisms behind natural and anthropogenic climate change, yet there are few proxies that can reliably reconstruct terrestrial temperature. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial

  13. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mathias Klein

    2016-12-01

    Full Text Available Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae. This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A. The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast. Keywords: Yeast, Saccharomyces cerevisiae, Glycerol, Transport, Glycerol facilitator, Fps1, Stl1

  14. The Lubricity of Glycerol and its Solutions

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, J.

    2016-01-01

    Glycerol has been recognised as an excellent diesel fuel and lubricant. It is a liquid that can originate from the transesterification of plant oil that also results in plant oil metyl (or ethyl) ester (biodiesel). Machine elements lubricated by glycerol show very low friction, in fact lower than...

  15. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-01-01

    Due in part to the use of labeled glycerol for the 13 C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide (∼53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific 13 C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of 13 C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of 13 C-labeled DHA to DHAP. We are especially interested in 13 C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  16. Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs

    Directory of Open Access Journals (Sweden)

    Liu He

    2012-05-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs from the Gulu hot springs (23–83.6 °C, pH > 7 and Yangbajing hot springs (80–128 °C, pH > 7 were analyzed in order to investigate the distribution of archaeal lipids among different hot springs in Tibet. A soil sample from Gulu was incubated at different temperatures and analyzed for changes in iGDGTs to help evaluate whether surrounding soil may contribute to the iGDGTs in hot springs. The sources of bacterial GDGTs (bGDGTs in these hot springs were also investigated. The results revealed different profiles of iGDGTs between Gulu and Yangbajing hot springs. Core iGDGTs and polar iGDGTs also presented different patterns in each hot spring. The PCA analysis showed that the structure of polar iGDGTs can be explained by three factors and suggested multiple sources of these compounds. Bivariate correlation analysis showed significant positive correlations between polar and core bGDGTs, suggesting the in situ production of bGDGTs in the hot springs. Furthermore, in the soil incubation experiment, temperature had the most significant influence on concentration of bGDGTs rather than iGDGTs, and polar bGDGTs had greater variability than core bGDGTs with changing temperature. Our results indicated that soil input had little influence on the composition of GDGTs in Tibetan hot springs. On the other hand, ring index and TEX86 values were both positively correlated with incubation temperature, suggesting that the structure of archaeal lipids changed in response to varying temperature during incubation.

  17. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    Science.gov (United States)

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  18. Microbial recycling of glycerol to biodiesel.

    Science.gov (United States)

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.; Silks, L.A. III

    1994-01-01

    The authors are currently developing new synthetic routes to the various isotopomers of glycerol. Labeled glycerol is useful for 13 C enrichment of biomolecules. However, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment or have poor overall yields (12-15%). In addition, the use of glycerol for enrichment can be prohibitively expensive and its availability depends on the level of demand. The authors have developed a short de novo synthesis of [U- 13 C]glycerol from carbon dioxide (∼53% overall yield for four steps) and are currently examining the feasibility of synthesizing site-specific 13 C labeled glycerol and dihydroxyacetone (DHA) from methanol and carbon dioxide. The authors have examined the enzymatic conversion of [U- 13 C]glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25-50% (as determined by NMR spectroscopy). The authors are also pursuing the chemical conversion of 13 C labeled DHA to DHAP and the results are presented. Labeled DHAP is a possible enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  20. Valorization of crude glycerol from biodiesel production

    Directory of Open Access Journals (Sweden)

    Konstantinović Sandra S.

    2016-01-01

    Full Text Available The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  1. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  2. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  3. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  4. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  5. From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Gemma Villorbina

    2011-03-01

    Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.

  6. Design and analysis of fuel ethanol production from raw glycerol

    International Nuclear Information System (INIS)

    Posada, J.A.; Cardona, C.A.

    2010-01-01

    Three configurations for fuel ethanol production from raw glycerol using Escherichia coli were simulated and economically assessed using Aspen Plus and Aspen Icarus, respectively. These assessments considered raw glycerol (60 wt%) purification to both crude glycerol (88 wt%) and pure glycerol (98 wt%). The highest purification cost (PC) was obtained using pure glycerol due to its higher energy consumption in the distillation stage. In addition, the remaining methanol in the raw glycerol stream was recovered and recycled, decreasing the purification costs. The E. coli strain is able to convert crude glycerol (at 10 g/L or 20 g/L), or pure glycerol (at 10 g/L) to ethanol. Among these three glycerol concentrations, the lowest bioconversion cost was obtained when crude glycerol was diluted at 20 g/L. Purification and global production costs were compared with the commercial prices of glycerol and fuel ethanol from corn and sugarcane. Purification costs of raw glycerol were lower than previously reported values due to the methanol recovery. Global production costs for fuel ethanol from glycerol were lower than the reported values for corn-based production and higher than those for cane-based production. (author)

  7. Determining Atmospheric Pressure with a Eudiometer and Glycerol

    Science.gov (United States)

    Brody, Jed; Rohald, Kate; Sutton, Atasha

    2010-01-01

    We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…

  8. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly

    Czech Academy of Sciences Publication Activity Database

    Vesala, L.; Salminen, T. S.; Košťál, Vladimír; Zahradníčková, Helena; Hoikkala, A.

    2012-01-01

    Roč. 215, č. 16 (2012), s. 2891-2897 ISSN 0022-0949 R&D Projects: GA ČR GA206/07/0269 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : chill coma recovery * cold tolerance * cryoprotectant Subject RIV: ED - Physiology Impact factor: 3.236, year: 2012

  9. Rhodotorula rosulata sp. nov., Rhodotorula silvestris sp. nov. and Rhodotorula straminea sp. nov., novel myo-inositol-assimilating yeast species in the Microbotryomycetes.

    Science.gov (United States)

    Golubev, Wladyslav I; Scorzetti, Gloria

    2010-10-01

    Three novel species are described as Rhodotorula rosulata sp. nov. (type strain VKM Y-2962(T) =CBS 10977(T)), Rhodotorula silvestris sp. nov. (type strain VKM Y-2971(T) =CBS 11420(T)) and Rhodotorula straminea sp. nov. (type strain VKM Y-2964(T) =CBS 10976(T)) based on the study of eight isolates from needle litter. The new species, phylogenetically located within the Microbotryomycetes, are related to glucuronate-assimilating species of the genus Rhodotorula. Sequencing of the D1/D2 domains of the LSU rDNA gene and the internal transcribed spacer (ITS) region, as well as physiological characterization, revealed their distinct taxonomic positions.

  10. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Smith, J.B.; Smith, L.; Higgins, B.L.

    1985-01-01

    Inositol 1,4,5-trisphosphate (IP3) rapidly increased 45 Ca 2+ efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked 45 Ca 2+ release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked 45 Ca 2+ release. IP3 strongly stimulated 45 Ca 2+ efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced 45 Ca 2+ efflux suggests that IP3 activated a Ca 2+ channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction

  11. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation.

    Science.gov (United States)

    Kalujnaia, Svetlana; Hazon, Neil; Cramb, Gordon

    2016-08-01

    A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. Copyright © 2016 the American Physiological Society.

  12. Glycerol from biodiesel production: the new corn for dairy cattle

    Directory of Open Access Journals (Sweden)

    Shawn S Donkin

    2008-07-01

    Full Text Available Glycerol, also known as glycerin, is a colorless, odorless, hygroscopic, and sweet-tasting viscous liquid. It is a sugar alcohol with high solubility index in water and has a wide range of applications in the food, pharmaceutical, and cosmetic industries. The use of glycerol in diets for dairy cattle is not novel; however, this interest has been renewed due to the increased availability and favorable pricing of glycerol as a consequence of recent growth in the biofuels industry. Experimental evidence supports the use of glycerol as a transition cow therapy but feeding rates are low, ranging from 5 to 8 % of the diet DM. There is a paucity of research that examines the use of glycerol as a macro-ingredient in rations for lactating dairy cows. Most reports indicate a lack of effect of addition of glycerol to the diet when it replaces corn or corn starch. Recent feeding experiments with lactating dairy cows indicate replacing corn with glycerol to a level of 15% of the ration DM does not adversely effect milk production or composition. Milk production was 37.0, 36.9, 37.3, 36.4 ± 0.6 kg/d and feed intake was 24.0, 24.5, 24.6, 24.1 ± 0.5 kg/d for 0, 5, 10 and 15% glycerol treatments respectively and did not differ (P > 0.05 except for a modest reduction in feed intake during the first 7 days for the 15% glycerol treatment. Glycerol fed to dairy cattle is fermented to volatile fatty acids in the rumen and early reports indicated that glycerol is almost entirely fermented to propionate. In vitro data indicates glycerol fermentation increases the production of propionate and butyrate at the expense of acetate. Rumen microbes appear to adapt to glycerol feeding and consequently, cows fed glycerol also require an adaptation period to glycerol inclusion. Debate exists regarding the fate of glycerol in the rumen and although most reports suggest that glycerol is largely fermented in the rumen, the extent of rumen digestion may depend on level of

  13. An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.

    Science.gov (United States)

    Mahadevan, Aishwarya; Fernando, Sandun

    2017-06-15

    An improved glycerol biosensor was developed via direct attachment of NAD + -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH 4 ) 2 SO 4 and MnCl 2 ·4H 2 O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH 4 ) 2 SO 4 and 0.3µm MnCl 2 ·4H 2 O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH 4 ) 2 SO 4 and 30µm MnCl 2 ·4H 2 O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    Science.gov (United States)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  15. Investigation of glycerol assimilation and cofactor metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed

    of glycerol kinase from L. lactis, introduction of a heterologous glycerol assimilation pathway and construction of a library of NADH oxidase activity. Based on a preliminary analysis of transcription level data, an attempt was made to stimulate glycerol assimilation by overexpressing the glycerol kinase...... already present in L. lactis. The construction and verification of a strain with increased glycerol kinase activity was not fully completed and is still ongoing. Similarly the construction of mutants expressing a heterologous pathway for glycerol dissimilation is also an ongoing task. An artificial...... effects and improve the growth rate, though not completely to the level of the reference strain. The fact that this effect was predominantly observed while utilizing xylose implicates the involvement of the pentose phosphate pathway. A possible mechanism underlying the observed growth characteristics...

  16. Intercalation compounds of vanadium(5) phosphates with glycerol

    International Nuclear Information System (INIS)

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  17. Apposite of pig skin preserved in glycerol

    International Nuclear Information System (INIS)

    Reyes F, M.L.; Gonzalez V, C.; Salinas A, M.

    2007-01-01

    In the Radio sterilized Tissue Bank (BTR) of the ININ apposite of pig skin are processed and preserved to low temperature (-80 C), which are sterilized by irradiation and transported to the hospitals in dry ice to avoid its unfreezing. With the purpose of making more simple the manipulation of the apposite it was carried out this work that consisted on developing the processing of the pig skin using glycerol like preservation medium, since this way the irradiation, the storage and transport of the apposite is carried out at refrigeration temperature, that makes its manage more simple. (Author)

  18. Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.

    Science.gov (United States)

    Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier

    2014-04-01

    Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Glycerol reforming in supercritical water : a short review

    NARCIS (Netherlands)

    Markocic, Elena; Kramberger, Boris; van Bennekom, Joost G.; Heeres, Hero Jan; Vos, John; Knez, Zeljko; Markočič, Elena; Knez, Željko

    Due to the rise in global biodiesel production, the amount of crude glycerol, the main byproduct, has increased steadily. Identification of high value added outlets for crude glycerol has been explored in detail to increase the overall economics of the biodiesel process. Examples are the use of

  20. Vanadium-Catalyzed Deoxydehydration of Glycerol Without an External Reductant

    DEFF Research Database (Denmark)

    Petersen, Allan Robertson; Nielsen, Lasse Bo; Dethlefsen, Johannes Rytter

    2018-01-01

    A vanadium‐catalysed deoxydehydration (DODH) of neat glycerol has been developed. Cheap and readily available ammonium metavanadate (NH4VO3) affords higher yields of allyl alcohol than the well‐established catalyst methyltrioxorhenium. A study in which deuterium‐labelled glycerol was used...

  1. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  2. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi

    2012-01-01

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which...... was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude...... glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1 g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol...

  3. Conserved family of glycerol kinase loci in Drosophila melanogaster

    Science.gov (United States)

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  4. Microemulsion based hybrid biofuels using glycerol monooleate

    International Nuclear Information System (INIS)

    Bora, Plaban; Konwar, Lakhya Jyoti; Deka, Dhanapati

    2016-01-01

    Highlights: • Fuel quality of GMO based MHBFs. • Effect of externally added monoglyceride surfactant (GMO) on fuel characteristics of MHBF. • Structural and dynamic behaviors of GMO based MHBFs. • Can offer strong candidature for future biofuel industry. - Abstract: The present investigation aims to highlighten the effect of monoglyceride surfactant (GMO) on structure and dynamic behavior and other fuel characteristics of microemulsion based hybrid biofuels (MHBFs). Fuel quality of MHBFs formulated using purified GMO (>90%), which was prepared by esterification of glycerol, was investigated in the study. Phase behaviors, droplet size distribution, number of droplets present in the system, average droplet size and average length of surface active agents were studied as a part of structural investigations of the GMO based MHBFs. Diffusion coefficient, energy barrier to droplet coalescence and rate of coalescence of droplets were also investigated for the formulated MHBFs. The number of droplets, length of surface active agent and the diffusion co-efficient were in the ranges of 1.87 × 10"2"1–5.66 × 10"2"1/m"3, 0.92–1.07 nm and 1.00 × 10"−"1"1–1.79 × 10"−"1"1 m"2/s, respectively. The rate of droplet coalescence was obtained in the range 2.77 × 10"−"4–8.78 × 10"−"4 times the collision factor. MHBFs incorporating the glycerol derived bio-based nonionic surfactant GMO exhibited viscosity of 4.12 mm"2/s (at 40 °C), gross calorific value (GCV) of 39.17 MJ/kg and pour point of −7 °C.

  5. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.

    Science.gov (United States)

    Posada, John A; Rincón, Luis E; Cardona, Carlos A

    2012-05-01

    Glycerol as a low-cost by-product of the biodiesel industry can be considered a renewable building block for biorefineries. In this work, the conversion of raw glycerol to nine added-value products obtained by chemical (syn-gas, acrolein, and 1,2-propanediol) or bio-chemical (ethanol, 1,3-propanediol, d-lactic acid, succinic acid, propionic acid, and poly-3-hydroxybutyrate) routes were considered. The technological schemes for these synthesis routes were designed, simulated, and economically assessed using Aspen Plus and Aspen Icarus Process Evaluator, respectively. The techno-economic potential of a glycerol-based biorefinery system for the production of fuels, chemicals, and plastics was analyzed using the commercial Commercial Sale Price/Production Cost ratio criteria, under different production scenarios. More income can be earned from 1,3-propanediol and 1,2-propanediol production, while less income would be obtained from hydrogen and succinic acid. This analysis may be useful mainly for biodiesel producers since several profitable alternatives are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde

    International Nuclear Information System (INIS)

    Agirre, I.; Garcia, I.; Requies, J.; Barrio, V.L.; Gueemez, M.B.; Cambra, J.F.; Arias, P.L.

    2011-01-01

    The acetalization reaction between glycerol and formaldehyde using Amberlyst 47 acidic ion exchange resin was studied. These acetals can be obtained from renewable sources (bioalcohols and bioalcohol derived aldehydes) and seem to be good candidates for different applications such as oxygenated diesel additives. A preliminary kinetic study was performed in a batch stirred tank reactor studying the influence of different process parameters like temperature, feed composition and the stirring speed. A pseudo homogenous kinetic model able to explain the reaction mechanism was adjusted. Thus, the corresponding order of reaction was determined. Amberlyst 47 acidic ion exchange resin showed a fairly good behavior allowing 100% of selectivity towards acetals formation. However, the studied acetalization reaction showed high thermodynamic limitations achieving glycerol conversions around 50% using a stoichiometric feed ratio at 353 K. The product is a mixture of two isomers (1,3-Dioxan-5-ol and 1,3-dioxolane-4-methanol) and the conversion of 1,3-dioxolane-4-methanol into 1,3-Dioxan-5-ol was also observed. -- Highlights: → The reaction between glycerol and acetaldehyde shows thermodynamic limitations. → Amberlyst 47 ion exchange resins show 100% of selectivity. → A pseudo-homogeneous kinetic model is able to predict the reaction progress. → Isomerization reactions were observed from dioxalanes to dioxanes.

  7. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    Science.gov (United States)

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  8. Development of ethanol production from cooking oil glycerol waste ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-12

    Oct 12, 2016 ... glycerol waste by mutant Enterobacter aerogenes ... wild type strain was altered for enhancing ethanol production using UV irradiation and chemical method. .... microbial medium analytical methods were of laboratory and.

  9. Glycerol extracting dealcoholization for the biodiesel separation process.

    Science.gov (United States)

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Enhancement of glycerol production by zygosaccharomyces ruxii using strawberry wastes

    International Nuclear Information System (INIS)

    Meleigy, S.A; Taha, S.M.A.

    2010-01-01

    Glycerol is important industrial product that can be produced using osmophilic yeasts. In this study a local isolate of osmophilic yeast, zygosaccharomyces ruxii, was used for glycerol production from strawberry waste. The effects of some important parameters including glucose and urea concentrations, incubation temperature, initial ph and gamma irradiation were investigated. The optimum conditions for maximum glycerol production (126.8 g/l)by z. ruxii were occurred at 31 degree C and initial ph 5 in the presence of 250 g/l glucose and 3 g/l urea in the production medium . Under these optimizing fermentation parameters, enhancement of glycerol production (130 g/l) were recorded when the inoculum of z. ruxii was exposed to 0.25 kGy. also, the present results showed reduction in BOD 5 levels of fermented strawberry waste.

  11. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott; Herrington, Jason S.; Winterrowd, Chris K.; Roberts, William L.; Wendt, Jost O L; Linak, William P.

    2013-01-01

    to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA

  12. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    Science.gov (United States)

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  13. Supercritical water reformation of crude glycerol solution for hydrogen production.

    Science.gov (United States)

    2009-12-01

    Glycerol, also known as glycerin, is a less desirable byproduct formed in the production of biodiesel via the transesterification otriglycerides and presents a nontrivial issue in terms of developing other beneficial end uses. With an inflated glycer...

  14. Synthesis and characterization of poly(glycerol citrate/sebacate)

    International Nuclear Information System (INIS)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Boaventura, Jaime S.; Jose, Nadia M.

    2011-01-01

    In this work were prepared and characterized the poly(glycerol citrate/sebacate) in three different ratios between acids. The polymers were prepared by a polycondensation reaction between glycerol and citric/sebacic acids and characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The results showed that the polymers are polyesters and its crystallinity, thermal and morphological properties were modified by sebacic acid adding. (author)

  15. Efficient synthetic protocols in glycerol under heterogeneous catalysis.

    Science.gov (United States)

    Cravotto, Giancarlo; Orio, Laura; Gaudino, Emanuela Calcio; Martina, Katia; Tavor, Dorith; Wolfson, Adi

    2011-08-22

    The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of visceral adiposity on glycerol pathways in gluconeogenesis.

    Science.gov (United States)

    Neeland, Ian J; Hughes, Connor; Ayers, Colby R; Malloy, Craig R; Jin, Eunsook S

    2017-02-01

    To determine the feasibility of using oral 13 C labeled glycerol to assess effects of visceral adiposity on gluconeogenic pathways in obese humans. Obese (BMI ≥30kg/m 2 ) participants without type 2 diabetes underwent visceral adipose tissue (VAT) assessment and stratification by median VAT into high VAT-fasting (n=3), low VAT-fasting (n=4), and high VAT-refed (n=2) groups. Participants ingested [U- 13 C 3 ] glycerol and blood samples were subsequently analyzed at multiple time points over 3h by NMR spectroscopy. The fractions of plasma glucose (enrichment) derived from [U- 13 C 3 ] glycerol via hepatic gluconeogenesis, pentose phosphate pathway (PPP), and tricarboxylic acid (TCA) cycle were assessed using 13 C NMR analysis of glucose. Mixed linear models were used to compare 13 C enrichment in glucose between groups. Mean age, BMI, and baseline glucose were 49years, 40.1kg/m 2 , and 98mg/dl, respectively. Up to 20% of glycerol was metabolized in the TCA cycle prior to gluconeogenesis and PPP activity was minor (gluconeogenesis from glycerol in obese humans. Our findings provide preliminary evidence that excess visceral fat disrupts multiple pathways in hepatic gluconeogenesis from glycerol. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa

    OpenAIRE

    Eraqi, Walaa A.; Yassin, Aymen S.; Ali, Amal E.; Amin, Magdy A.

    2016-01-01

    Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We...

  18. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

    OpenAIRE

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase...

  19. Combinations of glycerol percent, glycerol equilibration time, and thawing rate upon freezability of bull spermatozoa in plastic straws.

    Science.gov (United States)

    Wiggin, H B; Almquist, J O

    1975-03-01

    Twelve ejaculates were used in a central composite experiment to test 15 combinations of glycerol (7, 9, 11, 13, or 15%), glycerol equilibration times (1, 2, 4, 8, or 16 h) and thawing rates (water at 35 C for 15 s, 50 C for 13 s, 65 C for 11 s, 80 C for 9 s, or 95 C for 7 s). Semen was diluted in heated skim milk-glycerol, packaged in .3-ml. Continental U.S. straws and frozen in liquid nitrogen vapor. Based on post-thaw progressive sperm motility after storage at -196 C for 9 to 11 days, estimated optima from multiple regression were 10.7% for glycerol, 2.0 h for glycerol equilibration time, and 76 C for thawing bath temperature. Only the linear effect for each variable was significant. Much faster thawing rates and shorter glycerol equilibration times than those for freezing bull spermatozoa in glass ampules should be used for maximum post-thaw sperm motility in straws.

  20. Digestible energy of crude glycerol for pacu and silver catfish

    Directory of Open Access Journals (Sweden)

    Rafael Ernesto Balen

    2014-01-01

    Full Text Available The increase in global biodiesel production is originating a glycerol surplus, which has no defined destination. An alternative to overcome this problem is its use as energy source in animal feeding. In Brazil, Pacu (Piaractus mesopotamicus is one of the most farmed native fish species, whereas Silver catfish (Rhamdia quelen is suitable for production in subtropical region. Considering little knowledge about crude glycerol utilization in feeds for Neotropical fish species, it was evaluated the apparent digestibility coefficients (ADCs for energy of crude glycerol for P. mesopotamicus and R. quelen. The digestibility and digestible energy content of crude glycerol can be considered excellent even when compared to energy of common ingredients such as maize and wheat, presenting 0.97 and 0.89 of energy ADCs, and 15.2 and 13.95MJ kg-1 of digestible energy for Pacu and Silver catfish, respectively. In conclusion, crude glycerol is an energetic ingredient with good potential in Brazilian native fish diets.

  1. An experimental and kinetic modeling study of glycerol pyrolysis

    International Nuclear Information System (INIS)

    Fantozzi, F.; Frassoldati, A.; Bartocci, P.; Cinti, G.; Quagliarini, F.; Bidini, G.; Ranzi, E.M.

    2016-01-01

    Highlights: • Glycerol pyrolysis can produce about 44–48%v hydrogen at 750–800 °C. • A simplified 452 reactions kinetic model of glycerol pyrolysis has been developed. • The model has good agreement with experimental data. • Non condensable gas yields can reach 70%. - Abstract: Pyrolysis of glycerol, a by-product of the biodiesel industry, is an important potential source of hydrogen. The obtained high calorific value gas can be used either as a fuel for combined heat and power (CHP) generation or as a transportation fuel (for example hydrogen to be used in fuel cells). Optimal process conditions can improve glycerol pyrolysis by increasing gas yield and hydrogen concentration. A detailed kinetic mechanism of glycerol pyrolysis, which involves 137 species and more than 4500 reactions, was drastically simplified and reduced to a new skeletal kinetic scheme of 44 species, involved in 452 reactions. An experimental campaign with a batch pyrolysis reactor was properly designed to further validate the original and the skeletal mechanisms. The comparisons between model predictions and experimental data strongly suggest the presence of a catalytic process promoting steam reforming of methane. High pyrolysis temperatures (750–800 °C) improve process performances and non-condensable gas yields of 70%w can be achieved. Hydrogen mole fraction in pyrolysis gas is about 44–48%v. The skeletal mechanism developed can be easily used in Computational Fluid Dynamic software, reducing the simulation time.

  2. Effects of addition glycerol co-product of biodiesel in the thermophysical properties of water-glycerol solution applied as secondary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Pedro Samuel Gomes; Barbosa, Cleiton Rubens Formiga; Fontes, Francisco de Assis Oliveira [Federal University of Rio Grande do Norte, Natal, RN (Brazil). Energy Laboratory. Thermal Systems Studies Group], e-mail: cleiton@ufrnet.br

    2010-07-01

    This paper evaluates the effects of glycerol concentration on thermophysical properties of water-glycerol solution applied as a secondary coolant in refrigeration systems by expansion-indirect. The processing of triglycerides for biodiesel production generates glycerol as co-product and there are concerns of environmental and economic order on the surplus of glycerol. The addition of glycerol in water alters the colligative and thermophysical properties (melting point, mass, specific heat, thermal conductivity and dynamic viscosity). There are studies that prove the feasibility of using glycerol as an additive and this paper has the goal to verify the changes on properties compared with pure water. This comparison was made from data obtained by the software simulation and they analyzed using graphs and tables. It was shown that glycerol increases the density and dynamic viscosity, and reduces the specific heat and thermal conductivity. This behavior of water-glycerol solution is proportional to the mass concentration of glycerol and it is justified because the glycerol has low values of specific heat, thermal conductivity and high viscosity when compared with water. Despite the losses in the thermophysical properties, glycerol shows its potential application, because of the cryoscopic effect and it is a non-toxic substance at low cost. (author)

  3. Towards the sustainable production of acrolein by glycerol dehydration.

    Science.gov (United States)

    Katryniok, Benjamin; Paul, Sébastien; Capron, Mickaël; Dumeignil, Franck

    2009-01-01

    The massive increase in biodiesel production by transesterification of vegatable oils goes hand-in-hand with the availability of a large volume of glycerol, which must be valorized. Glycerol dehydration to acrolein over acid catalysts is one of the most promising ways of valorization, because this compound is an important chemical intermediate used in, for example, the DL-methionine synthesis. In this Minireview, we give a detailed critical view of the state-of-the-art of this dehydration reaction. The processes developed in both the liquid and the gas phases are detailed and the best catalytic results obtained so far are reported as a benchmark for future developments. The advances on the understanding of the reaction mechanism are also discussed and we further focus particularly on the main obstacles for an immediate industrial application of this technology, namely catalyst coking and crude glycerol direct-use issues.

  4. Effect of laser peening with glycerol as plasma confinement layer

    Science.gov (United States)

    Tsuyama, Miho; Ehara, Naoya; Yamashita, Kazuma; Heya, Manabu; Nakano, Hitoshi

    2018-03-01

    The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.

  5. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  6. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    International Nuclear Information System (INIS)

    Teng, Wai Keng; Ngoh, Gek Cheng; Yusoff, Rozita; Aroua, Mohamed Kheireddine

    2014-01-01

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  7. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    Science.gov (United States)

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On the pressure dependence of the fragility of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, S; Paluch, M; Ziolo, J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2009-08-19

    This work was motivated by ostensibly contradictory results from different groups regarding the effect of pressure on the fragility of glycerol. We present new experimental data for an intermediate pressure regime showing that the fragility increases with pressure up to about 1.8 GPa, becoming invariant at higher pressures. There is no discrepancy among the various literature data taken in toto. The behavior of glycerol is quite distinct from that of normal liquids, a result of its substantial hydrogen bonding. (fast track communication)

  9. Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsions

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Skov, Anne Ladegaard

    2016-01-01

    Novel hybrid elastomers were prepared by speedmixing of two virtually immiscible liquids – glycerol and polydimethylsiloxane (PDMS) prepolymer. Upon crosslinking ofthe PDMS phase of the resulting glycerol-in-silicone emulsion freestanding films were obtained. In this way glycerol became uniformly...... elastomeractuators. Conductivities of samples based on various PDMS compositions with different loadings of embedded glycerol were thoroughly investigated providing useful information about the dielectric behavior....

  10. Investigation of glycerol polymerization in the clinker grinding process

    NARCIS (Netherlands)

    Parvulescu, A.N.; Rossi, M.; Della Pina, C.; Ciriminna, R.; Pagliaro, M.

    2011-01-01

    Concrete production is a large scale process that involves high energy consumption. In order to increase the sustainability of this process, the reduction of energy input is necessary. Bio-glycerol was demonstrated to be a highly efficient renewable-based additive in the grinding process for

  11. Methylene blue adsorption from glycerol solution onto the acicular ...

    African Journals Online (AJOL)

    The mechanism of methylene blue adsorption onto the surface of synthetic acicular habit of α-goethite from glycerol solution has been studied through batch experiment at 25, 30 and 35 0C in a glass cell of minimal dead volume. To describe the adsorption results, an attempt was made to fit the data to the Langmuir, ...

  12. Synthesis of High-Molecular-Weight Multifunctional Glycerol Polyhydroxyurethanes PHUs

    Directory of Open Access Journals (Sweden)

    Bassam Nohra

    2016-09-01

    Full Text Available Glycerol carbonate acrylate is a 5-membered cyclic carbonate synthesized from glycerol that is used as a chemical coupling agent and has proven highly suitable for use in the synthesis of multifunctional polyhydroxyurethanes (PHUs. The multifunctionality of the structure of PHUs is determined by the density of the carbon-amine groups generated by the Aza-Michael reaction and that of the urethane groups and adjacent primary and secondary hydroxyl groups generated by aminolysis. Glycerol carbonate acrylate is polymerized with polyfunctional mono-, di-, tri, and tetra-amines, by type-AB polyaddition, either in bulk or in solution, through stepwise or one-pot reaction strategies in the absence of added catalysts. These approaches result in the generation of linear, interchain, and crosslinked structures, through the polyaddition of linear and branched amines to the ethylene and cyclic carbonate sites of glycerol carbonate acrylate. The resulting collection of organic molecules gives rise to polyethylene amino ester PHUs with a high molar mass, exceeding 20,000 g·mol−1, with uniform dispersity.

  13. Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions

    Science.gov (United States)

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and ...

  14. Influence of hyperosmotic agent (glycerol) in contrast enhancement

    International Nuclear Information System (INIS)

    Moriyama, Takashi; Suzuki, Shigeharu; Nakaoka, Tsutomu

    1981-01-01

    For getting a better contrast enhancement (CE) of computed tomography (CT) in brain tumors, we tried to increase the extravascular iodine concentration. A vailing ourselves of the period of returning water following intravenously administered glycerol, a drip injection of the contrast medium gave a better CE effect than the usual CE. In two benign gliomas, CE with glycerol was much better than CE without glycerol, and in two malignant gliomas and two metastatic tumors, CE with glycerol was better, but not so much better as with the benign tumors. In general, the CE effect in primary brain tumors showed a decreasing pattern, whereas in metastatic brain tumors the best time was 60 minutes after the injection of the contrast material (increasing and decreasing pattern), suggesting an increase in the extravascular iodine and a severe failure of the blood brain barrier. Two cystic malignant gliomas allowed the intravenously injected contrast medium to enter the cysts. It appears that the contrast medium passes through and/or is secreted from the wall of the cyst. (author)

  15. Toxicity of palmitoyl glycerol to mice: depression of thyroid function

    International Nuclear Information System (INIS)

    Trumbo, P.R.; Meuten, D.J.; King, M.W.; Tove, S.B.

    1987-01-01

    Mice given propylthiouracil, a thyroid inhibitor, and fed a diet containing a nontoxic level of rac-1(3)-palmitoyl glycerol showed the hypothermia and mortality expected for a toxic dose, but did not show these signs when linoleate or oleate was added to the diet. Loss of radioiodine from the whole animal and thyroid gland was slower when mice were fed the toxic palmitoyl glycerol diet than when fed the same diet containing 4% safflower oil. However, mice fed the two diets did not differ in the extent of the incorporation of radioiodine, and essentially all was bound to protein in each case. Follicular thyroid cells from mice fed the potentially toxic diet that contained unsaturated fat were normal in appearance. Conversely, cells from mice fed the toxic diet were smaller and more densely stained, showing evidence of glycoprotein inside the cell. These findings show that the thyroid gland is affected by the palmitoyl glycerol diet. However, the thyroid is not the only organ affected, because giving either thyroxine or triiodothyronine had no effect on the toxicity of palmitoyl glycerol

  16. Isolation and chemical characterization of phosphatidyl glycerol from spinach leaves

    NARCIS (Netherlands)

    Haverkate, E.; Deenen, L.L.M. van

    1965-01-01

    Pure phosphatidyl glycerol was obtained from spinach leaves after repeated chromatography on silica columns. Ascertainment of the configuration of the hydrolysis products formed by the action of phospholipases C (EC 3.1.4.3) and D (EC 3.1.4.4) demonstrated that this phospholipid is identical with

  17. EFFECT OF GLYCEROL SEPARATION ON PALM OIL TRANSESTERIFICATION

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2012-12-01

    Full Text Available This research was aimed to study the effect of glycerol separation on palm oil transesterification. Objectives of this study were to suppress the use of excess methanol and shorten the processing time. This research consisted of: design-build reactor, the effect of the glycerol separation on the transesterification reaction, characterization of biodiesel, and mass balance analysis. The reactor was designed by integrating circulate stirrer pump, static mixer, and sprayer that will bring out the intense reaction in the outer tank reactor. The experiment in this research was the treatment of decreasing the quantity of methanol to 5:1 molar ratio and reducing of processing time to 20 min, which was arranged in a completely randomized factorial design. The result showed that, (i the stirring system was effectively worked outside the reactor tank, and in its reactor tank occurred glycerol separation during the process; (ii the rate of glycerol during the process followed the inverse regression equation of Ŷ = 66.44-351.17 X-1; (iii the decrease in the level of methanol to 5:1 molar ratio and the reduction of processing time to 20 min in this engineering did not influence the biodiesel yield and quality that met the SNI 04-7182-2006 standard.

  18. [Long-term storage of obligate anaerobic microorganisms in glycerol].

    Science.gov (United States)

    Briukhanov, A I; Netrusov, A I

    2006-01-01

    We evaluated the possibility of storing the cultures of obligate anaerobic microorganisms (clostridia. acetogenic and sulfate-reducing bacteria, and methanogenic archaea) in 25% glycerol at -70 degrees C for a long time (up to 3 years). This method of storage is adequate to preserve cell viability in most obligate anaerobes.

  19. Liquid phase conversion of Glycerol to Propanediol over highly ...

    Indian Academy of Sciences (India)

    characterization results showed that the copper metal was well-dispersed over MgO support and a new phase. Cu-MgO was ... Currently propanediols are produced from petroleum derivatives .... of MgO.15 Barret-Joyner-Halenda (BJH) method is applied to ..... number of available Cu sites with respect to glycerol as. 0.8. 1.0.

  20. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    KAUST Repository

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g

  1. Glycerol reforming and methanol synthesis for the production of renewable methanol

    NARCIS (Netherlands)

    van Bennekom, Joost Gerardus

    2013-01-01

    De productie van biodiesel is flink toegenomen in het eerste decennium van de 21ste eeuw. Bij de productie van 100 kg biodiesel komt ongeveer 10 kg aan glycerol vrij, wat heeft geleid tot een sterk gestegen glycerol aanbod. Een mogelijkheid om wat met de glycerol te doen, is het omzetten van

  2. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    Science.gov (United States)

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  3. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2017-06-01

    Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.

  4. Crystallization and transformation of polymorphic forms of trioleoyl glycerol and 1,2-dioleoyl-3-rac-linoleoyl glycerol.

    Science.gov (United States)

    Bayés-García, Laura; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel; Ueno, Satoru; Sato, Kiyotaka

    2013-08-08

    This study examined the influence of different thermal treatments on the crystallization and transformation of trioleoyl glycerol (OOO) and 1,2-dioleoyl-3-rac-linoleoyl glycerol (OOL). Two triacylglycerol (TAG) samples were cooled at 0.5-15 °C·min(-1) and heated at 2 and 15 °C·min(-1). The polymorphic characteristics of the two TAGs were analyzed in situ using differential scanning calorimetry, Raman spectroscopy, and synchrotron radiation X-ray diffraction. Multiple polymorphic forms were identified in OOO (α, β'2, β'1, β2, and β1) and OOL (α, β'2, and β'1). Larger quantities of more stable forms (e.g., β2 and β1 of OOO and β'1 of OOL) were obtained when the samples were slowly cooled and heated. In contrast, less stable polymorphs were obtained with increased cooling and heating rates. Polymorphic transformations occurred in either solid-state or melt-mediation and were influenced by heating rates. The results were analyzed by considering the activation energies for crystallization and transformation of stable and less stable polymorphic forms in comparison with previous studies on 1,3-dipalmitoyl-2-oleoyl-glycerol and 1, 3-dioleoyl-2-palmitoyl-glycerol.

  5. Glycerol as source of energy in broiler chicken fattening

    Directory of Open Access Journals (Sweden)

    Leo Kroupa

    2011-01-01

    Full Text Available The objective of this study was to verify the possibility of replacing soybean oil in a diet with glycerol, and investigate the effect of glycerol on performance indicators and health in broiler chickens. The experiment was performed on 122 one-day-old chickens that were divided based on sex into two control groups (30 females and 31 males and two experimental groups (30 females and 31 males. Half (50% of the soybean oil in diets used in the experimental groups was replaced with glycerol at a ratio of 1:2. On 15, 32 and 38 day of age chickens of both sexes in the experimental group that were fed with diets containing glycerol showed significantly higher (p ≤ 0.01 mean body weight compared to the control group. At the end of the experiment, the mean weight of chickens in the control group was 2.078 kg, whereas the mean weight of chickens in the experimental group was 2.341 kg. In females, the overall consumption of diets within 38 days of fattening was 3.588 kg in the control group and 4.011 kg in the experimental group, in males, it was 3.915 kg in the control group and 4.366 kg in the experimental group, i.e. it was higher in experimental chickens. Feed conversion in chickens in experimental groups was better, being 1.84 kg in the control group and 1.81 kg in the experimental group in females, and 1.73 kg in the control group and 1.72 kg in the experimental group in males. It follows from our results that the optimum amount of glycerol in feed for poultry is 5%.This study presents an original solution to optimize feed formula by replacing plant oil with glycerol. The results of the study can improve production indicators and economy in broiler fattening.

  6. Glycerol (byproduct of biodiesel production) as a source of fuels and chemicals : mini review

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Burton, R. [Piedmont Biofuels Industrial, Pittsboro, NC (United States); Zhou, Y. [Yonezawa Hamari Chemical, Ltd., Yonezawa, Yamagata (Japan)

    2010-07-01

    Glycerol, a byproduct of biodiesel production, is a potential renewable feedstock for the production of functional chemicals. This paper reviewed recent developments in the conversion of glycerol into value-added products, including citric acid, lactic acid, 1,3-dihydroxyacetone (DHA), 1,3-propanediol (1,3-PD), dichloro-2-propanol (DCP), acrolein, hydrogen, and ethanol. The new applications of glycerol will improve the economic viability of the biodiesel industry and capitalize on the oversupply of crude glycerol that the biodiesel industry has produced. Increasing abundance and attractive pricing make glycerol an attractive feedstock for deriving value-added chemical compounds. The processes turn glycerol into chemicals, materials, and fuels and fuel additives. Whereas glycerol from first-generation biodiesel production has low purity, glycerol from second-generation biodiesel production, which uses non-edible oil as a feedstock, produces a higher purity glycerol, minimizing the related impurity problem and potentially increasing the applications of glycerol. Glycerol is also being looked at as a carbon source for algal biomass fermentation. 36 refs.

  7. Bovine oocytes and early embryos express mRNA encoding glycerol kinase but addition of glycerol to the culture media interferes with oocyte maturation.

    Science.gov (United States)

    Okawara, Sumika; Hamano, Seizo; Tetsuka, Masafumi

    2009-04-01

    Glycerol plays multi-functional roles in cellular physiology. Other than forming the backbone molecule for glycerophospholipid and triglyceride (TG), glycerol acts as an energy substrate for glycolysis. Spermatozoa are known to utilize glycerol for energy production, but there are no reports of this in oocytes. In this study, the value of glycerol as an energy substrate for bovine oocyte maturation (Exp. 1) and the gene expression of glycerol kinase (GK), an enzyme crucial for cellular glycerol utilization, in bovine oocytes and early embryos (Exp. 2) were examined. In Exp. 1, in vitro maturation (IVM) was conducted using synthetic oviduct fluid supplemented with/without glucose (1.5 mM) and/or glycerol (1.0 mM), and maturation rate, degree of cumulus expansion, glucose consumption and lactate production by cumulus-oocyte complexes (COC) were examined. In Exp. 2, to examine the developmental expression of GK mRNA, cumulus cells, oocytes and embryos at the 2-, 8- and 16-cell, morula, expanded blastocyst and hatched blastocyst stages were obtained in separate experiments, and the expression of GK mRNA was quantified using a real-time PCR. Glycerol did not support oocyte maturation or cumulus expansion. Addition of glycerol to glucose-supplemented media significantly decreased the maturation rate. Expression of GK mRNA was very low in cumulus cells, whereas an appreciable level of the transcript was observed in the oocytes. GK mRNA was detected in embryos at all the stages examined, and its expression significantly increased at the morula stage. These results indicate that glycerol, at least at the present concentration, is not beneficial as a constituent of the medium for bovine oocyte maturation. However, the appreciable levels of GK mRNA found in the oocyte and embryo imply a physiological role for glycerol in bovine oocyte maturation and embryo development.

  8. Modified silica-based heterogeneous catalysts for etherification of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus,14300 Nibong Tebal, Penang (Malaysia); Vakili, Mohammadtaghi, E-mail: farshid3601@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  9. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Directory of Open Access Journals (Sweden)

    Jianbo Zhang

    2018-01-01

    Full Text Available Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrolein. Reuterin is an antimicrobial multicomponent system consisting of 3-hydroxypropionaldehyde, its dimer and hydrate, and also acrolein. The major conclusion is that gut microbes can metabolize glycerol to reuterin and that this transformation occurs in vivo. Given the known toxicity of acrolein, the observation that acrolein is formed in the gut necessitates further investigations on functional relevance for gut microbiota and the host.

  10. Sodahvede og glycerol til malkekøer

    DEFF Research Database (Denmark)

    Hvelplund, Torben; Weisbjerg, Martin Riis

    2011-01-01

    Et fodringsforsøg på Kvægbrugets Forsøgscenter har vist, at glycerol kan anvendes som et alternativt fodermiddel til højtydende malkekøer. De anvendte mængder gav dog en lavere EKM ydelse end sodahvede, men øgede samtidigt mælkens proteinindhold.......Et fodringsforsøg på Kvægbrugets Forsøgscenter har vist, at glycerol kan anvendes som et alternativt fodermiddel til højtydende malkekøer. De anvendte mængder gav dog en lavere EKM ydelse end sodahvede, men øgede samtidigt mælkens proteinindhold....

  11. Glycerol and microwave preservation of annual statice (Limonium sinuatum Mill.)

    International Nuclear Information System (INIS)

    Paparozzi, E.T.; McCallister, D.E.

    1988-01-01

    Stems of annual statice (Limonium sinuatum Mill.) were harvested from the field in 1982 and soaked in varying concentrations of glycerol: water solutions for 24 and 48 h and then microwaved for 0, 1, 3 or 5 min. Half of the branch stems were measured for flexibility, with the remainder being assessed 1 year later. Stems harvested in 1983 were wet- and dry-stored at 3°C for varying lengths of time and then preserved. Preservation was best when statice was preserved immediately. Cold storage decreased preserved statice flexibility, but was better than air-drying. Fresh cut statice stems, up to 34 cm long, should be preserved by soaking in a 1:2 or 1:3 glycerol: water solution for 48 h followed by microwaving for 1 min at medium-high (34°C)

  12. Modified silica-based heterogeneous catalysts for etherification of glycerol

    International Nuclear Information System (INIS)

    Gholami, Zahra; Abdullah, Ahmad Zuhairi; Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-01-01

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca 1.6 La 0.6 /MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%

  13. Antibacterial effect of glycerol as preservative on donor skin

    International Nuclear Information System (INIS)

    Van Baare, J.; Ligtvoet, E.E.J.; Middelkoop, E.

    1999-01-01

    Glycerolised cadavetic allografts have been used widely since 1984 in the treatment of bum wounds. Rejections reaction to glycerolised skin were reported to be attenuated. Structural integrity of the skin was maintained and antiviral and antibacterial effects were noted. The Euro Skin Bank has gathered approximately 2000 data since 1987 concerning bacteriology cultures of glycerolised skin. These data are presented. Bacteriological data from skin donors were examined from 1987 till 1995 (1927 data). Donor skin sent to the laboratory and found to be positive for bacteria was quarantined and another container with skin samples was sent to the laboratory at a later time point. This was repeated until all cultures were negative. In 1987, 25 donors were processed without using antibiotics. These results were compared with donor skin treated with antibiotics. The average day for first culture was 19.7 ? 17.2. The average percentage of contaminated skin was 10.1? 3.7%. Antibiotics reduced contamination of glycerolised skin from 80% to 10.1%. Glycerol treatment also showed an antibacterial effect as all contaminated skin eventually became negative. Of the contaminated skin Staphylococcus epidermidis was found most frequently: in 70.7 ? 10.8% of the cases. Not all bacteria are equally sensitive to glycerol: Staphylococcus epidennidis contaminated skin became sterile after 48?24 days, whereas for Bacillus species it took 195? 1 37.9 days. We show that glycerol preservation of donor skin has important advantages over conservative methods such as cryopreservation. Initial contamination of the skin is no longer a reason to discard the material. Prolonged storage in glycerol will eliminate bacterial contamination. This allows an increase in yield of at least 10%

  14. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    OpenAIRE

    Zhang, Jianbo; Sturla, Shana; Lacroix, Christophe; Schwab, Clarissa

    2018-01-01

    ABSTRACT Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrole...

  15. Bio-Propane from glycerol for biogas addition

    Energy Technology Data Exchange (ETDEWEB)

    Brandin, Jan; Hulteberg, Christian; Liljegren Nilsson, Andreas (Biofuel-Solution AB, Malmoe (Sweden))

    2008-11-15

    In this report, the technical and economical feasibility to produce higher alkanes from bioglycerol has been investigated. The main purpose of producing this kind of chemicals would be to replace the fossil LPG used in upgraded biogas production. When producing biogas and exporting it to the natural gas grid, the Wobbe index and heating value does not match the existing natural gas. Therefore, the upgraded biogas that is put into the natural gas grid in Sweden today contains 8-10 vol-% of LPG. The experimental work performed in association to this report has shown that it is possible to produce propane from glycerol. However, the production of ethane from glycerol may be even more advantageous. The experimental work has included developing and testing catalysts for several intermediate reactions. The work was performed using different micro-scale reactors with a liquid feed rate of 18 g/h. The first reaction, independent on if propane or ethane is to be produced, is dehydration of glycerol to acrolein. This was showed during 60 h on an acidic catalyst with a yield of 90%. The production of propanol, the second intermediate to producing propane, was shown as well. Propanol was produced both using acrolein as the starting material as well as glycerol (combining the first and second step) with yields of 70-80% in the first case and 65-70% in the second case. The propanol produced was investigated for its dehydration to propene, with a yield of 70-75%. By using a proprietary, purposely developed catalyst the propene was hydrogenated to propane, with a yield of 85% from propanol. The formation of propane from glycerol was finally investigated, with an overall yield of 55%. The second part of the experimental work performed investigated the possibilities of decarbonylating acrolein to form ethane. This was made possible by the development of a proprietary catalyst which combines decarbonylation and water-gas shift functionality. By combining these two functionalities, no

  16. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry

    NARCIS (Netherlands)

    Buckles, L.K.; Weijers, J.W.H.; Tran, X.-M.; Waldron, S.; Sinninghe Damsté, J.S.

    2014-01-01

    The application of glycerol dialkyl glycerol tetraether (GDGT)-based palaeoenvironmental proxies, such as the branched vs. isoprenoidal tetratether (BIT) index, TEX86 and the MBT–CBT palaeothermometer, has lately been expanded to lacustrine sediments. Given recent research identifying the production

  17. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK) : Implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry

    NARCIS (Netherlands)

    Buckles, L. K.; Weijers, J. W H; Tran, X.-M.; Waldron, S.; Sinninghe Damsté, J. S.

    2014-01-01

    The application of glycerol dialkyl glycerol tetraether (GDGT)-based palaeoenvironmental proxies, such as the branched vs. isoprenoidal tetratether (BIT) index, TEX86 and the MBT-CBT palaeothermometer, has lately been expanded to lacustrine sediments. Given recent research identifying the production

  18. Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase

    NARCIS (Netherlands)

    Koning, W. de; Weusthuis, R.A.; Harder, W.; Dijkhuizen, L.

    Various factors controlling dihydroxyacetone (DHA) and glycerol production from methanol by resting cell suspensions of a mutant of Hansenula polymorpha, blocked in DHA kinase and glycerol kinase, were investigated. The presence of methanol (250 mM) and an additional substrate (0.5%, w/v) to

  19. Influence of lake water pH and alkalinity on the distribution of core and intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes

    NARCIS (Netherlands)

    Schoon, P.L.; de Kluijver, A.; Middelburg, J.J.; Downing, J.A.; Sinninghe Damsté, J.S.; Schouten, S.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their

  20. Influence of lake water pH and alkalinity on the distribution of coreand intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes

    NARCIS (Netherlands)

    Schoon, P.L.; de Kluijver, A.; Middelburg, J.J.; Downing, J.A.; Sinninghe Damsté, J.S.; Schouten, S.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their

  1. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    KAUST Repository

    Selembo, Priscilla A.

    2009-12-15

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g-COD) and 0.69 mol-PD/mol-glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol-H2/mol-glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol-H 2/mol-glycerol (43 mL H2/g-COD) and 0.59 mol-PD/mol-glycerol. These are the highest yields yet reported for both hydrogen and 1,3-propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3-propanediol for maximum utilization of resources and minimization of waste. © 2009 Wiley Periodicals, Inc.

  2. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Molecular packing, hydrogen bonding, and fast dynamics in lysozyme/trehalose/glycerol and trehalose/glycerol glasses at low hydration

    OpenAIRE

    Lerbret, Adrien; Affouard, Frédéric

    2017-01-01

    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast ($\\sim$ pico-nanosecond, ps-ns) and small-amplitude ($\\sim$ \\AA ) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme...

  4. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  5. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramanan, Keerthi P.; Boatman, Judy J.; Taconi, Katherine A. [Alabama Univ., Huntsville, AL (United States). Dept. of Chemical and Materials Engineering; Kurniawan, Yogi; Bothun, Geoffrey D. [Rhode Island Univ., Kingston, RI (United States). Dept. of Chemical Engineering; Scholz, Carmen [Alabama Univ., Huntsville, AL (United States). Dept. of Chemistry

    2012-02-15

    During the production of biodiesel, crude glycerol is produced as a byproduct at 10% (w/w). Clostridium pasteurianum has the inherent potential to grow on glycerol and produce 1,3-propanediol and butanol as the major products. Growth and product yields on crude glycerol were reported to be slower and lower, respectively, in comparison to the results obtained from pure glycerol. In this study, we analyzed the effect of each impurity present in the biodiesel-derived crude glycerol on the growth and metabolism of glycerol by C. pasteurianum. The crude glycerol contains methanol, salts (in the form of potassium chloride or sulfate), and fatty acids that were not transesterified. Salt and methanol were found to have no negative effects on the growth and metabolism of the bacteria on glycerol. The fatty acid with a higher degree of unsaturation, linoleic acid, was found to have strong inhibitory effect on the utilization of glycerol by the bacteria. The fatty acid with lower or no degrees of unsaturation such as stearic and oleic acid were found to be less detrimental to substrate utilization. The removal of fatty acids from crude glycerol by acid precipitation resulted in a fermentation behavior that is comparable to the one on pure glycerol. These results show that the fatty acids in the crude glycerol have a negative effect by directly affecting the utilization of glycerol as the carbon source, and hence their removal from crude glycerol is an essential step towards the utilization of crude glycerol. (orig.)

  6. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    Science.gov (United States)

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  7. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference......This study was conducted to investigate skeletal muscle fatty acid (FA) and glycerol kinetics and to determine the contribution of skeletal muscle to whole body FA and glycerol turnover during rest, 2 h of one-leg knee-extensor exercise at 65 % of maximal leg power output, and 3 h of recovery....... To this aim, the leg femoral arterial-venous difference technique was used in combination with a continuous infusion of [U-(13)C]palmitate and [(2)H(5)]glycerol in five post-absorptive healthy volunteers (22 +/- 3 years). The influence of contamination from non-skeletal muscle tissues, skin and subcutaneous...

  8. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium.

    Science.gov (United States)

    Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A

    2013-04-01

    In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1

    Directory of Open Access Journals (Sweden)

    Sheril Norliana Suhaimi

    2012-06-01

    Full Text Available Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

  10. Effects of sorbitol and glycerol on the structure, dynamics, and stability of Mycobacterium tuberculosis pyrazinamidase

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Khajehzadeh

    2016-01-01

    Conclusion: It can be concluded that the native conformation of the enzyme was stabilized in the sorbitol and glycerol and tend to exclude from the PZase surface, forcing the enzyme to keep it in the compactly folded conformation. The glycerol molecules stabilized PZase by decreasing the loops flexibility and then compacting the enzyme structure. It appears that more stability of PZase in glycerol solution correlates with its amphiphilic orientation, which decreases the unfavorable interactions of hydrophobic regions.

  11. Synthesis of Acrolein From Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration

    OpenAIRE

    Abidin, Akhmad Zainal; Afandi, Rani Guslianti; Graha, Hafis Pratama Rendra

    2016-01-01

    Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO) and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration....

  12. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress.

    Directory of Open Access Journals (Sweden)

    Elzbieta Petelenz-Kurdziel

    Full Text Available We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2 and glycerol import (Stl1 and activates a regulatory enzyme in glycolysis (Pfk26/27. In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the

  13. Etherification of Glycerol with Propylene or 1-Butene for Fuel Additives

    Directory of Open Access Journals (Sweden)

    Chakrapong Saengarun

    2017-01-01

    Full Text Available The etherification of glycerol with propylene over acidic heterogeneous catalysts, Amberlyst-15, S100, and S200 resins, produced mono-propyl glycerol ethers (MPGEs, 1,3-di- and 1,2-di-propyl glycerol ethers (DPGEs, and tri-propyl glycerol ether (TPGE. The propylation of glycerol over Amberlyst-15 yielded only TPGE. The glycerol etherification with 1-butene over Amberlyst-15 and S200 resins produced 1-mono-, 2-mono-, 1,2-di-, and 1,3-di-butyl glycerol ethers (1-MBGE, 2-MBGE, 1,2-DBGE, and 1,3-DBGE. The use of Amberlyst-15 resulted in the propylation and butylation of glycerol with higher yields than those obtained from the S100 and S200 resins. The PGEs, TPGE, and BGEs were evaluated as cold flow improvers and octane boosters. These alkyl glycerol ethers can reduce the cloud point of blended palm biodiesels with diesel. They can increase the research octane number and the motor octane number of gasoline.

  14. Dietary Tools To Modulate Glycogen Storage in Gilthead Seabream Muscle: Glycerol Supplementation

    DEFF Research Database (Denmark)

    Silva, Tomé S.; Matos, Elisabete; Cordeiro, Odete D.

    2012-01-01

    The quality and shelf life of fish meat products depend on the skeletal muscle’s energetic state at slaughter, as meat decomposition processes can be exacerbated by energy depletion. In this study, we tested dietary glycerol as a way of replenishing muscle glycogen reserves of farmed gilthead......, and organoleptic properties (aroma and color). Proteomic analysis showed a low impact of glycerol-supplementation on muscle metabolism, with most changes probably reflecting increased stress coping capacity in glycerol-fed fish. This suggests inclusion of crude glycerol in gilthead seabream diets (particularly...

  15. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    Science.gov (United States)

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  16. A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: Effect of glycerol on molecular organization of H2O

    DEFF Research Database (Denmark)

    Parsons, M.T.; Westh, Peter; Davies, J.V.

    2001-01-01

    The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol-glycerol-H2O at 25degreesC. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization...... probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy...

  17. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine.

    Science.gov (United States)

    Hufnagel, Jan Carlos; Hofmann, Thomas

    2008-10-08

    The first comprehensive quantitative determination of 82 putative taste-active metabolites and mineral salts, the ranking of these compounds in their sensory impact based on dose-over-threshold (DoT) factors, followed by the confirmation of their sensory relevance by taste reconstruction and omission experiments enabled the decoding of the nonvolatile sensometabolome of a red wine. For the first time, the bitterness of the red wine could be demonstrated to be induced by subthreshold concentrations of phenolic acid ethyl esters and flavan-3-ols. Whereas the velvety astringent onset was imparted by three flavon-3-ol glucosides and dihydroflavon-3-ol rhamnosides, the puckering astringent offset was caused by a polymeric fraction exhibiting molecular masses above >5 kDa and was found to be amplified by the organic acids. The perceived sourness was imparted by l-tartaric acid, d-galacturonic acid, acetic acid, succinic acid, l-malic acid, and l-lactic acid and was slightly suppressed by the chlorides of potassium, magnesium, and ammonium, respectively. In addition, d-fructose and glycerol as well as subthreshold concentrations of glucose, 1,2-propandiol, and myo-inositol were found to be responsible for the sweetness, whereas the mouthfulness and body of the red wine were induced only by glycerol, 1,2-propandiol, and myo-inositol.

  18. Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae.

    Science.gov (United States)

    Gupta, Amita; Hicks, Michael A; Manchester, Shawn P; Prather, Kristala L J

    2016-09-01

    D-Glucaric acid can be produced as a value-added chemical from biomass through a de novo pathway in Escherichia coli. However, previous studies have identified pH-mediated toxicity at product concentrations of 5 g/L and have also found the eukaryotic myo-inositol oxygenase (MIOX) enzyme to be rate-limiting. We ported this pathway to Saccaromyces cerevisiae, which is naturally acid-tolerant and evaluate a codon-optimized MIOX homologue. We constructed two engineered yeast strains that were distinguished solely by their MIOX gene - either the previous version from Mus musculus or a homologue from Arabidopsis thaliana codon-optimized for expression in S. cerevisiae - in order to identify the rate-limiting steps for D-glucaric acid production both from a fermentative and non-fermentative carbon source. myo-Inositol availability was found to be rate-limiting from glucose in both strains and demonstrated to be dependent on growth rate, whereas the previously used M. musculus MIOX activity was found to be rate-limiting from glycerol. Maximum titers were 0.56 g/L from glucose in batch mode, 0.98 g/L from glucose in fed-batch mode, and 1.6 g/L from glucose supplemented with myo-inositol. Future work focusing on the MIOX enzyme, the interplay between growth and production modes, and promoting aerobic respiration should further improve this pathway. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ammonia control and neurocognitive outcome among urea cycle disorder patients treated with glycerol phenylbutyrate.

    Science.gov (United States)

    Diaz, George A; Krivitzky, Lauren S; Mokhtarani, Masoud; Rhead, William; Bartley, James; Feigenbaum, Annette; Longo, Nicola; Berquist, William; Berry, Susan A; Gallagher, Renata; Lichter-Konecki, Uta; Bartholomew, Dennis; Harding, Cary O; Cederbaum, Stephen; McCandless, Shawn E; Smith, Wendy; Vockley, Gerald; Bart, Stephen A; Korson, Mark S; Kronn, David; Zori, Roberto; Merritt, J Lawrence; C S Nagamani, Sandesh; Mauney, Joseph; Lemons, Cynthia; Dickinson, Klara; Moors, Tristen L; Coakley, Dion F; Scharschmidt, Bruce F; Lee, Brendan

    2013-06-01

    Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. We report the results of a pivotal Phase 3, randomized, double-blind, crossover trial comparing ammonia control, assessed as 24-hour area under the curve (NH3 -AUC0-24hr ), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of four studies involving short- and long-term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Glycerol phenylbutyrate was noninferior to NaPBA with respect to ammonia control in the pivotal study, with mean (standard deviation, SD) NH3 -AUC0-24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing three similarly designed short-term comparisons of glycerol phenylbutyrate versus NaPBA, NH3 -AUC0-24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (P < 0.05) in the pooled analysis, as was plasma glutamine. The 24-hour ammonia profiles were consistent with the slow-release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open-label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning, and self-monitoring, was significantly improved. Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long-term glycerol phenylbutyrate treatment in pediatric UCD patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). (HEPATOLOGY 2012). Copyright © 2012 American Association for the

  20. Penggunaan H-Zeolit dan Tawas dalam Pemurnian Crude Glycerol dengan Proses Adsorpsi dan Koagulasi

    Directory of Open Access Journals (Sweden)

    Isalmi Aziz, M.T

    2017-05-01

    Full Text Available Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation process so that the adsorption of colloidal-sized compound impurities which can be separated from the glycerol. The purpose of this research is determine optimal condition of adsorption and coagulation impurity compounds of crude glycerol by using H-zeolite and  alum and  also determine quality of glycerol  was obtained. First, crude glycerol acidified by phosphoric acid 85% (pure analysis until desired pH ±2.5. It was obtained purity of glycerol 72.797%. The next process is adsorption with activated H-zeolite and it obtained purity of glycerol 77.079%. The last process in this research is adsorption and coagulation by using H-zeolite and alum. The highest purity glycerol 93.803% was obtained from condition of adsorption and coagulation for 75 minutes; alum’s concentration 80 ppm; and temperature 60 ºC. The glycerol discharged from adsorption and coagulation process by using H-zeolite and alum is qualify Indonesia National Standard number 06-1564-1995 with 3.512% water content; 2.438% ash content; 0.247% MONG content; has no sugar; 1.259 g/mL density of glycerol; 0.2356% potassium content and 0.0410% aluminium content; and brighter color.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5143

  1. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-12-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation

  3. Enhancing Biodiesel Production Using Green Glycerol-Enriched Calcium Oxide Catalyst : An Optimization Study

    NARCIS (Netherlands)

    Avhad, Mangesh R.; Gangurde, L.S.; Sánchez, Marcos; Bouaid, Abderrahim; Aracil, José; Martínez, Mercedes; Marchetti, Jorge M.

    2018-01-01

    The present article demonstrates a superior catalytic performance of glycerol-enriched calcium oxide for biodiesel production than other calcium-based counterparts. The proficiency of glycerol-enriched calcium oxide in catalyzing the methanolysis of crude Jatropha curcas oil containing high free

  4. Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite

    Science.gov (United States)

    Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.

    2018-01-01

    Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.

  5. Co-digestion of sewage sludge with glycerol to boost biogas production

    International Nuclear Information System (INIS)

    Fountoulakis, M.S.; Petousi, I.; Manios, T.

    2010-01-01

    The feasibility of adding crude glycerol from the biodiesel industry to the anaerobic digesters treating sewage sludge in wastewater treatment plants was studied in both batch and continuous experiments at 35 o C. Glycerol addition can boost biogas yields, if it does not exceed a limiting 1% (v/v) concentration in the feed. Any further increase of glycerol causes a high imbalance in the anaerobic digestion process. The reactor treating the sewage sludge produced 1106 ± 36 ml CH 4 /d before the addition of glycerol and 2353 ± 94 ml CH 4 /d after the addition of glycerol (1% v/v in the feed). The extra glycerol-COD added to the feed did not have a negative effect on reactor performance, but seemed to increase the active biomass (volatile solids) concentration in the system. Batch kinetic experiments showed that the maximum specific utilization rate (μ max ) and the saturation constant (K S ) of glycerol were 0.149 ± 0.015 h -1 and 0.276 ± 0.095 g/l, respectively. Comparing the estimated values with the kinetics constants for propionate reported in the literature, it can be concluded that glycerol uptake is not the rate-limiting step during the process.

  6. Conversion of the biodiesel by-product glycerol by the non-conventional yeast Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying

    production process. Since the volume of the glycerol by-product has exceeded the current market need, biodiesel producers are looking for new methods for sustainable glycerol management and improving the competitiveness of the biodiesel industries. The EU Commission funded GLYFINERY project is one initiative...

  7. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Science.gov (United States)

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  8. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa.

    Science.gov (United States)

    Eraqi, Walaa A; Yassin, Aymen S; Ali, Amal E; Amin, Magdy A

    2016-01-01

    Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We have developed a process for the production of rhamnolipid biosurfactants using glycerol as the sole carbon source by a local Pseudomonas aeruginosa isolate that was obtained from an extensive screening program. A factorial design was applied with the goal of optimizing the rhamnolipid production. The highest production yield was obtained after 2 days when cells were grown in minimal salt media at pH 6, containing 1% (v/v) glycerol and 2% (w/v) sodium nitrate as nitrogen source, at 37°C and at 180 rpm, and reached 2.164 g/L after 54 hours (0.04 g/L h). Analysis of the produced rhamnolipids by TLC, HPLC, and FTIR confirmed the nature of the biosurfactant as monorhamnolipid. Glycerol can serve as a source for the production of rhamnolipid from microbial isolates providing a cheap and reliable substrate.

  9. Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures

    Science.gov (United States)

    Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe

    2015-01-01

    Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120

  10. Continuous production of glycerol by catalytic high pressure hydrogenolysis of sucrose

    NARCIS (Netherlands)

    van Ling, Gerrit; Driessen, Alfons J.; Piet, Arie C.; Vlugter, Jozef C.

    1970-01-01

    Several continuous reactor systems have been discussed for the catalytic high pressure hydrogenolysis of sucrose to glycerol. Theoretically and actually, continuous reactors lead to lower glycerol yields than in a batch process. Two continuous stirred tank reactors in cascade constitute a reasonable

  11. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  12. Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

    NARCIS (Netherlands)

    Xia, Ted

    2010-01-01

    This thesis presents two lines of research. On the one hand, we investigate heterogeneity in supercooled glycerol by means of rheometry, small-angle neutron scattering, and fluorescence imaging. We find from the rheological experiments that supercooled glycerol can behave like weak solids at

  13. Upgrading Fast Pyrolysis Oil via Hydrodeoxygenation and Thermal Treatment: Effects of Catalytic Glycerol Pretreatment

    NARCIS (Netherlands)

    Reyhanitash, Ehsan; Tymchyshyn, M.; Yuan, Zhongshun; Albion, K.; van Rossum, G.; Xu, C.

    2014-01-01

    The effects of stabilizing fast pyrolysis oil (PO) with glycerol via catalytic glycerol pretreatment on upgrading via hydrodeoxygenation (HDO) or thermal treatment (TT) were studied. Nonstabilized (original) fast pyrolysis oil was also upgraded via HDO or TT to obtain benchmarks. Generally, HDO

  14. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  15. Sequential spectrofluorimetric determination of free and total glycerol in biodiesel in a multicommuted flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo (Brazil); Morales-Rubio, Angel; Guardia, Miguel de la [Universidad de Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain); Rocha, Fabio R.P. [Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    2011-07-15

    A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L{sup -1} with a detection limit of 0.5 mg L{sup -1}, which corresponds to 2 mg kg{sup -1} in biodiesel. The coefficient of variation was 0.9% (20 mg L{sup -1}, n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L{sup -1}. The detection limit was 1.4 mg L{sup -1} (2.8 mg kg{sup -1} in biodiesel) with a coefficient of variation of 1.4% (200 mg L{sup -1}, n = 10). The sampling rate was ca. 35 samples h{sup -1} and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans. (orig.)

  16. Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2012-01-01

    In this article, hybrid steam reforming (HSR) of desulphurized methane, together with crude glycerol, in existing commercial steam reformers to produce synthesis gas is proposed. The proposed concept consists of a gasifier to produce vapors, gases, and char from crude glycerol, which is coupled with

  17. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jae; Hartono, Maria Regina; Chan, Weng Heng; Yeo, Suan Siong [Agency for Science, Technology and Research (A*STAR), Jurong Island (Singapore). Inst. of Chemical and Engineering Sciences

    2011-02-15

    The rapidly expanding market for biodiesel has increased the supply and reduced the cost of glycerol, making it an attractive sustainable feed stock for the fuel and chemical industry. Glycerol-based biorefinery is the microbial fermentation of crude glycerol to produce fuels and chemicals. A major challenge is to obtain microbes tolerant to inhibitors such as salts and organic solvents present in crude glycerol. Microbial screening was attempted to isolate novel strain capable of growing on crude glycerol as a sole carbon source. The newly isolated bacteria, identified as nonpathogenic Kluyvera cryocrescens S26 could convert biodiesel-derived crude glycerol to ethanol with high yield and productivity. The supplementation of nutrients such as yeast extract resulted in distinguished enhancement in cell growth as well as ethanol productivity under anaerobic condition. When glycerol fermentation is performed under microaerobic condition, there is also a remarkable improvement in cell growth, ethanol productivity and yield, compared with those under strict anaerobic condition. In batch fermentation under microaerobic condition, K. cryocrescens S26 produced 27 g/l of ethanol from crude glycerol with high molar yield of 80% and productivity of 0.61 g/l/h. (orig.)

  18. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Frandsen, Henrik Lauritz; Granby, Kit

    2007-01-01

    Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33......Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33...

  19. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  20. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    Science.gov (United States)

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    Science.gov (United States)

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  2. Flow cytometric viability assessment and transmission electron microscopic morphological study of Bacteria in Glycerol

    NARCIS (Netherlands)

    Saegeman, V.S.M.; Vos, de R.; Tebaldi, N.D.; Wolf, van der J.M.; Bergervoet, J.H.W.; Verhaegen, J.; Lismont, D.; Verduyckt, B.; Ectors, N.L.

    2007-01-01

    Human cadaveric skin allografts are used in the treatment of burns and can be preserved in glycerol at high concentrations. Previously, glycerol has been attributed some antimicrobial effect. In an experimental set-up, we aimed at investigating this effect of prolonged incubation of bacteria in 85%

  3. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Science.gov (United States)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  4. Effect of Glycerol Pretreatment on Levoglucosan Production from Corncobs by Fast Pyrolysis

    Directory of Open Access Journals (Sweden)

    Liqun Jiang

    2017-11-01

    Full Text Available In this manuscript, glycerol was used in corncobs’ pretreatment to promote levoglucosan production by fast pyrolysis first and then was further utilized as raw material for chemicals production by microbial fermentation. The effects of glycerol pretreatment temperatures (220–240 °C, time (0.5–3 h and solid-to-liquid ratios (5–20% were investigated. Due to the accumulation of crystalline cellulose and the removal of minerals, the levoglucosan yield was as high as 35.8% from corncobs pretreated by glycerol at 240 for 3 h with a 5% solid-to-liquid ratio, which was obviously higher than that of the control (2.2%. After glycerol pretreatment, the fermentability of the recovered glycerol remaining in the liquid stream from glycerol pretreatment was evaluated by Klebsiella pneumoniae. The results showed that the recovered glycerol had no inhibitory effect on the growth and metabolism of the microbe, which was a promising substrate for fermentation. The value-added applications of glycerol could reduce the cost of biomass pretreatment. Correspondingly, this manuscript offers a green, sustainable, efficient and economic strategy for an integrated biorefinery process.

  5. Enhancing Effect of Glycerol on the Tensile Properties of Bombyx mori Cocoon Sericin Films

    Directory of Open Access Journals (Sweden)

    Liangjun Zhu

    2011-05-01

    Full Text Available An environmental physical method described herein was developed to improve the tensile properties of Bombyx mori cocoon sericin films, by using the plasticizer of glycerol, which has a nontoxic effect compared with other chemical crosslinkers. The changes in the tensile characteristics and the structure of glycerolated (0–40 wt% of glycerol sericin films were investigated. Sericin films, both in dry and wet states, showed enhanced tensile properties, which might be regulated by the addition of different concentrations of glycerol. The introduction of glycerol results in the higher amorphous structure in sericin films as evidenced by analysis of attenuated total reflection Fourier transform infrared (ATR-FTIR spectra, thermogravimetry (TGA and differential scanning calorimetry (DSC curves. Scanning Electron Microscopy (SEM observation revealed that glycerol was homogeneously blended with sericin molecules when its content was 10 wt%, while a small amount of redundant glycerol emerged on the surface of sericin films when its content was increased to 20 wt% or higher. Our results suggest that the introduction of glycerol is a novel nontoxic strategy which can improve the mechanical features of sericin-based materials and subsequently promote the feasibility of its application in tissue engineering.

  6. Palatability, digestibility, and metabolizable energy of dietary glycerol in adult cats.

    Science.gov (United States)

    Machado, G S; Pezzali, J G; Marx, F R; Kessler, A M; Trevizan, L

    2017-02-01

    Glycerol is a humectant, which reduces water activity when added to the diet. This property seems to offer dietary benefits, specifically in high-moisture diets for cats, where some humectants cannot be used. According to the U.S. Food and Drug Administration, glycerol is generally recognized as sustenance safe (GRAS). It is suggested that cats are able to metabolize glycerol and use it as an energy source without compromising health. Three experiments were conducted to evaluate the following characteristics of glycerol in the diet for cats: 1) a preference test, 2) digestibility, ME, and fecal and urinary characteristics, and 3) postprandial plasma glycemia. Twelve healthy adult female cats were randomly distributed among 4 treatments consisting of a basal diet (4,090 kcal ME/kg DM, 32% CP, 11% fat, 2.3% crude fiber, and 7.0% ash) and 3 diets with varying percentages of glycerol, made by replacing the basal diet with 2.5, 5.0, and 10.0% purified glycerol (99.5%). The inclusion of glycerol proportionally reduced ( Cats did not show a preference for any diet in particular ( > 0.05). The digestibility assays showed that increasing dietary glycerol levels did not affect food intake or the apparent total tract digestibility of macronutrients and energy ( > 0.05). The inclusion of glycerol in the diets did not alter the stool moisture, fecal score, or urine volume. However, glycerol was detected in urine when it was incorporated into the diet at 10%. Glycemia increased up to 900 min following the first meal after the fasting period with no difference between treatments, even when the means were adjusted for food intake. The blood glucose area under the curve also showed no significant difference between treatments ( > 0.05). Cats accepted glycerol under the conditions of the study, and its nutritional value was determined as it has been done for other species. The ME of glycerol for adult cats was estimated to be 3,185 kcal/kg DM. Supplementing the diets of the cats

  7. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    International Nuclear Information System (INIS)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  8. Influence of crude glycerol on the biomass and lipid content of microalgae

    International Nuclear Information System (INIS)

    Choi, Hee-Jeong; Yu, Sung-Whan

    2015-01-01

    The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production. Keywords: biomass; glycerol; microalgae; mixotrophic; oil content

  9. Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte

    International Nuclear Information System (INIS)

    Nascimento, Ana P.; Linares, Jose J.

    2014-01-01

    This paper studies the influence of the operating variables (glycerol concentration, temperature and feed rate) for a direct glycerol fuel cell fed with glycerol using polybenzimidazole (PBI) impregnated with KOH as electrolyte and Pt/C as catalyst. Temperature displays a beneficial effect up to 75 °C due to the enhanced conductivity and kinetics of the electrochemical reactions. The optimum cell feed corresponds to 1 mol L -1 glycerol and 4 mol L -1 KOH, supplying sufficient quantities of fuel and electrolyte without massive crossover nor mass transfer limitations. The feed rate increases the performance up to a limit of 2 mL min -1 , high enough to guarantee the access of the glycerol and the exit of the products. Finally, the use of binary catalysts (PtRu/C and Pt 3 Sn/C) is beneficial for increasing the cell performance. (author)

  10. Navigating Glycerol Conversion Roadmap and Heterogeneous Catalyst Selection Aided by Density Functional Theory: A Review

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2018-01-01

    Full Text Available Glycerol has been utilized in an extremely diversified manner throughout human civilization—ranging from food, to various consumer products, to pharmaceuticals, and even explosives. Large surplus in glycerol supply thanks to biodiesel production and biomass processing has created a demand to further boost its utility. One growing area is to expand the use of glycerol as an alternative feedstock to supplement fuels and chemicals production. Various catalytic processes have been developed. This review summarizes catalytic materials for glycerol reforming, hydrodeoxygenation, and oxidation. In particular, rationale for catalyst selection and new catalyst design will be discussed aided by the knowledge of reaction mechanisms. The role of theoretical density functional theory (DFT in elucidating complex glycerol conversion chemistries is particularly emphasized.

  11. Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Ana P.; Linares, Jose J., E-mail: joselinares@unb.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Instituto de Quimica

    2014-03-15

    This paper studies the influence of the operating variables (glycerol concentration, temperature and feed rate) for a direct glycerol fuel cell fed with glycerol using polybenzimidazole (PBI) impregnated with KOH as electrolyte and Pt/C as catalyst. Temperature displays a beneficial effect up to 75 °C due to the enhanced conductivity and kinetics of the electrochemical reactions. The optimum cell feed corresponds to 1 mol L{sup -1} glycerol and 4 mol L{sup -1} KOH, supplying sufficient quantities of fuel and electrolyte without massive crossover nor mass transfer limitations. The feed rate increases the performance up to a limit of 2 mL min{sup -1}, high enough to guarantee the access of the glycerol and the exit of the products. Finally, the use of binary catalysts (PtRu/C and Pt{sub 3}Sn/C) is beneficial for increasing the cell performance. (author)

  12. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  13. Glycerol as Precursor of Organoselanyl and Organotellanyl Alkynes.

    Science.gov (United States)

    Lenardão, Eder J; Borges, Elton L; Stach, Guilherme; Soares, Liane K; Alves, Diego; Schumacher, Ricardo F; Bagnoli, Luana; Marini, Francesca; Perin, Gelson

    2017-03-02

    Herein we describe the synthesis of organoselanyl and organotellanyl alkynes by the addition of lithium alkynylchalcogenolate (Se and Te) to tosyl solketal, easily obtained from glycerol. The alkynylchalcogenolate anions were generated in situ and added to tosyl solketal in short reaction times, furnishing in all cases the respective products of substitution in good yields. Some of the prepared compounds were deprotected using an acidic resin to afford new water-soluble 3-organotellanylpropane-1,2-diols. The synthetic versatility of the new chalcogenyl alkynes was demonstrated in the iodocyclization of 2,2-dimethyl-1,3-dioxolanylmethyl(2-methoxyphenylethynyl)selane 3f , which afforded 3-iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl) selenanylbenzo[ b ]furan in 85% yield, opening a new way to access water-soluble Se-functionalized benzo[ b ]furanes.

  14. Molecular dynamics simulations of glycerol glass-forming liquid

    International Nuclear Information System (INIS)

    Blieck, J.; Affouard, F.; Bordat, P.; Lerbret, A.; Descamps, M.

    2005-01-01

    Structural and dynamical properties of liquid glycerol have been investigated by Molecular Dynamics simulations. An improved model based on a slight reparametrisation of the all-atoms AMBER force field used in [R. Chelli, P. Procacci, G. Cardini, R.G.D. Valle, S. Califano, Phys. Chem. Chem. Phys. 1 (1999) 871] is presented. The structure remains satisfactory, qualitatively similar to that obtained from the original model. This new model is also found to reproduce significantly better the diffusion coefficient and the correlations times as they can be deduced from neutron spin echo (NSE) experiments. Structural heterogeneities revealed as a pre-peak of the static structure factor S(Q) close to Q ∼ 0.6 A -1 are observed. Our results are also found compatible with predictions of the Mode Coupling Theory

  15. Suppression of NaNO3 crystal nucleation by glycerol: micro-Raman observation on the efflorescence process of mixed glycerol/NaNO3/water droplets.

    Science.gov (United States)

    Yu, Jun-Ying; Zhang, Yun; Zeng, Guang; Zheng, Chuan-Ming; Liu, Yong; Zhang, Yun-Hong

    2012-02-09

    Although the hygroscopicity of a NaNO(3)/water microdroplet and a polyalcohol/water microdroplet, two of the most important aerosols in atmosphere, has been widely studied, little is known about the relationship between the hygroscopic behavior of mixed NaNO(3)/polyalcohol/water droplets and their structures on the molecular level. In this study, the hygroscopicity of mixed glycerol/NaNO(3)/water droplets deposited on a hydrophobic substrate was studied by micro-Raman spectroscopy with organic-to-inorganic molar ratios (OIRs) of 0.5, 1, and 2. In the mixed glycerol/NaNO(3)/water droplets, glycerol molecules tended to combine with Na(+) and NO(3)(-) ions by electrostatic interaction and hydrogen bonding, respectively. On the basis of the analyses of the changes of symmetric stretching (v(s)-CH(2)), asymmetric stretching (v(a)-CH(2)), their area ratio (Av(a)-CH(2)/Av(s)-CH(2)) of glycerol, and symmetric stretching band of NO(3)(-) (ν(1)-NO(3)(-)) with relative humidity (RH), it was found that the conformation of glycerol was transformed from αα mainly to γγ and partly to αγ with a decreasing RH in the mixed droplets, contrary to the case in the glycerol/water droplet. In addition, the glycerol with γγ and αγ conformation had strong interaction with Na(+) and NO(3)(-) respectively, which suppressed the formation of contact of ions and delayed the efflorescence relative humidity (ERH) for the mixed droplets compared to the NaNO(3)/water droplet. © 2012 American Chemical Society

  16. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  17. Glycerol, trehalose and glycerol–trehalose mixture effects on thermal stabilization of OCT

    Energy Technology Data Exchange (ETDEWEB)

    Barreca, D., E-mail: dbarreca@unime.it [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Laganà, G. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Magazù, S.; Migliardo, F. [Dipartimento di Fisica, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Bellocco, E. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Trehalose influences both enzymatic activity and conformational changes of enzyme. • The results obtained by INS and QENS show a switching-off of the fast dynamics at very low glycerol content. • The diffusive dynamics is slowing down at very low glycerol concentration. • The mixtures of trehalose/glycerol lose the thermal stabilizing effects of pure compounds. - Abstract: The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.

  18. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    Science.gov (United States)

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-04

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation.

  19. A population study of urine glycerol concentrations in elite athletes competing in North America.

    Science.gov (United States)

    Kelly, Brian N; Madsen, Myke; Sharpe, Ken; Nair, Vinod; Eichner, Daniel

    2013-01-01

    Glycerol is an endogenous substance that is on the World Anti-Doping Agency's list of prohibited threshold substances due to its potential use as a plasma volume expansion agent. The WADA has set the threshold for urine glycerol, including measurement uncertainty, at 1.3 mg/mL. Glycerol in circulation largely comes from metabolism of triglycerides in order to meet energy requirements and when the renal threshold is eclipsed, glycerol is excreted into urine. In part due to ethnic differences in postprandial triglyceride concentrations, we investigated urine glycerol concentrations in a population of elite athletes competing in North America and compared the results to those of athletes competing in Europe. 959 urine samples from elite athletes competing in North America collected for anti-doping purposes were analyzed for urine glycerol concentrations by a gas chromatography mass-spectrometry method. Samples were divided into groups according to: Timing (in- or out-of-competition), Class (strength, game, or endurance sports) and Gender. 333 (34.7%) samples had undetectable amounts of glycerol (sport classes. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L.

    Science.gov (United States)

    Li, Yinghui; Song, Na; Zhao, Chuanzhi; Li, Feng; Geng, Miaomiao; Wang, Yuhui; Liu, Wanhui; Xie, Chaojie; Sun, Qixin

    2016-01-01

    Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1-2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related ( PR ) genes ( TaPR-1, TaPR-2, TaPR-3, TaPR-4 , and TaPR-5 ), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly ( p powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality.

  1. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke

    2018-05-01

    Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.

  2. Modifying the properties of whey protein isolate edible film by incorporating palm oil and glycerol

    Directory of Open Access Journals (Sweden)

    Vachiraya Liaotrakoon

    2018-02-01

    Full Text Available This study aimed to improve the properties of whey protein isolate (WPI films by incorporating palm oil (6, 7, and 8% w/w and glycerol (40, 50 and 60% w/w. The lightness of the films increased as glycerol levels increased, but the redness increased with the increased amount of oil content. Increasing the amounts of palm oil and glycerol improved flexibility (P<0.05, but reduced the strength of the film (P<0.05. Films with higher levels of palm oil and lower amounts of glycerol were less permeable to water vapor and oxygen, but more thermally stable. The size of particles and air bubbles in the films reduced with increased palm oil content, regardless of glycerol level. Among all formulae, the film prepared with 8% palm oil and 40% glycerol showed the best overall results. Modifying WPI films with palm oil and glycerol offers a simple technique for producing packaging with better environmental barrier properties.

  3. Trehalose in glycerol-free freezing extender enhances post-thaw survival of boar spermatozoa

    Science.gov (United States)

    ATHURUPANA, Rukmali; TAKAHASHI, Daisen; IOKI, Sumire; FUNAHASHI, Hiroaki

    2015-01-01

    Cryopreservation of boar semen is still considered suboptimal due to lower fertility as compared with fresh samples when glycerol, a permeating cryoprotectant, is used. Trehalose is a non-permeable cryoprotectant and nonreducing disaccharide known to stabilize proteins and biologic membranes. The aim of this study was to evaluate the cryosurvival and in vitro penetrability of boar spermatozoa when glycerol was replaced with trehalose in a freezing extender. Ejaculated Berkshire semen samples were diluted in egg yolk-based freezing extender containing glycerol (100 mM) or trehalose (0, 50, 100, 150, 200 and 250 mM) and cryopreserved using a straw freezing procedure. Thawed samples were analyzed for motility, viability, mitochondrial membrane potential (MMP), and acrosome integrity. In experiment 2, penetrability of spermatozoa cryopreserved with 100 mM glycerol or trehalose was examined. Replacement of cryoprotectant glycerol (100 mM) with trehalose had no effect on sperm viability, but replacing it with 100 mM trehalose improved motility, MMP and acrosome integrity significantly. Sperm motility and MMP were considerably higher in 100 mM trehalose, whereas the acrosome integrity was substantially higher in 100–250 mM trehalose. The in vitro penetration rate was also significantly higher in spermatozoa cryopreserved with trehalose (61.3%) than in those cryopreserved with glycerol (43.6%). In conclusion, 100 mM non-permeable trehalose can be used to replace glycerol, a permeating cryoprotectant, for maintenance of better post-thaw quality of boar spermatozoa. PMID:25754239

  4. Development of a Regional Glycerol Dialkyl Glycerol Tetraether (GDGT) - Temperature Calibration for Antarctic and sub-Antarctic Lakes

    Science.gov (United States)

    Roberts, S. J.; Foster, L. C.; Pearson, E. J.; Steve, J.; Hodgson, D.; Saunders, K. M.; Verleyen, E.

    2016-12-01

    Temperature calibration models based on the relative abundances of sedimentary glycerol dialkyl glycerol tetraethers (GDGTs) have been used to reconstruct past temperatures in both marine and terrestrial environments, but have not been widely applied in high latitude environments. This is mainly because the performance of GDGT-temperature calibrations at lower temperatures and GDGT provenance in many lacustrine settings remains uncertain. To address these issues, we examined surface sediments from 32 Antarctic, sub-Antarctic and Southern Chilean lakes. First, we quantified GDGT compositions present and then investigated modern-day environmental controls on GDGT composition. GDGTs were found in all 32 lakes studied. Branched GDGTs (brGDGTs) were dominant in 31 lakes and statistical analyses showed that their composition was strongly correlated with mean summer air temperature (MSAT) rather than pH, conductivity or water depth. Second, we developed the first regional brGDGT-temperature calibration for Antarctic and sub-Antarctic lakes based on four brGDGT compounds (GDGT-Ib, GDGT-II, GDGT-III and GDGT-IIIb). Of these, GDGT-IIIb proved particularly important in cold lacustrine environments. Our brGDGT-Antarctic temperature calibration dataset has an improved statistical performance at low temperatures compared to previous global calibrations (r2=0.83, RMSE=1.45°C, RMSEP-LOO=1.68°C, n=36 samples), highlighting the importance of basing palaeotemperature reconstructions on regional GDGT-temperature calibrations, especially if specific compounds lead to improved model performance. Finally, we applied the new Antarctic brGDGT-temperature calibration to two key lake records from the Antarctic Peninsula and South Georgia. In both, downcore temperature reconstructions show similarities to known Holocene warm periods, providing proof of concept for the new Antarctic calibration model.

  5. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    Science.gov (United States)

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  7. Fermentative utilization of glycerol residue for the production of acetic acid

    Science.gov (United States)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  8. Mechanical suitability of glycerol-preserved human dura mater for construction of prosthetic cardiac valves.

    Science.gov (United States)

    McGarvey, K A; Lee, J M; Boughner, D R

    1984-03-01

    We have examined the tensile viscoelastic properties of fresh and glycerol-preserved human dura mater, and correlated the results with structural information from the scanning electron microscope. The interwoven laminar structure of dura produces rather high flexural stiffness, while the crossed-fibrillar laminae produce planar mechanical isotropy. Glycerol storage shifts the stress-strain curve to lower strain, reduces stress relaxation and creep, and lowers the ultimate tensile strength and strain at fracture. These changes may be due to glyceraldehyde crosslinking, or to increased interfibrillar friction. The latter hypothesis suggests that glycerol storage may reduce the fatigue lifetime of the tissue.

  9. Acrolein Production by Gas-Phase Glycerol Dehydration Using PO₄/Nb₂O5 Catalysts.

    Science.gov (United States)

    Lee, Kyu Am; Ryoo, HeeKyoung; Ma, Byung Chol; Kim, Youngchul

    2018-02-01

    In this study, modified niobium oxide were prepared to study the addictive effects on the catalytic performance for gas-phase glycerol dehydration. The catalysts were characterized by N2 adsorption/desorption, XRD, NH3-TPD, FT-IR. The amount of phosphoric acid was up to 50 wt% in niobium. As a result, the highest glycerol conversion was achieved over 20 wt% PO4/Nb2O5. It indicates that the optimal amount of phosphoric acid leads the catalyst to have appropriate acidity which is an important factor for gas-phase glycerol dehydration.

  10. Synthesis and characterization of polyesters derived from glycerol and phthalic acid

    Directory of Open Access Journals (Sweden)

    Danilo Hansen Guimarães

    2007-09-01

    Full Text Available The production of polyester via polycondensation between glycerol and phthalic acid using dibutyltin dilaurate is reported. Three glycerol:phthalic acid molar ratio used for the bulk polymerization were: 2:2; 2:3 and 2:4. FTIR confirmed the esterification of glycerol by the acid for all the polymers. DSC indicated no crystallinity, although the XRD plots indicate a very incipient crystallinity for the polymers containing higher amounts of phthalic anhydride. Scanning electron microscopy results indicates high homogeneity for all the polymers prepared.

  11. Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2013-09-01

    Full Text Available Biodiesel has gained a significant amount of attention over the past decade as an environmentally friendly fuel that is capable of being utilized by a conventional diesel engine. However, the biodiesel production process generates glycerol-containing waste streams which have become a disposal issue for biodiesel plants and generated a surplus of glycerol. A value-added opportunity is needed in order to compensate for disposal-associated costs. Microbial conversions from glycerol to valuable chemicals performed by various bacteria, yeast, fungi, and microalgae are discussed in this review paper, as well as the possibility of extending these conversions to microbial electrochemical technologies.

  12. A comparative evaluation of plasma glycerol and free fatty acids in patients with ischaemic heart disease

    Directory of Open Access Journals (Sweden)

    Singh V

    1979-01-01

    Full Text Available Plasma glycerol concentration was determined in 158 patients admitted to the hospital with acute chest pain. The patients were retrospectively divided into five groups according to their diagnosis, taking into account the presence or absence of myocardial infarc-tion and complicating arrythmias, The plasma glycerol concentra-tion was significantly higher in the group with complicating arrhythmias, irrespective of whether infarction was present or not. Therefore it is proposed that elevation of plasma glycerol may provide an important clue to determine those myocardial ischaemia cases who may develop cardiac arrythmias at a later stage.

  13. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  14. The fate of 14C-glycerol in the rice stem borer, Chilo suppressalis Walker (Lepidoptera : Pyralidae)

    International Nuclear Information System (INIS)

    Tsumuki, Hisaaki; Kanehisa, Katsuo

    1981-01-01

    The interconversion between glycogen and glycerol was examined during diapausing and post-diapausing stages by injecting 14 C-glycerol. Radioactive glycerol injected was rapidly incorporated into glycogen in diapausing larvae at 25 0 C even during increase of glycerol, showing that the interconversion between glycogen and glycerol may easily occur on warmer days in winter. However, this interconversion proceeded in the direction of glycerol synthesis at such low temperature as 4 0 C. The isotope injected was incorporated into various tissues to varying degrees, especially it was found predominantly in fat body glycogen. The degradation rate of 14 C-glycerol in diapausing larvae was lower than in post-diapausing larvae. On the other hand, in non-diapausing larvae which were shown to contain no glycerol, 14 C-glycerol was rapidly degraded in comparison with hibernating larvae. A cause of no glycerol accumulation in non-diapausing larvae may be attributed to such high activity of glycerol degradation. (author)

  15. The role of genotype in protection against gamma-radiation of E. coli cells by glycerol

    International Nuclear Information System (INIS)

    Amirtaev, K.G.; Krasavin, E.A.; Kozubek, S.; Tokarova, B.; Nyamsambuu, A.

    1984-01-01

    The protective effect of glycerol and anoxia on the survival of γ-irradiated E.coli cells of wild type, recA - , polA - mutants has been investigated. The protection by glycerol increases from recA - mutant to wild type and polA - mutant with dose modifying factors (DMF) being 2.03+-0.12, 2.52+-0.25, and 2.80+-0.26. Analogically the protection by hypoxia is genetically determined, too. The value of oxygen effect increases from 1.77+-0.23 for recA - mutant to 3.38+-0.29 for wild type cells and 4.66+-0.41 for polA - -mutant. The oxygen independent component of glycerol protection is geltically independent (DMF=2). Possible mechanisms of genetic determination of the protection by glycerol and anoxia are discussed

  16. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Energy Technology Data Exchange (ETDEWEB)

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  17. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    A green and cheap silicone-based elastomer has been developed. Through the simple mixing-in of biodiesel-originating glycerol into commercially available polydimethylsiloxane (PDMS) pre-polymer, a glycerol-in-PDMS emulsion was produced. This counterintuitively stable mixture became a basis...... for obtaining elastomeric composites with uniformly distributed glycerol droplets. Various compositions, containing from 0 to 140 parts of glycerol per 100 parts of PDMS by weight, were prepared and investigated in terms of ATR-FTIR, broadband dielectric spectroscopy, mechanical properties as well as optical......, even in the presence of very high loadings. The conducted experiments highlight the great potential of this new type of elastomer and reveal some possible applications....

  18. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations

    DEFF Research Database (Denmark)

    Workman, Mhairi; Holt, Philippe; Thykær, Jette

    2013-01-01

    . Growth on glycerol proceeded at approximately 0.30 h-1, and the substrate uptake rate was 0.02 mol L-1 h-1 regardless of the starting glycerol concentration (10, 20 or 45 g L-1). Utilisation of glycerol was accompanied by higher oxygen uptake rates compared to glucose growth, indicating import......Yarrowia lipolytica is an attractive host for sustainable bioprocesses due to its ability to utilize a variety of carbon substrates and convert them to a range of different product types (including lipids, organic acids and polyols) under specific conditions. Despite an increasing number...... of applications for this yeast, relatively few studies have focused on uptake and metabolism of carbon sources, and the metabolic basis for carbon flow to the different products. The focus of this work was quantification of the cellular performance of Y. lipolytica during growth on glycerol, glucose or a mixture...

  19. Synthesis and characterization of unsatured polyesters from the reaction of glycerol with fumaric acid

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Brioude, Michel M.; Agrela, Sara P.; Rosa, Leandro O.S.; Jose, Nadia M.; Prado, Luis A.S.A.

    2009-01-01

    The biodiesel production from vegetable oils has been encouraged by the Brazilian Federal Government, since biodiesel is a renewable fuel. The utilization of glycerol (by-product of biodiesel production) has gained importance, since it corresponds to 30 wt-% of the produced biodiesel. In this context, the present work aims at preparing and characterizing polymers based on glycerol, which could have an application. In this way, the production of biodiesel could be further stimulated. Unsaturated polyesters were preparing by esterification of glycerol with fumaric acid. The reaction mixture was heated up to 240 deg C. After the polymerization was complete, the material was cast onto Teflon molds. The materials were characterized by Infrared Spectroscopy, X-ray diffraction. The thermal stability was evaluated by thermogravimetric analysis and differential scanning calorimetry. The materials showed thermal stability comparable to alkyd thermoset derived from maleic anhydride and glycerol. (author)

  20. Thermal Processing of Low-Grade Glycerol to Alcohols for Biodiesel Fuel Production, Phase II

    Science.gov (United States)

    2010-01-01

    Conversion of crude glycerol to value added products can broaden its use and ultimately reduce the cost of biodiesel production. During the second year of the project, results from previous experiments were used to comprehensively investigate the the...

  1. Synthesis of high purity monoglycerides from crude glycerol and palm stearin

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh

    2008-07-01

    Full Text Available The optimum conditions for the glycerolysis of palm stearin and crude glycerol derived from biodiesel process werefound to be a reaction temperature of 200oC with a molar ratio of crude glycerol to palm stearin of 2.5:1, and a reaction timeof 20 minutes. The yield and purity of monoglycerides obtained under these conditions was satisfactory as compared withthe glycerolysis of pure glycerol. To increase the purity of monoglycerides a two-step process, removal of residual glyceroland crystallization, was proposed instead of either vacuum or molecular distillation. Residual glycerol was removed byadding hydrochloric acid followed by washing with hot water. Optimum conditions for crystallization were achieved byusing isooctane as a solvent and a turbine impeller speed of 200 rpm at a crystallization temperature of 35oC. A purity notexceeding 99 percent of monoglycerides was obtained with monopalmitin as the major product.

  2. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904.

    Science.gov (United States)

    Dikshit, Pritam Kumar; Moholkar, Vijayanand S

    2016-09-01

    The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Glass polymorphism in glycerol-water mixtures: I. A computer simulation study.

    Science.gov (United States)

    Jahn, David A; Wong, Jessina; Bachler, Johannes; Loerting, Thomas; Giovambattista, Nicolas

    2016-04-28

    We perform out-of-equilibrium molecular dynamics (MD) simulations of water-glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA-HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ(g) = 0-13% and find that, for the present mixture models and rates, the LDA-HDA transformation is detectable up to χ(g) ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ(g) ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ(g) > 5%. We present an analysis of the molecular-level changes underlying the LDA-HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA-HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA-HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that

  4. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina

    2017-05-01

    Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Mutations and phenotype in isolated glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.P.; Muscatelli, F.; Stafford, A.N.; Monaco, A.P. [Inst. of Molecular Medicine, Oxford (United Kingdom)] [and others

    1996-06-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. 36 refs., 4 figs., 1 tab.

  6. [Effects of glycerol on the spectral properties of sodium caseinate].

    Science.gov (United States)

    Li, Yan; Chang, Fen-fen; Gao, Huan-yuan; Cao, Qing; Jin, Li-e

    2015-01-01

    Although the immigration of water molecule, and diffusion and traversing of oxygen can be prevented by the edible film prepared through sodium caseinate, which plays a good protection role for the food, the strong hydrophilicity makes its watertightness and mechanical properties become inferior. Because the toughness and water resistance of SC films can be enhanced by glycerol (G) as an additive, it is necessary to elucidate the interaction between G and SC through the spectral characteristics such as fluorescence spectra, infrared spectra and UV spectra. The results show that the fluorescence intensity of SC decreases due to the addition of G. The binding constant obtained by the double logarithmic regression curve analysis is 1. 127 x 10(3) L . mol-1 and the number of binding sites reaches 1. 161. It indicates that the weak chemical bond is primary between G and SC molecules; From IR the absorption peaks of SC are almost the same before and after adding G. However, there is a certain difference among their absorption intensities. It reveals that the secondary structure of SC is affected, β folding length decreases, α helix, random coil structure, β angle structure increases, and the intermolecular hydrogen bond is strengthened; From UV the peptide bond structure of SC is not changed after the addition of G, but the polymer with larger molecular weight, which is formed by non-covalent bond, makes the peak intensity decrease. The research gives the mode of G and SC from the molecular level.

  7. Penggunaan H-Zeolit dan Tawas dalam Pemurnian Crude Glycerol dengan Proses Adsorpsi dan Koagulasi

    OpenAIRE

    Isalmi Aziz, M.T; Nur Hijjah Bayani Fadhilah; Hendrawati Hendrawati

    2017-01-01

    Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation) process so that the adsorption of colloidal-sized compound impurities which can be separated from...

  8. Penggunaan H-Zeolit Dan Tawas Dalam Pemurnian Crude Glycerol Dengan Proses Adsorpsi Dan Koagulasi

    OpenAIRE

    Aziz, M.T, Isalmi; Fadhilah, Nur Hijjah Bayani; Hendrawati, Hendrawati

    2017-01-01

    Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation) process so that the adsorption of colloidal-sized compound impurities which can be separated from...

  9. Effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes.

    OpenAIRE

    宮地,芳之

    1987-01-01

    The effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes were examined. Copper ion and organic mercury (EMP; ethylmercury phosphate, and PCMB; sodium p-chloromercuricbenzoate) inhibited glycerol lysis of erythrocytes. The inhibitory effects was dependent on the incubation period. An equimolor solution of copper ion and EMP showed between copper ion and EMP. Similar results were obtained with copper and PCMB.

  10. Continuous fed-batch vacuum fermentation system for glycerol from molasses by the sulfite process

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.

    1985-01-01

    A continuous fed-batch vacuum fermentation system has been described for the production of glycerol from cane molasses (and juice) by a conventional sulfite process. A glycerol concentration of 80 g/l was achieved with a productivity of 30 g/l/day at a dilution rate of 0.4/day which is twice that from a vacuum batch process (15 g/l/day) or four times that obtained without vacuum (8 g/l/day). 8 references.

  11. Platinum–Rhenium synergy on reducible oxide supports in aqueous-phase glycerol reforming

    NARCIS (Netherlands)

    Ciftci, A.; Eren, S.; Ligthart, D.A.J.M.; Hensen, E.J.M.

    2014-01-01

    A significant support effect was observed for the aqueous-phase reforming (APR) of glycerol over a series of Pt- and PtRe-loaded ceria-, ceria–zirconia-, zirconia-, and titania-supported catalysts. Glycerol conversion rates decreased in the order Pt/TiO2>Pt/ZrO2>Pt/CeZrO2>Pt/CeO2. Upon addition of

  12. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Science.gov (United States)

    Oliveira, Bruno M; Barrio, Eladio; Querol, Amparo; Pérez-Torrado, Roberto

    2014-01-01

    During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+)/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  13. Influence of palm oil and glycerol on properties of fish skin gelatin-based films.

    Science.gov (United States)

    Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon

    2016-06-01

    Properties of fish skin gelatin film incorporated with palm oil at 50 and 75 % (w/w) as affected by glycerol at 0-30 % (w/w) were investigated. Increases in water vapour permeability and elongation at break along with decrease in tensile strength were noticed when levels of glycerol were increased (p fish skin gelatin films without drastic alteration of mechanical properties.

  14. Aqueous-phase reforming of crude glycerol : effect of impurities on hydrogen production

    NARCIS (Netherlands)

    Boga, Dilek A.; Liu, Fang; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    The aqueous-phase reforming (APR) of a crude glycerol that originates from an industrial process and the effect of the individual components of crude glycerol on APR activity have been studied over 1 wt% Pt/Mg-Al) O, 1 wt% Pt/Al2O3, 5 wt% Pt/Al2O3 and 5 wt% Pt/C catalysts at 29 bar and 225 degrees

  15. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    OpenAIRE

    Sreerangappa, Ramesh; Debecker, Damien P.; 13th European Congress on Catalysis – EuropaCat 2017

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced by one-pot spray dried route, and are characterized by various physico-chemical methods. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The catalyst does not leach and showed good reusability up to three cycles.

  16. Physical-chemical basis of the protection of slowly frozen human erythrocytes by glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Rall, W.F.; Mazur, P.; Souzu, H.

    1978-07-01

    One theory of freezing damage suggests that slowly cooled cells are killed by being exposed to increasing concentrations of electrolytes as the suspending medium freezes. A corollary to this view is that protective additives such as glycerol protect cells by acting colligatively to reduce the electrolyte concentration at any subzero temperature. Recently published phase-diagram data for the ternary system glycerol-NaCl-water by M.L. Shepard et al. (Cryobiology, 13: 9-23, 1976), in combination with the data on human red cell survival vs. subzero temperature presented here and in the companion study of Souzu and Mazur (Biophys. J., 23: 89-100), permit a precise test of this theory. Appropriate liquidus phase-diagram information for the solutions used in the red cell freezing experiments was obtained by interpolation of liquidus data of Shepard and his co-workers. The results of phase-diagram analysis of red cell survival indicate that the correlation between the temperature that yields 50% hemolysis (LT/sub 50/) and the electrolyte concentration attained at that temperature in various concentrations of glycerol is poor. With increasing concentrations of glycerol, the cells were killed at progressively lower concentrations of NaCl. For example, the LT/sub 50/ for cells frozen in the absence of glycerol corresponds to a NaCl concentration of 12 weight percent (2.4 molal), while for cells frozen in 1.75 M glycerol in buffered saline the LT/sub 50/ corresponds to 3.0 weight percent NaCl (1.3 molal). The data, in combination with other findings, lead to two conclusions: (a) The protection from glycerol is due to its colligative ability to reduce the concentration of sodium chloride in the external medium, but (b) the protection is less than that expected from colligative effects; apparently glycerol itself can also be a source of damage, probably because it renders the red cells susceptible to osmotic shock during thawing.

  17. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

    Science.gov (United States)

    Hedlund, Brian P.; Paraiso, Julienne J.; Williams, Amanda J.; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A.; Dong, Hailiang; Zhang, Chuanlun L.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C). PMID:23964271

  18. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  19. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.

    Science.gov (United States)

    Iyyappan, J; Bharathiraja, B; Baskar, G; Jayamuthunagai, J; Barathkumar, S; Anna Shiny, R

    2018-03-01

    In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Integral process of obtaining glycerol as a by-product of biodiesel production from castor oil

    Directory of Open Access Journals (Sweden)

    Leonel Romero

    2012-12-01

    Full Text Available The biodiesel is obtained from about 10 years ago in Europe, and now that it has taken hold as fuel for diesel engines, it is expected a clear increase in the production of this class of fuels in a the near future. The biodiesel is derived from the transesterification reaction of castor oil with methanol, which is the main by-product the glycerol with an approximate content of 10%. Besides catalyst residuals, soaps, methanol traces, mono and diglycerides in small percentages are presented. This study proposes the separation, purification and characterization of the glycerol obtained from the transesterificación reaction of the castor oil, in order to be able to market it in the national or international market, so that it fulfills the standards of quality, which means getting a pure glycerol and the appropriate physico-chemical characteristics and techniques. The glycerin-methyl esters separation is carried out by decantation being obtained a percentage of around 70% glycerol. This percentage is subsequently increased through the purification process, using hydrochloric acid. Glycerol characterization was carried out by physicochemical and organoleptic tests. The purification process allowed us to obtain a glycerol with a percentage of purity close to 98%. It was also tested by comparison with theoretical data that remnants influenced in the physiochemical properties

  1. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  2. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  3. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol.

    Science.gov (United States)

    Yang, Jiangang; Zhu, Yueming; Men, Yan; Sun, Shangshang; Zeng, Yan; Zhang, Ying; Sun, Yuanxia; Ma, Yanhe

    2016-12-21

    Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.

  4. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    Science.gov (United States)

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  5. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2009-07-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation, at relatively high rates of 2.0 ± 0.4 m3/m3 d (Eap = 0.9 V). Under the same conditions, hydrogen was produced from glucose at a yield of 7.2 mol-H2/mol and a rate of 1.9 ± 0.3 m3/m3 d. Glycerol was completely removed within 6 h, with 56% of the electrons in intermediates (primarily 1,3-propanediol), with the balance converted to current, intracellular storage products or biomass. Glucose was removed within 5 h, but intermediates (mainly propionate) accounted for only 19% of the electrons. Hydrogen was also produced using the glycerol byproduct of biodiesel fuel production at a rate of 0.41 ± 0.1 m3/m3 d. These results demonstrate that electrohydrogenesis is an effective method for producing hydrogen from either pure glycerol or glycerol byproducts of biodiesel fuel production. © 2009 International Association for Hydrogen Energy.

  6. Effective Removal of Heavy Metal Ions Using Glycerol and Starch Xanthate

    Directory of Open Access Journals (Sweden)

    Aliyu Mohammed

    2017-09-01

    Full Text Available Glycerol and insoluble starch xanthates were synthesised and effectively used in the removal of Pb, Cd and Cu from aqueous solutions. The insoluble metal complex formed between the sulphur atoms in the xanthates and the heavy metals were easily separated. Lower dosage of glycerol xanthate was required in each case, with the optimum molar ratio (M2+/GX of 2. Moreover, the use of glycerol xanthate required no pH adjustments to give a 100 % heavy metal removal within the range of the detection limit. As for the ISX, there was a remarkable metal scavenging activity when the ISX contained high amount of Sulphur per molecule (10.12% S and when the pH was adjusted to 6. Butyl xanthate was also synthesised to make a good comparison with the glycerol and insoluble starch xanthate. The xanthates from these two sustainable materials (Starch and glycerol are proven to be more effective in metal scavenging activity. FTIR and CHNS elemental analyses were used to prove the evidence of xanthation, in addition, 13C NMR was used to characterise the glycerol xanthate.

  7. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation.

    Science.gov (United States)

    Campos, Elisa; Moura, Teresa F; Oliva, Abel; Leandro, Paula; Soveral, Graça

    2011-05-13

    In general, erythrocytes are highly permeable to water, urea and glycerol. However, expression of aquaporin isoforms in erythrocytes appears to be species characteristic. In the present study, human (hRBC) and bovine (bRBC) erythrocytes were chosen for comparative studies due to their significant difference in membrane glycerol permeability. Osmotic water permeability (P(f)) at 23°C was (2.89 ± 0.37) × 10(-2) and (5.12 ± 0.61) × 10(-2)cms(-1) for human and bovine cells, respectively, with similar activation energies for water transport. Glycerol permeability (P(gly)) for human ((1.37 ± 0.26) × 10(-5)cms(-1)) differed in three orders of magnitude from bovine erythrocytes ((5.82 ± 0.37) × 10(-8)cms(-1)) that also showed higher activation energy for glycerol transport. When compared to human, bovine erythrocytes showed a similar expression pattern of AQP1 glycosylated forms on immunoblot analysis, though in slight higher levels, which could be correlated with the 1.5-fold larger P(f) found. However, AQP3 expression was not detectable. Immunofluorescence analysis confirmed the absence of AQP3 expression in bovine erythrocyte membranes. In conclusion, lack of AQP3 in bovine erythrocytes points to the lipid pathway as responsible for glycerol permeation and explains the low glycerol permeability and high E(a) for transport observed in ruminants. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    Science.gov (United States)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  9. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Alex M. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Cheng, Chi-Yuan [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Israelachvili, Jacob N. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Han, Songi [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.

  10. Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity.

    Science.gov (United States)

    Gutiérrez-Pérez, Oscar; Juárez-Mosqueda, María de Lourdes; Carvajal, Salvador Uribe; Ortega, María Elena Trujillo

    2009-06-01

    The use of glycerol for boar semen cryopreservation results in low fertility, possibly due to toxicity. This has led to recommend the use of solutions with less than 4% glycerol. Trehalose is a disaccharide known to stabilize proteins and biologic membranes during processes such as cryopreservation. Thus, it was decided to evaluate the cryoprotective effect of glycerol/trehalose mixtures. Effects on motility (M), viability (Vb) and acrosomal integrity (nA) were evaluated. Sperm samples were frozen in three different extenders: G4 contained 4% glycerol; T1 contained 1% glycerol plus 250 mM trehalose and T0.5 was constituted by 0.5% glycerol plus 250 mM trehalose. All extenders yielded similar post-freezing/thawing motility rates. Viability was diminished in T0.5 as compared to the others. In regard to acrosome integrity, it was twice as high (Pextender. Thus, T1 twice as many spermatozoa were alive, motile and intact, than in either T0.5 or G4, i.e. during freeze/thawing the use of T1 resulted in twice as many fertile cells as when using the other extenders. During our study, we noted that there were wide individual variations both in sperm viability and in motility.

  11. Dimethylformamide is not better than glycerol for cryopreservation of boar semen.

    Science.gov (United States)

    Malo, C; Gil, L; Cano, R; Martínez, F; García, A; Jerez, R A

    2012-05-01

    To improve the boar sperm cryopreservation process, the influence of the sugar (lactose, trehalose) source and the cryoprotectant [glycerol, dimethylformamide (DMF)] on the success of freezing was investigated. Sperm samples were frozen in one of six extenders: lactose plus 3% glycerol (LG); lactose plus 1.5% glycerol and 1.5% DMF (LGD); lactose plus 3% DMF (LD); trehalose plus 3% glycerol (TG); trehalose plus 1.5% glycerol and 1.5% DMF (TGD); trehalose plus 3% DMF (TD). Effects on motility, viability, acrosome integrity and hypoosmotic test (HOST) were measured. The results showed that extender containing 3% glycerol retained the highest motility percentages. In regard to viability and acrosome integrity, all extenders yielded similar rates except for the decreasing values of TD. Endosmosis was diminished in TD and LD at 2 h (P = 0.0018), as compared with the others. The results of the study demonstrated that the use of DMF as a cryoprotectant adversely affected boar sperm quality after cryopreservation. © 2011 Blackwell Verlag GmbH.

  12. On the role of the activation procedure of supported hydrotalcites for base catalyzed reactions: Glycerol to glycerol carbonate and self-condensation of acetone

    NARCIS (Netherlands)

    Alvarez, M.G.; Frey, A.M.; Bitter, J.H.; Segarra, A.M.; Jong, de K.P.; Medina, F.

    2013-01-01

    Bulk and carbon nanofiber supported MgAl hydrotalcites have been investigated as solid base catalysts for the synthesis of glycerol carbonate and dicarbonate and for the self-condensation of acetone. The supported materials exhibited a 300 times higher activity compared to bulk activated

  13. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol

    DEFF Research Database (Denmark)

    Thornit, Dorte Nellemann; Vinten, Carl Martin; Sander, Birgit

    2010-01-01

    PURPOSE: To compare the changes in macular volume (MV) between healthy subjects and patients with diabetic macular edema (DME) after an osmotic load and to determine the glycerol permeability (P(gly)) of the blood-retinal barrier (BRB). METHODS: In this unmasked study, 13 patients with DME and 5...

  14. Use of glycerol-preserved corneas for corneal transplants

    Directory of Open Access Journals (Sweden)

    Neeti Gupta

    2017-01-01

    Full Text Available Purpose: This study was carried out to see the results of glycerol-preserved cornea (GPC in emergency situation when fresh corneal tissue was not available. The aim was to study the outcome of corneal transplantation using GPC. Methods: This was a retrospective study. The medical records of all the patients were reviewed, who underwent keratoplasty using “GPC” during the period from October 2011 to December 2015. The indication of keratoplasty, duration of preservation of the GPC, and its outcome were analyzed. Descriptive statistics were applied. Results: Out of the 222 penetrating keratoplasty (PKP performed over the study period, the GPC was used in 34 patients (males = 31, 91.2% aged 15–74 years. Therapeutic keratoplasty was performed in all cases in this cohort except one in which tectonic keratoplasty was done. The primary indication of PKP (91.2% was infectious keratitis. Of these, 20 (64.5% patients presented with perforated corneal ulcers. Post-PKP, ocular anatomy was preserved in 91.2%, and visual acuity of perception of light positive and accurate projection of rays in all the quadrants was obtained in 76.5% cases. Complications included glaucoma (n = 12, 35.1%, phthisis bulbi (n = 2, 5.9%, and graft reinfection and endophthalmitis after PKP (n = 1, 2.9%. The secondary procedure post-GPC and PKP were trabeculectomy with mitomycin C (n = 7, 58.3% in patients not controlled on topical antiglaucoma medication. Optical keratoplasty was performed in (n = 3 8.8% patients and triple procedure in (n = 2 5.8% patients with good visual acuity postprocedure. Conclusions: Acellular GPCs are useful in emergency keratoplasty to avoid loss of vision and can save the eye.

  15. Studies on distribution and excretion of 14C-glycerol in rats, rabbits and mice

    International Nuclear Information System (INIS)

    Takanashi, Shigeru; Kamiyama, Hiroshi; Suzuki, Hidetaka; Tohira, Yasuo; Ogawa, Machiko

    1978-01-01

    Tissue distribution and excretion of uniformly labeled 14 C-glycerol were investigated using rats, rabbits and mice. Blood disappearance half life of 14 W/V% 14 C-glycerol in mice (1 ml/head), rats (1 ml/head) and rabbits (2 ml/head) given intravenously was 0.4, 1.8 and 2.4 hours, respectively. When 14 W/V% 14 C-glycerol was injected in rats (1 ml/head) and rabbits (2 ml/head), 65% of administered radioactivity was excreted in to expired air within 48 hrs. This suggests that glycerol is mostly metabolised via the Embden-Meyehof pathway and the TCA cycle, and finally converted to CO 2 and H 2 O. At a low dose, the conversion ratio to CO 2 was greater than the case of a high dose, and a inverse relationship was observed between the CO 2 -conversion ratio and the dose. At levels above 1 ml of 56 W/V% glycerol, an approximately constant portion of the administered dose appeared to be oxidized. The results of the whole body autoradiogram showed the distribution of the radioactivity throughout the body. Disappearance of radioactivity from liver and blood was rapid, but transport to brain, excretion to the salivary gland, and secretion to Harder's gland were slow. The distribution in tissues showed that the highest distribution of 14 C-glycerol was found in the carcass; liver showed the next highest distribution; high distribution was also found initially in the kidneys; brain, heart, lung and spleen showed low distribution, but they decreased with time elapsed. Disappearance of radioactivity from the brain was relatively slower than the liver. Besides, another result indicated that in pregnant mice 14 C-glycerol did not cross the placenta very quickly. The fact that the apparent disappearance rate from the foetuses does not seem to parallel that of the placenta is suggestive of selective accumulation in foetal tissues. (auth.)

  16. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity.

    Directory of Open Access Journals (Sweden)

    Laura Jeacock

    2017-03-01

    Full Text Available Aquaglyceroporins (AQPs transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM, octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.

  17. Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.

    Science.gov (United States)

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2008-02-25

    The construction and performance of integrated amperometric biosensors for the determination of glycerol are reported. Two different biosensor configurations have been evaluated: one based on the glycerol dehydrogenase/diaphorase (GDH/DP) bienzyme system, and another using glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP). Both enzyme systems were immobilized together with the mediator tetrathiafulvalene (TTF) on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +150mV (vs. Ag/AgCl), and the reduction of TTF(+) at 0mV were used for the monitoring of the enzyme reactions for the bienzyme and trienzyme configurations, respectively. Experimental variables concerning both the biosensors composition and the working conditions were optimized for each configuration. A good repeatability of the measurements with no need of cleaning or pretreatment of the biosensors was obtained in both cases. After 51 days of use, the GDH/DP biosensor still exhibited 87% of the original sensitivity, while the GK/GPOx/HRP biosensor yielded a 46% of the original response after 8 days. Calibration graphs for glycerol with linear ranges of 1.0x10(-6) to 2.0x10(-5) or 1.0x10(-6) to 1.0x10(-5)M glycerol and sensitivities of 1214+/-21 or 1460+/-34microAM(-1) were obtained with GDH/DP and GK/GPOx/HRP biosensors, respectively. The calculated detection limits were 4.0x10(-7) and 3.1x10(-7)M, respectively. The biosensors exhibited a great sensitivity with no significant interferences in the analysis of wines. The biosensors were applied to the determination of glycerol in 12 different wines and the results advantageously compared with those provided by a commercial enzyme kit.

  18. Development Of An Efficient Glycerol Utilizing Saccharomyces Cerevisiae Strain Via Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Strucko, Tomas; Zirngibl, Katharina; Tharwat Tolba Mohamed, Elsayed

    2015-01-01

    that popular wild-type laboratory yeast strains, commonly applied in metabolic engineering studies, did not grow or grew very slowly in glycerol medium.In this work, an adaptive laboratory evolution approach to obtain S. cerevisiae strains with an improved ability to grow on glycerol was applied. A broad array...... of evolved strains, which exhibited a significant increase in the specific growth rate and a higher glycerol consumption rate, were isolated. The best performing strains were further analyzed by classical genetics and whole genome re-sequencing in order to understand the molecular basis of glycerol...

  19. Anchor-dependent lipofection with non-glycerol based cytofectins containing single 2-hydroxyethyl head groups.

    Science.gov (United States)

    Venkata Srilakshmi, Gollapudi; Sen, Joyeeta; Chaudhuri, Arabinda; Ramadas, Yerramsetti; Madhusudhana Rao, Nalam

    2002-02-15

    Detailed structure-activity investigations aimed at probing the anchor chain length dependency for glycerol-based lipofectins have been reported previously. Herein, we report on the first detailed investigation on the anchor-dependent transfection biology of non-glycerol based simple monocationic cytofectins containing single 2-hydroxyethyl head group functionality using 11 new structural analogs of our previously published first generation of non-glycerol based transfection lipids (lipids 1-11). The C-14 and C-16 analogs of DOMHAC (lipids 4 and 5, respectively) were found to be remarkably efficient in transfecting COS-1 cells. In addition, the present anchor-dependency investigation also revealed that the C-14 analog of DOHEMAB (lipid 10) is significantly efficient in transfecting both COS-1 and NIH3T3 cells. Our results also indicate that too strong lipid-DNA interactions might result in weaker transfection for non-glycerol based cationic lipids. In summary, the anchor-dependence investigations presented here convincingly demonstrate that non-glycerol based cationic lipids containing a single hydroxyethyl head group and hydrophobic C-14 or C-16 anchors are promising non-toxic cationic transfection lipids for future use in liposomal gene delivery.

  20. Effect of Glycerol, as Cryoprotectant in the Encapsulation and Freeze Drying of Microspheres Containing Probiotic Cells

    Directory of Open Access Journals (Sweden)

    Oana Lelia Pop

    2015-05-01

    Full Text Available It is reported that probiotics provide several health benefits as they help in maintaining a good balance and composition of intestinal flora, and increase the resistance against invasion of pathogens. Ensuring adequate dosages of probiotics at the time of consumption is a challenge, because several factors during processing and storage affect the viability of probiotic organisms. Major emphasis has been given to protect the microorganisms with the help of encapsulation technique, by addition of different protectants. In this study, probiotic cells (Bifidobacterium lactis 300B were entrapped in alginate/pullulan microspheres. In the encapsulation formula glycerol was used as cryoprotectant in the freeze drying process for long time storage. It was observed that the survival of Bifidobacterium lactis 300B when encapsulated without cryoprotectant was higher than the formula with glycerol in the fresh obtained microspheres. The addition of glycerol was in order to reduce the deep freezing and freeze drying damages. In the chosen formulations, glycerol did not proved protection for the entrapped probiotic cells in the freeze drying process, for which the use of glycerol as cryoprotectant for alginate/pullulan Bifidobacterium lactis 300B entrapment is not recommended.

  1. Purification of crude glycerol from transesterification reaction of palm oil using direct method and multistep method

    Science.gov (United States)

    Nasir, N. F.; Mirus, M. F.; Ismail, M.

    2017-09-01

    Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.

  2. Conversion of Crude Glycerol to 1, 3-Propanediol by Newly Isolated Kluyvera Cryocrescens

    International Nuclear Information System (INIS)

    Loh, S.K.; Stasha Eleanor Rosland Abel

    2016-01-01

    Bio diesel, an environmental-friendly and renewable fuel, has gained market share and popularity as an alternative to fossil fuel. While expanding its production globally to meet the demand, the production of its principal co-product, crude glycerol which is surplus and under utilised, has affected both the economic and environment. Crude glycerol has limited usage due to the impurities present. It cannot be disposed naturally in the environment and its storage and processing are very costly. Glycerol with its triglyceride backbone serves as a natural metabolite susceptible to microbial degradation into high value-added compounds. In this study, a novel 1,3-PD producing bacterial strain isolated from palm oil mill effluent was used in microbial fermentation of crude glycerol. The strain, identified as Kluyvera cryocrescens NBRC 102467 based on its 16S ribosomal ribonucleic acid sequences, was capable of producing 1,3-PD (5.28 g litre -1 ) along with by-products, butanol (0.34 g litre -1 ) and acetone (0.31 g litre -1 ) after an optimum 48 hour of incubation at 30 degree Celsius in agitated medium enriched with crude glycerol at 150 revolutions per minute. Interestingly, its productivity peaked at the 6 hour reaching 0.28 g litre -1 hour -1 and declined thereafter. In future, this strain has potential to be used in the bioprocess of interest. (author)

  3. Biotechnological conversion of glycerol from biofuels to 1,3-propanediol using Escherichia coli.

    Science.gov (United States)

    Przystałowska, Hanna; Lipiński, Daniel; Słomski, Ryszard

    2015-01-01

    In the face of shortage of fossil fuel supplies and climate warming triggered by excessive carbon dioxide emission, alternative resources for chemical industry have gained considerable attention. Renewable resources and their derivatives are of particular interest. Glycerol, which constitutes one of the by-products during biodiesel production, is such a substrate. Thus, generated excess glycerol may become an environmental problem, since it cannot be disposed of in the environment. The most promising products obtained from glycerol are polyols, including 1,3-propanediol, an important substrate in the production of synthetic materials, e.g. polyurethanes, unsaturated polyesters, and epoxy resins. Glycerol can be used as a carbon and energy source for microbial growth in industrial microbiology to produce 1,3-propanediol. This paper is a review of metabolic pathways of native producers and E. coli with the acquired ability to produce the diol via genetic manipulations. Culture conditions during 1,3-PDO production and genetic modifications of E. coli used in order to increase efficiency of glycerol bioconversion are also described in this paper.

  4. Conformational Preferences of Glycerol in the Gas Phase and in Water

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Keun Hong [Korea Military Academy, Seoul (Korea, Republic of); Byun, Byung Jin; Kang, Young Kee [Chungbuk National University, Cheongju (Korea, Republic of)

    2012-03-15

    The conformational study of glycerol has been carried out using the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water in order to understand its conformational preferences and solvation effects. Most of the preferred conformers of glycerol have two C{sub 5} hydrogen bonds in the gas phase, as found by the analysis of calorimetric data. It has been known that the solvation drove the hydrogen bonds of glycerol to be weaker and its potential surface to be fatter and that glycerol exists as an ensemble of many feasible local minima in water. The calculated populations of glycerol in the gas phase and in water are consistent with the observed values, which are better than the previously calculated ones at the G2(MP2), CBS-QB3, and SM5.42 HF/6-31G(d) levels of theory

  5. Comparison of glycerol, lactamide, acetamide and dimethylsulfoxide as cryoprotectants of Japanese white rabbit spermatozoa.

    Science.gov (United States)

    Kashiwazaki, Naomi; Okuda, Yasushi; Seita, Yasunari; Hisamatsu, Shin; Sonoki, Shigenori; Shino, Masao; Masaoka, Toshio; Inomata, Tomo

    2006-08-01

    The rabbit is considered to be a valuable laboratory animal. We compared glycerol, lactamide, acetamide, and dimethylsulfoxide (DMSO) as cryoprotectants in egg-yolk diluent of ejaculated Japanese white rabbit spermatozoa for improvement of sperm cryopreservation methods. Rabbit semen was frozen with 1.0 M glycerol, lactamide, acetamide, or DMSO in plastic straws. Forward progressive motility and plasma membrane integrity of the post-thaw spermatozoa were examined. The rate of forward progressive motile spermatozoa in lactamide (37.8 +/- 3.0%) was significantly (P<0.05) higher than in glycerol (17.0 +/- 3.3%). In addition, the rates of sperm plasma membrane integrity in lactamide and acetamide (35.9 +/- 3.3% and 30.2 +/- 3.0%, respectively) were significantly (P<0.05) higher than in glycerol (17.0 +/- 2.6%). The results indicate that 1.0 M lactamide and acetamide have higher cryoprotective effects than 1.0 M glycerol for cryopreservation of Japanese white rabbit spermatozoa.

  6. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Science.gov (United States)

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  8. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant.

    Science.gov (United States)

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai

    2017-11-01

    Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Efficient production of succinic acid in immobilized fermentation with crude glycerol from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nik Nor Aziati, A.A.

    2017-10-01

    Full Text Available The increase in the price of commercial succinic acid has necessitated the need for its synthesis from waste materials such as glycerol. Glycerol residue is a waste product of Oleochemical production which is cheaply available and a very good source of carbon. The use of immobilized cells can further reduce the overall cost of the production process. This study primarily aims to produce succinic acid from glycerol residue through the use of immobilized Escherichia coli in a batch fermentation process. The parameters which affect bacterial fermentation process such as the mass substrate, temperature, inoculum size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT method. The result of the screening process shows that a substrate (glycerol concentration of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid concentration of 117.99 g/L. The immobilized cells were found to be stable as well as retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an advantage over the free cell system. Therefore, conclude that using immobilized cells can contribute immensely to the cost-effective production of succinic acid from glycerol residue.

  10. Pharmacological investigations of Punica granatum in glycerol-induced acute renal failure in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Amteshwar Jaggi; Singh, Nirmal

    2011-09-01

    The present study was designed to investigate the ameliorative potential and possible mechanism of hydroalcoholic extract of flowers of P. granatum in glycerol-induced acute renal failure (ARF) in rats. The rats were subjected to rhabdomyolytic ARF by single intramuscular injection of hypertonic glycerol (50% v/v; 8 ml/kg) and the animals were sacrificed after 24 hours of glycerol injection. The plasma creatinine, blood urea nitrogen, creatinine clearance, and histopathological studies were performed to assess the degree of renal injury. Pretreatment with hydroalcoholic extract of flowers of P. granatum (125 and 250 mg/kg p.o. twice daily for 3 days) significantly attenuated hypertonic glycerol-induced renal dysfunction in a dose-dependent manner. BADGE (Bisphenol-A-diglycidyl ether) (30 mg/kg), a peroxisome proliferator-activated receptor (PPAR)-γ antagonist, and N(omega)-nitro-l-arginine-methyl ester (L-NAME) (10, 20, and 40 mg/kg), nitric oxide synthase inhibitor, were employed to explore the mechanism of renoprotective effects of Punica granatum. Administration of BADGE (30 mg/kg) and L-NAME (40 mg/kg) abolished the beneficial effects of P. granatum in glycerol-induced renal dysfunction. Hydroalcoholic extract of flowers of P. granatum has ameliorative potential in attenuating myoglobinuric renal failure and its renoprotective effects involve activation of PPAR-γ and nitric oxide-dependent signaling pathway.

  11. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions.

    Science.gov (United States)

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2013-12-18

    The natural moisturizing factor (NMF) is a group of hygroscopic molecules that is naturally present in skin and protects from severe drying. Glycerol and urea are two examples of NMF components that are also used in skin care applications. In the present study, we investigate the influence of glycerol and urea on the permeability of a model drug (metronidazole, Mz) across excised pig skin membranes at different hydrating conditions. The degree of skin hydration is regulated by the gradient in water activity across the membrane, which in turn depends on the water activity of the formulation in contact with the skin membrane. Here, we determine the water activity of all formulations employed using an isothermal calorimetric method. Thus, the gradient in water activity is controlled by a novel experimental set-up with well-defined boundary conditions on both sides of the skin membrane. The results demonstrate that glycerol and urea can retain high steady state flux of Mz across skin membranes at dehydrating conditions, which otherwise would decrease the permeability due to dehydration. X-ray diffraction measurements are performed to give insight into the effects of glycerol and urea on SC molecular organization. The novel steady state flux results can be related to the observation that water, glycerol, and urea all affect the structural features of the SC molecular components in a similar manner. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Potential of glycerol and soybean oil for bioremediation of weathered oily-sludge contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, T.C.F.; Franca, F.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: fpfranca@eq.ufrj.br; Oliveira, F.J.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-04-15

    The bioremediation of petroleum-contaminated soil was investigated on laboratory scale. This work evaluated the effect of co-substrate addition in tropical climate soil highly contaminated with oily residue. Glycerol and soybean oil were used as auxiliary co-substrates for contaminant degradation. Three different concentrations of co-substrate were tested, and the experiments were carried out over 60 days. The following parameters were monitored: humidity, pH, total heterotrophic bacteria, total fungi, total petroleum hydrocarbons (TPH), and the concentrations of benzo[a]pyrene and chrysene. The soil supplementation with renewable co-substrates improved the efficiency of the biodegradation TPH, with removals of 85% and 83% for glycerol and soybean oil, respectively, compared to a 55% removal yielded by the biodegradation process without supplementation. The use of glycerol increased Chrysene and Benzo[a]pyrene biodegradation by 50%, while soybean oil supplementation increased their removal by 36%. (author)

  13. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    Directory of Open Access Journals (Sweden)

    Elena Vlad

    2012-01-01

    Full Text Available Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  14. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    Directory of Open Access Journals (Sweden)

    J. P. Bender

    2008-09-01

    Full Text Available This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE, liquid-liquid (LLE and vapor-liquid-liquid (VLLE equilibrium were recorded. It was experimentally observed that, at a given temperature and surfactant content, an increase in the concentration of glycerol/oil ratio led to a pronounced increase in the slope of the liquid-liquid coexistence curve. A comparison with results reported for the same system but using propane as solvent showed that much lower pressure transition values are obtained when using n-butane.

  15. Biodiesel Reactor Design with Glycerol Separation to Increase Biodiesel Production Yield

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2013-09-01

    Full Text Available The study consisted of reactor design used for transesterification process, effect of glycerol separation ontransesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed byintegrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that thereactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i the increase of biodiesel productionfrom 42.37% to 49.34%, and (ii the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering.

  16. Effects of a physiological GH pulse on interstitial glycerol in abdominal and femoral adipose tissue

    DEFF Research Database (Denmark)

    Gravhølt, C H; Schmitz, Ole; Simonsen, L

    1999-01-01

    .0005). Administration of GH induced an increase in interstitial glycerol in both abdominal and femoral adipose tissue (ANOVA: abdominal, P = 0. 04; femoral, P = 0.03). There was no overall difference in the response to GH in the two regions during the study period as a whole (ANOVA: P = 0.5), but during peak...... stimulation of lipolysis abdominal adipose tissue was, in absolute but not in relative terms, stimulated more markedly than femoral adipose tissue (ANOVA: P = 0. 03 from 45 to 225 min). Peak interstitial glycerol values of 253 +/- 37 and 336 +/- 74 micromol/l were seen after 135 and 165 min in femoral...... and abdominal adipose tissue, respectively. ATBF was not statistically different in the two situations (ANOVA: P = 0.7). In conclusion, we have shown that a physiological pulse of GH increases interstitial glycerol concentrations in both femoral and abdominal adipose tissue, indicating activated lipolysis...

  17. The direct effect of incretin hormones on glucose and glycerol metabolism and hemodynamics

    DEFF Research Database (Denmark)

    Karstoft, Kristian; P. Mortensen, Stefan; H. Knudsen, Sine

    2015-01-01

    The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under eu- and hyperglycemic conditions. Young, healthy males (n=10) underwent three trials in a randomized, controlled, cross-over study. Each trial c...... hyperglycemia, GIP increases femoral artery blood flow with no effect on glucose metabolism, whereas GLP-1 increases glucose disposal, potentially, however, due to increased insulin levels....... consisted of a 2-stage (eu- and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism were measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial and common carotid artery blood flow...... or glycerol kinetics were seen during euglycemia, whereas hyperglycemia resulted in increased GIR and glucose rate of disappearance (Rd) during GLP-1 compared to CON and GIP (Plevels, no differences between trials were seen for GIR or glucose Rd. Besides...

  18. Effect of pressure on the α relaxation in glycerol and xylitol

    Science.gov (United States)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  19. Supply Chain Optimization of Integrated Glycerol Biorefinery: GlyThink Model Development and Application

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Carvalho, Ana; Gernaey, Krist

    2017-01-01

    To further advance the development and implementation of glycerol-based biorefinery concepts, it is critical to analyze the glycerol conversion into high value-added products in a holistic manner, considering both production as well as the logistics aspects related to the supply chain structure...... is able to identify operational decisions, including locations, capacity levels, technologies, and product portfolio, as well as strategic decisions such as inventory levels, production amounts, and transportation to the final markets. Several technologies are considered for the glycerol valorization...... to high value-added products. Existing countries with major production and consumption of biodiesel in Europe are considered as candidates for the facility sites and demand markets, and their spatial distribution is also carefully studied. The results showed that (i) the optimal solution that provides...

  20. The effects of peroral glycerol on plasma osmolarity in diabetic patients and healthy individuals

    DEFF Research Database (Denmark)

    Thornit, Dorte Nellemann; Sander, Birgit; la Cour, Morten

    2009-01-01

    Glycerol is used as a peroral treatment of increased intraocular and intracranial pressure due to its osmotic effect despite the potential increase in blood pressure and blood glucose. We examined the effects of peroral glycerol in diabetic patients and healthy individuals on blood pressure......, capillary glucose, and plasma osmolarity. On two separate days, 15 diabetic patients ingested glycerol in doses of 855 and 1710 mg/kg body weight in a randomised, unmasked sequence. Five healthy individuals ingested a dose of 1710 mg/kg body weight. Mean arterial blood pressure (MAP), capillary glucose (CG......, non-significant increase occurred in blood pressure. Maximal DeltaCG was approximately 1 mM irrespective of the dose and presence of diabetes (p > 0.1). The pOSM response was analysed with a kinetic model and found independent of the presence of diabetes (p = 0.6). The maximal fitted DeltapOSM was 12...

  1. Modelling of pyrolysis and combustion of gluten-glycerol-based bioplastics.

    Science.gov (United States)

    Gómez-Martínez, D; Barneto, A G; Martínez, I; Partal, P

    2011-05-01

    Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten-glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Differences in [14C]glycerol utilization in normal and familial hypercholesterolemic fibroblasts

    International Nuclear Information System (INIS)

    Shireman, R.B.; Durieux, J.

    1991-01-01

    It is known that cultured fibroblasts from familial hypercholesterolemia (FH) patients lack the normal cell receptor for low density lipoprotein (LDL) and that the absence of receptor-mediated transport of LDL cholesterol into these cells results in increased cellular synthesis of cholesterol. After 20 h perincubation in lipid-free medium, cultured FH fibroblasts incorporated significantly greater amounts of [ 14 C]glycerol into cellular lipids than did normal fibroblasts. Relative to the control medium which contained only bovine serum albumin (BSA), preincubation with 5% fetal bovine serum or 50 micrograms LDL/ml decreased [ 14 C]glycerol incorporation by both cell types. FH cells utilized more [ 14 C]glycerol for phospholipid synthesis and less for triglyceride synthesis than normal cells. This study indicates that LDL may be important in the transport of glycerides, as well as cholesterol, to cells

  3. Potential of Diverse Prokaryotic Organisms for Glycerol-based Polyhydroxyalkanoate Production

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-06-01

    Full Text Available The potential and performance of various Gram-negative, Gram-positive and archaeal wild type microorganisms, and bacterial mixed cultures, as well as the application of genetically engineered strains as whole-cell biocatalysts for glycerol-based polyhydroxyalkanoate production are analyzed and assessed. This encompasses the comparison of growth and polyhydroxyalkanoate accumulation kinetics, thermo-mechanical properties of isolated glycerol-based polyhydroxyalkanoate of different composition on the monomeric level, and the presentation of mathematical models developed to describe glycerol-based polyhydroxyalkanoate production processes. For all these aspects, the article provides a detailed compilation of the contemporary state of knowledge, and gives an outlook to expected future developments.

  4. Comparison of chromatographic methods for the determination of bound glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Foglia, T.A.; Jones, K.C.; Nunez, A.; Phillips, J.G. [U.S. Dept. of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA (United States); Mittelbach, M. [Inst. for Chemistry, Univ. of Graz, Graz (Austria)

    2004-09-01

    An important fuel criterion for biodiesel is bound glycerol, which is a function of the residual amount of triglycerides and partial glycerides in the biodiesel. Either high-temperature gas chromatography or high performance liquid chromatography can be used for determining these minor but important components in biodiesel. In this paper we have conducted a statistical study on the accuracy of the two methods for ascertaining the bound glycerol in biodiesel fuels obtained from different feedstocks. Analysis of variance showed that with one exception, namely diacylglycerols in some soy oil based biodiesel, there was no statistical difference in bound glycerol for the biodiesel samples analyzed or a difference between methods. Operationally, the high performance liquid chromatographic method is superior to the high temperature gas chromatographic method in that it requires no sample derivatization, has shorter analysis times, and is directly applicable to most biodiesel fuels. (orig.)

  5. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data anlysis

    DEFF Research Database (Denmark)

    Salazar, Margarita Pena; Vongsangnak, Wanwipa; Panagiotou, Gianni

    2009-01-01

    Glycerol is catabolized by a wide range of microorganisms including Aspergillus species. To identify the transcriptional regulation of glycerol metabolism in Aspergillus, we analyzed data from triplicate batch fermentations of three different Aspergilli (Aspergillus nidulans, Aspergillus oryzae...... and Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led...... to the identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A...

  6. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  7. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    Science.gov (United States)

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  8. Ultraviolet stimulated melanogenesis by human melanocytes is augmented by di-acyl glycerol but not TPA

    International Nuclear Information System (INIS)

    Friedmann, P.S.; Wren, F.E.; Matthews, J.N.

    1990-01-01

    Epidermal melanocytes (MC) synthesize melanin in response to ultraviolet radiation (UVR). The mechanisms mediating the UV-induced activation of melanogenesis are unknown but since UVR induces turnover of membrane phospholipids generating prostaglandins (PGs) and other products, it is possible that one of these might provide the activating signal. We have examined the effects of prostaglandins (PGs) E1, E2, D2, F2 alpha, and di-acyl glycerol upon the UV-induced responses of cultured human MC and the Cloudman S91 melanoma cell line. The PGs had little effect on unirradiated cells and did not alter the response to UVR in either human MC or S91 melanoma cells. However, a synthetic analogue of di-acyl glycerol, 1-oleyl 2-acetyl glycerol (OAG), caused a significant (P less than 0.0001), dose-related augmentation of melanin content both in human MC (seven-fold) and S91 cells (three-fold). UVR caused a significant augmentation of the OAG-induced melanogenesis of both human MC and S91 cells. Since OAG is known to activate protein kinase C, it was possible that the observed modulation of the UVR signal could be via that pathway. Di-octanoyl glycerol, another di-acyl glycerol, which activates kinase C, caused a small (70%) increase in melanogenesis in MC which was not altered by UVR. However, 12-0 tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C, had no significant effect on either basal or UV-induced melanin synthesis in either cell type. These data suggest that the UV-induced signal activating melanogenesis could be mediated by di-acyl glycerol. Furthermore, they imply that the signal is transduced via an alternative, pathway that might be independent of protein kinase C

  9. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol.

    Science.gov (United States)

    Santana, Renata Ferreira; Bonomo, Renata Cristina Ferreira; Gandolfi, Olga Reinert Ramos; Rodrigues, Luciano Brito; Santos, Leandro Soares; Dos Santos Pires, Ana Clarissa; de Oliveira, Cristiane Patrícia; da Costa Ilhéu Fontan, Rafael; Veloso, Cristiane Martins

    2018-01-01

    Biodegradable films based on starches from different botanical sources exhibited physicochemical and functional properties which were related with the starch characteristics. However, had inadequate mechanical properties and were hard and brittle. In this research, jackfruit seed starch plasticized with glycerol were developed and characterized. The starch and glycerol concentrations ranged from 2 to 6% w/w and 20 to 60 g/100 g starch, respectively. Bioplastics were obtained by the casting method and characterized in terms of color, mechanical properties, solubility, water vapor permeability ( WVP ), morphology and free energy of the hydrophobic interaction. Electronic micrographics showed the presence of some intact starch granules. The bioplastics were hydrophilic and those of 6% starch and 40% glycerol were the most hydrophilic ([Formula: see text] = 41.35 mJ m -1 ). The solubility of the films presented a direct relationship with the starch concentration ranging from 16.42 to 23.26%. Increased opacity and color difference were observed with increasing starch concentration. The WVP ranged from 1.374 × 10 -3 to 3.07 × 10 -4  g m/day m 2 which was positively related with the concentration of starch and glycerol. Tensile strength, percent elongation and Young's Modulus indicated that the jackfruit starch and glycerol provided a film with good mechanical properties. The results replaced that jackfruit starch can be used to develop films, with low opacity, moderate WVP and relatively high mechanical stability, by using glycerol in the gelatinized starch dispersions.

  10. Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016.

    Science.gov (United States)

    Ricci, Maria Antonietta; Russo, Annamaria; Pisano, Isabella; Palmieri, Luigi; de Angelis, Maria; Agrimi, Gennaro

    2015-06-01

    Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3- propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a well-known probiotic, was able to efficiently carry out this bioconversion. Several process strategies were employed to improve this process. CO(2+) addition to the fermentation medium, led to a high product titer (46 g/l) of 1,3-PDO and to improved biomass synthesis. L. reuteri DSM 20016 produced also ca. 3 μg/g of cell dry weight of vitamin B12, conferring an economic value to the biomass produced in the process. Incidentally, we found that L. reuteri displays the highest resistance to CO(2+) ions ever reported for a microorganism. Two waste materials (crude glycerol from biodiesel industry and spruce hydrolysate from paper industry) alone or in combination were used as feedstocks for the production of 1,3-PDO by L. reuteri DSM 20016. Crude glycerol was efficiently converted into 1,3-PDO although with a lower titer than pure glycerol (-18%). Compared with the fermentation carried out with pure substrates, the 1,3- PDO produced was significantly lower (40.7 vs. 24.2 g/l) using cellulosic hydrolysate and crude glycerol, but strong increases of the maximal biomass produced (+27%) and of the glucose consumption rate (+46%) were found. The results of this study lay the foundation for further investigations to exploit the biotechnological potential of L. reuteri DSM 20016 to produce 1,3-PDO and vitamin B12 using industry byproducts.

  11. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste

    Directory of Open Access Journals (Sweden)

    Almeida João R M

    2012-07-01

    Full Text Available Abstract The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  12. Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilapia.

    Science.gov (United States)

    da Costa, Diego Vicente; Dias, Jorge; Colen, Rita; Rosa, Priscila Vieira; Engrola, Sofia

    2017-04-01

    This study investigated the effect of dietary glycerol on the metabolism of juvenile tilapia (Oreochromis mossambicus) and to determine its metabolic fate. The experimental diets contained 0% (Group CON), 5% (Group G5) and 15% glycerol (Group G15) and were fed for 40 d to apparent satiation, three times a day. For the metabolism trials, six fish from each treatment were randomly chosen and tube-fed with five pellets labelled with 14 C-glycerol [ 14 C(U)] in order to evaluate the absorption, catabolism, retention and partition of glycerol in muscle and liver. Group G5 presented the highest 14 C-glycerol retention and the lowest catabolism, with no significant differences between Groups CON and G15. In Group CON, the highest percentage of 14 C was incorporated in muscle lipids; with no significant differences between Groups G5 and G15. Furthermore, no treatment effects were found for hepatic 14 C-lipid and for 14 C in hepatic and muscle non-lipid extract. In the non-lipid and non-protein fraction, the highest radioactivity was measured in livers of Group G5, however no significant differences were found for this fraction between Groups CON and G15 in liver and for all treatments in muscle. The results of the present study can have practical implications in diet formulations for tilapia and for other aquaculture species with similar feeding pattern since juvenile tilapia are able to metabolise dietary glycerol into lipids, protein and/or carbohydrates and to use it as energy source.

  13. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  14. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    Science.gov (United States)

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  15. Effects of 2-deoxy-D-glucose, oligomycin and theophylline on in vitro glycerol metabolism in rat adipose tissue: response to insulin and epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, M C; Herrera, E [Barcelona Univ. (Spain). Catedra de Fisiologia General

    1976-01-01

    The effects of 2-deoxy-D-glucose (2DG), oligomycin and theophylline on the in vitro production and metabolism of glycerol and its response to insulin and epinephrine were studied in epididymal fat pads from fed rats. 2-DG failed to affect basic or epinephrine-stimulated glycerol production but decreased the uptake of 1-/sup 14/C-glycerol by the tissue and its conversion to glyceride-glycerol. Oligomycin also failed to affect the basic production of glycerol, but it inhibited the affect of epinephrine on this parameter as well as the uptake and utilization of 1-/sup 14/C-glycerol. Theophylline enhanced the production of glycerol by the tissue, and this effect was not further augmented by epinephrine. Theophylline also inhibited the uptake and utilization of 1-/sup 14/C-glycerol; the most pronounced effect of theophylline was observed in the formation of /sup 14/C-fatty acids from 1-/sup 14/C-glycerol in the presence of glucose. Insulin, but not epinephrine, decreased the inhibitory effect of theophylline on glycerol utilization. It is concluded that these compounds affect the ability of adipose tissue to metabolize glycerol more intensely than the ability to release it through lipolysis. The pathway for glycerol utilization in adipose tissue appears to be more sensitive to changes in the availability of ATP than the mechanisms for the release of glycerol from the tissue.

  16. In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil

    DEFF Research Database (Denmark)

    Xu, Yuan; Nordblad, Mathias; Nielsen, Per M.

    2011-01-01

    Immobilized lipases can be used in biodiesel production to overcome many disadvantages of the conventional base-catalyzed process. However, the glycerol by-product poses a potential problem for the biocatalytic process as it is known to inhibit immobilized lipases, most likely by clogging...... of the catalyst particles. In this paper, this negative effect was further investigated and confirmed in ethanolysis of rapeseed oil. A dyeing method was developed for in situ visualization of glycerol in order to study its partitioning and accumulation during the ethanolysis reaction. The method was used...

  17. Thermal Reshaping of Gold Nanorods in Micellar Solution of Water/Glycerol Mixtures

    Directory of Open Access Journals (Sweden)

    Al Sayed A. Al-Sherbini

    2010-01-01

    Full Text Available Gold nanorods (Nds with aspect ratios of 4, 3.5, and 2.8 were prepared by the electrochemical method. The nanorods were thermally studied in binary solvents of aqueous glycerol at different ratios (25%–75%. The results illustrated that the longitudinal surface plasmon resonance (SPL is strongly dependent on the dielectric constant. The maximum absorption is red shifted with increasing the glycerol/water ratio. This was attributed to the decreasing value of the dielectric constant of the binary solvents. Moreover, by increasing the temperatures, the results showed relative instability of the gold nanorods. This attributed to the relative instability of the micelle capping the nanorods.

  18. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    OpenAIRE

    Bender,J. P.; Junges,A.; Franceschi,E.; Corazza,F. C.; Dariva,C.; Oliveira,J. Vladimir; Corazza,M. L.

    2008-01-01

    This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE), liquid-liquid (L...

  19. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, M.P.; Vaheri, M.E.O.; Kaupinen, V.S.

    1979-01-01

    Production and release of cellulolytic enzymes by T. reesei QM 9414 were studied under induced and non-induced conditions and glycerol, respectively, as the only C source. There was a base level of cell debris-bound hydrolytic activity against filter paper and p-nitrophenyl glycoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper- and CMC-hydrolyzing enzymes, which were actively released even in the early stages of cultivation. Beta-Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.

  20. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    Science.gov (United States)

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  1. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Bornø, Andreas; Foged, Lene; van Hall, Gerrit

    2014-01-01

    The present study describes a new liquid chromatography tandem mass spectrometry method for high-throughput quantification of glucose and glycerol in human plasma using stable isotopically labeled internal standards and is suitable for simultaneous measurements of glucose and glycerol enrichments...... of variation were 2.0% and 9.7%, respectively. After derivatization, plasma samples were stable for at least 14 days. In conclusion, we have developed and validated a novel, accurate, and sensitive high-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of glucose...

  2. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    OpenAIRE

    Sreerangappa, Ramesh; Debecker, Damien P.

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced from an aqueous solution, by a one-pot spray drying route. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The new catalyst does not leach and is recyclable. NaAlO2 microspheres outcompete commercially available NaAlO2 as well as o...

  3. Flow within an evaporating glycerol-water binary droplet: Segregation by gravitational effects

    Science.gov (United States)

    Li, Yaxing; Lv, Pengyu; Diddens, Christian; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2017-11-01

    The flow within an evaporating glycerol-water binary droplet with Bond number Bo PIV for both sessile and pendant droplets during evaporation process, which surprisingly show opposite radial flow directions - inward and outward, respectively. This observation clearly reveals that gravitational effects play a crucial role in controlling flow fields within the evaporating droplets. We theoretically analyse that this gravity-driven effect is caused by density gradients due to the local concentration difference of glycerol within the droplet triggered by different volatilities of the two components during evaporation. Finally, for confirmation, we numerically simulate the process, revealing a good agreement with experimental results.

  4. Study of the correlation between the temperature dependence of viscosity and excess quantities in glycerol

    International Nuclear Information System (INIS)

    Magazu, Salvatore; Migliardo, Federica

    2008-01-01

    The aim of the present paper is to investigate the behaviour of the kinematic viscosity, mean-square displacement and free volume of glycerol in order to theoretically and experimentally evaluate the fragility degree. Starting from the dependence of viscosity on temperature, the behaviour of the mean-square displacement and free volume of glycerol is analysed in order to point out the linear relationships between the logarithm of viscosity and the excess mean-square displacement and the excess free volume. As a conclusion, two fragility definitions, based on the observed links, are discussed

  5. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  6. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao.

    Science.gov (United States)

    Zhang, Yufan; Smith, Philip; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    Previous work has implicated glycerol-3-phosphate (G3P) as a mobile inducer of systemic immunity in plants. We tested the hypothesis that the exogenous application of glycerol as a foliar spray might enhance the disease resistance of Theobroma cacao through the modulation of endogenous G3P levels. We found that exogenous application of glycerol to cacao leaves over a period of 4 days increased the endogenous level of G3P and decreased the level of oleic acid (18:1). Reactive oxygen species (ROS) were produced (a marker of defence activation) and the expression of many pathogenesis-related genes was induced. Notably, the effects of glycerol application on G3P and 18:1 fatty acid content, and gene expression levels, in cacao leaves were dosage dependent. A 100 mm glycerol spray application was sufficient to stimulate the defence response without causing any observable damage, and resulted in a significantly decreased lesion formation by the cacao pathogen Phytophthora capsici; however, a 500 mm glycerol treatment led to chlorosis and cell death. The effects of glycerol treatment on the level of 18:1 and ROS were constrained to the locally treated leaves without affecting distal tissues. The mechanism of the glycerol-mediated defence response in cacao and its potential use as part of a sustainable farming system are discussed. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  7. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    NARCIS (Netherlands)

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  8. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    Science.gov (United States)

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  9. CHANGES OF GLYCEROL CONTENT IN DIAPAUSE LARVAEOF THE ORANGE WHEAT BLOSSOM MIDGE, SITODIPLOSIS MOSELLANA (GEHIN) IN VARIOUS SEASONS

    Institute of Scientific and Technical Information of China (English)

    Jun-xiangWu; FengYuan

    2004-01-01

    The glycerol contents in diapause larvae of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin), collected from various seasons, were measured. The results showed that there was less glycerol content in larvae during living on the wheat head. Content of glycerol began to increase significantly when the larvae left the wheat head and entered the soil. A change trend of upper- lower- upper- lower in larvae glycerol contents during diapause in soil was observed from June to April of next year. More glycerol could be examined in larvae collected in summer and winter than in spring and autumn. There was not more glycerol in cocooned larvae than that in non-cocooned larvae during various seasons from the point of statistics. Comparing the glycerol content of larvae being diapause in the first year with that of larvae in the second year, there was yet no obvious difference when larvae were collected in the same season belonged to different years. Therefore, it is shown that the content of glycerol in larvae of the wheat midge in diapause is affected mainly by the seasons or diapause intensity.

  10. Synthesis of bio-additives: transesterification of ethyl acetate with glycerol using homogeneous or heterogeneous acid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Bruno A.; Pereira, Vera Lucia P., E-mail: patrocinio@nppn.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisas de Produtos Naturais

    2013-01-15

    A new catalytic route with potential practical interest to sustainable production of bioadditives from glycerol is described. Ethyl acetate was transesterified with glycerol, in the ratio glycerol:EtOAc 1:10, at 25 or 90 deg C using 0.1 equiv.of H{sub 2}SO{sub 4} or TsOH, as homogeneous catalysts. H{sub 2}SO{sub 4} led to the total glycerol consumption in 2 h. In the equilibrium, attained in 9 h, 100% yield of a diacetin:triacetin (55:45) mixture was formed. Using Amberlyst Registered-Sign 15 dry and Amberlyst Registered-Sign 16 wet in 1:30 glycerol:EtOAc ratio and reflux at 90 Degree-Sign C the total glycerol consumption was achieved in 2 and 10h, respectively. The lower reactivity of Amberlyst-16 wet was explained in terms of deactivation of acid sites and decrease in glycerol diffusion to the inner resin pores, both factors caused by adsorbed water. The kinetics of glycerol transformation and product distribution in the equilibrium in relation to the H{sub 2}SO{sub 4}, Amberlyst-15 (dry) and Amberlyst-16 (wet) catalyzed reactions were measured. (author)

  11. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    International Nuclear Information System (INIS)

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  12. Determination of steady state and nonsteady-state glycerol kinetics in humans using deuterium-labeled tracer

    International Nuclear Information System (INIS)

    Beylot, M.; Martin, C.; Beaufrere, B.; Riou, J.P.; Mornex, R.

    1987-01-01

    Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance rate of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1

  13. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts

    International Nuclear Information System (INIS)

    Algoufi, Y.T.; Akpan, U.G.; Kabir, G.; Asif, M.; Hameed, B.H.

    2017-01-01

    Highlights: • Catalytic transesterification with dimethyl carbonate (DMC) converts glycerol into glycerol carbonate (GLC). • DMC and Sr_x–Al catalysts affect the reaction mechanisms that convert glycerol into GLC. • The morphology and textural structure of Sr_x–Al catalysts perpetuate catalytic activity. • The atomic ratio of Sr/Al has a unique effect on Sr–Al catalytic activity. • Sr_0_._5–Al catalyst exhibits limited leaching after five reaction cycles. - Abstract: The high demand for renewable energy has led to the upsurge of methanol-assisted biodiesel synthesis. Therefore, glycerol as a byproduct entered the waste stream given the oversupply of biodiesel to the market. The dimethyl carbonate (DMC)-assisted transesterification of glycerol on a catalyst has been a popular approach for converting glycerol into valuable glycerol carbonate (GLC). The synthesis of GLC from the DMC-assisted transesterification of glycerol on mixed oxide catalysts (Sr_x–Al) with different Sr/Al ratios was examined in this study. A glycerol conversion of 99.4% and a GLC yield of 100% were achieved in a catalyst with Sr/Al = 0.5 (Sr_0_._5–Al). Both values are higher than those in catalysts synthesized with Sr/Al = 0.25 and 0.75. The Sr_0_._5–Al catalyst withstood five transesterification reaction cycles without a serious deactivation induced by the leaching of active SrO. Therefore, the Sr_0_._5–Al catalyst is suitable for consecutive uses in the DMC-assisted transesterification of glycerol with DMC into GLC.

  14. Oxidation of Glycerol and Propanediols in Methanol over Heterogeneous Gold Catalysts

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Anders Theilgaard; Marchetti, Jorge

    2008-01-01

    Aerobic oxidation of glycerol over metal oxide supported gold nanoparticles in methanol results in the formation of dimethyl mesoxalate in selectivities up to 89% at full conversion. The oxidative esterification takes place in methanol, acting both as solvent and reactant, and in the presence of ...

  15. Glycerol production by Oenococcus oeni during sequential and simultaneous cultures with wine yeast strains.

    Science.gov (United States)

    Ale, Cesar E; Farías, Marta E; Strasser de Saad, Ana M; Pasteris, Sergio E

    2014-07-01

    Growth and fermentation patterns of Saccharomyces cerevisiae, Kloeckera apiculata, and Oenococcus oeni strains cultured in grape juice medium were studied. In pure, sequential and simultaneous cultures, the strains reached the stationary growth phase between 2 and 3 days. Pure and mixed K. apiculata and S. cerevisiae cultures used mainly glucose, producing ethanol, organic acids, and 4.0 and 0.1 mM glycerol, respectively. In sequential cultures, O. oeni achieved about 1 log unit at 3 days using mainly fructose and L-malic acid. Highest sugars consumption was detected in K. apiculata supernatants, lactic acid being the major end-product. 8.0 mM glycerol was found in 6-day culture supernatants. In simultaneous cultures, total sugars and L-malic acid were used at 3 days and 98% of ethanol and glycerol were detected. This study represents the first report of the population dynamics and metabolic behavior of yeasts and O. oeni in sequential and simultaneous cultures and contributes to the selection of indigenous strains to design starter cultures for winemaking, also considering the inclusion of K. apiculata. The sequential inoculation of yeasts and O. oeni would enhance glycerol production, which confers desirable organoleptic characteristics to wines, while organic acids levels would not affect their sensory profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simultaneous production of hydrogen and ethanol from waste glycerol by Enterobacter aerogenes KKU-S1

    DEFF Research Database (Denmark)

    Reungsang, Alissara; Sittijunda, Sureewan; Angelidaki, Irini

    2013-01-01

    Factors affecting simultaneous hydrogen and ethanol production from waste glycerol by a newly isolated bacterium Enterobacter aerogenes KKU-S1 were investigated employing response surface methodology (RSM) with central composite design (CCD). The Plackett-Burman design was first used to screen...

  17. Production of Transglutaminase by Streptoverticillium ladakanum NRRL-3191 Using Glycerol as Carbon Source

    Directory of Open Access Journals (Sweden)

    Simón J. Téllez-Luis

    2004-01-01

    Full Text Available The enzyme transglutaminase (TG catalyses the formation of covalent bonds between adjacent proteins, thereby improving the gel structure of proteins and has important applications for the food industry. The aims of this work were: (i to elucidate the effect of agitation speed during the biotechnological production of TG by Streptoverticillium ladakanum NRRL-3191 using glycerol as carbon source; and (ii to improve TG production by optimising the composition of media based on glycerol, xylose and casein. An agitation speed of 250 rpm and a fermentation time of 72 h resulted in the optimal enzymatic activity (0.628 U/mL with a productivity of 0.087 U/(mL·h. The composition of media with glycerol, xylose and casein were optimised using an experimental design to improve TG production. The model predicts that the maximum TG activity (0.725 U/mL can be obtained using glycerol 50.5 g/L and casein 20 g/L without the addition of xylose.

  18. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    International Nuclear Information System (INIS)

    Bouchet, M I De Barros; Matta, C; Le-Mogne, Th; Martin, J Michel; Zhang, Q; III, W Goddard; Kano, M; Mabuchi, Y; Ye, J

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13 C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp 3 ) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp 2 and sp 1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp 1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  19. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol

    NARCIS (Netherlands)

    Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J.M. Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2017-01-01

    Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and

  20. Glycerol valorization: dehydration to acrolein over silica-supported niobia catalysts

    NARCIS (Netherlands)

    Shiju, N.R.; Brown, D.R.; Wilson, K.; Rothenberg, G.

    2010-01-01

    The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption),

  1. Synthesis of Acrolein from Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration

    Directory of Open Access Journals (Sweden)

    Akhmad Zainal Abidin

    2016-02-01

    Full Text Available Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration. The catalyst was prepared by three different methods: hydrothermal (catalyst A, deposition at Fe/P = 1.15 (catalyst B, and deposition at Fe/P = 1.20 (catalyst C. The experimental reaction temperature was varied at 220, 240 and 260 °C under constant atmospheric pressure. The results showed that catalyst C provided the best yield (91%, followed by catalyst A (90% and catalyst B (82%. The increasing reaction temperature showed a tendency to increase the yield of acrolein, while the presence of oxygen reduced the yield of acrolein and allowed the reaction to produce more side products such as glycerol propanal, acetaldehyde, and propionate. Catalyst reuse without any regeneration resulted in a yield profile of acrolein that continued to decline.

  2. Improvement in solvent tolerance by exogenous glycerol in Pseudomonas sp. BCNU 106.

    Science.gov (United States)

    Choi, H J; Lim, B R; Park, Y J; Joo, W H

    2017-08-01

    Solvent hypertolerant Pseudomonas sp. BCNU 106 still has some underlying growth limitation in solvents. Therefore, efficient mass cultivation methods are needed to pursue its applications in biotechnology. Pseudomonas sp. BCNU 106 was cultured in a medium supplemented with 0·05 mol l -1 glycerol and cell survival was monitored during its cultivation in the presence of 1% (v/v) toluene. Exogenously supplemented glycerol provided more protection against damage caused by toluene stress and conferred higher solvent tolerance of Pseudomonas sp. BCNU 106 to toluene compared to control Pseudomonas sp. BCNU 106 without the supplementation of glycerol. This low-cost mass cultivation method can be used to efficiently apply solvent-tolerant bacteria in biotransformation and biodegradation. Protection against toluene and improvement in bacterial cell growth by supplementation of glycerol in the presence of toluene are demonstrated in this study. This result can be used to solve growth-related hindrances of solvent-tolerant bacteria and establish their low-cost mass cultivation, thereby broadening their industrial and environmental applications. © 2017 The Society for Applied Microbiology.

  3. Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol

    NARCIS (Netherlands)

    Sugiyama, K.; Calzavarini, E.; Grossmann, S.; Lohse, Detlef

    2007-01-01

    We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number Ra up to 108 (for fixed temperature difference �

  4. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates.

    Science.gov (United States)

    Delabona, Priscila da Silva; Lima, Deise Juliana; Robl, Diogo; Rabelo, Sarita Cândida; Farinas, Cristiane Sanchez; Pradella, José Geraldo da Cruz

    2016-05-01

    The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.

  5. ETHANOL DEHYDRATION IN PACKED DISTILLATION COLUMN USING GLYCEROL AS ENTRAINER: EXPERIMENTS AND HETP EVALUATION

    Directory of Open Access Journals (Sweden)

    W. L. R. Souza

    Full Text Available Abstract The ethanol-water separation is very important because ethanol is widely applied in the chemical industry and its use as a fuel can reduce the pollution emitted to the air. However, anhydrous ethanol production using conventional distillation is impossible, at atmospheric pressure, due to the presence of an azeotrope. In the present work, experimental tests were carried out in order to evaluate the use of glycerol as an entrainer, in substitution of ethylene glycol in an extractive distillation. The use of glycerol is motivated by the biodiesel production units, due to the fact that it is the main byproduct and a new market is necessary to consume its overproduction. The experiments were carried out in a distillation column packed with Raschig rings, varying the glycerol/feed (ethanol and water ratio, S/F, from 0.5 to 0.9. The samples were analyzed using a digital densimeter. The results showed that glycerol was effective to promote ethanol dehydration and the presence of an azeotrope was not observed using a solvent to feed ratio (S/F equal to 0.9. Some empirical correlations were investigated to evaluate the HETP (Height Equivalent to a Theoretical Plate, and the results provided a useful tool for designing a packed bed column for ethanol-water separation.

  6. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  7. Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress

    Czech Academy of Sciences Publication Activity Database

    Pérez-Torrado, R.; Oliveira, B. M.; Zemančíková, Jana; Sychrová, Hana; Querol, A.

    2016-01-01

    Roč. 7, Mar 31 (2016), s. 435 ISSN 1664-302X R&D Projects: GA ČR(CZ) GA15-03708S EU Projects: European Commission(XE) 264717 - CORNUCOPIA Institutional support: RVO:67985823 Keywords : Saccharomyces * stress tolerance * glycerol * gene expression Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  8. An improved synthesis of 14C labelled glycerol using sodium borohydride

    International Nuclear Information System (INIS)

    Chander, H.; Ramamurthy, T.V.; Viswanathan, K.V.

    1987-01-01

    [1- 14 C]Glyceric acid has been reduced to [1(3)- 14 C]glycerol in high yields via the methyl ester of [1- 14 C]glyceric acid by sodium borohydride in the presence of t-butyl alcohol and methanol. The importance of the procedure is highlighted in relation to other procedures involving lithium aluminium hydride reduction. (author)

  9. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst

    NARCIS (Netherlands)

    Chakinala, A.G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; de Vlieger, Dennis; Seshan, Kulathuiyer; Brilman, Derk Willem Frederik

    2013-01-01

    Catalytic reforming of pure glycerol for the production of hydrogen at low temperature and short residence times in supercritical water was investigated using a bimetallic Pt–Ni catalyst supported on alumina. Initial tests were carried out to study the reforming activity of bimetallic Pt–Ni

  10. Chiral gas chromatography for the determination of 1,2-O-isopropylidene-sn-glycerol stereoisomers

    NARCIS (Netherlands)

    Dröge, M.J; Bos, R.; Woerdenbag, H.J.; Quax, Wim; Droge, MJ

    2003-01-01

    A stereospecific gas chromatography (GC) method using a (6-O-tButyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin as the chiral stationary phase has been developed and validated for the determination of the enantiomers of 1,2-O-isopropylidene-sn-glycerol (IPG), an important chiral synthon, in

  11. Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Jasiunas, Lukas; Casamassima, Luca

    2015-01-01

    quality were all invariant to the reaction temperature. By increasing the crude glycerol to aspen wood mass ratio from 0:1 to 3:1, char yield was decreased from 18.3% (only aspen wood) to 3.4%. Furthermore, the biocrude quality in terms of the effective hydrogen-to-carbon ratio (H/Ceff) was significantly...

  12. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    Science.gov (United States)

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  13. Synthesis of substituted 1,3-diesters of glycerol using wittig chemistry.

    Science.gov (United States)

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Bryant, Joseph

    2014-05-01

    1,3-di-O-Cinnamoyl-glycerol is a natural compound isolated from a Jamaican medicinal plant commonly referred to as Ball moss (Tillandsia recurvata). The synthesis of this compound was achieved via a Wittig chemistry process. The synthetic approach started with acylation of a di-protected glycerol with cinnamoyl chloride, deprotection of the glycerol moiety, reaction of the primary alcohol with bromo acetylbromide followed by treatment with triphenyl phosphine to give the corresponding phosphonium bromide. The phosphonium bromide was then converted in situ to the Wittig reagent which is the basis for a novel route to 1,3-di-O-cinnamoyl glycerol. Four analogs were also synthesized, three of which are new and are being reported in this article for the first time. The new compounds include 3-(3,4-diemthoxy-phenyl)-acrylic acid 2-hydroxy-3-(3-ptolyl-acryloyloxy)-propyl ester (3), 2-acetoxy-5-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop- 1-enyl)benzoic acid (4) and 4-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop-1-enyl)benzoic acid (5). The compounds showed no activity in our anticancer assay.

  14. Inhibition of mitochondrial glycerol-3-phosphate dehydrogenase by alpha-tocopheryl succinate

    Czech Academy of Sciences Publication Activity Database

    Rauchová, Hana; Vokurková, Martina; Drahota, Zdeněk

    2014-01-01

    Roč. 53, AUG (2014), s. 409-413 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : brown adipose tissue mitochondria * oxygen consumption * glycerol-3-phosphate * succinate * reactive oxygen species Subject RIV: ED - Physiology Impact factor: 4.046, year: 2014

  15. Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels

    DEFF Research Database (Denmark)

    Simonetti, D.A.; Rass-Hansen, Jeppe; Kunkes, E.L.

    2007-01-01

    Liquid alkanes can be produced directly from glycerol by an integrated process involving catalytic conversion to H-2/CO gas mixtures (synthesis gas) combined with Fischer-Tropsch synthesis. Synthesis gas can be produced at high rates and selectivities suitable for Fischer-Tropsch synthesis (H-2/CO...... between 1.0 and 1.6) from concentrated glycerol feed solutions at low temperatures (548 K) and high pressures (1-17 bar) over a 10 wt% Pt-Re/C catalyst with an atomic Pt : Re ratio of 1 : 1. The primary oxygenated hydrocarbon intermediates formed during conversion of glycerol to synthesis gas are ethanol...... in the liquid organic effluent stream and increasing the selectivity to C5+ alkanes by a factor of 2 ( from 0.30 to 0.60). Catalytic conversion of glycerol and Fischer-Tropsch synthesis were coupled in a two-bed reactor system consisting of a Pt-Re/C catalyst bed followed by a Ru/TiO2 catalyst bed...

  16. Edible Film from the Pectin of Papaya Skin (The Study of Cassava Starch and Glycerol Addition)

    Science.gov (United States)

    Rosida; Sudaryati; Yahya, A. M.

    2018-01-01

    The production of edible cooking made from the pectin of papaya skin with cassava starch and glycerol adition had been studied. The usage of pectin of papaya skin was one way to use papaya skin waste in order to raise its economic value. The aim of this study was to study the effect of cassava starch and glycerol concentration on the product qualities and to determine the the best treatment in making a good quality adible film and acceptable by the consumer. This research used completely randomized design in factorial patern with two factors. The first factor was cassava starch concentration (25%, 35% and 45%) and the second factor was glycerol concentration (20 %, 15% and 10). The data were analyzed by Analysis of Variance (Anova) and Duncan’s Multiple Range Test to detect the difference between the treatment. The best treatment was 25% cassava starch addition and 10% glycerol concentration which produced edible film which had moisture content of 21.16%, thickness of 0.023 mm, tensile strength of 1.900 N, elasticity of 14.223%, and vapor transmission rate of 116.963 g/m2/24 hours. So the production of edible film from papaya skin pectin was potential to be developed.

  17. Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix

    Science.gov (United States)

    Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torq...

  18. The role of glycerol transporters in yeast cells in various physiological and stress conditions

    Czech Academy of Sciences Publication Activity Database

    Dušková, Michala; Borovikova, D.; Herynková, Pavla; Rapoport, A.; Sychrová, Hana

    2015-01-01

    Roč. 362, č. 3 (2015), s. 1-8 ISSN 0378-1097 R&D Projects: GA ČR(CZ) GAP503/10/0307 Institutional support: RVO:67985823 Keywords : Saccharomyces cerevisiae * glycerol transport * desiccation * osmotic stress Subject RIV: EE - Microbiology, Virology Impact factor: 1.858, year: 2015

  19. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Science.gov (United States)

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  20. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Gerhard, R.

    2016-01-01

    A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer materialis based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets intoits matrix. The approach has two major ......, and the applicability ofthe models is discussed. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153....

  1. The effect of glycerol on regional cerebral blood flow, blood volume and oxygen metabolism

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Kobayashi, Akira; Yonekura, Yoshiharu; Nishizawa, Sadahiko.

    1989-01-01

    Using positron emission tomography with 15 O-labelled CO 2 , O 2 and CO gases, the effects of glycerol on regional cerebral blood flow (CBF), blood volume (CBV) and oxygen metabolism (CMRO 2 ) were investigated in 6 patients with meningioma accompanying peritumoral brain edema. The same study was done in 5 normal volunteers. The changes of blood gases, hematocrit and hemoglobin were also examined. After a drip infusion of glycerol, the regional CBF increased not only in the peritumoral cortex and white matter but also in the intact cortex and white matter on the contralateral side. The increase of CBF was extensive and substantially there were no regional differences. In contrast, the changes of CMRO 2 were not significant. This was derived from the increase in oxygen extraction fraction throughout extensive areas including the peritumoral area. There were no changes in CBV. Hematocrit and hemoglobin decreased to a small degree. In the normal volunteers, the same findings were noted. Thus, glycerol increases the functional reserve for cerebral oxygen metabolism, not only in the peritumoral regions but also in the intact regions. The effects of glycerol on hemodynamics and metabolism were discussed with reference to some differences from mannitol. (author)

  2. Mathematical modeling and experimental validation of Phaeodactylum tricornutum microalgae growth rate with glycerol addition

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Keli Cristiane Correia; Ribeiro, Robert Luis Lara; Santos, Kassiana Ribeiro dos; Mariano, Andre Bellin [Mariano Center for Research and Development of Sustainable Energy (NPDEAS), Curitiba, PR (Brazil); Vargas, Jose Viriato Coelho [Departament of Mechanical Engineering, Federal University of Parana (UFPR) Curitiba, PR (Brazil)

    2010-07-01

    The Brazilian National Program for Bio fuel Production has been encouraging diversification of feedstock for biofuel production. One of the most promising alternatives is the use of microalgae biomass for biofuel production. The cultivation of microalgae is conducted in aquatic systems, therefore microalgae oil production does not compete with agricultural land. Microalgae have greater photosynthetic efficiency than higher plants and are efficient fixing CO{sub 2}. The challenge is to reduce production costs, which can be minimized by increasing productivity and oil biomass. Aiming to increase the production of microalgae biomass, mixotrophic cultivation, with the addition of glycerol has been shown to be very promising. During the production of biodiesel from microalgae there is availability of glycerol as a side product of the transesterification reaction, which could be used as organic carbon source for microalgae mixotrophic growth, resulting in increased biomass productivity. In this paper, to study the effect of glycerol in experimental conditions, the batch culture of the diatom Phaeodactylum tricornutum was performed in a 2-liter flask in a temperature and light intensity controlled room. During 16 days of cultivation, the number of cells per ml was counted periodically in a Neubauer chamber. The calculation of dry biomass in the control experiment (without glycerol) was performed every two days by vacuum filtration. In the dry biomass mixotrophic experiment with glycerol concentration of 1.5 M, the number of cells was assessed similarly in the 10{sup th} and 14{sup th} days of cultivation. Through a volume element methodology, a mathematical model was written to calculate the microalgae growth rate. It was used an equation that describes the influence of irradiation and concentration of nutrients in the growth of microalgae. A simulation time of 16 days was used in the computations, with initial concentration of 0.1 g l{sup -1}. In order to compare

  3. Production of Microbial Transglutaminase on Media Made from Sugar Cane Molasses and Glycerol

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez

    2009-01-01

    Full Text Available Transglutaminase is an enzyme that catalyses an acyl transfer reaction between γ-carboxamide groups of glutaminyl residues and lysine residues in proteins. Due to this property, this enzyme is used for enhancing textural properties of protein-rich food. The transglutaminase used as food additive is obtained by microorganisms, mainly by Streptoverticillium ladakanum. On the other hand, sugar cane molasses is a viscous liquid rich in noncrystallized carbohydrates (saccharose, glucose and fructose. In this work, the feasibility of using sugar cane molasses as a carbon source for the production of microbial transglutaminase by Streptoverticillium ladakanum NRRL 3191 has been studied. Carbon sources including sugar cane molasses (60 g of total sugars per L, glycerol (60 g/L and their mixture in a ratio of 1:1 (30 g/L of each were evaluated. Time course of microbial growth, transglutaminase activity and carbon source consumption were determined every 24 h during 120 h of fermentations at three agitation speeds (200, 300 or 400 rpm. The results showed that with the increase in agitation speed, the biomass concentration increased up to 8.39 g/L in the medium containing sugar cane molasses alone or the mixture of molasses and glycerol. The highest transglutaminase activity was obtained at 400 rpm in the medium containing a mixture of molasses and glycerol, reaching 0.460 U/mL, while in the medium containing sugar cane molasses alone, the activity was 0.240 U/mL, and using glycerol alone it was 0.250 U/mL. These results show that sugar cane molasses is a suitable medium for transglutaminase production when it is combined with glycerol.

  4. Criteria for Quick and Consistent Synthesis of Poly(glycerol sebacate) for Tailored Mechanical Properties.

    Science.gov (United States)

    Li, Xinda; Hong, Albert T-L; Naskar, Nilanjon; Chung, Hyun-Joong

    2015-05-11

    Poly(glycerol sebacate) (PGS) and its derivatives make up an attractive class of biomaterial owing to their tunable mechanical properties with programmable biodegradability. In practice, however, the application of PGS is often hampered by frequent inconsistency in reproducing process conditions. The inconsistency stems from the volatile nature of glycerol during the esterification process. In this study, we suggest that the degree of esterification (DE) can be used to predict precisely the physical status, the mechanical properties, and the degradation of the PGS materials. Young's modulus is shown to linearly increase with DE, which is in agreement with an entropic spring theory of rubbers. To provide a processing guideline for researchers, we also provide a physical status map as a function of curing temperature and time. The amount of glycerol loss, obtainable by monitoring the evolution of the total mass loss and the DE during synthesis, is shown to make the predictions even more precise. We expect that these strategies can be applicable to different categories of polymers that involve condensation polymerization with the volatility of the reactants. In addition, we demonstrate that microwave-assisted prepolymerization is a time- and energy-efficient pathway to obtain PGS. For example, 15 min of microwave time is shown to be as efficient as prepolymerization in nitrogen atmosphere for 6 h at 130 °C. The quick synthesis method, however, causes a severe evaporation of glycerol, resulting in a large distortion in the monomer ratio between glycerol and sebacic acid. Consequently, more rigid PGS is produced under a similar curing condition compared to the conventional prepolymerization method. Finally, we demonstrate that the addition of molecularly rigid cross-linking agents and network-structured inorganic nanoparticles are also effective in enhancing the mechanical properties of the PGS-derived materials.

  5. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    International Nuclear Information System (INIS)

    Galera, S.; Gutiérrez Ortiz, F.J.

    2015-01-01

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO 2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO 2 -eq/kg H 2 . • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H 2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO 2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO 2 -eq per kg H 2 produced. Additionally, the environmental profile of SCWR process was compared to other H 2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H 2 and power production by SCWR of glycerol

  6. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    International Nuclear Information System (INIS)

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-01-01

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 (angstrom) resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  7. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  8. Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle.

    Directory of Open Access Journals (Sweden)

    Christopher J Pappas

    2011-07-01

    Full Text Available Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness.

  9. Synthesis of biodegradable plastic from tapioca with N-Isopropylacrylamid and chitosan using glycerol as plasticizer

    Science.gov (United States)

    Syaubari; Safwani, S.; Riza, M.

    2018-04-01

    One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.

  10. Glycerol as a carbon source for xantan production by Xanthomonas campestris isolates

    Directory of Open Access Journals (Sweden)

    Bajić Bojana Ž.

    2015-01-01

    Full Text Available The success of xanthan biosynthesis depends on several factors, most importantly the genetic potential of the production microorganism and cultivation media composition. Cultivation media composition affects the yield and quality of the desired product as well as production costs. This is why many studies focus on finding cheap alternative raw materials, especially carbon sources, to replace commercially used glucose and sucrose. In addition to the Xanthomonas campestris ATCC 13951 which is the primary industrial production microorganism, other Xanthomonas strains can produce xanthan as well. Under the same conditions, different strains produce different amounts of the biopolymer of varying quality. The aim of this paper is to compare producibility of phytopathogenic X. campestris strains, isolated from the environment with the reference X. campestris ATCC 13951 strain and to estimate the possibility of xanthan production using alternative glycerol-based media than the synthetic glucose-based media. Submerged cultivation on the medium based on glucose or glycerol (2.0 %w/v was performed using the reference strain and eight isolated X. campestris strains. In order to assess the success of biosynthesis, xanthan yield and rheological properties were determined. Strains isolated from the environment produced yields between 2.98 g/L and 12.17 g/L on the glucose-based medium and 1.68 g/L and 6.31 g/L on the glycerol-based medium. Additionally, X. campestris ATCC 13951 provided the highest yield when using glucose (13.24 g/L, as well as glycerol-based medium (7.44 g/L. The obtained results indicate that in the applied experimental conditions and using all tested strains, glycerol is viable as a carbon source for the production of xanthan.

  11. Halophilic biohydrogen and 1,3-propanediol production from raw glycerol: A genomic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kivisto, A.

    2013-11-01

    Glycerol is produced in large amounts as a by-product in biodiesel industry (10 kg per 100 kg biodiesel). By-products and waste materials are typically economical substrates for bioprocesses. Furthermore, microorganisms are able to combine the degradation of organic material with production of a wide range of metabolites and other cellular products. The current biotechnological interest of industrial glycerol lies on bioprocesses yielding environmentally friendly energy carrier molecules (hydrogen, methane, ethanol, butanol) and reduced chemicals (1,3-propanediol, dihydroxyacetone). Industrial glycerol also called as raw or crude glycerol, however, is a challenging substrate for microorganisms due to its impurities including alcohol, soaps, salts and metals. Halophiles (the salt-loving microorganisms) require salt for growth and heavy metal resistances have been characterized for numerous halophiles. Therefore, halophiles are potentially useful for the utilization of raw glycerol from biodiesel waste streams without pre-processing. Another challenge for large-scale microbial bioprocesses is a potential contamination with unfavorable microorganisms. For example, H{sub 2}-producing systems tend to get contaminated with H{sub 2}-consuming microorganisms. Extremophiles are organisms that have been adapted for life under extreme conditions, such as high salinity, high or low temperature, asidic or basic pH, dryness or high pressure. For extremophilic pure cultures contamination and thus the need to ensure a sterile environment might not be a problem due to the extreme process conditions that efficiently prevent the growth of most other bacteria. In addition, hypersaline environments (above 12 % NaCl) do not support the growth of H{sub 2} utilizing methanogens due to bioenergetic reasons. Halophilic fermentative H{sub 2} producers, on the other hand, have been shown to be active up to near salt saturation. The aims of the present study can be divided into two categories

  12. Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis.

    Science.gov (United States)

    Yen, Hong-Wei; Yang, Ya-Chun; Yu, Yi-Huan

    2012-10-01

    Single cell oils (SCO) produced from oleaginous microorganisms are a potential alternative oil feedstock for biodiesel production. The worldwide production of glycerol, a 10% (w/w) byproduct produced in the transesterfication process of oils converted to biodiesel, is increasing as more biodiesel is being produced. For the purposes of cost reduction, crude glycerol was regarded as a suitable carbon source for the cultivation of Rhodotorula glutinis. In addition to using renewable crude glycerol, waste solution collected from the brewing company (called thin stillage) was adopted as a substitute to replace a costly nitrogen source used in the medium. The results of using mixture of crude glycerol and thin stillage indicated about a 27% increase in total biomass as compared to that of using crude glycerol with a standard medium. Using glycerol instead of glucose as the carbon source could also alter the lipid profile, resulting in an increase in linolenic acid (C18:2) to comprise over 20% of the total lipid. Successfully using renewable crude glycerol and thin stillage for the cultivation of oleaginous microorganisms could greatly enhance the economic competition of biodiesel produced from SCO. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Preliminary Evaluation of Glyceric Acid-producing Ability of Acidomonas methanolica NBRC104435 from Glycerol Containing Methanol.

    Science.gov (United States)

    Sato, Shun; Kitamoto, Dai; Habe, Hiroshi

    2017-06-01

    Some acetic acid bacteria produce large amounts of glyceric acid (GA) from glycerol in culture broth. However, methanol, which is a major contaminant of raw glycerol derived from the biodiesel fuel industry, sharply decreases cell growth and GA production [AMB Express, 3, 20, 2013]. Thus, we evaluated the methylotrophic acetic acid bacterium Acidomonas methanolica NBRC104435 for its ability to produce GA from glycerol containing methanol. This strain accumulated GA in its culture broth when 1-3 wt% glycerol was available as a carbon source. We observed improved cell growth and GA accumulation when 1 vol% methanol was added to the 3-5 wt% glycerol medium. The maximum concentration of GA was 12.8 g/L in medium containing 3 wt% glycerol plus 1 vol% methanol. In addition, the enantiomeric excess (ee) of the GA produced was revealed to be 44%, indicating that this strain converted glycerol to d-GA with a lower enantioselectivity than other acetic acid bacteria, which had 70-99% ee.

  14. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  15. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  16. Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents.

    Science.gov (United States)

    Pazhang, Mohammad; Mehrnejad, Faramarz; Pazhang, Yaghub; Falahati, Hanieh; Chaparzadeh, Nader

    2016-01-01

    The effect of glycerol and sorbitol on the stability of porcine pancreas trypsin was investigated in this work. Molecular dynamics simulation and thermostability results showed that trypsin has two flexible regions, and polyols (sorbitol and glycerol) stabilize the enzyme by decreasing the flexibility of these regions. Radial distribution function results exhibited that sorbitol and glycerol were excluded from the first water layer of the enzyme, therefore decrease the flexibility of the regions by preferential exclusion. Also, results showed that the stabilization effect of sorbitol is more than glycerol. This observation could be because of the larger decrease in the fluctuations of trypsin in the presence of sorbitol. We also examined the role of solvent's hydrophobicity in enzyme stabilization by sorbitol and glycerol. To do so, the thermostability of trypsin was evaluated in the presence of solvents with different hydrophobicity (methanol, ethanol, isopropanol and n-propanol) in addition to the polyols. Our results depicted that glycerol is a better stabilizer than sorbitol in the presence of hydrophobic solvents (n-propanol), whereas sorbitol is a better stabilizer than glycerol in the presence of hydrophilic solvents (methanol). © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  17. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications.

    Science.gov (United States)

    Tan, A C W; Polo-Cambronell, B J; Provaggi, E; Ardila-Suárez, C; Ramirez-Caballero, G E; Baldovino-Medrano, V G; Kalaskar, D M

    2018-02-01

    In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  18. Construction of an alternative glycerol-utilization pathway for improved β-carotene production in Escherichia coli.

    Science.gov (United States)

    Guo, Jin-Ying; Hu, Kun-Le; Bi, Chang-Hao; Li, Qing-Yan; Zhang, Xue-Li

    2018-05-11

    Glycerol, which is an inevitable by-product of biodiesel production, is an ideal carbon source for the production of carotenoids due to its low price, good availability and chemically reduced status, which results in a low requirement for additional reducing equivalents. In this study, an alternative carbon-utilization pathway was constructed in Escherichia coli to enable more efficient β-carotene production from glycerol. An aldehyde reductase gene (alrd) and an aldehyde dehydrogenase gene (aldH) from Ralstonia eutropha H16 were integrated into the E. coli chromosome to form a novel glycerol-utilization pathway. The β-carotene specific production value was increased by 50% after the introduction of alrd and aldH. It was found that the glycerol kinase gene (garK), alrd and aldH were the bottleneck of the alternative glycerol metabolic pathway, and modulation of garK gene with an mRS library further increased the β-carotene specific production value by 13%. Finally, co-modulation of genes in the introduced aldH-alrd operon led to 86% more of β-carotene specific production value than that of the strain without the alternative glycerol-utilization pathway and the glycerol-utilization rate was also increased. In this work, β-carotene production of E. coli was significantly improved by constructing and optimizing an alternative glycerol-utilization pathway. This strategy can potentially be used to improve the production of other isoprenoids using glycerol as a cheap and abundant substrate, and therefore has industrial relevance.

  19. Valorisation of crude glycerol through biological conversion into bioplastics and biofuels in the frame of an FP7 project

    DEFF Research Database (Denmark)

    Varrone, Cristiano; Gavala, Hariklia N.

    a very low value, due to the impurities and contaminants, and the purification of glycerol is not a viable option for the biodiesel industry anymore. In fact, crude glycerol is usually contaminated with water, methanol, soap, oil, and other compounds deriving from the transesterification process....... Therefore, the purification cost is high when converting crude glycerol by traditional chemistry methods. Setting up of biorefineries, that co-produce high-value compounds, has been considered a concrete solution to enhance economic viability of biodiesel production. The project: the overall aim...

  20. Glycerol: a brief history and their application in stereoselective syntheses; Glicerol: um breve historico e aplicacao em sinteses estereosseletivas

    Energy Technology Data Exchange (ETDEWEB)

    Beatriz, Adilson; Araujo, Yara J.K.; Lima, Denis Pires de, E-mail: adilson.beatriz@ufms.b [Universidade Federal de Mato Grosso do Sul (DQ/UFMS), Campo Grande, MS (Brazil). Dept. de Quimica

    2011-07-01

    Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products. (author)

  1. 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis

    International Nuclear Information System (INIS)

    Chapman, A.; Lloyd, D.; Linstead, D.J.; Williams, J.

    1985-01-01

    13 C-NMR has been used to study the kinetics of the formation of metabolites from [l- 13 C]glucose in intact cells of Trichomonas vaginalis during anaerobic incubation. As well as the expected metabolites lactate and acetate, this technique revealed glycerol as an additional major product, present in amounts equimolar with acetate. The formation of glycerol is readily explained in terms of the need to maintain redox balance. This protozoan now joins the small group of organisms which are known to produce glycerol as a result of normal metabolic activities. (Auth.)

  2. Effects of Exercise Induced Dehydration and Glycerol Rehydration on Anaerobic Power in Male Collegiate Wrestlers.

    Science.gov (United States)

    McKenna, Zachary J; Gillum, Trevor L

    2017-11-01

    McKenna, ZJ and Gillum, TL. Effects of exercise induced dehydration and glycerol rehydration on anaerobic power in male collegiate wrestlers. J Strength Cond Res 31(11): 2965-2968, 2017-Wrestlers attempting to reach a specific weight class often use rapid weight loss (RWL). Rapid weight loss is associated with high levels of dehydration, which may hinder athletic performance. Thus, there is a need for wrestlers to optimize rehydration after achieving a specific weight. We sought to observe the effects of RWL on anaerobic power and the impact of glycerol on rehydration and power in male collegiate wrestlers (n = 7, 19.75 ± 1.67 years, 76.8 ± 4.32 kg, 11.6 ± 4.32% body fat, 59.9 ± 6.42 ml·kg·min). Subjects were assessed for body mass (BM), hydration, and mean power output (Wmean) before exercise (pre), immediately after exercise (3% dehydrated), and 60 minutes after exercise (rehydrated). Participants ran at 70% of V[Combining Dot Above]O2max in a heated room (30° C) until 3% BM loss (BML). Subjects rehydrated drinking either 26 ml·kg of water (control) or a 3% glycerol (treatment) solution containing 26 ml·kg of water and 1 g·kg of glycerol. Participants lost 3.00 ± 0.31% (control) and 2.89 ± 0.26% (treatment) of their BM from the pre- to dehydrated conditions. Wmean (control: 659.29 ± 79.12, 651.43 ± 70.71, 659.71 ± 82.78; treatment: 647.71 ± 110.64, 644.57 ± 118.15, 638.14 ± 100.71) did not differ across time (p = 0.87) nor condition (p = 0.80). In addition, glycerol had no significant impact on acute hydration (control: urine-specific gravity [SG] = 1.019 ± 0.010; treatment: SG = 1.017 ± 0.017). These data show that 3% BML did not impair anaerobic performance, and furthermore that glycerol proved ineffective for rehydration in a match like scenario for the competing wrestler.

  3. Stress corrosion cracking of austenitic stainless steel in glycerol solution and chloride solution at elevated temperature

    International Nuclear Information System (INIS)

    Haftirman; Maruhum Tua Lubis

    2009-01-01

    Stress Corrosion Cracking (SCC) is an environmentally assisted failure caused by exposure to a corrodant while under a sustained tensile stress. SCC is most often rapid, unpredictable and catastrophic. Failure can occur in as little as a few hours or take years to happen. Most alloys are susceptible to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are known to perform poorly. One of products Oleo chemical is glycerol solution. Glycerol solution contains chloride with concentration 50 ppm - 150 ppm. Austenitic stainless steel is usually used in distillation construction tank and pipe line of glycerol. Material AISI 304 will be failure in this glycerol solution with this concentration in 5 years. In production process, concentration of chloride in glycerol becomes more than 150 ppm at temperature 150 degree Celsius. The reason is that the experiment I conducted in high chloride with concentration such as 6000 ppm, 9000 ppm, and 12000 ppm. The stress corrosion cracking of the austenitic stainless steels of types AISI 304, 316 and 316L in glycerol solution at elevated temperature 150 degree Celsius is investigated as a function variation of chloride concentration, namely 50, 6000, 9000 and 12000 ppm using a constant load method with two kinds of initial tensile stress as 50 % and 70 % yield strength. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of specimen. Pitting corrosion occurs on the surface specimen until the stress level reaches the ultimate strength. Pitting corrosion attack and depletion occur on the surface as initiation of SCC failure as the stress reaches the ultimate strength. Failure has occurred in catastrophic brittle fracture type of transgranular. AISI 304 was more susceptible for all conditions. In chloride solution with concentration of

  4. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Kah Weng Siew

    2013-12-01

    Full Text Available Glycerol (a bio-waste generated from biodiesel production has been touted as a promising bio-syngas precursor via reforming route. Previous studies have indicated that carbon deposition is the major performance-limiting factor for nickel (Ni catalyst during glycerol steam reforming. In the current paper, dry (CO2-reforming of glycerol, a new reforming route was carried out over alumina (Al2O3-supported non-promoted and lanthanum-promoted Ni catalysts. Both sets of catalysts were synthesized via wet co-impregnation procedure. The physicochemical characterization of the catalyst showed that the promoted catalyst possessed smaller metal crystallite size, hence higher metal dispersion compared to the virgin Ni/Al2O3 catalyst. This was also corroborated by the surface images captured by the FESEM analysis. In addition, BET surface area measurement gave 92.05m²/g for non-promoted Ni catalyst whilst promoted catalysts showed an average of 1 to 6% improvement depending on the La loading. Reaction studies at 873 K showed that glycerol dry reforming successfully produced H2 with glycerol conversion and H2 yield that peaked at 9.7% and 25% respectively over 2wt% La content. The optimum catalytic performance by 2%La-Ni/Al2O3 can be attributed to the larger BET surface area and smaller crystallite size that ensured accessibility of active catalytic sites.  © 2013 BCREC UNDIP. All rights reservedReceived: 12nd May 2013; Revised: 7th October 2013; Accepted: 16th October 2013[How to Cite: Siew, K.W., Lee, H.C., Gimbun, J., Cheng, C.K. (2013. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 160-166. (doi:10.9767/bcrec.8.2.4874.160-166][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4874.160-166

  5. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  6. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.

    Science.gov (United States)

    Hoemann, Caroline D; Hurtig, Mark; Rossomacha, Evgeny; Sun, Jun; Chevrier, Anik; Shive, Matthew S; Buschmann, Michael D

    2005-12-01

    Microfracture is a surgical procedure that is used to treat focal articular cartilage defects. Although joint function improves following microfracture, the procedure elicits incomplete repair. As blood clot formation in the microfracture defect is an essential initiating event in microfracture therapy, we hypothesized that the repair would be improved if the microfracture defect were filled with a blood clot that was stabilized by the incorporation of a thrombogenic and adhesive polymer, specifically, chitosan. The objectives of the present study were to evaluate (1) blood clot adhesion in fresh microfracture defects and (2) the quality of the repair, at six months postoperatively, of microfracture defects that had been treated with or without chitosan-glycerol phosphate/blood clot implants, using a sheep model. In eighteen sheep, two 1-cm2 full-thickness chondral defects were created in the distal part of the femur and treated with microfracture; one defect was made in the medial femoral condyle, and the other defect was made in the trochlea. In four sheep, microfracture defects were created bilaterally; the microfracture defects in one knee received no further treatment, and the microfracture defects in the contralateral knee were filled with chitosan-glycerol phosphate/autologous whole blood and the implants were allowed to solidify. Fresh defects in these four sheep were collected at one hour postoperatively to compare the retention of the chitosan-glycerol phosphate/blood clot with that of the normal clot and to define the histologic characteristics of these fresh defects. In the other fourteen sheep, microfracture defects were made in only one knee and either were left untreated (control group; six sheep) or were treated with chitosan-glycerol phosphate/blood implant (treatment group; eight sheep), and the quality of repair was assessed histologically, histomorphometrically, and biochemically at six months postoperatively. In the defects that were examined

  7. Phospholipid synthesis in the squid giant axon: incorporation of lipid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gould, R.M.; Pant, H.; Gainer, H.; Tytell, M.

    1983-05-01

    The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. /sup 32/P-Labeled inorganic phosphate and gamma-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while (2-/sup 3/H)myo-inositol and L-(/sup 3/H(G))serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized. (2-/sup 3/H)glycerol was incorporated into phosphatidic acid, phosphatidylinositol, and triglyceride, and methyl-3H)choline and (1-/sup 3/H)ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4-20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids.

  8. Poly(glycerol adipate)-fatty acid esters as versatile nanocarriers

    DEFF Research Database (Denmark)

    Weiss, Verena M; Naolou, Toufik; Hause, Gerd

    2012-01-01

    Poly(glycerol adipate) (PGA) is a biodegradable polymer with promising features for nanoparticulate drug carrier systems. By acylation of PGA with fatty acids, composite systems with amphiphilic properties can be obtained. Variation of the fatty acid (laurate, stearate and behenate) and their sub...... and the nanoparticles. With their diverse particle shapes and internal structures as well as their different thermal behavior, aggregate states and polarities, the systems offer promising possibilities as delivery systems for lipophilic, amphiphilic and water soluble drugs.......Poly(glycerol adipate) (PGA) is a biodegradable polymer with promising features for nanoparticulate drug carrier systems. By acylation of PGA with fatty acids, composite systems with amphiphilic properties can be obtained. Variation of the fatty acid (laurate, stearate and behenate...

  9. Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry.

    Science.gov (United States)

    Monošík, Rastislav; Magdolen, Peter; Stredanský, Miroslav; Šturdík, Ernest

    2013-05-01

    The aim of the present study was to analyze sugar levels (namely maltose, maltotriose, glucose and fructose) and alcohols (ethanol and glycerol) during the fermentation process in wort samples by amperometric enzymatic biosensors developed by our research group for industrial application, HPLC and spectrophotometry, and to compare the suitability of the presented methods for determination of individual analytes. We can conclude that for the specific monitoring of maltose or maltotriose only the HPLC method was suitable. On the other hand, biosensors and spectrophotometry reflected a decrease in total sugar concentration better and were able to detect both glucose and fructose in the later stages of fermentation, while HPLC was not. This can be attributed to the low detection limits and good sensitivity of the proposed methods. For the ethanol and glycerol analysis all methods proved to be suitable. However, concerning the cost expenses and time analysis, biosensors represented the best option. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol

    Science.gov (United States)

    Halpern, Jeffrey M.; Urbanski, Richard; Weinstock, Allison K.; Iwig, David F.; Mathers, Robert T.; von Recum, Horst

    2014-01-01

    A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, non-toxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90-150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to nine days. PMID:23737239

  11. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  12. Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor.

    Science.gov (United States)

    Cannilla, Catia; Bonura, Giuseppe; Frusteri, Leone; Frusteri, Francesco

    2014-05-20

    In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.

  13. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  14. Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications

    Directory of Open Access Journals (Sweden)

    E. De Giglio

    2016-06-01

    Full Text Available This data article is related to our recently published research paper “Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment", De Giglio et al. (Colloids and Surfaces B: Biointerfaces 136 (2015 600–611 [1]. The latter described a new copolymer derived from glycerol and tartaric acid (PGT. Herein, an investigation about the PGT-ciprofloxacin (CIP interactions by means of Fourier Transform Infrared Spectroscopy (FT-IR acquired in Attenuated Total Reflectance (ATR mode and Differential Scanning Calorimetry (DSC was reported. Moreover, CIP release experiments on CIP-PGT patches were performed by High Performance Liquid Chromatography (HPLC at different pH values.

  15. Chemical characterization of composites developed from glycerol and dicarboxylic acids rein forced with piassava fiber

    International Nuclear Information System (INIS)

    Miranda, Cleidiene S.; Oliveira, Jamerson C.; Guimaraes, Danilo H.; Jose, Nadia M.; Carvalho, Ricardo F.

    2011-01-01

    In search of alternative technologies that enable the use of products with lower environmental impact, This study aims to develop a composite polymer-based piassava fiber. The sludge, waste and byproduct of commercial uses currently being used as reinforcement in polymer matrices, due to presence of lignocellulosic materials. The matrix polymer used was synthesized from glycerol with dicarboxylic acids, in order to open future perspectives on the use of glycerin generated from purified biodiesel production plastics. Composites with 2, 5, 10 wt% of piassava fiber cut into 5 mm raw and treated were obtained a mixture of solution. The materials were characterized by TGA, DSC, XRD and SEM. It was observed that the material under study is promising for the industrial market, because it has good compatibility with natural fibers allowing wider application of fiber natural and glycerol, producing semicrystalline composites and with good thermal properties. (author)

  16. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    International Nuclear Information System (INIS)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C.

    2013-01-01

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  17. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol.

    Science.gov (United States)

    Paranjape, Kiran; Leite, Gustavo B; Hallenbeck, Patrick C

    2016-08-01

    Mixotrophic growth of microalgae to boost lipid production is currently under active investigation. Such a process could be of practical importance if a cheap source of organic carbon, such as waste glycerol from biodiesel production, could be used. Several previous studies have already demonstrated that this carbon source can be used by different indigenous strains of microalgae. In this study it is shown that different nitrogen limitation strategies can be applied to further increase lipid production during growth with glycerol. In one strategy, cultures were grown in nitrogen replete medium and then resuspended in nitrogen free medium. In a second strategy, cultures were grown with different initial concentrations of nitrate. Lipid production by the two microalgal strains used, Chlorella sorokiniana (PCH02) and Chlorella vulgaris (PCH05), was shown to be boosted by strategies of nitrogen limitation, but they responded differently to how nitrogen limitation was imposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    Science.gov (United States)

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  19. Selective Hydrogenolysis of Glycerol and Crude Glycerol (a By-Product or Waste Stream from the Biodiesel Industry to 1,2-Propanediol over B2O3 Promoted Cu/Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Malaya R. Nanda

    2017-06-01

    Full Text Available The performance of boron oxide (B2O3-promoted Cu/Al2O3 catalyst in the selective hydrogenolysis of glycerol and crude glycerol (a by-product or waste stream from the biodiesel industry to produce 1,2-propanediol (1,2-PDO was investigated. The catalysts were characterized using N2-adsorption-desorption isotherm, Inductively coupled plasma atomic emission spectroscopy (ICP-AES, X-ray diffraction (XRD, ammonia temperature programmed desorption (NH3-TPD, thermogravimetric analysis (TGA, temperature programmed reduction (TPR, and transmission electron microscopy (TEM. Incorporation of B2O3 to Cu/Al2O3 was found to enhance the catalytic activity. At the optimum condition (250 °C, 6 MPa H2 pressure, 0.1 h−1 WHSV (weight hourly space velocity, and 5Cu-B/Al2O3 catalyst, 10 wt% aqueous solution of glycerol was converted into 1,2-PDO at 98 ± 2% glycerol conversion and 98 ± 2% selectivity. The effects of temperature, pressure, boron addition amount, and liquid hourly space velocity were studied. Different grades of glycerol (pharmaceutical, technical, or crude glycerol were used in the process to investigate the stability and resistance to deactivation of the selected 5Cu-B/Al2O3 catalyst.

  20. Ammonia control in children with urea cycle disorders (UCDs); Phase 2 comparison of sodium phenylbutyrate and glycerol phenylbutyrate☆

    OpenAIRE

    Lichter-Konecki, Uta; Diaz, G.A.; Merritt, J.L.; Feigenbaum, A.; Jomphe, C.; Marier, J.F.; Beliveau, M.; Mauney, J.; Dickinson, K.; Martinez, A.; Mokhtarani, M.; Scharschmidt, B.; Rhead, W.

    2011-01-01

    Twenty four hour ammonia profiles and correlates of drug effect were examined in a phase 2 comparison of sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB or HPN-100), an investigational drug being developed for urea cycle disorders (UCDs).

  1. Ethylene glycol, but not DMSO, could replace glycerol inclusion in soybean lecithin-based extenders in ram sperm cryopreservation.

    Science.gov (United States)

    Najafi, Abouzar; Daghigh-Kia, Hossein; Dodaran, Hossein Vaseghi; Mehdipour, Mahdieh; Alvarez-Rodriguez, Manuel

    2017-02-01

    The aim of this study was to evaluate the effects of glycerol, ethylene glycol or DMSO in a soybean lecithin extender for freezing ram semen. In this study, 20 ejaculates were collected from four Ghezel rams and diluted with soybean lecithin extender with glycerol (7%), ethylene glycol (3%, 5% and 7%) or DMSO (3%, 5% and 7%). Sperm motility (CASA), membrane integrity (HOS test), viability, total abnormality, mitochondrial activity (Rhodamine 123) and apoptotic features (Annexin V/Propidium iodide) were assessed after thawing. There was no significant difference between glycerol and ethylene glycol at different concentrations (3% and 5%) regarding sperm total and progressive motility, viability, and membrane integrity. The least percentages of mitochondrial functionality were observed in samples frozen with all different DMSO concentrations tested (Plecithin extender. We propose that glycerol in a soybean lecithin based extender could be replaced by ethylene glycol at 3% or 5% concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, larvae

    Directory of Open Access Journals (Sweden)

    Jordie D. Fraser

    2017-06-01

    Full Text Available Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae. Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.

  3. Improved glycerol production from cane molasses by the sulfite process with vacuum or continuous carbon dioxide sparging during fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.; Lashkari, B.Z.

    1985-01-01

    The conventional sulfite process for glycerol production from molasses using Saccharomyces cerevisiae var. Hansen was modified to obtain product concentrations of up to 230 g/l and productivity of 15 g/l.d by fermenting under vacuum (80 mm) or with continuous sparging of CO2 (0.4 vvm). Under these conditions the requirement of sulfite for optimum production of glycerol was reduced by two thirds (20 g/l), the ethanol concentration in the medium was kept below 30 g/l and the competence of yeast cells to ferment was conserved throughout the fermentation period for up to 20 days. In addition to the above, the rate of incorporation of sulfite had a significant effect on glucose fermentation and glycerol yields. There was an optimal relationship between glycerol yields and the molar ratio of sulfite to glucose consumed, which for cane molasses was 0.67. This ratio was characteristic of the medium composition.

  4. Technological processes for obtaining ß-carotene and glycerol from Dunaliella sp. at 'Las Cumaraguas' Saltworks

    International Nuclear Information System (INIS)

    Acacio-ChirinoI, Noel José; Zumalacárregui-de Cárdenas, Lourdes Margarita

    2017-01-01

    Technological processes were developed for ß-carotene and glycerol extraction from Dunaliella sp. at 'Las Cumaraguas' Saltworks. Dunaliella sp. microalgae was characterize. It was established the technological flow of the process from laboratory data; energy balances and necessary energetic calculations were done, in order to select and size the required equipment for a pilot plant scale to produce one ton of ß-carotene. Two possibilities were evaluated: extraction with organic solvents and extraction with supercritical fluids. The procedure showed that ß-carotene and glycerol extractions are possible by means of the presented technological diagram, with 15,4 % of biomass ß-carotene yield and 5 % of biomass glycerol yield, for a conventional extraction and a yield of 70 % for ß-carotene from pigments and 5 % of biomass glycerol yield, for extraction with supercritical fluid. (author)

  5. Radioprotective action of glycerol and cysteamine on inactivation and mutagenesis in Salmonella tester strains after gamma and heavy ion irradiation

    International Nuclear Information System (INIS)

    Basha, S.G.; Krasavin, E.A.; Kozubek, S.

    1991-01-01

    Inactivation and mutagenesis were studied in Salmonella tester strains after γ-irradiation and after heavy ion irradiation in the presence of glycerol and cysteamine. Bacterial cells were irradiated at Dubna, JINR. Ions from deuterons to carbon were used with residual energies 2-9 MeV/u. The protective effect of glycerol was found both for γ-radiation and for heavy ions up to 50 keV/μm for both cell inactivation and mutagenesis in Salmonella tester strains with different mutation events. Cell sensitivity slightly increased with LET before falling down. The maximum was shifted in the presence of glycerol to the left and was less pronounced. The radioprotective effect of glycerol diminished gradually with LET from 2.0 for γ-radiation to 1.1 for carbon ions. Mutagenesis increases with LET in TA100 strain; in TA98 strain no marked increase could be detected. 13 refs.; 4 figs.; 5 tabs

  6. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections.

    Science.gov (United States)

    Lu, Jiaxi; Wang, Pengli; Wang, Qiuying; Wang, Yanan; Jiang, Miaomiao

    2018-05-15

    In the current study, we employed high-resolution proton and carbon nuclear magnetic resonance spectroscopy (¹H and 13 C NMR) for quantitative analysis of glycerol in drug injections without any complex pre-treatment or derivatization on samples. The established methods were validated with good specificity, linearity, accuracy, precision, stability, and repeatability. Our results revealed that the contents of glycerol were convenient to calculate directly via the integration ratios of peak areas with an internal standard in ¹H NMR spectra, while the integration of peak heights were proper for 13 C NMR in combination with an external calibration of glycerol. The developed methods were both successfully applied in drug injections. Quantitative NMR methods showed an extensive prospect for glycerol determination in various liquid samples.

  7. Effects of Locally Applied Glycerol and Xylitol on the Hydration, Barrier Function and Morphological Parameters of the Skin.

    Science.gov (United States)

    Korponyai, Csilla; Szél, Edit; Behány, Zoltán; Varga, Erika; Mohos, Gábor; Dura, Ágnes; Dikstein, Shabtay; Kemény, Lajos; Erős, Gábor

    2017-02-08

    Glycerol and xylitol hydrate the skin and improve its barrier function over a short period. We studied the effects of glycerol and xylitol on the physiological properties and morphology of the skin after longer-term application. Twelve volunteers with dry skin were examined. Three areas on the arms were determined. Area 1 served as untreated control. The vehicle was applied to area 2, while area 3 was treated twice daily with a formulation containing glycerol (5%) and xylitol (5%) for 14 days. Transepidermal water loss (TEWL), hydration and biomechanical properties of the skin were monitored. Biopsies were taken for routine histology and immunohistochemistry for filaggrin and matrix metalloproteinase-1 (MMP-1). The polyols increased the skin hydration and protein quantity of filaggrin, elevated the interdigitation index, decreased the TEWL and improved the biomechanical properties of the skin, but did not change the protein expression of MMP-1. A combination of glycerol and xylitol can be useful additional therapy for dry skin.

  8. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    Science.gov (United States)

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients

    International Nuclear Information System (INIS)

    Lundholm, K.; Edstroem, S.; Karlberg, I.; Ekman, L.; Schersten, T.

    1982-01-01

    A double isotope method was used in patients with progressive malignancy and in control patients to measure: glucose turnover, conversion rate of carbon skeleton of glycerol into glucose, and the interorgan cycling of glucose carbons (Cori-cycle plus alanine-glucose cycle). [U- 14 C]glycerol and [6- 3 H]glucose were given intravenously as a single dose injection. The time course of the specific radioactivities of [6- 3 H] and [U- 14 C]glucose was followed in blood. The pool size and the turnover rate of glucose were increased in the cancer group as compared with the control patients. The net recycling of glucose carbons was not increased in the cancer group, despite the increased turnover of glucose. The alterations in the metabolism of glucose did not correlate with the plasma levels of insulin or thyroid hormones (T4, T3, rT3) neither in the entire cancer group nor in those cancer patients who were repeatedly investigated at different intervals of time. The turnover rate of glucose in the cancer patients correlated inversely to their body weight index. The gluconeogenesis rate, given as the fractional conversion rate of the injected radioactive dose of [ 14 C]glycerol, or as mol glucose . kg body weight-1 . day-1, was increased in the cancer group, but still contributed only 3% of the glucose turnover rate in both cancer and control patients. We conclude that an increased gluconeogenesis from glycerol is not significant in terms of energy expenditure in patients with progressive malignancy, as has previously been concluded for the gluconeogenesis from alanine. It seems that increased turnover of glucose may contribute to inappropriately high energy expenditure in cancer patients

  10. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5

    OpenAIRE

    Zhang, Duanwu; Tomisato, Wataru; Su, Lijing; Sun, Lei; Choi, Jin Huk; Zhang, Zhao; Wang, Kuan-wen; Zhan, Xiaoming; Choi, Mihwa; Li, Xiaohong; Tang, Miao; Castro-Perez, Jose M.; Hildebrand, Sara; Murray, Anne R.; Moresco, Eva Marie Y.

    2017-01-01

    We discovered a previously unrecognized regulator of cholesterol biosynthesis, glycerol kinase 5 (GK5), which functions exclusively in the skin independently of cholesterol regulation in other tissues. GK5 negatively regulates the processing and nuclear localization of sterol regulatory element binding proteins, transcription factors that control expression of virtually all cholesterol synthesis enzymes. Excessive amounts of cholesterol, triglycerides, and ceramides were found in the skin of ...

  11. Evaluation of additive effects of hydrolyzed jojoba (Simmondsia chinensis) esters and glycerol: a preliminary study.

    Science.gov (United States)

    Meyer, Jaimi; Marshall, Brooke; Gacula, Maximo; Rheins, Lawrence

    2008-12-01

    Glycerol has long served the topical prescriptive and personal care industry as a versatile and functional active and inactive ingredient. In skin care products, it acts primarily as an emollient, softening the skin through robust humectant hydration action. Hydrolyzed Jojoba Esters K-20W (K-20W) have been shown to increase skin hydration and improve sensory skin "feel" when included in a variety of skin, hair, and nail care cosmetic/personal care formulations. The addition of glycerol and hydrolyzed jojoba esters provides a substantial long-acting 24 h (moisturizing) skin hydration effect for topical products. A small pilot study was conducted to support the "proof of concept" that an enhanced, additive role exists between these two ingredients resulting in a long-term (24 h) skin moisturization effect. Topical treatments were applied to the skin (lower leg) of subjects, and evaluations were made at baseline and 8- to 24-h post-application. Skin hydration data were obtained via bio-instrumental transepidermal water loss (TEWL) measurements and expert clinical skin grading, including standardized digital clinical photography. Clinical skin grading evaluations and TEWL measurements found that significantly lower evaporative (P jojoba esters) than with glycerol alone in a standard base skin care lotion at 8 and 24 h posttreatment. This preliminary data "proof of concept" supports the position that glycerol and hydrolyzed jojoba esters work in tandem to enhance skin moisturization for at least 24 h. This unique moisturizing potential may prove valuable in the future development of cosmetic and over-the-counter/prescriptive topical products, including new medicaments containing botanicals. This fact is further reinforced with the recent greater commercial use and demand for defined safe botanicals in cosmetic as well as pharmaceutical topical formulations. Additional mechanistic studies are underway.

  12. 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch

    Directory of Open Access Journals (Sweden)

    Daria Szymanowska-Powałowska

    2014-11-01

    Conclusions: The experiments proved that by using a portion of metabolically active biomass as inoculum for another fermentation formula it is possible to eliminate the stage of inoculum growth and thereby reduce the length of the whole operation. Additionally, that strategy avoids the phase of microbial adaptation to a different source of carbon such as crude glycerol, which is more difficult to utilize, thus improving the kinetic parameters of 1,3-PD production.

  13. ETHANOL DEHYDRATION IN PACKED DISTILLATION COLUMN USING GLYCEROL AS ENTRAINER: EXPERIMENTS AND HETP EVALUATION

    OpenAIRE

    Souza,W. L. R.; Silva,C. S.; Meleiro,L. A. C.; Mendes,M. F.

    2016-01-01

    Abstract The ethanol-water separation is very important because ethanol is widely applied in the chemical industry and its use as a fuel can reduce the pollution emitted to the air. However, anhydrous ethanol production using conventional distillation is impossible, at atmospheric pressure, due to the presence of an azeotrope. In the present work, experimental tests were carried out in order to evaluate the use of glycerol as an entrainer, in substitution of ethylene glycol in an extractive d...

  14. Microwave-assisted and carbonaceous catalytic pyrolysis of crude glycerol from biodiesel waste for energy production

    International Nuclear Information System (INIS)

    Ng, Jo-Han; Leong, Swee Kim; Lam, Su Shiung; Ani, Farid Nasir; Chong, Cheng Tung

    2017-01-01

    Highlights: • Crude glycerol is pyrolysed catalytically via microwave irradiation to produce bioenergy. • Carbonaceous catalyst elevates pyrolysis temperature and promotes selectivity towards H_2 production. • Synthesis gas consisting of mainly H_2 and CH_4 was predominantly produced at long residence time and high temperature. • Production of bio-oil consisting of oxygenated compounds peaks at intermediate carrier gas flow rate. • Energy profit analysis shows positive energy gained with increasing residence time and decreasing reaction temperature. - Abstract: Biodiesel proliferation as a sustainable fuel has led to a glut of crude glycerol as co-product. This scenario made a previously lucrative co-product in the food and pharmaceutical sectors into a bioresource waste. The present study investigates the utilisation of a microwave-assisted pyrolysis technique to convert crude glycerol from biodiesel waste into usable bioenergy source. Operating conditions ranged from a temperature of 300–800 °C at carrier gas flow rates of 100–2000 mL/min, with the effects of carbonaceous catalyst on the selectivity of reaction pathway being investigated. Within the aforementioned conditions, the proportion of products phases is mainly dependent on the residence time inside the quartz reactor, followed by the reaction temperature. This is due to the combined factors of the reaction sequence and provision of activation energy to change product phases. The third factor of carbonaceous catalyst shows a predisposition towards hydrogen gas selectivity, leading to a lower overall gaseous product mass when factoring in products from all phases. An analysis of the energy content revealed that overall energy profit increases with decreasing temperature and increasing residence time. This concurs with solid energy content increasing in the same conditions, while it increases for liquid and gaseous products with decreasing temperature and flow rate, respectively. The

  15. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source.

    Science.gov (United States)

    Mohandas, S P; Balan, L; Lekshmi, N; Cubelio, S S; Philip, R; Bright Singh, I S

    2017-03-01

    Production and characterization of polyhydroxybutyrate (PHB) from moderately halophilic bacterium Vibrio harveyi MCCB 284 isolated from tunicate Phallusia nigra. Twenty-five bacterial isolates were obtained from tunicate samples and three among them exhibited an orange fluorescence in Nile red staining indicating the presence of PHB. One of the isolates, MCCB 284, which showed rapid growth and good polymer yield, was identified as V. harveyi. The optimum conditions of the isolate for the PHB production were pH 8·0, sodium chloride concentration 20 g l -1 , inoculum size 0·5% (v/v), glycerol 20 g l -1 and 72 h of incubation at 30°C. Cell dry weight (CDW) of 3·2 g l -1 , PHB content of 2·3 g l -1 and final PHB yield of 1·2 g l -1 were achieved. The extracted PHB was characterized by FTIR, NMR and DSC-TGA techniques. An isolate of V. harveyi that could effectively utilize glycerol for growth and PHB accumulation was obtained from tunicate P. nigra. PHB produced was up to 72% based on CDW. This is the first report of an isolate of V. harveyi which utilizes glycerol as the sole carbon source for PHB production with high biomass yield. This isolate could be of use as candidate species for commercial PHB production using glycerol as the feed stock or as source of genes for recombinant PHB production or for synthetic biology. © 2016 The Society for Applied Microbiology.

  16. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Mráček, Tomáš; Holzerová, Eliška; Drahota, Zdeněk; Kovářová, Nikola; Vrbacký, Marek; Ješina, Pavel; Houštěk, Josef

    2014-01-01

    Roč. 1837, č. 1 (2014), s. 98-111 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GPP303/10/P227; GA MŠk(CZ) LL1204 Grant - others:Univerzita Karlova(CZ) 750213 Institutional support: RVO:67985823 Keywords : mitochondrial glycerol-3-phosphate dehydrogenase * ROS production * supercomplex * in-gel ROS detection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.353, year: 2014

  17. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application.

    Science.gov (United States)

    Khonina, Tat'yana G; Ivanenko, Maria V; Chupakhin, Oleg N; Safronov, Alexander P; Bogdanova, Ekaterina A; Karabanalov, Maxim S; Permikin, Vasily V; Larionov, Leonid P; Drozdova, Lyudmila I

    2017-09-30

    Nanoparticles synthesized using sol-gel method are promising agents for biomedical applications, in particular for the therapy and diagnosis of various diseases. Using silicon and zinc glycerolates as biocompatible precursors we synthesized by the sol-gel method a new bioactive silicon-zinc-containing glycerohydrogel combining the positive pharmacological properties of the precursors. In the present work the structural features of silicon-zinc-containing glycerohydrogel and its immunotropic properties were studied. The advanced physical methods, including XRD, TEM, dynamic and electrophoretic light scattering, were used for studying the structural features of the gel. Hydrolysis of zinc monoglycerolate was investigated under gelation conditions. Evaluation of the efficiency of silicon-zinc-containing glycerohydrogel in providing immune functions was carried out using a model of the complicated wound process behind immunosuppression induced by hydrocortisone administration in the Wistar rats. It has been shown that zinc monoglycerolate exists in the state of amorphous nanoparticles in the cells of 3D-network formed due to incomplete hydrolysis of silicon glycerolates and subsequent silanol condensation. Zinc monoglycerolate is not hydrolyzed and does not enter 3D-network of the gel with the formation of Zn-O-Si groups, but it forms a separate phase. Immunotropic action of silicon-zinc-containing glycerohydrogel was revealed by the histology and immunohistochemistry methods. Amorphous nanoparticles of zinc monoglycerolate, water-soluble silicon glycerolates, and products of their hydrolytic transformations, which are present in a aqueous-glycerol medium, are in the first place responsible for the pharmacological activity of hydrogel. The results obtained allow us to consider silicon-zinc-containing glycerohydrogel as a promising immunotropic agent for topical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Monitoring the process of purification of crude glycerol derived from biodiesel production: a method based on fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. The use of biodiesel has increased worldwide. The biodiesel production on an industrial scale has been based on the transesterification of vegetable oils and fats with methanol in the presence of an alkaline catalyst. During the transesterification, one molecule of triglyceride reacts with three molecules of alcohol to produce glycerol and molecules of alkyl esters (biodiesel). As a result, an increase in biodiesel production also enhances the availability of glycerol on the market. However, crude glycerin has about 30% of impurities which are inherent to biodiesel production such as catalyst, alcohol and fatty acids. The present study evaluated the usefulness of the fluorescence spectroscopy as a tool to monitor the glycerol purification process. Glycerol samples were obtained from transesterification of soybean, canola, and sunflower oils in the presence of NaOH. After stirring time, the solutions were let to stand in separating funnels, then two phases were observed: one containing mainly biodiesel and other consisting of glycol. Then, the respective glycerol samples were collected, henceforth called G1. After that, it was added H2SO4 (20%) in the crude glycerol samples to reduce their pH to 4 in order to remove fatty acids. The solutions were stored for 24 hours in separating funnels. The glycerol (heavy phase), hereafter named G2, was then separated and filtered. To remove other impurities from G2 samples by means of ionic exchange columns, the samples were neutralized and diluted using Milli-Q water (G3 samples). Aliquots of 20 mL were then passed through cationic and anionic resins (G4 and G5 samples, respectively). Emission and excitation spectra of the G1-G5 samples as well as of the glycerol PA-ACS (reference) were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained setting the excitation at 325nm and monitoring the emission in the 330-800nm range. Fluorimetric maps were also achieved by pumping the

  19. Tartronate semialdehyde reductase defines a novel rate-limiting step in assimilation and bioconversion of glycerol in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Yanbin Liu

    Full Text Available BACKGROUND: Glycerol is a by-product of biodiesel production. Currently, it has limited applications with low bioconversion efficiency to most metabolites reported. This is partly attributed to the poor knowledge on the glycerol metabolic pathway in bacteria and fungi. METHODOLOGY/PRINCIPAL FINDINGS: We have established a fast screening method for identification of genes that improve glycerol utilization in Ustilago maydis. This was done by comparing the growth rates of T-DNA tagged mutant colonies on solid medium using glycerol as the sole carbon source. We present a detailed characterization of one of the mutants, GUM1, which contains a T-DNA element inserted into the promoter region of UM02592 locus (MIPS Ustilago maydis database, MUMDB, leading to enhanced and constitutive expression of its mRNA. We have demonstrated that um02592 encodes a functional tartronate semialdehyde reductase (Tsr1, which showed dual specificity to cofactors NAD(+ and NADP(+ and strong substrate specificity and enantioselectivity for D-glycerate. Improved glycerol assimilation in GUM1 was associated with elevated expression of tsr1 mRNA and this could be phenocopied by over-expression of the gene. Glycolipid accumulation was reduced by 45.2% in the knockout mutant whereas introduction of an extra copy of tsr1 driven by the glyceraldehyde phosphate dehydrogenase promoter increased it by 40.4%. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that tartronate semialdehyde reductase (TSR plays an important role in glycerol assimilation in U. maydis and defines a novel target in genetic engineering for improved conversion of glycerol to higher value products. Our results add significant depth to the understanding of the glycerol metabolic pathway in fungi. We have demonstrated, for the first time, a biological role of a eukaryotic TSR.

  20. Synthesis and characterization of poly(glycerol citrate/sebacate); Preparacao de caracterizacao do poli(glicerol citrato/sebacato)

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Boaventura, Jaime S.; Jose, Nadia M., E-mail: mbrioude@gmail.com [Universidade Federal da Bahia - UFBA, Instituto de Quimica, Salvador, BA (Brazil)

    2011-07-01

    In this work were prepared and characterized the poly(glycerol citrate/sebacate) in three different ratios between acids. The polymers were prepared by a polycondensation reaction between glycerol and citric/sebacic acids and characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The results showed that the polymers are polyesters and its crystallinity, thermal and morphological properties were modified by sebacic acid adding. (author)

  1. Sustainable production of hydrogen and chemical commodities from biodiesel waste crude glycerol and cellulose by biological and catalytic processes

    OpenAIRE

    Maru, Biniam Taddele

    2013-01-01

    Hydrogen has a significant potential as clean and ‘green’ fuel of the future. Accordingly, this thesis investigated how to generate a sustainable production of hydrogen and other chemical commodities through study of: 1) Fermentative behavior of anaerobichydrogen producing microorganisms from pure glycerol and biodiesel waste crude glycerol; 2) The advantage of using a solid supportimmobilisationof microorganisms 3) The integration of the dark fermentative system with the catalytic hydrolysi...

  2. Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production.

    Science.gov (United States)

    Torres, Cristiana A V; Marques, Rodolfo; Ferreira, Ana R V; Antunes, Sílvia; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M

    2014-11-01

    Enterobacter A47 produces a fucose-containing exopolysaccharide (EPS) by cultivation in mineral medium supplemented with glycerol. EPS synthesis by Enterobacter A47 was shown to be influenced by both the initial glycerol and nitrogen concentrations and by the nutrients' feeding rate during the fed-batch phase. Initial nitrogen concentrations above 1.05g/L were detrimental for EPS synthesis: the productivity was reduced to 0.35-0.62g/Ld (compared to 1.89-2.04g/Ld under lower nitrogen concentrations) and the polymer had lower fucose content (14-17%mol, compared to 36-38%mol under lower nitrogen concentrations). On the other hand, EPS productivity was improved to 5.66g/Ld by increasing the glycerol and nitrogen feeding rates during the fed-batch phase. However, the EPS thus obtained had lower fucose (26%mol) and higher galactose (34%mol) contents, as well as lower average molecular weight (7.2×10(5)). The ability of Enterobacter A47 to synthesize EPS with different physico-chemical characteristics may be useful for the generation of biopolymers with distinct functional properties suitable for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    Science.gov (United States)

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  4. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    Directory of Open Access Journals (Sweden)

    Fábio Raphael Accorsini

    2012-03-01

    Full Text Available Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  5. The effect of mixing on fermentation of primary solids, glycerol, and biodiesel waste.

    Science.gov (United States)

    Ghasemi, Marzieh; Randall, Andrew A

    2018-03-01

    In this study, the effect of mixing on volatile fatty acid (VFA) production and composition was investigated through running five identical bench-scale reactors that were filled with primary solid and dosed with either pure glycerol or biodiesel waste. Experimental results revealed that there was an inverse correlation between the mixing intensity and the VFA production. The total VFA production in the un-mixed reactor was 9,787 ± 3,601 mg COD/L, whereas in the reactor mixed at 100 rpm this dropped to 3,927 ± 1,175 mg COD/L, while both types of reactor were dosed with pure glycerol at the beginning of each cycle to reach the initial concentration of 1,000 mg/L (1,217 mg COD/L). Propionic acid was the dominant VFA in all the reactors except the reactor mixed at 30 rpm. It is hypothesized that low mixing facilitated hydrogen transfer between obligate hydrogen producing acetogens (OHPA) and hydrogen consuming acidogens in these non-methanogenic reactors. Also, in a narrower range of mixing (0 or 7 rpm), the total VFA production in biodiesel waste-fed reactors was considerably higher than that of pure glycerol-fed reactors.

  6. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2006-01-01

    Full Text Available Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using glycerol as separation agent. Simulations were done on an Aspen Plus process simulator (Aspen Tech version 11.1. The simulated process involves two distillation columns, a dehydrator and a glycerol recuperation column. Simulation restrictions were ethanol’s molar composition in dehydrator column distillate and the process’s energy consumption. The effect of molar reflux ratio, solvent-feed ratio, solvent entry and feed stage and solvent entry temperature were evaluated on the chosen restrictions. The results showed that the ethanol-water mixture dehydration with glycerol as separation agent is efficient from the energy point of view.

  7. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant.

    Science.gov (United States)

    Cutzu, Raffaela; Coi, Annalisa; Rosso, Fulvia; Bardi, Laura; Ciani, Maurizio; Budroni, Marilena; Zara, Giacomo; Zara, Severino; Mannazzu, Ilaria

    2013-06-01

    In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β-carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R(2) = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l(-1)) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l(-1)) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.

  8. Optimization of catalytic glycerol steam reforming to light olefins using Cu/ZSM-5 catalyst

    International Nuclear Information System (INIS)

    Zakaria, Z.Y.; Amin, N.A.S.; Linnekoski, J.

    2014-01-01

    Highlights: • Glycerol steam reforming to light olefin using Cu/ZSM-5 process was optimized. • Response surface methodology and multi-objective genetic algorithm were employed. • Second order polynomial model produced adequately fitted experimental data. • Thermodynamic study inferred high temperature requirement for ethylene formation. • Turn-over-frequency at optimized responses is higher than the non-optimized process. - Abstract: Response surface methodology (RSM) and multi-objective genetic algorithm was employed to optimize the process parameters for catalytic conversion of glycerol, a byproduct from biodiesel production, to light olefins using Cu/ZSM-5 catalyst. The effects of operating temperature, weight hourly space velocity (WHSV) and glycerol concentration on light olefins selectivity and yield were observed. Experimental results revealed the data adequately fitted into a second-order polynomial model. The linear temperature and quadratic WHSV terms gave significant effect on both responses. Optimization of both the responses indicated that temperature favouring high light olefin formation lied beyond the experimental design range. The trend in the temperature profile concurred commensurately with the thermodynamic analysis. Multi-objective genetic algorithm was performed to attain a single set of processing parameters that could produce both the highest light olefin selectivity and yield. The turn-over-frequency (TOF) of the optimized responses demonstrated a slightly higher value than the one which was not optimized. Combination of RSM, multi-objective response and thermodynamic is useful to determine the process optimal operating conditions for industrial applications

  9. Recovery of Glycerol from Spent Soap LyeBy - Product of Soap Manufacture

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Three samples of spent lye from soap manufacturing companies namely Paterson Zochonis Industries (PZ, International Equitable Association (IEA, Kitchen Soap Industries (KSI all in Aba, Abia State of Nigeria and one laboratory simulated sample (SSL were analyzed for the amount of glycerol and residual salts. The amount of glycerol in all the samples increases in the order bleached glycerin > crude glycerin > semi-crude glycerin > treated lye > spent soap lye while the reverse is the order for the amount of residual salts. For the SSL, PZ, IEA and KSL samples, the percentage of recovered glycerol were 91.00, 83.20, 82.80 and 81.40 while the residual salt content (% were 9.80, 6.00, 7.08 and 8.03 respectively. These values compare well with international standards. The results show that the amount of the recovered glycerin and residual salts depend on the quality of the spent lye and the technology employed in the recovery treatment used.

  10. Biopolymer production using fungus Mucor racemosus Fresenius and glycerol as substrate

    Directory of Open Access Journals (Sweden)

    Thaíssa Rodrigues Araújo

    Full Text Available Abstract This study evaluated extracellular production of biopolymer using fungus Mucor racemosus Fresenius and glycerol as a carbon source. Initially employing conical flasks of 500 mL containing 100 mL of cultive medium with 0.18 ± 0.03 g.L–1 of microorganisms, the results showed that the best conditions of the variables studied were: initial concentration of glycerol 50 g.L–1, fermentation time of 96 h, inoculum cultivation time of 120 h, and aeration in two stages–the first 24 hours without aeration and 72 hours fermentation with aeration of 2 vvm and 2 g.L–1 of yeast extract. The experiments conducted in a Biostat B fermenter with a 2.0 L capacity that contained 1.0 L of medium showed production of 16.35 g.L–1 gum formed and 75% glycerol consumption. These conditions produced a biopolymer with the molecular weight and total sugar content of 4.607×106 g.mol–1 (Da and 89.5%, respectively.

  11. Lipid and carotenoid synthesis by Rhodosporidium diobovatum, grown on glucose versus glycerol, and its biodiesel properties.

    Science.gov (United States)

    Nasirian, Nima; Mirzaie, Maryam; Cicek, Nazim; Levin, David B

    2018-04-01

    Relationships between lipid and carotenoid synthesis by Rhodosporidium diobovatum were investigated for cell cultures in nitrogen-limited medium (GMY) containing equimolar amounts of carbon of glucose or glycerol. The cultures were also supplemented with additional substrate at 120 h postinoculation (pi) and during a fed-batch experiment. Growth of R. diobovatum on glucose resulted in higher yields of triacyglycerides (TAGs) and carotenoid than when grown on glycerol, even though the cultures contained equimolar amounts of carbon. After the addition of fresh substrate at 120 h pi, total carotenoid concentrations were significantly different from the concentrations measured at 120 h pi in both glucose and glycerol cultures, with no concomitant increase in lipid concentrations, suggesting that carotenoid synthesis is linked to exponential-phase growth, while lipid synthesis is linked to stationary phase. We also compared the calculated properties of biodiesel that could be made with TAGs derived from R. diobovatum with properties of biodiesel made from TAGs of other oleaginous yeasts, microalgae, vegetable oils, and animal fats. This study shows that R. diobovatum can be an effective strain for production of neutral lipids containing high percentages of oleic acid, palmitic acid, and linoleic acid, as well as carotenoids.

  12. Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Shishov, Andrey, E-mail: andrey.shishov.rus@gmail.com [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Zabrodin, Andrey; Moskvin, Leonid [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Andruch, Vasil [Department of Analytical Chemistry, University of P.J. Šafárik, SK-04154 Košice (Slovakia); Bulatov, Andrey [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation)

    2016-03-31

    A novel fluidized beads strategy for utilization of particle-immobilized reagents in flow analysis was developed in this study. The performance of the suggested strategy was demonstrated by the determination of glycerol in biodiesel. This analytical task was used as a proof-of-concept example. The method is based on on-line extraction of glycerol from biodiesel into aqueous stationary phase of extraction-chromatographic column, followed by elution and spectrophotometric determination in the form of copper glycerate formed in a fluidized reactor of stepwise injection system. The floating of cation exchange resin Dowex{sup ®} 50WX4, saturated with Cu(II) ions in liquid phase, was accomplished by air-bubbling. The linear range was from 100 to 1000 mg kg{sup −1}, and the limit of detection, calculated as 3s of a blank test (n = 5), was found to be 30 mg kg{sup −1}. The method was successfully applied to the analysis of biodiesel and biodiesel-blend (B 20) samples. - Highlights: • Novel fluidized beds strategy for utilization of particle-immobilized reagents. • First application of fluidized beds condition in SWIA. • Novel approach based on interfacial formation of copper glycerate. • Automated method for glycerol determination in biodiesel.

  13. Peculiarities of glucose and glycerol metabolism in Nocardia vaccinii IMB B-7405

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-04-01

    Full Text Available It has been established that in cells of Nocardia vaccinii IMB B-7405 (surfactant producer glucose catabolism is performed through pentose phosphate cycle as well as through gluconate (activi­ty of NAD+-dependent glucose-6- phosphate dehydrogenase and FAD+-dependent glucose dehydrogenase 835 ± 41 and 698 ± 35 nmol∙min-1∙mg-1 of protein respectively. 6-Phosphogluconate formed in the gluconokinase reaction is involved in the pentose phosphate cycle (activity of constitutive NADP+-dependent 6-phosphogluconate dehydrogenase 357 ± 17 nmol∙min-1∙mg-1 of protein. Glyce­rol catabolism to dihydroxyacetonephosphate (the intermediate of glycolysis may be performed in two ways: through glycerol-3-phosphate (glycerol kinase activity 244 ± 12 nmol∙min-1∙mg-1 of protein and through dihydroxyacetone. Replenishment of the C4-dicarboxylic acids pool in N. vaccinii IMV B-7405 grown on glucose and glycerol occurs in the phosphoenolpyruvate(PEPcarboxylase reaction (714–803 nmol∙min-1∙mg-1 of protein. 2-Oxoglutara­te was involved in tricarboxylic acid cycle by alternate pathway with the participation of 2-oxoglutarate synthase. The observed activity of both key enzymes of gluconeogenesis (PEP- carboxykinase and PEP-synthase, trehalose phosphate synthase and NADP+-dependent glutamate dehydrogenase confirmed the ability of IMV B-7405 strain to the synthesis of surface active glyco- and aminolipids, respectively.

  14. Reexamination of the evolution of the dynamic susceptibility of the glass former glycerol.

    Science.gov (United States)

    Adichtchev, S; Blochowicz, T; Tschirwitz, C; Novikov, V N; Rössler, E A

    2003-07-01

    The dielectric data of glycerol compiled by Lunkenheimer et al. [Contemp. Phys. 41, 15 (2000)] are reanalyzed within a phenomenological approach on the one hand, and within mode coupling theory (MCT), on the other. We present a complete interpolation of the dielectric data covering 17 decades in frequencies. The crossover temperature extracted from the phenomenological analysis of the slow response at low temperatures and defined by the emergence of the excess wing upon cooling agrees well with the critical temperature extracted from a MCT analysis of the dynamics at high temperatures including data that were not used in the first MCT analysis of glycerol by Lunkenheimer et al. [Phys. Rev. Lett. 77, 318 (1996)]. The crossover temperature is found to be T(c)=288+/-3 K, which is significantly higher than previously reported. Extracting the nonergodicity parameter f, the characteristic anomaly is only found when 1-f is inspected, since f is very close to 1. No difference for the evolution of the dynamic susceptibility is observed for the nonfragile system glycerol with respect to fragile glass formers provided that the evolution of the dynamics is studied as a function of the correlation time tau(alpha).

  15. Investigation of the kinetics and mechanism of the glycerol chlorination reaction using gas chromatography–mass spectrometry

    Directory of Open Access Journals (Sweden)

    JUN WANG

    2010-01-01

    Full Text Available As a primary by-product in biodiesel production, glycerol can be used to prepare an important fine chemical, epichlorohydrin, by the glycerol chlorination reaction. Although this process has been applied in industrial production, unfortunately, less attention has been paid to the analysis and separation of the compounds in the glycerol chlorination products. In this study, a convenient and accurate method to determine the products in glycerol chlorination reaction was established and based on the results the kinetic mechanism of the reaction was investigated. The structure of main products, including 1,3--dichloropropan-2-ol, 2,3-dichloropropan-1-ol, 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and glycerol was ascertained by gas chromatography–mass spectrometry and the isomers of the products were distinguished. Apidic acid was considered as the best catalyst because of its excellent catalytic effect and high boiling point. The mechanism of the glycerol chlorination reaction was proposed and a new kinetic model was developed. Kinetic equations of the process in the experimental range were obtained by data fitting and the activation energies of each tandem reaction were 30.7, 41.8, 29.4 and 49.5 kJ mol-1, respectively. This study revealed the process and mechanism of the kinetics and provides the theoretical basis for engineering problems.

  16. Conversion of 1-alkyl-2-acetyl-sn-glycerols to platelet activating factor and related phospholipids by rabbit platelets

    International Nuclear Information System (INIS)

    Blank, M.L.; Lee, T.; Cress, E.A.; Malone, B.; Fitzgerald, V.; Snyder, F.

    1984-01-01

    The metabolic pathway for 1-alkyl-2-acetyl-sn-glycerols, a recently discovered biologically active neutral lipid class, was elucidated in experiments conducted with rabbit platelets. The total lipid extract obtained from platelets incubated with 1-[1-,2- 3 H]alkyl-2-acetyl-sn-glycerols or 1-alkyl-2-[ 3 H]acetyl-sn-glycerols contained at least six metabolic products. The six metabolites, identified on the basis of chemical and enzymatic reactions combined with thin-layer or high-performance liquid chromatographic analyses, corresponded to 1-alkyl-sn-glycerols, 1-alkyl-2-acetyl-sn-glycero-3-phosphates, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholines, and 1-alkyl-2-actyl-sn-glycero-3-phosphocholines (platelet activating factor). These results indicate that the metabolic pathway for alkylacetylglycerols involves reaction steps catalyzed by the following enzymatic activities: choline- and ethanolamine- phosphotransferases, acetyl-hydrolase, an acyltransferase, and a phosphotransferase. The step responsible for the biosynthesis of platelet activating factor would appear to be the most important reaction in this pathway and this product could explain the hypotensive activities previously described for alkylacetyl-(or propionyl)-glycerols. Of particular interest was the preference exhibited for the utilization of the 1-hexadecyl-2-acetyl-sn-glycerol species in the formation of platelet activating factor

  17. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  18. THE DEPENDENCE OF GLYCEROL ACCUMULATION AND STARCH HYDROLYZATES FERMENTATION FROM WORT CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Оliynichuk S. Т.

    2015-08-01

    Full Text Available The purpose of this work is to study the dependence of ethanol accumulation by-products and secondary products (glycerol and propionic acid during the fermentation in the case of increasing the wort concentration from 12 to 21% by weight of sugar as an example of commonly used in the alcohol industry the commercial dry yeast company “Danisco” and experimental osmophilic strain Saccharomyces cerevisiae DS-02-E, isolated from a concentrated (80% DM of rye malt wort which spontaneously fermented. The enzyme preparations “AMYLEX 4T”, “ALPHALASE AFP” and “DIAZYME SSF” were used for the liquefaction and saccharification of starch wort. The finished industrial of both yeast strains were added to the fermentation flasks in an amount of 10% by volume of the primary wort. In the mature brew the unfermented carbohydrates content was determined by colorimetric method with anthrone reagent, alcohol — by glass areometer-alcoholometer, acidity — potentiometrically, the concentration of dry matter — by areometer, glycerol content — by photocolorimetry method. In the brew distillate a volatile impurities content, namely propionic acid, was determined using gas chromatography. Statistical processing of the results of three series of experiments were carried out by calculating the arithmetical mean value of 5 measurements, their standard deviations and errors. To determine the probable differences between the mean values were used Student’s t test. Differences were considered statistically significant at P < 0.05. Reduction for accumulation of glycerol (between 38 till 53% at higher concentrations of nutrient medium in the case of the yeast Saccharomyces cerevisiae DS-02-E as compared with commercial dry yeast, reduction the formation of unwanted by-product of fermentation — propionic acid (up to 34%, a better ability of the experimental strain to accumulate sugar of wort and to accumulate ethanol (up to 0.1–0.25% vol. were shown. It

  19. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity

    International Nuclear Information System (INIS)

    Uprety, Bijaya K.; Chaiwong, Wittavat; Ewelike, Chinomnso; Rakshit, Sudip K.

    2016-01-01

    Highlights: • Comparison of biodiesel production using homogeneous and heterogeneous catalysts. • Comparative study of CaO and CaO supported on alumina for biodiesel production. • Tradeoff between biodiesel conversion rate and purity. • Ash from birch bark and wood pellet industry explored as a potential catalyst. - Abstract: Transesterification of vegetable oils or animal fats with methanol in the presence of catalysts produces fatty acid methyl esters (FAME) and glycerol as a co-product. This study was focused on a comparative study of the transesterification of refined, bleached and deodorized palm oil (RBD palm oil) using a heterogeneous catalysts CaO with and without γ-alumina (γ-Al_2O_3) as a support. The results were also compared to that using sodium hydroxide (NaOH), which is a homogenous catalyst. Parameters like the amount of catalyst, the molar ratio of methanol to oil, reaction time and reaction temperature that affect methyl ester and glycerol formation were analyzed and the optimum conditions were determined. The FAME and glycerol content (96.75% and 92.73% respectively) obtained using CaO were lower in purity compared to that using CaO/Al_2O_3 (97.66% and 96.36% respectively). In the second phase of our work, wood ash from two different sources (birch bark & flyash from a biomass based power plant), which were calcined at 800 °C were studied for their potential use as a cheap renewable alternative heterogeneous catalyst. Both the wood ash samples were found to have good potential for use in such production process, but needs to be optimized further to obtain biodiesel which meets fuel biodiesel specifications. Both CaO and CaO supported on alumina produces FAME to levels that meet the fuel specifications required for blending with diesel. However, the latter produces a purer form of byproduct glycerol that can be easily converted to value added products, without the need for purification. On this basis the supported catalyst is

  20. A novel route to synthesis of glycerol dimethyl ether from epichlorohydrin with high selectivity

    International Nuclear Information System (INIS)

    Ding, Xiaoshu; Liu, Hao; Yang, Qiusheng; Li, Naihua; Dong, Xiangmo; Wang, Shufang; Zhao, Xinqiang; Wang, Yanji

    2014-01-01

    The effective utilization of glycerol, a by-product in the production of biodiesel, into useful chemicals is desirable from the viewpoint of green chemistry. With this in mind, a novel and highly selective route to synthesizing glycerol dimethyl ether (2,3-dimethoxy-1-propanol), a potential fuel additive, from glycerol was proposed. This route uses both glycerol and methanol as starting materials, takes epichlorohydrin as an intermediate product, and utilizes HCl as a recycling agent. Hereinto, the key step of this route is the reaction between epichlorohydrin and methanol to produce 2,3-dimethoxy-1-propanol which is identified by GC–MS, ESI-MS, IR and NMR. The thermodynamics of this reaction was analyzed and the result showed that the thermodynamics of a reaction was favorable and a high product yield was expected. The effect of various parameters such as kind of acid catalyst, molar ratio of epichlorohydrin to methanol, reaction temperature and reaction time was studied. Among various acid catalysts investigated, the acidic ionic liquid [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 exhibited the highest activity and selectivity: conversion of epichlorohydrin of 100% and selectivity of 2,3-dimethoxy-1-propanol of 99% at 393 K, 10 h, an initial pressure of 0.1 MPa and a molar ratio of catalyst:ECH:CH 3 OH of 0.01:1:5. After the reaction, [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 was separated by vacuum distillation and then reused for the next cycle directly. The results showed that the product selectivity remained at about 94% but the conversion of epichlorohydrin dropped to 75% after being used five times. Subsequently, a reaction mechanism for the synthesis of 2,3-dimethoxy-1-propanol from epichlorohydrin and methanol was proposed. - Highlights: • Epichlorohydrin was converted effectively into glycerol dimethyl ether used as potential fuel additive. • The selectivity of 99% and the conversion of 100% under the mild reaction condition. • The reaction was high product selectivity and

  1. Quantitative Analysis of Phenylpropanoid Glycerol Glucosides in Different Organs of Easter Lily (Lilium longiflorum Thunb.).

    Science.gov (United States)

    Munafo, John P; Gianfagna, Thomas J

    2015-05-20

    The Easter lily (Lilium longiflorum Thunb.) is esteemed worldwide as an attractive ornamental plant, and the flower buds and bulbs are used for both culinary and medicinal purposes in many parts of the world. L. longiflorum contains significant amounts of phenylpropanoid glycerol glucosides, a group of compounds that may contribute to plant pathogen defense, ultraviolet/high-intensity visible light (UV/high light) protection, and the purported medicinal uses of lilies. To define the natural distribution of these compounds within the plant, a liquid chromatography-mass spectrometry (LC-MS) method performed in selected ion monitoring (SIM) mode was employed for the quantitative analysis of five phenylpropanoid glycerol glucosides, namely, (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosylglycerol, 1; (2R)-1-O-β-D-glucopyranosyl-2-O-p-coumaroylglycerol, 2; (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosylglycerol, 3; (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 4; and (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 5, in the different organs of L. longiflorum. The p-coumaroyl-based 3 and its acetylated derivative 5 were determined to be the most abundant of the phenylpropanoid glycerol glucosides found in Easter lily bulbs, at 776.3 ± 8.4 and 650.7 ± 32.6 μg/g dry weight, respectively. The acetylated p-coumaroyl- and caffeoyl-based derivatives, 5 and 4, accumulated to the highest concentration in the closed flower buds, at 4925.2 ± 512.8 and 3216.8 ± 406.4 μg/g dry weight, respectively. Compound 4, followed by 5 and 1, proved to be the most abundant in the mature flowers, occurring at 6006.2 ± 625.8, 2160.3 ± 556.5, and 1535.8 ± 174.1 μg/g dry weight, respectively. Total concentrations of the phenylpropanoid glycerol glucosides were 10-100-fold higher in the above-ground plant organs as compared to the bulbs and fleshy roots. Two of the five compounds, 1 and 2, were identified in L. longiflorum for the first time. The quantitative

  2. Covalent immobilization of lipase, glycerol kinase, glycerol-3-phosphate oxidase & horseradish peroxidase onto plasticized polyvinyl chloride (PVC strip & its application in serum triglyceride determination

    Directory of Open Access Journals (Sweden)

    Nidhi Chauhan

    2014-01-01

    Full Text Available Background & objectives:Reusable biostrip consisting enzymes immobilized onto alkylamine glass beads affixed on plasticized PVC strip for determination of triglyceride (TG suffers from high cost of beads and their detachments during washings for reuse, leading to loss of activity. The purpose of this study was to develop a cheaper and stable biostrip for investigation of TG levels in serum. Methods: A reusable enzyme-strip was prepared for TG determination by co-immobilizing lipase, glycerol kinase (GK, glycerol-3-phosphate oxidase (GPO and peroxidase (HRP directly onto plasticized polyvinyl chloride (PVC strip through glutaraldehyde coupling. The method was evaluated by studying its recovery, precision and reusability. Results: The enzyme-strip showed optimum activity at pH 7.0, 35 o C and a linear relationship between its activity and triolein concentration in the range 0.1 to 15 mM. The strip was used for determination of serum TG. The detection limit of the method was 0.1 mM. Analytical recovery of added triolein was 96 per cent. Within and between batch coefficients of variation (CV were 2.2 and 3.7 per cent, respectively. A good correlation (r=0.99 was found between TG values by standard enzymic colrimetric method employing free enzymes and the present method. The strip lost 50 per cent of its initial activity after its 200 uses during the span of 100 days, when stored at 4 o C. Interpretation & conclusions: The nitrating acidic treatment of plasticized PVC strip led to glutaraldehyde coupling of four enzymes used for enzymic colourimetric determination of serum TG. The strip provided 200 reuses of enzymes with only 50 per cent loss of its initial activity. The method could be used for preparation of other enzyme strips also.

  3. Insights into the biological source and environmental gradients shaping the distribution of H-shaped glycerol dialkyl glycerol tetraethers in Yellowstone National Park geothermal springs

    Science.gov (United States)

    Jia, C.; Xie, W.; Wang, J.; Boyd, E. S.; Zhang, C.

    2013-12-01

    Archaea are ubiquitous in natural environments. The unique tetraether lipids in archaeal membranes enable the maintenance of ion permeability across broad environmental gradients. H-shaped isoprenoid glycerol dialkyl glycerol tetraethers (H-GDGTs), in which the two biphytanyl carbon skeletons are covalently bound by a carbon-carbon bond, have been recently identified in both marine and geothermal environments. Here we report the core H-GDGTs (C-H-GDGTs) and polar H-GDGTs (P-H-GDGTs) associated with sediments sampled from geothermal springs in Yellowstone National Park and investigate their abundance in relation to environmental gradients. The abundance of C- and P-H-GDGTs exhibit strong and negative correlation with pH (P = 0.007), suggesting that H-shaped GDGTs help to maintain cell membrane fluidity in acidic environments. Reanalysis of archaeal 16S rRNA gene pyrotags published previously from (Boyd E. Hamilton T. L., Wang J., He L., Zhang C. L. 2013. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Frontiers in Terrestrial Microbiology. 4: doi: 10.3389/fmicb.2013.00062) indicates that these H-GDGTs are associated with environments dominanted by Thermoplasmatales, which are thermoacidiphiles. Two equations were established to define the relationships between the abundance of H-GDGTs, the abundance of archaeal taxa based on 16S rRNA gene phylogenetic affiliations, and pH. Both equations have high predictive capacity in predicting the distribution of archaeal lipids in the geothermal system. These observations provide new insight into the biological source of H-GDGTs and suggest a prominent role for these lipids in the diversification of archaea into or out of acidic high temperature environments.

  4. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions

    Directory of Open Access Journals (Sweden)

    S. Ding

    2015-06-01

    Full Text Available The methylation index of branched tetraethers (MBT and cyclization ratio of branched tetraethers (CBT based on the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGT are useful proxies for the reconstruction of mean annual air temperature (MAT and soil pH. Recently, a series of 6-methyl brGDGTs were identified which were previously co-eluted with 5-methyl brGDGTs. However, little is known about 6-methyl brGDGTs in the Qinghai–Tibetan Plateau (QTP, a critical region of the global climate system. Here, we analyze 30 surface soils covering a large area of the QTP, among which 6-methyl brGDGTs were the most abundant components (average 53 ± 17% of total brGDGT. The fractional abundance of 6-methyl brGDGTs showed a good correlation with soil pH, while the global MBT'5ME calibration overestimates MAT in the QTP. We therefore proposed a MBT5/6 index including both 5- and 6-methyl brGDGTs, presenting a strong correlation with MAT in QTP: MAT = −20.14 + 39.51 × MBT5/6 (n = 27, r2 = 0.82; RMSE = 1.3 °C. Another index, namely IBT (isomerization of branched tetraether, based on carbon skeleton isomerization of the 5-methyl to 6-methyl brGDGTs, is dependent on soil pH: pH = 6.77 − 1.56 × IBT (n = 27; r2 = 0.74, RMSE = 0.32. Our study suggests that changing the position of methyl group of brGDGTs may be another mechanism for some soil bacteria to adapt to the ambient pH change in addition to the well-known cyclization.

  5. Anti-irritant and anti-inflammatory effects of glycerol and xylitol in sodium lauryl sulphate-induced acute irritation.

    Science.gov (United States)

    Szél, E; Polyánka, H; Szabó, K; Hartmann, P; Degovics, D; Balázs, B; Németh, I B; Korponyai, C; Csányi, E; Kaszaki, J; Dikstein, S; Nagy, K; Kemény, L; Erős, G

    2015-12-01

    Glycerol is known to possess anti-irritant and hydrating properties and previous studies suggested that xylitol may also have similar effects. Our aim was to study whether different concentrations of these polyols restore skin barrier function and soothe inflammation in sodium lauryl sulphate (SLS)-induced acute irritation. The experiments were performed on male SKH-1 hairless mice. The skin of the dorsal region was exposed to SLS (5%) for 3 h alone or together with 5% or 10% of glycerol respectively. Further two groups received xylitol solutions (8.26% and 16.52% respectively) using the same osmolarities, which were equivalent to those of the glycerol treatments. The control group was treated with purified water. Transepidermal water loss (TEWL) and skin hydration were determined. Microcirculatory parameters of inflammation were observed by means of intravital videomicroscopy (IVM). Furthermore, accumulation of neutrophil granulocytes and lymphocytes, the expression of inflammatory cytokines and SLS penetration were assessed, as well. Treatment with the 10% of glycerol and both concentrations of xylitol inhibited the SLS-induced elevation of TEWL and moderated the irritant-induced increase in dermal blood flow and in the number of leucocyte-endothelial interactions. All concentrations of the applied polyols improved hydration and prevented the accumulation of lymphocytes near the treatment site. At the mRNA level, neither glycerol nor xylitol influenced the expression of interleukin-1 alpha. However, expression of interleukin-1 beta was significantly decreased by the 10% glycerol treatment, while expression of tumour necrosis factor-alpha decreased upon the same treatment, as well as in response to xylitol. Higher polyol treatments decreased the SLS penetration to the deeper layers of the stratum corneum. Both of the analysed polyols exert considerable anti-irritant and anti-inflammatory properties, but the effective concentration of xylitol is lower than that of

  6. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.

    Science.gov (United States)

    Li, Feng; Yin, Changji; Sun, Liming; Li, Yuanxiu; Guo, Xuewu; Song, Hao

    2018-05-01

    Microbial fuel cell (MFC) is an eco-friendly bio-electrochemical sys-tem that uses microorganism as biocatalyst to convert biomass into electricity. Glycerol, as a waste in the biodiesel refinery processes, is an appealing substrate for MFC. Nevertheless, glycerol cannot be utilized as carbon source by well-known exoelectrogens such as Shewanella oneidensis. Herein, to generate electricity by rapidly harnessing glycerol, the authors rationally constructed a Klebsiella pneumoniae-Shewanella oneidensis microbial consortium to efficiently harvest electricity from glyc-erol, in which K. pneumoniae converted glycerol into lactate, fed to S. oneidensis as carbon source and electron donor. To improve electricity output, the authors systematically engineered the consortium in terms of carbon flux distribution and efficiency of extracellular electron transfer (EET). To direct more carbon flux to lactate biosynthesis in K. pneumoniae, the authors eliminated the ethanol pathway by knocking out the alcohol dehydrogenase gene (adhE), and enhanced lactate biosynthesis by heterologously expressing a lactate dehydrogen-ase gene (ldhD) from Lactobacillus bulgaricus and a lactate transporter gene (lldP) from Escherichia coli. To facilitate EET between S. oneidensis and anode surfaces, a biosynthetic flavins pathway from Bacillus subtilis is introduced into S. oneidensis. The author further optimized the glycerol concentration, thus S. oneidensis could be continuously fed with lactate synthesized from K. pneumoniae at a constant rate. Our glycerol-fed MFC generated a maximum power density of 19.9 mW/m 2 , significantly higher than that of the wild-type consor-tium. This work suggested that engineering microbial consortia is an effi-cient strategy to expand the spectrum of usable carbon sources and promote electricity power production in MFCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor.

    Science.gov (United States)

    Loaces, Inés; Rodríguez, Cecilia; Amarelle, Vanesa; Fabiano, Elena; Noya, Francisco

    2016-10-01

    Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h(-1) OD(-1) L(-1).

  8. Superlubricity and tribochemistry of polyhydric alcohols

    Science.gov (United States)

    Matta, C.; Joly-Pottuz, L.; de Barros Bouchet, M. I.; Martin, J. M.; Kano, M.; Zhang, Qing; Goddard, W. A., III

    2008-08-01

    The anomalous low friction of diamondlike carbon coated surfaces lubricated by pure glycerol was observed at 80°C . Steel surfaces were coated with an ultrahard 1 µm thick hydrogen-free tetrahedral coordinated carbon (ta-C) layer produced by physical vapor deposition. In the presence of glycerol, the friction coefficient is below 0.01 at steady state, corresponding to the so-called superlubricity regime (when sliding is then approaching pure rolling). This new mechanism of superlow friction is attributed to easy glide on triboformed OH-terminated surfaces. In addition to the formation of OH-terminated surfaces but at a lower temperature, we show here some evidence, by coupling experimental and computer simulations, that superlow friction of polyhydric alcohols could also be associated with triboinduced degradation of glycerol, producing a nanometer-thick film containing organic acids and water. Second, we show outstanding superlubricity of steel surfaces directly lubricated by a solution of myo-inositol (also called vitamin Bh) in glycerol at ambient temperature (25°C) . For the first time, under boundary lubrication at high contact pressure, friction of steel is below 0.01 in the absence of any long chain polar molecules. The mechanism is still unknown but could be associated with friction-induced dissociation of glycerol and interaction of waterlike species with steel surface.

  9. Effects of feeding dry glycerol on milk production, nutrients digestibility and blood components in primiparous Holstein dairy cows during the early postpartum period

    Energy Technology Data Exchange (ETDEWEB)

    Kafilzadeh, F.; Piri, V.; Karami-Shabankareh, H.

    2015-07-01

    The aim of this study was to evaluate the glucogenic property of glycerol supplementation in the dairy cow’s diet. Sixty primiparous cows (control, n=30, and glycerol supplemented, n=30) were used to measure milk yield and components, blood hormone and metabolite profiles, and body condition score. Feed intake and apparent total-tract digestibility were also measured using 10 primiparous cows (control, n=5, and glycerol supplemented, n=5). Dry glycerol was top dressed at 250 g/day/cow from parturition to 21 days postpartum. Average feed intake, milk yield and components were not affected by glycerol supplementation. Apparent total–tract digestibility of organic matter and neutral detergent fibre were not influenced by dry glycerol supplementation, but lipid digestibility was greater (p=0.01) in cows fed glycerol. The serum concentration of glucose and insulin tended to be higher in dry glycerol-supplemented cows (p=0.1; p=0.06, respectively). While, serum concentrations of nonesterified fatty acids and β-hydroxybutyrate were not affected. Supplemented cows had lower body condition loss during weeks 1 to 5 after calving (p=0.09). The glucogenic effect of glycerol did not affect milk yield during the first 3 weeks of lactation. However, daily milk yield during the 13 weeks recording period was higher in the glycerol-supplemented cows (28.5 vs. 30.3 kg, p<0.001). Percentages of cows cycling at the planned breeding date was greater (p=0.01) for cows fed dry glycerol. The results demonstrated that feeding dry glycerol as a glucogenic supply could be useful in saving body reserves and improving energy balance of primiparous Holstein dairy cows during the early postpartum period. (Author)

  10. Effects of feeding dry glycerol on milk production, nutrients digestibility and blood components in primiparous Holstein dairy cows during the early postpartum period

    Directory of Open Access Journals (Sweden)

    Farokh Kafilzadeh

    2015-12-01

    Full Text Available The aim of this study was to evaluate the glucogenic property of glycerol supplementation in the dairy cow’s diet. Sixty primiparous cows (control, n=30, and glycerol supplemented, n=30 were used to measure milk yield and components, blood hormone and metabolite profiles, and body condition score. Feed intake and apparent total-tract digestibility were also measured using 10 primiparous cows (control, n=5, and glycerol supplemented, n=5. Dry glycerol was top dressed at 250 g/day/cow from parturition to 21 days postpartum. Average feed intake, milk yield and components were not affected by glycerol supplementation. Apparent total–tract digestibility of organic matter and neutral detergent fibre were not influenced by dry glycerol supplementation, but lipid digestibility was greater (p=0.01 in cows fed glycerol. The serum concentration of glucose and insulin tended to be higher in dry glycerol-supplemented cows (p=0.1; p=0.06, respectively. While, serum concentrations of nonesterified fatty acids and β-hydroxybutyrate were not affected. Supplemented cows had lower body condition loss during weeks 1 to 5 after calving (p=0.09. The glucogenic effect of glycerol did not affect milk yield during the first 3 weeks of lactation. However, daily milk yield during the 13 weeks recording period was higher in the glycerol-supplemented cows (28.5 vs. 30.3 kg, p<0.001. Percentages of cows cycling at the planned breeding date was greater (p=0.01 for cows fed dry glycerol. The results demonstrated that feeding dry glycerol as a glucogenic supply could be useful in saving body reserves and improving energy balance of primiparous Holstein dairy cows during the early postpartum period.

  11. Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate.

    Directory of Open Access Journals (Sweden)

    María del Mar Romero

    Full Text Available Cultured adipocytes (3T3-L1 produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively sustained. Proportionally (with respect to lactate plus glycerol, more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of

  12. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    OpenAIRE

    Hong Yang; Yun-Tao Cao; Hao Song; Shao-Feng Hua; Chun-Gu Xia; Wei-Bao Kong

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  13. Collagen-chitosan-glycerol bio-composite as artificial tympanic membrane for ruptured inner ear organ

    Science.gov (United States)

    Widiyanti, Prihartini; Setya Angtika, Rara; Githanadi, Brillyana; Hanif Kharisma, Ditya; Asyraf, Tarikh Omar; Wardani, Adita

    2017-05-01

    WHO data in 2012 shows that 5.3% of world population highly suffers from hearing loss and deafness. One of the deafness causes is rupture of tympanic membrane. Tympanic membrane damage which occurs often is perforated tympanic membrane, and it is also commonly known in medical term as tympanic membrane perforation. The causes, for instance, are high frequency of using earphones, traumatic accidents, noise, bacteria, viruses, and infectious microorganism. Tympanoplasty becomes the only treatment that can be widely accepted despite of deficiencies in postoperative complications. Therefore, this research aims to create artificial tympanic membrane made of natural materials such as type I collagen composited with chitosan and made of addition of glycerol to improve its mechanical strength and biodegradability. The method included the process of dissolving acetic acid in distilled water and mixation with chitosan. The solution is next added with glycerol and stirred to be homogeneous. After that, it was minted in petri dish and aerated before characterized. The sample characterization included tensile strength of which tensile test results showed that the value of the elasticity modulus tended to decrease with an increase in collagen concentration. The elasticity modulus values in a row for the variations of 7: 3, 8: 2, and 9: 1 were 35.10 MPa, 54,52MPa, and 47,45MPa respectively. The morphological test with 1000x, 2500x, and 5000x magnification showed their interaction in the formation of pores. Cytotoxicity results, moreover, showed that those samples were non-toxic and safe for the body due to the percentage of living cells. The sound absorption coefficient was between 1000 Hz - 2000 Hz which means that it could use as sound absorbing material. The antibacterial test results showed that all the sample variations were anti-bacterial due to the diameter of the clear zone. In conclusion, collagen and chitosan composite with addition of glycerol could be used for

  14. Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor

    Directory of Open Access Journals (Sweden)

    Efterpi S. Vasiliadou

    2014-12-01

    Full Text Available Glycerol hydrodeoxygenation to 1,2-propanediol (1,2-PDO is a reaction of high interest. However, the need for hydrogen supply is a main drawback of the process. According to the concept investigated here, 1,2-propanediol is efficiently formed using bio-glycerol feedstock with H2 formed in situ via ethanol aqueous phase reforming. Ethanol is thought to be a promising H2 source, as it is alcohol that can be used instead of methanol for transesterification of oils and fats. The H2 generated is consumed in the tandem reaction of glycerol hydrodeoxygenation. The reaction cycle proceeds in liquid phase at 220–250 °C and 1.5–3.5 MPa initial N2 pressure for a 2 and 4-h reaction time. Pt-, Ni- and Cu-based catalysts have been synthesized, characterized and evaluated in the reaction. Among the materials tested, Pt/Fe2O3-Al2O3 exhibited the most promising performance in terms of 1,2-propanediol productivity, while reusability tests showed a stable behavior. Structural integrity and no formation of carbonaceous deposits were verified via Temperature Programmed Desorption of hydrogen (TPD-H2 and thermogravimetric analysis of the fresh and used Pt/FeAl catalyst. A study on the effect of various operating conditions (reaction time, temperature and pressure indicated that in order to maximize 1,2-propanediol productivity and yield, milder reaction conditions should be applied. The highest 1,2-propanediol yield, 53% (1.1 g1,2-PDO gcat−1·h−1, was achieved at a lower reaction temperature of 220 °C.

  15. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Science.gov (United States)

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  16. Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.

    Science.gov (United States)

    Kogje, Anushree B; Ghosalkar, Anand

    2017-06-01

    Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5' and 3' delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L -1  h -1 ) over the control strain XP (81 mg L -1  h -1 ). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L -1  h -1 and titre of 47 g L -1 of xylitol at 12 g L -1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol -1 ) was significantly lower than glucose (23.7 mol mol -1 ). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.

  17. Mechanical properties and total hydroxycinnamic derivative release of starch/glycerol/Melissa officinalis extract films

    Directory of Open Access Journals (Sweden)

    Letícia Mello Rechia

    2010-09-01

    Full Text Available The aim of this study was to investigate the mechanical properties of starch/glycerol/Melissa officinalis, a topical drug delivery system for labial herpes treatment. Four films were prepared with different concentrations of starch, glycerol, and Melissa officinalis extract. The results revealed that increasing the glycerol concentration in the film reduced elasticity modulus and tensile strength, exhibiting a plasticizing effect. The increase in free volume resulted in increased release of hydroxycinnamic derivatives expressed as rosmarinic acid.O objetivo deste trabalho foi estudar as propriedades mecânicas e o mecanismo de liberação de um sistema tópico de liberação prolongada para o tratamento do Herpes labial a partir de filmes de amido/glicerol/extrato de Melissa officinalis, planta com comprovada atividade antiviral. Foram obtidos quatro filmes poliméricos com diferentes concentrações de amido, glicerol e extrato de Melissa officinalis os quais foram caracterizados mecanicamente e determinado o perfil de liberação de derivados hidroxicinâmicos. Os resultados demonstraram que o aumento da concentração de glicerol no filme produz uma redução no módulo de elasticidade e na tensão de deformação como conseqüência do efeito plastificante. O aumento no volume livre do polímero resultou em aumento da liberação dos derivados hidroxicinâmicos expressos como ácido rosmarínico.

  18. Effects of Time-Release Caffeine Containing Supplement on Metabolic Rate, Glycerol Concentration and Performance

    Directory of Open Access Journals (Sweden)

    Adam M. Gonzalez, Jay R. Hoffman, Adam J. Wells, Gerald T. Mangine, Jeremy R. Townsend, Adam R. Jajtner, Ran Wang, Amelia A. Miramonti, Gabriel J. Pruna, Michael B. LaMonica, Jonathan D. Bohner, Mattan W. Hoffman, Leonardo P. Oliveira, David H. Fukuda, Maren S. Fragala, Jeffrey R. Stout

    2015-06-01

    Full Text Available This study compared caffeine pharmacokinetics, glycerol concentrations, metabolic rate, and performance measures following ingestion of a time-release caffeine containing supplement (TR-CAF versus a regular caffeine capsule (CAF and a placebo (PL. Following a double-blind, placebo-controlled, randomized, cross-over design, ten males (25.9 ± 3.2 y who regularly consume caffeine ingested capsules containing either TR-CAF, CAF, or PL. Blood draws and performance measures occurred at every hour over an 8-hour period. Plasma caffeine concentrations were significantly greater (p < 0.05 in CAF compared to TR-CAF during hours 2-5 and significantly greater (p = 0.042 in TR-CAF compared to CAF at hour 8. There were no significant differences between trials in glycerol concentrations (p = 0.86 or metabolic measures (p = 0.17-0.91. Physical reaction time was significantly improved for CAF at hour 5 (p=0.01 compared to PL. Average upper body reaction time was significantly improved for CAF and TR-CAF during hours 1-4 (p = 0.04 and p = 0.01, respectively and over the 8-hour period (p = 0.04 and p = 0.001, respectively compared to PL. Average upper body reaction time was also significantly improved for TR-CAF compared to PL during hours 5-8 (p = 0.004. TR-CAF and CAF showed distinct pharmacokinetics yielding modest effects on reaction time, yet did not alter glycerol concentration, metabolic measures, or other performance measures.

  19. Synthesis and characterization of a glycerol salicylate resin for bioactive root canal sealers.

    Science.gov (United States)

    Portella, F F; Santos, P D; Lima, G B; Leitune, V C B; Petzhold, C L; Collares, F M; Samuel, S M W

    2014-04-01

    To develop and characterize a salicylate resin with potential use in bioactive endodontic sealers. Methyl salicylate, glycerol and titanium isopropoxide were added in a closed system for the transesterification reaction. The resin obtained was characterized by proton nuclear magnetic resonance spectroscopy (1H NMR) and size exclusion chromatography (SEC). To verify the applicability of the resin to the development of endodontic sealers, experimental cements were prepared by mixing glycerol salicylate resin, calcium hydroxide and methyl salicylate in the ratios of 2 : 1 : 1, 1 : 2 : 1, 1 : 1 : 2, 1 : 1 : 1, 4 : 1 : 1, 1 : 4 : 1 and 1 : 1 : 4. Setting times were measured according to ISO 6876. Features of the hardening reaction were described by micro-RAMAN spectroscopy. The transesterification reaction had a 72% efficiency. The (1) H NMR analysis revealed the presence of the expected functional groups (hydroxyls and aromatic rings), and the SEC confirmed the molar mass of the resin produced. The setting times of experimental sealers ranged from 70 min (ratio 1 : 1 : 1) to 490 min (ratio 1 : 1 : 4). The conversion of the salicylic groups (1 613 cm(-1) ) to salicylate salt (1 543 cm(-1) ) and the reduction in calcium hydroxide peaks (1084 and 682 cm(-1) ) were confirmed by micro-RAMAN spectroscopy, which showed the calcium chelation by the resin. The new glycerol salicylate resin was successfully synthesized and revealed a potential application in the development of endodontic sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Production of gaseous and liquid chemicals by aqueous phase reforming of crude glycerol: Influence of operating conditions on the process

    International Nuclear Information System (INIS)

    Remón, J.; Giménez, J.R.; Valiente, A.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Aqueous phase reforming: a tailor-made process for the valorisation of crude glycerol. • In-depth understanding of the effect of the operating conditions on the process. • Process optimisation for the selective production of valuable gas and liquid products. • Low pressure and high temperature and spatial time favour gas production. • High pressure and medium temperature maximise the production of valuable liquids. - Abstract: The present work studies the influence of the temperature (200–240 °C), pressure (38–50 bar), glycerol concentration (10–50 wt.%) and mass of catalyst/ glycerol mass flow rate ratio (W/m_g_l_y_c_e_r_o_l = 10–40 g catalyst min/g glycerol) during the aqueous phase reforming (APR) of a glycerol solution obtained from the production of biodiesel. The operating conditions exerted a statistically significant influence on the reforming results. Specifically, the global glycerol conversion and the carbon converted into gas and liquid products varied as follows: 4–100%, 1–80% and 16–93%, respectively. The gas phase was made up of H_2 (8–55 vol.%), CO_2 (34–66 vol.%), CO (0–4 vol.%) and CH_4 (6–45 vol.%). The liquid phase consisted of a mixture of alcohols (monohydric: methanol and ethanol; and polyhydric: 1,2-propanediol, 1,2-ethanediol, 2,3-butanediol), aldehydes (acetaldehyde), ketones (C3-ketones: acetone and 2-propanone-1-hydroxy; C4-ketones: 2-butanone-3-hydroxy and 2-butanone-1-hydroxy; and cyclic ketones), carboxylic acids (acetic and propionic acids) and esters (1,2,3-propanetriol-monoacetate), together with unreacted glycerol and water. The relative amount (free of water and un-reacted glycerol) of these compounds in the liquid phase was as follows: monohydric alcohols: 4–47%, polyhydric-alcohols: 14–68%, aldehydes: 0–5%, C3-ketones: 2–33%, C4-ketones: 0–10%, ciclo-ketones: 0–6%, carboxylic acids: 2–43%, and esters: 0–46%. This process turned out to be highly customisable for the