WorldWideScience

Sample records for glycerol gradient centrifugation

  1. Separation of gold nanorods by viscosity gradient centrifugation

    International Nuclear Information System (INIS)

    Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye

    2016-01-01

    Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)

  2. Virus purification by CsCl density gradient using general centrifugation.

    Science.gov (United States)

    Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro

    2017-11-01

    Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.

  3. Improved quality of cryopreserved cheetah (Acinonyx jubatus) spermatozoa after centrifugation through Accudenz.

    Science.gov (United States)

    Crosier, Adrienne E; Henghali, Josephine N; Howard, Jogayle; Pukazhenthi, Budhan S; Terrell, Kimberly A; Marker, Laurie L; Wildt, David E

    2009-01-01

    Sperm cryopreservation, in combination with assisted reproductive techniques, is a valuable tool for the genetic management of endangered felids. However, the acrosome of the cheetah spermatozoon is especially sensitive to cryopreservation, with approximately 40% of spermatozoa experiencing acrosomal damage immediately after thawing and then another approximately 15% loss during the next 4 hours in vitro. Additionally, thawing causes a reduction in sperm motility by approximately 20% with another decrease of approximately 12% during subsequent incubation in vitro. We hypothesized that slow removal of glycerol from cryopreserved cheetah spermatozoa using an Accudenz gradient would improve acrosomal integrity, sperm motility longevity, and structural morphology. Accudenz was compared with traditional cheetah sperm processing methods for glycerol removal that involves washing, multistep resuspension, and swim-up processing. Electroejaculates (n = 21 total from 8 males) were washed in Ham F10 medium, and sperm pellets were resuspended in TEST-yolk buffer with 0% glycerol. Samples were cryopreserved in straws in 4% final glycerol, thawed, and assessed for percent intact acrosomes (% IA), percent motility (% M), and forward progressive status (FPS; scale, 0-5). Sperm motility index (SMI) was calculated as (% M + [FPS x 20]) / 2. In study 1, glycerol removal by centrifugation through an Accudenz gradient (4%, 10%) was compared with traditional sperm washing (control) and multistep resuspension protocols. At each time after centrifugation (hourly for 4 hours), % IA was improved (P cheetah sperm mitigates the significant loss in sperm quality that occurs after freeze-thawing. This alleviation of cellular damage resulting from cryopreservation contributes to a more than 10% improvement in overall sperm motility and, more importantly, allows retention of 40% or more of sperm with intact acrosomes.

  4. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    Science.gov (United States)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  5. Microfluidic Adaptation of Density-Gradient Centrifugation for Isolation of Particles and Cells

    Directory of Open Access Journals (Sweden)

    Yuxi Sun

    2017-08-01

    Full Text Available Density-gradient centrifugation is a label-free approach that has been extensively used for cell separations. Though elegant, this process is time-consuming (>30 min, subjects cells to high levels of stress (>350 g and relies on user skill to enable fractionation of cells that layer as a narrow band between the density-gradient medium and platelet-rich plasma. We hypothesized that microfluidic adaptation of this technique could transform this process into a rapid fractionation approach where samples are separated in a continuous fashion while being exposed to lower levels of stress (<100 g for shorter durations of time (<3 min. To demonstrate proof-of-concept, we designed a microfluidic density-gradient centrifugation device and constructed a setup to introduce samples and medium like Ficoll in a continuous, pump-less fashion where cells and particles can be exposed to centrifugal force and separated via different outlets. Proof-of-concept studies using binary mixtures of low-density polystyrene beads (1.02 g/cm3 and high-density silicon dioxide beads (2.2 g/cm3 with Ficoll–Paque (1.06 g/cm3 show that separation is indeed feasible with >99% separation efficiency suggesting that this approach can be further adapted for separation of cells.

  6. Development of the CARS method for measurement of pressure and temperature gradients in centrifuges

    International Nuclear Information System (INIS)

    Zeltmann, A.H.; Valentini, J.J.

    1983-12-01

    These experiments evaluated the feasibility of applying the CARS technique to the measurement of UF 6 concentrations and pressure gradients in a gas centrifuge. The resultant CARS signals were properly related to system parameters as suggested by theory. The results have been used to guide design of an apparatus for making CARS measurements in a UF 6 gas centrifuge. Ease of measurement is expected for pressures as low as 0.1 torr. Temperature gradients can be measured by this technique with changes in the data acquisition method. 16 references, 8 figures, 2 tables

  7. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  8. Fluorimetric methods for the measurement of intermediate metabolites (lactate, pyruvate, alanine, β-hydroxybutyrate, glycerol) using a COBAS FARA centrifugal analyser

    OpenAIRE

    Monti, L. D.; Sandoli, P. E.; Costa, S.; Phan, V. C.; Piatti, P. M.

    1993-01-01

    Intermediate products of the metabolism of glucose, fat and amino-acid are important in the evaluation of such metabolic disorders as diabetes mellitus, liver disease and metabolic acidosis. In the present study, methods for the measurement of intermediate metabolites (lactate, pyruvate, alanine, β-hydroxybutyrate and glycerol) have been adapted to a fast centrifugal analyzer: the COBAS FARA. Correlation coeffcients rangedfrom 0.90 to 0.99, compared to established manual spectrophotometric me...

  9. Study of flow instability in a centrifugal fan based on energy gradient theory

    International Nuclear Information System (INIS)

    Xiao, Meina; Dou, Hua-Shu; Ma, Xiaoyang; Xiao, Qing; Chen, Yongning; He, Haijiang; Ye, Xinxue

    2016-01-01

    Flow instability in a centrifugal fan was studied using energy gradient theory. Numerical simulation was performed for the three dimensional turbulent flow field in a centrifugal fan. The flow is governed by the three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-ε turbulent model. The finite volume method was used to discretize the governing equations and the Semiimplicit method for pressure linked equation (SIMPLE) algorithm is employed to iterate the system of the equations. The interior flow field in the centrifugal fan and the distribution of the energy gradient function K are obtained at different flow rates. According to the energy gradient method, the area with larger value of K is the place where the flow loses stability easier. The results show that instability is easier to generate in the regions of impeller outlet and volute tongue. The air flow near the hub is more stable than that near the shroud. That is due to the influences of variations of the velocity and the inlet angle along the axial direction. With the decrease of the flow rate, instability zone in a blade channel moves to the impeller inlet from the outlet and the unstable regions in different channels develop in opposite direction to the rotation of impeller

  10. Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients

    Science.gov (United States)

    Yu, Mingbiao; Cai, Tijing

    2018-05-01

    The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.

  11. Isolating peripheral lymphocytes by density gradient centrifugation and magnetic cell sorting.

    Science.gov (United States)

    Brosseron, Frederic; Marcus, Katrin; May, Caroline

    2015-01-01

    Combining density gradient centrifugation with magnetic cell sorting provides a powerful tool to isolate blood cells with high reproducibility, yield, and purity. It also allows for subsequent separation of multiple cell types, resulting in the possibility to analyze different purified fractions from one donor's sample. The centrifugation step divides whole blood into peripheral blood mononuclear cells (PBMC), erythrocytes, and platelet-rich plasma. In the following, lymphocyte subtypes can be consecutively isolated from the PBMC fraction. This chapter describes enrichment of erythrocytes, CD14-positive monocytes and CD3-positive T lymphocytes. Alternatively, other cell types can be targeted by using magnetic beads specific for the desired subpopulation.

  12. Monomers and polymers in a centrifugal field : a new method to produce refractive-index gradients in polymers

    NARCIS (Netherlands)

    Duijnhoven, van F.G.H.; Bastiaansen, C.W.M.

    1999-01-01

    A new method is presented to generate and to fixate compositional gradients in blends of two miscible and amorphous polymers. A compositional gradient is introduced into a solution of a polymer in a monomer by use of a centrifugal field, and this gradient is subsequently fixated by polymerization of

  13. Centrifugal dewatering of acid casein curd: effect of casein manufacturing and centrifugation variables on curd compression in a laboratory centrifuge.

    Science.gov (United States)

    Munro, P A; Van Til, H J

    1988-10-20

    Data relevant to curd compression in a horizontal, solid bowl decanter centrifuge have been obtained by studying the dewatering of acid casein curd in a batch laboratory centrifuge. Analysis of curd compression under centrifugal force predicts a moisture content gradient in the dewatered curd from a maximum at the curd-liquid interface to a minimum at the centrifuge bowl wall. This moisture content gradient was also measured experimentally, and its practical implications are discussed. Increases in centrifugal force, centrifugation time, and centrifugation temperature all caused a marked de crease in dewatered curd moisture content, whereas in creases in precipitation pH and maximum washing temperature caused a smaller decrease in dewatered curd moisture content.

  14. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    Science.gov (United States)

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  15. Optimized methods to measure acetoacetate, 3-hydroxybutyrate, glycerol, alanine, pyruvate, lactate and glucose in human blood using a centrifugal analyser with a fluorimetric attachment

    OpenAIRE

    Stappenbeck, R.; Hodson, A. W.; Skillen, A. W.; Agius, L.; Alberti, K. G. M. M.

    1990-01-01

    Optimized methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, D-3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood using the Cobas Bio centrifugal analyser. Glucose and lactate are measured using the photometric mode and other metabolites using the fluorimetric mode. The intra-assay coefficients of variation ranged from 0.7 to 4.1%, except with very low levels of pyruvate and acetoacetate where the coefficients of variation were ...

  16. Enrichment of unlabeled human Langerhans cells from epidermal cell suspensions by discontinuous density gradient centrifugation

    NARCIS (Netherlands)

    Teunissen, M. B.; Wormmeester, J.; Kapsenberg, M. L.; Bos, J. D.

    1988-01-01

    In this report we introduce an alternative procedure for enrichment of human epidermal Langerhans cells (LC) from epidermal cell suspensions of normal skin. By means of discontinuous Ficoll-Metrizoate density gradient centrifugation, a fraction containing high numbers of viable, more than 80% pure

  17. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  18. Noninvasive prenatal diagnosis. Use of density gradient centrifugation, magnetically activated cell sorting and in situ hybridization

    DEFF Research Database (Denmark)

    Campagnoli, C; Multhaupt, H A; Ludomirski, A

    1997-01-01

    OBJECTIVE: To develop a noninvasive method suitable for clinical prenatal diagnosis. STUDY DESIGN: Fetal nucleated erythrocytes were separated from peripheral blood of 17 healthy pregnant women using small magnetically activated cell sorting columns (MiniMACS) following density gradient centrifug...

  19. Blood glucose, lactate, pyruvate, glycerol, 3-hydroxybutyrate and acetoacetate measurements in man using a centrifugal analyser with a fluorimetric attachment.

    Science.gov (United States)

    Harrison, J; Hodson, A W; Skillen, A W; Stappenbeck, R; Agius, L; Alberti, K G

    1988-03-01

    Methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, 3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood, using the Cobas Bio centrifugal analyser fitted with a fluorimetric attachment. Intra-assay and inter-assay coefficients of variation ranged from 1.9 to 7.9% and from 1.0 to 7.2% respectively. Correlation coefficients ranged from 0.96 to 0.99 against established continuous-flow and manual spectrophotometric methods. All seven metabolites can be measured using a single perchloric acid extract of 20 microliter of blood. The versatility of the assays is such that as little as 100 pmol pyruvate, 3-hydroxybutyrate or as much as 15 nmol glucose can be measured in the same 20 microliter extract.

  20. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma.

    Science.gov (United States)

    Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie

    2015-01-01

    Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Insights into the biological source and environmental gradients shaping the distribution of H-shaped glycerol dialkyl glycerol tetraethers in Yellowstone National Park geothermal springs

    Science.gov (United States)

    Jia, C.; Xie, W.; Wang, J.; Boyd, E. S.; Zhang, C.

    2013-12-01

    Archaea are ubiquitous in natural environments. The unique tetraether lipids in archaeal membranes enable the maintenance of ion permeability across broad environmental gradients. H-shaped isoprenoid glycerol dialkyl glycerol tetraethers (H-GDGTs), in which the two biphytanyl carbon skeletons are covalently bound by a carbon-carbon bond, have been recently identified in both marine and geothermal environments. Here we report the core H-GDGTs (C-H-GDGTs) and polar H-GDGTs (P-H-GDGTs) associated with sediments sampled from geothermal springs in Yellowstone National Park and investigate their abundance in relation to environmental gradients. The abundance of C- and P-H-GDGTs exhibit strong and negative correlation with pH (P = 0.007), suggesting that H-shaped GDGTs help to maintain cell membrane fluidity in acidic environments. Reanalysis of archaeal 16S rRNA gene pyrotags published previously from (Boyd E. Hamilton T. L., Wang J., He L., Zhang C. L. 2013. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Frontiers in Terrestrial Microbiology. 4: doi: 10.3389/fmicb.2013.00062) indicates that these H-GDGTs are associated with environments dominanted by Thermoplasmatales, which are thermoacidiphiles. Two equations were established to define the relationships between the abundance of H-GDGTs, the abundance of archaeal taxa based on 16S rRNA gene phylogenetic affiliations, and pH. Both equations have high predictive capacity in predicting the distribution of archaeal lipids in the geothermal system. These observations provide new insight into the biological source of H-GDGTs and suggest a prominent role for these lipids in the diversification of archaea into or out of acidic high temperature environments.

  2. Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques.

    Science.gov (United States)

    Yang, Qingling; Zhang, Nan; Zhao, Feifei; Zhao, Wanli; Dai, Shanjun; Liu, Jinhao; Bukhari, Ihtisham; Xin, Hang; Niu, Wenbing; Sun, Yingpu

    2015-07-01

    The ends of eukaryotic chromosomes contain specialized chromatin structures called telomeres, the length of which plays a key role in early human embryonic development. Although the effect of sperm preparation techniques on major sperm characteristics, such as concentration, motility and morphology have been previously documented, the possible status of telomere length and its relation with sperm preparation techniques is not well-known for humans. The aim of this study was to investigate the role of density gradient centrifugation in the selection of spermatozoa with longer telomeres for use in assisted reproduction techniques in 105 samples before and after sperm processing. After density gradient centrifugation, the average telomere length of the sperm was significantly longer (6.51 ± 2.54 versus 5.16 ± 2.29, P average motile sperm rate was significantly higher (77.9 ± 11.8 versus 44.6 ± 11.2, P average DNA fragmentation rate was significantly lower (11.1 ± 5.9 versus 25.9 ± 12.9, P sperm count (rs = 0.58; P sperm with longer telomeres. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Comparative validation using quantitative real-time PCR (qPCR and conventional PCR of bovine semen centrifuged in continuous density gradient

    Directory of Open Access Journals (Sweden)

    M.V. Resende

    2011-06-01

    Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.

  4. Optimized methods to measure acetoacetate, 3-hydroxybutyrate, glycerol, alanine, pyruvate, lactate and glucose in human blood using a centrifugal analyser with a fluorimetric attachment.

    Science.gov (United States)

    Stappenbeck, R; Hodson, A W; Skillen, A W; Agius, L; Alberti, K G

    1990-01-01

    Optimized methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, D-3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood using the Cobas Bio centrifugal analyser. Glucose and lactate are measured using the photometric mode and other metabolites using the fluorimetric mode. The intra-assay coefficients of variation ranged from 0.7 to 4.1%, except with very low levels of pyruvate and acetoacetate where the coefficients of variation were 7.1 and 12% respectively. All seven metabolites can be measured in a perchloric acid extract of 20 mul of blood. The methods have been optimized with regard to variation in the perchloric acid content of the samples. These variations arise from the method of sample preparation used to minimize changes occurring in metabolite concentration after venepuncture.

  5. Fluorimetric methods for the measurement of intermediate metabolites (lactate, pyruvate, alanine, beta-hydroxybutyrate, glycerol) using a COBAS FARA centrifugal analyser.

    Science.gov (United States)

    Monti, L D; Sandoli, P E; Costa, S; Phan, V C; Piatti, P M

    1993-01-01

    Intermediate products of the metabolism of glucose, fat and amino-acid are important in the evaluation of such metabolic disorders as diabetes mellitus, liver disease and metabolic acidosis. In the present study, methods for the measurement of intermediate metabolites (lactate, pyruvate, alanine, beta-hydroxybutyrate and glycerol) have been adapted to a fast centrifugal analyzer: the COBAS FARA. Correlation coeffcients rangedfrom 0.90 to 0.99, compared to established manual spectrophotometric methods. Within-run coeffcients of variation (CVs) ranged between 2.9 and 8.8% at low levels, between 1.5 and 5.7% at medium levels and between 1.2 and 5.6% at high levels. Between-run CVs were between 4.0 and 15.0% at low levels, between 1.7 and 7.0% at medium levels and between 1.3 and 2.7% at high levels. These fluorimetric assays for the determination of intermediate metabolites on COBAS FARA (Roche) have a good sensitivity and precision, are less costly than manual methods and can be used on a routine basis.

  6. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood.

    Science.gov (United States)

    Emad, Ahmed; Drouin, Régen

    2014-09-01

    Physical separation by density gradient centrifugation (DGC) is usually used as an initial step of multistep enrichment protocols for purification of fetal cells (FCs) from maternal blood. Many protocols were designed but no single approach was efficient enough to provide noninvasive prenatal diagnosis. Procedures and methods were difficult to compare because of the nonuniformity of protocols among different groups. Recovery of FCs is jeopardized by their loss during the process of enrichment. Any loss of FCs must be minimized because of the multiplicative effect of each step of the enrichment process. The main objective of this study was to evaluate FC loss caused by DGC. Fetal cells were quantified in peripheral blood samples obtained from both euploid and aneuploid pregnancies before and after enrichment by buoyant DGC using Histopaque 1.119 g/mL. Density gradient centrifugation results in major loss of 60% to 80% of rare FCs, which may further complicate subsequent enrichment procedures. Eliminating aggressive manipulations can significantly minimize FC loss. Data obtained raise questions about the appropriateness of the DGC step for the enrichment of rare FCs and argues for the use of the alternative nonaggressive version of the procedure presented here or prioritizing other methods of enrichments. © 2014 John Wiley & Sons, Ltd.

  7. Chemical equilibrium of glycerol carbonate synthesis from glycerol

    International Nuclear Information System (INIS)

    Li Jiabo; Wang Tao

    2011-01-01

    Research highlights: → Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for the preparation of glycerol carbonate from glycerol. → The reaction of glycerol and carbon dioxide is thermodynamically limited. → High temperature and low pressure is favourable to the reaction of glycerol and urea. → Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol and dimethyl carbonate. → For the reaction of glycerol and ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. - Abstract: In this paper, the chemical equilibrium for the glycerol carbonate preparation from glycerol was investigated. The chemical equilibrium constants were calculated for the reactions to produce glycerol carbonate from glycerol. The theoretical calculation was compared with the experimental results for the transesterification of glycerol with dimethyl carbonate. Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for producing glycerol carbonate from glycerol according to the equilibrium constant. Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol with dimethyl carbonate. For the reaction of glycerol with ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. The reaction of glycerol with carbon dioxide is thermodynamically limited. High temperature and low pressure are favourable to the reaction of glycerol and urea.

  8. Instability of a Vacuum Arc Centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Bosco, E. del; Simpson, S.W.

    2003-01-01

    Ever since conception of the Vacuum Arc Centrifuge (VAC) in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a VAC. Our theoretical and experimental research suggests that these fluctuations are in fact a pressure-gradient driven drift mode. In this work, we summarise the properties of a theoretical model describing the range of instabilities in the VAC plasma column, present theoretical predictions and compare with detailed experiments conducted on the PCEN centrifuge at the Brazilian National Space Research Institute (INPE). We conclude that the observed instability is a 'universal' instability, driven by the density-gradient, in a plasma with finite conductivity

  9. Vitality of oligozoospermic semen samples is improved by both swim-up and density gradient centrifugation before cryopreservation.

    Science.gov (United States)

    Counsel, Madeleine; Bellinge, Rhys; Burton, Peter

    2004-05-01

    To ascertain whether washing sperm from oligozoospermic and normozoospermic samples before cryopreservation improves post-thaw vitality. Normozoospermic (n = 18) and oligozoospermic (n = 16) samples were divided into three aliquots. The first aliquot remained untreated and the second and third aliquots were subjected to the swim-up and discontinuous density gradient sperm washing techniques respectively. Vitality staining was performed, samples mixed with cryopreservation media and frozen. Spermatozoa were thawed, stained, and vitality quantified and expressed as the percentage of live spermatozoa present. Post-thaw vitality in untreated aliquots from normozoospermic samples (24.9% +/- 2.3; mean +/- SEM) was significantly higher (unpaired t-tests; P vitality was significantly higher after swim-up in normozoospermic samples (35.6% +/- 2.1; P vitality in oligozoospermic (22.4% +/- 1.0; P vitality in cryopreserved oligozoospermic samples was improved by both the swim-up and density gradient centrifugation washing techniques prior to freezing.

  10. Centrifugal force: a few surprises

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Max-Planck-Institut fuer Physik und Astrophysik, Garching

    1990-01-01

    The need for a rather fundamental revision in understanding of the nature of the centrifugal force is discussed. It is shown that in general relativity (and contrary to the situation in Newtonian theory) rotation of a reference frame is a necessary but not sufficient condition for the centrifugal force to appear. A sufficient condition for its appearance, in the instantaneously corotating reference frame of a particle, is that the particle motion in space (observed in the global rest frame) differs from a photon trajectory. The direction of the force is the same as that of the gradient of the effective potential for photon motion. In some cases, the centrifugal force will attract towards the axis of rotation. (author)

  11. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    2002-01-01

    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  12. Centrifuge in space fluid flow visualization experiment

    Science.gov (United States)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  13. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    Science.gov (United States)

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    2016-01-01

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. This platform has great potential in both medical diagnostics and research applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing. PMID:27054764

  14. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

    Science.gov (United States)

    Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

    2016-01-01

    Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

  15. Evaluation of amides and centrifugation temperature in boar semen cryopreservation.

    Science.gov (United States)

    Bianchi, I; Calderam, K; Maschio, E F; Madeira, E M; da Rosa Ulguim, R; Corcini, C D; Bongalhardo, D C; Corrêa, E K; Lucia, T; Deschamps, J C; Corrêa, M N

    2008-03-15

    Two experiments were conducted to evaluate the use of amides as cryoprotectants and two centrifugation temperatures (15 or 24 degrees C) in boar semen cryopreservation protocols. Semen was diluted in BTS, cooled centrifuged, added to cooling extenders, followed by the addition of various cryoprotectants. In experiment 1, mean (+/-S.E.M.) sperm motility for 5% dimethylformamide (DMF; 50.6+/-1.9%) and 5% dimethylacetamide (DMA; 53.8+/-1.7%) were superior (P0.05). In experiment 2, we tested MF, DMF, and DMA at 3, 5, and 7%. Sperm motility and membrane integrity were higher for 5% DMA (53.8+/-1.7 and 50.9+/-1.9%) and 5% DMF (50.6+/-1.9 and 47.9+/-2.1%), in comparison with 7% DMF and all MF concentrations (P0.05). In conclusion, boar semen was successfully cryopreserved by replacement of glycerol with amides (especially 5% DMA) and centrifugation at 15 degrees C, with benefits for post-thaw sperm motility and membrane integrity.

  16. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  17. Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration.

    Science.gov (United States)

    Barman, Nirmali; Badwaik, Laxmikant S

    2017-01-01

    Osmotic dehydration (OD) of carambola slices were carried out using glucose, sucrose, fructose and glycerol as osmotic agents with 70°Bx solute concentration, 50°C of temperature and for time of 180min. Glycerol and sucrose were selected on the basis of their higher water loss, weight reduction and lowers solid gain. Further the optimization of OD of carambola slices (5mm thick) were carried out under different process conditions of temperature (40-60°C), concentration of sucrose and glycerol (50-70°Bx), time (180min) and fruit to solution ratio (1:10) against various responses viz. water loss, solid gain, texture, rehydration ratio and sensory score according to a composite design. The optimized value for temperature, concentration of sucrose and glycerol has been found to be 50°C, 66°Bx and 66°Bx respectively. Under optimized conditions the effect of ultrasound for 10, 20, 30min and centrifugal force (2800rpm) for 15, 30, 45 and 60min on OD of carambola slices were checked. The controlled samples showed 68.14% water loss and 13.05% solid gain in carambola slices. While, the sample having 30min ultrasonic treatment showed 73.76% water loss and 9.79% solid gain; and the sample treated with centrifugal force for 60min showed 75.65% water loss and 6.76% solid gain. The results showed that with increasing in treatment time the water loss, rehydration ratio were increased and solid gain, texture were decreased. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Physical simulations using centrifuge techniques

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1981-01-01

    Centrifuge techniques offer a technique for doing physical simulations of the long-term mechanical response of deep ocean sediment to the emplacement of waste canisters and to the temperature gradients generated by them. Preliminary investigations of the scaling laws for pertinent phenomena indicate that the time scaling will be consistent among them and equal to the scaling factor squared. This result implies that this technique will permit accelerated-life-testing of proposed configurations; i.e, long-term studies may be done in relatively short times. Presently, existing centrifuges are being modified to permit scale model testing. This testing will start next year

  19. Instabilities expected to exist in a gas centrifuge

    International Nuclear Information System (INIS)

    Sakurai, Takeo

    1977-01-01

    A typical counter current type centrifuge of long bowl geometry is schematically shown. At first glance, the main flow field in this centrifuge can be taken as a swirling pipe flow. Taking in mind the operating gas (uranium hexafluoride) the temperature of which is 20 deg C and the peripheral pressure 10 torrs, the density and pressure obey the barometric relation in which the gravity is replaced by the centrifugal acceleration; in a thermally driven centrifuge, an additional weak temperature gradient appears along the axial direction. These situations are similar to those in the earth's atmosphere. So, it is stressed that the interior of a gas centrifuge is a new kind of rotating atmosphere and offers a 'new face' in the field of geophysical fluid dynamics. Instabilities in inviscid case and the destabilizing effects of the diffusivity are thus discussed together with the effects of the mechanical vibrations of the centrifuge, and vortex breakdown phenomena

  20. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions.

    Science.gov (United States)

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2013-12-18

    The natural moisturizing factor (NMF) is a group of hygroscopic molecules that is naturally present in skin and protects from severe drying. Glycerol and urea are two examples of NMF components that are also used in skin care applications. In the present study, we investigate the influence of glycerol and urea on the permeability of a model drug (metronidazole, Mz) across excised pig skin membranes at different hydrating conditions. The degree of skin hydration is regulated by the gradient in water activity across the membrane, which in turn depends on the water activity of the formulation in contact with the skin membrane. Here, we determine the water activity of all formulations employed using an isothermal calorimetric method. Thus, the gradient in water activity is controlled by a novel experimental set-up with well-defined boundary conditions on both sides of the skin membrane. The results demonstrate that glycerol and urea can retain high steady state flux of Mz across skin membranes at dehydrating conditions, which otherwise would decrease the permeability due to dehydration. X-ray diffraction measurements are performed to give insight into the effects of glycerol and urea on SC molecular organization. The novel steady state flux results can be related to the observation that water, glycerol, and urea all affect the structural features of the SC molecular components in a similar manner. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Alumina matrix ceramic-nickel composites formed by centrifugal slip casting

    Directory of Open Access Journals (Sweden)

    Justyna Zygmuntowicz

    2015-12-01

    Full Text Available The paper is focused on the possibility of fabricating the alumina matrix ceramic-nickel composites with gradient concentration of metal particles. Centrifugal slip casting method was chosen for the composite fabrication. This method allows fabrication of the graded distribution of nickel particles in the hollow cylinder composites. The horizontal rotation axis was applied. The samples were characterized by XRD, SEM and quantitative description of the microstructure. The macroscopic as well as SEM observations of the prepared composites confirmed the gradient concentration of Ni particles in the composite materials. The application of the centrifugal slip casting method allows for the graded distribution of metal particles in the samples.

  2. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    Science.gov (United States)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  3. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  4. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  5. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  6. Flow within an evaporating glycerol-water binary droplet: Segregation by gravitational effects

    Science.gov (United States)

    Li, Yaxing; Lv, Pengyu; Diddens, Christian; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2017-11-01

    The flow within an evaporating glycerol-water binary droplet with Bond number Bo PIV for both sessile and pendant droplets during evaporation process, which surprisingly show opposite radial flow directions - inward and outward, respectively. This observation clearly reveals that gravitational effects play a crucial role in controlling flow fields within the evaporating droplets. We theoretically analyse that this gravity-driven effect is caused by density gradients due to the local concentration difference of glycerol within the droplet triggered by different volatilities of the two components during evaporation. Finally, for confirmation, we numerically simulate the process, revealing a good agreement with experimental results.

  7. Desvio da proporção de sexo e da integridade do DNA dos espermatozóides bovinos centrifugados em gradientes de densidade contínuos Alteration of sex ratio and DNA integrity of bovine sperm centrifuged in continuous density gradients

    Directory of Open Access Journals (Sweden)

    Alberto Lopes Gusmão

    2010-03-01

    Full Text Available O objetivo, neste trabalho, foi verificar o desvio da proporção de sexo e a presença de fragmentação do DNA, pela técnica de TUNEL (“In situ terminal deoxinucleotidyl transferase mediated dUTP nick end labeling assay”, em espermatozoides bovinos centrifugados em gradientes de densidade de Percoll ou OptiPrep durante a separação espermática. Doses de sêmen de touros foram descongeladas, e cerca de 40 milhões de espermatozoides foram depositados sobre cada gradiente de densidade compostos por Percoll ou OptiPrep com três camadas entre 1.110g/mL e 1.123g/mL, em tubos de 15mL, em que permaneceram por 24h a 4°C antes da deposição dos espermatozoides. Os tubos foram centrifugados a 500xg por 15min a 22°C. Os sobrenadantes foram aspirados, e os sedimentos, recuperados para verificação da fragmentação do DNA pela técnica de TUNEL. Obteve-se um desvio dos embriões produzidos in vitro para fêmeas no gradiente de Percoll (62% de fêmeas, em relação aos grupos OptiPrep e Controle (47,1 e 48,7% de fêmeas, respectivamente. Não foi detectada fragmentação do DNA dos espermatozoides nas amostras centrifugadas, tanto no gradiente de Percoll quanto de OptiPrep. Dessa forma, foi possível realizar a sexagem espermática, com uma maior porcentagem de espermatozoides X do que o grupo controle, por meio de metodologia mais simples e sem provocar danos ao DNA dos espermatozoides.The objective of the present study was to verify the sex ratio and presence of DNA fragmentation by TUNEL technique (In situ terminal deoxinucleotidyl transferase mediated dUTP nick end labeling assay in bovine spermatozoa centrifuged in density gradients of Percoll or OptiPrep during the sperm separation. Approximately 40 million of frozen/thawed bovine spermatozoa were deposited on each density gradient composed of Percoll or OptiPrep with three layers ranging from 1.110g/mL to 1.123g/mL in polystyrene tubes of 15mL. The tubes were kept at 4°C for 24h before

  8. Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours

    Science.gov (United States)

    Persico, Giacomo

    2017-03-01

    This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.

  9. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  10. Calibrating the glycerol dialkyl glycerol tetraether temperature signalin speleothems

    NARCIS (Netherlands)

    Blyth, A.J.; Schouten, S.

    2013-01-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples

  11. Multiple-isotope separation in gas centrifuge

    International Nuclear Information System (INIS)

    Wood, Houston G.; Mason, T.C.; Soubbaramayer

    1996-01-01

    In previous works, the Onsager's pancake equation was used to provide solution to the internal counter-current flow field, which is necessary to calculate solutions to the isotope transport equation. The diffusion coefficient was assumed to be constant which is a good approximation for gases with large molecular weights, and small differences in the molecular weights of the various isotopes. A new optimization strategy was presented for determining the operating parameters of a gas centrifuge to be used for multiple-component isotope separation. Scoop drag, linear wall temperature gradient, the feed rate ant the cut have been chosen as operating parameters for the optimization. The investigation was restricted to a single centrifuge, and the problem of cascading for multiple-isotope separation was not addressed. The model describing the flow and separation phenomena in centrifuge includes a set of equations describing the fluid dynamics of the counter-current flow and the diffusion equations written for each isotope of the mixture. In this paper, an optimization algorithm is described and applied to an example for the re enrichment of spent reactor uranium

  12. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Science.gov (United States)

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  13. Efficient enrichment of hepatic cancer stem-like cells from a primary rat HCC model via a density gradient centrifugation-centered method.

    Directory of Open Access Journals (Sweden)

    Wei-hui Liu

    Full Text Available BACKGROUND: Because few definitive markers are available for hepatic cancer stem cells (HCSCs, based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs. METHODOLOGY: After hepatic tumor cells (HTCs were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC and purified via differential trypsinization and differential attachment (DTDA, they were separated into four fractions using percoll continuous gradient centrifugation (PCGC and sequentially designated as fractions I-IV (FI-IV. Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction. FINDINGS: As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI-FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133 than cells from other fractions (P<0.01. Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×10(4 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice. CONCLUSIONS: Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.

  14. Glycerol tertiary butyl ethers via etherification of glycerol with isobutene

    Energy Technology Data Exchange (ETDEWEB)

    Behr, A. [Dortmund Univ. (Germany). Chair of Chemical Process Development/Technical Chemistry A

    2007-07-01

    Glycerol and isobutene can react to a mixture of glycerol tertiary butyl ethers (GTBE) which can be used as additives for gasoline, diesel or biodiesel. This reaction was investigated in lab scale yielding a proposal for a process flow diagram containing reaction, extraction, flash and rectification units. This process has the advantages that only the suitable higher ethers are formed and that both glycerol and isobutene are fully converted. The homogeneous acid catalyst is low-priced and can be completely recycled. (orig.)

  15. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    Science.gov (United States)

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  16. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

    Science.gov (United States)

    Alvarez, María de Fátima; Medina, Roxana; Pasteris, Sergio E; Strasser de Saad, Ana M; Sesma, Fernando

    2004-01-01

    Lactobacillus rhamnosus ATCC 7469 was able to grow in glycerol as the sole source of energy in aerobic conditions, producing lactate, acetate, and diacetyl. A biphasic growth was observed in the presence of glucose. In this condition, glycerol consumption began after glucose was exhausted from the culture medium. Glycerol kinase activity was detected in L. rhamnosus ATCC 7469, a characteristic of microorganisms which catabolize glycerol in aerobic conditions. Genetic analysis revealed that this strain possesses two glycerol kinase genes: gykA and glpK, that encode for two different glycerol kinases GykA and GlpK, respectively. The glpK geneis associated in an operon with alpha-glycerophosphate oxidase (glpO) and glycerol facilitator (glpF) genes. Transcriptional analysis revealed that only glpK is expressed when L. rhamnosus was grown on glycerol. Copyright 2004 S. Karger AG, Basel

  17. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mathias Klein

    2016-12-01

    Full Text Available Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae. This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A. The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast. Keywords: Yeast, Saccharomyces cerevisiae, Glycerol, Transport, Glycerol facilitator, Fps1, Stl1

  18. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems

    NARCIS (Netherlands)

    Blyth, A.J.; Schouten, S.|info:eu-repo/dai/nl/137124929

    2013-01-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples

  19. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Directory of Open Access Journals (Sweden)

    Hironobu Morita

    Full Text Available To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  20. Semiautomated system for the production and analysis of sucrose density gradients

    International Nuclear Information System (INIS)

    Lange, C.S.; Liberman, D.F.

    1974-01-01

    A semiautomated system in DNA damage studies permitting considerable accuracy, speed, and reproducibility in the making and fractionation of sucrose density gradients is described. The system consists of a modified Beckman gradient forming device that makes six gradients simultaneously and delivers them into six 12.5 ml polyallomer centrifuge tubes in such a manner that new material is continuously added to the meniscus of the gradient. The gradients are fractionated three at a time and up to 100 fractions per gradient can be collected automatically directly into scintillation vials with a choice of drop counting or time mode with rinse and automatic addition of scintillation fluid to each vial. The system can process up to six gradients per hour but centrifugation time is usually the limiting factor. With neutral sucrose gradients, sharp, reproducible, monodisperse peaks containing up to 100 percent of the gradient radioactivity are usually obtained but a smaller monodisperse peak containing as little as 3.5 percent of the gradient radioactivity can be detected under conditions where some pairs of molecules might tangle or dimerize. The resolution and reproducibility of this system when used with neutral sucrose gradients is at least the equal if not superior to that commonly claimed for alkaline sucrose gradients. (U.S.)

  1. An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.

    Science.gov (United States)

    Mahadevan, Aishwarya; Fernando, Sandun

    2017-06-15

    An improved glycerol biosensor was developed via direct attachment of NAD + -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH 4 ) 2 SO 4 and MnCl 2 ·4H 2 O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH 4 ) 2 SO 4 and 0.3µm MnCl 2 ·4H 2 O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH 4 ) 2 SO 4 and 30µm MnCl 2 ·4H 2 O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Observations on centrifugation: application to centrifuge development.

    Science.gov (United States)

    Roberts, T; Smith, M; Roberts, B

    1999-11-01

    This report outlines the background to the development of an automated, serial, discrete centrifuge, reporting on the criteria considered essential in such an instrument. We established the criteria by examining the detailed logistics of centrifuge operation in a hospital laboratory. The mean sample load per run, using six centrifuges, was 13.6 samples, and the user-selectable cycle time ranged from 00:01:10 to 00:12:33 (hours:minutes:seconds) with a fixed g value of 1050. During the laboratory working window, (0900-1700), only 50% of the centrifuge capacity was utilized and more than one-third of the sample workload was delayed for >5 min because the centrifuges were not emptied promptly. In addition, 35% of the sample workload was centrifuged for less than the time prescribed in the operational specifications. Based on these findings, we designed a new continuous, serial centrifuge to overcome some of the deficiencies noted in the logistics study. The centrifuge operates continuously, nominally treating 150 samples/h, with a cycle time of 5 min at 1,000 g. The cycle time and g value are variable between limits, and their selection governs the throughput rate. Each sample is centrifuged separately in individual rotors mounted in a sturdy carousel with a periphery that traverses a load/unload station. There is no sample delay because of operator absence, and the capacity is fully utilized. The centrifuge can operate in a stand-alone capacity or has the capability of being integrated into a sample preparation system or as a direct front end for high-throughput analyzers.

  3. Separative performance transients in a gas centrifuge

    International Nuclear Information System (INIS)

    Olander, D.R.

    1979-01-01

    A general method has been developed to calculate the behavior of the exit compositions from a gas centrifuge under unsteady conditions. The method utilizes the basic enrichment gradient equations derived by Cohen, which, in this case, contain time derivatives of the partial 235 U inventories. These partial differential equations are converted to ordinary differential equations by a linear approximation to the axial concentration distribution for use in the inventory terms only. With this simplification, analytical solution is possible for the feed concentration transient. The transient driven by a change in the feed flow rate, however, requires numerical solution. For analysis of ideal cascades in the unsteady state, the transient flow and separation characteristics of the centrifuge must be combined with total uranium and 235 U material balances on each stage

  4. CENTRIFUGE APPARATUS

    Science.gov (United States)

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  5. Flow in a centrifugal fan impeller at off-design conditions

    Science.gov (United States)

    Wright, T.; Tzou, K. T. S.; Madhavan, S.

    1984-06-01

    A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.

  6. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films

    Directory of Open Access Journals (Sweden)

    Ewelina Basiak

    2018-04-01

    Full Text Available As starch is an inexpensive, filmogenic, easily processable and a widely available material, it is a material that can be utilized in the creation of biodegradable films and containers, presenting as a viable alternative to polymers derived from petrol. Moreover, starch could also be used to create edible coatings for fresh foods in order to extend shelf life. As such, wheat starch films with two glycerol contents were formulated to mimic the effects of compounds currently used to coat fruit. Their structural and functional properties were characterized. This study found that the transfer properties of starch films containing 33% of plasticizer was less effective than film comprised of 50% glycerol. Water diffusivity, oxygen permeability, and water vapor permeability at two different humidity gradients, surface tension, works of surface adhesion and cohesion, and moisture sorption were tested. Glycerol content does not play a significant role on the color or mechanical properties. This work shows that glycerol can strongly affect the functional properties of starch-based coatings and films.

  7. Steady state behavior of rotating plasmas in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Bittencourt, J.A.; Ludwig, G.O.

    1987-01-01

    The steady state behaviour of the fully ionized, multiple species, rotating, magnetized plasma in a vacuum-arc plasma centrifuge is described in detail. The analysis is based on a multiple species fluid model which includes electromagnetic, pressure gradient, centrifugal and collisional forces, for each species, in cylindrical geometry. It is shown that there is a family of theoretically possible dynamical equilibrium configurations, which can be achieved by different combinations of ion rotation velocity, radial ion density distribution and radial dependence of internal electric potential. The parametric dependences of the various plasma parameters under equilibrium conditions, including the ion separation factor, are presented for a nickel-copper plasma. The numerical results are analysed and discussed in light of experimentally measured plasma characteristics in a vacuum-arc plasma centrifuge. (author)

  8. Steady state behavior of rotating plasmas in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Bittencourt, J.A.; Ludwig, G.O.

    1986-06-01

    The steady state behavior of the fully ionized, multiple species, rotating, magnetized plasma in a vacuum-arc plasma centrifuge is described in detail. The analysis is based on a multiple species fluid model which includes electromagnetic, pressure gradient, centrifugal and collisional forces, for each species, in cylindrical geometry. It is showm that there is a family of theoretically possible dynamical equilibrium configurations, which can be achieved by different combinations of ion rotation velocity, radial ion density distribution and radial dependence of internal electric potential. The parametric dependences of the various plasma parameters under equilibrium conditions, including the ion separation factor, are presented for a nickel-copper plasma. The numerical results are analysed and discussed on light of experimentally measured plasma characteristics in a vacuum-arc plasma centrifuge. (Author) [pt

  9. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm.

    Science.gov (United States)

    Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj

    2005-03-01

    Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.

  10. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  11. Numerical study of the effects of curvature on the fluid dynamics of gas centrifuges

    International Nuclear Information System (INIS)

    Jordan, J.A.; Gunzburger, M.D.; Wood, H.G. III.

    1983-06-01

    A finite element method for the approximate solution of the flow in rapidly rotating gas centrifuges is presented. The Onsager model, as amended by Maslen, is used in deriving the model equations to be discretized. The pancake effects are not assumed in the model, i.e., curvature terms are retained. To show the effects of these terms on the hydrodynamics of a gas centrifuge, numerical examples done with and without these curvature terms are presented and compared. Two flow models are used for the examples, one for flow driven by a linear temperature gradient along the wall and the other for flow driven by axial mass fluxes through the end caps of the centrifuge

  12. Bone marrow-derived cells for cardiovascular cell therapy: an optimized GMP method based on low-density gradient improves cell purity and function.

    Science.gov (United States)

    Radrizzani, Marina; Lo Cicero, Viviana; Soncin, Sabrina; Bolis, Sara; Sürder, Daniel; Torre, Tiziano; Siclari, Francesco; Moccetti, Tiziano; Vassalli, Giuseppe; Turchetto, Lucia

    2014-09-27

    Cardiovascular cell therapy represents a promising field, with several approaches currently being tested. The advanced therapy medicinal product (ATMP) for the ongoing METHOD clinical study ("Bone marrow derived cell therapy in the stable phase of chronic ischemic heart disease") consists of fresh mononuclear cells (MNC) isolated from autologous bone marrow (BM) through density gradient centrifugation on standard Ficoll-Paque. Cells are tested for safety (sterility, endotoxin), identity/potency (cell count, CD45/CD34/CD133, viability) and purity (contaminant granulocytes and platelets). BM-MNC were isolated by density gradient centrifugation on Ficoll-Paque. The following process parameters were optimized throughout the study: gradient medium density; gradient centrifugation speed and duration; washing conditions. A new manufacturing method was set up, based on gradient centrifugation on low density Ficoll-Paque, followed by 2 washing steps, of which the second one at low speed. It led to significantly higher removal of contaminant granulocytes and platelets, improving product purity; the frequencies of CD34+ cells, CD133+ cells and functional hematopoietic and mesenchymal precursors were significantly increased. The methodological optimization described here resulted in a significant improvement of ATMP quality, a crucial issue to clinical applications in cardiovascular cell therapy.

  13. Use of short-radius centrifugation to augment ankle-brachial indices.

    Science.gov (United States)

    Grenon, S Marlene; Mateus, Jaime; Hsiang, York; Sidhu, Ravi; Young, Laurence; Gagnon, Joel

    2009-06-01

    Peripheral arterial disease is mainly caused by atherosclerosis and is characterized by decreased circulation, lower blood pressure, and insufficient tissue perfusion in the lower extremities. The hemodynamics of standing and altered gravity environments have been well studied relative to arm blood pressures but are less well understood for ankle pressures. Because regional blood pressure depends, in part, on the gravitational pressure gradient, we hypothesized that artificial gravity exposure on a short-arm centrifuge with the center of rotation above the head would increase blood pressure in the lower extremities. Cardiovascular parameters for 12 healthy subjects were measured during exposure to supine short-arm centrifugation at 20, 25, and 30 revolutions per minute (rpm), corresponding to centripetal accelerations of 0.94, 1.47, and 2.11 Gz at the foot level, respectively. Systolic ankle blood pressure significantly increased at all levels of centrifugation. Ankle-brachial indices (the ratio of systolic ankle to arm blood pressures) increased significantly from 1.17 +/- 0.03 to 1.58 +/- 0.03 at 0.94 Gz (P blood pressure significantly increased at 2.11 Gz, but heart rate did not change significantly. All parameters returned to normal after cessation of centrifugation. We demonstrated that short-radius centrifugation leads to an increase in ankle-brachial indices. This could have potential implications for the treatment of peripheral arterial disease.

  14. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Haiqing Yu

    2016-01-01

    Full Text Available Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  15. Effects of addition glycerol co-product of biodiesel in the thermophysical properties of water-glycerol solution applied as secondary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Pedro Samuel Gomes; Barbosa, Cleiton Rubens Formiga; Fontes, Francisco de Assis Oliveira [Federal University of Rio Grande do Norte, Natal, RN (Brazil). Energy Laboratory. Thermal Systems Studies Group], e-mail: cleiton@ufrnet.br

    2010-07-01

    This paper evaluates the effects of glycerol concentration on thermophysical properties of water-glycerol solution applied as a secondary coolant in refrigeration systems by expansion-indirect. The processing of triglycerides for biodiesel production generates glycerol as co-product and there are concerns of environmental and economic order on the surplus of glycerol. The addition of glycerol in water alters the colligative and thermophysical properties (melting point, mass, specific heat, thermal conductivity and dynamic viscosity). There are studies that prove the feasibility of using glycerol as an additive and this paper has the goal to verify the changes on properties compared with pure water. This comparison was made from data obtained by the software simulation and they analyzed using graphs and tables. It was shown that glycerol increases the density and dynamic viscosity, and reduces the specific heat and thermal conductivity. This behavior of water-glycerol solution is proportional to the mass concentration of glycerol and it is justified because the glycerol has low values of specific heat, thermal conductivity and high viscosity when compared with water. Despite the losses in the thermophysical properties, glycerol shows its potential application, because of the cryoscopic effect and it is a non-toxic substance at low cost. (author)

  16. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Science.gov (United States)

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  17. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  18. Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.

    Science.gov (United States)

    Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier

    2014-04-01

    Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Separations by centrifugal phenomena

    International Nuclear Information System (INIS)

    Hsu, H.W.

    1981-01-01

    The technical information presented herein emphasizes the uniqueness of the centrifugal separations methodology and pertinent theory for various kinds of centrifugation. The topics are arranged according to gas, liquid, and solid phases, in the order of increasing densities. Much space is devoted to liquid centrifugation because of the importance of this technique in chemical and biological laboratories. Many separational and characterizational examples are illustrated in detail. The material has been divided into 7 chapters entitled: 1) Introduction, 2) Basic Theory of Centrifugation, 3) Gas Centrifuges, 4) Preparative Liquid Centrifuges, 5) Analytical Liquid Centrifuges, 6) Liquid Centrifuges in Practice, and 7) Mechanical Separations by Centrifuges. Separate abstracts have been prepared for each chapter except the introduction

  20. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-01-01

    Due in part to the use of labeled glycerol for the 13 C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide (∼53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific 13 C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of 13 C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of 13 C-labeled DHA to DHAP. We are especially interested in 13 C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  1. First Birth after Sperm Selection through Discontinuous Gradient Centrifugation and Artificial Insemination from a Chromosomal Translocation Carrier

    Directory of Open Access Journals (Sweden)

    Alexandre Rouen

    2014-01-01

    Full Text Available Introduction. Balanced chromosomal carriers, though usually healthy, are confronted with recurrent spontaneous abortions and malformations in the offspring. Those are related to the transmission of an abnormal, chromosomally unbalanced genotype. We evidenced that the proportion of unbalanced spermatozoa can be significantly decreased through a sperm preparation process called discontinuous gradient centrifugation (DGC. We therefore started offering intrauterine inseminations with this procedure to couples with a male translocation carriers. Case Presentation. We report the case of a 37-year-old man carrying a t(3;10(q25;p13 reciprocal translocation. He and his partner had had trouble conceiving for ten years and had four spontaneous abortions. DGC in this patient decreased the proportion of unbalanced spermatozoa from 63.6% to 52.3%. They were therefore offered intrauterine insemination with DGC, which eventually led to the birth of a healthy female child carrying the paternal translocation. Conclusion. We showed that translocation carriers could be offered intrauterine inseminations with DGC. Before this, the only two options were natural conception with prenatal diagnosis and termination of chromosomally unbalanced fetuses or preimplantation genetic diagnosis, which is a much heavier and costly procedure. We are currently offering this option through a multicentric program in France, and this is the first birth originating from it.

  2. Centrifugation

    International Nuclear Information System (INIS)

    Subbaramajer.

    1983-01-01

    The theoretical analysis of the processes taking place at centrifugal method of isotope separation taking into account the latest investigations, in particular, investigation of velocity field applying the theory of boundary layers in rotating gas is conducted. As a result of using power computers for the solution of hydrodynamics equations by numerical methods sufficiently exact solutions of main hydrodynamic equations, reflecting the real centrifuge construction are derived. The increase of calculation accuracy of the flow field reflected also on the accuracy of the diffusion equation solution. Three parameters of similarity (height of transfer unit, flow, mass transfer coefficient) and their connection with the flow field, elementary separation coefficient in a cetrifugal field and molecular diffusion coefficient is determined. Modified formulas for the separation coefficient and separation centrifuge power taking into account similarity parameter changes over the axis are derived. The possibility of determining the system of controlled parameters optimizing the separation centrifuge power is shown

  3. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.; Silks, L.A. III

    1994-01-01

    The authors are currently developing new synthetic routes to the various isotopomers of glycerol. Labeled glycerol is useful for 13 C enrichment of biomolecules. However, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment or have poor overall yields (12-15%). In addition, the use of glycerol for enrichment can be prohibitively expensive and its availability depends on the level of demand. The authors have developed a short de novo synthesis of [U- 13 C]glycerol from carbon dioxide (∼53% overall yield for four steps) and are currently examining the feasibility of synthesizing site-specific 13 C labeled glycerol and dihydroxyacetone (DHA) from methanol and carbon dioxide. The authors have examined the enzymatic conversion of [U- 13 C]glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25-50% (as determined by NMR spectroscopy). The authors are also pursuing the chemical conversion of 13 C labeled DHA to DHAP and the results are presented. Labeled DHAP is a possible enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  4. Combinations of glycerol percent, glycerol equilibration time, and thawing rate upon freezability of bull spermatozoa in plastic straws.

    Science.gov (United States)

    Wiggin, H B; Almquist, J O

    1975-03-01

    Twelve ejaculates were used in a central composite experiment to test 15 combinations of glycerol (7, 9, 11, 13, or 15%), glycerol equilibration times (1, 2, 4, 8, or 16 h) and thawing rates (water at 35 C for 15 s, 50 C for 13 s, 65 C for 11 s, 80 C for 9 s, or 95 C for 7 s). Semen was diluted in heated skim milk-glycerol, packaged in .3-ml. Continental U.S. straws and frozen in liquid nitrogen vapor. Based on post-thaw progressive sperm motility after storage at -196 C for 9 to 11 days, estimated optima from multiple regression were 10.7% for glycerol, 2.0 h for glycerol equilibration time, and 76 C for thawing bath temperature. Only the linear effect for each variable was significant. Much faster thawing rates and shorter glycerol equilibration times than those for freezing bull spermatozoa in glass ampules should be used for maximum post-thaw sperm motility in straws.

  5. Biohydrogen Production from Glycerol using Thermotoga spp

    NARCIS (Netherlands)

    Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantini, M.; Medina, F.

    2012-01-01

    Given the highly reduced state of carbon in glycerol and its availability as a substantial byproduct of biodiesel production, glycerol is of special interest for sustainable biofuel production. Glycerol was used as a substrate for biohydrogen production using the hyperthermophilic bacterium,

  6. Seasonal variability of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a temperate lake system

    NARCIS (Netherlands)

    Loomis, S.E.; Russell, J.M.; Heureux, A.M.; D'Andrea, W.J.; Sinninghe Damsté, J.S.

    2014-01-01

    Quantitative climate reconstructions are crucial for understanding the magnitude of and mechanisms behind natural and anthropogenic climate change, yet there are few proxies that can reliably reconstruct terrestrial temperature. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial

  7. Microbial recycling of glycerol to biodiesel.

    Science.gov (United States)

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Centrifuge modeling of monopiles

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    2010-01-01

    To gain a larger knowledge of the monopile foundation concept, centrifuge modeling is used by the geotechnical group at DTU. The centrifuge operated at DTU is a beam centrifuge and was built in 1976. In the recent years it has been upgraded with onboard data acquisition and control systems....... The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 85 in experiments which equals a soil volume in prototype scale of a diameter of 40 meters and a depth of 40 meters. This paper describes centrifuge modeling theory, the centrifuge setup at DTU and as an example show results...... from centrifuge tests performed on large diameter piles installed in dry sand....

  9. Surface Hardening of Composite Material by the Centrifugal-Casting Method

    Science.gov (United States)

    Eidelman, E. D.; Durnev, M. A.

    2018-04-01

    The effect of rotation flow emerging under centrifugal casting on the first-order phase transition, i.e., crystallization, has been studied using the example of producing a gradient composite material of AK12 aluminum alloy in a mixture with basalt fibers. It has been shown that a material with a hardened surface can be created. Distribution of admixtures in the main material when there is macroscopic motion has been found.

  10. Specific interaction of radioactive anti-androgen TSAA-291 with androgen receptor in rat prostates

    International Nuclear Information System (INIS)

    Sudo, K.; Yoshida, K.; Nakayama, R.

    1982-01-01

    A steroidal anti-androgen TSSA-291 (16β-ethyl-17β-hydroxy-4-oestren-3-one) bound to a macromolecular component in the cytosol of rat ventral prostates with high affinity (Kdsub(d) = 5.0 x 10 -9 M) and in a saturable manner. The number of binding sites was comparable to that for 5α-dihydrotestosterone (5α-DHT). [ 3 H]TSAA-291 binding was effectively displaced by unlabelled 5α-DHT, 19-nortestosterone and cyproterone acetate but to a lesser degree by corticosterone. Glycerol density-gradient centrifugation analysis revealed that the sedimentation coefficient of the [ 3 H]-TSAA-291-macromolecule complex was 3-4.5 S. However, when the unlabelled cytosol was fractionated by glycerol density-gradient centrifugation before the binding of [ 3 H]TSAA-291 was examined, specific binding of [ 3 H]TSAA-291 was observed in fractions corresponding to 8-10 S. Binding of the [ 3 H]TSAA-291-macromolecules comples to prostatic nuclei and DNA-cellulose was considerably less than binding by the [ 3 H]5α-DHT-macromolecule complex. Instability of the TSAA-291 binding coponent on heat treatment before and after complex formation was also revealed and the results are discussed in terms of the anti-androgenic activity of TSAA-291. (author)

  11. The effects of curvature on the flow field in rapidly rotating gas centrifuges

    International Nuclear Information System (INIS)

    Wood, H.G.; Jordan, J.A.

    1984-01-01

    The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)

  12. CENTRIFUGE END CAP

    Science.gov (United States)

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  13. Design and analysis of fuel ethanol production from raw glycerol

    International Nuclear Information System (INIS)

    Posada, J.A.; Cardona, C.A.

    2010-01-01

    Three configurations for fuel ethanol production from raw glycerol using Escherichia coli were simulated and economically assessed using Aspen Plus and Aspen Icarus, respectively. These assessments considered raw glycerol (60 wt%) purification to both crude glycerol (88 wt%) and pure glycerol (98 wt%). The highest purification cost (PC) was obtained using pure glycerol due to its higher energy consumption in the distillation stage. In addition, the remaining methanol in the raw glycerol stream was recovered and recycled, decreasing the purification costs. The E. coli strain is able to convert crude glycerol (at 10 g/L or 20 g/L), or pure glycerol (at 10 g/L) to ethanol. Among these three glycerol concentrations, the lowest bioconversion cost was obtained when crude glycerol was diluted at 20 g/L. Purification and global production costs were compared with the commercial prices of glycerol and fuel ethanol from corn and sugarcane. Purification costs of raw glycerol were lower than previously reported values due to the methanol recovery. Global production costs for fuel ethanol from glycerol were lower than the reported values for corn-based production and higher than those for cane-based production. (author)

  14. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    Science.gov (United States)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  15. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  16. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  17. Centrifuge enrichment program

    International Nuclear Information System (INIS)

    Astley, E.R.

    1976-01-01

    Exxon Nuclear has been active in privately funded research and development of centrifuge enrichment technology since 1972. In October of 1975, Exxon Nuclear submitted a proposal to design, construct, and operate a 3000-MT SWU/yr centrifuge enrichment plant, under the provisions of the proposed Nuclear Fuel Assurance Act of 1975. The U.S. Energy Research and Development Administration (ERDA) accepted the proposal as a basis for negotiation. It was proposed to build a 1000-MT SWU/yr demonstration increment to be operational in 1982; and after successful operation for about one year, expand the facilities into a 3000-MT SWU/yr plant. As part of the overall centrifuge enrichment plant, a dedicated centrifuge manufacturing plant would be constructed; sized to support the full 3000-MT SWU/yr plant. The selection of the centrifuge process by Exxon Nuclear was based on an extremely thorough evaluation of current and projected enrichment technology; results show that the technology is mature and the process will be cost effective. The substantial savings in energy (about 93%) from utilization of the centrifuge option rather than gaseous diffusion is a compelling argument. As part of this program, Exxon Nuclear has a large hardware R and D program, plus a prototype centrifuge manufacturing capability in Malta, New York. To provide a full-scale machine and limited cascade test capability, Exxon Nuclear is constructing a $4,000,000 Centrifuge Test Facility in Richland, Washington. This facility was to initiate operations in the Fall of 1976. Exxon Nuclear is convinced that the centrifuge enrichment process is the rational selection for emergence of a commercial enrichment industry

  18. Establishment of an isolation method of Nostoc commune cells free from extracellular polysaccharides (EPS using Percoll centrifugation

    Directory of Open Access Journals (Sweden)

    Makiko Kosugi

    2012-11-01

    Full Text Available The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and Antarctica. N. commune has a large amount of extracellular polysaccharides (EPS that hold moisture and protect the cells and at the same time accumulate light-blocking substances which is believed to play an important part in adaptation to a severe environment. To evaluate the photoadaptation processes in N. commune and clarify the role(s of EPS under ambient environmental condition at Antarctica, separation of cells from EPS is necessary. High yield is a prerequisite for the use of only small amount of natural N. commune from Antarctica. For this purpose, we developed a separation method by improving the Percoll density gradient centrifugation method using an EPS-coated field-grown Nostoc population. We established the most suitable condition to separate naked cells from EPS at high yield retaining high photosynthetic activity. The method is composed of centrifugation of cell homogenated N. commune in 10% (v/v Percoll to separate cells efficiently from EPS followed by fractionating centrifugation to remove impurities using the gradient of Percoll (80% and 50%, v/v.

  19. 75 FR 70300 - USEC, Inc.; American Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of...

    Science.gov (United States)

    2010-11-17

    ... Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of Receipt of a License Transfer... SNM-2011, for the American Centrifuge Lead Cascade Facility and the American Centrifuge Plant... USEC Inc., (the Licensee), for its American Centrifuge Lead Cascade Facility (LCF) and American...

  20. CENTRIFUGE

    Science.gov (United States)

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  1. On compressible flow in a gas centrifuge and its effect on the maximum separative power

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1978-01-01

    The gas circulation in a gas centrifuge due to temperature differences, differential rotation and injection, and removal of fluid at the ends, as well as due to temperature gradients at the cylinder wall, is treated analytically. The motion consists of a small perturbation on a state of isothermal

  2. RESEARCH CENTRIFUGE- ADVANCED TOOL SEPERATION

    OpenAIRE

    Mahajan Ashwini; Prof. B.V. Jain; Dr Surajj Sarode

    2015-01-01

    A centrifuge is a critical piece of equipment for the laboratory. Purpose of this study was to study research centrifuge in detail, its applications, uses in different branches and silent features. Their are two types of research centrifuge study here revolutionary research centrifuge and microprocessor research centrifuge. A centrifuge is a device that separates particles from a solution through use of a rotor. In biology, the particles are usually cells, sub cellular organelles, or large mo...

  3. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  4. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  5. Glycerol from biodiesel production: the new corn for dairy cattle

    Directory of Open Access Journals (Sweden)

    Shawn S Donkin

    2008-07-01

    Full Text Available Glycerol, also known as glycerin, is a colorless, odorless, hygroscopic, and sweet-tasting viscous liquid. It is a sugar alcohol with high solubility index in water and has a wide range of applications in the food, pharmaceutical, and cosmetic industries. The use of glycerol in diets for dairy cattle is not novel; however, this interest has been renewed due to the increased availability and favorable pricing of glycerol as a consequence of recent growth in the biofuels industry. Experimental evidence supports the use of glycerol as a transition cow therapy but feeding rates are low, ranging from 5 to 8 % of the diet DM. There is a paucity of research that examines the use of glycerol as a macro-ingredient in rations for lactating dairy cows. Most reports indicate a lack of effect of addition of glycerol to the diet when it replaces corn or corn starch. Recent feeding experiments with lactating dairy cows indicate replacing corn with glycerol to a level of 15% of the ration DM does not adversely effect milk production or composition. Milk production was 37.0, 36.9, 37.3, 36.4 ± 0.6 kg/d and feed intake was 24.0, 24.5, 24.6, 24.1 ± 0.5 kg/d for 0, 5, 10 and 15% glycerol treatments respectively and did not differ (P > 0.05 except for a modest reduction in feed intake during the first 7 days for the 15% glycerol treatment. Glycerol fed to dairy cattle is fermented to volatile fatty acids in the rumen and early reports indicated that glycerol is almost entirely fermented to propionate. In vitro data indicates glycerol fermentation increases the production of propionate and butyrate at the expense of acetate. Rumen microbes appear to adapt to glycerol feeding and consequently, cows fed glycerol also require an adaptation period to glycerol inclusion. Debate exists regarding the fate of glycerol in the rumen and although most reports suggest that glycerol is largely fermented in the rumen, the extent of rumen digestion may depend on level of

  6. [A thermodynamic study on bovine spermatozoa by microcalorimetry after Percoll density-gradient centrifugation - experimental probe of its utility in andrology].

    Science.gov (United States)

    Fischer, C; Scherfer-Brähler, V; Müller-Schlösser, F; Schröder-Printzen, I; Weidner, W

    2007-05-01

    Microcalorimetric measurements can be used for recording exothermic or endothermic summation effects of a great variety of biological processes. The aim of the present study was to examine the usefullness of the microcalorimetry method to characterise the biological activity of spermatozoa. The heat flow of bovine fresh sperm as well as cryosperm samples were measured after Percoll density-gradient centrifugation in a 4-channel microcalorimeter. Various calibration times, volumes of samples and sperm concentrations were tested and analysed. Sperm concentration was recorded by a computer-assisted, computer-aided software system method (CASA). Using a calibration time of 15 minutes, the heat signal of the fresh and cryosperm samples showed a characteristic peak after 39.5 min and 38.1 min (mean), respectively, with a significant correlation to sample volume and sperm concentration (p < 0.05). For obtaining the best results, a sample volume of 1 ml and a sperm concentration of more than 50 x 10 (6)/mL was used. With microcalorimetric measurements the biological activity of spermatozoa could be recorded for reproducible results, thus opening the way to an automatised ejaculate analysis in the future. More investigations are necessary to correlate microcalorimetric parameters with semen function.

  7. Valorization of crude glycerol from biodiesel production

    Directory of Open Access Journals (Sweden)

    Konstantinović Sandra S.

    2016-01-01

    Full Text Available The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  8. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study.

    Science.gov (United States)

    Zhang, Bo-Bo; Lu, Li-Ping; Xu, Gan-Rong

    2015-07-20

    The underlying mechanisms by which solid-state fermentation (SSF) was more advantageous over submerged fermentation (SmF) for converting high concentration of glycerol into Monacolin K by Monascus purpureus were investigated innovatively. First, the established kinetic models and kinetic parameters showed that the cell growth, Monacolin K formation and glycerol consumption in SSF were more rapid than those in SmF. Secondly, the comparison of fatty acid composition of mycelial cells indicated a better fluidity and permeability of the cell membrane in SSF than that of SmF, which was also consistent with the difference in the ratio of extracellular/intracellular Monacolin K between the two systems. Thirdly, the phenomenon of glycerol concentration gradient was verified in SSF, which could well explain the resistance effect to high concentration of glycerol in SSF. These new findings provide some important insights to the elucidation of the advantages of SSF for the synthesis of fungal secondary metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags.

    Science.gov (United States)

    Menck, Kerstin; Behme, Daniel; Pantke, Mathias; Reiling, Norbert; Binder, Claudia; Pukrop, Tobias; Klemm, Florian

    2014-09-09

    Human macrophages are involved in a plethora of pathologic processes ranging from infectious diseases to cancer. Thus they pose a valuable tool to understand the underlying mechanisms of these diseases. We therefore present a straightforward protocol for the isolation of human monocytes from buffy coats, followed by a differentiation procedure which results in high macrophage yields. The technique relies mostly on commonly available lab equipment and thus provides a cost and time effective way to obtain large quantities of human macrophages. Briefly, buffy coats from healthy blood donors are subjected to a double density gradient centrifugation to harvest monocytes from the peripheral blood. These monocytes are then cultured in fluorinated ethylene propylene (FEP) Teflon-coated cell culture bags in the presence of macrophage colony-stimulating factor (M-CSF). The differentiated macrophages can be easily harvested and used for subsequent studies and functional assays. Important methods for quality control and validation of the isolation and differentiation steps will be highlighted within the protocol. In summary, the protocol described here enables scientists to routinely and reproducibly isolate human macrophages without the need for cost intensive tools. Furthermore, disease models can be studied in a syngeneic human system circumventing the use of murine macrophages.

  10. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  11. The effect of centrifugation at various g force levels on rheological properties of rat, dog, pig and human red blood cells.

    Science.gov (United States)

    Kiss, Ferenc; Toth, Eniko; Miszti-Blasius, Kornel; Nemeth, Norbert

    2016-01-01

    Laboratory investigations often require centrifugation of blood samples for various erythrocyte tests. Although there is a lack of data about the effect of centrifugation at various g force levels on erythrocyte rheological properties. We aimed to investigate the effect of a 10-minute centrifugation at 500, 1000 or 1500 g at 15°C of rat, dog, pig and human venous (K3-EDTA, 1.5 mg/ml) blood samples. Hematological parameters, erythrocyte deformability, cell membrane stability, osmotic gradient ektacytometry (osmoscan) and erythrocyte aggregation were determined. Hematological and erythrocyte deformability parameters showed interspecies differences, centrifugation caused no significant alterations. Cell membrane stability for human erythrocytes centrifuged at higher g level showed less decrease in deformability. Osmoscan O min parameter showed slight elevation in dog centrifuged aliquots. Erythrocyte aggregation parameters changed unexpectedly. Rat and dog erythrocyte aggregation indices significantly dropped in centrifuged aliquots. Pig erythrocyte aggregation indices increased significantly after centrifugation. Human erythrocyte aggregation was the most stable one among the investigated species. The used centrifugation protocols caused the largest alterations in erythrocyte aggregation in a controversial way among the investigated species. On the other hand, erythrocyte deformability parameters were stable, cell membrane stability and osmoscan data show minor shifts.

  12. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Science.gov (United States)

    2011-02-18

    ... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...

  13. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Science.gov (United States)

    2012-02-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0355] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order EA-12- [[Page 9274

  14. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  15. Bovine oocytes and early embryos express mRNA encoding glycerol kinase but addition of glycerol to the culture media interferes with oocyte maturation.

    Science.gov (United States)

    Okawara, Sumika; Hamano, Seizo; Tetsuka, Masafumi

    2009-04-01

    Glycerol plays multi-functional roles in cellular physiology. Other than forming the backbone molecule for glycerophospholipid and triglyceride (TG), glycerol acts as an energy substrate for glycolysis. Spermatozoa are known to utilize glycerol for energy production, but there are no reports of this in oocytes. In this study, the value of glycerol as an energy substrate for bovine oocyte maturation (Exp. 1) and the gene expression of glycerol kinase (GK), an enzyme crucial for cellular glycerol utilization, in bovine oocytes and early embryos (Exp. 2) were examined. In Exp. 1, in vitro maturation (IVM) was conducted using synthetic oviduct fluid supplemented with/without glucose (1.5 mM) and/or glycerol (1.0 mM), and maturation rate, degree of cumulus expansion, glucose consumption and lactate production by cumulus-oocyte complexes (COC) were examined. In Exp. 2, to examine the developmental expression of GK mRNA, cumulus cells, oocytes and embryos at the 2-, 8- and 16-cell, morula, expanded blastocyst and hatched blastocyst stages were obtained in separate experiments, and the expression of GK mRNA was quantified using a real-time PCR. Glycerol did not support oocyte maturation or cumulus expansion. Addition of glycerol to glucose-supplemented media significantly decreased the maturation rate. Expression of GK mRNA was very low in cumulus cells, whereas an appreciable level of the transcript was observed in the oocytes. GK mRNA was detected in embryos at all the stages examined, and its expression significantly increased at the morula stage. These results indicate that glycerol, at least at the present concentration, is not beneficial as a constituent of the medium for bovine oocyte maturation. However, the appreciable levels of GK mRNA found in the oocyte and embryo imply a physiological role for glycerol in bovine oocyte maturation and embryo development.

  16. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde

    International Nuclear Information System (INIS)

    Agirre, I.; Garcia, I.; Requies, J.; Barrio, V.L.; Gueemez, M.B.; Cambra, J.F.; Arias, P.L.

    2011-01-01

    The acetalization reaction between glycerol and formaldehyde using Amberlyst 47 acidic ion exchange resin was studied. These acetals can be obtained from renewable sources (bioalcohols and bioalcohol derived aldehydes) and seem to be good candidates for different applications such as oxygenated diesel additives. A preliminary kinetic study was performed in a batch stirred tank reactor studying the influence of different process parameters like temperature, feed composition and the stirring speed. A pseudo homogenous kinetic model able to explain the reaction mechanism was adjusted. Thus, the corresponding order of reaction was determined. Amberlyst 47 acidic ion exchange resin showed a fairly good behavior allowing 100% of selectivity towards acetals formation. However, the studied acetalization reaction showed high thermodynamic limitations achieving glycerol conversions around 50% using a stoichiometric feed ratio at 353 K. The product is a mixture of two isomers (1,3-Dioxan-5-ol and 1,3-dioxolane-4-methanol) and the conversion of 1,3-dioxolane-4-methanol into 1,3-Dioxan-5-ol was also observed. -- Highlights: → The reaction between glycerol and acetaldehyde shows thermodynamic limitations. → Amberlyst 47 ion exchange resins show 100% of selectivity. → A pseudo-homogeneous kinetic model is able to predict the reaction progress. → Isomerization reactions were observed from dioxalanes to dioxanes.

  17. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  18. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  19. Determining Atmospheric Pressure with a Eudiometer and Glycerol

    Science.gov (United States)

    Brody, Jed; Rohald, Kate; Sutton, Atasha

    2010-01-01

    We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…

  20. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.

    Science.gov (United States)

    Posada, John A; Rincón, Luis E; Cardona, Carlos A

    2012-05-01

    Glycerol as a low-cost by-product of the biodiesel industry can be considered a renewable building block for biorefineries. In this work, the conversion of raw glycerol to nine added-value products obtained by chemical (syn-gas, acrolein, and 1,2-propanediol) or bio-chemical (ethanol, 1,3-propanediol, d-lactic acid, succinic acid, propionic acid, and poly-3-hydroxybutyrate) routes were considered. The technological schemes for these synthesis routes were designed, simulated, and economically assessed using Aspen Plus and Aspen Icarus Process Evaluator, respectively. The techno-economic potential of a glycerol-based biorefinery system for the production of fuels, chemicals, and plastics was analyzed using the commercial Commercial Sale Price/Production Cost ratio criteria, under different production scenarios. More income can be earned from 1,3-propanediol and 1,2-propanediol production, while less income would be obtained from hydrogen and succinic acid. This analysis may be useful mainly for biodiesel producers since several profitable alternatives are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Etherification of Glycerol with Propylene or 1-Butene for Fuel Additives

    Directory of Open Access Journals (Sweden)

    Chakrapong Saengarun

    2017-01-01

    Full Text Available The etherification of glycerol with propylene over acidic heterogeneous catalysts, Amberlyst-15, S100, and S200 resins, produced mono-propyl glycerol ethers (MPGEs, 1,3-di- and 1,2-di-propyl glycerol ethers (DPGEs, and tri-propyl glycerol ether (TPGE. The propylation of glycerol over Amberlyst-15 yielded only TPGE. The glycerol etherification with 1-butene over Amberlyst-15 and S200 resins produced 1-mono-, 2-mono-, 1,2-di-, and 1,3-di-butyl glycerol ethers (1-MBGE, 2-MBGE, 1,2-DBGE, and 1,3-DBGE. The use of Amberlyst-15 resulted in the propylation and butylation of glycerol with higher yields than those obtained from the S100 and S200 resins. The PGEs, TPGE, and BGEs were evaluated as cold flow improvers and octane boosters. These alkyl glycerol ethers can reduce the cloud point of blended palm biodiesels with diesel. They can increase the research octane number and the motor octane number of gasoline.

  2. Runtime and Inversion Impacts on Estimation of Moisture Retention Relations by Centrifuge

    Science.gov (United States)

    Sigda, J. M.; Wilson, J. L.

    2003-12-01

    Standard laboratory methods in soil physics for measuring the moisture retention relation (drainage matric potential-volumetric moisture content relation) are each limited to only part of the moisture content range. Centrifuge systems allow intensive accurate measurements across much of the saturation range, and typically require much less time than traditional laboratory methods. An initially liquid-saturated sample is subjected to a stepwise-increasing series of angular velocities while carefully monitoring changes in liquid content. Angular velocity is held constant until the capillary and centrifugal forces equilibrate, forcing liquid flux to zero, and then a final average liquid content is noted. The procedure is repeated after increasing the angular velocity. Centrifuge measurement time is greatly reduced because the centrifugal body force gradient can far exceed the driving forces utilized in standard lab methods. Widely-used in the petroleum industry for decades, centrifuge measurement of moisture retention relations is seldom encountered in the soil physics or vadose hydrology literatures. Yet there is a need to better understand and improve the experimental methodology given the increasing number of centrifuges employed in these fields. Errors in centrifuge measurement of moisture retention relations originate from both experimental protocol and from data inversion. Like standard methods, centrifuge methods assume equilibrium conditions, and so are sensitive to errors introduced by insufficient runtimes. Unlike standard methods, centrifuge experiments require inversion of the angular velocity and average sample moisture content data to a location-specific pair of matric potential and moisture content values, The force balance causes matric potential and moisture content to vary with sample length while the sample is spinning. Numerous data inversion techniques exist, each yielding different moisture retention relations. We present analyses demonstrating

  3. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  4. Intercalation compounds of vanadium(5) phosphates with glycerol

    International Nuclear Information System (INIS)

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  5. Enrichment: centrifuge process

    International Nuclear Information System (INIS)

    Soubbaramayer.

    1989-01-01

    This short course is divided into three sections devoted respectively to the physics of the process, some practical problems raised by the design of a centrifuge and the present situation of centrifugation in the World. 31 figs., 18 refs

  6. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation.

    Science.gov (United States)

    Kurita, Masakazu; Matsumoto, Daisuke; Shigeura, Tomokuni; Sato, Katsujiro; Gonda, Koichi; Harii, Kiyonori; Yoshimura, Kotaro

    2008-03-01

    Although injective autologous fat transplantation is one of the most attractive options for soft-tissue augmentation, problems such as unpredictability and fibrosis resulting from fat necrosis limit its universal acceptance. Centrifugation is one of most common methods for overcoming these difficulties. This study was performed to investigate quantitatively the effects of centrifugation on liposuction aspirates to optimize centrifugal conditions for fat transplantation and isolation of adipose-derived stem cells. Liposuction aspirates, obtained from eight healthy female donors, were either not centrifuged or centrifuged at 400, 700, 1200, 3000, or 4200 g for 3 minutes. The volumes of the oil, adipose, and fluid portions and numbers of blood cells and adipose-derived cells in each portion were examined. The processed adipose tissues (1 ml) were injected into athymic mice, and grafts were harvested and weighed at 4 weeks. Morphologic alterations were observed using light and scanning electron microscopy. Centrifugation concentrated adipose tissues and adipose-derived stem cells in the adipose portion and partly removed red blood cells from the adipose portion. Centrifugation at more than 3000 g significantly damaged adipose-derived stem cells. Centrifugation enhanced graft take per 1 ml centrifuged adipose but reduced calculated graft take per 1 ml adipose before centrifugation. Excessive centrifugation can destroy adipocytes and adipose-derived stem cells, but appropriate centrifugation concentrates them, resulting in enhanced graft take. The authors tentatively recommend 1200 g as an optimized centrifugal force for obtaining good short- and long-term results in adipose transplantation.

  7. Centrifuge apparatus

    Science.gov (United States)

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  8. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  9. Efficient synthetic protocols in glycerol under heterogeneous catalysis.

    Science.gov (United States)

    Cravotto, Giancarlo; Orio, Laura; Gaudino, Emanuela Calcio; Martina, Katia; Tavor, Dorith; Wolfson, Adi

    2011-08-22

    The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigation of glycerol assimilation and cofactor metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed

    of glycerol kinase from L. lactis, introduction of a heterologous glycerol assimilation pathway and construction of a library of NADH oxidase activity. Based on a preliminary analysis of transcription level data, an attempt was made to stimulate glycerol assimilation by overexpressing the glycerol kinase...... already present in L. lactis. The construction and verification of a strain with increased glycerol kinase activity was not fully completed and is still ongoing. Similarly the construction of mutants expressing a heterologous pathway for glycerol dissimilation is also an ongoing task. An artificial...... effects and improve the growth rate, though not completely to the level of the reference strain. The fact that this effect was predominantly observed while utilizing xylose implicates the involvement of the pentose phosphate pathway. A possible mechanism underlying the observed growth characteristics...

  11. Conserved family of glycerol kinase loci in Drosophila melanogaster

    Science.gov (United States)

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  12. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  13. Separation parameters of gas centrifuges

    International Nuclear Information System (INIS)

    May, W.G.

    1977-01-01

    Early work on development of the gas centrifuge for separation of uranium isotopes has recently been reviewed. Several configurations were investigated. The preferred configuration eventually turned out to be a countercurrent centrifuge. In this form, an internal circulation is set up, and as a consequence, light isotope concentrates at one end of the centrifuge, heavy isotope at the other. In many ways the effect resembles the separation obtained in packed columns in the chemical and petroleum industries. It is the purpose of this paper to develop this analogy between countercurrent gas centrifuges and packed towers and to illustrate its usefulness in understanding the separation process in the centrifuge. 8 figures

  14. An approach using centrifugation for the extraction of the soil solution and its usefulness in studies of radionuclide speciation in soils - Approach using centrifugation for extraction of soil solution and its study for uranium speciation

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S. [CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasilia, Brazil, Proc.BEX 1958/13-5 (Brazil); Lozano, J.C.; Prieto, C. [Universidad de Salamanca, 37008, Salamanca (Spain); Blanco Rodriguez, P.; Vera Tome, F. [Universidad de Extremadura, 06006, Badajoz (Spain)

    2014-07-01

    The centrifugation technique is tested as a methodology for extraction of soil solution, for further characterization, in order to elucidate its contribution to the speciation of radionuclides, particularly uranium, in radioactively contaminated soils, as well as the determination of its availability for vegetation. Centrifugation of a previously saturated soil core provides the soil solution with a specific origin inside the soil sample. In such way that the different soil solution origin, associate to the effective pressure applied to the soil core, will reflect different distribution coefficients which affect the radionuclide availability definition. Speciation of radionuclides in the soil solution can be also conditioned by this water origin. The development of this methodology relating to technical challenges faces materials suitable for the centrifugation process, both in terms of mechanical properties and chemical inertness. This paper reports the preparation of ceramic pellets of perlite produced with the intention of replacing glass pellets, used inserts in support to soils coupled with centrifuges. The characterization of porosity and the test of its chemical inertness and mechanical strength to the centrifugation process have been performed. Porosity characterization is required to control the saturation gradient, which conditions the flow of water from the soil. Its mechanical adequacy was tested by subjecting the pellets to the centrifugation process and assessing its integrity end. Chemical inertia was measured by placing the tablets in aqueous solutions of known composition and then evaluating the presence or absence of elements in this solution, after on time of contact between them. (authors)

  15. Crystallization and transformation of polymorphic forms of trioleoyl glycerol and 1,2-dioleoyl-3-rac-linoleoyl glycerol.

    Science.gov (United States)

    Bayés-García, Laura; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel; Ueno, Satoru; Sato, Kiyotaka

    2013-08-08

    This study examined the influence of different thermal treatments on the crystallization and transformation of trioleoyl glycerol (OOO) and 1,2-dioleoyl-3-rac-linoleoyl glycerol (OOL). Two triacylglycerol (TAG) samples were cooled at 0.5-15 °C·min(-1) and heated at 2 and 15 °C·min(-1). The polymorphic characteristics of the two TAGs were analyzed in situ using differential scanning calorimetry, Raman spectroscopy, and synchrotron radiation X-ray diffraction. Multiple polymorphic forms were identified in OOO (α, β'2, β'1, β2, and β1) and OOL (α, β'2, and β'1). Larger quantities of more stable forms (e.g., β2 and β1 of OOO and β'1 of OOL) were obtained when the samples were slowly cooled and heated. In contrast, less stable polymorphs were obtained with increased cooling and heating rates. Polymorphic transformations occurred in either solid-state or melt-mediation and were influenced by heating rates. The results were analyzed by considering the activation energies for crystallization and transformation of stable and less stable polymorphic forms in comparison with previous studies on 1,3-dipalmitoyl-2-oleoyl-glycerol and 1, 3-dioleoyl-2-palmitoyl-glycerol.

  16. The Lubricity of Glycerol and its Solutions

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, J.

    2016-01-01

    Glycerol has been recognised as an excellent diesel fuel and lubricant. It is a liquid that can originate from the transesterification of plant oil that also results in plant oil metyl (or ethyl) ester (biodiesel). Machine elements lubricated by glycerol show very low friction, in fact lower than...

  17. New centrifugation blood culture device.

    Science.gov (United States)

    Dorn, G L; Smith, K

    1978-01-01

    A single-tube blood culture device designed for centrifugation in a tabletop centrifuge is described. Reconstruction experiments using 21 different organisms and human donor blood indicate that excellent recovery can be obtained by centrifugation for 30 min at 3,000 X g. PMID:342539

  18. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  19. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  20. 76 FR 50767 - In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge...

    Science.gov (United States)

    2011-08-16

    ...; License Nos. SNM-7003, SNM-2011] In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge Plant; Order Extending the Date by Which the Direct Transfer of Licenses Is To... American Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively...

  1. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  2. Palatability, digestibility, and metabolizable energy of dietary glycerol in adult cats.

    Science.gov (United States)

    Machado, G S; Pezzali, J G; Marx, F R; Kessler, A M; Trevizan, L

    2017-02-01

    Glycerol is a humectant, which reduces water activity when added to the diet. This property seems to offer dietary benefits, specifically in high-moisture diets for cats, where some humectants cannot be used. According to the U.S. Food and Drug Administration, glycerol is generally recognized as sustenance safe (GRAS). It is suggested that cats are able to metabolize glycerol and use it as an energy source without compromising health. Three experiments were conducted to evaluate the following characteristics of glycerol in the diet for cats: 1) a preference test, 2) digestibility, ME, and fecal and urinary characteristics, and 3) postprandial plasma glycemia. Twelve healthy adult female cats were randomly distributed among 4 treatments consisting of a basal diet (4,090 kcal ME/kg DM, 32% CP, 11% fat, 2.3% crude fiber, and 7.0% ash) and 3 diets with varying percentages of glycerol, made by replacing the basal diet with 2.5, 5.0, and 10.0% purified glycerol (99.5%). The inclusion of glycerol proportionally reduced ( Cats did not show a preference for any diet in particular ( > 0.05). The digestibility assays showed that increasing dietary glycerol levels did not affect food intake or the apparent total tract digestibility of macronutrients and energy ( > 0.05). The inclusion of glycerol in the diets did not alter the stool moisture, fecal score, or urine volume. However, glycerol was detected in urine when it was incorporated into the diet at 10%. Glycemia increased up to 900 min following the first meal after the fasting period with no difference between treatments, even when the means were adjusted for food intake. The blood glucose area under the curve also showed no significant difference between treatments ( > 0.05). Cats accepted glycerol under the conditions of the study, and its nutritional value was determined as it has been done for other species. The ME of glycerol for adult cats was estimated to be 3,185 kcal/kg DM. Supplementing the diets of the cats

  3. Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells.

    Science.gov (United States)

    Hoffman, Joseph F; Inoué, Shinya

    2006-02-21

    This paper describes changes that occur in human and Amphiuma red blood cells observed during centrifugation with a special microscope. Dilute suspensions of cells were layered, in a centrifuge chamber, above an osmotically matched dense solution, containing Nycodenz, Ficoll, or Percoll (Pharmacia) that formed a density gradient that allowed the cells to slowly settle to an equilibrium position. Biconcave human red blood cells moved downward at low forces with minimum wobble. The cells oriented vertically when the force field was increased and Hb sedimented as the lower part of each cell became bulged and assumed a "bag-like" shape. The upper centripetal portion of the cell became thinner and remained biconcave. These changes occurred rapidly and were completely reversible upon lowering the centrifugal force. Bag-shaped cells, upon touching red cells in rouleau, immediately reverted to biconcave disks as they flipped onto a stack. Amphiuma red cells displayed a different type of reversible stratification and deformation at high force fields. Here the cells became stretched, with the nucleus now moving centrifugally, the Hb moving centripetally, and the bottom of the cells becoming thinner and clear. Nevertheless, the distribution of the marginal bands at the cells' rim was unchanged. We conclude that centrifugation, per se, while changing a red cell's shape and the distribution of its intracellular constituents, does so in a completely reversible manner. Centrifugation of red cells harboring altered or missing structural elements could provide information on shape determinants that are still unexplained.

  4. Orientation of Al3Ti platelets in Al-Al3Ti functionally graded material manufactured by centrifugal method

    International Nuclear Information System (INIS)

    Watanabe, Y.; Fukui, Y.

    1997-01-01

    Al-Al 3 Ti functionally graded materials (FGMs) were manufactured by the centrifugal method with a commercial ingot of Al-5 mass% Ti master alloy. The alloy was melted at a liquid/solid coexisting temperature, at which Al 3 Ti remains as a solid, and then it was cast into a thick-walled ring. It was found that the Al-Al 3 Ti functionally graded material can be successfully fabricated by the centrifugal method. It was also found that the volume fraction of the Al 3 Ti can be increased by repetition of the centrifugal method. Since the shape of Al 3 Ti particles in a commercial alloy ingot is that of a platelet, the Al 3 Ti particles are arranged with their platelet planes nearly perpendicular to the radial direction. The orientation effects become stronger when the G number becomes larger. Although the final centrifugal casting was conducted under a very large centrifugal force for the specimen cast three times, the orientation effects were weaker than those in the specimen cast one time. From these observations, it is concluded that the origin of orientation of Al 3 Ti platelets can be attributed to the angular velocity gradient of the melt along the radial direction produced by the difference in the viscosity. (orig.)

  5. Glycerol extracting dealcoholization for the biodiesel separation process.

    Science.gov (United States)

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  7. Simultaneous determination of wine sugars, glycerol and organic acids 13C/12C isotopic ratio by ion chromatography-co-IRMS

    Directory of Open Access Journals (Sweden)

    Guyon Francois

    2014-01-01

    Full Text Available Ion chromatography (IC isotope ratio mass spectrometry (IRMS coupling is possible using a liquid interface allowing chemical oxidation (co of organic compounds. Synthetic solutions containing a mixture of glycerol, sugars (sucrose, glucose and fructose and organic acids (gluconic, lactic, malic, tartaric, oxalic, fumaric, citric and isocitric were elaborated to estimate analytical applications of two different IC systems. It appears that the use of carbonated solution in the eluting phase is a perturbation for 13C isotope measurements as it creates a δ13C deviation from the expected values. A sample of authentic sweet wine was analyzed by IC-co-IRMS using KOH gradient. Ratios of isotopic, ratios of organic acids and glycerol was found to be, in average, equal 1.01 ± 0.04 that is in accordance with our previous results.

  8. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    Science.gov (United States)

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  9. Centrifuge design and development

    International Nuclear Information System (INIS)

    Edwards, T.T.; Holmes, M.D.

    1987-01-01

    BNFL has been enriching uranium on an industrial scale using the centrifuge process for over a decade. Together with its Urenco partners, a joint development programme has been and is being vigorously pursued to reduce specific costs, increase output and maintain competitiveness throughout the 1990s. The paper summarises the development of the centrifuge from its earliest concepts through to the centrifuges of today which are jointly designed by the Urenco partners. The potential for further development is also examined. (author)

  10. Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsions

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Skov, Anne Ladegaard

    2016-01-01

    Novel hybrid elastomers were prepared by speedmixing of two virtually immiscible liquids – glycerol and polydimethylsiloxane (PDMS) prepolymer. Upon crosslinking ofthe PDMS phase of the resulting glycerol-in-silicone emulsion freestanding films were obtained. In this way glycerol became uniformly...... elastomeractuators. Conductivities of samples based on various PDMS compositions with different loadings of embedded glycerol were thoroughly investigated providing useful information about the dielectric behavior....

  11. Effects of visceral adiposity on glycerol pathways in gluconeogenesis.

    Science.gov (United States)

    Neeland, Ian J; Hughes, Connor; Ayers, Colby R; Malloy, Craig R; Jin, Eunsook S

    2017-02-01

    To determine the feasibility of using oral 13 C labeled glycerol to assess effects of visceral adiposity on gluconeogenic pathways in obese humans. Obese (BMI ≥30kg/m 2 ) participants without type 2 diabetes underwent visceral adipose tissue (VAT) assessment and stratification by median VAT into high VAT-fasting (n=3), low VAT-fasting (n=4), and high VAT-refed (n=2) groups. Participants ingested [U- 13 C 3 ] glycerol and blood samples were subsequently analyzed at multiple time points over 3h by NMR spectroscopy. The fractions of plasma glucose (enrichment) derived from [U- 13 C 3 ] glycerol via hepatic gluconeogenesis, pentose phosphate pathway (PPP), and tricarboxylic acid (TCA) cycle were assessed using 13 C NMR analysis of glucose. Mixed linear models were used to compare 13 C enrichment in glucose between groups. Mean age, BMI, and baseline glucose were 49years, 40.1kg/m 2 , and 98mg/dl, respectively. Up to 20% of glycerol was metabolized in the TCA cycle prior to gluconeogenesis and PPP activity was minor (gluconeogenesis from glycerol in obese humans. Our findings provide preliminary evidence that excess visceral fat disrupts multiple pathways in hepatic gluconeogenesis from glycerol. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  13. Flow control arrangements for centrifuges

    International Nuclear Information System (INIS)

    Alderton, G.W.; Davidge, P.C.

    1983-01-01

    In a centrifuge plant for the separation of uranium isotopes, when a centrifuge machine breaks down, light gas is produced. This gas can cause adjacent machines to break down, so propagating the fault. The present invention provides flow control arrangements in gas pipes to the centrifuge, whereby sudden egress of gas from a failed machine is inhibited. (author)

  14. Evaluation of enrichment by centrifugal separation: the future of the centrifugal-separation method

    International Nuclear Information System (INIS)

    Kanagawa, A.

    A gas centrifuge plant for uranium enrichment is considered from the point of view of economic competition with other methods. Characteristics of the method are presented including: energy efficiency, the cascade, the separation coefficient, the equilibrium separation process, and capability as centrifugal pump. The structure of an individual gas centrifuge separator is described including the rotating cylinder, mechanisms for gas injection and extraction, mechanisms for counter-streaming of gas, the axle holder mechanism, the gas sealing mechanism, and the driving mechanism. (U.S.)

  15. Co-digestion of sewage sludge with glycerol to boost biogas production

    International Nuclear Information System (INIS)

    Fountoulakis, M.S.; Petousi, I.; Manios, T.

    2010-01-01

    The feasibility of adding crude glycerol from the biodiesel industry to the anaerobic digesters treating sewage sludge in wastewater treatment plants was studied in both batch and continuous experiments at 35 o C. Glycerol addition can boost biogas yields, if it does not exceed a limiting 1% (v/v) concentration in the feed. Any further increase of glycerol causes a high imbalance in the anaerobic digestion process. The reactor treating the sewage sludge produced 1106 ± 36 ml CH 4 /d before the addition of glycerol and 2353 ± 94 ml CH 4 /d after the addition of glycerol (1% v/v in the feed). The extra glycerol-COD added to the feed did not have a negative effect on reactor performance, but seemed to increase the active biomass (volatile solids) concentration in the system. Batch kinetic experiments showed that the maximum specific utilization rate (μ max ) and the saturation constant (K S ) of glycerol were 0.149 ± 0.015 h -1 and 0.276 ± 0.095 g/l, respectively. Comparing the estimated values with the kinetics constants for propionate reported in the literature, it can be concluded that glycerol uptake is not the rate-limiting step during the process.

  16. From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Gemma Villorbina

    2011-03-01

    Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.

  17. Glycerol (byproduct of biodiesel production) as a source of fuels and chemicals : mini review

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Burton, R. [Piedmont Biofuels Industrial, Pittsboro, NC (United States); Zhou, Y. [Yonezawa Hamari Chemical, Ltd., Yonezawa, Yamagata (Japan)

    2010-07-01

    Glycerol, a byproduct of biodiesel production, is a potential renewable feedstock for the production of functional chemicals. This paper reviewed recent developments in the conversion of glycerol into value-added products, including citric acid, lactic acid, 1,3-dihydroxyacetone (DHA), 1,3-propanediol (1,3-PD), dichloro-2-propanol (DCP), acrolein, hydrogen, and ethanol. The new applications of glycerol will improve the economic viability of the biodiesel industry and capitalize on the oversupply of crude glycerol that the biodiesel industry has produced. Increasing abundance and attractive pricing make glycerol an attractive feedstock for deriving value-added chemical compounds. The processes turn glycerol into chemicals, materials, and fuels and fuel additives. Whereas glycerol from first-generation biodiesel production has low purity, glycerol from second-generation biodiesel production, which uses non-edible oil as a feedstock, produces a higher purity glycerol, minimizing the related impurity problem and potentially increasing the applications of glycerol. Glycerol is also being looked at as a carbon source for algal biomass fermentation. 36 refs.

  18. Glycerol reforming in supercritical water : a short review

    NARCIS (Netherlands)

    Markocic, Elena; Kramberger, Boris; van Bennekom, Joost G.; Heeres, Hero Jan; Vos, John; Knez, Zeljko; Markočič, Elena; Knez, Željko

    Due to the rise in global biodiesel production, the amount of crude glycerol, the main byproduct, has increased steadily. Identification of high value added outlets for crude glycerol has been explored in detail to increase the overall economics of the biodiesel process. Examples are the use of

  19. Centrifugal Compressor Aeroelastic Analysis Code

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  20. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2017-06-01

    Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.

  1. The magnetic centrifugal mass filter

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  2. The magnetic centrifugal mass filter

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-09-15

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  3. Sperm fractions obtained following density gradient centrifugation in human ejaculates show differences in sperm DNA longevity

    Directory of Open Access Journals (Sweden)

    Jaime Gosálvez

    2014-06-01

    Conclusion: 1 Unnecessary incubation of spermatozoa prior to artificial insemination or in vitro fertilization, should be avoided, since sperm DNA longevity is significantly reduced after ex vivo sperm handling and 2 Although sperm selection by DCG significantly reduces the baseline levels of SDF of sperm in Fraction 3, sperm DNA longevity in this fraction was ultimately lower following 24 h incubation when compared to sperm recovered from non-centrifuged NSS.

  4. Fermentative utilization of glycerol residue for the production of acetic acid

    Science.gov (United States)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  5. Influence of cryoprotectants glycerol and amides, combined with antioxidants on quality of frozen-thawed boar sperm.

    Science.gov (United States)

    Buranaamnuay, K; Grossfeld, R; Struckmann, C; Rath, D

    2011-08-01

    The present study was undertaken to examine whether the cooling and freezing extenders containing a mixture of antioxidants (AOs) catalase, Na-pyruvate and mercaptoethanol and one of three types of cryoprotectants (CPs) would be able to improve the quality of frozen-thawed boar sperm. The collected semen, only the sperm-rich fraction, was diluted 1:1 with Androhep plus™ extender, stored at 15°C for 2 h and centrifuged. The centrifuged sperm pellet was re-suspended in lactose-egg yolk extender and divided into four groups for mixing with freezing extenders containing different kinds of CPs at 5°C: (I) glycerol (GLY) as control; (II) GLY with AOs; (III) dimethyl formamide (DMF) with AOs and (IV) dimethyl acetamide (DMA) with AOs. Processed sperm were packaged in 0.25-mL straws and frozen using a controlled rate freezer. After thawing, the diluted thawed sperm were incubated at 38°C for 10 min and was assessed for motility by CASA, membrane/acrosome integrity by FITC-PNA/PI and DNA integrity (DFI) by SCSA. All sperm parameters evaluated, except DFI, were negatively affected (P0.05). There was no difference in DFI among the studied groups (P>0.05). In conclusion, based on the present results, addition of AOs to cooling and freezing extenders and/or replacement of GLY with DMF or DMA could not improve quality of frozen-thawed boar sperm. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry

    NARCIS (Netherlands)

    Buckles, L.K.; Weijers, J.W.H.; Tran, X.-M.; Waldron, S.; Sinninghe Damsté, J.S.

    2014-01-01

    The application of glycerol dialkyl glycerol tetraether (GDGT)-based palaeoenvironmental proxies, such as the branched vs. isoprenoidal tetratether (BIT) index, TEX86 and the MBT–CBT palaeothermometer, has lately been expanded to lacustrine sediments. Given recent research identifying the production

  7. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK) : Implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry

    NARCIS (Netherlands)

    Buckles, L. K.; Weijers, J. W H; Tran, X.-M.; Waldron, S.; Sinninghe Damsté, J. S.

    2014-01-01

    The application of glycerol dialkyl glycerol tetraether (GDGT)-based palaeoenvironmental proxies, such as the branched vs. isoprenoidal tetratether (BIT) index, TEX86 and the MBT-CBT palaeothermometer, has lately been expanded to lacustrine sediments. Given recent research identifying the production

  8. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi

    2012-01-01

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which...... was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude...... glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1 g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol...

  9. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  10. Dimethylformamide is not better than glycerol for cryopreservation of boar semen.

    Science.gov (United States)

    Malo, C; Gil, L; Cano, R; Martínez, F; García, A; Jerez, R A

    2012-05-01

    To improve the boar sperm cryopreservation process, the influence of the sugar (lactose, trehalose) source and the cryoprotectant [glycerol, dimethylformamide (DMF)] on the success of freezing was investigated. Sperm samples were frozen in one of six extenders: lactose plus 3% glycerol (LG); lactose plus 1.5% glycerol and 1.5% DMF (LGD); lactose plus 3% DMF (LD); trehalose plus 3% glycerol (TG); trehalose plus 1.5% glycerol and 1.5% DMF (TGD); trehalose plus 3% DMF (TD). Effects on motility, viability, acrosome integrity and hypoosmotic test (HOST) were measured. The results showed that extender containing 3% glycerol retained the highest motility percentages. In regard to viability and acrosome integrity, all extenders yielded similar rates except for the decreasing values of TD. Endosmosis was diminished in TD and LD at 2 h (P = 0.0018), as compared with the others. The results of the study demonstrated that the use of DMF as a cryoprotectant adversely affected boar sperm quality after cryopreservation. © 2011 Blackwell Verlag GmbH.

  11. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  12. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  13. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jae; Hartono, Maria Regina; Chan, Weng Heng; Yeo, Suan Siong [Agency for Science, Technology and Research (A*STAR), Jurong Island (Singapore). Inst. of Chemical and Engineering Sciences

    2011-02-15

    The rapidly expanding market for biodiesel has increased the supply and reduced the cost of glycerol, making it an attractive sustainable feed stock for the fuel and chemical industry. Glycerol-based biorefinery is the microbial fermentation of crude glycerol to produce fuels and chemicals. A major challenge is to obtain microbes tolerant to inhibitors such as salts and organic solvents present in crude glycerol. Microbial screening was attempted to isolate novel strain capable of growing on crude glycerol as a sole carbon source. The newly isolated bacteria, identified as nonpathogenic Kluyvera cryocrescens S26 could convert biodiesel-derived crude glycerol to ethanol with high yield and productivity. The supplementation of nutrients such as yeast extract resulted in distinguished enhancement in cell growth as well as ethanol productivity under anaerobic condition. When glycerol fermentation is performed under microaerobic condition, there is also a remarkable improvement in cell growth, ethanol productivity and yield, compared with those under strict anaerobic condition. In batch fermentation under microaerobic condition, K. cryocrescens S26 produced 27 g/l of ethanol from crude glycerol with high molar yield of 80% and productivity of 0.61 g/l/h. (orig.)

  14. Effect of Glycerol Pretreatment on Levoglucosan Production from Corncobs by Fast Pyrolysis

    Directory of Open Access Journals (Sweden)

    Liqun Jiang

    2017-11-01

    Full Text Available In this manuscript, glycerol was used in corncobs’ pretreatment to promote levoglucosan production by fast pyrolysis first and then was further utilized as raw material for chemicals production by microbial fermentation. The effects of glycerol pretreatment temperatures (220–240 °C, time (0.5–3 h and solid-to-liquid ratios (5–20% were investigated. Due to the accumulation of crystalline cellulose and the removal of minerals, the levoglucosan yield was as high as 35.8% from corncobs pretreated by glycerol at 240 for 3 h with a 5% solid-to-liquid ratio, which was obviously higher than that of the control (2.2%. After glycerol pretreatment, the fermentability of the recovered glycerol remaining in the liquid stream from glycerol pretreatment was evaluated by Klebsiella pneumoniae. The results showed that the recovered glycerol had no inhibitory effect on the growth and metabolism of the microbe, which was a promising substrate for fermentation. The value-added applications of glycerol could reduce the cost of biomass pretreatment. Correspondingly, this manuscript offers a green, sustainable, efficient and economic strategy for an integrated biorefinery process.

  15. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    Science.gov (United States)

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Centrifugation speed affects light transmission aggregometry.

    Science.gov (United States)

    Merolla, M; Nardi, M A; Berger, J S

    2012-02-01

    Light transmission aggregometry (LTA) is considered the gold standard for investigating platelet activity ex vivo. However, LTA protocols are not standardized, and differences in LTA procedure are a potential source of variance in results. Centrifugation speed is an essential component of platelet preparation in LTA, has yet to be standardized, and may affect platelet aggregation results. We sought to investigate the effect of relative centrifugal force (RCF) intensity on LTA results. Ten healthy controls had venous blood drawn and centrifuged at 150, 200, 300, and 500 g for 10 min. Cell counts in whole blood and platelet-rich plasma (PRP) were measured using a hematology analyzer. LTA was performed using 1.0 μm adenosine diphosphate (ADP) and 0.4 μm epinephrine as an agonist. Aggregation (%) was compared at 60, 120, 180, and 300 s and at maximum aggregation. Centrifugation speed was associated with decreasing platelet count (P centrifuge RCF at 60, 120, 180, 300 s and at maximum aggregation (P centrifugation speed in the interpretation of LTA results, supporting the need for standardization of centrifugation RCF in LTA protocols. © 2011 Blackwell Publishing Ltd.

  17. Suppression of NaNO3 crystal nucleation by glycerol: micro-Raman observation on the efflorescence process of mixed glycerol/NaNO3/water droplets.

    Science.gov (United States)

    Yu, Jun-Ying; Zhang, Yun; Zeng, Guang; Zheng, Chuan-Ming; Liu, Yong; Zhang, Yun-Hong

    2012-02-09

    Although the hygroscopicity of a NaNO(3)/water microdroplet and a polyalcohol/water microdroplet, two of the most important aerosols in atmosphere, has been widely studied, little is known about the relationship between the hygroscopic behavior of mixed NaNO(3)/polyalcohol/water droplets and their structures on the molecular level. In this study, the hygroscopicity of mixed glycerol/NaNO(3)/water droplets deposited on a hydrophobic substrate was studied by micro-Raman spectroscopy with organic-to-inorganic molar ratios (OIRs) of 0.5, 1, and 2. In the mixed glycerol/NaNO(3)/water droplets, glycerol molecules tended to combine with Na(+) and NO(3)(-) ions by electrostatic interaction and hydrogen bonding, respectively. On the basis of the analyses of the changes of symmetric stretching (v(s)-CH(2)), asymmetric stretching (v(a)-CH(2)), their area ratio (Av(a)-CH(2)/Av(s)-CH(2)) of glycerol, and symmetric stretching band of NO(3)(-) (ν(1)-NO(3)(-)) with relative humidity (RH), it was found that the conformation of glycerol was transformed from αα mainly to γγ and partly to αγ with a decreasing RH in the mixed droplets, contrary to the case in the glycerol/water droplet. In addition, the glycerol with γγ and αγ conformation had strong interaction with Na(+) and NO(3)(-) respectively, which suppressed the formation of contact of ions and delayed the efflorescence relative humidity (ERH) for the mixed droplets compared to the NaNO(3)/water droplet. © 2012 American Chemical Society

  18. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress.

    Directory of Open Access Journals (Sweden)

    Elzbieta Petelenz-Kurdziel

    Full Text Available We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2 and glycerol import (Stl1 and activates a regulatory enzyme in glycolysis (Pfk26/27. In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the

  19. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    Science.gov (United States)

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  20. Digestible energy of crude glycerol for pacu and silver catfish

    Directory of Open Access Journals (Sweden)

    Rafael Ernesto Balen

    2014-01-01

    Full Text Available The increase in global biodiesel production is originating a glycerol surplus, which has no defined destination. An alternative to overcome this problem is its use as energy source in animal feeding. In Brazil, Pacu (Piaractus mesopotamicus is one of the most farmed native fish species, whereas Silver catfish (Rhamdia quelen is suitable for production in subtropical region. Considering little knowledge about crude glycerol utilization in feeds for Neotropical fish species, it was evaluated the apparent digestibility coefficients (ADCs for energy of crude glycerol for P. mesopotamicus and R. quelen. The digestibility and digestible energy content of crude glycerol can be considered excellent even when compared to energy of common ingredients such as maize and wheat, presenting 0.97 and 0.89 of energy ADCs, and 15.2 and 13.95MJ kg-1 of digestible energy for Pacu and Silver catfish, respectively. In conclusion, crude glycerol is an energetic ingredient with good potential in Brazilian native fish diets.

  1. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    Science.gov (United States)

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  2. Theoretical analysis on the refractive-index distribution and bandwidth of gradient-index polymer optical fibers from a centrifugal field.

    Science.gov (United States)

    Wei, Ming-Hsin; Chen, Wen-Chang

    2003-04-20

    Theoretical analysis was applied to analyze the refractive-index distribution (RID) and bandwidth (BW) of gradient-index polymer optical fibers (GI POFs) prepared by a centrifugal field process. The RID of the prepared GI POF could be represented by the equation of n(r) = n1[1 - 2delta(r/alpha)g](1/2). The studied material systems were poly(hexafluoroisopropyl 2-fluoroacrylate) (PHFIP 2-FA)/dibutyl phthalate (DBP) and poly(methyl methacrylate) (PMMA)/benzyl benzoate (BEN). The RID and the BW were significantly affected by an essential parameter k, which was related to thematerial properties (density difference and molecular weight) and processing properties (rotating speed, temperature, and radius). As k increased, the characteristic constant of RID, g, decreased to a minimum and then increased sharply, owing to the separation of the polymer and the dopant. On the other hand, the relative refractive-index difference of RID, delta, increased to a steady value after k increased to a certain value. The variation of RID with k resulted in a local minimum of intermodal dispersion, and thus a maximum bandwidth was obtained. The maximum BW of the PHFIP 2-FA/DBP and PMMA/BEN systems at 1550 nm (100-m fiber length and 2-nm spectral width) for the case of k not equal to 0 were 6.7 and 3.2 Gb/s, respectively. The wavelength of light source affects the BW significantly only at k around zero because of the importance of the intramodal dispersion in this case.

  3. Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase

    NARCIS (Netherlands)

    Koning, W. de; Weusthuis, R.A.; Harder, W.; Dijkhuizen, L.

    Various factors controlling dihydroxyacetone (DHA) and glycerol production from methanol by resting cell suspensions of a mutant of Hansenula polymorpha, blocked in DHA kinase and glycerol kinase, were investigated. The presence of methanol (250 mM) and an additional substrate (0.5%, w/v) to

  4. Glass polymorphism in glycerol-water mixtures: I. A computer simulation study.

    Science.gov (United States)

    Jahn, David A; Wong, Jessina; Bachler, Johannes; Loerting, Thomas; Giovambattista, Nicolas

    2016-04-28

    We perform out-of-equilibrium molecular dynamics (MD) simulations of water-glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA-HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ(g) = 0-13% and find that, for the present mixture models and rates, the LDA-HDA transformation is detectable up to χ(g) ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ(g) ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ(g) > 5%. We present an analysis of the molecular-level changes underlying the LDA-HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA-HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA-HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that

  5. Influence of hyperosmotic agent (glycerol) in contrast enhancement

    International Nuclear Information System (INIS)

    Moriyama, Takashi; Suzuki, Shigeharu; Nakaoka, Tsutomu

    1981-01-01

    For getting a better contrast enhancement (CE) of computed tomography (CT) in brain tumors, we tried to increase the extravascular iodine concentration. A vailing ourselves of the period of returning water following intravenously administered glycerol, a drip injection of the contrast medium gave a better CE effect than the usual CE. In two benign gliomas, CE with glycerol was much better than CE without glycerol, and in two malignant gliomas and two metastatic tumors, CE with glycerol was better, but not so much better as with the benign tumors. In general, the CE effect in primary brain tumors showed a decreasing pattern, whereas in metastatic brain tumors the best time was 60 minutes after the injection of the contrast material (increasing and decreasing pattern), suggesting an increase in the extravascular iodine and a severe failure of the blood brain barrier. Two cystic malignant gliomas allowed the intravenously injected contrast medium to enter the cysts. It appears that the contrast medium passes through and/or is secreted from the wall of the cyst. (author)

  6. Modified method for labeling human platelets with indium-111 oxine using albumin density-gradient separation

    International Nuclear Information System (INIS)

    Bunting, R.W.; Callahan, R.J.; Finkelstein, S.; Lees, R.S.; Strauss, H.W.

    1982-01-01

    When labeling platelets with indium-111 oxine, albumin density-gradient separation minimizes the time spent to resuspend those platelets that have been centrifuged against a hard surface. Labeling efficiency or platelet viability, as measured by platelet survival or aggregation with adenosine diphosphate, are not adversely affected

  7. Glycerol reforming and methanol synthesis for the production of renewable methanol

    NARCIS (Netherlands)

    van Bennekom, Joost Gerardus

    2013-01-01

    De productie van biodiesel is flink toegenomen in het eerste decennium van de 21ste eeuw. Bij de productie van 100 kg biodiesel komt ongeveer 10 kg aan glycerol vrij, wat heeft geleid tot een sterk gestegen glycerol aanbod. Een mogelijkheid om wat met de glycerol te doen, is het omzetten van

  8. Bio-Propane from glycerol for biogas addition

    Energy Technology Data Exchange (ETDEWEB)

    Brandin, Jan; Hulteberg, Christian; Liljegren Nilsson, Andreas (Biofuel-Solution AB, Malmoe (Sweden))

    2008-11-15

    In this report, the technical and economical feasibility to produce higher alkanes from bioglycerol has been investigated. The main purpose of producing this kind of chemicals would be to replace the fossil LPG used in upgraded biogas production. When producing biogas and exporting it to the natural gas grid, the Wobbe index and heating value does not match the existing natural gas. Therefore, the upgraded biogas that is put into the natural gas grid in Sweden today contains 8-10 vol-% of LPG. The experimental work performed in association to this report has shown that it is possible to produce propane from glycerol. However, the production of ethane from glycerol may be even more advantageous. The experimental work has included developing and testing catalysts for several intermediate reactions. The work was performed using different micro-scale reactors with a liquid feed rate of 18 g/h. The first reaction, independent on if propane or ethane is to be produced, is dehydration of glycerol to acrolein. This was showed during 60 h on an acidic catalyst with a yield of 90%. The production of propanol, the second intermediate to producing propane, was shown as well. Propanol was produced both using acrolein as the starting material as well as glycerol (combining the first and second step) with yields of 70-80% in the first case and 65-70% in the second case. The propanol produced was investigated for its dehydration to propene, with a yield of 70-75%. By using a proprietary, purposely developed catalyst the propene was hydrogenated to propane, with a yield of 85% from propanol. The formation of propane from glycerol was finally investigated, with an overall yield of 55%. The second part of the experimental work performed investigated the possibilities of decarbonylating acrolein to form ethane. This was made possible by the development of a proprietary catalyst which combines decarbonylation and water-gas shift functionality. By combining these two functionalities, no

  9. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-12-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. W-Cu gradient materials - processing, properties and application possibilities

    International Nuclear Information System (INIS)

    Joensson, M.; Kieback, B.

    2001-01-01

    The functionally graded material (FGM) of tungsten with its high thermal and mechanical resistance and copper with its very high thermal and electrical conductivity and ductility expands the application fields of this material in the direction of extreme demands such as plasma facing components in fusion reactors. The PM-production of W-Cu-gradients recommends itself because of the possibility to form the gradient by the mixing of powder components, but is also demanding because of the differences in their sintering behavior and thermal expansions. W-Gu-gradient samples of different concentration profiles have been formed in layers by powder stacking in a die and continuously by centrifugal powder forming. The consolidation routes were determined by the concentration areas of the gradients and encompass liquid phase sintering, pressure assisted solid phase sintering and the application of coated Tungsten powder and sintering additives. The microstructure and the concentration profiles of the samples have been investigated metaliographically and by EDX. The influence of processing and the gradient profile of the properties have been characterized by TRS and the investigation of residual thermal stresses by neutron diffraction. (author)

  11. CFD simulation of centrifugal cells washers.

    Science.gov (United States)

    Kellet, Beth E; Binbing, Han; Dandy, David S; Wickramasinghe, S Ranil

    2004-01-01

    The feasibility of using computational fluid dynamics to guide the design of better centrifuges for processing shed blood is explored here. The velocity field and the rate of protein removal from the shed blood have been studied. The results indicate that computational fluid dynamics could help screen preliminary centrifuge bowl designs thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Though the focus of this work is on washing shed blood the methods developed here are applicable to the design of centrifuge bowls for other blood processing applications.

  12. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke

    2018-05-01

    Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.

  13. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1

    Directory of Open Access Journals (Sweden)

    Sheril Norliana Suhaimi

    2012-06-01

    Full Text Available Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

  14. Effective Removal of Heavy Metal Ions Using Glycerol and Starch Xanthate

    Directory of Open Access Journals (Sweden)

    Aliyu Mohammed

    2017-09-01

    Full Text Available Glycerol and insoluble starch xanthates were synthesised and effectively used in the removal of Pb, Cd and Cu from aqueous solutions. The insoluble metal complex formed between the sulphur atoms in the xanthates and the heavy metals were easily separated. Lower dosage of glycerol xanthate was required in each case, with the optimum molar ratio (M2+/GX of 2. Moreover, the use of glycerol xanthate required no pH adjustments to give a 100 % heavy metal removal within the range of the detection limit. As for the ISX, there was a remarkable metal scavenging activity when the ISX contained high amount of Sulphur per molecule (10.12% S and when the pH was adjusted to 6. Butyl xanthate was also synthesised to make a good comparison with the glycerol and insoluble starch xanthate. The xanthates from these two sustainable materials (Starch and glycerol are proven to be more effective in metal scavenging activity. FTIR and CHNS elemental analyses were used to prove the evidence of xanthation, in addition, 13C NMR was used to characterise the glycerol xanthate.

  15. Vanadium-Catalyzed Deoxydehydration of Glycerol Without an External Reductant

    DEFF Research Database (Denmark)

    Petersen, Allan Robertson; Nielsen, Lasse Bo; Dethlefsen, Johannes Rytter

    2018-01-01

    A vanadium‐catalysed deoxydehydration (DODH) of neat glycerol has been developed. Cheap and readily available ammonium metavanadate (NH4VO3) affords higher yields of allyl alcohol than the well‐established catalyst methyltrioxorhenium. A study in which deuterium‐labelled glycerol was used...

  16. Progress in ultra-centrifuge enrichment technology

    International Nuclear Information System (INIS)

    Paul Dawson

    2006-01-01

    Urenco have undertaken a continuous development programme in centrifuge technology for over 35 years. This has seen development from sub-critical machines in the mid 1970's through to the company's world leading TC12 supercritical centrifuge, which has been deployed on a large-scale basis over the last decade. The latest centrifuge to emerge from this programme is Urenco's sixth generation centrifuge, the TC21, which will be commercially deployed from mid-2007 onwards. In recent times Urenco has vested its centrifuge technology in Enrichment Technology Company (ETC) as a vehicle to enable the use of this advanced technology by other operators for commercial purposes. This paper reviews why Urenco and ETC believe this technology represents the best choice for creating new global commercial enrichment capacity and its future development prospects. (author)

  17. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    KAUST Repository

    Selembo, Priscilla A.

    2009-12-15

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g-COD) and 0.69 mol-PD/mol-glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol-H2/mol-glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol-H 2/mol-glycerol (43 mL H2/g-COD) and 0.59 mol-PD/mol-glycerol. These are the highest yields yet reported for both hydrogen and 1,3-propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3-propanediol for maximum utilization of resources and minimization of waste. © 2009 Wiley Periodicals, Inc.

  18. Empirical Design Considerations for Industrial Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still very important. The impeller is the key part of the centrifugal stage. Designing a highly efficiency impeller with a wide operation range can ensure overall stage design success. This paper provides some empirical information for designing industrial centrifugal compressors with a focus on the impeller. A ported shroud compressor basic design guideline is also discussed for improving the compressor range.

  19. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  20. Centrifuge Health Monitoring of the 50gTon beam centrifuge at the University of Sheffield

    OpenAIRE

    Cox, C.M.; Black, J.A.; Hakhamanshi, M.; Baker, N.

    2016-01-01

    In order to fully understand scientific test data it is crucial that we first understand the back-ground centrifuge operational environment and its variation with time and centrifugal acceleration. For exam-ple, changes in ambient air temperature or relative humidity in the centrifuge chamber during operation can have a significant impact on the evaporation levels of water from the surface of a clay model. It is vital to un-derstand these temporal changes in order to mitigate drying out of th...

  1. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  2. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

    OpenAIRE

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase...

  3. Effects of centrifugal modification of magnetohydrodynamic equilibrium on resistive wall mode stability

    International Nuclear Information System (INIS)

    Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.

    2014-01-01

    Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman–Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M 2  = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects. (paper)

  4. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    Science.gov (United States)

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-04

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation.

  5. The Advanced Gas Centrifuge program

    International Nuclear Information System (INIS)

    Riepe, R.

    1984-01-01

    Although the gas centrifuge process for uranium enrichment is often referred to as a ''new technology,'' it has been under development for approximately 25 years to bring it to its current state of deployment. Centrifuges are now being installed in a new gas centrifuge enrichment plant (GCEP) at Portsmouth, Ohio. The objective of this new plant was to provide additional U.S. uranium enrichment capacity at a production cost comparable to the U.S. diffusion process but requiring much less power per separative work unit (SWU) produced. The current, commercial scale centrifuge technology being installed meets that objective. The objective for new U.S. enrichment capacity has changed. The objective is not to provide more SWUs but to provide cheaper SWUs. The objective is to make the U.S. uranium enrichment enterprise competitive on the international market. Where the U.S. at one time supplied virtually all of the free world SWU demand, the U.S. market share has now dropped to approximately 35% of the foreign free world market. The Advanced Gas Centrifuge (AGC) program provides an avenue for making the U.S. the economically attractive, reliable enrichment supplier

  6. Influence of lake water pH and alkalinity on the distribution of coreand intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes

    NARCIS (Netherlands)

    Schoon, P.L.; de Kluijver, A.; Middelburg, J.J.; Downing, J.A.; Sinninghe Damsté, J.S.; Schouten, S.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their

  7. Enhancement of glycerol production by zygosaccharomyces ruxii using strawberry wastes

    International Nuclear Information System (INIS)

    Meleigy, S.A; Taha, S.M.A.

    2010-01-01

    Glycerol is important industrial product that can be produced using osmophilic yeasts. In this study a local isolate of osmophilic yeast, zygosaccharomyces ruxii, was used for glycerol production from strawberry waste. The effects of some important parameters including glucose and urea concentrations, incubation temperature, initial ph and gamma irradiation were investigated. The optimum conditions for maximum glycerol production (126.8 g/l)by z. ruxii were occurred at 31 degree C and initial ph 5 in the presence of 250 g/l glucose and 3 g/l urea in the production medium . Under these optimizing fermentation parameters, enhancement of glycerol production (130 g/l) were recorded when the inoculum of z. ruxii was exposed to 0.25 kGy. also, the present results showed reduction in BOD 5 levels of fermented strawberry waste.

  8. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    Science.gov (United States)

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  9. Proliferative and phenotypical characteristics of human adipose tissue-derived stem cells: comparison of Ficoll gradient centrifugation and red blood cell lysis buffer treatment purification methods.

    Science.gov (United States)

    Najar, Mehdi; Rodrigues, Robim M; Buyl, Karolien; Branson, Steven; Vanhaecke, Tamara; Lagneaux, Laurence; Rogiers, Vera; De Kock, Joery

    2014-09-01

    Adult human subcutaneous adipose tissue harbors a multipotent stem cell population, the so-called human adipose tissue-derived mesenchymal stromal cells (AT-MSCs). These cells are able to differentiate in vitro into various cell types and possess immunomodulatory features. Yet procedures to obtain AT-MSCs can vary significantly. The two most extensively used AT-MSC purification techniques are (i) density gradient centrifugation using Ficoll and (ii) red blood cell (RBC) lysis buffer treatment of the stromal vascular fraction. In the context of potential clinical cell therapy, the stem cell yield after purification and upon consecutive passages, as well as the purity of the obtained cell population, are of utmost importance. We investigated the expansion capacity and purity of AT-MSCs purified by both procedures immediately after isolation and upon consecutive passages. We also investigated possible purification-dependent differences in their expression of immune-inhibitory factors and cell adhesion molecules. We found that RBC lysis buffer treatment is a more robust and easier method to purify AT-MSCs than density gradient fractionation. However, the resulting AT-MSC-RBC population contains a significantly higher number of CD34(+) cells, particularly during the first passages after plating. From passage 4 onward, no significant differences could be observed between both populations with respect to the immunophenotype, expansion capacity and expression of immune inhibitory factors and cell adhesion molecules. Our data show that RBC lysis buffer treatment may be a good alternative to density fractionation, providing a faster, more robust and easier method to purify AT-MSCs with biologically preserved characteristics. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Valve for gas centrifuges

    Science.gov (United States)

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  11. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity.

    Directory of Open Access Journals (Sweden)

    Laura Jeacock

    2017-03-01

    Full Text Available Aquaglyceroporins (AQPs transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM, octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.

  12. The fate of 14C-glycerol in the rice stem borer, Chilo suppressalis Walker (Lepidoptera : Pyralidae)

    International Nuclear Information System (INIS)

    Tsumuki, Hisaaki; Kanehisa, Katsuo

    1981-01-01

    The interconversion between glycogen and glycerol was examined during diapausing and post-diapausing stages by injecting 14 C-glycerol. Radioactive glycerol injected was rapidly incorporated into glycogen in diapausing larvae at 25 0 C even during increase of glycerol, showing that the interconversion between glycogen and glycerol may easily occur on warmer days in winter. However, this interconversion proceeded in the direction of glycerol synthesis at such low temperature as 4 0 C. The isotope injected was incorporated into various tissues to varying degrees, especially it was found predominantly in fat body glycogen. The degradation rate of 14 C-glycerol in diapausing larvae was lower than in post-diapausing larvae. On the other hand, in non-diapausing larvae which were shown to contain no glycerol, 14 C-glycerol was rapidly degraded in comparison with hibernating larvae. A cause of no glycerol accumulation in non-diapausing larvae may be attributed to such high activity of glycerol degradation. (author)

  13. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    Science.gov (United States)

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Centrifuge facilities at Technical University of Denmark

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane; Krogsbøll, Anette Susanne; Hededal, Ole

    2008-01-01

    The geotechnical group at the Danish Technical University (DTU) operates a geotechnical beam centrifuge. The centrifuge was build in 1976 and has been upgraded through the years, latest with onboard data and control systems. The centrifuge concept involves an increased gravity field in which...... the physical model is placed and tested. The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 75-85 in the tests which equals a soil volume in prototype scale of ø40m and a depth of 36 m. The centrifuge facilities at DTU have through the years been used for testing various...... geotechnical issues, such as suction anchors, tension piles in clay, active earth pressures on sheet piles and group effects for lateral loaded piles. The paper describes physical modelling in general, the centrifuge, present setups and shows samples of obtained results....

  15. Conformational Preferences of Glycerol in the Gas Phase and in Water

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Keun Hong [Korea Military Academy, Seoul (Korea, Republic of); Byun, Byung Jin; Kang, Young Kee [Chungbuk National University, Cheongju (Korea, Republic of)

    2012-03-15

    The conformational study of glycerol has been carried out using the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water in order to understand its conformational preferences and solvation effects. Most of the preferred conformers of glycerol have two C{sub 5} hydrogen bonds in the gas phase, as found by the analysis of calorimetric data. It has been known that the solvation drove the hydrogen bonds of glycerol to be weaker and its potential surface to be fatter and that glycerol exists as an ensemble of many feasible local minima in water. The calculated populations of glycerol in the gas phase and in water are consistent with the observed values, which are better than the previously calculated ones at the G2(MP2), CBS-QB3, and SM5.42 HF/6-31G(d) levels of theory

  16. Analysis of Vaneless Diffuser Stall Instability in a Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Elias Sundström

    2017-11-01

    Full Text Available Numerical simulations based on the large eddy simulation approach were conducted with the aim to explore vaneless diffuser rotating stall instability in a centrifugal compressor. The effect of the impeller blade passage was included as an inlet boundary condition with sufficiently low flow angle relative to the tangent to provoke the instability and cause circulation in the diffuser core flow. Flow quantities, velocity and pressure, were extracted to accumulate statistics for calculating mean velocity and mean Reynolds stresses in the wall-to-wall direction. The paper focuses on the assessment of the complex response of the system to the velocity perturbations imposed, the resulting pressure gradient and flow curvature effects.

  17. Dietary Tools To Modulate Glycogen Storage in Gilthead Seabream Muscle: Glycerol Supplementation

    DEFF Research Database (Denmark)

    Silva, Tomé S.; Matos, Elisabete; Cordeiro, Odete D.

    2012-01-01

    The quality and shelf life of fish meat products depend on the skeletal muscle’s energetic state at slaughter, as meat decomposition processes can be exacerbated by energy depletion. In this study, we tested dietary glycerol as a way of replenishing muscle glycogen reserves of farmed gilthead......, and organoleptic properties (aroma and color). Proteomic analysis showed a low impact of glycerol-supplementation on muscle metabolism, with most changes probably reflecting increased stress coping capacity in glycerol-fed fish. This suggests inclusion of crude glycerol in gilthead seabream diets (particularly...

  18. Particle attraction effects on the centrifugal casting and extrusion of alumina

    International Nuclear Information System (INIS)

    Schilling, C.H.; Bergstroem, L.; Ker, H.L.; Aksay, I.A.

    1993-01-01

    Interparticle attraction forces were empirically related to the centrifugal casting and extrusion behavior of flocculated alumina suspensions. Attractive forces were altered by two approaches: Salt flocculation, which entails regulating the electrical double-layer thickness through electrolyte additions; and screening of van der Waals attraction by steric interactions of surface-adsorbed fatty acids. Specimens produced by both compressibility at a critical maximum density that increased with decreasing interparticle attraction. Gradients in packing density during centrifugal casting were alleviated using both methods as long as spatial variations of the effective stress were within the low-compressibility range. We hypothesized that the reduced interparticle attraction in both methods may also raise the threshold packing density at which ductile-to-brittle transitions occur during plastic shear. Specimens prepared with oleic acid adlayers were highly plastic and easily extrudable at solids contents of up to 59 vol%, although salt-flocculated samples at 55 vol% density extruded at creeping flow rates that were insensitive to the applied pressure. Results suggested that particle rearrangement during shear, is a rate-limiting process, with an average relaxation time that is lowered by reducing interparticle attraction

  19. Glycerol, trehalose and glycerol–trehalose mixture effects on thermal stabilization of OCT

    Energy Technology Data Exchange (ETDEWEB)

    Barreca, D., E-mail: dbarreca@unime.it [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Laganà, G. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Magazù, S.; Migliardo, F. [Dipartimento di Fisica, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Bellocco, E. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Trehalose influences both enzymatic activity and conformational changes of enzyme. • The results obtained by INS and QENS show a switching-off of the fast dynamics at very low glycerol content. • The diffusive dynamics is slowing down at very low glycerol concentration. • The mixtures of trehalose/glycerol lose the thermal stabilizing effects of pure compounds. - Abstract: The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.

  20. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  1. Influence of crude glycerol on the biomass and lipid content of microalgae

    International Nuclear Information System (INIS)

    Choi, Hee-Jeong; Yu, Sung-Whan

    2015-01-01

    The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production. Keywords: biomass; glycerol; microalgae; mixotrophic; oil content

  2. Some engineering considerations when designing centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Edwards, T.T.

    1982-01-01

    A review is given of the three main areas where flexibility is needed in the design of centrifuge enrichment plants. These are: the need to cope with market requirements, the limitations imposed by currently available centrifuges and ever advancing centrifuge technology. Details of BNFL's experience with centrifuge enrichment at Capenhurst are presented. (U.K.)

  3. A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: Effect of glycerol on molecular organization of H2O

    DEFF Research Database (Denmark)

    Parsons, M.T.; Westh, Peter; Davies, J.V.

    2001-01-01

    The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol-glycerol-H2O at 25degreesC. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization...... probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy...

  4. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramanan, Keerthi P.; Boatman, Judy J.; Taconi, Katherine A. [Alabama Univ., Huntsville, AL (United States). Dept. of Chemical and Materials Engineering; Kurniawan, Yogi; Bothun, Geoffrey D. [Rhode Island Univ., Kingston, RI (United States). Dept. of Chemical Engineering; Scholz, Carmen [Alabama Univ., Huntsville, AL (United States). Dept. of Chemistry

    2012-02-15

    During the production of biodiesel, crude glycerol is produced as a byproduct at 10% (w/w). Clostridium pasteurianum has the inherent potential to grow on glycerol and produce 1,3-propanediol and butanol as the major products. Growth and product yields on crude glycerol were reported to be slower and lower, respectively, in comparison to the results obtained from pure glycerol. In this study, we analyzed the effect of each impurity present in the biodiesel-derived crude glycerol on the growth and metabolism of glycerol by C. pasteurianum. The crude glycerol contains methanol, salts (in the form of potassium chloride or sulfate), and fatty acids that were not transesterified. Salt and methanol were found to have no negative effects on the growth and metabolism of the bacteria on glycerol. The fatty acid with a higher degree of unsaturation, linoleic acid, was found to have strong inhibitory effect on the utilization of glycerol by the bacteria. The fatty acid with lower or no degrees of unsaturation such as stearic and oleic acid were found to be less detrimental to substrate utilization. The removal of fatty acids from crude glycerol by acid precipitation resulted in a fermentation behavior that is comparable to the one on pure glycerol. These results show that the fatty acids in the crude glycerol have a negative effect by directly affecting the utilization of glycerol as the carbon source, and hence their removal from crude glycerol is an essential step towards the utilization of crude glycerol. (orig.)

  5. SEPARATION OF X-BEARING BOVINE SPERM BY CENTRIFUGATION IN CONTINUOUS PERCOLL AND OPTIPREP DENSITY GRADIENT: EFFECT IN SPERM VIABILITY AND IN VITRO EMBRYO PRODUCTION SEPARAÇÃO DE ESPERMATOZOIDES PORTADORES DO CROMOSSOMO X BOVINO POR CENTRIFUGAÇÃO EM GRADIENTE DE DENSIDADE CONTÍNUO DE PERCOLL E OPTIPREP: EFEITO SOBRE A VIABILIDADE ESPERMÁTICA E NA PRODUÇÃO IN VITRO DE EMBRIÕES

    Directory of Open Access Journals (Sweden)

    Aline Costa Lucio

    2009-07-01

    Full Text Available

    The aim of this study was to separate X-bearing bovine sperm by continuous Percoll and OptiPrep density gradients and to validate the sexing of resultant in vitro produced embryos by Polimerase Chain Reaction (PCR. Frozen/thawed sperm was layered on density gradients which were previously prepared in polystyrene tubes, 24 h before procedures and maintained at 4 °C. The tubes were centrifuged at 500 x g for 15 min at 22 °C. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Viability and integrity of sperm were evaluated by Trypan Blue/Giemsa stain. Cleavage and blastocyst rates were determined by in vitro production of embryos and PCR was performed for identification of the embryos’ genetic sex. No damage in viability and acrossomal integrity and in cleavage and blastocyst rates was found in the Percoll and OptiPrep treatment compared to the non-centrifuged group (P>0.05. The percentage of female embryos in the Percoll and OptiPrep group was 63.0 and 47.6%, respectively. The female embryos in control group were 48.7%. A sexual deviation in the Percoll density gradient was achieved without reduction of sperm viability and in vitro production rates.

    KEY WORDS: Bovine, centrifugation, in vitro production of embryos, PCR, X-bearing sperm.

    O objetivo deste estudo foi separar espermatozoides bovinos portadores do cromossomo X pela centrifugação em gradiente de densidade contínuo de Percoll e OptiPrep, e validar a sexagem pela reação em cadeia da polimerase (PCR, dos embriões produzidos in vitro. Para a sexagem, espermatozoides descongelados foram depositados nos gradientes de densidade, previamente preparados, em tubos de poliestireno, 24 horas antes da sexagem e mantidos a 4°C. Centrifugou-se a 500 x g por quinze minutos a 22°C. Os sobrenadantes foram aspirados, e os espermatozoides recuperados do

  6. Comparison of DNA double-strand break rejoining as measured by pulsed field gel electrophoresis, neutral sucrose gradient centrifugation and non-unwinding filter elution in irradiated plateau-phase CHO cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Metzger, L.; Pantelias, G.

    1991-01-01

    The initial (up to 30 min) rate of DNA double-strand break (dsb) rejoining was measured in irradiated plateau-phase CHO cells, in a set of parallel experiments using the same cell suspension, by means of non-unwinding filter elution, neutral sucrose gradient centrifugation, and two pulsed-field gel electrophoresis assays: asymmetric field inversion gel electrophoresis (AFIGE) and clamped homogeneous electric field (CHEF) gel electrophoresis. The rate of DNA dsb rejoining was compared to the rate of rejoining of chromatin breaks measured, also in the same cell population, using the technique of premature chromosome condensation (PCC). Two radiation exposures, 25 Gy and/or 50 Gy, were used and applied to the individual parts of the experiments according to the sensitivity of the assay under investigation. The results suggest all major techniques currently used for assaying rejoining of DNA dsb give similar results, and indicate that more information is required before a direct correlation between rejoining of DNA dsb and rejoining of chromatin breaks can be established. (author)

  7. Synthesis of High-Molecular-Weight Multifunctional Glycerol Polyhydroxyurethanes PHUs

    Directory of Open Access Journals (Sweden)

    Bassam Nohra

    2016-09-01

    Full Text Available Glycerol carbonate acrylate is a 5-membered cyclic carbonate synthesized from glycerol that is used as a chemical coupling agent and has proven highly suitable for use in the synthesis of multifunctional polyhydroxyurethanes (PHUs. The multifunctionality of the structure of PHUs is determined by the density of the carbon-amine groups generated by the Aza-Michael reaction and that of the urethane groups and adjacent primary and secondary hydroxyl groups generated by aminolysis. Glycerol carbonate acrylate is polymerized with polyfunctional mono-, di-, tri, and tetra-amines, by type-AB polyaddition, either in bulk or in solution, through stepwise or one-pot reaction strategies in the absence of added catalysts. These approaches result in the generation of linear, interchain, and crosslinked structures, through the polyaddition of linear and branched amines to the ethylene and cyclic carbonate sites of glycerol carbonate acrylate. The resulting collection of organic molecules gives rise to polyethylene amino ester PHUs with a high molar mass, exceeding 20,000 g·mol−1, with uniform dispersity.

  8. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    Science.gov (United States)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  9. EFFECT OF GLYCEROL SEPARATION ON PALM OIL TRANSESTERIFICATION

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2012-12-01

    Full Text Available This research was aimed to study the effect of glycerol separation on palm oil transesterification. Objectives of this study were to suppress the use of excess methanol and shorten the processing time. This research consisted of: design-build reactor, the effect of the glycerol separation on the transesterification reaction, characterization of biodiesel, and mass balance analysis. The reactor was designed by integrating circulate stirrer pump, static mixer, and sprayer that will bring out the intense reaction in the outer tank reactor. The experiment in this research was the treatment of decreasing the quantity of methanol to 5:1 molar ratio and reducing of processing time to 20 min, which was arranged in a completely randomized factorial design. The result showed that, (i the stirring system was effectively worked outside the reactor tank, and in its reactor tank occurred glycerol separation during the process; (ii the rate of glycerol during the process followed the inverse regression equation of Ŷ = 66.44-351.17 X-1; (iii the decrease in the level of methanol to 5:1 molar ratio and the reduction of processing time to 20 min in this engineering did not influence the biodiesel yield and quality that met the SNI 04-7182-2006 standard.

  10. Influence of lake water pH and alkalinity on the distribution of core and intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes

    NARCIS (Netherlands)

    Schoon, P.L.; de Kluijver, A.; Middelburg, J.J.; Downing, J.A.; Sinninghe Damsté, J.S.; Schouten, S.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their

  11. Centrifuge treatment of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  12. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  13. Design of Structural Parameters for Centrifugal Elevator Overspeed Governors

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-01-01

    Full Text Available As an important part of overspeed and fail-safe protection for elevators, the centrifugal elevator overspeed governor is a device for limiting overspeed of elevator cars. This paper researches on the vibration of the centrifugal block, which plays a key role in the performance of this overspeed governor. By performing dynamics analysis on the centrifugal block, the differential equation on the vibration of the centrifugal block is established. Based on this, the paper performs simulation analysis on the influence of systematic parameters such as the speed of the overspeed governor sheave, the mass of centrifugal block, the turning radius of the centrifugal block, the position where the spring acts, and the stiffness of the centrifugal block spring, on the vibration of the centrifugal block, and finds out their specific influence relationship.

  14. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    International Nuclear Information System (INIS)

    Teng, Wai Keng; Ngoh, Gek Cheng; Yusoff, Rozita; Aroua, Mohamed Kheireddine

    2014-01-01

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  15. Theoretical considerations in solid bowl centrifugation

    International Nuclear Information System (INIS)

    Hamilton, R.T.

    1979-01-01

    A combination of literature survey and independent analysis determined three relationships for the prediction of the critical (or minimum recoverable) particle size in a solid bowl centrifuge. The relationships were derived based on three different theories of fluid behavior within the centrifuge; (1) laminar film flow (laminar film model), (2) plug flow (Sharples Model), and parabolic flow (modified Sharples Model). The critical particle size for the centrifuge used in Cs-PTA recovery in the CAW process predicted by the three relationships range from 0.19 to 0.34 μm (1 μm = 10 -6 m). The laminar film model gives the most conservative estimate of critical particle size (0.34 μm) and the resulting relationship is recommended for use to predict solid bowl centrifuge performance. Three correction factors are incorporated into the predictive equations to account for the effects of fluid turbulence near the centrifuge feed point, fluid lag and hindered settling. Of these factors, turbulence near the feed point (which is accounted for by using an effective centrifuge length) has the greatest impact, increasing the predicted critical particle size by 15%, while the combination of fluid lag and hindered settling factors increase the recoverable particle size by 4%. The overall effect of the correction factors is an approximately 20% decrease in centrifuge effectivity. The fraction of solids smaller than the critical size range has not been reliably determined for laboratory or plant prepared Cs-PTA. In addition, the density of Cs-PTA crystals is reported to vary from 3.2 to 12 grams per cubic centimeter

  16. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference......This study was conducted to investigate skeletal muscle fatty acid (FA) and glycerol kinetics and to determine the contribution of skeletal muscle to whole body FA and glycerol turnover during rest, 2 h of one-leg knee-extensor exercise at 65 % of maximal leg power output, and 3 h of recovery....... To this aim, the leg femoral arterial-venous difference technique was used in combination with a continuous infusion of [U-(13)C]palmitate and [(2)H(5)]glycerol in five post-absorptive healthy volunteers (22 +/- 3 years). The influence of contamination from non-skeletal muscle tissues, skin and subcutaneous...

  18. Synthesis and characterization of poly(glycerol citrate/sebacate)

    International Nuclear Information System (INIS)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Boaventura, Jaime S.; Jose, Nadia M.

    2011-01-01

    In this work were prepared and characterized the poly(glycerol citrate/sebacate) in three different ratios between acids. The polymers were prepared by a polycondensation reaction between glycerol and citric/sebacic acids and characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The results showed that the polymers are polyesters and its crystallinity, thermal and morphological properties were modified by sebacic acid adding. (author)

  19. Penggunaan H-Zeolit dan Tawas dalam Pemurnian Crude Glycerol dengan Proses Adsorpsi dan Koagulasi

    Directory of Open Access Journals (Sweden)

    Isalmi Aziz, M.T

    2017-05-01

    Full Text Available Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation process so that the adsorption of colloidal-sized compound impurities which can be separated from the glycerol. The purpose of this research is determine optimal condition of adsorption and coagulation impurity compounds of crude glycerol by using H-zeolite and  alum and  also determine quality of glycerol  was obtained. First, crude glycerol acidified by phosphoric acid 85% (pure analysis until desired pH ±2.5. It was obtained purity of glycerol 72.797%. The next process is adsorption with activated H-zeolite and it obtained purity of glycerol 77.079%. The last process in this research is adsorption and coagulation by using H-zeolite and alum. The highest purity glycerol 93.803% was obtained from condition of adsorption and coagulation for 75 minutes; alum’s concentration 80 ppm; and temperature 60 ºC. The glycerol discharged from adsorption and coagulation process by using H-zeolite and alum is qualify Indonesia National Standard number 06-1564-1995 with 3.512% water content; 2.438% ash content; 0.247% MONG content; has no sugar; 1.259 g/mL density of glycerol; 0.2356% potassium content and 0.0410% aluminium content; and brighter color.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5143

  20. The optimization of low specific speed centrifugal pump based on incomplete sensitivities

    International Nuclear Information System (INIS)

    Zhang, R H; Zheng, K; Shi, F X; Yao, L H

    2012-01-01

    In this research, the optimization method for low specific speed centrifugal pump impeller based on incomplete sensitivities was proposed. The main feature of the algorithm is that it avoids solving the flow field repeatedly in one optimization cycle in finite difference method and it avoids solving the adjoint equation in adjoint method. The blade meridional plan is considered as constant, and the blade camber line was parameterize by Taylor function. The coefficients in the Taylor function were taken as the control variable. The moment acting on the blade was considered as the objective function. With the incomplete sensitivities we can get the gradient of the objective function with respect to the control variable easily, and the blade shape can be renewed according to the inverse direction of the gradient. We will find the optimum design when the objective function is minimized. The computational cost is greatly reduced. The calculation cases show that the proposed theory and method is rotational.

  1. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa

    OpenAIRE

    Eraqi, Walaa A.; Yassin, Aymen S.; Ali, Amal E.; Amin, Magdy A.

    2016-01-01

    Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We...

  2. An experimental and kinetic modeling study of glycerol pyrolysis

    International Nuclear Information System (INIS)

    Fantozzi, F.; Frassoldati, A.; Bartocci, P.; Cinti, G.; Quagliarini, F.; Bidini, G.; Ranzi, E.M.

    2016-01-01

    Highlights: • Glycerol pyrolysis can produce about 44–48%v hydrogen at 750–800 °C. • A simplified 452 reactions kinetic model of glycerol pyrolysis has been developed. • The model has good agreement with experimental data. • Non condensable gas yields can reach 70%. - Abstract: Pyrolysis of glycerol, a by-product of the biodiesel industry, is an important potential source of hydrogen. The obtained high calorific value gas can be used either as a fuel for combined heat and power (CHP) generation or as a transportation fuel (for example hydrogen to be used in fuel cells). Optimal process conditions can improve glycerol pyrolysis by increasing gas yield and hydrogen concentration. A detailed kinetic mechanism of glycerol pyrolysis, which involves 137 species and more than 4500 reactions, was drastically simplified and reduced to a new skeletal kinetic scheme of 44 species, involved in 452 reactions. An experimental campaign with a batch pyrolysis reactor was properly designed to further validate the original and the skeletal mechanisms. The comparisons between model predictions and experimental data strongly suggest the presence of a catalytic process promoting steam reforming of methane. High pyrolysis temperatures (750–800 °C) improve process performances and non-condensable gas yields of 70%w can be achieved. Hydrogen mole fraction in pyrolysis gas is about 44–48%v. The skeletal mechanism developed can be easily used in Computational Fluid Dynamic software, reducing the simulation time.

  3. Gas dynamics in strong centrifugal fields

    OpenAIRE

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2017-01-01

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of $10^6$g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wa...

  4. Liquid centrifugation for nuclear waste partitioning

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1992-01-01

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF 2 salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the 137 Cs and 135 Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10 7 and the fraction of 137 CS in 133 Cs being as low as a few parts in 10 5 . A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components

  5. Enhancing Effect of Glycerol on the Tensile Properties of Bombyx mori Cocoon Sericin Films

    Directory of Open Access Journals (Sweden)

    Liangjun Zhu

    2011-05-01

    Full Text Available An environmental physical method described herein was developed to improve the tensile properties of Bombyx mori cocoon sericin films, by using the plasticizer of glycerol, which has a nontoxic effect compared with other chemical crosslinkers. The changes in the tensile characteristics and the structure of glycerolated (0–40 wt% of glycerol sericin films were investigated. Sericin films, both in dry and wet states, showed enhanced tensile properties, which might be regulated by the addition of different concentrations of glycerol. The introduction of glycerol results in the higher amorphous structure in sericin films as evidenced by analysis of attenuated total reflection Fourier transform infrared (ATR-FTIR spectra, thermogravimetry (TGA and differential scanning calorimetry (DSC curves. Scanning Electron Microscopy (SEM observation revealed that glycerol was homogeneously blended with sericin molecules when its content was 10 wt%, while a small amount of redundant glycerol emerged on the surface of sericin films when its content was increased to 20 wt% or higher. Our results suggest that the introduction of glycerol is a novel nontoxic strategy which can improve the mechanical features of sericin-based materials and subsequently promote the feasibility of its application in tissue engineering.

  6. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  7. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    Science.gov (United States)

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  8. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  9. Ammonia control and neurocognitive outcome among urea cycle disorder patients treated with glycerol phenylbutyrate.

    Science.gov (United States)

    Diaz, George A; Krivitzky, Lauren S; Mokhtarani, Masoud; Rhead, William; Bartley, James; Feigenbaum, Annette; Longo, Nicola; Berquist, William; Berry, Susan A; Gallagher, Renata; Lichter-Konecki, Uta; Bartholomew, Dennis; Harding, Cary O; Cederbaum, Stephen; McCandless, Shawn E; Smith, Wendy; Vockley, Gerald; Bart, Stephen A; Korson, Mark S; Kronn, David; Zori, Roberto; Merritt, J Lawrence; C S Nagamani, Sandesh; Mauney, Joseph; Lemons, Cynthia; Dickinson, Klara; Moors, Tristen L; Coakley, Dion F; Scharschmidt, Bruce F; Lee, Brendan

    2013-06-01

    Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. We report the results of a pivotal Phase 3, randomized, double-blind, crossover trial comparing ammonia control, assessed as 24-hour area under the curve (NH3 -AUC0-24hr ), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of four studies involving short- and long-term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Glycerol phenylbutyrate was noninferior to NaPBA with respect to ammonia control in the pivotal study, with mean (standard deviation, SD) NH3 -AUC0-24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing three similarly designed short-term comparisons of glycerol phenylbutyrate versus NaPBA, NH3 -AUC0-24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (P < 0.05) in the pooled analysis, as was plasma glutamine. The 24-hour ammonia profiles were consistent with the slow-release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open-label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning, and self-monitoring, was significantly improved. Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long-term glycerol phenylbutyrate treatment in pediatric UCD patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). (HEPATOLOGY 2012). Copyright © 2012 American Association for the

  10. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    Science.gov (United States)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  11. Centrifugal separator cascade connected in zigzag manner

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.

    1974-01-01

    Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)

  12. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium.

    Science.gov (United States)

    Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A

    2013-04-01

    In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  14. Theoretical prediction and validation of cell recovery rates in preparing platelet-rich plasma through a centrifugation.

    Science.gov (United States)

    Piao, Linfeng; Park, Hyungmin; Jo, Chris Hyunchul

    2017-01-01

    In the present study, we propose a theoretical framework to predict the recovery rates of platelets and white blood cells in the process of centrifugal separation of whole blood contained in a tube for the preparation of platelet-rich plasma. Compared to previous efforts to optimize or standardize the protocols of centrifugation, we try to further the physical background (i.e., based on the multiphase flow phenomena) of analysis to develop a universal approach that can be applied to widely different conditions. That is, one-dimensional quasi-linear partial differential equation to describe the centrifugal sedimentation of dispersed phase (red and white blood cells) in continuous phase (plasma) is derived based on the kinematic-wave theory. With the information of whole blood volume and tube geometry considered, it is possible to determine the positions of interfaces between supernatant/suspension and suspension/sediment, i.e., the particle concentration gradient in a tube, for a wide range of centrifugation parameters (time and acceleration). While establishing a theory to predict the recovery rates of the platelet and white blood cell from the pre-determined interface positions, we also propose a new correlation model between the recovery rates of plasma and platelets, which is found to be a function of the whole blood volume, centrifugal time and acceleration, and tube geometry. The present predictions for optimal condition show good agreements with available human clinical data, obtained from different conditions, indicating the universal applicability of our method. Furthermore, the dependence of recovery rates on centrifugal conditions reveals that there exist a different critical acceleration and time for the maximum recovery rate of platelets and white blood cells, respectively. The other parameters such as hematocrit, whole blood volume and tube geometry are also found to strongly affect the maximum recovery rates of blood cells, and finally, as a strategy

  15. Sodahvede og glycerol til malkekøer

    DEFF Research Database (Denmark)

    Hvelplund, Torben; Weisbjerg, Martin Riis

    2011-01-01

    Et fodringsforsøg på Kvægbrugets Forsøgscenter har vist, at glycerol kan anvendes som et alternativt fodermiddel til højtydende malkekøer. De anvendte mængder gav dog en lavere EKM ydelse end sodahvede, men øgede samtidigt mælkens proteinindhold.......Et fodringsforsøg på Kvægbrugets Forsøgscenter har vist, at glycerol kan anvendes som et alternativt fodermiddel til højtydende malkekøer. De anvendte mængder gav dog en lavere EKM ydelse end sodahvede, men øgede samtidigt mælkens proteinindhold....

  16. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  17. Kinetically limited differential centrifugation as an inexpensive and readily available alternative to centrifugal elutriation.

    Science.gov (United States)

    Tan, Jinwang; Lee, Byung-Doo; Polo-Parada, Luis; Sengupta, Shramik

    2012-08-01

    When separating two species with similar densities but differing sedimentation velocities (because of differences in size), centrifugal elutriation is generally the method of choice. However, a major drawback to this approach is the requirement for specialized equipment. Here, we present a new method that achieves similar separations using standard benchtop centrifuges by loading the seperands as a layer on top of a dense buffer of a specified length, and running the benchtop centrifugation process for a calculated amount of time, thereby ensuring that all faster moving species are collected at the bottom, while all slower moving species remain in the buffer. We demonstrate the use of our procedure to isolate bacteria from blood culture broth (a mixture of bacterial growth media, blood, and bacteria).

  18. Centrifuge workers study. Phase II, completion report

    International Nuclear Information System (INIS)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom

  19. Centrifuge workers study. Phase II, completion report

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  20. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L.

    Science.gov (United States)

    Li, Yinghui; Song, Na; Zhao, Chuanzhi; Li, Feng; Geng, Miaomiao; Wang, Yuhui; Liu, Wanhui; Xie, Chaojie; Sun, Qixin

    2016-01-01

    Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1-2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related ( PR ) genes ( TaPR-1, TaPR-2, TaPR-3, TaPR-4 , and TaPR-5 ), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly ( p powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality.

  1. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    International Nuclear Information System (INIS)

    Jeon, H J; Kim, D I; Kim, M J; Nguyen, X D; Park, D H; Go, J S

    2015-01-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times. (paper)

  2. Synthesis and characterization of polyesters derived from glycerol and phthalic acid

    Directory of Open Access Journals (Sweden)

    Danilo Hansen Guimarães

    2007-09-01

    Full Text Available The production of polyester via polycondensation between glycerol and phthalic acid using dibutyltin dilaurate is reported. Three glycerol:phthalic acid molar ratio used for the bulk polymerization were: 2:2; 2:3 and 2:4. FTIR confirmed the esterification of glycerol by the acid for all the polymers. DSC indicated no crystallinity, although the XRD plots indicate a very incipient crystallinity for the polymers containing higher amounts of phthalic anhydride. Scanning electron microscopy results indicates high homogeneity for all the polymers prepared.

  3. Waves in Strong Centrifugal Field

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  4. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  5. A population study of urine glycerol concentrations in elite athletes competing in North America.

    Science.gov (United States)

    Kelly, Brian N; Madsen, Myke; Sharpe, Ken; Nair, Vinod; Eichner, Daniel

    2013-01-01

    Glycerol is an endogenous substance that is on the World Anti-Doping Agency's list of prohibited threshold substances due to its potential use as a plasma volume expansion agent. The WADA has set the threshold for urine glycerol, including measurement uncertainty, at 1.3 mg/mL. Glycerol in circulation largely comes from metabolism of triglycerides in order to meet energy requirements and when the renal threshold is eclipsed, glycerol is excreted into urine. In part due to ethnic differences in postprandial triglyceride concentrations, we investigated urine glycerol concentrations in a population of elite athletes competing in North America and compared the results to those of athletes competing in Europe. 959 urine samples from elite athletes competing in North America collected for anti-doping purposes were analyzed for urine glycerol concentrations by a gas chromatography mass-spectrometry method. Samples were divided into groups according to: Timing (in- or out-of-competition), Class (strength, game, or endurance sports) and Gender. 333 (34.7%) samples had undetectable amounts of glycerol (sport classes. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Potential of Diverse Prokaryotic Organisms for Glycerol-based Polyhydroxyalkanoate Production

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-06-01

    Full Text Available The potential and performance of various Gram-negative, Gram-positive and archaeal wild type microorganisms, and bacterial mixed cultures, as well as the application of genetically engineered strains as whole-cell biocatalysts for glycerol-based polyhydroxyalkanoate production are analyzed and assessed. This encompasses the comparison of growth and polyhydroxyalkanoate accumulation kinetics, thermo-mechanical properties of isolated glycerol-based polyhydroxyalkanoate of different composition on the monomeric level, and the presentation of mathematical models developed to describe glycerol-based polyhydroxyalkanoate production processes. For all these aspects, the article provides a detailed compilation of the contemporary state of knowledge, and gives an outlook to expected future developments.

  7. Glycerol as source of energy in broiler chicken fattening

    Directory of Open Access Journals (Sweden)

    Leo Kroupa

    2011-01-01

    Full Text Available The objective of this study was to verify the possibility of replacing soybean oil in a diet with glycerol, and investigate the effect of glycerol on performance indicators and health in broiler chickens. The experiment was performed on 122 one-day-old chickens that were divided based on sex into two control groups (30 females and 31 males and two experimental groups (30 females and 31 males. Half (50% of the soybean oil in diets used in the experimental groups was replaced with glycerol at a ratio of 1:2. On 15, 32 and 38 day of age chickens of both sexes in the experimental group that were fed with diets containing glycerol showed significantly higher (p ≤ 0.01 mean body weight compared to the control group. At the end of the experiment, the mean weight of chickens in the control group was 2.078 kg, whereas the mean weight of chickens in the experimental group was 2.341 kg. In females, the overall consumption of diets within 38 days of fattening was 3.588 kg in the control group and 4.011 kg in the experimental group, in males, it was 3.915 kg in the control group and 4.366 kg in the experimental group, i.e. it was higher in experimental chickens. Feed conversion in chickens in experimental groups was better, being 1.84 kg in the control group and 1.81 kg in the experimental group in females, and 1.73 kg in the control group and 1.72 kg in the experimental group in males. It follows from our results that the optimum amount of glycerol in feed for poultry is 5%.This study presents an original solution to optimize feed formula by replacing plant oil with glycerol. The results of the study can improve production indicators and economy in broiler fattening.

  8. NASA low speed centrifugal compressor

    Science.gov (United States)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  9. Sperm quality after swim up and density gradient centrifugation sperm preparation with supplementation of alpha lipoic acid (ALA): A preliminary study

    Science.gov (United States)

    Lestari, Silvia W.; Lestari, Sarah H.; Pujianto, Dwi A.

    2018-02-01

    Intra uterine insemination (IUI) as one of the treatment for infertility, persists low success rate. A factor that contributes to the unsuccessful of IUI is sperm preparation, performed through Swim-up (SU) and Density Gradient Centrifugation (DGC) methods. Furthermore, studies have shown that Alpha Lipoic Acid (ALA) is a potent antioxidant that could enhance the sperm motility and protect the DNA integrity of the sperm [1]. This study is aimed to re-evaluate the efficiency of the DGC and SU methods in selecting sperm before being transferred for IUI by the supplementation of ALA based on the sperm DNA integrity. Semen samples were obtained from 13 men from partners of women who are infertile (normozoospermia) and underwent IUI. Semen analysis based on the guideline of World Health Organization (WHO) 2010 was performed to measure the sperm motility and velocity, before and after sperm preparation. Then, samples were incubated with Alpha Lipoic Acid (ALA) in 0.625 mg (ALA 1), 1.25 mg (ALA 2) and 2.5 mg (ALA 3). The Sperm Chromatin Dispersion (SCD) test was performed to evaluate the sperm DNA Fragmentation Index (DFI). The percentage of motile sperm was higher in prepared sperm (post-DGC and post-SU) than in whole semen. Furthermore, the percentage of motile sperm was higher in post-DGC compared to post-SU. The level of DFI after the supplementation of ALA was decreased in prepared sperm compared to the whole semen. ALA was proved capable to select the better sperm quality with decreased sperm DNA fragmentation of prepared sperm in the all of DFI category.

  10. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  11. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis!. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighbourhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988), or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spin. (author). 23 refs, 3 figs

  12. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighborhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988) or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spins. (author). 31 refs, 3 figs

  13. Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.

    Science.gov (United States)

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2008-02-25

    The construction and performance of integrated amperometric biosensors for the determination of glycerol are reported. Two different biosensor configurations have been evaluated: one based on the glycerol dehydrogenase/diaphorase (GDH/DP) bienzyme system, and another using glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP). Both enzyme systems were immobilized together with the mediator tetrathiafulvalene (TTF) on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +150mV (vs. Ag/AgCl), and the reduction of TTF(+) at 0mV were used for the monitoring of the enzyme reactions for the bienzyme and trienzyme configurations, respectively. Experimental variables concerning both the biosensors composition and the working conditions were optimized for each configuration. A good repeatability of the measurements with no need of cleaning or pretreatment of the biosensors was obtained in both cases. After 51 days of use, the GDH/DP biosensor still exhibited 87% of the original sensitivity, while the GK/GPOx/HRP biosensor yielded a 46% of the original response after 8 days. Calibration graphs for glycerol with linear ranges of 1.0x10(-6) to 2.0x10(-5) or 1.0x10(-6) to 1.0x10(-5)M glycerol and sensitivities of 1214+/-21 or 1460+/-34microAM(-1) were obtained with GDH/DP and GK/GPOx/HRP biosensors, respectively. The calculated detection limits were 4.0x10(-7) and 3.1x10(-7)M, respectively. The biosensors exhibited a great sensitivity with no significant interferences in the analysis of wines. The biosensors were applied to the determination of glycerol in 12 different wines and the results advantageously compared with those provided by a commercial enzyme kit.

  14. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  15. Centrifuge Facility for the International Space Station Alpha

    Science.gov (United States)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  16. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  17. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  18. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    KAUST Repository

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g

  19. Performance prediction of industrial centrifuges using scale-down models.

    Science.gov (United States)

    Boychyn, M; Yim, S S S; Bulmer, M; More, J; Bracewell, D G; Hoare, M

    2004-12-01

    Computational fluid dynamics was used to model the high flow forces found in the feed zone of a multichamber-bowl centrifuge and reproduce these in a small, high-speed rotating disc device. Linking the device to scale-down centrifugation, permitted good estimation of the performance of various continuous-flow centrifuges (disc stack, multichamber bowl, CARR Powerfuge) for shear-sensitive protein precipitates. Critically, the ultra scale-down centrifugation process proved to be a much more accurate predictor of production multichamber-bowl performance than was the pilot centrifuge.

  20. Cardiovascular Responses of Snakes to Gravitational Gradients

    Science.gov (United States)

    Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.

  1. Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte

    International Nuclear Information System (INIS)

    Nascimento, Ana P.; Linares, Jose J.

    2014-01-01

    This paper studies the influence of the operating variables (glycerol concentration, temperature and feed rate) for a direct glycerol fuel cell fed with glycerol using polybenzimidazole (PBI) impregnated with KOH as electrolyte and Pt/C as catalyst. Temperature displays a beneficial effect up to 75 °C due to the enhanced conductivity and kinetics of the electrochemical reactions. The optimum cell feed corresponds to 1 mol L -1 glycerol and 4 mol L -1 KOH, supplying sufficient quantities of fuel and electrolyte without massive crossover nor mass transfer limitations. The feed rate increases the performance up to a limit of 2 mL min -1 , high enough to guarantee the access of the glycerol and the exit of the products. Finally, the use of binary catalysts (PtRu/C and Pt 3 Sn/C) is beneficial for increasing the cell performance. (author)

  2. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    International Nuclear Information System (INIS)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  3. Headlines... Areva on the way toward centrifugation

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The French industrial group Areva, that gathers Cogema and Framatome-ANP, has entered into a partnership with the British nuclear consortium Urenco for creating ETC (enrichment technology company) in order to replace its uranium enrichment facility (Georges-Besse-I) that is planned to close in 2012 by a new one (George-Besse-II) that will enter into service as early as 2007. The new facility will be based on the centrifugation technique developed by Urenco, this technique will cut the consumption of electricity by 3 in comparison with the gaseous diffusion technique used in the Georges-Besse-I facility. The other asset of the centrifugation technique is that the facility can grow with the number of centrifuges that are set. In 2007 only 7% of the total number of centrifuges will be installed, which will sufficient to satisfy the demand for enriched uranium. The full size of the facility will be reached in 2016 through gradual steps of 10% more centrifuges set every year. (A.C.)

  4. Modifying the properties of whey protein isolate edible film by incorporating palm oil and glycerol

    Directory of Open Access Journals (Sweden)

    Vachiraya Liaotrakoon

    2018-02-01

    Full Text Available This study aimed to improve the properties of whey protein isolate (WPI films by incorporating palm oil (6, 7, and 8% w/w and glycerol (40, 50 and 60% w/w. The lightness of the films increased as glycerol levels increased, but the redness increased with the increased amount of oil content. Increasing the amounts of palm oil and glycerol improved flexibility (P<0.05, but reduced the strength of the film (P<0.05. Films with higher levels of palm oil and lower amounts of glycerol were less permeable to water vapor and oxygen, but more thermally stable. The size of particles and air bubbles in the films reduced with increased palm oil content, regardless of glycerol level. Among all formulae, the film prepared with 8% palm oil and 40% glycerol showed the best overall results. Modifying WPI films with palm oil and glycerol offers a simple technique for producing packaging with better environmental barrier properties.

  5. Toxicity of palmitoyl glycerol to mice: depression of thyroid function

    International Nuclear Information System (INIS)

    Trumbo, P.R.; Meuten, D.J.; King, M.W.; Tove, S.B.

    1987-01-01

    Mice given propylthiouracil, a thyroid inhibitor, and fed a diet containing a nontoxic level of rac-1(3)-palmitoyl glycerol showed the hypothermia and mortality expected for a toxic dose, but did not show these signs when linoleate or oleate was added to the diet. Loss of radioiodine from the whole animal and thyroid gland was slower when mice were fed the toxic palmitoyl glycerol diet than when fed the same diet containing 4% safflower oil. However, mice fed the two diets did not differ in the extent of the incorporation of radioiodine, and essentially all was bound to protein in each case. Follicular thyroid cells from mice fed the potentially toxic diet that contained unsaturated fat were normal in appearance. Conversely, cells from mice fed the toxic diet were smaller and more densely stained, showing evidence of glycoprotein inside the cell. These findings show that the thyroid gland is affected by the palmitoyl glycerol diet. However, the thyroid is not the only organ affected, because giving either thyroxine or triiodothyronine had no effect on the toxicity of palmitoyl glycerol

  6. Simulation of ultra-long term behavior in HLW near-field by centrifugal model test. Part 1. Development of centrifugal equipment and centrifuge model test method

    International Nuclear Information System (INIS)

    Nishimoto, Soshi; Okada, Tetsuji; Sawada, Masataka

    2011-01-01

    The objective of this paper is to develop a centrifugal equipment which can continuously be run for a long time and a model test method in order to evaluate a long term behavior which is a coupled thermo-hydro-mechanical processes in the high level wastes geological disposal repository and the neighborhood (called 'near-field'). The centrifugal equipment of CRIEPI, 'CENTURY5000-THM', developed in the present study is able to run continuously up to six months. Therefore, a long term behavior in the near-field can be simulated in a short term, for instance, the behavior for 5000 equivalent years can be simulated in six months by centrifugalizing 100 G using a 1/100 size model. We carried out a test using a nylon specimen in a centrifugal force field of 30 G and confirmed the operations of CENTURY5000-THM, control and measurement for 11 days. As the results, it was able to control the stress in the pressure vessel and measure the values of strain, temperature and pressure. And, as a result of scanning the small model of near-field including the metal overpack, bentonite buffer and rock by a medical X-rays CT scanner, the internal structure of the model was able to be evaluated when the metal artifact was reduced. From these results, the evaluation for a long term behavior of a disposal repository by the method of centrifugal model test became possible. (author)

  7. Effect of laser peening with glycerol as plasma confinement layer

    Science.gov (United States)

    Tsuyama, Miho; Ehara, Naoya; Yamashita, Kazuma; Heya, Manabu; Nakano, Hitoshi

    2018-03-01

    The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.

  8. Continuous production of glycerol by catalytic high pressure hydrogenolysis of sucrose

    NARCIS (Netherlands)

    van Ling, Gerrit; Driessen, Alfons J.; Piet, Arie C.; Vlugter, Jozef C.

    1970-01-01

    Several continuous reactor systems have been discussed for the catalytic high pressure hydrogenolysis of sucrose to glycerol. Theoretically and actually, continuous reactors lead to lower glycerol yields than in a batch process. Two continuous stirred tank reactors in cascade constitute a reasonable

  9. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  10. Synthesis of high purity monoglycerides from crude glycerol and palm stearin

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh

    2008-07-01

    Full Text Available The optimum conditions for the glycerolysis of palm stearin and crude glycerol derived from biodiesel process werefound to be a reaction temperature of 200oC with a molar ratio of crude glycerol to palm stearin of 2.5:1, and a reaction timeof 20 minutes. The yield and purity of monoglycerides obtained under these conditions was satisfactory as compared withthe glycerolysis of pure glycerol. To increase the purity of monoglycerides a two-step process, removal of residual glyceroland crystallization, was proposed instead of either vacuum or molecular distillation. Residual glycerol was removed byadding hydrochloric acid followed by washing with hot water. Optimum conditions for crystallization were achieved byusing isooctane as a solvent and a turbine impeller speed of 200 rpm at a crystallization temperature of 35oC. A purity notexceeding 99 percent of monoglycerides was obtained with monopalmitin as the major product.

  11. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol.

    Science.gov (United States)

    Santana, Renata Ferreira; Bonomo, Renata Cristina Ferreira; Gandolfi, Olga Reinert Ramos; Rodrigues, Luciano Brito; Santos, Leandro Soares; Dos Santos Pires, Ana Clarissa; de Oliveira, Cristiane Patrícia; da Costa Ilhéu Fontan, Rafael; Veloso, Cristiane Martins

    2018-01-01

    Biodegradable films based on starches from different botanical sources exhibited physicochemical and functional properties which were related with the starch characteristics. However, had inadequate mechanical properties and were hard and brittle. In this research, jackfruit seed starch plasticized with glycerol were developed and characterized. The starch and glycerol concentrations ranged from 2 to 6% w/w and 20 to 60 g/100 g starch, respectively. Bioplastics were obtained by the casting method and characterized in terms of color, mechanical properties, solubility, water vapor permeability ( WVP ), morphology and free energy of the hydrophobic interaction. Electronic micrographics showed the presence of some intact starch granules. The bioplastics were hydrophilic and those of 6% starch and 40% glycerol were the most hydrophilic ([Formula: see text] = 41.35 mJ m -1 ). The solubility of the films presented a direct relationship with the starch concentration ranging from 16.42 to 23.26%. Increased opacity and color difference were observed with increasing starch concentration. The WVP ranged from 1.374 × 10 -3 to 3.07 × 10 -4  g m/day m 2 which was positively related with the concentration of starch and glycerol. Tensile strength, percent elongation and Young's Modulus indicated that the jackfruit starch and glycerol provided a film with good mechanical properties. The results replaced that jackfruit starch can be used to develop films, with low opacity, moderate WVP and relatively high mechanical stability, by using glycerol in the gelatinized starch dispersions.

  12. Molecular size estimation of plasma membrane β-glucan synthase from red beet root

    International Nuclear Information System (INIS)

    Sloan, M.E.; Eiberger, L.L.; Wasserman, B.P.

    1986-01-01

    Cellulose and cell wall β-D-glucans in higher plants are thought to be synthesized by the plasma membrane enzyme, β-glucan synthase. This enzyme has never been purified to homogeneity, hence its subunit composition is unknown. Partial purification of red beet root glucan synthase by glycerol density gradient centrifugation followed by SDS-PAGE yielded a highly enriched subunit of 68 kDa. Radiation inactivation of plasma membranes gave a molecular size the 450 kDa for the holoenzyme complex. This suggests that glucan synthase consists of 6 to 7 subunits and confirms electron microscope studies showing that glucan synthases exist as multi-subunit complexes embedded within the membrane

  13. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Science.gov (United States)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  14. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2009-07-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation, at relatively high rates of 2.0 ± 0.4 m3/m3 d (Eap = 0.9 V). Under the same conditions, hydrogen was produced from glucose at a yield of 7.2 mol-H2/mol and a rate of 1.9 ± 0.3 m3/m3 d. Glycerol was completely removed within 6 h, with 56% of the electrons in intermediates (primarily 1,3-propanediol), with the balance converted to current, intracellular storage products or biomass. Glucose was removed within 5 h, but intermediates (mainly propionate) accounted for only 19% of the electrons. Hydrogen was also produced using the glycerol byproduct of biodiesel fuel production at a rate of 0.41 ± 0.1 m3/m3 d. These results demonstrate that electrohydrogenesis is an effective method for producing hydrogen from either pure glycerol or glycerol byproducts of biodiesel fuel production. © 2009 International Association for Hydrogen Energy.

  15. Separative power of an optimised concurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, Sergey; Boman, Vladimir [National Research Nuclear University (MEPHI), Moscow (Russian Federation)

    2016-06-15

    The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to δU = 12.7 (V/700 m/s)2(300 K/T)(L/1 m) kg·SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

  16. Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Ana P.; Linares, Jose J., E-mail: joselinares@unb.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Instituto de Quimica

    2014-03-15

    This paper studies the influence of the operating variables (glycerol concentration, temperature and feed rate) for a direct glycerol fuel cell fed with glycerol using polybenzimidazole (PBI) impregnated with KOH as electrolyte and Pt/C as catalyst. Temperature displays a beneficial effect up to 75 °C due to the enhanced conductivity and kinetics of the electrochemical reactions. The optimum cell feed corresponds to 1 mol L{sup -1} glycerol and 4 mol L{sup -1} KOH, supplying sufficient quantities of fuel and electrolyte without massive crossover nor mass transfer limitations. The feed rate increases the performance up to a limit of 2 mL min{sup -1}, high enough to guarantee the access of the glycerol and the exit of the products. Finally, the use of binary catalysts (PtRu/C and Pt{sub 3}Sn/C) is beneficial for increasing the cell performance. (author)

  17. Autobalancing and FDIR for a space-based centrifuge prototype

    Science.gov (United States)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  18. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    A green and cheap silicone-based elastomer has been developed. Through the simple mixing-in of biodiesel-originating glycerol into commercially available polydimethylsiloxane (PDMS) pre-polymer, a glycerol-in-PDMS emulsion was produced. This counterintuitively stable mixture became a basis...... for obtaining elastomeric composites with uniformly distributed glycerol droplets. Various compositions, containing from 0 to 140 parts of glycerol per 100 parts of PDMS by weight, were prepared and investigated in terms of ATR-FTIR, broadband dielectric spectroscopy, mechanical properties as well as optical......, even in the presence of very high loadings. The conducted experiments highlight the great potential of this new type of elastomer and reveal some possible applications....

  19. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  20. Thermal analysis of a gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, D.A.; Bastos, J.L.F.; Maiorino, J.R.

    1996-01-01

    The centrifuge separation efficiency is the result of the composition of the centrifuge field to the secondary flow in the axial direction near to the rotor wall. For a given machine, the centrifuge field can not be altered and the effort to augment the separation efficiency should be concentrated on the secondary flow. The secondary flow has a mechanical and a thermal component. The mechanical component is due to the deceleration of the gas at the scoop region. The thermal component is due to the temperature differences at the rotor. This paper presents a thermal model of a centrifuge in order to understand the main heat transfer mechanisms and to establish the boundary conditions for a fluid flow computer code. The heat transfer analysis takes into account conduction at the structure parts of the rotor and shell, radiation with multi-reflections between the rotor and the shell, and convection to the ambient. (author)

  1. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  2. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  3. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    International Nuclear Information System (INIS)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-01-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  4. Construction of an alternative glycerol-utilization pathway for improved β-carotene production in Escherichia coli.

    Science.gov (United States)

    Guo, Jin-Ying; Hu, Kun-Le; Bi, Chang-Hao; Li, Qing-Yan; Zhang, Xue-Li

    2018-05-11

    Glycerol, which is an inevitable by-product of biodiesel production, is an ideal carbon source for the production of carotenoids due to its low price, good availability and chemically reduced status, which results in a low requirement for additional reducing equivalents. In this study, an alternative carbon-utilization pathway was constructed in Escherichia coli to enable more efficient β-carotene production from glycerol. An aldehyde reductase gene (alrd) and an aldehyde dehydrogenase gene (aldH) from Ralstonia eutropha H16 were integrated into the E. coli chromosome to form a novel glycerol-utilization pathway. The β-carotene specific production value was increased by 50% after the introduction of alrd and aldH. It was found that the glycerol kinase gene (garK), alrd and aldH were the bottleneck of the alternative glycerol metabolic pathway, and modulation of garK gene with an mRS library further increased the β-carotene specific production value by 13%. Finally, co-modulation of genes in the introduced aldH-alrd operon led to 86% more of β-carotene specific production value than that of the strain without the alternative glycerol-utilization pathway and the glycerol-utilization rate was also increased. In this work, β-carotene production of E. coli was significantly improved by constructing and optimizing an alternative glycerol-utilization pathway. This strategy can potentially be used to improve the production of other isoprenoids using glycerol as a cheap and abundant substrate, and therefore has industrial relevance.

  5. Trehalose in glycerol-free freezing extender enhances post-thaw survival of boar spermatozoa

    Science.gov (United States)

    ATHURUPANA, Rukmali; TAKAHASHI, Daisen; IOKI, Sumire; FUNAHASHI, Hiroaki

    2015-01-01

    Cryopreservation of boar semen is still considered suboptimal due to lower fertility as compared with fresh samples when glycerol, a permeating cryoprotectant, is used. Trehalose is a non-permeable cryoprotectant and nonreducing disaccharide known to stabilize proteins and biologic membranes. The aim of this study was to evaluate the cryosurvival and in vitro penetrability of boar spermatozoa when glycerol was replaced with trehalose in a freezing extender. Ejaculated Berkshire semen samples were diluted in egg yolk-based freezing extender containing glycerol (100 mM) or trehalose (0, 50, 100, 150, 200 and 250 mM) and cryopreserved using a straw freezing procedure. Thawed samples were analyzed for motility, viability, mitochondrial membrane potential (MMP), and acrosome integrity. In experiment 2, penetrability of spermatozoa cryopreserved with 100 mM glycerol or trehalose was examined. Replacement of cryoprotectant glycerol (100 mM) with trehalose had no effect on sperm viability, but replacing it with 100 mM trehalose improved motility, MMP and acrosome integrity significantly. Sperm motility and MMP were considerably higher in 100 mM trehalose, whereas the acrosome integrity was substantially higher in 100–250 mM trehalose. The in vitro penetration rate was also significantly higher in spermatozoa cryopreserved with trehalose (61.3%) than in those cryopreserved with glycerol (43.6%). In conclusion, 100 mM non-permeable trehalose can be used to replace glycerol, a permeating cryoprotectant, for maintenance of better post-thaw quality of boar spermatozoa. PMID:25754239

  6. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa.

    Science.gov (United States)

    Eraqi, Walaa A; Yassin, Aymen S; Ali, Amal E; Amin, Magdy A

    2016-01-01

    Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We have developed a process for the production of rhamnolipid biosurfactants using glycerol as the sole carbon source by a local Pseudomonas aeruginosa isolate that was obtained from an extensive screening program. A factorial design was applied with the goal of optimizing the rhamnolipid production. The highest production yield was obtained after 2 days when cells were grown in minimal salt media at pH 6, containing 1% (v/v) glycerol and 2% (w/v) sodium nitrate as nitrogen source, at 37°C and at 180 rpm, and reached 2.164 g/L after 54 hours (0.04 g/L h). Analysis of the produced rhamnolipids by TLC, HPLC, and FTIR confirmed the nature of the biosurfactant as monorhamnolipid. Glycerol can serve as a source for the production of rhamnolipid from microbial isolates providing a cheap and reliable substrate.

  7. Improved g-level calculations for coil planet centrifuges.

    Science.gov (United States)

    van den Heuvel, Remco N A M; König, Carola S

    2011-09-09

    Calculation of the g-level is often used to compare CCC centrifuges, either against each other or to allow for comparison with other centrifugal techniques. This study shows the limitations of calculating the g-level in the traditional way. Traditional g-level calculations produce a constant value which does not accurately reflect the dynamics of the coil planet centrifuge. This work has led to a new equation which can be used to determine the improved non-dimensional values. The new equations describe the fluctuating radial and tangential g-level associated with CCC centrifuges and the mean radial g-level value. The latter has been found to be significantly different than that determined by the traditional equation. This new equation will give a better understanding of forces experienced by sample components and allows for more accurate comparison between centrifuges. Although the new equation is far better than the traditional equation for comparing different types of centrifuges, other factors such as the mixing regime may need to be considered to improve the comparison further. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    Science.gov (United States)

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  9. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    Science.gov (United States)

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  10. Achieving an ever-improving centrifuge

    International Nuclear Information System (INIS)

    Edwards, T.T.; Wilcox, P.

    1988-01-01

    To ensure that the latest technical innovations can be rapidly incorporated, centrifuge development in the Urenco organization is carried out in different phases simultaneously on different generations of machines. This system has led to progressively increased outputs and reduced specific costs, and with the further known potential available, is expected to maintain Urenco's competitiveness throughout the 1990s. The process of separating isotopes by centrifuge is described. (author)

  11. Towards the sustainable production of acrolein by glycerol dehydration.

    Science.gov (United States)

    Katryniok, Benjamin; Paul, Sébastien; Capron, Mickaël; Dumeignil, Franck

    2009-01-01

    The massive increase in biodiesel production by transesterification of vegatable oils goes hand-in-hand with the availability of a large volume of glycerol, which must be valorized. Glycerol dehydration to acrolein over acid catalysts is one of the most promising ways of valorization, because this compound is an important chemical intermediate used in, for example, the DL-methionine synthesis. In this Minireview, we give a detailed critical view of the state-of-the-art of this dehydration reaction. The processes developed in both the liquid and the gas phases are detailed and the best catalytic results obtained so far are reported as a benchmark for future developments. The advances on the understanding of the reaction mechanism are also discussed and we further focus particularly on the main obstacles for an immediate industrial application of this technology, namely catalyst coking and crude glycerol direct-use issues.

  12. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Frandsen, Henrik Lauritz; Granby, Kit

    2007-01-01

    Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33......Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33...

  13. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Science.gov (United States)

    Oliveira, Bruno M; Barrio, Eladio; Querol, Amparo; Pérez-Torrado, Roberto

    2014-01-01

    During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+)/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  14. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  15. Centrifuge modelling of offshore monopile foundation

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole

    2010-01-01

    centrifuge tests on a laterally loaded monopile in dry sand. The prototype dimension of the piles was modelled to a diameter of 1 meter and penetration depth on 6 meter. The test series were designed in order to investigate the scaling laws in the centrifuge both for monotonic and cyclic loading...

  16. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.

    Science.gov (United States)

    Iyyappan, J; Bharathiraja, B; Baskar, G; Jayamuthunagai, J; Barathkumar, S; Anna Shiny, R

    2018-03-01

    In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modeling centrifugal cell washers using computational fluid dynamics.

    Science.gov (United States)

    Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil

    2004-11-01

    Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.

  18. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, Li; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator-driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized

  19. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, L.; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized. (authors)

  20. Experimental study of multi-component separation by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou, M.S.; Liang, X.W.; Chen, W.N.; Yin, Y.T.

    2006-01-01

    Stable isotopes are applied in many areas and most stable isotopes are multi-component, This paper presents experimental results of several stable isotopes separation conducted in Tsinghua University by using ultra-speed gas centrifuges. Xe, WF 6 , TeF 6 , SiHCl 3 , SiF 4 were chosen as the process gases. By adjusting some of the centrifuge's parameters, the suitable centrifuge parameters for different process gas separations were found and the overall unit separation factors γ 0 were obtained by means of single gas centrifuge separation. The experimental results show that with appropriate process gases, stable isotope separation by gas centrifuge was effective. (authors)

  1. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    Science.gov (United States)

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  2. Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity.

    Science.gov (United States)

    Gutiérrez-Pérez, Oscar; Juárez-Mosqueda, María de Lourdes; Carvajal, Salvador Uribe; Ortega, María Elena Trujillo

    2009-06-01

    The use of glycerol for boar semen cryopreservation results in low fertility, possibly due to toxicity. This has led to recommend the use of solutions with less than 4% glycerol. Trehalose is a disaccharide known to stabilize proteins and biologic membranes during processes such as cryopreservation. Thus, it was decided to evaluate the cryoprotective effect of glycerol/trehalose mixtures. Effects on motility (M), viability (Vb) and acrosomal integrity (nA) were evaluated. Sperm samples were frozen in three different extenders: G4 contained 4% glycerol; T1 contained 1% glycerol plus 250 mM trehalose and T0.5 was constituted by 0.5% glycerol plus 250 mM trehalose. All extenders yielded similar post-freezing/thawing motility rates. Viability was diminished in T0.5 as compared to the others. In regard to acrosome integrity, it was twice as high (Pextender. Thus, T1 twice as many spermatozoa were alive, motile and intact, than in either T0.5 or G4, i.e. during freeze/thawing the use of T1 resulted in twice as many fertile cells as when using the other extenders. During our study, we noted that there were wide individual variations both in sperm viability and in motility.

  3. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  4. Determination of steady state and nonsteady-state glycerol kinetics in humans using deuterium-labeled tracer

    International Nuclear Information System (INIS)

    Beylot, M.; Martin, C.; Beaufrere, B.; Riou, J.P.; Mornex, R.

    1987-01-01

    Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance rate of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1

  5. Preliminary Evaluation of Glyceric Acid-producing Ability of Acidomonas methanolica NBRC104435 from Glycerol Containing Methanol.

    Science.gov (United States)

    Sato, Shun; Kitamoto, Dai; Habe, Hiroshi

    2017-06-01

    Some acetic acid bacteria produce large amounts of glyceric acid (GA) from glycerol in culture broth. However, methanol, which is a major contaminant of raw glycerol derived from the biodiesel fuel industry, sharply decreases cell growth and GA production [AMB Express, 3, 20, 2013]. Thus, we evaluated the methylotrophic acetic acid bacterium Acidomonas methanolica NBRC104435 for its ability to produce GA from glycerol containing methanol. This strain accumulated GA in its culture broth when 1-3 wt% glycerol was available as a carbon source. We observed improved cell growth and GA accumulation when 1 vol% methanol was added to the 3-5 wt% glycerol medium. The maximum concentration of GA was 12.8 g/L in medium containing 3 wt% glycerol plus 1 vol% methanol. In addition, the enantiomeric excess (ee) of the GA produced was revealed to be 44%, indicating that this strain converted glycerol to d-GA with a lower enantioselectivity than other acetic acid bacteria, which had 70-99% ee.

  6. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  7. On the pressure dependence of the fragility of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, S; Paluch, M; Ziolo, J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2009-08-19

    This work was motivated by ostensibly contradictory results from different groups regarding the effect of pressure on the fragility of glycerol. We present new experimental data for an intermediate pressure regime showing that the fragility increases with pressure up to about 1.8 GPa, becoming invariant at higher pressures. There is no discrepancy among the various literature data taken in toto. The behavior of glycerol is quite distinct from that of normal liquids, a result of its substantial hydrogen bonding. (fast track communication)

  8. Sequential spectrofluorimetric determination of free and total glycerol in biodiesel in a multicommuted flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo (Brazil); Morales-Rubio, Angel; Guardia, Miguel de la [Universidad de Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain); Rocha, Fabio R.P. [Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    2011-07-15

    A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L{sup -1} with a detection limit of 0.5 mg L{sup -1}, which corresponds to 2 mg kg{sup -1} in biodiesel. The coefficient of variation was 0.9% (20 mg L{sup -1}, n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L{sup -1}. The detection limit was 1.4 mg L{sup -1} (2.8 mg kg{sup -1} in biodiesel) with a coefficient of variation of 1.4% (200 mg L{sup -1}, n = 10). The sampling rate was ca. 35 samples h{sup -1} and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans. (orig.)

  9. Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite

    Science.gov (United States)

    Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.

    2018-01-01

    Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.

  10. Synthesis of bio-additives: transesterification of ethyl acetate with glycerol using homogeneous or heterogeneous acid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Bruno A.; Pereira, Vera Lucia P., E-mail: patrocinio@nppn.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisas de Produtos Naturais

    2013-01-15

    A new catalytic route with potential practical interest to sustainable production of bioadditives from glycerol is described. Ethyl acetate was transesterified with glycerol, in the ratio glycerol:EtOAc 1:10, at 25 or 90 deg C using 0.1 equiv.of H{sub 2}SO{sub 4} or TsOH, as homogeneous catalysts. H{sub 2}SO{sub 4} led to the total glycerol consumption in 2 h. In the equilibrium, attained in 9 h, 100% yield of a diacetin:triacetin (55:45) mixture was formed. Using Amberlyst Registered-Sign 15 dry and Amberlyst Registered-Sign 16 wet in 1:30 glycerol:EtOAc ratio and reflux at 90 Degree-Sign C the total glycerol consumption was achieved in 2 and 10h, respectively. The lower reactivity of Amberlyst-16 wet was explained in terms of deactivation of acid sites and decrease in glycerol diffusion to the inner resin pores, both factors caused by adsorbed water. The kinetics of glycerol transformation and product distribution in the equilibrium in relation to the H{sub 2}SO{sub 4}, Amberlyst-15 (dry) and Amberlyst-16 (wet) catalyzed reactions were measured. (author)

  11. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts

    International Nuclear Information System (INIS)

    Algoufi, Y.T.; Akpan, U.G.; Kabir, G.; Asif, M.; Hameed, B.H.

    2017-01-01

    Highlights: • Catalytic transesterification with dimethyl carbonate (DMC) converts glycerol into glycerol carbonate (GLC). • DMC and Sr_x–Al catalysts affect the reaction mechanisms that convert glycerol into GLC. • The morphology and textural structure of Sr_x–Al catalysts perpetuate catalytic activity. • The atomic ratio of Sr/Al has a unique effect on Sr–Al catalytic activity. • Sr_0_._5–Al catalyst exhibits limited leaching after five reaction cycles. - Abstract: The high demand for renewable energy has led to the upsurge of methanol-assisted biodiesel synthesis. Therefore, glycerol as a byproduct entered the waste stream given the oversupply of biodiesel to the market. The dimethyl carbonate (DMC)-assisted transesterification of glycerol on a catalyst has been a popular approach for converting glycerol into valuable glycerol carbonate (GLC). The synthesis of GLC from the DMC-assisted transesterification of glycerol on mixed oxide catalysts (Sr_x–Al) with different Sr/Al ratios was examined in this study. A glycerol conversion of 99.4% and a GLC yield of 100% were achieved in a catalyst with Sr/Al = 0.5 (Sr_0_._5–Al). Both values are higher than those in catalysts synthesized with Sr/Al = 0.25 and 0.75. The Sr_0_._5–Al catalyst withstood five transesterification reaction cycles without a serious deactivation induced by the leaching of active SrO. Therefore, the Sr_0_._5–Al catalyst is suitable for consecutive uses in the DMC-assisted transesterification of glycerol with DMC into GLC.

  12. Effect of Centrifuge Temperature on Routine Coagulation Tests.

    Science.gov (United States)

    Yazar, Hayrullah; Özdemir, Fatma; Köse, Elif

    2018-01-01

    This study investigated the effects of cooled and standard centrifuges on the results of coagulation tests to examine the effects of centrifugation temperature. Equal-volume blood samples from each patient were collected at the same time intervals and subjected to standard (25°C) and cooled centrifugation (2-4°C). Subsequently, the prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, and D-dimer values were determined in runs with the same lot numbers in the same coagulation device using the Dia-PT R (PT and INR), Dia-PTT-liquid (aPTT), Dia-FIB (fibrinogen), and Dia-D-dimer kits, respectively. The study enrolled 771 participants. The PT was significantly (p centrifuges were as follows: PT 10.30 versus 10.50 s; PT (INR) 1.04 versus 1.09 s; APTT 28.90 versus 29.40 s; fibrinogen 321.5 versus 322.1 mg/dL; and D-dimer 179.5 versus 168.7 µg FEU/mL. There were significant differences (p centrifuges. Centrifuge temperature can have a significant effect on the results of coagulation tests. However, broad and specific disease-based studies are needed. © 2018 S. Karger AG, Basel.

  13. Development of uranium enrichment technology by gas centrifugation

    International Nuclear Information System (INIS)

    Sibata, Tomofumi; Kai, Tsunetoshi

    1996-01-01

    The development of a gas-centrifuge for uranium enrichment has been conducted by Power Reactor and Nuclear Fuel Development Corporation in Japan after the first several years' fruitless works, the R and D works came to the point and continuing rapid improvements of centrifuges have started, Cascade tests were given with C-1 and C-2 cascade experimental facilities. Life, reliability and feasibility tests were given with the pilot plant and the demonstration plant. As a result of these works, the private commercial plant has started the operation. Although the main efforts were devoted to the development of metal rotor centrifuges in the course mentioned above, composite material rotor centrifuges have also been developed in parallel to achieve higher performance. Promising results have been being obtained with cascade test facilities on the pilot plant scale. Furthermore, R and D works are being proceeded on more excellent and advanced centrifuges. (author)

  14. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1987-01-01

    High rotational velocity and centrifugal isotopic separation of carbon in a vacuum-arc plasma centrifuge are presented. Enrichments of up to 390% for 13 C are measured at 6 cm radius with angular rotation frequencies in excess of 1.0 x 10 5 rad/s in an axial magnetic field of 0.12 T

  15. Research on the development of the centrifugal spinning

    Directory of Open Access Journals (Sweden)

    Zhang Zhiming

    2017-01-01

    Full Text Available Centrifugal spinning is a new and efficient method to produce nanofibers quickly. It makes use of the centrifugal force instead of high voltage to produce the nanofibers. The centrifugal spinning has many advantages such as no high voltage, high yield, simple structure, no pollution and can be applied to high polymer material, ceramic and metal material. In order to have more understand about this novel nanofibers formation method, this paper introduces the method of centrifugal spinning and the effect of rotation speed, the properties of material such as viscosity and solvent evaporation, collector distance which have an impact on nanofibers morphology and diameter were also analyzed.

  16. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  17. Gas dynamics in strong centrifugal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  18. The American Gas Centrifuge Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  19. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  20. Modern gas centrifuge and rarefied-gas dynamics

    International Nuclear Information System (INIS)

    Lowry, R.A.; Halle, E.V.; Wood, H.G. III.

    1981-01-01

    Today, the modern gas centrifuge appears to be the preferred method for the enrichment of the isotopes of uranium on a commercial scale. That this is the case is the result of diligent development programs pursued in this country as well as in the UK, Germany, and the Netherlands over the several decades since the end of WW II. The theoretical modelling of gas centrifuge performance has made notable advances. However, the theoretical work has been based primarily on continuum fluid dynamics considerations. Centrifuge problems involving rarefied gas dynamics considerations are discussed in this paper

  1. Navigating Glycerol Conversion Roadmap and Heterogeneous Catalyst Selection Aided by Density Functional Theory: A Review

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2018-01-01

    Full Text Available Glycerol has been utilized in an extremely diversified manner throughout human civilization—ranging from food, to various consumer products, to pharmaceuticals, and even explosives. Large surplus in glycerol supply thanks to biodiesel production and biomass processing has created a demand to further boost its utility. One growing area is to expand the use of glycerol as an alternative feedstock to supplement fuels and chemicals production. Various catalytic processes have been developed. This review summarizes catalytic materials for glycerol reforming, hydrodeoxygenation, and oxidation. In particular, rationale for catalyst selection and new catalyst design will be discussed aided by the knowledge of reaction mechanisms. The role of theoretical density functional theory (DFT in elucidating complex glycerol conversion chemistries is particularly emphasized.

  2. Subjective stress factors in centrifuge training for military aircrews.

    Science.gov (United States)

    Lin, Pei-Chun; Wang, Jenhung; Li, Shih-Chin

    2012-07-01

    This study investigates stress-influence factors perceived by military aircrews undergoing centrifuge training, which lowers the incidence of G-induced loss of consciousness (G-LOC) for the crews of high-performance combat aircrafts. We used questionnaires to assess the subjective stress-influence factors of crews undergoing centrifuge training. Professionals in aviation physiology identified attributes measuring the perceived stress induced by centrifuge training, which were segmented into three constructs by factor analysis, theory lecture, centrifuge equipment, and physical fitness. Considerable interpenetration was discernible between these factors and military rank, age, length of service, flight hours accrued, and type of aircraft piloted. Identifying and quantifying the perceived stressors experienced in human-use centrifuge training enables aviators, astronauts, and air forces of the world to determine which constructs perceptibly increase or alleviate the perceived stress undergone by trainees when partaking in centrifuge training. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs

    Directory of Open Access Journals (Sweden)

    Liu He

    2012-05-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs from the Gulu hot springs (23–83.6 °C, pH > 7 and Yangbajing hot springs (80–128 °C, pH > 7 were analyzed in order to investigate the distribution of archaeal lipids among different hot springs in Tibet. A soil sample from Gulu was incubated at different temperatures and analyzed for changes in iGDGTs to help evaluate whether surrounding soil may contribute to the iGDGTs in hot springs. The sources of bacterial GDGTs (bGDGTs in these hot springs were also investigated. The results revealed different profiles of iGDGTs between Gulu and Yangbajing hot springs. Core iGDGTs and polar iGDGTs also presented different patterns in each hot spring. The PCA analysis showed that the structure of polar iGDGTs can be explained by three factors and suggested multiple sources of these compounds. Bivariate correlation analysis showed significant positive correlations between polar and core bGDGTs, suggesting the in situ production of bGDGTs in the hot springs. Furthermore, in the soil incubation experiment, temperature had the most significant influence on concentration of bGDGTs rather than iGDGTs, and polar bGDGTs had greater variability than core bGDGTs with changing temperature. Our results indicated that soil input had little influence on the composition of GDGTs in Tibetan hot springs. On the other hand, ring index and TEX86 values were both positively correlated with incubation temperature, suggesting that the structure of archaeal lipids changed in response to varying temperature during incubation.

  4. Biotechnological conversion of glycerol from biofuels to 1,3-propanediol using Escherichia coli.

    Science.gov (United States)

    Przystałowska, Hanna; Lipiński, Daniel; Słomski, Ryszard

    2015-01-01

    In the face of shortage of fossil fuel supplies and climate warming triggered by excessive carbon dioxide emission, alternative resources for chemical industry have gained considerable attention. Renewable resources and their derivatives are of particular interest. Glycerol, which constitutes one of the by-products during biodiesel production, is such a substrate. Thus, generated excess glycerol may become an environmental problem, since it cannot be disposed of in the environment. The most promising products obtained from glycerol are polyols, including 1,3-propanediol, an important substrate in the production of synthetic materials, e.g. polyurethanes, unsaturated polyesters, and epoxy resins. Glycerol can be used as a carbon and energy source for microbial growth in industrial microbiology to produce 1,3-propanediol. This paper is a review of metabolic pathways of native producers and E. coli with the acquired ability to produce the diol via genetic manipulations. Culture conditions during 1,3-PDO production and genetic modifications of E. coli used in order to increase efficiency of glycerol bioconversion are also described in this paper.

  5. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol.

    Science.gov (United States)

    Yang, Jiangang; Zhu, Yueming; Men, Yan; Sun, Shangshang; Zeng, Yan; Zhang, Ying; Sun, Yuanxia; Ma, Yanhe

    2016-12-21

    Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.

  6. Bifurcated equilibria in centrifugally confined plasma

    International Nuclear Information System (INIS)

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-01-01

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  7. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  8. Theory of uranium enrichment by the gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D R [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; California Univ., Berkeley (USA). Dept. of Nuclear Engineering)

    1981-01-01

    Onsager's analysis of the hydrodynamics of fluid circulation in the boundary layer on the rotor wall of a gas centrifuge is reviewed. The description of the flow in the boundary layers on the top and bottom end caps due to Carrier and Maslen is summarized. The method developed by Wood and Morton of coupling the flow models in the rotor wall and end cap boundary layers to complete the hydrodynamic analysis of the centrifuge is presented. Mechanical and thermal methods of driving the internal gas circulation are described. The isotope enrichment which results from the superposition of the elementary separation effect due to the centrifugal field in the gas and its internal circulation is analyzed by the Onsager-Cohen theory. The performance function representing the optimized separative power of a centrifuge as a function of throughput and cut is calculated for several simplified internal flow models. The use of asymmetric ideal cascades to exploit the distinctive features of centrifuge performance functions is illustrated.

  9. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  10. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    Directory of Open Access Journals (Sweden)

    Elena Vlad

    2012-01-01

    Full Text Available Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  11. Development Of An Efficient Glycerol Utilizing Saccharomyces Cerevisiae Strain Via Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Strucko, Tomas; Zirngibl, Katharina; Tharwat Tolba Mohamed, Elsayed

    2015-01-01

    that popular wild-type laboratory yeast strains, commonly applied in metabolic engineering studies, did not grow or grew very slowly in glycerol medium.In this work, an adaptive laboratory evolution approach to obtain S. cerevisiae strains with an improved ability to grow on glycerol was applied. A broad array...... of evolved strains, which exhibited a significant increase in the specific growth rate and a higher glycerol consumption rate, were isolated. The best performing strains were further analyzed by classical genetics and whole genome re-sequencing in order to understand the molecular basis of glycerol...

  12. Physical-chemical basis of the protection of slowly frozen human erythrocytes by glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Rall, W.F.; Mazur, P.; Souzu, H.

    1978-07-01

    One theory of freezing damage suggests that slowly cooled cells are killed by being exposed to increasing concentrations of electrolytes as the suspending medium freezes. A corollary to this view is that protective additives such as glycerol protect cells by acting colligatively to reduce the electrolyte concentration at any subzero temperature. Recently published phase-diagram data for the ternary system glycerol-NaCl-water by M.L. Shepard et al. (Cryobiology, 13: 9-23, 1976), in combination with the data on human red cell survival vs. subzero temperature presented here and in the companion study of Souzu and Mazur (Biophys. J., 23: 89-100), permit a precise test of this theory. Appropriate liquidus phase-diagram information for the solutions used in the red cell freezing experiments was obtained by interpolation of liquidus data of Shepard and his co-workers. The results of phase-diagram analysis of red cell survival indicate that the correlation between the temperature that yields 50% hemolysis (LT/sub 50/) and the electrolyte concentration attained at that temperature in various concentrations of glycerol is poor. With increasing concentrations of glycerol, the cells were killed at progressively lower concentrations of NaCl. For example, the LT/sub 50/ for cells frozen in the absence of glycerol corresponds to a NaCl concentration of 12 weight percent (2.4 molal), while for cells frozen in 1.75 M glycerol in buffered saline the LT/sub 50/ corresponds to 3.0 weight percent NaCl (1.3 molal). The data, in combination with other findings, lead to two conclusions: (a) The protection from glycerol is due to its colligative ability to reduce the concentration of sodium chloride in the external medium, but (b) the protection is less than that expected from colligative effects; apparently glycerol itself can also be a source of damage, probably because it renders the red cells susceptible to osmotic shock during thawing.

  13. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  14. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  15. Vortex breakdown control by adding near-axis swirl and temperature gradients.

    Science.gov (United States)

    Herrada, Miguel Angel; Shtern, Vladimir

    2003-10-01

    Vortex breakdown (VB) is an intriguing effect of practical and fundamental interest, occurring, e.g., in tornadoes, above delta-wing aircraft, and in vortex devices. Depending on application, VB is either beneficiary or harmful and therefore requires a proper control. This study shows that VB can be efficiently controlled by a combination of additional near-axis swirl and heat. To explore the underlying mechanism, we address a flow in a cylindrical container driven by a rotating bottom disk. This model flow has been extensively studied being well suited for understanding both the VB mechanism and its control. Our numerical analysis explains experimentally observed effects of control corotation and counter-rotation (with no temperature gradient) and reveals some flaws of dye visualization. An important feature found is that a moderate negative (positive) axial gradient of temperature can significantly enforce (diminish) the VB enhancement by the counter-rotation. A strong positive temperature gradient stimulates the centrifugal instability and time oscillations in the flow with counter-rotation. An efficient time-evolution code for axisymmetric compressible flows has facilitated the numerical study.

  16. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  17. Comparison of glycerol, lactamide, acetamide and dimethylsulfoxide as cryoprotectants of Japanese white rabbit spermatozoa.

    Science.gov (United States)

    Kashiwazaki, Naomi; Okuda, Yasushi; Seita, Yasunari; Hisamatsu, Shin; Sonoki, Shigenori; Shino, Masao; Masaoka, Toshio; Inomata, Tomo

    2006-08-01

    The rabbit is considered to be a valuable laboratory animal. We compared glycerol, lactamide, acetamide, and dimethylsulfoxide (DMSO) as cryoprotectants in egg-yolk diluent of ejaculated Japanese white rabbit spermatozoa for improvement of sperm cryopreservation methods. Rabbit semen was frozen with 1.0 M glycerol, lactamide, acetamide, or DMSO in plastic straws. Forward progressive motility and plasma membrane integrity of the post-thaw spermatozoa were examined. The rate of forward progressive motile spermatozoa in lactamide (37.8 +/- 3.0%) was significantly (P<0.05) higher than in glycerol (17.0 +/- 3.3%). In addition, the rates of sperm plasma membrane integrity in lactamide and acetamide (35.9 +/- 3.3% and 30.2 +/- 3.0%, respectively) were significantly (P<0.05) higher than in glycerol (17.0 +/- 2.6%). The results indicate that 1.0 M lactamide and acetamide have higher cryoprotective effects than 1.0 M glycerol for cryopreservation of Japanese white rabbit spermatozoa.

  18. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    Science.gov (United States)

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  19. Detection of outliers in gas centrifuge experimental data

    International Nuclear Information System (INIS)

    Andrade, Monica C.V.; Nascimento, Claudio A.O.

    2005-01-01

    Isotope separation in a gas centrifuge is a very complex process. Development and optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like other experimental data, there may be some gross errors, also known as outliers. The detection of outliers in gas centrifuge experimental data may be quite complicated because there is not enough repetition for precise statistical determination and the physical equations may be applied only on the control of the mass flows. Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the application of a three-layer feed-forward neural network to the detection of outliers in a very extensive experiment for the analysis of the separation performance of a gas centrifuge. (author)

  20. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation.

    Science.gov (United States)

    Campos, Elisa; Moura, Teresa F; Oliva, Abel; Leandro, Paula; Soveral, Graça

    2011-05-13

    In general, erythrocytes are highly permeable to water, urea and glycerol. However, expression of aquaporin isoforms in erythrocytes appears to be species characteristic. In the present study, human (hRBC) and bovine (bRBC) erythrocytes were chosen for comparative studies due to their significant difference in membrane glycerol permeability. Osmotic water permeability (P(f)) at 23°C was (2.89 ± 0.37) × 10(-2) and (5.12 ± 0.61) × 10(-2)cms(-1) for human and bovine cells, respectively, with similar activation energies for water transport. Glycerol permeability (P(gly)) for human ((1.37 ± 0.26) × 10(-5)cms(-1)) differed in three orders of magnitude from bovine erythrocytes ((5.82 ± 0.37) × 10(-8)cms(-1)) that also showed higher activation energy for glycerol transport. When compared to human, bovine erythrocytes showed a similar expression pattern of AQP1 glycosylated forms on immunoblot analysis, though in slight higher levels, which could be correlated with the 1.5-fold larger P(f) found. However, AQP3 expression was not detectable. Immunofluorescence analysis confirmed the absence of AQP3 expression in bovine erythrocyte membranes. In conclusion, lack of AQP3 in bovine erythrocytes points to the lipid pathway as responsible for glycerol permeation and explains the low glycerol permeability and high E(a) for transport observed in ruminants. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    OpenAIRE

    João Alberto Yazigi Junior; João Baptista Gomes dos Santos; Bruno Rodrigues Xavier; Marcela Fernandes; Sandra Gomes Valente; Vilnei Mattiolli Leite

    2015-01-01

    ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, usin...

  2. Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2013-09-01

    Full Text Available Biodiesel has gained a significant amount of attention over the past decade as an environmentally friendly fuel that is capable of being utilized by a conventional diesel engine. However, the biodiesel production process generates glycerol-containing waste streams which have become a disposal issue for biodiesel plants and generated a surplus of glycerol. A value-added opportunity is needed in order to compensate for disposal-associated costs. Microbial conversions from glycerol to valuable chemicals performed by various bacteria, yeast, fungi, and microalgae are discussed in this review paper, as well as the possibility of extending these conversions to microbial electrochemical technologies.

  3. Synthesis of substituted 1,3-diesters of glycerol using wittig chemistry.

    Science.gov (United States)

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Bryant, Joseph

    2014-05-01

    1,3-di-O-Cinnamoyl-glycerol is a natural compound isolated from a Jamaican medicinal plant commonly referred to as Ball moss (Tillandsia recurvata). The synthesis of this compound was achieved via a Wittig chemistry process. The synthetic approach started with acylation of a di-protected glycerol with cinnamoyl chloride, deprotection of the glycerol moiety, reaction of the primary alcohol with bromo acetylbromide followed by treatment with triphenyl phosphine to give the corresponding phosphonium bromide. The phosphonium bromide was then converted in situ to the Wittig reagent which is the basis for a novel route to 1,3-di-O-cinnamoyl glycerol. Four analogs were also synthesized, three of which are new and are being reported in this article for the first time. The new compounds include 3-(3,4-diemthoxy-phenyl)-acrylic acid 2-hydroxy-3-(3-ptolyl-acryloyloxy)-propyl ester (3), 2-acetoxy-5-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop- 1-enyl)benzoic acid (4) and 4-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop-1-enyl)benzoic acid (5). The compounds showed no activity in our anticancer assay.

  4. Development of centrifugal contactor for FBR fuel reprocessing

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Takeuchi, Masayuki; Suganuma, Takashi; Aose, Shinichi; Ogino, Hideki

    2003-01-01

    In the Feasibility Study on Commercialized Fast Reactor Cycle Systems, the aqueous reprocessing technology is nominated as a candidate for future reprocessing system, which supposes to apply a centrifugal contactor in the extraction process. For the reprocessing plant, the centrifugal contactor has great advantages such as reducing solvent degradation, improving of equipment utilization rate, compact designing of equipment layout and critical safety domination. From these advantages, the centrifugal contactor is crucial equipment in the aqueous reprocessing process. Since 1985, JNC has been developing the centrifugal contactor. The single unit development has been accomplished and basic characteristics such as extraction performance, fluidic performance and remote maintenance performance have been determined. A durability test has been conducted for high longevity, with consideration given to the nitric acid mist and estimation of the equipment lifetime. System test equipment with centrifugal contactors of engineering scale was installed, and uranium test was conducted. Up to now, a standard flow sheet test in the extraction process and mal-operation test assuming the one stage shutdown condition have been performed. (author)

  5. Centrifuge modelling - migration of radionuclides from engineered trenches

    International Nuclear Information System (INIS)

    Dean, E.T.R.; Schofield, A.N.

    1991-12-01

    This report provides an overview of some centrifuge small-scale physical model tests and 1g experimental and theoretical work relating to the sub-surface migration of a model pollutant (sodium chloride) from a notional prototype surface landfill of width 25 metres and depth 3 metres cut into a 20 metre deep layer of nominally uniform soil overlying a more permeable base layer. An introduction is given to the application of geotechnical centrifuge modelling techniques to pollutant migration studies. Experiments performed at 1/100th scale using the Cambridge 10 metre diameter Geotechnical Beam Centrifuge simulating transport through silt over prototype time periods of around 35 years, are summarised. Comparisons of data with calculations using early versions of the POLLUTE and MIGRATE computer codes are presented. An experiment at 1/400th scale using the new Cambridge Geotechnical Drum Centrifuge, involving transport through clay over a prototype time period of around 1000 years, is described. Potential future uses of centrifuge modelling techniques to simulate long-term migration through more complex hydrological environments are also discussed. (author)

  6. Selective Hydrogenolysis of Glycerol and Crude Glycerol (a By-Product or Waste Stream from the Biodiesel Industry to 1,2-Propanediol over B2O3 Promoted Cu/Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Malaya R. Nanda

    2017-06-01

    Full Text Available The performance of boron oxide (B2O3-promoted Cu/Al2O3 catalyst in the selective hydrogenolysis of glycerol and crude glycerol (a by-product or waste stream from the biodiesel industry to produce 1,2-propanediol (1,2-PDO was investigated. The catalysts were characterized using N2-adsorption-desorption isotherm, Inductively coupled plasma atomic emission spectroscopy (ICP-AES, X-ray diffraction (XRD, ammonia temperature programmed desorption (NH3-TPD, thermogravimetric analysis (TGA, temperature programmed reduction (TPR, and transmission electron microscopy (TEM. Incorporation of B2O3 to Cu/Al2O3 was found to enhance the catalytic activity. At the optimum condition (250 °C, 6 MPa H2 pressure, 0.1 h−1 WHSV (weight hourly space velocity, and 5Cu-B/Al2O3 catalyst, 10 wt% aqueous solution of glycerol was converted into 1,2-PDO at 98 ± 2% glycerol conversion and 98 ± 2% selectivity. The effects of temperature, pressure, boron addition amount, and liquid hourly space velocity were studied. Different grades of glycerol (pharmaceutical, technical, or crude glycerol were used in the process to investigate the stability and resistance to deactivation of the selected 5Cu-B/Al2O3 catalyst.

  7. Acrolein Production by Gas-Phase Glycerol Dehydration Using PO₄/Nb₂O5 Catalysts.

    Science.gov (United States)

    Lee, Kyu Am; Ryoo, HeeKyoung; Ma, Byung Chol; Kim, Youngchul

    2018-02-01

    In this study, modified niobium oxide were prepared to study the addictive effects on the catalytic performance for gas-phase glycerol dehydration. The catalysts were characterized by N2 adsorption/desorption, XRD, NH3-TPD, FT-IR. The amount of phosphoric acid was up to 50 wt% in niobium. As a result, the highest glycerol conversion was achieved over 20 wt% PO4/Nb2O5. It indicates that the optimal amount of phosphoric acid leads the catalyst to have appropriate acidity which is an important factor for gas-phase glycerol dehydration.

  8. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation

  9. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  10. Enhancing Biodiesel Production Using Green Glycerol-Enriched Calcium Oxide Catalyst : An Optimization Study

    NARCIS (Netherlands)

    Avhad, Mangesh R.; Gangurde, L.S.; Sánchez, Marcos; Bouaid, Abderrahim; Aracil, José; Martínez, Mercedes; Marchetti, Jorge M.

    2018-01-01

    The present article demonstrates a superior catalytic performance of glycerol-enriched calcium oxide for biodiesel production than other calcium-based counterparts. The proficiency of glycerol-enriched calcium oxide in catalyzing the methanolysis of crude Jatropha curcas oil containing high free

  11. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Science.gov (United States)

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  12. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  13. Forces on Centrifugal Pump Impellers

    OpenAIRE

    Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan

    1985-01-01

    Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...

  14. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    Directory of Open Access Journals (Sweden)

    João Alberto Yazigi Junior

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g+ 200 ×g; 200 × g+ 400 × g; 200 × g+ 800 × g; 400 ×g+ 400 × g; 400 × g+ 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. RESULTS: We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × gfor 10 min + 400 ×gfor 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. CONCLUSION: It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  15. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  16. Synthesis of Acrolein From Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration

    OpenAIRE

    Abidin, Akhmad Zainal; Afandi, Rani Guslianti; Graha, Hafis Pratama Rendra

    2016-01-01

    Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO) and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration....

  17. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    Science.gov (United States)

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  18. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    International Nuclear Information System (INIS)

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  19. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  20. Flow induced vibrations in gas tube assembly of centrifuge

    International Nuclear Information System (INIS)

    Alam, M.; Atta, M.A.; Mirza, J.A.; Khan, A.Q.

    1986-01-01

    A centrifuge essentially consists of a rotor rotating at very high speed. Gas tube assembly, located at the center of the rotor, is used to introduce feed gas into the rotor and remove product and waste streams from it. The gas tube assembly is thus a static component, the product and waste scoops of which are lying in the high pressure region of a fluid rotating at very high speed. This can cause flow induced vibrations in the gas tube assembly. Such vibrations affect not only the mechanical stability of the gas tube assembly but may also reduce the separative power of the centrifuge. In a cascade, if some of the centrifuges have gas tube vibration, then cascade performance will be affected. A theoretical analysis of the effect of waste tube vibrations on product and waste flow rates and pressures in the centrifuge is presented. A simple stage consisting of two centrifuges, in which one has tube vibration, is considered for this purpose. The results are compared with experiment. It is shown that waste tube vibration generates oscillations in waste and product flow rates that are observable outside the centrifuge. (author)

  1. Direct Monte-Carlo Siumulations In a Gas Centrifuge

    National Research Council Canada - National Science Library

    Roblin, Philippe

    2000-01-01

    The study is related to the centrifugation process for isotope separation. In a gas centrifuge, the major part of the rotating gas is modeled by fluid equations with this gas flow described by suitable Navier-Stokes...

  2. Modelling of pyrolysis and combustion of gluten-glycerol-based bioplastics.

    Science.gov (United States)

    Gómez-Martínez, D; Barneto, A G; Martínez, I; Partal, P

    2011-05-01

    Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten-glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Improvement in solvent tolerance by exogenous glycerol in Pseudomonas sp. BCNU 106.

    Science.gov (United States)

    Choi, H J; Lim, B R; Park, Y J; Joo, W H

    2017-08-01

    Solvent hypertolerant Pseudomonas sp. BCNU 106 still has some underlying growth limitation in solvents. Therefore, efficient mass cultivation methods are needed to pursue its applications in biotechnology. Pseudomonas sp. BCNU 106 was cultured in a medium supplemented with 0·05 mol l -1 glycerol and cell survival was monitored during its cultivation in the presence of 1% (v/v) toluene. Exogenously supplemented glycerol provided more protection against damage caused by toluene stress and conferred higher solvent tolerance of Pseudomonas sp. BCNU 106 to toluene compared to control Pseudomonas sp. BCNU 106 without the supplementation of glycerol. This low-cost mass cultivation method can be used to efficiently apply solvent-tolerant bacteria in biotransformation and biodegradation. Protection against toluene and improvement in bacterial cell growth by supplementation of glycerol in the presence of toluene are demonstrated in this study. This result can be used to solve growth-related hindrances of solvent-tolerant bacteria and establish their low-cost mass cultivation, thereby broadening their industrial and environmental applications. © 2017 The Society for Applied Microbiology.

  4. Gas centrifuge uranium enrichment programme in the United States of America

    International Nuclear Information System (INIS)

    Gestson, D.K.

    1983-01-01

    The technology of uranium enrichment using the gas centrifuge is fully proven as a result of over twenty years of research. The high performance of the centrifuge has been confirmed, and its reliability established, through detailed evaluation of a series of centrifuge designs. The baseline centrifuge for the Gas Centrifuge Enrichment Plant (GCEP) is now in commercial production by three qualified manufacturers. It will be ready for installation in GCEP on schedule. The GCEP construction is also on schedule, with two process buildings expected to start operation in 1988 and 1989. Development and demonstration of the Set IV advanced gas centrifuge is under way and it is expected to be ready for installation in Process Building 3 in early 1989. (author)

  5. Platinum–Rhenium synergy on reducible oxide supports in aqueous-phase glycerol reforming

    NARCIS (Netherlands)

    Ciftci, A.; Eren, S.; Ligthart, D.A.J.M.; Hensen, E.J.M.

    2014-01-01

    A significant support effect was observed for the aqueous-phase reforming (APR) of glycerol over a series of Pt- and PtRe-loaded ceria-, ceria–zirconia-, zirconia-, and titania-supported catalysts. Glycerol conversion rates decreased in the order Pt/TiO2>Pt/ZrO2>Pt/CeZrO2>Pt/CeO2. Upon addition of

  6. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations

    Directory of Open Access Journals (Sweden)

    Kazuya Iwai

    2016-05-01

    Full Text Available Diagnostic methods that focus on the extracellular vesicles (EVs present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA and microRNA (miRNA, which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm and higher density (1.11 g/ml than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively. Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.

  7. Numerical simulation of the unsteady progress in centrifuge

    International Nuclear Information System (INIS)

    Wei Chunlin; Zeng Shi

    2006-01-01

    Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)

  8. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  9. Separative properties of counter-current beams type centrifuge, (2)

    International Nuclear Information System (INIS)

    Todo, Fukuzo

    1975-01-01

    One-time through scheme is studied, which would produce the highest overall centrifuge efficiency among the three different flow schemes of enriching, stripping and one-time through. If the ''optimum concentration method'' is applied to the one-time through centrifuge, the machine will be able to obtain a very high efficiency at small gas flow rates. A proposed arrangement of centrifuges for this method is shown. The efficiency of this method will be more than 15--20% higher than obtainable with enriching scheme. When the radial gas flow rate near the end caps in the rotor is increased to about 10% of the total gas feed rate, the efficiency was found to decrease by only 1%. The efficiency appears to be almost independent of small amounts of refluxing gas flow. Since a separation method having a high efficiency at small gas flow rates is required for large-scale gas centrifuge plants, the one-time through centrifuge is promising, provided the optimum concentration method is adopted. (auth.)

  10. Effect of pressure on the α relaxation in glycerol and xylitol

    Science.gov (United States)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  11. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum.

    Science.gov (United States)

    Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B

    2017-09-01

    Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 ×  g to a standard protocol of 10 min at 2200 ×  g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 ×  g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 ×  g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.

  12. Antibacterial effect of glycerol as preservative on donor skin

    International Nuclear Information System (INIS)

    Van Baare, J.; Ligtvoet, E.E.J.; Middelkoop, E.

    1999-01-01

    Glycerolised cadavetic allografts have been used widely since 1984 in the treatment of bum wounds. Rejections reaction to glycerolised skin were reported to be attenuated. Structural integrity of the skin was maintained and antiviral and antibacterial effects were noted. The Euro Skin Bank has gathered approximately 2000 data since 1987 concerning bacteriology cultures of glycerolised skin. These data are presented. Bacteriological data from skin donors were examined from 1987 till 1995 (1927 data). Donor skin sent to the laboratory and found to be positive for bacteria was quarantined and another container with skin samples was sent to the laboratory at a later time point. This was repeated until all cultures were negative. In 1987, 25 donors were processed without using antibiotics. These results were compared with donor skin treated with antibiotics. The average day for first culture was 19.7 ? 17.2. The average percentage of contaminated skin was 10.1? 3.7%. Antibiotics reduced contamination of glycerolised skin from 80% to 10.1%. Glycerol treatment also showed an antibacterial effect as all contaminated skin eventually became negative. Of the contaminated skin Staphylococcus epidermidis was found most frequently: in 70.7 ? 10.8% of the cases. Not all bacteria are equally sensitive to glycerol: Staphylococcus epidennidis contaminated skin became sterile after 48?24 days, whereas for Bacillus species it took 195? 1 37.9 days. We show that glycerol preservation of donor skin has important advantages over conservative methods such as cryopreservation. Initial contamination of the skin is no longer a reason to discard the material. Prolonged storage in glycerol will eliminate bacterial contamination. This allows an increase in yield of at least 10%

  13. Production of Transglutaminase by Streptoverticillium ladakanum NRRL-3191 Using Glycerol as Carbon Source

    Directory of Open Access Journals (Sweden)

    Simón J. Téllez-Luis

    2004-01-01

    Full Text Available The enzyme transglutaminase (TG catalyses the formation of covalent bonds between adjacent proteins, thereby improving the gel structure of proteins and has important applications for the food industry. The aims of this work were: (i to elucidate the effect of agitation speed during the biotechnological production of TG by Streptoverticillium ladakanum NRRL-3191 using glycerol as carbon source; and (ii to improve TG production by optimising the composition of media based on glycerol, xylose and casein. An agitation speed of 250 rpm and a fermentation time of 72 h resulted in the optimal enzymatic activity (0.628 U/mL with a productivity of 0.087 U/(mL·h. The composition of media with glycerol, xylose and casein were optimised using an experimental design to improve TG production. The model predicts that the maximum TG activity (0.725 U/mL can be obtained using glycerol 50.5 g/L and casein 20 g/L without the addition of xylose.

  14. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  15. Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels

    DEFF Research Database (Denmark)

    Simonetti, D.A.; Rass-Hansen, Jeppe; Kunkes, E.L.

    2007-01-01

    Liquid alkanes can be produced directly from glycerol by an integrated process involving catalytic conversion to H-2/CO gas mixtures (synthesis gas) combined with Fischer-Tropsch synthesis. Synthesis gas can be produced at high rates and selectivities suitable for Fischer-Tropsch synthesis (H-2/CO...... between 1.0 and 1.6) from concentrated glycerol feed solutions at low temperatures (548 K) and high pressures (1-17 bar) over a 10 wt% Pt-Re/C catalyst with an atomic Pt : Re ratio of 1 : 1. The primary oxygenated hydrocarbon intermediates formed during conversion of glycerol to synthesis gas are ethanol...... in the liquid organic effluent stream and increasing the selectivity to C5+ alkanes by a factor of 2 ( from 0.30 to 0.60). Catalytic conversion of glycerol and Fischer-Tropsch synthesis were coupled in a two-bed reactor system consisting of a Pt-Re/C catalyst bed followed by a Ru/TiO2 catalyst bed...

  16. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  17. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  18. Quantification of platelets obtained by different centrifugation protocols in SHR rats.

    Science.gov (United States)

    Yazigi Junior, João Alberto; Dos Santos, João Baptista Gomes; Xavier, Bruno Rodrigues; Fernandes, Marcela; Valente, Sandra Gomes; Leite, Vilnei Mattiolli

    2015-01-01

    To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × g and 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g + 200 × g; 200 × g + 400 × g; 200 × g + 800 × g; 400 × g + 400 × g; 400 × g + 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × g for 10 min + 400 × g for 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  19. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  20. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  1. Considerations on safeguards approach for small centrifuge enrichment facilities

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Marzo, Marco A.; Nunes, Vitorio E.

    2004-01-01

    The safeguards' objectives for enrichment facilities encompass the detection of the diversion of declared nuclear material and of facility misuse. The safeguard's approach presently applied for commercial centrifuge enrichment facilities is based on the Hexa partite Project and seems not to be directly applicable to cases of small plants. Since ABACC started its operation one of the main problems faced was the application of safeguards to small centrifuge enrichment plants for testing centrifuges in cascade mode or for small LEU production. These plants consist of a few fully independent cascades, does not operate in a routine basis and panels prevent visual access to the centrifuges and their surroundings for preserving sensitive information. For such plants misuse scenarios seems to dominate, particularly those associated with feeding the plant with undeclared LEU. This paper presents a concise analysis of misuse strategies in small centrifuge facility and alternative safeguard's approach, describing the main control elements to be applied. The particularities arising from the existence of panels or boxes covering the centrifuges are specifically addressed. Two alternatives approaches based on the application of a transitory perimeter control to increase the effectiveness of unannounced inspection and on the application of permanent perimeter control are presented. (author)

  2. Design and construction of a two-stage centrifugal pump | Nordiana ...

    African Journals Online (AJOL)

    Centrifugal pumps are widely used in moving liquids from one location to another in homes, offices and industries. Due to the ever increasing demand for centrifugal pumps it became necessary to design and construction of a two-stage centrifugal pump. The pump consisted of an electric motor, a shaft, two rotating impellers ...

  3. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    Science.gov (United States)

    2015-02-01

    3  FIGURE 5: PHOTO & PERFORMANCE PLOT OF EXISTING CENTRIFUGAL COMPRESSOR ...aerodynamically similar to an existing centrifugal compressor pictured in Figure 5. The performance plot of this compressor demonstrates a high...blade tip diameter at impeller exit Figure 5: Photo & Performance plot of existing centrifugal compressor 70% 75% 65% 60%   6

  4. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    Science.gov (United States)

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  5. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  6. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  7. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  8. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.

    Science.gov (United States)

    Li, Feng; Yin, Changji; Sun, Liming; Li, Yuanxiu; Guo, Xuewu; Song, Hao

    2018-05-01

    Microbial fuel cell (MFC) is an eco-friendly bio-electrochemical sys-tem that uses microorganism as biocatalyst to convert biomass into electricity. Glycerol, as a waste in the biodiesel refinery processes, is an appealing substrate for MFC. Nevertheless, glycerol cannot be utilized as carbon source by well-known exoelectrogens such as Shewanella oneidensis. Herein, to generate electricity by rapidly harnessing glycerol, the authors rationally constructed a Klebsiella pneumoniae-Shewanella oneidensis microbial consortium to efficiently harvest electricity from glyc-erol, in which K. pneumoniae converted glycerol into lactate, fed to S. oneidensis as carbon source and electron donor. To improve electricity output, the authors systematically engineered the consortium in terms of carbon flux distribution and efficiency of extracellular electron transfer (EET). To direct more carbon flux to lactate biosynthesis in K. pneumoniae, the authors eliminated the ethanol pathway by knocking out the alcohol dehydrogenase gene (adhE), and enhanced lactate biosynthesis by heterologously expressing a lactate dehydrogen-ase gene (ldhD) from Lactobacillus bulgaricus and a lactate transporter gene (lldP) from Escherichia coli. To facilitate EET between S. oneidensis and anode surfaces, a biosynthetic flavins pathway from Bacillus subtilis is introduced into S. oneidensis. The author further optimized the glycerol concentration, thus S. oneidensis could be continuously fed with lactate synthesized from K. pneumoniae at a constant rate. Our glycerol-fed MFC generated a maximum power density of 19.9 mW/m 2 , significantly higher than that of the wild-type consor-tium. This work suggested that engineering microbial consortia is an effi-cient strategy to expand the spectrum of usable carbon sources and promote electricity power production in MFCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Anchor-dependent lipofection with non-glycerol based cytofectins containing single 2-hydroxyethyl head groups.

    Science.gov (United States)

    Venkata Srilakshmi, Gollapudi; Sen, Joyeeta; Chaudhuri, Arabinda; Ramadas, Yerramsetti; Madhusudhana Rao, Nalam

    2002-02-15

    Detailed structure-activity investigations aimed at probing the anchor chain length dependency for glycerol-based lipofectins have been reported previously. Herein, we report on the first detailed investigation on the anchor-dependent transfection biology of non-glycerol based simple monocationic cytofectins containing single 2-hydroxyethyl head group functionality using 11 new structural analogs of our previously published first generation of non-glycerol based transfection lipids (lipids 1-11). The C-14 and C-16 analogs of DOMHAC (lipids 4 and 5, respectively) were found to be remarkably efficient in transfecting COS-1 cells. In addition, the present anchor-dependency investigation also revealed that the C-14 analog of DOHEMAB (lipid 10) is significantly efficient in transfecting both COS-1 and NIH3T3 cells. Our results also indicate that too strong lipid-DNA interactions might result in weaker transfection for non-glycerol based cationic lipids. In summary, the anchor-dependence investigations presented here convincingly demonstrate that non-glycerol based cationic lipids containing a single hydroxyethyl head group and hydrophobic C-14 or C-16 anchors are promising non-toxic cationic transfection lipids for future use in liposomal gene delivery.

  10. PARAMETRIC DIAGNOSTICS OF THE CENTRIFUGAL SUPERCHARGER'S TECHNICAL CONDITION DURING OPERATION

    Directory of Open Access Journals (Sweden)

    Regina A. Khuramshina

    2017-01-01

    Full Text Available Abstract. Objectives The main aim is to develop a mathematical model of a centrifugal compressor and carry out a parametric diagnostics of a centrifugal supercharger's technical condition during operation. Methods  A model is proposed for calculating the thermodynamic properties of natural gas, reducing the parameters of a centrifugal compressor to the initial conditions and to the rotation frequency, as well as the integral indicators of the supercharger's technical state. The technical state of the gas path of the centrifugal supercharger of the compressor unit is determined by the parametric diagnostic method. Results  The software implementation of the mathematical model of centrifugal compressor is carried out using a DVIGwT PC. The analysis of calculations indicates that the model is appropriate, with the error being due to taking into account the properties of iso-butane and i-hexane, in contrast with the VNIIGAZ technique. The evaluation studies of a centrifugal compressor's state are indicative of the presence or absence of its defects. Conclusion  Among a number of the diagnostic methods for evaluating a centrifugal supercharger, the most effective is vibrodiagnostics. However, the search for malfunctions and nascent defects in the flowing part of the centrifugal compressor cannot be limited only to vibrodiagnostic data, which provides about 60% of the reliable information about the state of the gas-air tract. About 20% of the compressor's malfunctions and approximately half of the dangerous modes of the supercharger's flow-through part is detected using thermogasdynamic parametric analysis (parametric diagnostics. The main difficulty of the control over the technical state of the flow-through part of the centrifugal supercharger is in the complication of the quantitative evaluation of the processes taking place in the supercharger, which leads to problems in providing reliable diagnosis during a reasonable period of time.

  11. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    Science.gov (United States)

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  12. Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures

    Science.gov (United States)

    Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe

    2015-01-01

    Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120

  13. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    Science.gov (United States)

    Salim, M. S.; Abd Malek, M. F.; Sabri, Naseer; Omar, M. Iqbal bin; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  14. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    International Nuclear Information System (INIS)

    Salim, M S; Iqbal bin Omar, M; Malek, M F Abd; Mohamed, Latifah; Sabri, Naseer; Juni, K M

    2013-01-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  15. Probing molecular potentials with an optical centrifuge

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Hepburn, J. W.; Milner, V.

    2017-09-01

    We use an optical centrifuge to excite coherent rotational wave packets in N2O, OCS, and CS2 molecules with rotational quantum numbers reaching up to J ≈465 , 690, and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at internuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.

  16. Rotating stall simulation for axial and centrifugal compressors

    Science.gov (United States)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  17. Conversion of Crude Glycerol to 1, 3-Propanediol by Newly Isolated Kluyvera Cryocrescens

    International Nuclear Information System (INIS)

    Loh, S.K.; Stasha Eleanor Rosland Abel

    2016-01-01

    Bio diesel, an environmental-friendly and renewable fuel, has gained market share and popularity as an alternative to fossil fuel. While expanding its production globally to meet the demand, the production of its principal co-product, crude glycerol which is surplus and under utilised, has affected both the economic and environment. Crude glycerol has limited usage due to the impurities present. It cannot be disposed naturally in the environment and its storage and processing are very costly. Glycerol with its triglyceride backbone serves as a natural metabolite susceptible to microbial degradation into high value-added compounds. In this study, a novel 1,3-PD producing bacterial strain isolated from palm oil mill effluent was used in microbial fermentation of crude glycerol. The strain, identified as Kluyvera cryocrescens NBRC 102467 based on its 16S ribosomal ribonucleic acid sequences, was capable of producing 1,3-PD (5.28 g litre -1 ) along with by-products, butanol (0.34 g litre -1 ) and acetone (0.31 g litre -1 ) after an optimum 48 hour of incubation at 30 degree Celsius in agitated medium enriched with crude glycerol at 150 revolutions per minute. Interestingly, its productivity peaked at the 6 hour reaching 0.28 g litre -1 hour -1 and declined thereafter. In future, this strain has potential to be used in the bioprocess of interest. (author)

  18. Pharmacological investigations of Punica granatum in glycerol-induced acute renal failure in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Amteshwar Jaggi; Singh, Nirmal

    2011-09-01

    The present study was designed to investigate the ameliorative potential and possible mechanism of hydroalcoholic extract of flowers of P. granatum in glycerol-induced acute renal failure (ARF) in rats. The rats were subjected to rhabdomyolytic ARF by single intramuscular injection of hypertonic glycerol (50% v/v; 8 ml/kg) and the animals were sacrificed after 24 hours of glycerol injection. The plasma creatinine, blood urea nitrogen, creatinine clearance, and histopathological studies were performed to assess the degree of renal injury. Pretreatment with hydroalcoholic extract of flowers of P. granatum (125 and 250 mg/kg p.o. twice daily for 3 days) significantly attenuated hypertonic glycerol-induced renal dysfunction in a dose-dependent manner. BADGE (Bisphenol-A-diglycidyl ether) (30 mg/kg), a peroxisome proliferator-activated receptor (PPAR)-γ antagonist, and N(omega)-nitro-l-arginine-methyl ester (L-NAME) (10, 20, and 40 mg/kg), nitric oxide synthase inhibitor, were employed to explore the mechanism of renoprotective effects of Punica granatum. Administration of BADGE (30 mg/kg) and L-NAME (40 mg/kg) abolished the beneficial effects of P. granatum in glycerol-induced renal dysfunction. Hydroalcoholic extract of flowers of P. granatum has ameliorative potential in attenuating myoglobinuric renal failure and its renoprotective effects involve activation of PPAR-γ and nitric oxide-dependent signaling pathway.

  19. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  20. Experimental study on enriching 12C by centrifuge method

    International Nuclear Information System (INIS)

    Xiao Huaxian

    1994-07-01

    The diamond made from the highly enriched 12 C, whose thermal conductivity and electric insulativity are much better than that of natural diamond, has widely uses in new and high technology. In many enriching 12 C methods, the gas centrifuge method is superior to others. After selecting the appropriate process gas and solving key problems, such as feed and extract, the separation experiments are performed by a single stage of centrifuge. To increase the separation capacity of single machine, various parameters in the centrifugal separation are optimized, and appropriate mechanical drive, thermal drive, hold-up and process parameters are selected. The optimal operating condition of single machine is also obtained in the cascade. Thus, highly enriched 12 C is produced in the centrifuge cascade

  1. Convective instabilities in liquid centrifugation for nuclear wastes separation

    Energy Technology Data Exchange (ETDEWEB)

    Camassa, R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The separation of fission products from liquid solutions using centrifugal forces may prove an effective alternative to chemical processing in cases where radioactive materials necessitate minimal mixed-waste products or when allowing access to sophisticated chemical processing is undesirable. This investigation is a part of the effort to establish the feasibility of using liquid centrifugation for nuclear waste separation in the Accelerator Driven Energy Production (ADEP) program. A number of fundatmental issues in liquid centrifugation with radioactive elements need to be addressed in order to validate the approach and provide design criteria for experimental liquid salt (LiF and BeF{sub 2}) centrifuge. The author concentrates on one such issue, the possible onset of convective instabilities which could inhibit separation.

  2. Biodiesel Reactor Design with Glycerol Separation to Increase Biodiesel Production Yield

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2013-09-01

    Full Text Available The study consisted of reactor design used for transesterification process, effect of glycerol separation ontransesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed byintegrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that thereactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i the increase of biodiesel productionfrom 42.37% to 49.34%, and (ii the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering.

  3. Effects of sorbitol and glycerol on the structure, dynamics, and stability of Mycobacterium tuberculosis pyrazinamidase

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Khajehzadeh

    2016-01-01

    Conclusion: It can be concluded that the native conformation of the enzyme was stabilized in the sorbitol and glycerol and tend to exclude from the PZase surface, forcing the enzyme to keep it in the compactly folded conformation. The glycerol molecules stabilized PZase by decreasing the loops flexibility and then compacting the enzyme structure. It appears that more stability of PZase in glycerol solution correlates with its amphiphilic orientation, which decreases the unfavorable interactions of hydrophobic regions.

  4. Human Powered Centrifuge

    Science.gov (United States)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  5. Aqueous-phase reforming of crude glycerol : effect of impurities on hydrogen production

    NARCIS (Netherlands)

    Boga, Dilek A.; Liu, Fang; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    The aqueous-phase reforming (APR) of a crude glycerol that originates from an industrial process and the effect of the individual components of crude glycerol on APR activity have been studied over 1 wt% Pt/Mg-Al) O, 1 wt% Pt/Al2O3, 5 wt% Pt/Al2O3 and 5 wt% Pt/C catalysts at 29 bar and 225 degrees

  6. A fuzzy controlled three-phase centrifuge for waste separation

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge

  7. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Science.gov (United States)

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    International Nuclear Information System (INIS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-01-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  9. Quasi‐steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-01-01

    We have developed the quasi‐steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi‐steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  10. Quasi-steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-11-01

    We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  11. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  12. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  13. New type of centrifugal extractor

    International Nuclear Information System (INIS)

    Miyauchi, T.; Tolich, A.

    1975-01-01

    The main principles of a centrifugal extractor design which can be used in the reprocessing of spent fuel with high degree of burning out are given. The extractor consists of two rotating coaxial cylinders. The contact of liquid phases is done in the circular space between the cylinders. By the cylinder rotating the phases are dispersed and the interface, as well as the extraction rate is increased. The given principles of the extractor design are realized in two simplified laboratory installations. The preliminary data obtained point out that much greater rates of the phases contact are achieved in centrifugal extractors than in extraction columns

  14. Centrifugation and the Manhattan Project

    Science.gov (United States)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  15. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    Science.gov (United States)

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  16. Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.

    Science.gov (United States)

    DENNISON, D S

    1961-09-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.

  17. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    Science.gov (United States)

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Upgrading Fast Pyrolysis Oil via Hydrodeoxygenation and Thermal Treatment: Effects of Catalytic Glycerol Pretreatment

    NARCIS (Netherlands)

    Reyhanitash, Ehsan; Tymchyshyn, M.; Yuan, Zhongshun; Albion, K.; van Rossum, G.; Xu, C.

    2014-01-01

    The effects of stabilizing fast pyrolysis oil (PO) with glycerol via catalytic glycerol pretreatment on upgrading via hydrodeoxygenation (HDO) or thermal treatment (TT) were studied. Nonstabilized (original) fast pyrolysis oil was also upgraded via HDO or TT to obtain benchmarks. Generally, HDO

  19. Integral process of obtaining glycerol as a by-product of biodiesel production from castor oil

    Directory of Open Access Journals (Sweden)

    Leonel Romero

    2012-12-01

    Full Text Available The biodiesel is obtained from about 10 years ago in Europe, and now that it has taken hold as fuel for diesel engines, it is expected a clear increase in the production of this class of fuels in a the near future. The biodiesel is derived from the transesterification reaction of castor oil with methanol, which is the main by-product the glycerol with an approximate content of 10%. Besides catalyst residuals, soaps, methanol traces, mono and diglycerides in small percentages are presented. This study proposes the separation, purification and characterization of the glycerol obtained from the transesterificación reaction of the castor oil, in order to be able to market it in the national or international market, so that it fulfills the standards of quality, which means getting a pure glycerol and the appropriate physico-chemical characteristics and techniques. The glycerin-methyl esters separation is carried out by decantation being obtained a percentage of around 70% glycerol. This percentage is subsequently increased through the purification process, using hydrochloric acid. Glycerol characterization was carried out by physicochemical and organoleptic tests. The purification process allowed us to obtain a glycerol with a percentage of purity close to 98%. It was also tested by comparison with theoretical data that remnants influenced in the physiochemical properties

  20. Synthesis and characterization of unsatured polyesters from the reaction of glycerol with fumaric acid

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Brioude, Michel M.; Agrela, Sara P.; Rosa, Leandro O.S.; Jose, Nadia M.; Prado, Luis A.S.A.

    2009-01-01

    The biodiesel production from vegetable oils has been encouraged by the Brazilian Federal Government, since biodiesel is a renewable fuel. The utilization of glycerol (by-product of biodiesel production) has gained importance, since it corresponds to 30 wt-% of the produced biodiesel. In this context, the present work aims at preparing and characterizing polymers based on glycerol, which could have an application. In this way, the production of biodiesel could be further stimulated. Unsaturated polyesters were preparing by esterification of glycerol with fumaric acid. The reaction mixture was heated up to 240 deg C. After the polymerization was complete, the material was cast onto Teflon molds. The materials were characterized by Infrared Spectroscopy, X-ray diffraction. The thermal stability was evaluated by thermogravimetric analysis and differential scanning calorimetry. The materials showed thermal stability comparable to alkyd thermoset derived from maleic anhydride and glycerol. (author)

  1. CHANGES OF GLYCEROL CONTENT IN DIAPAUSE LARVAEOF THE ORANGE WHEAT BLOSSOM MIDGE, SITODIPLOSIS MOSELLANA (GEHIN) IN VARIOUS SEASONS

    Institute of Scientific and Technical Information of China (English)

    Jun-xiangWu; FengYuan

    2004-01-01

    The glycerol contents in diapause larvae of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin), collected from various seasons, were measured. The results showed that there was less glycerol content in larvae during living on the wheat head. Content of glycerol began to increase significantly when the larvae left the wheat head and entered the soil. A change trend of upper- lower- upper- lower in larvae glycerol contents during diapause in soil was observed from June to April of next year. More glycerol could be examined in larvae collected in summer and winter than in spring and autumn. There was not more glycerol in cocooned larvae than that in non-cocooned larvae during various seasons from the point of statistics. Comparing the glycerol content of larvae being diapause in the first year with that of larvae in the second year, there was yet no obvious difference when larvae were collected in the same season belonged to different years. Therefore, it is shown that the content of glycerol in larvae of the wheat midge in diapause is affected mainly by the seasons or diapause intensity.

  2. Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilapia.

    Science.gov (United States)

    da Costa, Diego Vicente; Dias, Jorge; Colen, Rita; Rosa, Priscila Vieira; Engrola, Sofia

    2017-04-01

    This study investigated the effect of dietary glycerol on the metabolism of juvenile tilapia (Oreochromis mossambicus) and to determine its metabolic fate. The experimental diets contained 0% (Group CON), 5% (Group G5) and 15% glycerol (Group G15) and were fed for 40 d to apparent satiation, three times a day. For the metabolism trials, six fish from each treatment were randomly chosen and tube-fed with five pellets labelled with 14 C-glycerol [ 14 C(U)] in order to evaluate the absorption, catabolism, retention and partition of glycerol in muscle and liver. Group G5 presented the highest 14 C-glycerol retention and the lowest catabolism, with no significant differences between Groups CON and G15. In Group CON, the highest percentage of 14 C was incorporated in muscle lipids; with no significant differences between Groups G5 and G15. Furthermore, no treatment effects were found for hepatic 14 C-lipid and for 14 C in hepatic and muscle non-lipid extract. In the non-lipid and non-protein fraction, the highest radioactivity was measured in livers of Group G5, however no significant differences were found for this fraction between Groups CON and G15 in liver and for all treatments in muscle. The results of the present study can have practical implications in diet formulations for tilapia and for other aquaculture species with similar feeding pattern since juvenile tilapia are able to metabolise dietary glycerol into lipids, protein and/or carbohydrates and to use it as energy source.

  3. Halophilic biohydrogen and 1,3-propanediol production from raw glycerol: A genomic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kivisto, A.

    2013-11-01

    Glycerol is produced in large amounts as a by-product in biodiesel industry (10 kg per 100 kg biodiesel). By-products and waste materials are typically economical substrates for bioprocesses. Furthermore, microorganisms are able to combine the degradation of organic material with production of a wide range of metabolites and other cellular products. The current biotechnological interest of industrial glycerol lies on bioprocesses yielding environmentally friendly energy carrier molecules (hydrogen, methane, ethanol, butanol) and reduced chemicals (1,3-propanediol, dihydroxyacetone). Industrial glycerol also called as raw or crude glycerol, however, is a challenging substrate for microorganisms due to its impurities including alcohol, soaps, salts and metals. Halophiles (the salt-loving microorganisms) require salt for growth and heavy metal resistances have been characterized for numerous halophiles. Therefore, halophiles are potentially useful for the utilization of raw glycerol from biodiesel waste streams without pre-processing. Another challenge for large-scale microbial bioprocesses is a potential contamination with unfavorable microorganisms. For example, H{sub 2}-producing systems tend to get contaminated with H{sub 2}-consuming microorganisms. Extremophiles are organisms that have been adapted for life under extreme conditions, such as high salinity, high or low temperature, asidic or basic pH, dryness or high pressure. For extremophilic pure cultures contamination and thus the need to ensure a sterile environment might not be a problem due to the extreme process conditions that efficiently prevent the growth of most other bacteria. In addition, hypersaline environments (above 12 % NaCl) do not support the growth of H{sub 2} utilizing methanogens due to bioenergetic reasons. Halophilic fermentative H{sub 2} producers, on the other hand, have been shown to be active up to near salt saturation. The aims of the present study can be divided into two categories

  4. Conversion of the biodiesel by-product glycerol by the non-conventional yeast Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying

    production process. Since the volume of the glycerol by-product has exceeded the current market need, biodiesel producers are looking for new methods for sustainable glycerol management and improving the competitiveness of the biodiesel industries. The EU Commission funded GLYFINERY project is one initiative...

  5. Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2012-01-01

    In this article, hybrid steam reforming (HSR) of desulphurized methane, together with crude glycerol, in existing commercial steam reformers to produce synthesis gas is proposed. The proposed concept consists of a gasifier to produce vapors, gases, and char from crude glycerol, which is coupled with

  6. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  7. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    Science.gov (United States)

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao.

    Science.gov (United States)

    Zhang, Yufan; Smith, Philip; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    Previous work has implicated glycerol-3-phosphate (G3P) as a mobile inducer of systemic immunity in plants. We tested the hypothesis that the exogenous application of glycerol as a foliar spray might enhance the disease resistance of Theobroma cacao through the modulation of endogenous G3P levels. We found that exogenous application of glycerol to cacao leaves over a period of 4 days increased the endogenous level of G3P and decreased the level of oleic acid (18:1). Reactive oxygen species (ROS) were produced (a marker of defence activation) and the expression of many pathogenesis-related genes was induced. Notably, the effects of glycerol application on G3P and 18:1 fatty acid content, and gene expression levels, in cacao leaves were dosage dependent. A 100 mm glycerol spray application was sufficient to stimulate the defence response without causing any observable damage, and resulted in a significantly decreased lesion formation by the cacao pathogen Phytophthora capsici; however, a 500 mm glycerol treatment led to chlorosis and cell death. The effects of glycerol treatment on the level of 18:1 and ROS were constrained to the locally treated leaves without affecting distal tissues. The mechanism of the glycerol-mediated defence response in cacao and its potential use as part of a sustainable farming system are discussed. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  9. Mechanical suitability of glycerol-preserved human dura mater for construction of prosthetic cardiac valves.

    Science.gov (United States)

    McGarvey, K A; Lee, J M; Boughner, D R

    1984-03-01

    We have examined the tensile viscoelastic properties of fresh and glycerol-preserved human dura mater, and correlated the results with structural information from the scanning electron microscope. The interwoven laminar structure of dura produces rather high flexural stiffness, while the crossed-fibrillar laminae produce planar mechanical isotropy. Glycerol storage shifts the stress-strain curve to lower strain, reduces stress relaxation and creep, and lowers the ultimate tensile strength and strain at fracture. These changes may be due to glyceraldehyde crosslinking, or to increased interfibrillar friction. The latter hypothesis suggests that glycerol storage may reduce the fatigue lifetime of the tissue.

  10. The role of genotype in protection against gamma-radiation of E. coli cells by glycerol

    International Nuclear Information System (INIS)

    Amirtaev, K.G.; Krasavin, E.A.; Kozubek, S.; Tokarova, B.; Nyamsambuu, A.

    1984-01-01

    The protective effect of glycerol and anoxia on the survival of γ-irradiated E.coli cells of wild type, recA - , polA - mutants has been investigated. The protection by glycerol increases from recA - mutant to wild type and polA - mutant with dose modifying factors (DMF) being 2.03+-0.12, 2.52+-0.25, and 2.80+-0.26. Analogically the protection by hypoxia is genetically determined, too. The value of oxygen effect increases from 1.77+-0.23 for recA - mutant to 3.38+-0.29 for wild type cells and 4.66+-0.41 for polA - -mutant. The oxygen independent component of glycerol protection is geltically independent (DMF=2). Possible mechanisms of genetic determination of the protection by glycerol and anoxia are discussed

  11. Deep-body temperature changes in rats exposed to chronic centrifugation.

    Science.gov (United States)

    Oyama, J.; Platt, W. T.; Holland, V. B.

    1971-01-01

    Deep-body temperature was monitored continuously by implant biotelemetry in unrestrained rats before, during, and after exposure to prolonged and almost continuous centrifugation. Rats subjected to centrifugation for the first time at various G loads ranging up to 2.5 G show a rapid and significant fall in temperature which is sustained below normal levels for periods as long as 3 days. The magnitude of the temperature fall and the recovery time were generally proportional to the G load imposed. The initial fall and recovery of body temperature closely parallels the decrease in food consumption and to a lesser degree the decrease in body mass experienced by centrifuged rats. After exposure to 2 weeks of centrifugation, rats show either no change or only a small transient increase in temperature when decelerated to a lower G level or when returned to normal gravity. Rats repeatedly exposed to centrifugation consistently showed a smaller temperature response compared to the initial exposure. Implant temperature biotelemetry has been found to be a sensitive, reliable, and extremely useful technique for assessing the initial stress of centrifugation and in monitoring the time course of recovery and acclimation of rats to increase as well as*decrease G.

  12. Efficient production of succinic acid in immobilized fermentation with crude glycerol from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nik Nor Aziati, A.A.

    2017-10-01

    Full Text Available The increase in the price of commercial succinic acid has necessitated the need for its synthesis from waste materials such as glycerol. Glycerol residue is a waste product of Oleochemical production which is cheaply available and a very good source of carbon. The use of immobilized cells can further reduce the overall cost of the production process. This study primarily aims to produce succinic acid from glycerol residue through the use of immobilized Escherichia coli in a batch fermentation process. The parameters which affect bacterial fermentation process such as the mass substrate, temperature, inoculum size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT method. The result of the screening process shows that a substrate (glycerol concentration of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid concentration of 117.99 g/L. The immobilized cells were found to be stable as well as retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an advantage over the free cell system. Therefore, conclude that using immobilized cells can contribute immensely to the cost-effective production of succinic acid from glycerol residue.

  13. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant.

    Science.gov (United States)

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai

    2017-11-01

    Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Centrifugal compressor case study

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, B.

    2010-10-15

    Three centrifugal compressors at a pipeline station were retrofitted with higher head impellers in 2008. The owners of the station experienced vibration problems over the following 2 years that caused transmitter and position failures that were assumed to be flow-induced pulsations. A vibration and pulsation analysis indicated that the shell mode piping vibration excited by the blade pass pulsation was responsible for the failures. This study outlined factors that contributed to the vibration problem. Interferences between the compressor and shell mode piping natural frequencies were predicted, and potential excitation sources were examined. The study demonstrated how centrifugal vibration analyses can be used during the design phase to avoid costly adjustments. Recommendations included the addition of stiffeners to alter the shell modes, and the addition of constrained layer damping material to reduce resonant responses. 2 refs., 1 tab., 12 figs.

  15. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  16. Flow cytometric viability assessment and transmission electron microscopic morphological study of Bacteria in Glycerol

    NARCIS (Netherlands)

    Saegeman, V.S.M.; Vos, de R.; Tebaldi, N.D.; Wolf, van der J.M.; Bergervoet, J.H.W.; Verhaegen, J.; Lismont, D.; Verduyckt, B.; Ectors, N.L.

    2007-01-01

    Human cadaveric skin allografts are used in the treatment of burns and can be preserved in glycerol at high concentrations. Previously, glycerol has been attributed some antimicrobial effect. In an experimental set-up, we aimed at investigating this effect of prolonged incubation of bacteria in 85%

  17. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  18. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Energy Technology Data Exchange (ETDEWEB)

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  19. Compound drum for a centrifugal separator

    International Nuclear Information System (INIS)

    1972-01-01

    This invention concerns a method for centrifugal separation of UF 6 . The invention provides a composite drum capable of rapid rotation for use in a centrifugal separating arrangement for gaseous materials. The drum is provided with a first drum section comprised of a metal and a second drum section comprised of a fiber-reinforced synthetic material. The second drum section is applied on the outside peripheral surface of the first drum section, where the second drum section is provided with a number of annular components, each of which is shorter than the first drum section

  20. Glycerol as a carbon source for xantan production by Xanthomonas campestris isolates

    Directory of Open Access Journals (Sweden)

    Bajić Bojana Ž.

    2015-01-01

    Full Text Available The success of xanthan biosynthesis depends on several factors, most importantly the genetic potential of the production microorganism and cultivation media composition. Cultivation media composition affects the yield and quality of the desired product as well as production costs. This is why many studies focus on finding cheap alternative raw materials, especially carbon sources, to replace commercially used glucose and sucrose. In addition to the Xanthomonas campestris ATCC 13951 which is the primary industrial production microorganism, other Xanthomonas strains can produce xanthan as well. Under the same conditions, different strains produce different amounts of the biopolymer of varying quality. The aim of this paper is to compare producibility of phytopathogenic X. campestris strains, isolated from the environment with the reference X. campestris ATCC 13951 strain and to estimate the possibility of xanthan production using alternative glycerol-based media than the synthetic glucose-based media. Submerged cultivation on the medium based on glucose or glycerol (2.0 %w/v was performed using the reference strain and eight isolated X. campestris strains. In order to assess the success of biosynthesis, xanthan yield and rheological properties were determined. Strains isolated from the environment produced yields between 2.98 g/L and 12.17 g/L on the glucose-based medium and 1.68 g/L and 6.31 g/L on the glycerol-based medium. Additionally, X. campestris ATCC 13951 provided the highest yield when using glucose (13.24 g/L, as well as glycerol-based medium (7.44 g/L. The obtained results indicate that in the applied experimental conditions and using all tested strains, glycerol is viable as a carbon source for the production of xanthan.

  1. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications.

    Science.gov (United States)

    Tan, A C W; Polo-Cambronell, B J; Provaggi, E; Ardila-Suárez, C; Ramirez-Caballero, G E; Baldovino-Medrano, V G; Kalaskar, D M

    2018-02-01

    In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  2. Studies on distribution and excretion of 14C-glycerol in rats, rabbits and mice

    International Nuclear Information System (INIS)

    Takanashi, Shigeru; Kamiyama, Hiroshi; Suzuki, Hidetaka; Tohira, Yasuo; Ogawa, Machiko

    1978-01-01

    Tissue distribution and excretion of uniformly labeled 14 C-glycerol were investigated using rats, rabbits and mice. Blood disappearance half life of 14 W/V% 14 C-glycerol in mice (1 ml/head), rats (1 ml/head) and rabbits (2 ml/head) given intravenously was 0.4, 1.8 and 2.4 hours, respectively. When 14 W/V% 14 C-glycerol was injected in rats (1 ml/head) and rabbits (2 ml/head), 65% of administered radioactivity was excreted in to expired air within 48 hrs. This suggests that glycerol is mostly metabolised via the Embden-Meyehof pathway and the TCA cycle, and finally converted to CO 2 and H 2 O. At a low dose, the conversion ratio to CO 2 was greater than the case of a high dose, and a inverse relationship was observed between the CO 2 -conversion ratio and the dose. At levels above 1 ml of 56 W/V% glycerol, an approximately constant portion of the administered dose appeared to be oxidized. The results of the whole body autoradiogram showed the distribution of the radioactivity throughout the body. Disappearance of radioactivity from liver and blood was rapid, but transport to brain, excretion to the salivary gland, and secretion to Harder's gland were slow. The distribution in tissues showed that the highest distribution of 14 C-glycerol was found in the carcass; liver showed the next highest distribution; high distribution was also found initially in the kidneys; brain, heart, lung and spleen showed low distribution, but they decreased with time elapsed. Disappearance of radioactivity from the brain was relatively slower than the liver. Besides, another result indicated that in pregnant mice 14 C-glycerol did not cross the placenta very quickly. The fact that the apparent disappearance rate from the foetuses does not seem to parallel that of the placenta is suggestive of selective accumulation in foetal tissues. (auth.)

  3. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays

    Directory of Open Access Journals (Sweden)

    Yuyi Wang

    2018-06-01

    Full Text Available Microfluidic systems have been regarded as a potential platform for high-throughput screening technology in drug discovery due to their low sample consumption, high integration, and easy operation. The handling of small-volume liquid is an essential operation in microfluidic systems, especially in investigating large-scale combination conditions. Here, we develop a nanoliter centrifugal liquid dispenser (NanoCLD coupled with superhydrophobic microwell array chips for high-throughput cell-based assays in the nanoliter scale. The NanoCLD consists of a plastic stock block with an array of drilled through holes, a reagent microwell array chip (reagent chip, and an alignment bottom assembled together in a fixture. A simple centrifugation at 800 rpm can dispense ~160 nL reagents into microwells in 5 min. The dispensed reagents are then delivered to cells by sandwiching the reagent chip upside down with another microwell array chip (cell chip on which cells are cultured. A gradient of doxorubicin is then dispensed to the cell chip using the NanoCLD for validating the feasibility of performing drug tests on our microchip platform. This novel nanoliter-volume liquid dispensing method is simple, easy to operate, and especially suitable for repeatedly dispensing many different reagents simultaneously to microwells.

  4. Centrifuge impact cratering experiment 5

    Science.gov (United States)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  5. Separation of DNA-dependent polymerate activities in Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Kitayama, S.; Matsuyama, A.

    1977-01-01

    DNA polymerase activities in Micrococcus radiodurans were separated into two fractions after purification more than 2000 fold. They differ in pH optimum and residual activities in the absence of a full deoxyribonucleoside triphosphates complement. NAD partly inhibited one of the activities. Both activities were eluted as a single peak on gel filtration and sedimented at the same rate on glycerol gradient centrifugation. Molecular weight 140000 was calculated from Stokes radius and sedimentation constant. Deoxyribonuclease activity was detected on one of the polymerase activities which preferentially degraded double-stranded DNA. Priming activity of nicked DNA was reduced by γ-radiation. These results have been related to the possible roles in repair synthesis in vivo or DNA synthesis in permeable cells of M. radiodurans

  6. Separation of DNA-dependent polymerase activities in Micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, S; Matsuyama, A [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1977-03-02

    DNA polymerase activities in Micrococcus radiodurans were separated into two fractions after purification more than 2000 fold. They differ in pH optimum and residual activities in the absence of a full deoxyribonucleoside triphosphates complement. NAD partly inhibited one of the activities. Both activities were eluted as a single peak on gel filtration and sedimented at the same rate on glycerol gradient centrifugation. Molecular weight 140000 was calculated from Stokes radius and sedimentation constant. Deoxyribonuclease activity was detected on one of the polymerase activities which preferentially degraded double-stranded DNA. Priming activity of nicked DNA was reduced by ..gamma.. radiation. These results have been related to the possible roles in repair synthesis in vivo or DNA synthesis in permeable cells of M. radiodurans.

  7. Differences in [14C]glycerol utilization in normal and familial hypercholesterolemic fibroblasts

    International Nuclear Information System (INIS)

    Shireman, R.B.; Durieux, J.

    1991-01-01

    It is known that cultured fibroblasts from familial hypercholesterolemia (FH) patients lack the normal cell receptor for low density lipoprotein (LDL) and that the absence of receptor-mediated transport of LDL cholesterol into these cells results in increased cellular synthesis of cholesterol. After 20 h perincubation in lipid-free medium, cultured FH fibroblasts incorporated significantly greater amounts of [ 14 C]glycerol into cellular lipids than did normal fibroblasts. Relative to the control medium which contained only bovine serum albumin (BSA), preincubation with 5% fetal bovine serum or 50 micrograms LDL/ml decreased [ 14 C]glycerol incorporation by both cell types. FH cells utilized more [ 14 C]glycerol for phospholipid synthesis and less for triglyceride synthesis than normal cells. This study indicates that LDL may be important in the transport of glycerides, as well as cholesterol, to cells

  8. Centrifugal pumps: fundamentals and classification

    International Nuclear Information System (INIS)

    Solar Manuel, A. M.

    2009-01-01

    Centrifugal pumps are usually employed to impulse water to elevate it, dose it or give it pressure or speed. They can be used with clean water or loaded with high solid concentration and don't work properly with air or another gas flow. There are another less used pumps, coming from volumetric or ram pumps to magnetic ones for specific uses. Centrifugal ones are rotokinetic pumps, like peripherical or lateral channel pumps. They work in a different way that non rotational kinetic ones and static ones. The work approaches their pre definition, selection, installation, operation and maintenance. It also review their morphology, hidromechanic principles and the basic elements pumps are made of. (Author)

  9. Automated cellular sample preparation using a Centrifuge-on-a-Chip.

    Science.gov (United States)

    Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino

    2011-09-07

    The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.

  10. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    Science.gov (United States)

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  11. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Alex M. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Cheng, Chi-Yuan [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Israelachvili, Jacob N. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Han, Songi [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.

  12. Multifunctional centrifugal grinding unit

    Science.gov (United States)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  13. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  14. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M.

    2012-01-01

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  15. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  16. Centrifugal compressor design for electrically assisted boost

    International Nuclear Information System (INIS)

    Yang, M Y; Martinez-Botas, R F; Zhuge, W L; Qureshi, U; Richards, B

    2013-01-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically

  17. Effects of 2-deoxy-D-glucose, oligomycin and theophylline on in vitro glycerol metabolism in rat adipose tissue: response to insulin and epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, M C; Herrera, E [Barcelona Univ. (Spain). Catedra de Fisiologia General

    1976-01-01

    The effects of 2-deoxy-D-glucose (2DG), oligomycin and theophylline on the in vitro production and metabolism of glycerol and its response to insulin and epinephrine were studied in epididymal fat pads from fed rats. 2-DG failed to affect basic or epinephrine-stimulated glycerol production but decreased the uptake of 1-/sup 14/C-glycerol by the tissue and its conversion to glyceride-glycerol. Oligomycin also failed to affect the basic production of glycerol, but it inhibited the affect of epinephrine on this parameter as well as the uptake and utilization of 1-/sup 14/C-glycerol. Theophylline enhanced the production of glycerol by the tissue, and this effect was not further augmented by epinephrine. Theophylline also inhibited the uptake and utilization of 1-/sup 14/C-glycerol; the most pronounced effect of theophylline was observed in the formation of /sup 14/C-fatty acids from 1-/sup 14/C-glycerol in the presence of glucose. Insulin, but not epinephrine, decreased the inhibitory effect of theophylline on glycerol utilization. It is concluded that these compounds affect the ability of adipose tissue to metabolize glycerol more intensely than the ability to release it through lipolysis. The pathway for glycerol utilization in adipose tissue appears to be more sensitive to changes in the availability of ATP than the mechanisms for the release of glycerol from the tissue.

  18. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    Science.gov (United States)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  19. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  20. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  1. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    Science.gov (United States)

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  2. Poly(glycerol adipate)-fatty acid esters as versatile nanocarriers

    DEFF Research Database (Denmark)

    Weiss, Verena M; Naolou, Toufik; Hause, Gerd

    2012-01-01

    Poly(glycerol adipate) (PGA) is a biodegradable polymer with promising features for nanoparticulate drug carrier systems. By acylation of PGA with fatty acids, composite systems with amphiphilic properties can be obtained. Variation of the fatty acid (laurate, stearate and behenate) and their sub...... and the nanoparticles. With their diverse particle shapes and internal structures as well as their different thermal behavior, aggregate states and polarities, the systems offer promising possibilities as delivery systems for lipophilic, amphiphilic and water soluble drugs.......Poly(glycerol adipate) (PGA) is a biodegradable polymer with promising features for nanoparticulate drug carrier systems. By acylation of PGA with fatty acids, composite systems with amphiphilic properties can be obtained. Variation of the fatty acid (laurate, stearate and behenate...

  3. Thermally-controlled centrifuge for isotopic separation

    International Nuclear Information System (INIS)

    Cenedese, A.; Cunsolo, D.

    1976-01-01

    Among the various methods proposed to obtain lighter component enrichment in the isotopic separation of uranium, ultracentrifugation is becoming more and more interesting today, as this process becomes a useful alternate method to gaseous diffusion. The ultracentrifuge main gas-dynamic features are investigated in the present study. In particular, the field inside the centrifuge has been subdivided into three axial zones: an internal central zone, characterized by an essentially axial flow; two external zones, near the two caps of the centrifuge; two intermediate zones, of a length of the order of the radius. For the analytical solution the linearized Navier-Stokes equations have been considered. The central zone flow is solved by separating the independent variables; the corresponding eigenvalue problem has been solved numerically. A series of eigensolutions which satisfy boundary conditions at the walls of the cylinder has been calculated. An integral method for the superimposition of the above mentioned eigensolutions is proposed in order to satisfy the conditions at the tops for thermally-controlled centrifuges. (author)

  4. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    Stevens, B.G.; Stepan, D.J.; Hetland, M.D.

    1998-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  5. Influence of the centrifuge time of primary plasma tubes on routine coagulation testing.

    Science.gov (United States)

    Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Manzato, Franco; Guidi, Gian Cesare

    2007-07-01

    Preparation of blood specimens is a major bottleneck in the laboratory throughput. Reliable strategies for reducing the time required for specimen processing without affecting quality should be acknowledged, especially for laboratories performing stat analyses. The present investigation was planned to establish a minimal suitable centrifuge time for primary samples collected for routine coagulation testing. Five sequential primary vacuum tubes containing 0.109 mol/l buffered trisodium citrate were collected from 10 volunteers and were immediately centrifuged on a conventional centrifuge at 1500 x g, at room temperature for 1, 2, 5, 10 and 15 min, respectively. Hematological and routine coagulation testing, including prothrombin time, activated partial thromboplastin time and fibrinogen, were performed. The centrifugation time was inversely associated with residual blood cell elements in plasma, especially platelets. Statistically significant variations from the reference 15-min centrifuge specimens were observed for fibrinogen in samples centrifuged for 5 min at most and for the activated partial thromboplastin time in samples centrifuged for 2 min at most. Meaningful biases related to the desirable bias were observed for fibrinogen in samples centrifuged for 2 min at most, and for the activated partial thromboplastin time in samples centrifuged for 1 min at most. According to our experimental conditions, a 5-10 min centrifuge time at 1500 x g may be suitable for primary tubes collected for routine coagulation testing.

  6. Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis.

    Science.gov (United States)

    Yen, Hong-Wei; Yang, Ya-Chun; Yu, Yi-Huan

    2012-10-01

    Single cell oils (SCO) produced from oleaginous microorganisms are a potential alternative oil feedstock for biodiesel production. The worldwide production of glycerol, a 10% (w/w) byproduct produced in the transesterfication process of oils converted to biodiesel, is increasing as more biodiesel is being produced. For the purposes of cost reduction, crude glycerol was regarded as a suitable carbon source for the cultivation of Rhodotorula glutinis. In addition to using renewable crude glycerol, waste solution collected from the brewing company (called thin stillage) was adopted as a substitute to replace a costly nitrogen source used in the medium. The results of using mixture of crude glycerol and thin stillage indicated about a 27% increase in total biomass as compared to that of using crude glycerol with a standard medium. Using glycerol instead of glucose as the carbon source could also alter the lipid profile, resulting in an increase in linolenic acid (C18:2) to comprise over 20% of the total lipid. Successfully using renewable crude glycerol and thin stillage for the cultivation of oleaginous microorganisms could greatly enhance the economic competition of biodiesel produced from SCO. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Scaling of rotation and isotope separation in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.

    1987-01-01

    Scaling is described of rotation, plasma column size and separation in a vacuum-arc centrifuge. The vacuum-arc centrifuge is a magnetized, fulled ionized, quasineutral column of plasma. The source of plasma is a vacuum-arc discharge between a negatively biased cathode and a grounded mesh anode. Rigid-body rotation, induced by the J x B force, causes radial, centrifugal separation of isotopes in the plasma column. Salient features of a fluid model that provides an understanding of rotation and the concomitant isotope separation in the vacuum-arc centrifuge are described. Scaling of rotation and plasma column size is found be consistent with the model. Measurements of isotope separation, also found to agree with the predictions of the model, are presented. Results of a parametric analysis of isotope separation in such a vacuum-arc centrifuge, using the fluid model and the observed scaling laws, are described. An analysis of the energy cost of separation of the vacuum-arc centrifuge shows that it typically requires only 70 keV/separated atom. (orig.)

  8. Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Anita Rywińska

    2009-01-01

    Full Text Available Pure and crude glycerol from biodiesel production have been used as substrates for citric acid production by acetate-negative mutants of Yarrowia lipolytica in fed-batch fermentation. Both the final concentration and the yield of the product were the highest when Y. lipolytica Wratislavia AWG7 strain was used in the culture with pure or crude glycerol. With a medium containing 200 g/L of glycerol, production reached a maximum of citric acid of 139 g/L after 120 h. This high yield of the product (up to 0.69 g of citric acid per gram of glycerol consumed was achieved with both pure and crude glycerol. Lower yield of citric acid in the culture with Y. lipolytica Wratislavia K1 strain (about 0.45 g/g resulted from increased erythritol concentrations (up to 40 g/L, accumulated simultaneously with the citric acid. The concentration of isocitric acid, a by-product in this fermentation, was very low, in the range from 2.6 to 4.6 g/L.

  9. Development of ethanol production from cooking oil glycerol waste ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-12

    Oct 12, 2016 ... glycerol waste by mutant Enterobacter aerogenes ... wild type strain was altered for enhancing ethanol production using UV irradiation and chemical method. .... microbial medium analytical methods were of laboratory and.

  10. Investigation of the kinetics and mechanism of the glycerol chlorination reaction using gas chromatography–mass spectrometry

    Directory of Open Access Journals (Sweden)

    JUN WANG

    2010-01-01

    Full Text Available As a primary by-product in biodiesel production, glycerol can be used to prepare an important fine chemical, epichlorohydrin, by the glycerol chlorination reaction. Although this process has been applied in industrial production, unfortunately, less attention has been paid to the analysis and separation of the compounds in the glycerol chlorination products. In this study, a convenient and accurate method to determine the products in glycerol chlorination reaction was established and based on the results the kinetic mechanism of the reaction was investigated. The structure of main products, including 1,3--dichloropropan-2-ol, 2,3-dichloropropan-1-ol, 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and glycerol was ascertained by gas chromatography–mass spectrometry and the isomers of the products were distinguished. Apidic acid was considered as the best catalyst because of its excellent catalytic effect and high boiling point. The mechanism of the glycerol chlorination reaction was proposed and a new kinetic model was developed. Kinetic equations of the process in the experimental range were obtained by data fitting and the activation energies of each tandem reaction were 30.7, 41.8, 29.4 and 49.5 kJ mol-1, respectively. This study revealed the process and mechanism of the kinetics and provides the theoretical basis for engineering problems.

  11. Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

    NARCIS (Netherlands)

    Xia, Ted

    2010-01-01

    This thesis presents two lines of research. On the one hand, we investigate heterogeneity in supercooled glycerol by means of rheometry, small-angle neutron scattering, and fluorescence imaging. We find from the rheological experiments that supercooled glycerol can behave like weak solids at

  12. Comparison of chromatographic methods for the determination of bound glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Foglia, T.A.; Jones, K.C.; Nunez, A.; Phillips, J.G. [U.S. Dept. of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA (United States); Mittelbach, M. [Inst. for Chemistry, Univ. of Graz, Graz (Austria)

    2004-09-01

    An important fuel criterion for biodiesel is bound glycerol, which is a function of the residual amount of triglycerides and partial glycerides in the biodiesel. Either high-temperature gas chromatography or high performance liquid chromatography can be used for determining these minor but important components in biodiesel. In this paper we have conducted a statistical study on the accuracy of the two methods for ascertaining the bound glycerol in biodiesel fuels obtained from different feedstocks. Analysis of variance showed that with one exception, namely diacylglycerols in some soy oil based biodiesel, there was no statistical difference in bound glycerol for the biodiesel samples analyzed or a difference between methods. Operationally, the high performance liquid chromatographic method is superior to the high temperature gas chromatographic method in that it requires no sample derivatization, has shorter analysis times, and is directly applicable to most biodiesel fuels. (orig.)

  13. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations

    DEFF Research Database (Denmark)

    Workman, Mhairi; Holt, Philippe; Thykær, Jette

    2013-01-01

    . Growth on glycerol proceeded at approximately 0.30 h-1, and the substrate uptake rate was 0.02 mol L-1 h-1 regardless of the starting glycerol concentration (10, 20 or 45 g L-1). Utilisation of glycerol was accompanied by higher oxygen uptake rates compared to glucose growth, indicating import......Yarrowia lipolytica is an attractive host for sustainable bioprocesses due to its ability to utilize a variety of carbon substrates and convert them to a range of different product types (including lipids, organic acids and polyols) under specific conditions. Despite an increasing number...... of applications for this yeast, relatively few studies have focused on uptake and metabolism of carbon sources, and the metabolic basis for carbon flow to the different products. The focus of this work was quantification of the cellular performance of Y. lipolytica during growth on glycerol, glucose or a mixture...

  14. A 'smart' tube holder enables real-time sample monitoring in a standard lab centrifuge.

    Science.gov (United States)

    Hoang, Tony; Moskwa, Nicholas; Halvorsen, Ken

    2018-01-01

    The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their "black box" nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades.

  15. Centrifugal analyzer development

    International Nuclear Information System (INIS)

    Burtis, C.A.; Bauer, M.L.; Bostick, W.D.

    1976-01-01

    The development of the centrifuge fast analyzer (CFA) is reviewed. The development of a miniature CFA with computer data analysis is reported and applications for automated diagnostic chemical and hematological assays are discussed. A portable CFA system with microprocessor was adapted for field assays of air and water samples for environmental pollutants, including ammonia, nitrates, nitrites, phosphates, sulfates, and silica. 83 references

  16. Horizontal vibrations of piles in a centrifuge

    International Nuclear Information System (INIS)

    Bourdin, B.

    1987-01-01

    The aim of the thesis is the study of soil dynamics for important structures like nuclear power plants, offshore platforms, dams etc. Experimental results of horizontal vibrations on a pile partially anchored in a soil scale model put into a centrifuge are presented. Mechanical similitude conditions from equilibrium equations or rheologic laws are described. After a description of testing equipment (centrifuge, electrodynamic excitator) experimental results are interpreted with a model. Non-linearities on frequency response curves are characterized [fr

  17. The commercial role for centrifuge enrichment

    International Nuclear Information System (INIS)

    Readle, P.H.; Wilcox, P.

    1987-01-01

    The enrichment market is extremely competitive and capacity greatly exceeds demand. BNFL [British Nuclear Fuels Ltd.] is in a unique position in having commercial experience of the two enrichment technologies currently used industrially: diffusion, and centrifuge enrichment through its associate company Urenco. In addition, BNFL is developing laser enrichment techniques as part of a UK development programme. The paper describes the enrichment market, briefly discusses the relative merits of the various methods of uranium enrichment and concludes that the gas centrifuge will be best able to respond to market needs for at least the remainder of the century. (author)

  18. The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems.

    Science.gov (United States)

    Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon

    2015-01-01

    The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate.

    Directory of Open Access Journals (Sweden)

    María del Mar Romero

    Full Text Available Cultured adipocytes (3T3-L1 produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively sustained. Proportionally (with respect to lactate plus glycerol, more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of

  20. Effects of the technique of cryopreservation and dilution/centrifugation after thawing on the motility and vitality of spermatozoa of oligoasthenozoospermic men.

    Science.gov (United States)

    Esteves, Sandro C; Spaine, Deborah M; Cedenho, Agnaldo P; Srougi, Miguel

    2003-01-01

    Comparing in human semen samples with low initial quality, the effects of 2 techniques of cryopreservation and dilution/centrifugation after thawing on the spermatic motility and vitality. Semen samples from 15 oligo and/or asthenozoospermic individuals assisted in the infertility sector of a tertiary hospital were obtained through masturbation. The samples were divided into 2 portions of equal volume, and diluted (1:1; v/v) with the cryoprotector containing glycerol (Test yolk buffer). One portion was frozen through the technique of liquid nitrogen vapor with static phases (group I - GI), while the other was frozen through a programmable biological freezer with linear speed (Planer, Kryo 10, series III) (group II - GII). The following parameters were assessed before freezing and after thawing: percentage of spermatozoa with progressive motility (Prog%) and percentage of live spermatozoa (Vit%). After defrosting, Prog% was assessed before and after removal of cryoprotector diluent, in different time intervals (zero, 3 h, and 24 h). The statistical analysis has been accomplished by using the non-parametric tests of Wilcoxon and Friedman. There was significant reduction of Prog% and Vit% from before freezing to after defrosting in both groups, I and II (p live spermatozoa with progressive motility. The effects of dilution and centrifugation to remove the cryoprotector had a negative impact only in samples frozen through the automated technique. In both techniques, progressive motility is kept constant during the first 3 hours after thawing and removal of the cryoprotector, but is drastically diminished by the end of an incubation period of 24 hours.